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Abstract

Abstract

In a decision-making problem, where we need to choose a particular decision

from a set of possible choices, the user often has some preferences which de-

termine if one decision is preferred over another. When the number of choices

is large, an intelligent system can help the user by attempting to learn user

preferences. One way of learning user preferences is based on the maximum

margin approach, where maximising the margin can be seen as satisfying each

existing preference input to the greatest degree. In this thesis, we first apply

this method to a real-world application, ride-sharing, and examine its potential

effectiveness.

Nevertheless, we show that the maximum margin preference learning approach

is sensitive to the way that preferences inputs and features are scaled. We ex-

plain why it is naturally expected that a preference relation is scaling invari-

ant, and go on to construct and characterise some preference relations that are

invariant to the scaling of (i) preferences inputs, (ii) features, and (iii) both

preferences inputs and features simultaneously. We compare these relations

and propose two algorithms to find the optimal elements according to each

relation.

In the last main chapter, we argue that the rescaling of features is also an issue

in the standard SVM classification and propose a new form of more conservative

classification that is invariant to the rescaling of features. We argue that this

cautious way of classification could be helpful in some critical decision-making

applications.
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1. INTRODUCTION 1.1 Introduction

1.1 Introduction

Choosing a decision among a set of alternatives is a recurrent task in our daily

lives. In these situations, user preferences play a major role in directing in-

dividuals to make decisions. Preference reasoning is a multi-disciplinary topic

that has been extensively studied in economics, psychology, philosophy, log-

ics and other human-centred disciplines. In the context of Artificial Intelli-

gence (e.g., constraint satisfaction, planning, search, resource allocation and

electronic commerce), an intelligent reasoning mechanism learns this available

preferential information in order to form a preference relation on the set of alter-

natives. Then, we might be able to prefer one to another regarding the induced

preference relation. The relation will be total if we can compare every pair of

alternatives.

Though the notion of preferences sounds simple, working with them can be a

very difficult task. There are a number of reasons for this, the most obvious one

being the cognitive difficulty of specifying preferences. The degree of desirabil-

ity that is inherent to preferences is most commonly represented either quanti-

tatively by means of utility functions for instance, or qualitatively by means of

pairwise comparisons. Preferences can be stated explicitly or implicitly. Explicit

preferences are directly stated by a decision maker. Then, any generated out-

come has to comply with all the explicit preferences. Implicit preferences are

indirectly discovered from the available information about the user.

The maximum margin based preference relation is an approach that can be

effectively used in many applications, as we have done in ride-sharing. This

method leads to a total relation by maximising the margin, where maximising

the margin can be interpreted as satisfying each existing preference statement

to the greatest degree.

For any preference relation, we would often expect that the relation is invariant

to the rescaling of preference inputs; e.g., if we know that the user prefers a

car with feature vector a to a car with feature vector b, we naturally expect

that 2a is also preferred to 2b. However, this is not the case for the maximum

margin approach, and rescaling of preferences inputs can change the resultant

preference relation. In addition to the rescaling of inputs, different ways of

normalization of features (i.e., scaling the domain of each feature)—which is

a fundamental pre-processing stage for any maximum margin based method—

can lead to completely different relations.

Preference Inference Based on Maximising
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1. INTRODUCTION 1.2 Overview and Contribution

The main focus of this thesis is to look at some more cautious preference rela-

tions that are invariant to the rescaling of (i) preferences inputs, (ii) features,

and (iii) both preferences inputs and features simultaneously. We investigate

the effect of rescaling and characterise some rescaling-invariant preference re-

lations.

1.2 Overview and Contribution

In this section, we give an outline of the main chapters of the thesis, along with

highlighting the main contributions.

Chapter 2: Background

This chapter introduces some definitions and the related formalism so as to aid

the understanding of the main chapters. The discussions of this chapter are

twofold. First, we include some related definitions and results about convex

sets and convex cones. This will be particularity helpful in the characterisation

of the rescaling-invariant preference relations which rely heavily upon these

concepts. In the second part, we describe the standard Support Vector Machine

(SVM) method for the classification task. The SVM formulation is used later

in Chapter 6 where we consider the effect of rescaling of features in standard

SVM. In addition, the explanation lays a foundation on which we can build and

develop the idea of maximising margin in the context of preference learning.

Chapter 3: Related Work

In this chapter, we present the background material and a literature review

related to preference handling, which is the primary research domain of the

thesis. We start with some properties of preference relations and describe dif-

ferent types of pre-orders. Then, we briefly look at the connection between

preferences and the decision-making problem. Thereafter, we explore a variety

of preference relations that are either (i) based on a utility function such as UTA

or the weighted coefficient model, or (ii) more relational and qualitative such

as Pareto and lexicographical dominance.

Preference Inference Based on Maximising
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1. INTRODUCTION 1.2 Overview and Contribution

Chapter 4: Learning User Preferences for a Ridesharing Application

This chapter illustrate how a maximum margin preference learning method

can be effectively applied to a real-world problem, ride-sharing, to enhance

users’ satisfaction degrees. We first explain what ride-sharing is, and what are

the obstacles for its wide adoption. Proper matching of drivers and riders,

as an important challenge in ride-sharing, is described in further detail. We

then propose a novel strategy for the matching process that involves learning

user preferences. To do so, an SVM-inspired preference learning method is

implemented. The experiments show that our method can improve the user’s

experience in a ride-sharing application.

Chapter 5: Scaling-Invariant Maximum Margin Preference Learning

This chapter includes the central contributions of the thesis. The chapter be-

gins with introducing some notation and then explaining the maximum margin

preference relation with respect to that terminology. Afterwards, the core of the

chapter is dedicated to characterising preference relations that are not sensitive

to the scaling of: (i) preference inputs, (ii) features, and (iii) both inputs and

features simultaneously. We then consider how we can deal with inconsistent

data. Since the defined preference relations do not generally lead to a total or-

der, we also describe two incremental algorithms to find optimal elements, with

respect to two different notions of optimality. In the last section, the experi-

mental results draw thorough comparisons between preference relations from

different aspects.

Chapter 6: Rescale-Invariant SVM for Binary Classification

Inspired by Chapter 5, we propose a features-rescaling-invariant SVM method

for the binary classification task in this chapter. First, we demonstrate that the

result of SVM classification could be totally different under a different scaling

of features. By making use of some results from the previous chapter, we char-

acterise a method that determines whether the class label that is assigned to an

instance, either will vary under different rescaling of features, or is always pos-

itive, or is always negative. This method can be seen as a rescaling-invariant

classifier that classifies instances into three categories (instead of two), i.e.,

Preference Inference Based on Maximising
Margin
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1. INTRODUCTION 1.3 Publications

strongly positive, strongly negative, and neutral. We also characterise the sit-

uation when the classification of any possible instance by standard SVM is not

affected by rescaling of features. Our experiments highlight the value of predic-

tion (i.e., the level of confidence) that is gained by using the proposed method.

1.3 Publications

The work of this thesis has appeared in (or has been submitted for) the fol-

lowing proceedings of journals and conferences, which have been subject to

peer-review.

Journal Papers

Submitted: Mojtaba Montazery, and Nic Wilson. Scaling-Invariant Maximum

Margin Preference Learning. To Journal of Artificial Intelligence Research

(JAIR).

Accepted: Mojtaba Montazery, and Nic Wilson. A New Approach for Learning
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2. BACKGROUND 2.1 Introduction

2.1 Introduction

This chapter aims to provide some background discussions that the main chap-

ters of the thesis rely on, though we attempt to avoid adding any unnecessary

complexity.

The first section includes basic definitions and properties of convex sets that are

useful in our work. In the next section, we discuss the conventional Support

Vector Machines (SVMs), as a machine learning method, which was first intro-

duced by Vladimir Vapnik and colleagues in [CV95]. SVM has been applied in

many real-world problems such as bankruptcy prognosis, face detection, analy-

sis of DNA microarrays, text classification, biological sciences, and breast cancer

diagnosis [TK01, CT03, ML05, RW10, BS02, YV13].

2.2 Background I: Convex Sets

As we use the concept of convex sets (and cones) in the thesis quite frequently,

this section includes relevant definitions and results.

Definition 1: Convex Set

For some natural number n, a set C ⊆ IRn is called convex if the line segment

between any two points in C lies entirely in C, i.e., for any x1, x2 ∈ C, and

any δ with 0 ≤ δ ≤ 1, we have

δx1 + (1− δ)x2 ∈ C.

Roughly speaking, a set is convex if every point in the set can be seen by every

other point, along an unobstructed straight path between them, where unob-

structed means lying in the set [BV04, Chapter 2.1].

We call a point of the form r1x1+. . .+rkxk with r1, . . . , rk ≥ 0 and r1+. . .+rk = 1
a convex combination of the points x1, . . . , xk. It can be shown that a set is

convex if and only if it contains every convex combination of its points.
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2. BACKGROUND 2.2 Background I: Convex Sets

Definition 2: Convex Hull

The convex hull of a set C ⊆ IRn is the set of all convex combinations of

points in C, i.e.,

{r1x1 + . . .+ rkxk : xi ∈ C, ri ≥ 0, i = 1, . . . , k, r1 + . . .+ rk = 1}.

Definition 3: Convex Cone

A set C ⊆ IRn is a

(i) cone (or non-negative homogeneous), if for any x ∈ C and r ≥ 0,

rx ∈ C.

(ii) convex cone if it is convex and a cone, which implies that for any

x1, x2 ∈ C, and any r1, r2 ≥ 0, we have r1x1 + r2x2 ∈ C.

Some other definitions refer to the cone with and without 0 as the pointed and

blunt cone, respectively [DD11, Ber05]. However, our definition, which is from

[BV04], implies that a cone always includes the origin as we only consider cones

with origin throughout the thesis.

A point of the form r1x1 + . . .+ rkxk with r1, . . . , rk ≥ 0 is called a non-negative
linear combination (or a conic combination) of x1, . . . , xk. If x1, . . . , xk are in a

convex cone C, then every conic combination of x1, . . . , xk is in C. Conversely,

a set C is a convex cone if and only if it contains all conic combinations of its

elements.

Definition 4: Conic Hull

The conic hull of a set C, denoted by co(C), is the set of all conic combina-

tions of points in C, i.e.,

{r1x1 + . . .+ rkxk : xi ∈ C, ri ≥ 0, i = 1, . . . , k}.
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2. BACKGROUND 2.2 Background I: Convex Sets

C1

C2

C3
x

y

Figure 2.1: The dual cone of C2 (green) is all the coloured region, i.e., C1∪C2∪C3.

The conic hull of C is in fact the smallest convex cone that contains C (clearly

co(C) = C if C is convex cone itself). We may say that the convex cone co(C) is

generated by the set C.

Definition 5: Dual Cone

A set C∗ ⊆ IRn is the dual cone of a cone C ⊆ IRn, if it is given by

C∗ = {y ∈ IRn : x · y ≥ 0, for all x ∈ C},

where the dot product x · y is equal to
∑n
j=1 x(j)y(j), with x(j) and y(j)

being the jth component of x and y respectively.

As the name suggests, C∗ is a cone, and is always convex, even when the original

cone C is not. Geometrically, the dual cone C∗ consists solely of all the elements

which make an acute angle (i.e., angle less than or equal to 90◦) with every

element of the cone C. The definition immediately implies that if C1 ⊆ C2 then

C∗2 ⊆ C∗1 . Figure 2.1 gives an illustration of dual cones.

A polyhedron is defined as the solution set of a finite number of linear equalities

and inequalities.
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2. BACKGROUND 2.3 Background II: Support Vector Machines

Definition 6: Polyhedron

A set C ⊆ IRn is called a polyhedron, if there exist aj ∈ IRn and bj ∈ IR with

j ∈ {1, . . . ,m}, such that x ∈ C if and only if

aj · x ≥ bj, j ∈ {1, . . . ,m}.

A polyhedron is thus the intersection of a finite number of closed half-spaces. It

can be easily shown that polyhedra are convex sets [BV04, Chapter 2.2].

2.3 Background II: Support Vector Machines

In the task of classification, a classifier identifies to which of a set of classes

a new item belongs, on the basis of a training set whose class membership is

known. The basic idea in binary SVM classifier is to find an optimal hyperplane

which separates the d-dimensional data perfectly into its two classes. Here,

“optimal” is used in the sense that the separating hyperplane has the best gen-

eralization ability for the unseen data points based on statistical learning theory

[LYP10, Vap13]. This optimal separating hyperplane is generated by solving an

underlying optimisation problem. Furthermore, the VC-dimension (a measure

of a system’s likelihood to perform well on unseen data) of SVM can be explic-

itly calculated, unlike other learning methods like neural networks, for which

there is no measure [Bos02].

SVM can also be extended for handling inconsistencies in data (i.e., non-linearly

separable data), and solving regression tasks. However, we only discuss the

basic linear binary SVM classifier. Overall, SVM is intuitive, theoretically well-

founded, and has been shown to be practically successful [Bos02].

We give the formulation of the linear support vector machine for a binary clas-

sification task. We define X to be a set of training samples where each training

sample is characterised by n input features, and a class label associated with

that sample. Features are assumed to be numeric1.

1 For ordinal features (e.g., a feature with {Cold,Mild,Hot} variables) each value can be
replaced by a number, maintaining the order of values. For categorical features, one might
use the one-hot encoding (a.k.a. 1-of-k coding scheme) to convert a feature with k cate-
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2. BACKGROUND 2.3 Background II: Support Vector Machines

A sample is expressed as a pair of (x, y), where x ∈ IRn is the feature vector2,

and y ∈ {+1,−1} indicates the class label for that sample; i.e., X ⊆ IRn ×
{+1,−1}. The input set can be also represented by two disjoint sets:

• X+ = {x+ : (x+,+1) ∈ X}

• X− = {x− : (x−,−1) ∈ X}

This means that X+ (respectively X−) is the set containing features vectors that

is associated with the positive (respectively negative) class label in X. Having

assumed that positive and negative samples are linearly separable, we have

some separating hyperplane (a line in two-dimensional space) H = {µ : w ·
µ + b = 0}, for some w ∈ IRn and b ∈ IR. Given this separating hyperplane, we

have:

w · x+ + b > 0 ∀x+ ∈ X+ (2.1)

w · x− + b < 0 ∀x− ∈ X− (2.2)

or more compactly:

y(w · x+ b) > 0 ∀(x, y) ∈ X. (2.3)

Note that a given hyperplane represented by (w, b) can be equally expressed by

all pairs (rw, rb) for r ∈ IR+ (IR+ is the set of strictly positive reals.); i.e., for any

µ ∈ H and any r ∈ IR+, w · µ+ b = 0 if and only if rw · µ+ rb = 0 (for example

2x1 + 3x2 + 1 = 0 and 4x1 + 6x2 + 2 = 0 both represent a same hyperplane).

Now, let us choose r given by:

r = 1
min

(x,y)∈X
y(w · x+ b) .

According to Equation 2.3, this choice of r is strictly positive and thus well-

defined. This implies that:

min
(x,y)∈X

y(rw · x+ rb) = 1, which implies (2.4)

y(rw · x+ rb) ≥ 1 ∀(x, y) ∈ X. (2.5)

gories to k Boolean features. For example a feature, that represents the type of car with
values {Sedan, SUV,Hatchback}, is converted to three binary features: Is_Sedan, Is_SUV, and
Is_Hatchback. Clearly, among these three features exactly one of them is true and the two
others are false.

2x(k) is the score for x regarding the kth feature.
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Figure 2.2: The illustration of a set of training samples where bullet points are
positive samples and squares represent negative samples. Samples are sepa-
rated by the hyperplane x1 + x2 − 1 = 0.

Without loss of generality, we can have a change of variable by using (w, b) in-

stead of (rw, rb) in Equations 2.4 and 2.5. As a result, we say for any separating

hyperplane H, there exists (w, b) ∈ IRn × IR such that (w, b) represents H (i.e.,

w · µ+ b = 0 for all µ ∈ H), and

min
(x,y)∈X

y(w · x+ b) = 1 (2.6a)

and y(w · x+ b) ≥ 1 ∀(x, y) ∈ X. (2.6b)

Thus, from Equation 2.6a, the closest sample(s) to the separating hyperplane

(say x∗) lie(s) on either the hyperplane w·µ+b = 1 if x∗ ∈ X+ or the hyperplane

w · µ+ b = −1 if x∗ ∈ X−; that means, |w · x∗ + b| = 1.

Example 1 » Conventional Binary SVM Representation

Consider the black bullets and empty squares in Figure 2.2 are respectively
illustrating training samples associated with positive and negative class
labels when n = 2 (i.e., the number of features is two). The hyperplane
x1 +x2−1 = 0 separates data, and the closest points to the hyperplane are
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2. BACKGROUND 2.3 Background II: Support Vector Machines

(0.3, 1.7) and (2, 0) from the positive side and the point (0.2,−0.2) from
the negative side. As is seen, these positive and negative boundary points
lie on two parallel hyperplanes x1 + x2 = 2 and x1 + x2 = 0, respectively.

We know that the geometric distance from a hyperplane represented by (w, b)
to the point u is

|w · u+ b|
‖w‖

,

where ‖w‖ is Euclidean norm of w. Now, define the “margin” of a separating

hyperplane to be d, where d is the shortest distance from the separating hyper-

plane to the closest sample x∗. So, we have

d = |w · x
∗ + b|
‖w‖

= 1
‖w‖

Intuitively, SVM looks for the separating hyperplane with the largest margin

(i.e., maximising the geometric distance to the closest samples). Hence, SVM

searches for a separating hyperplane by maximising 1/‖w‖ subject to conditions

in Equation 2.6. It can be shown that this leads to the following minimisation

problem:

minimise
w

1
2‖w‖

2 (2.7a)

subject to

y(w · x+ b) ≥ 1 ∀(x, y) ∈ X. (2.7b)

We will show that this is a convex Quadratic Program (QP); an optimisation

problem is called a convex quadratic program if the objective function is convex

quadratic, and the constraint functions are affine. That means in a QP, we

minimise a quadratic function over a polyhedron [BV04, Section 4.4]. A convex

quadratic function for the n-dimensional vector x ∈ IRn is formally written as

follows:
1
2x

TPx+ q · x

where xT is the vector transpose of x, P is a n × n symmetric semi-definite

matrix, and q ∈ IRn.

Now in Equation 2.7, clearly, constraints are affine. Also, we can rewrite the
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objective function as:

1
2‖w‖

2 =
n∑
j=1

w(j)2 = 1
2w · w = 1

2w
T Inw

where In is the identity matrix of size n. In is obviously symmetric, and also is

positive (semi-)definite since for any non-zero w we have wT Inw = ∑n
j=1w(j)2

> 0. This implies that the objective function here is convex quadratic, and

so Equation 2.7 is a QP. Fortunately, many techniques have been developed to

solve QP problems [OFG97, Kau98, Van99].

The training samples on the bounding planes, i.e., w · µ + b = ±1, are called

support vectors. For example in Figure 2.2, (0.3, 1.7) and (2, 0) are positive

support vectors, and (0.2,−0.2) is the negative support vector. If we remove

any point which is not a support vector from X, the separating hyperplane and

subsequently the result of SVM will not change. This is a very nice feature of

SVM learning algorithms. Once we have the training result, all we need to keep

in our databases are the support vectors.

Assume we have obtained the optimal w from Equation 2.7; we must still de-

termine b to fully specify the hyperplane. To do this, take any support vector

(either positive or negative) x∗ with the class label y, for which we know that

y(w · x∗ + b) = 1. this gives us:

b = y − w · x∗, (2.8)

since y ∈ {−1, 1}.

2.4 Summary

In this chapter, we provided some introductory material for our work in the

thesis. The first section gave some definitions regarding the concept of convex

sets, including convex cone and polyhedron. In the next section, we presented

the basic form of Support Vector Machines. The formalism that was discussed

in that section will be helpful for following the ideas and machinery of the

proposed methods in Chapters 4, 5 and 6.
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3. RELATED WORK 3.1 Introduction

3.1 Introduction

In this chapter, we give a literature review along with some basic definitions

related to preference relations and their connection with decision-making prob-

lems. In a decision-making problem, the task is to choose a single decision or

subset of decisions that are preferred to the other decisions. In this situation,

we can have some preference information in different forms associated with

decisions. Using this preference information, the set of decisions can be or-

dered or ranked in relation to each other, and this ordering on the set is called

a preference relation.

The outline of this chapter is as follows. In Section 3.2, we give an intro-

duction to preferences and properties of preference relations along with some

related definitions. Section 3.3 formalises the concept of preference relation in

the context of decision-making problem. We discuss a number of models that

represent preference relations in the form of utility functions in Section 3.4.

Finally in Section 3.5, some more relational or qualitative forms of preferences

representation models are reviewed.

3.2 Preferences

The notion of preference aims to model the choices made by a decision-maker.

In AI, an artificial agent acts on behalf of another physical or moral decision-

maker. A rational agent, given a set of alternatives, chooses a more attractive

alternative over a less desirable, according to the preferences of the user or

organization that it acts for. For example in an e-commerce application [BHY96,

BHY97], each time the user reviews a product, the system may induce some

preferences.

3.2.1 Preference Relation Properties

A preference relation is usually a binary relation in which one element dom-

inates the other one. For some set X, any subset of the Cartesian product of

X, i.e., X2 = {(α, β) : α, β ∈ X}, is a binary relation on X. We now define a

preference relation that is a type of binary relation.
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Definition 7: Preference Relation

A preference relation < on a set X is a binary relation. For any α, β ∈ X, if

(α, β) ∈ <, then we say α is preferred to β.

This relation is also called an order relation as it gives an order (not necessarily

a total one) over the set of elements. Given any α, β ∈ X, if (α, β) ∈ < then we

can also write α < β. Similarly, α 6< β means that α is not preferred to β. For

any α, β ∈ X exactly one of the following holds:

(i) α < β and β < α.

(ii) α < β and β 6< α.

(iii) α 6< β and β < α.

(iv) α 6< β and β 6< α.

Next, we give some definitions of some basic properties of binary relations.

Remark 8: Binary Relation Properties

A binary relation < on X is:

(i) reflexive if, α < α for all α ∈ X;

(ii) irreflexive if, α 6< α for all α ∈ X;

(iii) symmetric if, α < β then β < α for all α, β ∈ X;

(iv) antisymmetric if, α < β and β < α implies α = β for all α, β ∈ X;

(v) asymmetric if, α < β then β 6< α for all α, β ∈ X (i.e., irreflexive and

antisymmetric);

(vi) complete if, α < β or β < α (or both) for all α, β ∈ X;

(vii) transitive if, α < β and β < γ then α < γ for all α, β, γ ∈ X.

We distinguish between binary relations based on the properties they hold. We
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consider in particular the following four types of order relations.

Definition 9: Order Relations

A binary relation < on X is a:

(i) preorder on X, if it is reflexive and transitive;

(ii) partial order on X, if it is a preorder and antisymmetric;

(iii) total preorder (a.k.a. weak order) on X, if it is complete and transi-

tive;

(iv) total order on X, if it is total preorder and antisymmetric.

For example, the relation ≥ on IR is a total order because it is complete (i.e.,

a ≥ b or b ≥ a for all a, b ∈ IR), transitive (i.e., if a ≥ b and b ≥ c then a ≥ c

for all a, b, c ∈ IR), and antisymmetric (i.e., if a ≥ b and b ≥ a then a = b for all

a, b ∈ IR).

3.2.2 Associated Relations to a Preorder

For a preorder < on a set X, we look at some relations that are associated with

<. First, we look at the strict or asymmetric part of <, which is defined as

follows.

Definition 10: Strict Relation

For a preorder< on a setX, and any α, β ∈ X, the associated strict preorder

relation � is given by:

α � β if and only if, α < β and β 6< α.

This relation �, is irreflexive and transitive, and represents the notion of strict

preference; i.e., for some α, β ∈ X, if α � β, then α is strictly preferred to β.

For instance, the relation > on IR is the strict part of ≥ on IR because it is clearly
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irreflexive (i.e., a 6> a for all a ∈ IR). We now look at the symmetric part of <,

which is defined as follows.

Definition 11: Equivalence Relation

For a preorder < on a set X, and any α, β ∈ X, the associated equivalence
relation ≡ is given by:

α ≡ β if and only if, α < β and β < α.

This relation ≡ is reflexive, symmetric, and transitive; it represents the notion

of equally preferred, if α ≡ β, then α is equally preferred to β.

This also gives us the notion of an equivalence class; an equivalence relation

on X partitions X into some disjoint subsets, called equivalence classes; i.e.,

any two elements of X are in the same class if and only if they are equivalent.

Formally, an equivalence class of X with respect to < is defined as follows:

Definition 12: Equivalence Class

For a preorder relation < on a set X, the equivalence class of an element

α ∈ X, denoted by [α]<, is defined as:

[α]< = {β : β ∈ X, β ≡ α},

where ≡ is the equivalence relation associated with < as defined in Defini-

tion 11.

For any α, β ∈ X, and any preorder relation < on X, [α]< = [β]< if and only if

α ≡ β. As is well-known, two equivalence classes are either identical or disjoint.

Now, if elements cannot be compared with respect to <, we have the following

relation.
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Definition 13: Incomparability Relation

For a preorder < on a set X, and any α, β ∈ X, the associated incompara-
bility relation (or indifference relation) ∼ is given by:

α ∼ β if and only if α 6< β and β 6< α.

For any α, β ∈ X, the relation α ∼ β represents that an individual is uncertain

about her preferences between α and β.

3.2.3 Extending Relations

To aid the later comparisons of different preference relations, we define the

notion of an extension to a relation [FRW10].

Definition 14: Relation Extension

An extension <′ to a relation < on a set X, is a binary relation on X such

that

for all α, β ∈ X, α < β ⇒ α <′ β.

So, if α is preferred to β regarding <, then it is still preferred according to <′.

Looking at relations < and <′ as sets of ordered pairs, we have that < ⊆ <′.

3.3 Preferences and Decision Making

In this section, we look at preference relations in the context of a general

decision-making problem, where we have a set X of decisions, alternatives or

choices, and depending on the situation, the task is to choose a single decision

or a subset of decisions from this set, given some preference information relat-

ing to the decisions . Firstly, we consider a general decision-making problem,

which is not specific to any particular decision-making field or area, where the
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3. RELATED WORK 3.3 Preferences and Decision Making

purpose of this definition is to facilitate the discussion of different preference

relations [OW13].

Definition 15: Multi-criteria Decision Problem

A multi-criteria decision problem is a tuple P = 〈X,S, {Dj : j ∈ S}, {<j :
j ∈ S}〉, where:

• X is a finite set of decisions, alternatives or choices;

• S = {1, . . . , n} is a finite set of decision criteria (also attributes, as-

pects or objectives), where each j ∈ S labels some preferential aspect

of the problem;

• Each α ∈ X is represented as a vector of n components with α(j) ∈ Dj

for each j ∈ S;

• <j is a total order on Dj for each j ∈ S.

In the definition above, α(j) ∈ Dj denotes the value of alternative α ∈ X in

criterion j ∈ S. Here, we consider the polarity of domains, where Dj could

represent positive preferences or different levels of positive outcomes such as

utilities or degrees of satisfaction, or Dj could represent negative preferences,

where the values represent different levels of negative outcomes such as costs

or degrees of violation. The polarity of the domains determines whether or not

larger or smaller values are preferred according to some preference relation; for

positive preferences, larger values are preferred, and for negative preferences,

smaller values are preferred.

Another consideration in these problems is that we can also have different types

of domains. For example, Dj can be quantitative, where the difference between

two preference degrees has some meaning (interval scales [Kir08]), or if Dj

is purely qualitative (ordinal scales), then we just have an ordering between

preference degrees.

As stated, the order of components of vector α ∈ X relates to the order of

criteria 1, . . . , n. This representation is important when the ordering of the

preference values (components) needs to be maintained [KRR79]. However,

there are certain situations that the comparison of two decisions does not rely
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on maintaining the criterion ordering (the ordering of the preference values

is not important); for example, in social welfare theory [Sen70], where in a

social welfare distribution there is no ordering over the individuals. In such

a situation, all criteria have a single domain with a single total order relation

over that domain; i.e., for all j, k ∈ S, Dj = Dk and <j = <k. So, the multi-

criteria decision problem for this particular situation can be written in this form

P = 〈X,S, {Dj : ∀j ∈ S, Dj = D}, {<j : ∀j ∈ S,<j = <}〉. We now define the

sorted preference vector with respect to this special case of the multi-criteria

decision problem.

Definition 16: Sorted Preference Vector

Given a special case of multi-criteria decision problem P = 〈X,S, {Dj :
∀j ∈ S, Dj = D}, {<j : ∀j ∈ S,<j = <}〉, consider any α ∈ X, and any

permutation function σ : S → S with respect to α such that α(σ(n)) <
α(σ(n − 1)) < . . . < α(σ(1)). Then the sorted preference vector α↑ of α is

defined as follows:

for all j ∈ S, α↑(j) = α(σ(j)).

Thus, σ(·) is a function that accepts the index of one criterion in α↑ and

gives the index of that criterion in α.

For instance, if α = (5, 2, 3) and < is simply defined as ≥, then α↑ = (2, 3, 5).
In this example, σ(1) = 2, σ(2) = 3, and σ(3) = 1. The definition implies that

α↑(n) has the greatest preference value for α among criteria.

3.4 Utility-based Preference Representation

Representation of preferences is a quite difficult task in general and it is a major

goal of decision analysis [Fis70, KRR79]. Many different formalisms have been

proposed and studied to represent preferences. One of the main techniques is

to assess the value of preferences vector by a utility (cost) function, such that

the preference relation< is defined as: α < β if and only if the utility associated

with α is greater than or equal to the utility associated with β. More formally,
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the utility function f maps each alternative to a real number; i.e., f : X → IR.

The fundamental assumption of utility [Fis70, KR93, VNM07] states that the

numbers f(α) and f(β) are assigned to the elements α and β in X in such a

way that

α < β ⇐⇒ f(α) ≥ f(β).

The advantage of representing preferences in this way is that it defines a total

preorder on the set of alternatives, and so it is always possible to answer very

common questions such as “which of the two alternatives is better?” or “what is

the best choice?”. However, the main disadvantage with this form of represen-

tation is that it is time-consuming and tedious when one has to deal with the

large number of choices with multiple criteria [DHKP11]. Also, the inherent

assumption of this representation suggests that all alternatives are comparable,

while this might not be necessary the case in practice. If X is finite or count-

ably large then the existence of such utility function f is guaranteed by a certain

number of axioms [VNM07].

In this section, we first include some well-known forms of utility function rep-

resentations, and in 3.4.6, we discuss some methods for learning the utility

function mostly based on machine learning techniques.

3.4.1 Additive Independence

A structural assumption of preferences that is the most common approach

for evaluating multi-criteria alternatives is to use an additive representation,

based on additive independence [KRR79, Fis70, KR93, Dye05]. In this addi-

tive representation, the utility function is decomposed into sub-utility functions

f1, . . . , fn—one for each criterion—such that f can be written as:

f(α) =
∑
j∈S

fj(α(j)), (3.1)

where α(j) ∈ Dj is the jth component of α (i.e., the value of α in criterion j).

The key condition that is required to have the additive form, is mutual preference
independence as we define below.
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Definition 17: Mutual Preferential Independence

Consider any multi-criteria decision problem P = 〈X,S, {Dj : j ∈ S}, {<j :
j ∈ S}〉, and any I ⊂ S. Also, let Ī = S−I,DI = ∏

j∈I Dj and D̄I = ∏
j∈Ī Dj.

Thus, any x ∈ DI is a partial assignment of criteria, as is x̄ ∈ D̄I , and

(x, x̄) ∈ ∏
j∈S Dj is a complete assignment. Now,

• The set of criteria I is preferentially independent of Ī if for all x, y ∈ DI ,
the existence of x̄ ∈ D̄I such that (x, x̄) < (y, x̄) implies that for any

other ȳ ∈ D̄I we also have (x, ȳ) < (y, ȳ).

• The criteria in P are mutually preferentially independent if for every

subset I ⊆ S, the set I is preferentially independent of Ī.

When coupled with some technical conditions, mutual preference indepen-

dence implies the existence of an additive multi-criteria value function for n ≥ 3
[Dye05]. An example may help to illustrate the idea of preference indepen-

dence.

Example 2 » Preference Independence

Suppose someone is attempting to evaluate some restaurant meals based
on three criteria: cost, the main component of the meal and the side
component. We can intuitively say that if two identical meals have dif-
ferent prices (though it does not usually happen in reality), the user al-
ways prefers a cheaper one. This means I = {cost} is preferentially
independent of Ī = {main component, side component}. Assume now
that the user prefers salad as the side component for fish, and chips for
chicken, so for example we have such statements from him saying that
(C10, chicken, chips) < (C10, chicken, salad), but (C15,fish, salad) < (
C15,fish, chips). That implies that I = {side component} is not prefer-
entially independent of Ī = {cost,main component}, and thus we do not
have the mutual preferential independence condition in this example.
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3.4.2 Generalized Additive Independence

Additive independence relations require quite strong assumptions regarding the

structure of the preferences. However, it seems that our preferences may satisfy

some weaker (than additive) forms of independence. i.e., when there is mutual

preference dependence between some subsets of criteria [KRR79]. For example,

the only attribute that affects how much sugar I want in my hot drink is the type

of drink, not the glass and so on.

A more general form of additive independence that allows us to be as general as

we wish, is the generalized additive independence (GAI) introduced by [Fis67].

The model has gained popularity in the literature because of its additional flex-

ibility [BG95, BBB01, BPPS03, BPPS05, BB07, DGP09].

In the GAI model, independence holds among certain subsets of criteria rather

than individual criteria. Formally, consider having k subsets I1, . . . , Ik ⊆ S,

where
⋃k
i=1 Ii = S and each Ii is preferentially independent from its comple-

ment (i.e., Īi). Also, let the components of the alternative α that are included

in the subset Ii, be a partial tuple α[Ii] = 〈α(j) : j ∈ Ii〉. Now, the generalized

additive independence condition holds if and only if there exists a function of

the following form representing the preference relation [BB05, Theorem 1]:

f(α) =
k∑
i=1

fi(α[Ii]). (3.2)

By allowing for subsets containing more than one criterion, we enable capturing

preferentially-dependent criteria. Also, note that the subsets are not necessarily

disjoint. As a result, we might substantially reduce subset sizes by enabling dif-

ferent subsets to be influenced by the same criterion, without having to combine

their associated criteria into a single, large subset.

Example 3 » Generalized Additive Independence

Consider Example 2 where S = {cost,main component, side component}.
According to the assumptions made there, we have two preferentially inde-
pendent subsets, I1 = {cost} and I2 = {main component, side component}.
So, for an alternative α, the value function will be:

f(α) = f1(α(price)) + f2(α(main component), α(side component)).
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It should be noted that, unlike the additive independence model, GAI is fully

flexible; if we choose k = 1 and I1 = S, we can represent any value function.

In the other extreme, if we choose k = n and each subset contains only one

criterion, we obtain the additive independence representation.

The GAI representation can be compiled into graphical structures, called GAI

networks [GP04]. A GAI network is an annotated graph whose nodes corre-

spond to the criteria in S, and an edge connects the nodes corresponding to a

pair of criteria that occur jointly in some subset Ii. GAI networks can be ex-

ploited to perform classical optimisation tasks (e.g. finding an alternative with

maximal utility) [GPQ08, GPD11].

3.4.3 UTA Representation

The UTA (UTilités Additives) method proposed in [JLS82] aims at inducing ad-

ditive value functions from a given ranking on set of decisions [SGM05]. In this

model it is assumed that the domains of criteria are real numbers. The criteria

aggregation model in UTA is in the following form:

f(α) =
∑
j∈S

wjgj(α(j)) (3.3a)

subject to ∑
j∈S

wj = 1, (3.3b)

where wj ∈ IR is the weight of gj, and gj with j ∈ S, are non-decreasing

real valued functions, named marginal value functions, which are normalized

between 0 and 1. This representation is in fact equivalent to Equation 3.1 when

the sub-utility function fj is rewritten as fj(α(j)) = wjgj(α(j)).

The UTA method assumes the marginal value functions (i.e., gj) to be piece-

wise linear. Then, a special linear programming method is utilised to find some

global utility functions so that the rankings obtained through these functions

are as consistent as possible with the given ranking.

A variation of UTA that was introduced in [SY85] is UTASTAR. In UTASTAR

method, a double positive error function is introduced to be minimised. So,
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Equation 3.3a becomes:

f(α) =
∑
j∈S

wjgj(α(j))− σ+(α) + σ−(α), (3.4)

where σ+ and σ− are the overestimation and the underestimation error respec-

tively.

One of the main assumptions in UTA is that the marginal value functions are

monotonic. This assumption, although widely used, is sometimes not applicable

to real-world situations. One way to deal with non-monotonic preferences is

to divide the range of a criterion into intervals, so that the preferences are

monotonic in each interval, and then treat each interval separately [KR93].

Inspired by this technique, [DZ95] presents a variation of UTASTAR for the

assessment of non-monotonic marginal value functions.

Another assumption in UTA methods is that the marginal value functions are

piecewise linear. The choice of such functions is historically motivated by the

opportunity of using linear programming solvers. Although piecewise linear

functions are well-suited for approximating monotone continuous functions,

their lack of smoothness (differentiability) may make them seem “not natu-

ral” in some contexts, especially for economists [SGMP18]. Abrupt changes

in slope at the breakpoints are difficult to explain and justify. Because of

this, some methods concerning this fact have been developed. The MIIDAS

system [SSY99] proposes tools to model marginal value functions; possibly

non-linear (and even non-monotone) shapes of marginals can be chosen from

parametrised families of curves. In [BKU02], the authors propose an inference

method based on linear programming that infers quadratic utility functions in

the context of an application to the banking sector. [SGMP18] propose to infer

polynomials and splines functions for marginals by making use of semi-definite

programming instead of linear programming.

Another extension of UTA methods refers to the intensity of the user’s prefer-

ences; e.g., the preference of alternative a over b is stronger than the preference

of b over c. That includes the model described in [SS73] in which a series of

constraints are allowed to be added during the linear programming formula-

tion, or [OK89] where a ratio scale is used in order to express the intensity

of preferences, or [BP13] that attaches a likelihood degree to each pair in the

given ranking.

Other techniques, named meta-UTA, aim at the improvement of the value func-
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tion with respect to near optimality analysis or to its exploitation. These include

the UTAMP2 method proposed in [BS01], and [DYZ90].

As opposed to traditional UTA methods, some more recent works that propose

a single utility function include [GMS08, FGS09, KGS12].

3.4.4 Weighted Coefficient Model

This is a special case of UTA representation, where gj(α(j)) = α(j) for all j ∈ S.

Thus, the utility function will be in the following form:

f(α) =
∑
j∈S

wjα(j), (3.5)

where for all criterion j in S, wj is a (usually non-negative) number which

represents the relevance importance of that criterion.

There are many studies attempting to systematically assign weights to crite-

ria with respect to perceptions of the user. As one of the very first instances,

[Eck65] provides a method for choosing weights for each of the six criteria in-

volved in designing a specific air defence and a general air defence systems,

and selecting a personnel subsystem manager for a development program.

Another instance is the AHP (Analytic Hierarchy Process) method that was de-

veloped in [Saa88, Saa03, Saa05]. In this method, the user is asked to state

quantitatively the relative importance of the criterion j over the criterion k.

The answer is interpreted as being an estimate of wj/wk. Having n criteria, we

have n(n−1)
2 pairs of criteria in which the relative importance must be deter-

mined. However, to do so, it can be seen that only n − 1 pairs of carefully

chosen comparisons are sufficient, because for example, knowing the values of
w1/w2 and w2/w3 gives us w1/w3. After acquiring these values for all pairs of criteria,

a symmetric matrix An×n is constructed such that ajk = wj/wk. This matrix is

called the judgement matrix. Assuming the vector w with n components consists

of weights, it can be seen that Aw will be equal to nw, and:

Aw = nw ⇒ (A− nIn)w = 0, (3.6)

where In is the identity matrix of size n. This is a system of homogeneous linear

equations, and it is shown that for this structure of matrix it has a non-trivial

solution for the vector w.
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Another method for choosing weights, SVMRank [Joa02], selects a weight vec-

tor that maximises the margin (or equivalently has the minimum Euclidean

norm). We will discuss this method extensively in Sections 4.4 and 5.2.2 later.

Another approach that has been explored, for example in [Raz14, MRW13],

considers the weight vectors that are compatible with input data. That is, the

weight vector w is compatible if and only if w·a ≥ w·b, for all input comparisons

a < b. Then, α is preferred to β with respect to this relation if for all compatible

w, w · α ≥ w · β. We explain this approach further in Section 5.2.1.

3.4.5 Choquet Integral Method

The idea of using the Choquet integral [Cho54] for preferences representation

was introduced in [Sch86]. The Choquet integral is an evaluation function that

performs a weighted aggregation of criterion values using a capacity function

assigning a weight to any coalition of criteria, thus enabling positive and/or

negative interactions among them and covering an important range of possible

decision behaviours [BPV17]. The Choquet integral has received much atten-

tion recently [DF05, Koj07, BMM08, GL10], and some justifications for the use

of Choquet integral can be found in [GL05, GR08]. We now introduce some

formal definitions regarding Choquet integral representation.

Definition 18: Capacity Function

Consider the power set of the criteria set S as P(S). A capacity on S is a set

function Ω : P(S)→ IR satisfying the following conditions:

(i) Ω(∅) = 0,

(ii) for any I,K ⊆ S, I ⊆ K =⇒ Ω(I) ≤ Ω(K).

The capacity is normalized if Ω(S) = 1.

Ω(I) can be thought of representing the weight attached to the subset I, for any

I ⊆ S.
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Definition 19: Choquet Integral

Consider the multi-criteria decision problem P = 〈X,S, {Dj : ∀j ∈ S, Dj =
IR}, {<j : ∀j ∈ S,<j = ≥}〉. Recall from Definition 16 that α↑ is the sorted

preference vector and σ(.) is the permutation function for alternative α ∈ X
(i.e., for all j ∈ S, α↑(j) = α(σ(j))). The Choquet integral is a function

fΩ : X → IR with respect to a capacity Ω on S such that:

fΩ(α) = ∑
j∈S [Ω(Iα,j)− Ω(Iα,j+1)] α↑(j),

where Iα,n+1 = ∅ and Iα,j = {σ(j), . . . , σ(n)} ⊆ S.

The following example clarifies this rather complicated definition.

Example 4 » Choquet Integral Function Illustration

Consider a problem defined on 3 criteria, i.e. S = {1, 2, 3}, two alter-
natives α = (5, 2, 3) and β = (1, 6, 4), and the following capacity Ω on
S:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

Ω 0 3 1 6 5 7 6 9

In this setting, we can see that α↑ = (2, 3, 5) and β↑ = (1, 4, 6). Thus,

• Iα,1 = {1, 2, 3}, Iα,2 = {1, 3}, and Iα,3 = {1};

• Iβ,1 = {1, 2, 3}, Iβ,2 = {2, 3}, and Iβ,3 = {2}.

Now, the computation of the Choquet value of α and β regarding the ca-
pacity Ω gives:

fΩ(α) = 2 [Ω({1, 2, 3} − Ω({1, 3}))] + 3 [Ω({1, 3} − Ω({1}))] + 5 Ω({1})

= 2 (9− 7) + 3 (7− 3) + 15

= 4 + 12 + 15 = 31
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and

fΩ(β) = 1 [Ω({1, 2, 3} − Ω({2, 3}))] + 4 [Ω({2, 3} − Ω({2}))] + 6 Ω({2})

= (9− 6) + 4 (6− 1) + 6

= 3 + 20 + 6 = 29.

Since fΩ(α) > fΩ(β), we say that α is strictly preferred to β.

In order to use this method, prior identification of the capacity function is re-

quired. A review of approaches for capacity determination is given in [GKM08].

If the capacity is additive, i.e., Ω(I ∪K) = Ω(I) + Ω(K) for all disjoint subsets

I,K ⊆ S, it can be seen that the Choquet integral will reduce to:

fΩ(α) =
∑
j∈S

Ω({σ(j)}) α↑(j) =
∑
k∈S

Ω({k}) α(k).

This form is basically a weighted coefficient model, meaning that the weighted

coefficient model is a special case of Choquet integral.

3.4.6 Learning a Utility Function

Here, we discuss learning the utility function in particular for the purpose of

ranking alternatives. Ranking problems arise quite naturally in many applica-

tion areas. One interesting problem is learning to rank possible recommen-

dations for new products [BHK98]. Also, ranking functions are at the core of

search engines and they directly influence the relevance of the search results

and users’ search experience (see e.g., works by Joachims and his colleagues

[Joa02, KT03, JGP+05, RJ05]). The trend for ranking alternatives continues to

this day and several methods have been proposed incorporating the advances

in machine learning such as SVM and gradient boosting.

Authors in [HGO00] cast the problem of learning to rank as ordinal regression,

that is, learning the mapping of an input vector to a member of an ordered

set of numerical ranks. They model ranks as intervals on the real line, and

consider loss functions that depend on pairs of examples and their target ranks.

The positions of the rank boundaries play a critical role in the final ranking

function.
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A group of researchers from Microsoft Research developed RankNet [BSR+05]

which does not need finding rank boundaries. The method proposed an opti-

misation approach using an objective function based on Bradley-Terry models

for paired comparisons, and explored neural networks (gradient descent) for

learning the ranking function. In [Tes89], Tesauro proposed a symmetric neu-

ral network architecture that can be trained with representations of two states

and a training signal that indicates which of the two states is preferable. The

elegance of this approach comes from the property that one can replace the

two symmetric components of the network with a single network, which can

subsequently provide a real-valued evaluation of single states. Other methods

making use of neural networks include RankProp [CBM96] and [HHR+03].

TrueSkill [HMG07] is a Bayesian model that can be applied for learning to

rank.

Based on boosting approach in machine learning [Sch03], RankBoost [FISS03]

approximates the target ranking by combining many weak rankings (i.e., rank-

ing with ties) from the given preferences. However, the choice for selecting

weak learners is quite limited and is less flexible when dealing with the com-

plicated features. Authors in [ZCSZ07] attempts to address this limitation by

proposing a learning framework for preference data by using regression. The

study transforms the problem of learning ranking functions in terms of a se-

quence of problems of learning regression functions. It demonstrates, in par-

ticular, the application of the gradient descent regression methodology to the

objective function.

SVMRank [Joa02]—inspired by Support Vector Machines—is applied for web

search ranking by using click-through data, i.e., the query-log of the search en-

gine in connection with the log of links the users clicked on. In the study, the

proposed method is trained with a couple of hundred examples, and showed

better ranking results in comparison with the Google search engine (of course

in the time of publication of the paper in 2002). As we previously mentioned,

we will discuss this method in further details later in Sections 4.4 and 5.2.2.

Another method based on SVM is SVMCompare [HSS14]. It differs from SVM-

Rank in that it also considers the case where both alternatives in a pairwise

comparison are judged to be equal.
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3.5 Relational Preference Models

So far, we have seen several well-known representations of preferences in the

form of a utility function, along with some methods to learn the utility function

mainly focused on the task of ranking alternatives. In this section, we review

some other forms of preference representation models that are not (at least

directly) using the concept of the utility function, but rather exploiting more

relational or qualitative forms of preferences representation.

One well-known relational representation of preferences is the CP-net

[BBHP99]. CP-nets can deal with a more general form of qualitative statements,

based on a ceteris paribus semantics (“all else being equal”). With a ceteris

paribus interpretation, the preference relation depends only on features that

are different; as an instance of this semantic, we can have “I prefer a chicken

meal to a fish meal, provided all other properties are the same”. Users may find

it cognitively easier to express their preferences with such statements, and as

a result, more compact communication of the preference model with the user

is enabled [DHKP11]. From these preference statements, a graphical structure

for the CP-net is induced. This graph leads in general only to a partial order

over alternatives; therefore, a CP-net may not order sufficient alternatives to be

useful in practice [Wal07]. However, with respect to a given CP-net graph, we

can answer some common queries such as finding the optimal alternative, com-

paring two particular alternatives and so on; for example, if the graph is acyclic

then preference statements are consistent [BBD+04, Theorem 1], and in that

case, the nodes can be ordered topologically which leads to finding the optimal

alternative in the linear time [BBD+04, Corollary 4]. Determining whether one

alternative is more preferred than another varies depending on the structure of

the network from polynomial to PSPACE-complete [GLTW08]. To reduce this

complexity, various approximations have been suggested [DPR+06, DRVW09].

A number of extensions for CP-nets have been proposed including mCP-nets

[RVW04] to represent the preferences of multiple agents (each agent has its

own CP-net and these are combined using voting rules), TCP-nets [BDS06] to

represent trade-offs (for example, “price” is more important to me than “side

component”), and [Wil04] that can represent stronger conditional preference

statements.

Another preference relation is proposed in [CSS99] by developing an online al-

gorithm to learn a binary preference predicate P (α, β), which predicts whether
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α is preferred to β or vice versa. This algorithm is based on the “Hedg” algo-

rithm [FS95], and has two phases. In the first phase, this predicate is trained

on the basis of exemplary preferences in the form of pairwise comparisons.

Afterwards, a final ordering is found in a second phase by deriving (an approx-

imation of) a ranking that is maximally consistent with these predictions.

In [GMPU06, UPGM09], a simple algorithm is proposed to find a weak order

with ties, called a bucket order (where each bucket corresponds to an equiv-

alence class), from a set of pairwise comparisons. The method generates the

pair order matrix C. The entry Ctu indicates how many users preferred item

t to item u. The pair order matrix is normalized so that Ctu + Cut = 1 for

all t and u. If for example only one user is involved and his/her preferences

are consistent, then consequently, the elements of the matrix are restricted to

{0, 1/2, 1}, because either the user has preferred t to u, or u to t, or u and t are

indifferent for the user. In the core of algorithm, u and t are assigned to a same

bucket if 1
2 − β ≤ Ctu ≤ 1

2 + β, where β ∈ [0, 1] is a parameter that is set to
1/4 by default. If Ctu < 1

2 − β, then the item t is included in the subset Lu (left

side of u), and similarly if Ctu > 1
2 + β, then the item t is included in the subset

Ru. The algorithm will run iteratively on generated subsets (i.e., Lu and Ru),

and finally, a total order of “buckets” is returned. The authors have shown that

while computing the optimal bucket order from matrix C is NP-hard, the ex-

pected running time for the proposed algorithm is O(n log n). Furthermore, the

algorithm has a bounded approximation ratio; it is 9 times less accurate (in the

sense defined in the paper) than the algorithm that finds the optimal ordering,

and if C satisfies also the triangle inequality the algorithm is 5 times worse. For

the restricted version (i.e., values in {0, 1/2, 1}), the bounds ratio without and

with triangle inequality, are 5 and 3, respectively.

We now define a series of preference dominance relations in separate sections.

3.5.1 Pareto Dominance

The (weak) Pareto dominance relation [Par71] is a partial order relation that

prefers decisions that are at least as good in every criterion (in the strict version

the preference is strictly better in at least one criterion [Sen70, Chapter 2]).
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Definition 20: Weak Pareto Dominance

Consider any multi-criteria problem P = 〈X,S, {Dj : j ∈ S}, {<j : j ∈
S}〉, and any α, β ∈ X. Then, α weakly Pareto dominates β with respect to

P if and only if

for all j ∈ S, α(j) <j β(j).

In some situations where

(i) the domains of criteria are the same (i.e., for all j, k ∈ S, Dj = Dk);

(ii) the ordering defined on each domain is the same (i.e., for all j, k ∈ S,

<j equals <k); and

(iii) the order of decision criteria is not important (i.e., we can conceptually

compare the value of e.g., criterion j with the value of criterion k),

then we can also look at sorted preference vector of each alternative (see Defi-

nition 16), and define Sorted Pareto dominance (or Ordered/Symmetric Pareto

[KP08, DPT13]) accordingly.

Definition 21: Weak Sorted Pareto Dominance

Consider any special case of multi-criteria problem P = 〈X,S, {Dj : ∀j ∈
S, Dj = D}, {<j : ∀j ∈ S,<j = <}〉, and any α, β ∈ X. Then, α weakly

Sorted Pareto dominates β if and only if

for all j ∈ S, α↑(j) < β↑(j).

It can be shown that sorted Pareto dominance extends Pareto dominance rela-

tion [OW12, Proposition 2]; i.e., if α weakly Pareto dominates β then α also

weakly sorted Pareto dominates β.
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Example 5 » Pareto Dominance Illustration

Consider a problem defined on 3 criteria, i.e. S = {1, 2, 3}, and three
alternatives X{α = (3, 5, 2), β = (6, 1, 2), γ = (1, 5, 3)}.

In this setting, we can see that α↑ = (2, 3, 5), β↑ = (1, 2, 6) and γ↑ =
(1, 3, 5). Clearly, no element in X weakly Pareto dominates any the other
alternative. However, α sorted Pareto dominates γ.

3.5.2 Maximin Dominance

The Maximin relation, which is a total pre-order, is also defined for the special

case of the multi-criteria decision problem as explained above. When compar-

ing any two alternatives, the (weak) Maximin relation [Raw09, Wal50] prefers

the alternative that is as good as the other alternative in the minimum criteria

value. Minimax [VN59] is the counterpart of this relation when criteria are in

the form of cost rather than utility.

Definition 22: Weak Maximin Dominance

Consider any special case of multi-criteria problem P = 〈X,S, {Dj : ∀j ∈
S, Dj = D}, {<j : ∀j ∈ S,<j = <}〉, and any α, β ∈ X. Then, α weakly

Maximin dominates β if and only if

minj∈S α(j) < minj∈S β(j).

It can be said that α weakly Maximin dominates β if and only if α↑(1) < β↑(1),
because the first component in the sorted vector of a preference alternative has

the minimum criteria value in that alternative. The weak Maximin dominance

extends weak sorted Pareto dominance relation (see e.g., [O’M13, Chapter 2]

for proof).

In Example 5, it can be seen that α maximin dominates β and γ, and since

β↑(1) = γ↑(1) = 1, β and γ weakly maximin dominates each other.
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3.5.3 Lexicographical Dominance

Lexicographic preference models [Fis74, FHWW10, GRW15] are one of the sim-

plest but most intuitive preference representations. The model, which leads to

a total order on alternative, is based on a pre-assumption that an order of im-

portance on the criteria set is predefined. Then, the superiority of an alternative

to another one in the criterion j, vetoes the effect of all the criteria that are less

important than the criterion j. That means for example if an alternative has a

better value than another alternative on the most important criterion, then it is

considered to be better overall, regardless of how poor the values of the rest of

criteria are.

Although that assumption in the lexicographical model may sound too restric-

tive, [YWL+11] argues that the model is still plausible because several stud-

ies on human decision making [CS99, FSS+89, WK94] experimentally demon-

strate that humans often make decisions using lexicographic reasoning instead

of mathematically more sophisticated methods such as linear additive value

maximization [Daw79].

Definition 23: Weak Lexicographical Dominance

Consider any multi-criteria problem P = 〈X,S, {Dj : j ∈ S}, {<j : j ∈
S}〉, and any α, β ∈ X. Assume that the criteria set is ordered from the

least to the most important criterion, so that the first criterion is the least

important one. Then, α weakly Lexicographically dominates β if and only if

either α = β or there exists some j ∈ S such that

(i) for all k ∈ {j+1, . . . , n}, α(k) ≡k β(k) (i.e., α(k) <k β(k) and β(k) <k
α(k)); and

(ii) α(j) �j β(j).

In Example 5, γ lexicographically dominates α and β, because γ(3) = 3 >

α(3) = β(3) = 2. For α and β, as the most important component has the same

value, we check the next component where α(2) = 5 > β(2) = 1; that implies α

lexicographically dominates β.

Again we can define a version of this model, called Leximin [BJ88, Far93], for
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the case when the ordering of criteria is not important by making use of the

sorted vector. In this case, the most important criterion of an alternative is

considered the one that has the maximum value among all criteria. Leximax

[Ehr99] is the counterpart of this relation when all criteria are in the form of

cost rather than utility.

Definition 24: Weak Leximin Dominance

Consider any special case of multi-criteria problem P = 〈X,S, {Dj : ∀j ∈
S, Dj = D}, {<j : ∀j ∈ S,<j = <}〉, and any α, β ∈ X. α weakly Leximin
dominates β if and only if either α = β or there exists some j ∈ S such that

(i) for all k ∈ {j + 1, . . . , n}, α↑(k) ≡k β↑(k); and

(ii) α↑(j) �j β↑(j).

The weak Leximin dominance extends the weak Maximin dominance relation

(see e.g., [O’M13, Chapter 2] for proof).

In Example 5, β↑(3) = 6 > α↑(3) = 5 means that β Leximin dominates α. Then,

α Leximin dominates γ because α↑(3) = γ↑(3) = 5, α↑(2) = γ↑(2) = 3, and

α↑(1) = 2 > γ↑(1) = 1.

3.5.4 Minimax Regret Dominance

The Minimax Regret [LS82, BPPS05, BB07] relation, which is a total pre-order,

looks to minimise the worst-case regret (loss), where the regret of an alternative

with respect to another one is the difference between the maximum preference

values; the maximum regret of an alternative is the maximum regret over all

decisions.

This relation is defined for another special case of the multi-criteria problem,

P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j : ∀j ∈ S,<j = ≥}〉, when the domain

of all criteria is the real numbers. The reason is that we want to aggregate the

values of different criteria. The following definition quantifies the regret caused

by choosing the alternative α instead of β.
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Definition 25: Regret of α with respect to β

Consider the multi-criteria problem P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j
: ∀j ∈ S,<j = ≥}〉, and any α, β ∈ X. The regret of α with respect to β,

denoted by R(α, β) is

R(α, β) = maxj∈S(β(j)− α(j)).

Next, the notion of maximum regret of choosing an alternative is given.

Definition 26: Maximum regret of an alternative

Consider the multi-criteria problem P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j
: ∀j ∈ S,<j = ≥}〉, and any α ∈ X. The maximum regret of α, denoted by

MR(α,X) is

MR(α,X) = maxβ∈X R(α, β).

Now, we can define Minimax regret dominance that is based on the maximum

regret of two alternatives.

Definition 27: Weak Minimax Regret Dominance

Consider the multi-criteria problem P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j
: ∀j ∈ S,<j = ≥}〉, and any α, β ∈ X. α weakly Minimax regret dominates
β if and only if

MR(α,X) ≤ MR(β,X).

Example 6 » Minimax Regret Dominance Illustration
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Consider the setting of the problem defined in Example 5, where X = {α =
(3, 5, 2), β = (6, 1, 2), γ = (1, 5, 3)}. Then, we have:

• R(α, β) = 3, R(α, γ) = 1 =⇒ MR(α,X) = 3;

• R(β, α) = 4, R(β, γ) = 4 =⇒ MR(β,X) = 4; and

• R(γ, α) = 2, R(γ, β) = 5 =⇒ MR(γ,X) = 5.

This implies that α minimax regret dominates β, and β minimax regret
dominates γ.

3.5.5 Generalised Lorenz Dominance

The Generalised Lorenz Dominance relation [Atk70, Sho83], which is a total

order, is a refinement of Pareto dominance, and used in fair optimization prob-

lems when fairness refers to the idea of favouring Pareto-dominant solutions

having a well-balanced utility profile [GPD11]. Again, for this relation, we

need to have real numbers for criteria values.

Definition 28: Generalized Lorenz Curve of α

Consider the multi-criteria problem P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j
: ∀j ∈ S,<j = ≥}〉, any α ∈ X, and any j ∈ S. The Generalized Lorenz
Curve of α for the component j, denoted by LR(α, j) is

LR(α, j) = ∑j
k=1 α

↑(k),

where α↑ is the sorted vector associated with α.

This gives us the Generalized Lorenz dominance relation as follows.

Definition 29: Weak Generalized Lorenz Dominance

Consider the multi-criteria problem P = 〈X,S, {Dj : ∀j ∈ S, Dj = IR}, {<j
: ∀j ∈ S,<j = ≥}〉, and any α, β ∈ X. α weakly Generalized Lorenz domi-
nates β if and only if
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for all j ∈ S, LR(α, j) ≥ LR(β, j).

Example 7 » Generalized Lorenz Illustration

Consider the setting of the problem defined in Example 5, where α↑ =
(2, 3, 5), β↑ = (1, 2, 6) and γ↑ = (1, 3, 5). Then, we have:

• LR(α, 1) = 2, LR(α, 2) = 5, and LR(α, 3) = 10;

• LR(β, 1) = 1, LR(β, 2) = 3, and LR(β, 3) = 9;

• LR(γ, 1) = 1, LR(γ, 2) = 4, and LR(γ, 3) = 9.

This implies that α generalized Lorenz dominates γ, and γ generalized
Lorenz dominates β.

3.6 Chapter Conclusion

In this chapter, we presented some introductory material for preferences and

discussed various properties that a preference relation can take; this forms the

background to our preference handling techniques in this thesis.

We discussed different utility-based preference representation methods such as

additive independence, GAI, UTA, and Choquet Integral. In particular, we de-

scribed the weighted coefficients model for preferences, which is closely related

to the work on preferences in this thesis.

We also explained some relational preferences representations including Pareto,

Maximin, Lexicographical, Minimax Regret, and Generalized Lorenz.
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4. LEARNING USER PREFERENCES FOR A

RIDESHARING APPLICATION 4.1 Introduction

4.1 Introduction

Ridesharing (a.k.a. carpooling and lift-sharing) is a mode of transportation in

which individual travellers share a vehicle for a trip. Ridesharing has the poten-

tial to relieve some transportational issues such as traffic congestion, pollution

and high travel costs. In this chapter, we focus on the process of matching

drivers and prospective riders more effectively, which is a crucial challenge in

ridesharing. A novel approach is proposed in ride-matching which involves

learning user preferences regarding the desirability of a choice of matching;

this could then maintain high user satisfaction, thus encouraging repeat usage

of the system. An SVM inspired method is developed which is able to learn a

utility function from a set of pairwise comparisons, and predicts the satisfaction

degree of the user with respect to specific matches. To assess the proposed ap-

proach, we conducted some experiments on a commercial ridesharing data set.

We compare the proposed approach with five rival strategies and methods, and

the results clearly show the merits of our approach for matching drivers and

riders.

The rest of this chapter is structured as follows. We give some background

about ridesharing along with some opportunities and challenges. Among the

challenges, in Section 4.3, we focus on the automated ride-matching problem

and explain how user preferences could be considered in the matching process.

In Section 4.4, a method to learn user preferences is described in detail. Section

4.5 evaluates the presented approach on a real ridesharing database. Finally, in

Section 4.6, we summarise the main remarks and discuss some directions for

future research.

4.2 Background

Increasing the number of travellers per vehicle trip by effective usage of spare

car seats in ridesharing, may, of course, enhance the efficiency of private trans-

portation, and contribute to reducing traffic congestion, fuel consumption, and

pollution. Moreover, ridesharing allows users to split travel costs such as fuel,

toll, and parking fees with other individuals who have similar itineraries and

time schedules. Conceptually, ridesharing is a system that can combine the

flexibility and speed of private cars with the reduced cost of fixed-line systems

such as buses or subways [FDO+13, AESW11].
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Ridesharing is quite an old concept; it was first used in the USA during World

War II to conserve resources for the war. It reappeared as a result of the oil

crisis in 1970s which led to the emergence of the first ridesharing algorithms.

Nevertheless, ridesharing usage declined drastically between the 1970s and the

2000s due to the decrease in the price of fuel and vehicle ownership cost [CS12].

Furthermore, there are some challenges that have inhibited wide adoption of

ridesharing. A few of the most important of those are listed as follows:

Riding with Strangers Surveys suggest that there is little interest in sharing

a ride with strangers, because of personal safety concerns. This phe-

nomenon is referred to as Stranger Danger and could be alleviated by in-

corporation of social networks [AAM11, FDO+13]. [CKPQ10] conducted

a survey among students of a university which shows that while only 7%
of participants would accept rides from a stranger, 98% and 69% would

accept rides from a friend and the friend of a friend, respectively.

Reliability of Service One of the largest behavioural challenges is the percep-

tion of low reliability in ridesharing arrangements; the parties may not

necessarily follow through on the agreed-upon ride. For instance, if the

driver has an unexpected appointment or emergency, the passenger may

be left with no ridesharing option; or, from the other side, drivers might

be required to wait because of a passenger being late [AAM11].

Schedule Flexibility The lack of schedule flexibility has been one of the

longest-running challenges in ridesharing arrangements. Drivers and pas-

sengers often agree on relatively fixed schedules and meeting locations,

not allowing much flexibility. It is interesting to note that increasing the

flexibility and increasing the reliability of ridesharing arrangements are

often conflicting objectives [AAM11].

Ride Matching Optimally matching riders and drivers—or at least getting a

good match—is among the most important challenges to overcome. This

can lead to a complicated optimisation problem due to a large number of

factors involved in the objective function. We will discuss this aspect of

ridesharing further in Section 4.3.

Despite the above barriers to ridesharing, the demand for ridesharing services

has increased again sharply in recent years, generating much interest along

with media coverage [Sar06]. This boost in ridesharing is mainly associated

with a relatively new concept in ridesharing, dynamic or real-time rideshar-
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ing. Dynamic ridesharing refers to a system which supports an automatic

ride-matching process between participants at short notice or even en-route

[AESW12].

Technological advances, both hardware and software, are key enablers for dy-

namic ridesharing. The first influential fact is that the smartphones are be-

coming hugely popular [Ema14, Smi15]. The first impact of smartphones on

ridesharing is that they provide an infrastructure on which a ridesharing appli-

cation can run, replacing the old-fashioned, sometimes not so convenient, ap-

proaches such as phone or website. More importantly, smartphones are usually

equipped with helpful communication capabilities, including Global Positioning

System (GPS) [Zic12] and network connectivity [DS13].

Dynamic ridesharing by its nature is able to ease some aspects of existing chal-

lenges in traditional ridesharing. For example, tracking participants by means

of GPS could mitigate safety concerns or increase the reliability. In terms of flex-

ibility, since dynamic ridesharing does not necessarily require a long-term com-

mitment, users have the option to request a trip sharing day-by-day or whenever

they are pretty sure about their itinerary.

Even though the above advancement in technology could be beneficially avail-

able, ridesharing is still in short supply. Here, we focus on the ride-matching

problem which is central to the concept. However, we are mindful of the fact

that there are a number of other challenges that should be dealt with to accom-

plish the ultimate success of ridesharing.

4.3 Automated Ride-Matching

We start this section with an example that explains a simple scenario of match-

ing between two individuals in a ridesharing application.

Example 8 » A Simple Ride-Matching Scenario

Suppose Alice is going to drive from A to B, and her driving speed is around
80km/h on average. Another individual, Bob, needs to travel from C to D.
To do this, he goes up from C to E with a taxi to get a train; then, he gets
off the train at F, and finally he takes a bus to reach his destination D. His
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A B
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Figure 4.1: The routes of Bob and Alice’s trips, described in Example 8.

trip will take approximately 115 minutes. The schema of routes and their
distances are depicted in Figure 4.1.

If a ride-matching between them is suggested, Alice needs to drive to C to
pick up Bob, and then drops him off at D, and proceeds to her destination
B. By doing this, the total system-wide vehicle-mileage will be (16 + 112 +
12 =) 140km, and the total system-wide travel time will be 189 minutes
because Alice’s trip will take (140× 60/80 =) 105 minutes and Bob’s travel
will last (112× 60/80 =) 84 minutes.

On the other hand, if they travel individually, the total system-wide vehicle-
mileage (including bus, taxi and train) will be 238km since Bob travels
(10 + 100 + 8 =) 118km and Alice 120km, and the total system-wide
travel time will be (120× 60/80 + 115 =) 205 minutes.

Thus, if this matching takes place, (238−140 =) 98km travel distance will
be saved, and (205 − 189 =) 16 minutes travel time will be saved. In this
scenario, Alice will drive 20km (15 minutes) more than her original route
(AB), which is usually compensated with a fair payment by Bob.

The automation of the ride-matching process (e.g., between Alice and Bob) is

the essential element of dynamic ridesharing. This allows trips to be arranged

at short notice with minimal effort from participants; i.e., a system helps riders

and drivers to find suitable matches and facilitates the communication between

participants [HKLL+06, AESW12].

In order to model the matching problem, two disjoint types of ridesharing re-

quests are considered: a set of requests in which the owner of the requests are
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Table 4.1: Each cell indicates the amount of saved travel distance (i.e., dij) for a
match between corresponding driver and rider, where infeasible matchings are
shown with hyphen (−).

R1 R2 R3 R4

D1 22 21 − 28

D2 14 − 10 −

D3 12 10 19 8

D4 30 − 18 −

D5 − 7 25 27

drivers (D), and requests created by riders (R). Hence, all trip requests could

be represented by the set S = D ∪ R. Then, ridesharing requests are repre-

sented as a bipartite graph G = (D,R,E), with E denoting the edges of the

graph. This setting can be extended for the case when some participants are

happy with being either a driver or a rider.

This graph becomes a weighted graph by assigning a weight cij to the edge

(Di, Rj), where Di, Rj ∈ S. Generally speaking, cij quantifies how much is

gained by matching Di and Rj. This weight is usually a composition of a

system’s overall benefits. For representing the system’s benefits—which ulti-

mately could result in less pollution, traffic congestion etc.,—two measures

are often mentioned in the related studies; the saved travel distance (dij)

and the saved travel time (tij) which are obtained from the match (Di, Rj)
[CdLHM04, WN06]. For instance, cij could be defined to be dij + tij (or some

other linear combination). To represent infeasibility of matching between Di

and Rj, cij could be assigned to be a very small number (e.g., −∞).

For finding optimal matchings, one approach popular in the literature is solving

an optimisation problem in which the sum of the benefits from the proposed

matchings is maximised [AESW11]. To do this, a binary decision variable xij is

introduced that would be 1 when the match (Di, Rj) is proposed, and 0 if not

(it is assumed that each driver is matched to at most one rider, and each rider

is matched to at most one driver). Then, the objective function to maximise is∑
i,j xijcij. After running the solver, a fixed schedule is proposed to users as the

optimal solution.
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D5
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Figure 4.2: Having assumed that cij = dij for each i and j in Example 9, the op-
timal matching is drawn. The total saved travel distance for this whole match-
ing is 97km, which is the maximum.

Example 9 » Finding Optimal Ride-Matching

Consider a situation where there are potentially five drivers and four riders
to share their journeys. So, i ∈ {1, . . . , 5} and j ∈ {1, . . . , 4}. Table
4.1 shows how many kilometres would be saved by sharing rides between
each pair of individuals, where infeasible matchings are represented by a
hyphen (e.g., d2,1 = 14). If we consider cij = dij for each i and j in
this case, solving a maximisation problem as described above leads to the
matching graph drawn in figure 4.2. In this example, the maximum of
total saved distance is 97km.

The maximisation approach, however, neglects a crucial requirement of a prac-

tical system, that is, getting users’ confirmation before fixing a ride-share for

them. Although earlier we emphasised the concept of automation in ride-

matching which helps to minimise users’ efforts, we believe that it could not

be fully automatic. In fact, it is hard in practice to convince users to share their

ride with somebody without their final agreement. For example, regarding Fig-

ure 4.2, it does not make sense to send a message to D1 saying: “According to

our computation, the best match for you is R2. So, you are supposed to give

him a ride tomorrow morning at 8:30.”
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For this reason, we suggest a novel attitude towards ride-matching problems, by

looking at the problem as a recommendation system rather than an optimisation

problem. In this setting, the system just recommends a set of best possible

matchings to each individual with respect to the weights cij.

As previously mentioned, cij only considers the system’s benefits, and to ex-

press users’ limitations, the common strategy is posing some constraints on the

matching graph [HW12, AESW11]. Nevertheless, there are two main short-

comings that have not been fully addressed by adoption of this strategy:

Only Hard Constraints The fact is that users might sacrifice some of their de-

sires in favour of other ones. For instance, a rider who likes smoking

in the car may decide to share his trip in a non-smoking vehicle due to

other favourable conditions. Therefore, having soft constraints instead of

hard ones may often be more plausible. Posing soft constraints could be

rephrased as considering users’ preferences.

Eliciting Complicated Parameters In order to set constraints, there is a pre-

requisite to ask users to specify several parameters explicitly, such as earli-

est possible departure time, latest possible arrival time and maximum ex-

cess travel time [BMM04, AESW11, AAM11]. However, elicitation of such

parameters for every trip is quite impractical in real-world situations. As

an example, users can simply state their departure time, but finding how

flexible they are with that time is not a straightforward task. Moreover,

some participants may be hesitant or unwilling to disclose certain prefer-

ences for privacy reasons.

Our solution for attempting to overcome the aforementioned issues is redefining

cij in such a way that not only does cij incorporate the overall system’s benefits,

but also takes into account participants’ preferences. Actually, cij should also

represent how happy two individuals (Di and Rj) are with being matched with

each other. While positional and temporal elements of a ride-share usually

play a key role in forming users’ satisfaction degree, users’ social preferences

such as the other party’s reputation and gender, smoking habit and so forth are

also suggested as relevant components [GHH11]. To illustrate mathematically,

assume cij = (w(D)
ij · w

(R)
ij ) · (dij + tij) where w

(D)
ij quantifies how much the

driver i would like to share the journey with the rider j, and w(R)
ij indicates how

favourable sharing the ride with the driver i is for the rider j; if either w(D)
ij or

w
(R)
ij is negative then cij = −∞. In order to find w

(D)
ij (resp. w(R)

ij ), we suggest

learning the preferences of the driver i (resp. the rider j) from his/her past
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ridesharing records. For instance, we can learn from the previous choices of a

particular user that he is normally more flexible with time than location. We will

discuss more about this subject in Section 4.3.1. As a result of learning weights,

as well as modelling soft constraints in the form of users’ preferences, there is

no need to elicit those cumbersome parameters from participants anymore.

4.3.1 Learning Weights

In this section, the mechanism of learning user preferences from the previous

ridesharing records will be characterised. To give an intuitive sense, we start

with an example.

Example 10 » Learning Weights Mechanism

Take Alice from Example 8 who has a daily driving trip from A to B (e.g.,
every day at 8:30). This trip request is denoted by D1.

On Day 1, the system recommends three matching opportunities, namely
R1, R2 and R3. Alice declines R1, accepts R2 and leaves R3 without any
response. Ignoring a recommended match may potentially mean that the
user had been tentative about it.

On the second day, two recommendations, R4 and R5, are suggested to her.
R4 is declined and R5 is initially accepted. While Alice was waiting for the
response of the other party in R5, she receives another suggestion, R6; she
then changes her mind about R5 and cancels that one, and instead accepts
R6.

On the third day, the system has found two feasible matches which are R7

and R8. The goal is to evaluate how desirable these two opportunities are
for Alice regarding her trip D1. Using the notation of the previous section,
we would like to find w(D)

1,7 and w(D)
1,8 which are finally incorporated in the

calculation of c1,7 and c1,8, respectively. Table 4.2 summarises this example.

At first glance, the problem might seem to be a classification problem because

the supervision (labels) is in the form of classes (i.e., Accepted, Declined etc.).

However, a closer look suggests that learning a classifier may well not be a good
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Table 4.2: The scenario described in Example 10 is summarised here. Alice’s
responses are Accepted (A), Cancelled (C), Ignored (I) and Declined (D).

Day 1 Day 2 Day 3 (Today)

(R1, D) (R4, D) R7(w(D)
1,7 =?)

(R2, A) (R5, C) R8(w(D)
1,8 =?)

(R3, I) (R6, A)

choice. The first reason is that there is a logical order between classes in the cur-

rent case (e.g., Accepted has the highest value and Declined the lowest value),

whereas classification is often applied when there is no ordering between class

labels. Secondly, a classifier will predict a class label whereas here, a scalar

value is required.

If each class label is replaced by an appropriate number which keeps the nat-

ural ordering, the problem could be considered as a regression problem. For

instance, the number 1 might be assigned for Accepted, 0.67 for Cancelled, 0.33
for Ignored and 0 for Declined. In spite of the fact that learning a regressor

has none of those defects mentioned about classification, we believe that it still

suffers from the following flaws:

• The user’s response to a recommended opportunity not only depends on

the properties of that particular case, but also depends on other rival op-

portunities. Taking Example 10 to illustrate, it is not necessarily the case

that if R2 existed in the suggestion list on day 2, it would certainly be ac-

cepted again, because Alice accepted R2 in presence of R1 and R3 which

does not guarantee its acceptance when R5 and R6 are available.

• Two class labels do not necessarily have the same desirability distance

for all instances. Consider Example 10 again; replacing class labels with

numbers as described above suggests that the difference between R1 and

R2 from the first day, and R4 and R6 from the second day are both 1.

However, the only thing that is known is that Alice preferred R2 to R1 and

R6 to R4, not the extent of the difference.

To address the above issues, we suggest considering the supervision in the form

of qualitative preferences. This means that a set of pairwise comparisons among
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alternatives is derived from the user’s choices. The following set of preferences

could be formed from information given in Example 10:

{(R2 � R3), (R3 � R1), (R2 � R1), (R6 � R5), (R5 � R4), (R6 � R4)}.

In the next section, a model will be developed to learn a utility function by

making use of this kind of preferences set.

4.4 Learning Model: SVPL

In this section, we develop a method which is referred to as SVPL (Support

Vector Preferences Learner) in our experiments.

4.4.1 Basic Formulation

As described above, the primary capability of the method being developed in

this section should be learning a scoring function from a set of pairwise com-

parisons, expressed between several alternatives. This function can generate a

scalar number for each alternative (i.e., ridesharing trip opportunity), measur-

ing the expected desirability degree of that alternative for the user.

We assume that some user has told us (explicitly or implicitly) that she prefers

feature vector ai ∈ IRn over bi ∈ IRn, for each i ∈ I = {1, . . . ,m}. Each

tuple ai or bi in IRn represents an alternative that is characterised by n features,

with ai(k) being the score for alternative ai regarding the kth feature (each

feature representing a different property of the trip). Features are assumed to

be numeric, but again ordinal and nominal features can also be considered with

the same approaches explained in Section 2.3.

Now, the goal is finding a function f : IRn → IR which maps a features vector

to a scalar value and is in agreement with the preferences set, i.e., we aim to

have f(ai) > f(bi) for all i ∈ I. In order to achieve this goal, we developed a

derivation of conventional SVM which eventually turns out to be similar to the

SVMRank approach proposed in [Joa02]. In the current section, we assume that

there exists such a function meaning that preferences relations are consistent.

Another assumption being made in this section is that the function is linear.
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Figure 4.3: Two samples of plausible hyperplanes (Hw1 and Hw2) and their
associated normal vectors (w1 and w2) for a set of consistent preferences inputs
are illustrated. dw1 and dw2 are the margins of Hw1 and Hw2, respectively.

we consider the inconsistent case and the non-linear case in Sections 4.4.2 and

4.4.3 respectively. Hence, defining f(x) = x · w leads to:

∀i ∈ I, ai · w > bi · w (4.1)

where w ∈ IRn is an unknown weighting vector.

We define Λ, the preference inputs, to be {λi : i ∈ I}, where for each i, λi =
ai − bi. Thus, with respect to those two assumptions, there exists w ∈ IRn,

such that λ · w > 0 for all λ ∈ Λ (because ai · w > bi · w). We can associate the

hyperplaneHw = {x ∈ IRn : x · w = 0}with a feasible w (w is the normal vector

to the hyperplane Hw). Clearly, any feasible hyperplane contains the origin, and

all λ ∈ Λ are in the associated positive open half-space of the hyperplane. Two

feasible hyperplanes (Hw1 and Hw2) for a consistent set of preferences inputs

are depicted in Figure 4.3.

Similar to conventional SVM, the margin of a hyperplane, denoted by dw, is

defined as the distance from the hyperplane to the closest preference input.

The distance from λ to H is w·λ
‖w‖ ; so, the margin is equal to:

dw = min
λ∈Λ

w · λ
‖w‖

. (4.2)
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The following lemma provides a simpler formulation for margin.

Lemma 1: Margin Simplification

Consider any w ∈ IR such that w · λ > 0 for all λ ∈ Λ. Define aw to be

minλ∈Λ w · λ, and define w̄ to be w
aw

. Then, the following all hold.

(i) w̄ · λ ≥ 1 for all λ ∈ Λ;

(ii) if w · λ ≥ 1 for all λ ∈ Λ, then ‖w‖ > ‖w̄‖ unless w = w̄;

(iii) for any real r > 0, drw = dw;

(iv) dw = dw̄ = 1
‖w̄‖ ;

(v) Hw = Hw̄.

Proof: aw̄ = minλ∈Λ
1
aw
w · λ = aw

aw
= 1. Thus, w̄ · λ ≥ 1 for all λ ∈ Λ,

showing (i). Also, ‖w‖‖w̄‖ = aw, by definition of w̄. If w · λ ≥ 1 for all λ ∈ Λ
then aw ≥ 1, so ‖w‖ > ‖w̄‖ unless aw = 1, i.e., w = w̄, proving (ii).

The definitions immediately imply that dw = aw
‖w‖ . Since aw̄ = 1, we have

dw̄ = 1
‖w̄‖ . The definition of dw implies that for any real r > 0, drw = dw,

showing (iii), so, in particular, dw = dw̄ = 1
‖w̄‖ , which proves (iv). Since

aw is strictly positive, the definition of Hw implies (v). �

Like SVM, it seems reasonable that a greater marginal distance from the condi-

tion boundary is more desirable. Thus, among all feasible hyperplanes, we look

for the hyperplane that produces the largest margin. Consider w ∈ IRn that

represents this hyperplane with the maximal margin; then Lemma 1(v) implies

that Hw̄ = Hw. Thus, we need to maximise the margin stated in Lemma 1(iv)

subject to the constraints stated in Lemma 1(i). That leads, by replacing w̄ with
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w, to the following optimisation problem:

maximise
w

1
‖w‖

(4.3a)

subject to

w · λ ≥ 1 ∀λ ∈ Λ. (4.3b)

To have a more standard form, the arrangement of the problem is reformulated

as a minimisation problem in this manner:

minimise
w

1
2‖w‖

2 (4.4a)

subject to

w · λi ≥ 1 ∀i ∈ I. (4.4b)

Similar to conventional SVM optimisation (see Equation 2.7 in Chapter 2), this

result is a convex quadratic programming problem. Thus, a QP solver can be

exploited to find the weighting vector w.

Now, we switch to the Lagrangian Dual Problem in which preferences inputs

only appear in the form of pairwise dot products (both in the objective function

and constraints). In Section 4.4.3, more explanation will be given as to why

we are interested in this form of problem formulation. For our problem, the

Lagrangian function which is basically obtained by augmenting the objective

function with a weighted sum of the constraint functions, is:

L = 1
2‖w‖

2 +
∑
i∈I

µi (1− w · λi), (4.5)

where µi is referred to as the Lagrange multiplier associated with the ith inequal-

ity constraint w · λi ≥ 1 [BV04, Chapter 5].

The optimisation problem stated in Equation (4.4) is called the primal form;
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where the Lagrangian dual form is formulated in this fashion:

maximise
µi

inf
w
L (4.6a)

subject to

µi ≥ 0 ∀i ∈ I. (4.6b)

Because the primal form is convex and the Slater1 condition holds, we say the

strong duality holds for our problem [BV04, Sec. 5.2.3]. This means that the

optimal value for the dual problem equals the optimal value for the primal form.

As a result, solving the Lagrangian dual form (Equation 4.6) is equivalent to

solving the primal form of the problem (Equation 4.4).

As stated, strong duality is obtained for our problem, and also the objective

function is differentiable. Regarding these two criteria, an optimal value must

satisfy the Karush Kuhn Tucker (KKT) conditions [BV04, Sec. 5.5.3]. Here, we

just make use of the Stationarity condition of KKT which states2:

for each component j ∈ {1, . . . , n}, ∂L
∂w(j) = 0

w(j)−
∑
i∈I

µiλi(j) = 0

⇒ w =
∑
i∈I

µiλi. (4.7)

1 Consider there are m constraints in the form of fi(x) ≤ 0 where i ∈ {1, . . . ,m}. The
Slater condition holds if and only if there exists x∗ ∈

⋂
i dom(fi) such that fi(x∗) < 0 for all

i ∈ {1, . . . ,m}. For our case, fi(µi) = −µi, so, choosing µ∗ such that µ∗ > 0 (e.g., µ∗ = 1)
satisfies the condition.

2In [BV04, Sec. 5.5.3], the stationarity condition corresponds to Of0(x̃) +
∑m

i=1 λ̃iOfi(x̃) +∑p
i=1 ṽiOhi(x̃) = 0, where f0(x) is the objective function, fi(x) for i ∈ {1, . . . ,m} are inequality

constraints, hi(x) for i ∈ {1, . . . , p} are equality constraints, and λ̃i, ṽi ∈ IR are KKT multipliers.
In our case, since we don not have equality constraints and there is no w in the inequality
conditions (i.e., Equation 4.6b), only the first part of the left side of the equation remains
which is the objective function (i.e., L). This immediately leads to Equation 4.7.
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Making use of Equation 4.7, we can rewrite Equation 4.5 without w:

L = 1
2w · w +

∑
i∈I

µi −
∑
i∈I

µiw · λi

= 1
2(

∑
i∈I

µiλi) · (
∑
j∈I

µjλj) +
∑
i∈I

µi −
∑
i∈I

µi(
∑
j∈I

µjλj) · λi

= 1
2

∑
i∈I

∑
j∈I

µiµjλi · λj +
∑
i∈I

µi −
∑
i∈I

∑
j∈I

µiµjλi · λj

=
∑
i∈I

µi −
1
2

∑
i∈I

∑
j∈I

µiµjλi · λj.

This leads to the following version of the problem in which the preferences

inputs only appear in the form of dot products (i.e., λi · λj).

maximise
µ

∑
i∈I

µi −
1
2

∑
i∈I

∑
j∈I

µiµjλi · λj (4.8a)

subject to

µi ≥ 0 ∀i ∈ I. (4.8b)

Solving this new form of the problem gives optimal values for the Lagrange

multipliers (µ); we can then utilize Equation 4.7 to find w as well.

4.4.2 Handling Inconsistencies

So far, we have assumed that there exists at least one hyperplane such that all

preferences inputs are placed in the positive open half-space of it. However,

it is possible that in practice this assumption may result in finding no feasible

solution. To handle inconsistencies, we reformulate the initial constraint (4.4b)

such that it could be violated, but with a cost.

For this purpose, the constraint (4.4b) is rewritten as 1 − w · λi ≤ ξi where ξi

is a slack variable measuring the extent to which the ith constraint is violated,

and obviously should be non-negative (ξi ≥ 0). Then, the objective function is

augmented by the term C
∑
i∈I ξi to reveal the effect of costs, where C is a con-

stant parameter to be adjusted by the user. The parameter C scales the impact

of inconsistent points; a larger C corresponds to assigning a higher penalty to
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errors. The primal form of the problem becomes the following:

minimise
w,ξ

1
2‖w‖

2 + C
∑
i∈I

ξi (4.9a)

subject to

1− w · λi ≤ ξi ∀i ∈ I, (4.9b)

ξi ≥ 0 ∀i ∈ I. (4.9c)

Because we have a new set of constraints (ξi ≥ 0), a new set of positive La-

grange multipliers αi are introduced. The Lagrangian changes as follows:

L = 1
2‖w‖

2 + C
∑
i∈I

ξi +
∑
i∈I

µi (1− w · λi − ξi)−
∑
i∈I

αiξi (4.10)

The stationarity KKT condition entails the additional equality constraints:

for all i ∈ I,
∂L
∂ξi

= 0,

⇒ C − µi − αi = 0,

⇒ αi = C − µi.

By substituting C − µi for αi in Equations 4.10, we have:

L = 1
2‖w‖

2 + C
∑
i∈I

ξi +
∑
i∈I

µi (1− w · λi − ξi)−
∑
i∈I

(C − µi)ξi

= 1
2‖w‖

2 + C
∑
i∈I

ξi +
∑
i∈I

µi (1− w · λi)−
∑
i∈I

µiξi − C
∑
i∈I

ξi +
∑
i∈I

µiξi

= 1
2‖w‖

2 +
∑
i∈I

µi (1− w · λi).

This result is the same as the Lagrange form in Equation 4.5. So, as in the

previous section, replacing w with
∑
i∈I µiλi gives us Equation 4.8a for L. Also,

since αi ≥ 0 for all i ∈ I, we have C − µi ≥ 0 and hence µi ≤ C. That leads to

the Lagrangian dual form of the problem as follows:

maximise
µ

∑
i∈I

µi −
1
2

∑
i∈I

∑
j∈I

µiµjλi · λj (4.11a)

subject to

0 ≤ µi ≤ C ∀i ∈ I. (4.11b)
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Since neither the ξi nor its associated Lagrange multiplier (αi) appear in the

objective function, this format of the problem is very similar to the one without

introducing costs (Equation 4.8), except that µi is restricted by the upper bound

C.

4.4.3 Non-Linear Utility Functions

We assumed that the utility function is a linear function. However, a non-linear

scoring function might be a better choice sometimes. In this section, we deal

with this matter to cover the non-linear case as well.

The Kernel function concept [ABR64] is a widely-used trick for pattern recogni-

tion problems which can be also used for our case. The idea comes from the

fact that a set of non linearly-representable data could be managed in a linear

fashion if mapped to a higher dimension. To do the mapping, we assume a

function Φ of the form:

Φ : IRn → H, (4.12)

where H denotes a higher dimensional space than n-dimensional. If all prefer-

ences inputs are mapped into H by making use of Φ, the Lagrangian function

will be:

L =
∑
i∈I

µi −
1
2

∑
i∈I

∑
j∈I

µiµjΦ(λi) · Φ(λj). (4.13)

A deeper look into the process of computing L (i.e., Equation 4.13) reveals

that, even though L is still a scalar value, the optimisation problem performs a

dot product operation (Φ(λi) · Φ(λj)) in the high dimensional space, which is

computationally expensive, if the dimension of H is extremely large.

Principally, a kernel is a function which operates in the lower dimension, i.e.,

K : IRn × IRn → IR, but yields an identical result to the dot product of mapped

vectors in the higher dimension, i.e., K(X, Y ) = Φ(X) · Φ(Y ).

Due to the above property of the kernel function, the term Φ(λi) · Φ(λj) can be

simply replaced in Equation (4.13) with an appropriate kernel. The great ad-

vantage of such a replacement is that the complexity of the optimisation prob-

lem remains only dependent on the dimensionality of the lower dimensional

space (i.e., n) and not of H.

Note that this simplification happens without even explicitly stating the Φ func-

tion because the problem has been formulated in terms of dot products of
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points. So, the problem is rewritten as follows:

maximise
µ

∑
i∈I

µi −
1
2

∑
i∈I

∑
j∈I

µiµjK(λi, λj) (4.14a)

subject to

0 ≤ µi ≤ C ∀i ∈ I. (4.14b)

There still remains one point that should be considered. Solving this optimisa-

tion problem only gives µ where after all, w is required. Equation 4.7 cannot be

used to obtain w anymore, because after the mapping, w will live in H; that is:

w =
∑
i∈I

µiΦ(λi). (4.15)

However, recall that finding w is just an intermediate goal to achieve the utility

function. Therefore, using Equation (4.15) brings the following form of the

utility function:

f(x) = w · Φ(x)

= (
∑
i∈I

µiΦ(λi)) · Φ(x)

=
∑
i∈I

µi(Φ(λi) · Φ(x))

=
∑
i∈I

µi K(λi, x). (4.16)

Equations 4.14 and 4.16 form the method, which is referred to as SVPL (Support

Vector Preferences Learner) in our experiments. As seen, the input parameters

that should be chosen in SVPL are C and the kernel function’s parameters (if it

has any).

4.5 Experiments

4.5.1 Data Repository

The experiments make use of a subset of a year’s worth of real ridesharing

records, provided by Carma3 (formerly Avego). Carma is a software company

3https://www.gocarma.com/
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Figure 4.4: A screenshot of Carma’s application to offer a ride-match.

that was offering (until 2016) a dynamic ride-share application for internet-

enabled mobile phones.

The process of Carma’s application is briefly explained so as to facilitate the

understanding of the structure of the provided database. Users can request

a ride-share as a driver, rider or both (happy to be rider or driver). Once a

ridesharing request is created, the system finds and shows a suggestion list of

matching opportunities on the user’s screen. For each suggested item, the user

can accept, decline or just leave it with no response. Note that accepting an

opportunity at this stage does not mean the ride-share will certainly happen

because it also needs the confirmation of the other party; so, it is observed

in the database that for a single trip a user may have several accepted items.

While the system is waiting to get the second confirmation, the user can cancel

an initially accepted item. It should be pointed out that the cancellation of a

specific item differs from the cancellation of the whole trip request; the former

often happens because of the greater attractiveness of a new item, and the latter

is for the time when the user does not want to share the ride for the created

trip anymore.

According to the above mechanism, a ride-matching record is associated with a

class label which is among these four: Accepted, Cancelled, Ignored or Declined.

In fact, the class label indicates the response of the main user towards sharing

the ride with the target user.

Preference Inference Based on Maximising
Margin

62 Mojtaba Montazery Hedeshi



4. LEARNING USER PREFERENCES FOR A

RIDESHARING APPLICATION 4.5 Experiments

The second element of a ride-matching record is a vector of features, built from

the personal information of both the main and the target user, and the proper-

ties of their trips. Before starting the learning process, normalizing the features’

spaces is an essential requirement due to the fact that margin based methods

are known to be sensitive to the way features are scaled [BHW10]. Because of

that, features are scaled to an identical range, i.e., [0, 1]. The extracted features

from the provided database are listed here:

• Positional Component: Expressing how suitable the pick-up and drop-off

locations will be for the main user.

• Temporal Component: Expressing how appropriate the departure time

will be for the main user.

• Gender Component: Indicating whether the target user is of the same

gender (1) or the opposite (0).

• Has Image: It considers whether the target user’s profile contains his/her

picture or not.

• Average Rating: At the end of a ridesharing experience, users can rate the

other party. This feature holds the average rate that the target user has

gained from his/her previous trips.

• Is Favourite: As well as the rating, a user can mark a particular user as

a favourite person at the end of ridesharing. This feature shows whether

the target user is among individuals who are marked as a favourite of the

main user or not.

• Previous Rating: If the main user and the target user have had a previous

ridesharing experience with each other, this feature shows the rating that

the main user has given to the target user.

We base our experiments on 12 benchmarks derived from this data-set. Each

benchmark corresponds to a different user (who is the main user of all ride-

matching records of that benchmark). Table 4.3 shows the number of ride-

matching records, separated by class labels, for each benchmark.

4.5.2 Experiments Settings

For each benchmark, the ride-matching records are sorted in chronological or-

der of the creation time (i.e., earliest first), and then split into two parts. The
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Table 4.3: 12 benchmarks derived from a commercial ridesharing system which
are being used in the experiments.

Benchmark Accepted Cancelled Ignored Declined Total

1. 179 72 83 14 348
2. 34 1 49 0 84
3. 210 52 138 2 402
4. 3 1 124 41 169
5. 81 1 53 29 164
6. 126 3 74 45 248
7. 39 7 28 4 78
8. 45 7 78 29 159
9. 146 37 3 1 187
10. 126 24 14 1 165
11. 40 1 41 13 95
12. 96 12 25 4 137

Total 1125 218 710 183 2236

first part includes 80% of the records which we use to derive a set of pairwise

comparisons as explained in 4.3.1. This set works as input data to train SVPL.

At the end of the learning stage, SVPL can predict, for each record, a scalar

value which expresses the utility of that record for the user.

The second part of the data is utilized for the testing stage. From this data, a

total pre-order between the records with respect to class labels could be derived

(see Example 11 below). This ranking is used as the ground truth for testing.

On the other hand, the predicted scalar values for records produced by the

model generates a total pre-order between records.

Thereafter, the C-Index (or concordance C) measure is exploited so as to as-

sess the ranking performance of SVPL with respect to the ground truth ranking

[GH05]. It is calculated as follows:

C-Index(r, r̂) = κ

κ+ κ̄

where κ is the number of correctly ranked pairs and κ̄ (Kendall tau distance) is

the number of incorrectly ranked pairs.

DCG is another metric that is used to evaluate the model’s performance [JK02].

To compute DCG, first each item is assigned with a relevance degree; items that

are supposed to be in higher ranks have greater relevance degree. Here, we say

that the relevance degree of an accepted ride-matching is 3; a cancelled one is

Preference Inference Based on Maximising
Margin

64 Mojtaba Montazery Hedeshi



4. LEARNING USER PREFERENCES FOR A

RIDESHARING APPLICATION 4.5 Experiments

2; ignored is 1 and declined is 0. Then, for a particular ranking among p items,

DCG is defined as follows4:

DCGp = rel1
0.4 +

p∑
i=2

reli
log2(i)

where reli is the relevance degree of the item at rank i. Since DCGp also

depends on p, it should be normalized. Thus, we use normalized DCG (nDCG)

which is calculated by dividing “DCG of the current ranking” by “DCG of the

ideal ranking”.

Example 11 » Ranking Metrics

Suppose there are 6 ride-matching opportunities for Alice’s trip D1 as
stated in Table 4.4. From her responses (i.e., accepted, cancelled, ignored
and declined) the following total pre-order can be derived as ground truth.

R1, R2 � R3 � R4, R5 � R6

Note that R1 and R2 are incomparable, as are R4 and R5. This is the ideal
ranking of available options for this trip and its DCG is:

3
0.4 + 3

log2 2 + 2
log2 3 + 1

log2 4 + 1
log2 5 + 0

log2 6 = 12.69.

Assume that SVPL has been previously trained by some ridesharing records
of Alice, and now predicts those utilities in the 4th column. As a result,
SVPL ranks options in this fashion:

R2 � R3 � R1 � R5 � R6 � R4

Given this ranking, DCG is:

3
0.4 + 2

log2 2 + 3
log2 3 + 1

log2 4 + 0
log2 5 + 1

log2 6 = 12.28,

and subsequently nDCG= 12.28/12.69 = 0.9677. With respect to the C-Index
metric, the ranking accuracy is 84.61%, since only two pairs–(R1, R3) and

4The original formula in [JK02]is DCGp = rel1 +
∑p

i=2
reli

log2(i) . It can be seen that the
coefficient of the first term (rel1) and the second term’s (rel2) are equal. To give a smaller
penalty value to the first term, we divided rel1 by 0.4 (instead of 1).
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Table 4.4: Six ride-matching opportunities available for Alice’s trip D1, which
are being used in Examples 11 and 12.

Ground Truth SVPL Prediction Saved Travel Distance

Labels Ranking Utility Ranking Value(km) Ranking

R1 A 1 8.2 3 32 6
R2 A 1 10 1 36 3
R3 C 3 8.5 2 35 4
R4 I 4 6.9 6 38 2
R5 I 4 7.5 4 40 1
R6 D 6 7 5 34 5

(R4, R6)–out of 13 pairs were ranked incorrectly and 11/13 = 0.8461 .

In terms of choosing the kernel function, although there are many kernels avail-

able in the literature, and devising a new kernel by meeting Mercer’s Condition
is possible [SHS01], we just simply use three well-known kernels, listed here:

• K(x,y) = x · y: The linear kernel which is equivalent to the non-kernel

based formulation (Equation 4.11).

• K(x,y) = (γx · y + r)p: The polynomial kernel of degree p; here, we

assume p = 2, γ = 1 and r = 0.

• K(x,y) = e−‖x−y‖2/2σ2: This is the Gaussian radial basis function (RBF).

The parameter σ is tuned as an input parameter.

For adjusting the input parameters, i.e., the errors’ multiplier C and the kernel’s

parameters, we use the Grid Search algorithm for hyper-parameter optimisation

[BB12]. Roughly speaking, in the grid search, the combination of input param-

eters is chosen in which the model performs best.

Each run of SVPL, which comprises learning and testing phases for a bench-

mark, takes less than a couple of minutes, making use of a computer facilitated

by a Core i7 2.60 GHz processor and 8 GB RAM memory.

4.5.3 SVPL Versus Maximising Saved Travel Distance

We stated in Section 4.3 that cij is a numeric representation to show how good

the matching is between individuals i and j, which mainly considers only the
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benefits to the whole system such as the total saved travel distance. How-

ever, we argued that this is insufficient and cij should also take into account

user preferences. Then, we suggested making use of this measure to rank and

recommend best ridesharing opportunities to the user. We claim this strategy

would boost the users’ satisfaction degree, which should increase the chances

of repeat usage of the system.

Now, we examine the importance of the user preferences by comparing the

effectiveness of the ranking provided by SVPL, which involves learning user

preferences, with the case in which options are ranked regardless of the user’s

desires; i.e., an option A precedes another option B when the benefits obtained

by that option for the whole system are more. In our experiments, we especially

consider the saved travel distance measure as the benefit gained for the whole

system. The following example clarifies the situation.

Example 12 » Experiments Approach

Consider the situation explained in Example 11. Now, let us sort objects
according to the travel distance that would be saved by each matching (see
the 6th column in Table 4.4). This leads to this (total) order of objects:

R5 � R4 � R2 � R3 � R6 � R1

It should be noted again that for proposing this ranking, we set aside Al-
ice’s preferences which might be implicitly stated in her past ridesharing
records; therefore, unlike SVPL, there is no need to have a learning phase.
For this instance of ranking, nDCG and C-Index are respectively 0.5959
and 0.3846, which both are smaller than SVPL’s. From this point onwards,
we call this strategy of ranking ridesharing opportunities (regarding saved
travel distance) as STD for the sake of brevity.

In this example, if the top recommended option suggested by SVPL (i.e.,
R2) is chosen by Alice to form a ride-share for D1, then the saved travel
distance will be 36km which is 4km less than the optimal matching (i.e.,
R5). Thus, roughly speaking, we can say by use of SVPL strategy in ranking
rather than STD , the saved travel distance would probably decline by 10%,
compared to the optimal case, in this example. �
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Table 4.5: These experimental results aim to compare SVPL against STD, based
on ranking accuracy (first four columns), and the saved travel distance.

Bench.
nDCG C-Index Saved Travel Distance (Km)

STD SVPL STD SVPL STD SVPL Loss Rate (%)

1. 80.51 94.81 39.10 70.73 1123 1077 4.1

2. 62.08 100 25.00 100 248 178 28.4

3. 98.35 85.14 94.77 95.59 926 881 4.9

4. 97.37 98.73 66.67 76.39 240 236 1.6

5. 57.37 97.00 43.48 63.77 215 213 0.7

6. 56.10 95.05 61.01 74.51 422 414 2.0

7. 53.58 98.57 40.00 80.00 186 186 0

8. 80.95 93.62 66.50 58.67 343 332 3.2

9. 89.59 96.52 41.67 87.50 47 46 2.4

10. 93.49 97.37 44.44 83.33 397 384 3.1

11. 61.19 99.87 32.73 94.55 154 146 4.9

12. 72.90 66.77 77.42 74.19 167 159 3.8

Avg. 79.42 92.62 58.08 79.66 512 491 4.3

Now, a reasonable question is how much do we gain, in terms of ranking ac-

curacy, and how much do we lose, in terms of total saved travel distance, if

SVPL is used instead of STD for a real ridesharing data? Table 4.5 answers this

question for our real database.

In Table 4.5, the first four columns show the accuracy of models with respect to

two different metrics, namely nDCG and C-Index. The greater number of each

measure has been emboldened for easier comparison. As expected, SVPL beats

STD in ranking accuracy for most of the benchmarks. On the other hand, apart

from the second benchmark, the loss rate of saved travel distance by using

SVPL is less than 5%. The last row illustrates the weighted average of rows,

where the weight for each row is proportional to the number of records for

that benchmark (last column in Table 4.3); thus, a benchmark with a greater

number of records has a proportionally greater impact on the average.

4.5.4 SVPL Versus the Worst Point Model

The results in Table 4.5 might be conclusive enough to lead us to believe that

considering user preferences in ranking ride-matching items will increase the
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Table 4.6: The ranking performance of SVPL and WPM are shown for two met-
rics, nDCG and C-Index.

Benchmark
nDCG C-Index

WPM SVPL WPM SVPL

1. 92.86 94.81 59.94 70.73
2. 80.12 100 62.50 100
3. 74.61 85.14 83.39 95.59
4. 90.90 98.73 45.14 76.39
5. 63.80 97.00 39.86 63.77
6. 94.60 95.05 73.01 74.51
7. 34.29 98.57 00.00 80.00
8. 93.62 93.62 58.67 58.67
9. 96.51 96.52 87.50 87.50
10. 94.41 97.37 55.55 83.33
11. 60.96 99.87 27.27 94.55
12. 67.24 66.77 35.48 74.19

Weighted Avg. 82.52 92.62 60.02 79.66

accuracy. However, what if an ad-hoc ranking strategy, which is generally sen-

sible for all users, is adopted? In this situation, it is presumed all users have

relatively similar preferences.

To examine this question, we assess SVPL against a somewhat simple-minded

way of ranking which is called Worst Point Model (WPM). In WPM, a hypothet-

ical matching trip with all features equal to 0, is assumed as the worst match.

This assumption makes some sense, since it means that the worst matching is

when the positional component, temporal component, is favourable, has image
and so forth, all are 0. Afterwards, the score of each item is found from its

Euclidean distance from the worst point; i.e., a higher score is produced by

going further away from the worst point. Needless to say no learning process

is involved in acquiring these scores. Therefore, a ranking of ridesharing op-

portunities, based on their distance from the worst point, will be suggested.

Table 4.6 shows that SVPL produces a higher accuracy than WPM for most of

benchmarks.
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Table 4.7: The ranking accuracy comparison between SVPL and three regres-
sion methods, namely linear regression (LR), neural network regression (NNR)
and support vector machine regression (SVM).

Bench.
nDCG C-Index

LR NNR SVM SVPL LR NNR SVM SVPL

1. 86.47 85.81 85.98 94.81 68.38 51.07 58.23 70.73

2. 100 100 100 100 100 100 100 100

3. 83.15 77.56 83.55 85.14 71.46 80.02 82.54 95.59

4. 98.54 99.22 93.65 98.73 74.31 84.72 48.61 76.39

5. 70.29 93.70 55.85 97.00 61.59 72.46 25.36 63.77

6. 70.12 69.88 67.37 95.05 67.01 67.01 53.52 74.51

7. 94.52 45.24 45.24 98.57 60.00 40.00 40.00 80.00

8. 95.14 91.54 83.55 93.62 65.17 57.67 56.83 58.67

9. 90.45 90.45 96.52 96.52 37.50 37.50 87.50 87.50

10. 92.11 94.74 94.74 97.37 50.00 66.67 66.67 83.33

11. 77.83 99.15 77.83 99.87 89.09 78.18 89.09 94.55

12. 61.52 61.04 66.49 66.77 48.39 29.03 70.97 74.19

Avg. 84.04 83.77 80.77 92.62 65.11 63.89 64.93 79.66

4.5.5 SVPL and Regression Models

Our experiments, thus far, have shown that learning the preferences of users

individually is an auspicious direction in ride-matching. However, as explained

in Section 4.3.1, using a regression-based method is another viable approach

for learning weights. Recall that SVPL and the regression method require dif-

ferent formats for the input data, though they both eventually produce a utility

function. For the regression method, the main user responses (class labels) are

converted to scalar values, and for SVPL, a set of pairwise comparisons among

ride-matching records is created (Section 4.3.1 illustrates how).

Thus, in this section, the performance of SVPL is compared with three regres-

sion methods in Table 4.7. These rival methods are Linear Regression, Neural
Network Regression and Support Vector Machine Regression [NKNW96, CH15,

Bot91, DBK+97] 5 which are respectively abbreviated as LR, NNR and SVM.

As seen in Table 4.7, SVPL outperforms the regression methods overall, which

could evidently indicate that pairwise comparisons give a more natural repre-

sentation of user preferences rather than simply converting labels to numeric

5 We have used the scikit-learn library, that is available in http://scikit-learn.org/, for the
implementation of these methods.
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Figure 4.5: The overall accuracy of models according to nDCG and C-index
metrics. The models compared are: ranking based on saved travel distance
(STD), Worst Point Model (WPM), Linear Regression (LR), Neural Network Re-
gression (NNR), Support Vector Machine Regression (SVM) and Support Vector
Preferences Learner (SVPL).

values.

Finally, Figure 4.5 gives an overview of our experimental results, where the

weighted average of the accuracy of each model (last columns in tables) have

been drawn as a bar chart. The results show a clear superiority of SVPL over

the other methods for the dataset.

4.6 Summary and Future Works

The advent of advanced technologies including GPS, web, and mobile tech-

nologies for real-time communication provides a unique opportunity to form

new dynamic ridesharing systems, which could potentially provide substantial

societal and environmental benefits. At the heart of the ridesharing concept,

matching drivers and riders in real-time is prominently featured as a challenge.

In this section, we have presented novel aspects of the automatic ride-matching

system, making use of user preferences. We believe that a good understanding

of participant behaviour and preferences will be essential; if ride-share matches
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do not satisfy participant preferences, the participant may not make use of the

ride-share system in the future. Moreover, learning user preferences softens the

traditional way of setting hard constraints, and removes the need for eliciting

some complex parameters from participants.

Unlike the prevalent systems in ridesharing, our approach gives freedom to

participants in the choice of ridesharing partners; it is supported by the fact that

the user may not approve of the assigned matching found from the optimisation

of the whole system. Of course, providing the flexibility in the matching process

may cause deviation from the optimal solution with respect to the overall saved

travel time. However, the first part of our experiments in Section 4.5.3 indicated

that this loss could be quite small.

SVPL as a model with the ability to learn user preferences in a natural way, was

discussed in Section 4.4. Our experimental results showed the effectiveness of

SVPL, in comparison with five competitor strategies. The intention is that SVPL

could contribute to the suggestion of a menu of good choices to the user in a

ridesharing system.

A natural extension would be if the preferences set (pairwise comparisons) de-

rived from the user’s feedback, could be associated with some degree of uncer-

tainty. For instance, if it is said that the user probably prefers the case A to B,

with certainty degree of 0.7. Other interesting subjects related to this chapter

that could be addressed in future works, include handling unknown values in

the features space, and online learning.
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5.1 Introduction

There is a growing trend towards personalisation for services in many real-

world application domains, such as e-commerce, marketing, and entertain-

ment. This involves capturing user preferences over alternative choices, e.g.,

products, movies and hotels. One may view this as an enhanced variation of

supervised learning, known as preference learning, where instead of tagging

an instance with a single label, preference relations are expressed over in-

stances [YMH09, BGH10]. One natural way to express preferences over items

is to represent them in the form of pairwise comparisons, stating that one alter-

native a is preferred over another one b, where an alternative is associated with

a feature vector, i.e., a vector of values for a number of features.

As we discussed in the previous chapter, an established approach for modelling

preferences makes use of the concept of a utility function that is learned from

preference input pairs. Then, for a pair of test vectors (α, β), this function

assigns an abstract degree of utility to each test vector, implying which test vec-

tor is preferred to which [FH10]. Support Vector Machine (SVM) approaches

[Bur98] have inspired the development of several methods for learning the

utility function, such as OrderSVM [KHM05], SVOR [HGO99] and SVMRank

[Joa02].

In a method such as SVMRank, when the utility function has been learned,

rescaling a pair of test vectors makes no difference to the result, i.e., α is pre-

ferred to β if and only if rα is preferred to rβ for any strictly positive scale factor

r. The same does not hold for the input pairs: different ways of scaling pref-

erence input pairs may lead to a very different utility function being learned.

However, it is arguable that in many contexts, a preference for a over b can

be considered as conveying essentially equivalent information to a preference

for ra over rb. For instance, knowing that the movie with the feature vector

a is preferred to one with the feature vector b, we would often expect that 2a
is preferred to 2b. This suggests defining a more cautious preference relation

by saying that a test vector α is inputs-scaling-invariant preferred to β if α is

preferred to β for all choices of scalings of preference input pairs.

An analogous form of preference relation considers the scaling of features,

where α is features-scaling-invariant preferred to β if α is preferred to β for

all choices of scalings of features. Part of the motivation for this is that for

any SVM-based method is necessary to scale (normalize) features beforehand.
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This is because these methods are not invariant to the scale of their input fea-

ture spaces; for example, a particular feature with very large values, compared

with the other features, might effectively veto the effect of other features on

the objective function. Therefore, these methods are clearly sensitive to the

way features are scaled [SKF08, BHW10]. The common practice for scaling is

based on the properties of input instances [JD88, AH01, TD00]; as an example

of a scaling method, the value of a feature is subtracted by the minimum of all

values of that feature in the dataset and divided by the difference between the

maximum and minimum. So, the scaling, and therefore the resulting preference

relation, can sometimes depend strongly on precisely which preference inputs

are received. There can thus be subjective, and even rather arbitrary, choices

in the scaling of the feature spaces; different ways lead to different preference

relations.

Taking into account both forms of rescaling mentioned above, we can also con-

sider a still more cautious relation in which α is scaling-invariant preferred to β

if it is preferred for all choices of scalings of features and preference input pairs

simultaneously.

In this chapter, we define and analyse these more cautious preference relations

that are invariant to the scaling of features, or preference inputs, or both si-

multaneously. The rest of the chapter is organised as follows. The next section

introduces the terminology being used throughout the chapter and explains two

preliminary preference relations. Section 5.3 considers the effect of rescaling

of preference input pairs, and characterises a preference relation that is invari-

ant to the scaling of preference input pairs. Similarly, the two other relations,

where features are rescaled and where both features and preference inputs are

rescaled simultaneously, are characterised in Sections 5.4 and 5.5 respectively.

As the relations are based on the assumption that the input pairs are consistent,

we briefly discuss three possible approaches to deal with inconsistencies in Sec-

tion 5.6. The characterisations of relations lead to the computational methods

in Section 5.7 for testing dominance with respect to the induced relations. In

Section 5.8, we consider two kinds of optimality operator to choose a subset

of alternatives as optimal solutions with regard to each preference approach.

We report the experimental results that are carried out on derivatives of two

real databases in Section 5.9; the experiments compare relations based on (a)

the number of test pairs in which one dominates the other; (b) the number of

optimal solutions found according to the defined optimality operators; and (c)

the computation time. Section 5.10 concludes, with a discussion of potential
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extensions. The appendix of this chapter includes the proofs of the lemmas,

with the exception of some shorter proofs which are included in the main body

of the chapter.

5.2 Preliminaries

In this section, we describe some notation and two preference relations that

provide a basis for the following sections. Since there are inevitably many sym-

bols and results to keep track of, Table 5.1 includes a glossary of symbols.

Recall the setting of the problem that we explained in Section 4.4 where the

feature vector ai ∈ IRn has been preferred over bi ∈ IRn, for each i ∈ I =
{1, . . . ,m}. Also, the preference inputs, Λ, is {λi : i ∈ I}, where for each i,

λi = ai − bi. By assuming a linear weighting model, each pair (ai, bi) expresses

a linear restriction ai ·w > bi ·w on an unknown weight vector w ∈ IRn. 1 Thus,

a feasible w satisfies λ · w > 0 for all λ ∈ Λ.

Let us denote the feasible set by Λ> (={w ∈ IRn : ∀λ ∈ Λ, w · λ > 0}), and as-

sociate the hyperplane Hw = {x ∈ IRn : x · w = 0} with a feasible w ∈ Λ>. We

also assume that the preference inputs are consistent, so that Λ> is non-empty.

Later, in Section 5.6, we discuss how to cope with the inconsistency in the data.

Example 13 » Representation of The Notation

Suppose that n = 2 and let the preference inputs Λ be {(2, 1), (1, 2), (1, 1)}
(see Figure 5.1(a)). Then, a feasible w ∈ IR2 satisfies these three condi-
tions: (i) 2w(1)+w(2) > 0, (ii) w(1)+2w(2) > 0 and (iii) w(1)+w(2) > 0.
The feasible set, Λ>, is shown in Figure 5.1(b) as the open space sur-
rounded by dotted lines, i.e., both shaded regions. In Figure 5.1(a), the
dotted line (x+ y = 0) is a feasible hyperplane since it could be associated
with a feasible point, such as (1

2 ,
1
2).

1This linear weighting assumption is less restrictive than it sounds; for instance, we could
form additional features representing e.g., pairwise products of the basic features, enabling a
richer representation of the utility function.
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5.2.1 Consistency Based Relation

One natural preference relation, <C
Λ, which has been explored, for example, in

[MRW13], is given as follows:

Definition 30: Consistency-based Preference Relation, <C
Λ

The test vector α is consistency-based preferred to β, i.e., α <C
Λ β, if and only

if w ·α ≥ w ·β for all feasible w ∈ Λ>. This means that dominance of α over

β is consistent with the fact that for all i ∈ I, ai has dominated bi.

In addition to Λ>, we define for any finite Λ ⊆ IRn, the following two sets:

• Λ≥ = {w ∈ IRn : ∀λ ∈ Λ, w · λ ≥ 1} (Λ≥ is the darkly shaded region in

Figure 5.1(b)); and

• Λ∗ = {w ∈ IRn : ∀λ ∈ Λ, w · λ ≥ 0} which is actually the dual cone of Λ
(the closed space surrounded by dotted lines in Figure 5.1(b)).

Proposition 4 below states two other alternative ways to determine if α <C
Λ β

(just consider γ = α− β). The proof uses Lemmas 2 and 3.

Lemma 2

Consider any Λ ⊆ IRn. If Λ> is non-empty then Λ∗ is the topological closure

of Λ>.

The following lemma is a well-known result for convex cones. Recall that the

convex cone generated by Λ, co(Λ), is the smallest convex cone containing Λ
(this is the darkly shaded region in Figure 5.1(a)); i.e., the set of all vectors in

IRn that can be written as
∑
λ∈Λ rλλ, where rλ are arbitrary non-negative reals.

Elements of co(Λ) are said to be positive linear combinations of elements of Λ.
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Lemma 3

Consider any finite Λ ⊆ IRn and any u ∈ IRn. Then, Λ∗ ⊆ {u}∗ if and only

if u ∈ co(Λ).

To illustrate, u = (3, 3) is in co(Λ) in Figure 5.1, and {u}∗ =
{(x, y) : 3x+ 3y ≥ 0} clearly contains Λ≥, the darkly shaded region in Fig-

ure 5.1(b).

Proposition 4: Determining the <C
Λ Relation

Consider any finite Λ ⊆ IRn such that Λ> 6= ∅ and any γ ∈ IRn. Then, the

following conditions are equivalent. Thus, any of these are equivalent to

γ <C
Λ 0.

(i) for all w ∈ Λ>, w · γ ≥ 0.

(ii) for all w ∈ Λ≥, w · γ ≥ 0.

(iii) γ ∈ co(Λ).

Proof: (i)⇒ (ii): This follows immediately from Λ≥ ⊂ Λ>.

(i)⇐ (ii): Suppose that for all w ∈ Λ≥, w ·γ ≥ 0, and consider any u ∈ Λ>.

Let au = minλ∈Λ u · λ which is clearly greater than zero, and let u′ = u
au

.

For any λ ∈ Λ, u · λ ≥ au which implies that u′ · λ ≥ 1, and thus, u′ ∈ Λ≥.

Because u′ · γ ≥ 0, we have also, u · γ ≥ 0.

(i)⇔ (iii): (i) means Λ> ⊆ {γ}∗ which, because {γ}∗ is a closed set, holds

if and only if Cl(Λ>) ⊆ {γ}∗, i.e., Λ∗ ⊆ {γ}∗, using Lemma 2. Lemma 3

implies that this is if and only if (iii) γ ∈ co(Λ). �
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Table 5.1: The glossary of symbols being used throughout the chapter.

Symbol Meaning

n number of features.
m number of preference input pairs.
(ai, bi) a preference input pair when ai has been preferred to bi.
I defined as {1, . . . ,m}; i.e., the index set for input pairs.
· the dot product, e.g., (2, 3) · (3, 1) = 9.
Λ is the (finite) set of preference inputs; i.e.,

{λi : ∀i ∈ I, λi = ai − bi}; e.g., the black points marked in
Figure 5.1(a).

Λ> defined as {w ∈ IRn : ∀λ ∈ Λ, w · λ > 0}; e.g., the open space sur-
rounded by dotted lines in Figure 5.1(b).

Λ≥ defined as {w ∈ IRn : ∀λ ∈ Λ, w · λ ≥ 1}; e.g., the darkly shaded
region in Figure 5.1(b).

Λ∗ defined as {w ∈ IRn : ∀λ ∈ Λ, w · λ ≥ 0}; e.g., the closed space sur-
rounded by dotted lines in Figure 5.1(b).

co(Λ) the smallest convex cone containing Λ; e.g., the darkly shaded re-
gion in Figure 5.1(a).

<C
Λ the consistency based relation; i.e., α <C

Λ β iff for all w ∈ Λ>,
w · (α− β) ≥ 0.

S \ {x} from the set S, the element x is excluded.
Λ∗+{u} for the vector u ∈ IRn, defined as {w + u : w ∈ Λ∗}.
‖w‖ Euclidean norm of w.
ω?Λ the element with minimal norm in Λ≥; e.g., (1

2 ,
1
2) in Figure 5.1(b).

<mmΛ the maximum margin preference relation; i.e., α <mmΛ β iff α · ω?Λ ≥
β · ω?Λ.

IR+ the set of strictly positive reals.
IRm

+ the set of vectors u ∈ IRm with each component strictly positive.
t ∈ IRm

+ , the rescaling vector for preference inputs.
Λt defined as {t(i)λi : ∀i ∈ I}, i.e., preference inputs being rescaled

by t.
<I

Λ the relation that is invariant to the rescaling of inputs; i.e., α <I
Λ β

iff for all t ∈ IRm
+ , α <mmΛt

β.
SI(Λ) defined as {ω?Λt

: t ∈ (0, 1]m}; e.g., the intersection of darkly
shaded regions in sub-figures 5.1(a) and (b).

τ ∈ IRn
+, the rescaling vector for features.

τ−1 ∈ IRn
+, given by τ−1(j) = 1/τ(j) for all j ∈ {1, . . . , n}.

� pointwise multiplication, e.g., (2, 3)� (3, 1) = (6, 3).
Λ� τ defined as {λ� τ : ∀λ ∈ Λ}, i.e., features being rescaled by τ .
<F

Λ the relation that is invariant to the rescaling of features; i.e., α <F
Λ β

iff for all τ ∈ IRn
+, α� τ <mmΛ�τ β � τ .

SF(Λ) defined as {ω?Λ�τ � τ : τ ∈ IRn
+}; e.g., the part of the line segment

x+ y = 1 strictly within the first quadrant in Figure 5.1(b).
<I,F

Λ the relation that is invariant to the rescaling of features and inputs
simultaneously.

SIF(Λ) defined as {ω?Λt�τ � τ : t ∈ (0, 1]m, τ ∈ IRn
+}; e.g., the part of the

darkly shaded region that is strictly within the first quadrant (so
not including the axes) in Figure 5.1(b).
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5.2.2 Maximum Margin Preference Relation

Based on the principal idea in conventional SVM, SVMRank [Joa02] picks a

single w from the feasible set that maximises the margin (leading to a stronger

ordering than <C
Λ); by margin we mean the perpendicular distance between the

hyperplane Hw and the closest element of Λ to Hw. In simple terms, maximising

the margin means choosing a feasible hyperplane that is as far as possible from

Λ. One might view the distance between Hw and λ (i.e., w·λ
‖w‖) as the degree to

which w satisfies the preference λ, with the best w being those that satisfy each

λ to the greatest degree. As we have seen in Section 4.4 and will prove formally

in Theorem 5 below, the hyperplane that produces the maximum margin is

equal to the hyperplane Hw where w uniquely has the minimum (Euclidean)

norm in Λ≥. We denote the unique element of Λ≥ with the minimum norm by

ω?Λ. In Figure 5.1(b), (1
2 ,

1
2) has uniquely minimal norm in Λ≥, so ω?Λ = (1

2 ,
1
2),

and thus, the associated hyperplane with that point, x+ y = 0 in Figure 5.1(a),

has the maximum margin.

Theorem 5: Equality of Maximising Margin and Minimising Norm

Let Λ be a finite subset of IRn, and suppose that Λ> is non-empty. Then the

following all hold.

(i) Λ≥ is non-empty;

(ii) there exists a unique element ω?Λ in Λ≥ with minimum norm;

(iii) w maximises margin (i.e., dw = minλ∈Λ
w·λ
‖w‖) within Λ> if and only if w

is a strictly positive scalar multiple of ω?Λ, i.e., there exists r ∈ IR with

r > 0 such that w = rω?Λ.

Proof: If Λ> is non-empty then, by Lemma 1(i), w̄ ∈ Λ≥ for any w ∈ Λ>.

Thus, Λ≥ is non-empty, showing (i). Regarding (ii), since Λ≥ is convex

and topologically closed, there exists a unique element ω?Λ in Λ≥ with

minimum norm, by a standard result (for a proof, see e.g., Proposition 4

of [WM16b]).
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To prove (iii), consider any w ∈ Λ>. As we just showed, w̄ ∈ Λ≥, so

minimality of ω?Λ implies that ‖w̄‖ ≥ ‖ω?Λ‖ which equals ‖ω?Λ‖, using

Lemma 1(ii). Lemma 1(iv) then implies that dw ≤ dω?Λ, which implies

that ω?Λ maximises dw for all w ∈ Λ>. Also, if dw = dω?Λ then ‖w̄‖ = ‖ω?Λ‖,
and thus, w̄ = ω?Λ by uniqueness of ω?Λ. Then w

aw
= ω?Λ so w is a positive

scalar multiple of ω?Λ. Finally, for any r > 0, drω?Λ = dω?Λ so rω?Λ maximises

dw for all w ∈ Λ>. �

More general versions of this result that allow additional linear restrictions on

the feasible set Λ> are given in [WM16a, WM16b].

Definition 31: Max-margin Preference Relation, <mmΛ

We define relation <mmΛ by, for α, β ∈ IRn, α is max-margin-preferred to β

with respect to Λ (i.e., α <mmΛ β) if and only if α ·ω?Λ ≥ β ·ω?Λ, where ω?Λ has

uniquely minimal norm in Λ≥.

The relation <mmΛ is a total pre-order, since it is transitive and for any α, β ∈ IRn

we have α <mmΛ β or β <mmΛ α (or both). Considering Λ as in Example 13,

ω?Λ = (1/2, 1/2), and {(1/2, 1/2)}∗ = {(x, y) : x+ y ≥ 0}; so, for all γ in the positive

half-space of x+ y = 0, γ <mmΛ 0.

5.3 Rescaling of Preference Inputs

As discussed in the introduction of this chapter, it seems natural that a prefer-

ence relation should not depend on how the preference inputs are scaled. As

shown below in Example 14, this does not hold for the max-margin preference

relation. In this section we define and give a characterisation of a preference

relation <I
Λ that is invariant to rescaling of the preference inputs Λ.
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Figure 5.1: (a) The visual representation of Example 13 when Λ =
{(2, 1), (1, 2), (1, 1)}. If the element γ is in (i) the darkly shaded region; (ii)
the first quadrant; (iii) all the shaded region; and (iv) the positive half space
of x + y = 0 then γ will dominate 0 under relation (i) <C

Λ; (ii) <F
Λ and <I,F

Λ
(they lead to the same result in this example); (iii) <I

Λ; and (iv) <mmΛ , respec-
tively. (b) Λ≥ is the darkly shaded region, SIF(Λ) is the part of Λ≥ that is strictly
within the first quadrant (so not including the axes), SF(Λ) is the part of the
line segment x + y = 1 strictly within the first quadrant, and SI(Λ) is the inter-
section of Λ≥ and co(Λ) (i.e., the intersection of darkly shaded regions in both
sub-figures).

5.3.1 Defining Inputs-Rescaling-Invariant Relation

Consider the effect of rescaling the preference inputs Λ by t ∈ IRm
+ (where IRm

+

is the set of strictly positive reals in m-dimensional), with each preference input

being multiplied by a strictly positive scalar, so that the rescaled preference

input set is defined as Λt = {t(i)λi : i ∈ I}. We then have (Λt)≥ = Λ≥t =
{w ∈ IRn : ∀i ∈ I, w · (t(i)λi) ≥ 1}. We will write t(i) as ti for brevity. Let us

say that α is max-margin-preferred to β under rescaling t if α <mmΛt β. Now, it

can easily happen that α is preferred to β under one rescaling, but not under

another.

Example 14 » The Effect of Scaling of Preference Inputs

Consider t = (3/5, 1/5, 1) rescaling Λ in Example 13. Then, Λt equals
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{(6/5, 3/5), (1/5, 2/5), (1, 1)}. In Figure 5.2(a), Λ≥t is the whole shaded re-
gion, and it can be seen that ω?Λt

= (1, 2) which means the hyperplane
with the maximum margin for Λt is x + 2y = 0 (instead of x + y = 0).
Then, (2,−1.5) <mmΛ (0, 0) because (2,−1.5) · (1, 1) = 0.5 > 0, whereas
(2,−1.5) 6<mmΛt (0, 0) because (2,−1.5) · (1, 2) = −1 < 0.

However, it seems natural to assume that if the user prefers ai over bi then he

will also prefer tiai over tibi for any ti ∈ IR+. Also, for test vectors α and β, if

α <mmΛ β then, for any positive real r, we have rα <mmΛ rβ; since the resultant

preferences are invariant to such rescaling, it seems reasonable that the same

would hold for the input preferences.

We therefore consider a more robust relation, which is invariant to the scaling

of the preference inputs, with α being inputs-scaling-invariant preferred to β

only if it is max-margin preferred for all rescalings t ∈ IRm
+ of the preference

inputs.

Definition 32: Inputs-scaling-invariant Preference Relation, <I
Λ

We define relation <I
Λ by, for α, β ∈ IRn, α <I

Λ β if and only if α is max-

margin-preferred to β over all rescalings of preference inputs, i.e., if for all

t ∈ IRm
+ , α <mmΛt

β.

So far, we have assumed that each component ti of t can be any strictly positive

scalar. However, in Proposition 8 below, we will show that if each ti is restricted

to be in (0, 1], the result for relation <I
Λ will not change. This is not surprising,

since, e.g., doubling each component of t will not change the relation <mmΛt
.

This simplification will be helpful in the computation of the <I
Λ relation.

The following lemma and proposition are used to prove Proposition 8.

Lemma 6

Consider any finite Λ ⊆ IRn, any t ∈ IRm
+ , any r ∈ IR+, and any v ∈ IRn. If
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t′ = t
r

then the following results hold.

(i) v ∈ Λ≥t if and only if rv is in Λ≥t′ .

(ii) ω?Λt′
= rω?Λt

; i.e., v has the minimum norm in Λ≥t if and only if rv has

the minimum norm in Λ≥t′ .

To illustrate, consider t = (3, 1, 5) and r = 5. So, t′ = (3/5, 1/5, 1). We know

from Example 14 that ω?Λt′
= (1, 2) and Λ≥t′ is the intersection of 6x + 3y ≥ 5

and x + 2y ≥ 5 (i.e., all the shaded region in Figure 5.2(a)). It can be shown

similarly that Λ≥t is the intersection of 6x + 3y ≥ 1 and x + 2y ≥ 1, leading to

ω?Λt
= (1/5, 2/5) = 1

r
ω?Λ′t

.

Proposition 7

Consider any finite Λ ⊆ IRn, any t ∈ IRm
+ , and any r ∈ IR+. Then, if t′ = t

r

then <mmΛt′
is equal to <mmΛt

; i.e., for any α and β ∈ IRn, α <mmΛt′
β if and only

if α <mmΛt
β.

Proof: α <mmΛt′
β if and only if ω?Λt′

· α ≥ ω?Λt′
· β which, by Lemma 6

(ii), holds if and only if rω?Λt
· α ≥ rω?Λt

· β which is clearly if and only if

α <mmΛt
β. �

Proposition 8: Restricting The Scaling Factor t in (0, 1]m

Consider any finite Λ ⊆ IRn and any α, β ∈ IRn. Then, α <I
Λ β if and only if

for all t ∈ (0, 1]m, α <mmΛt
β.

Proof: α <I
Λ β iff, by definition of <I

Λ, for all t ∈ IRm
+ , α <mmΛt

β, which, by

Proposition 7, is if and only if for all t ∈ IRm
+ , and any r ∈ IR+, α <mmΛt′

β,
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where t′ = t
r
. In particular when r = maxi∈I ti, this holds if and only if

for all t′ ∈ (0, 1]m, α <mmΛt′
β. �

Now, let us define SI(Λ) to be the set consisting solely of ω?Λt
for all scalings

t ∈ (0, 1]m; i.e., SI(Λ) = {ω?Λt
: t ∈ (0, 1]m}. Thus, u ∈ SI(Λ) if and only if there

exists t ∈ (0, 1]m such that u has minimal norm in Λ≥t . Proposition 8, along with

Definition 31, immediately implies the following result.

Proposition 9

For preference inputs Λ ⊆ IRn and α, β ∈ IRn, we have α <I
Λ β ⇐⇒ for all

w ∈ SI(Λ), α · w ≥ β · w.

For example, it can be shown that SI(Λ) in Figure 5.1 is the intersection of

the darkly shaded regions in sub-figures (a) and (b) (see Theorem 16 below).

Then, it can be seen that (SI(Λ))∗ is all the shaded region in Figure 5.1(a). This

implies that γ <I
Λ 0 if and only if γ is in all the shaded region in Figure 5.1(a).

5.3.2 Characterisation of SI(Λ)

Here, we mathematically characterise SI(Λ); this will lead to a computational

method for the <I
Λ relation. Proposition 13 below implies that SI(Λ) ⊆ Λ≥

and for every element u in SI(Λ), vector u has minimum norm in Λ∗ + {u} =
{w + u : w ∈ Λ∗} (which equals {w′ ∈ IRn : ∀λ ∈ Λ, w′ · λ ≥ u · λ}). The proof

uses the three lemmas below.

In the running example, assume u = (1, 2). Then, Λ∗+ {u} = {(x, y) : 2x+ y ≥
4, x + 2y ≥ 5, x + y ≥ 3} which is the darkly shaded region in Figure 5.2(a)

(place the origin on u and then draw Λ∗).

Lemma 10

Consider any finite Λ ⊆ IRn, and any t ∈ (0, 1]m. Then, for any u ∈ Λ≥t we
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have Λ∗ + {u} ⊆ Λ≥t .

To illustrate, consider t = (3/5, 1/5, 1) as in Example 14, and choose u = (1, 2).
Then, Λ∗ + {u} is the darkly shaded region in Figure 5.2(a). We can see in the

figure that Λ∗ + {u} ⊆ Λ≥t where Λ≥t is all the shaded region.

Proof: For any u ∈ IRn and any v ∈ Λ∗ + {u}, we have, by the definition

of Λ∗, ∀i ∈ I, (v − u) · λi ≥ 0, which means that v · λi ≥ u · λi. Also,

since it is assumed that u ∈ Λ≥t , we have ∀i ∈ I, u · λi ≥ 1/ti. Thus,

∀i ∈ I, v · λi ≥ 1/ti, and so, v ∈ Λ≥t . �

Lemma 11

Consider any finite Λ ⊆ IRn, and any u ∈ Λ≥. Then, there exists t ∈ (0, 1]m

such that Λ≥t = Λ∗ + {u}.

To illustrate, consider u = (1, 2) and t = (1/4, 1/5, 1/3). Then, Λ≥t = {(x, y) :
2
4x + 1

4y ≥ 1, 1
5x + 2

5y ≥ 1, 1
3x + 1

3y ≥ 1} which is equal to Λ∗ + {u}, the darkly

shaded region in Figure 5.2(a).

Proof: u ∈ Λ≥ means that for all i ∈ I, u · λi ≥ 1, which implies that

0 < 1
u·λi ≤ 1. For all i ∈ I, let ti = 1

u·λi , and so t ∈ (0, 1]m. By defini-

tion, w ∈ Λ≥t if and only if for all i ∈ I, w · tiλi ≥ 1. Now, w · tiλi ≥ 1
holds if and only if w · λi ≥ u · λi, which is if and only if (w − u) · λi ≥ 0.

Thus, Λ≥t = {w ∈ IRn : ∀i ∈ I, (w − u) · λi ≥ 0}, which equals Λ∗+{u}. �

Lemma 12

Consider any finite Λ ⊆ IRn, and any t ∈ (0, 1]m. Then, Λ≥t ⊆ Λ≥.
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Proof: Consider any u ∈ Λ≥t . Then for all i ∈ I, u · λi ≥ 1
ti . Since each ti

is in (0, 1] we have for all i ∈ I, u · λi ≥ 1, and thus, u ∈ Λ≥. �

Proposition 13

Consider any u ∈ IRn. Then, u ∈ SI(Λ) if and only if u ∈ Λ≥ and u has

minimum norm in Λ∗ + {u}. Thus, in particular, SI(Λ) ⊆ Λ≥.

We know that u = (1, 2) ∈ SI(Λ) because it has minimum norm in Λt for t =
(3/5, 1/5, 1). We can easily see that u ∈ Λ≥ and has minimum norm in Λ∗ + {u}.
Now, let v be any point between two black circles in Figure 5.2(a). Then, v does

not have minimal norm in Λ∗ + {v}; in fact, (1, 2) minimises norm in Λ∗ + {v}.
We will see that v 6∈ SI(Λ).

Proof: ⇒: u ∈ SI(Λ) means that there exists t ∈ (0, 1]m such that u ∈ Λ≥t
and u has the minimum norm in Λ≥t , which, since Λ≥t ⊆ Λ≥ by Lemma 12,

implies that u ∈ Λ≥. Now, u also has the minimum norm in Λ∗ + {u}
because firstly, Λ∗ + {u} ⊆ Λ≥t from Lemma 10, and secondly, u is clearly

in Λ∗ + {u} since 0 ∈ Λ∗.

⇐: Assume now that u ∈ Λ≥ and u has the minimum norm in Λ∗ + {u}.
By Lemma 11, there exists t ∈ (0, 1]m such that u has the minimum norm

in Λ≥t (= Λ∗ + {u}), and clearly u ∈ Λ≥t . Thus, u ∈ SI(Λ). �

We will prove (in Proposition 15) that co(Λ) is precisely the set of elements u ∈
IRn such that u has minimum norm in Λ∗ + {u}. Together with Proposition 13,

this will imply Theorem 16 below, which characterises SI. The following lemma

is used in the proof; it states a basic property of a minimal norm element in a

convex set.

Lemma 14

Preference Inference Based on Maximising
Margin

87 Mojtaba Montazery Hedeshi



5. SCALING-INVARIANT MAXIMUM MARGIN

PREFERENCE LEARNING 5.3 Rescaling of Preference Inputs

Consider any u ∈ G where G ⊆ IRn is a convex set. Then, u has the

minimum norm in G if and only if for all v ∈ G, u · (v − u) ≥ 0.

Proposition 15

Consider any finite Λ ⊆ IRn and any u ∈ IRn. Then, u has minimum norm

in Λ∗ + {u} if and only if u ∈ co(Λ).

Proof: Clearly, Λ∗+{u} is a convex set. Lemma 14 implies that u has min-

imum norm in Λ∗ + {u} if and only if for all v ∈ Λ∗ + {u}, u · (v − u) ≥ 0.

By writing y = v − u, this is if and only if for all y ∈ Λ∗, u · y ≥ 0, which

holds if and only if for all y ∈ Λ∗, y ∈ {u}∗. Thus, u has minimum norm

in Λ∗ + {u} if and only if Λ∗ ⊆ {u}∗. Lemma 3 then implies the result. �

Propositions 13 and 15 immediately imply the following theorem.

Theorem 16: SI(Λ) Characterisation

Consider any finite Λ ⊆ IRn, any u ∈ IRn. Then, SI(Λ) = co(Λ) ∩ Λ≥.

Theorem 16 shows that SI(Λ) in Figure 5.1 is the intersection of the darkly

shaded regions in sub-figures (a) and (b).

Proof: u is in SI(Λ) if and only if by Proposition 13, u ∈ Λ≥ and u has

minimum norm in Λ∗+{u}, which, from Proposition 15, holds if and only

if u ∈ Λ≥ and u ∈ co(Λ). �

The following result leads immediately to an algorithm to determine, for arbi-
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trary α, β ∈ IRn if α <I
Λ β, using a linear programming solver.

Corollary 17: The <I
Λ Relation Computation Method

For finite set Λ ⊂ IRn, let λi ∈ Λ be the ith element of Λ where i ∈ I =
{1, . . . , |Λ|}. Consider any u ∈ IRn. Then, u is in SI(Λ) if and only if for all

i ∈ I, u ·λi ≥ 1 and there exist non-negative reals ri for each i ∈ I such that

u = ∑
i∈I riλi.

Proof: The result follows easily from Theorem 16 and the definition of

co(Λ) and Λ≥. �

Now, we have the following procedure to compute the <I
Λ relation; Proposi-

tion 9 implies that for α, β ∈ IRn, α 6<I
Λ β if and only if there exists u ∈ SI(Λ)

such that α · u < β · u, which, by Corollary 17, is if and only if there exists

u ∈ IRn such that (i) u · (β − α) > 0, (ii) for all i ∈ I, u · λi ≥ 1, and (iii) there

exist non-negative reals ri for each i ∈ I such that u = ∑
i∈I riλi.

5.4 Rescaling of Features

As discussed in the introduction, an important, and potentially problematic,

pre-processing step in SVM methods is rescaling of the domain of each feature.

In this section we define a preference relation <F
Λ (based on preference inputs

Λ) that is invariant to the relative scalings of the feature domains.

Normalization of features is a necessary phase in any SVM-based method. This

task often involves translations and rescalings on the domain of each feature.

It is evident that the maximum margin relation is unaffected by translation of

feature space; i.e., for all δ ∈ IRn, α+ δ <mmΛ β + δ iff (α+ δ) · ω?Λ ≥ (β + δ) · ω?Λ
if and only if α <mmΛ β. Therefore, in this section we only consider the effect of

rescaling of feature spaces.

Let a features rescaling τ ∈ IRn
+ be a vector of strictly positive reals, with the

jth component τ(j) being the scale factor for the jth feature. The effect of
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Figure 5.2: Some rescalings of inputs and features on Λ = {(2, 1), (1, 2), (1, 1)}
are illustrated. (a) Λ≥t is the union of the two shaded regions when inputs
are rescaled by t = (3/5, 1/5, 1). The darkly shaded region indicates Λ≥t′ where
t′ = (1/4, 1/5, 1/3). We have ω?Λt

= ω?Λt′
= (1, 2). The darkly shaded region is also

equal to Λ∗ + {(1, 2)}. (b) The shaded region indicates (Λ� τ)≥ when features
are rescaled by τ = (2, 3). Here, ω?Λ�τ = (2/13, 3/13).

the rescaling on a vector λ ∈ IRn is given by pointwise multiplication, λ � τ ,

defined by, for all j = 1, . . . , n, (λ � τ)(j) = λ(j)τ(j). Operation � is com-

mutative, associative and distributes over addition of vectors. An important

property is that for any u, v, w ∈ IRn (u � v) · w = v · (u � w), since they

are both equal to
∑n
j=1 u(j)v(j)w(j). For τ ∈ IRn

+, we define τ−1 to be the

element of IRn
+ given by τ−1(j) = 1/τ(j) for all j ∈ {1, . . . , n}. The rescaling

vector changes the preference inputs Λ, turning it into Λ�τ = {λ� τ : λ ∈ Λ}.
Let ω?Λ�τ be the element with minimum norm in (Λ � τ)≥, where (Λ � τ)≥ =
{w ∈ IRn : ∀λ ∈ Λ, w · (λ� τ) ≥ 1}.

Example 15 » The Effect of Scaling of Features

Consider τ = (2, 3) rescaling features of Λ in Example 13. Then, Λ � τ

will be {(4, 3), (2, 6), (2, 3)}. The shaded region in Figure 5.2(b) shows
(Λ � τ)≥, and it can be seen that ω?Λ�τ = (2/13, 3/13). Then, (2,−1) �
τ 6<mmΛ�τ (0, 0)� τ because (2,−1)� (2, 3) · (2/13, 3/13) = −1/13 < 0, whereas
(2,−1) <mmΛ (0, 0) because (2,−1) · (1/2, 1/2) = 1/2 > 0.
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Like rescaling of inputs, we see that α might be preferred to β under one rescal-

ing of features, but not under another. However, the choice of how the features

are scaled relative to each other can involve somewhat arbitrary choices. It

is therefore natural to consider a more cautious preference relation, features-
scaling-invariant preference relation, given by α being preferred to β for all

rescalings τ ∈ IRn
+.

Definition 33: Features-scaling-invariant Preference Relation, <F
Λ

We define relation <F
Λ by, for α, β ∈ IRn, α <F

Λ β if and only if α is max-

margin-preferred to β over all rescalings of features, i.e., if for all τ ∈ IRn
+,

we have α� τ <mmΛ�τ β � τ .

Now, define SF(Λ) to be {ω?Λ�τ � τ : τ ∈ IRn
+}; then we have:

Proposition 18

For any α, β ∈ IRn, we have α <F
Λ β ⇐⇒ for all w ∈ SF(Λ), α · w ≥ β · w.

Proof: We have that α <F
Λ β ⇐⇒ for all τ ∈ IRn

+, α � τ <mmΛ�τ β � τ .

Now, α � τ <mmΛ�τ β � τ if and only if (α � τ) · ω?Λ�τ ≥ (β � τ) · ω?Λ�τ , i.e.,

α · (ω?Λ�τ � τ) ≥ β · (ω?Λ�τ � τ). Thus, α <F
Λ β ⇐⇒ for all τ ∈ IRn

+,

α · (ω?Λ�τ � τ) ≥ β · (ω?Λ�τ � τ), which is if and only if for all w ∈ SF(Λ),
α · w ≥ β · w. �

5.4.1 Rescale Optimality

We define an important notion, rescale optimality, for understanding the set

SF(Λ), and hence the preference relation <F
Λ.
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Definition 34: Rescale-optimal

For G ⊆ IRn, and u ∈ G, let us say that u is rescale-optimal in G if there

exists (strictly positive) τ ∈ IRn
+ with ‖τ � w‖ ≥ ‖τ � u‖ for all w ∈ G.

It can be seen intuitively that elements of the (open) line segment between

(1, 0) and (0, 1) in Figure 5.1(b) is the set of rescale-optimal elements in Λ≥; if

τ(1) > τ(2) (i.e., with the ratio τ(1)/τ(2) being increased) then ω?Λ�τ � τ moves

from (1/2, 1/2) towards (1, 0). Similarly, increasing the ratio τ(2)/τ(1) from 1 moves

ω?Λ�τ � τ from (1/2, 1/2) towards (0, 1).

We will show in Proposition 20 below that SF(Λ) is equal to the set of rescale-

optimal elements in Λ≥. For instance, ω?Λ�τ � τ in Example 15 (where τ(2)/τ(1) =
3/2), which is in SF(Λ) by the definition, is equal to (2/13, 3/13)�(2, 3) = (4/13, 9/13),
that is between (1/2, 1/2) and (0, 1). If SF(Λ) equals the line segment between

(1, 0) and (0, 1), it can be seen that (SF(Λ))∗ is the first quadrant in Fig-

ure 5.1(a). This implies that in Figure 5.1(a), γ <F
Λ 0 if and only if γ is in

the first quadrant. The following lemma is used to prove the equivalence in

Proposition 20.

Lemma 19

Consider any v ∈ IRn and any τ ∈ IRn
+. Then, v ∈ Λ≥ if and only if

v � τ−1 ∈ (Λ � τ)≥. Also, w = v minimises ‖w � τ−1‖ over w ∈ Λ≥ if and

only if v = τ � ω?Λ�τ .

For example, we have seen in Example 15 that for τ = (2, 3), ω?Λ�τ = (2/13, 3/13).
This lemma implies that for v = τ � ω?Λ�τ = (4/13, 9/13), there is no u ∈ Λ≥ such

that ‖u� τ−1‖ < ‖v � τ−1‖, i.e., v will be rescale-optimal in Λ≥.

Proof: The first part follows easily from the definitions. Regarding the

second part, by definition of ω?Λ�τ , we have that v = τ � ω?Λ�τ if and

only if v � τ−1 has minimum norm in (Λ � τ)≥, which is if and only if
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w′ = v � τ−1 minimises ‖w′‖ over w′ ∈ {w′ : ∀λ ∈ Λ, w′ · λ � τ ≥ 1}.
By substituting w′ with w � τ−1 this holds if and only if v = w minimises

‖w � τ−1‖ over w ∈ Λ≥. �

Proposition 20

Consider any finite Λ ⊆ IRn. SF(Λ) is equal to the set of all rescale-optimal

elements of Λ≥. Thus, for α, β ∈ IRn, α <F
Λ β if and only if w · (α − β) ≥ 0

for every rescale-optimal element w in Λ≥.

Proof: Consider any u ∈ IRn. Then, u is rescale-optimal in Λ≥ if and only

if there exists τ ∈ IRn
+ such that u = w minimises ‖w � τ‖ over w ∈ Λ≥,

which, by Lemma 19, is if and only if there exists τ ∈ IRn
+ such that

u = τ−1 � ω?Λ�τ−1 , which is, from the definition of SF(Λ), if and only if

u ∈ SF(Λ). The last part follows from the first part and Proposition 18. �

Proposition 20 implies, in particular, that ω?Λ is rescale-optimal in Λ≥.

5.4.2 Pointwise Undominated

For u ∈ G, if there exists v ∈ G such that for all j, v(j) is between u(j) and 0
then it is easy to see that u cannot be rescale-optimal element in G. This is the

idea behind being pointwise undominated, which is reminiscent of being Pareto

undominated.

Definition 35: Pointwise Dominance

For u, v ∈ IRn, v pointwise dominates u if u 6= v and for all j ∈ {1, . . . , n},
either

(i) 0 ≤ v(j) ≤ u(j), or
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Figure 5.3: The visual representation of Example 16 when Λ =
{(−1, 3), (3,−1)}. Λ≥ is the shaded region with a single extremal point at
(1/2, 1/2). In this case, <F

Λ is equal to <mmΛ .

(ii) 0 ≥ v(j) ≥ u(j).

For u ∈ G ⊆ IRn, we say that u is pointwise undominated in G if there exists

no v ∈ G that pointwise dominates u.

In Figure 5.1(b), all elements on the part of the closed line segment x + y =
1 within the first quadrant (i.e., including points on the axes) are pointwise

undominated in Λ≥. The definition easily implies that being rescale-optimal

implies being pointwise undominated (but not the converse).

Proposition 21

Let G ⊆ IRn. If u is rescale-optimal in G then u is pointwise undominated

in G. Thus, if u is pointwise dominated in G (i.e., there exists an element

in G that pointwise dominates u) then u is not rescale-optimal in G.

Proof: Suppose that u is not pointwise undominated in G, so that there

exists v ∈ G that pointwise dominates u. Then, for every j ∈ {1, . . . , n},
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|v(j)| ≤ |u(j)|, and for some k ∈ {1, . . . , n}, |v(k)| < |u(k)|, which implies

that for every τ ∈ IRn
+, ‖v � τ‖ < ‖u� τ‖, and hence, u is not rescale-

optimal in G. �

Proposition 21 states that being pointwise undominated is a necessary condition

for being rescale-optimal. However, by having a look at our running example

we will see that this not a sufficient condition. The intersection points of x +
y = 1 with the axes (i.e., (1, 0) and (0, 1)) are pointwise undominated but not

rescale-optimal in Λ≥. To see this, suppose that for example (1, 0) were rescale-

optimal in Λ≥; i.e., there exists τ ∈ IR2
+ such that for all v ∈ Λ≥ \ {(1, 0)},

‖(1, 0)� τ‖ < ‖v � τ‖. In particular, there exists τ ∈ IR2
+ such that for all

ε ∈ (0, 1], ‖(1, 0)� τ‖ < ‖(1− ε, ε)� τ‖, i.e., τ 2(x) < (1 − ε)2τ 2(x) + ε2τ 2(y).
Letting r = τ(x)/τ(y), we obtain, there exists r ∈ IR+ such that for all ε ∈ (0, 1],
r2 < (1 − ε)2r2 + ε2, and thus, r2 < ε2/(1 − (1 − ε)2) = ε/(2 − ε). Now, for

any r ∈ IR+ there exists sufficiently small ε > 0 such that ε/(2 − ε) < r2,

proving that (1, 0) is not rescale-optimal in Λ≥ by contradiction. We can use a

similar argument to show that (0, 1) is not rescale-optimal in Λ≥ as well. We will

investigate this further in Section 5.4.4, leading to a computational procedure

for rescale-optimality. First, in Section 5.4.3, we characterise the situations

when rescaling of features makes no difference, in which case <F
Λ is the same

as <mmΛ .

5.4.3 Determining Invariance to Rescaling of Features

Example 16 below illustrates that allowing rescaling of features can sometimes

make no difference in maximum margin relation.

Example 16 » Invariance to Rescaling of Features

Consider Λ be {(−1, 3), (3,−1)} so that Λ≥ = {(x, y) : −x + 3y ≥
1, 3x − y ≥ 1} which is the shaded region in Figure 5.3. Here, Λ≥ has
a single extremal point at (1/2, 1/2). Since (1/2, 1/2) is the element with min-
imal norm in Λ≥, ω?Λ = (1/2, 1/2), and so (1/2, 1/2) is rescale-optimal in Λ≥.
Also, all other points in Λ≥ are pointwise dominated by (1/2, 1/2); thus,
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by Proposition 21, they are not rescale-optimal. Consequently, the only
element of Λ≥ that is rescale-optimal is (1/2, 1/2).

Note that if there exists a unique rescale-optimal element in Λ≥, then this el-

ement must be ω?Λ, since the latter is rescale-optimal by Proposition 20. This

immediately implies that <F
Λ is then equal to <mmΛ .

Theorem 25 below states that u is the only rescale-optimal element in convex

closed G if and only if u pointwise dominates every other element of G. The

proof uses a triple of lemmas.

Lemma 22

Let G be a convex and (topologically) closed subset of IRn. For each vector

τ ∈ IRn
+, there exists a unique w ∈ G with minimum value of ‖w � τ‖.

Proof: It is a standard result (for a proof see e.g., Proposition 4 of

[WM16b]) that there is a unique element in a convex closed set with

minimum norm. Consider any τ ∈ IRn
+. Now, G � τ = {w � τ : w ∈ G}

is convex and closed so there exists a unique element w � τ ∈ G� τ with

minimum value of ‖w � τ‖, so there is a unique w ∈ G with minimum

value of ‖w � τ‖. �

Lemma 23

Let u, v ∈ IRn. There exists k ∈ {1, . . . , n} such that |u(k)| < |v(k)| if and

only if there exists τ ∈ IRn
+ such that ‖u� τ‖ < ‖v � τ‖. Thus, for all j ∈

{1, . . . , n}, |u(j)| ≥ |v(j)| if and only if for all τ ∈ IRn
+, ‖u� τ‖ ≥ ‖v � τ‖.
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Lemma 24

Let G be a convex subset of IRn, and let j be any element of {1, . . . , n}.
Then either

(i) there exists w ∈ G such that w(j) = 0; or

(ii) for all w ∈ G, w(j) > 0; or

(iii) for all w ∈ G, w(j) < 0.

Theorem 25: Uniquely Rescale-optimality

Let G be a convex and closed subset of IRn, and let u be an element of G.

Then the following conditions are equivalent.

(i) u is uniquely rescale-optimal in G, i.e., u is the unique element of G

that is rescale-optimal;

(ii) for all v ∈ G, for all j ∈ {1, . . . , n}, |v(j)| ≥ |u(j)|;

(iii) u pointwise dominates every element in G \ {u}.

Consider Λ as it is in Example 16. Then, the three conditions hold for

u = (1/2, 1/2). The equivalence between (i) and (ii) is proved using Lemmas 22

and 23, and the equivalence between (ii) and (iii) follows using Lemma 24.

Proof: First suppose (i), that u is uniquely rescale-optimal in G, so that,

for all τ ∈ IRn
+, and for all v ∈ G \ {u}, ‖u� τ‖ ≤ ‖v � τ‖; thus, by

Lemma 23, for all j ∈ {1, . . . , n}, |u(j)| ≤ |v(j)|, showing that (ii) holds.

The converse follows easily: if (ii) holds then for all τ ∈ IRn
+, for all v ∈ G,

‖u� τ‖ ≤ ‖v � τ‖, which by Lemma 22, leads to for all τ ∈ IRn
+, for all

v ∈ G \ {u}, ‖u� τ‖ < ‖v � τ‖, and thus proving (i).

We will next show that (ii) implies (iii). Assume that (ii) holds, and con-

sider any j ∈ {1, . . . , n}. We must show that for each v ∈ G \ {u}, either
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0 ≤ u(j) ≤ v(j) or 0 ≥ u(j) ≥ v(j) hold. This holds trivially if u(j) = 0, so

suppose u(j) 6= 0. Then, (ii) implies that, for all v ∈ G, v(j) 6= 0, and thus,

by Lemma 24, either, for all v ∈ G, v(j) > 0, or for all v ∈ G, v(j) < 0. (ii)

then implies that for all v ∈ G, either 0 ≤ u(j) ≤ v(j) or 0 ≥ u(j) ≥ v(j),
proving (iii). It immediately follows that (iii) implies (ii), completing the

proof of equivalence of (i), (ii) and (iii). �

Corollary 26 below leads immediately to an algorithm for determining if Λ≥ has

a uniquely rescale-optimal element, and finding it, if it exists. The algorithm in-

volves at most n+ 1 runs of a linear programming solver, and thus determining

and finding a uniquely rescale-optimal element u can be performed in polyno-

mial time. If it succeeds in finding such a u then the induced preferences can

be efficiently tested using: α <F
Λ β if and only if u · (α− β) ≥ 0.

Corollary 26: Computation of Uniquely Rescale-optimal Element

Consider any finite Λ ⊂ IRn, Choose an arbitrary element y ∈ Λ≥. Using y

we will generate an element y∗ ∈ IRn. For each j ∈ {1, . . . , n}: If y(j) = 0
then let y∗(j) = 0. If y(j) > 0 then let y∗(j) = inf{w(j) : w ∈ Λ≥, w(j) ≥
0}. If y(j) < 0 then let y∗(j) = sup{w(j) : w ∈ Λ≥, w(j) ≤ 0}. If y∗ ∈ Λ≥

then y∗ is uniquely rescale-optimal in Λ≥. Also, there exists a uniquely

rescale-optimal element in Λ≥ if and only if y∗ ∈ Λ≥.

Consider Λ as in Example 16. Choose y = (1, 1) which is in Λ≥. Since y(1) =
1 > 0, y∗(1) = inf{w(1) : w ∈ Λ≥, w(1) ≥ 0} = 1

2 . Similarly, y(2) = 1 implies

that y∗(2) = 1
2 . Because (1

2 ,
1
2) ∈ Λ≥, it is uniquely rescale-optimal in Λ≥. If you

consider Λ as in Example 13, then y = (1, 1) will be updated to y∗ = (0, 0), and

because (0, 0) 6∈ Λ≥, there does not exist a uniquely rescale-optimal element in

Λ≥.

Proof: Consider any j ∈ {1, . . . , n}. Lemma 24 implies that if y(j) > 0
then for all w ∈ Λ≥, 0 ≤ y∗(j) ≤ w(j); and if y(j) < 0 then for all

w ∈ Λ≥, 0 ≥ y∗(j) ≥ w(j), so for all w ∈ Λ≥, either 0 ≤ y∗(j) ≤ w(j) or

0 ≥ y∗(j) ≥ w(j). Theorem 25 implies that if y∗ ∈ Λ≥ then y∗ is uniquely
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rescale-optimal in Λ≥.

Conversely, suppose that there exists a uniquely rescale-optimal element

u in Λ≥; we will prove that y∗ ∈ Λ≥. Consider arbitrary j ∈ {1, . . . , n}.
The fact that Λ≥ is a polyhedron implies that there exists some w ∈ Λ≥

with w(j) = y∗(j). If y∗(j) > 0 then we know by Lemma 24 that

u(j) ≥ y∗(j). But Theorem 25 implies that u(j) ≤ w(j) = y∗(j), and

thus y∗(j) = u(j). Similarly, if y∗(j) < 0 then y∗(j) ≥ u(j) ≥ w(j) = y∗(j)
and so, y∗(j) = u(j). If y∗(j) = 0 then w(j) = 0, so u(j) = 0, also using

Theorem 25. We have shown that y∗ = u, so y∗ ∈ Λ≥. �

5.4.4 Characterising Rescale-Optimality

As we illustrated, being pointwise undominated is not a sufficient condition for

being rescale-optimal. In this section we define a stronger version of pointwise

undominated called zm-pointwise undominated, where ‘zm’ stands for zeros-
modified (the essential difference being in the treatment of j such that u(j) = 0).

We show that this is still a necessary condition, and is in fact equivalent to being

rescale-optimal (for polyhedra). According to the following definition, while

the points (1, 0) and (0, 1) in Figure 5.1(b) were pointwise undominated, they

are not zm-pointwise undominated.

Definition 36: zm-pointwise Dominance

For u, v ∈ IRn, let Nu = {j ∈ {1, . . . , n} : u(j) 6= 0}. v zm-pointwise

dominates u if there exists k ∈ Nu such that u(k) 6= v(k) and for all j ∈ Nu,

either (i) 0 ≤ v(j) ≤ u(j), or (ii) 0 ≥ v(j) ≥ u(j).

For u ∈ G ⊆ IRn, we say that u is zm-pointwise undominated in G if there

exists no v ∈ G that zm-pointwise dominates u.

The definitions easily imply the following lemma, which relates pointwise dom-

inance and zm-pointwise dominance.
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Lemma 27

Consider any u, v ∈ IRn. If v pointwise dominates u then v zm-pointwise

dominates u.

Now suppose that u ∈ G ⊆ IRn. If u is zm-pointwise undominated in G

then u is pointwise undominated in G. In addition, the converse holds if

none of the components of u is zero.

Proof: Suppose that v pointwise dominates u. Then, u 6= v and for all

j ∈ {1, . . . , n}, either (i) 0 ≤ v(j) ≤ u(j), or (ii) 0 ≥ v(j) ≥ u(j). So,

for some k ∈ {1, . . . , n}, u(k) 6= v(k), which implies that u(k) 6= 0. This

implies that v zm-pointwise dominates u. The other two parts follow im-

mediately from the definitions. �

Lemma 28 below characterises the zm-pointwise undominated elements in a

convex set.

Lemma 28

Consider any convex set G ∈ IRn. Then, u is zm-pointwise undominated in

convex G if and only if for all v ∈ G, either

(i) v(j) = u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0; or

(ii) there exists k ∈ {1, . . . , n} such that either 0 < u(k) < v(k) or 0 >

u(k) > v(k).

Proposition 30 below shows that being zm-pointwise undominated is a neces-

sary condition for being rescale-optimal. The proof uses the following lemma.

Lemma 29
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Let u, v ∈ IRn, with u 6= v, and let τ ∈ IRn
+. For δ ∈ (0, 1] let vδ = δv+(1−δ)u.

Then the following hold:

(i) For any δ ∈ (0, 1], ‖vδ � τ‖2 − ‖u� τ‖2 = δ2‖(v − u)� τ‖2 + 2δ(τ �
τ � u) · (v − u).

(ii) (τ�τ�u)·(v−u) ≥ 0 if and only if for all δ ∈ (0, 1], ‖vδ � τ‖ > ‖u� τ‖.

(iii) There exists τ ∈ IRn
+ such that (τ � τ � u) · (v − u) ≥ 0 if and only

if either (a) v(j) = u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0; or

(b) there exists k ∈ {1, . . . , n} such that either 0 < u(k) < v(k) or

0 > u(k) > v(k).

Proposition 30

Let u be an element of convex G ⊆ IRn. Then:

(i) u is rescale-optimal in G if and only if there exists τ ∈ IRn
+ such that

for all v ∈ G, (τ � τ � u) · (v − u) ≥ 0.

(ii) u is zm-pointwise undominated in G if and only if for all v ∈ G, there

exists τ ∈ IRn
+ such that (τ � τ � u) · (v − u) ≥ 0.

(iii) If u is rescale-optimal in G then u is zm-pointwise undominated in G.

Proof: (i): Using Lemma 22, u is rescale-optimal in G if and only if there

exists τ ∈ IRn
+ such that for all v ∈ G \ {u}, ‖v � τ‖ > ‖u� τ‖, which,

since G is convex, is if and only if, there exists τ ∈ IRn
+ such that for all v ∈

G\{u} and for all δ ∈ (0, 1], ‖vδ � τ‖ > ‖u� τ‖, where vδ = δv+(1− δ)u.

By Lemma 29(ii), this is if and only if there exists τ ∈ IRn
+ such that for

all v ∈ G \ {u}, (τ � τ � u) · (v − u) ≥ 0, which holds if and only if there

exists τ ∈ IRn
+ such that for all v ∈ G, (τ � τ � u) · (v − u) ≥ 0.

(ii) By Lemma 28 and Lemma 29(iii), u is zm-pointwise undominated

in G if and only if for all v ∈ G \ {u}, there exists τ ∈ IRn
+ such that

(τ � τ � u) · (v − u) ≥ 0, from which (ii) follows.
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(iii) follows immediately from (i) and (ii). �

We say that u, v ∈ IRn agree on signs if, for each component j, u(j) and v(j)
have equal sign.

Definition 37: Agreeing on Signs

For u, v ∈ IRn, u and v agree on signs if for all j = 1, . . . , n,

(i) u(j) = 0 ⇐⇒ v(j) = 0;

(ii) u(j) > 0 ⇐⇒ v(j) > 0; and thus also:

(iii) u(j) < 0 ⇐⇒ v(j) < 0.

For example, (1, 0) and (1, 1) do not agree on signs but for ε > 0, (1, ε) and (1, 1)
agree on signs. The following is the key theorem of this section to characterise

rescale-optimality by making use of Proposition 30(i).

Theorem 31: Rescale-optimality Characterisation

Consider any u in convex G ⊆ IRn. If u = 0 then it is the unique rescale-

optimal element of G. Otherwise, u is rescale-optimal in G if and only if

there exists µ ∈ IRn agreeing on signs with u such that µ · u = 1 and for all

w ∈ G, µ · w ≥ 1.

To illustrate this result, consider u be any element of the part of the open line

segment x+ y = 1 within the first quadrant in Figure 5.1(b); i.e., u = (δ, 1− δ)
for some δ ∈ (0, 1). Then for µ = (1, 1), µ and u agree on signs and u · µ = 1,

and for all w ∈ Λ≥, µ · w ≥ 1. Therefore, this theorem implies that u is rescale-

optimal in Λ≥.

Proof: It is clear that if u = 0 then for all τ ∈ IRn
+ and for all w ∈ G \ {u},

‖u� τ‖ = 0 < ‖w � τ‖, which means that u is the unique rescale-optimal
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element of G. Now, suppose u 6= 0.

⇒: First, let us assume that u is rescale-optimal in G. Then, by Proposi-

tion 30(i), there exists τ ∈ IRn
+ such that for all w ∈ G, (τ�τ�u)·(w−u) ≥

0. Let µ′ = τ � τ � u. Because, u 6= 0, µ′ · u = ‖τ � u‖2 > 0. Then, we

let µ = µ′

µ′·u which leads to µ · u = 1. In addition, µ and µ′ agree on

signs because µ′ · u > 0, and µ′ and u agree on signs, by the definition

of µ′, and hence µ and u agree on signs. Consider any w ∈ G. We know

that (τ � τ � u) · (w − u) ≥ 0, i.e., µ′ · (w − u) ≥ 0, which implies that

µ · (w − u) ≥ 0, and therefore, µ · w ≥ 1 = µ · u.

⇐: For the converse, we assume that there exists µ ∈ IRn agreeing on

signs with u such that µ · u = 1 and for all w ∈ G, µ · w ≥ 1, and thus,

µ · (w − u) ≥ 0. Define τ ∈ IRn by τ(j) = 1 if u(j) = 0, and τ(j) =
√

µ(j)
u(j)

whenever u(j) 6= 0, which is well-defined, because µ(j)/u(j) > 0 when-

ever u(j) 6= 0, using the fact that µ and u agree on signs. That fact also

means that u(j) = 0 implies that µ(j) = 0. We then have that for all

j ∈ {1, . . . , n}, τ(j)2u(j) = µ(j), which implies that τ � τ � u = µ. There-

fore, for all w ∈ G, (τ � τ � u) · (w − u) ≥ 0, which implies that u is

rescale-optimal in G, by Proposition 30(i). �

5.4.5 Equivalence of Rescale-Optimal With Zm-Pointwise Un-

dominated

It turns out that being zm-pointwise undominated is equivalent to being rescale-

optimal, for a polyhedron; see Theorem 36 below. Regarding the definition of

polyhedron in Chapter 2, we can write any polyhedron as GI = {w ∈ IRn : ∀i ∈
I, w · λi ≥ ai}, for finite I, and with each λi ∈ IRn and ai ∈ IR. We also consider

GJu = {w ∈ IRn : ∀i ∈ Ju, w ·λi ≥ ai}, where Ju = {i ∈ I : λi · u = ai}. Clearly,

for all u ∈ GI , GI ⊆ GJu.

For example, consider a1 = a2 = 1, u = (1, 0), v = (1/2, 1/2) and y = (1, 1), with

the vectors λi for i ∈ I = {1, 2, 3} being as in Example 13 and Figure 5.1. Then,

GI = Λ≥; GJu = {w ∈ IR2 : w · (1, 1) ≥ 1, w · (1, 2) ≥ 1}; GJv = {w ∈ IR2 :
w · (1, 1) ≥ 1}; and GJy = IR2 because Jy = ∅.

We next give some lemmas that we will use in the proof of Theorem 36.
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Lemma 32

Consider any u ∈ GI and any v ∈ GJu. Then there exists δ′ ∈ (0, 1) such

that for all δ with 0 < δ ≤ δ′, δv + (1− δ)u ∈ GI .

To illustrate, consider u = (1, 0) and v = (−1, 2) which is in GJu. We can see in

Figure 5.1(b) that the line segment from u to (0, 1) is inGI but beyond that from

(0, 1) to v is not. That means that choosing δ′ = 1/2 works for this case (because
1
2v + (1− 1

2)u = (0, 1)); i.e., for all δ with 0 < δ ≤ 1/2, δv + (1− δ)u ∈ GI .

Lemma 33

Consider non-zero u ∈ GI (as defined above). Then u is zm-pointwise

undominated in GI if and only if u is zm-pointwise undominated in GJu.

Lemma 34

GJu + {−u} is equal to {λi : i ∈ Ju}∗.

GJu + {−u} means translating GJu to move u to the origin. So, continuing the

example, for u = (1, 0), GJu + {−u} = {w ∈ IR2 : w · (1, 1) ≥ 0, w · (1, 2) ≥ 0} =
{(1, 1), (1, 2)}∗ = {λi : i ∈ Ju}∗.

Proof: v ∈ GJu + {−u} if and only if for all i ∈ Ju, (v + u) · λi ≥ ai, which

is if and only if for all i ∈ Ju, v · λi ≥ 0 (since, by definition, u · λi = ai for

all i ∈ Ju), which is if and only if v ∈ ({λi : i ∈ Ju})∗. �
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Lemma 35

For u, v ∈ IRn, If u and v agree on signs and u 6= 0 then u · v > 0.

Theorem 36: Equivalence of zm-pointwise Undominated and Rescale-

optimal Elements

Let u be an element of polyhedron G ⊆ IRn. Then, u is rescale-optimal in

G if and only if u is zm-pointwise undominated in G.

Proof:

G is a polyhedron, so, by definition, it can be written as {w ∈ IRn : ∀i ∈ I,
w · λi ≥ ai}. Let Ju = {i ∈ I : λi · u = ai}, and let GJu = {w ∈ IRn : ∀i ∈
Ju, w · λi ≥ ai}. Proposition 30(iii) implies that if u is rescale-optimal in

G then u is zm-pointwise undominated. We next prove the converse.

Assume that u is zm-pointwise undominated in G. Let C = GJu + {−u}.
By Lemma 34, C = {λi : i ∈ Ju}∗, which is a polyhedral cone (i.e., a

polyhedron that is cone), and thus, by the Minkowski-Weyl theorem (see

e.g., Theorem 4.18 of [Gal08]), is a finitely generated convex cone, so we

can write C = co(W ) for some finite set W = {w1, . . . , wl}.

Let C ′ = co(S) be the convex cone generated by S = W ∪ SZ where SZ =
{ej,−ej : j ∈ Z}, and ej ∈ IRn is the unit vector in the jth dimension, and

Z = {j ∈ {1, . . . , n} : u(j) = 0}. Also, let T = E+ ∪ E− ∪ R, where E+ =
{−ej : u(j) > 0}, and E− = {ej : u(j) < 0}, and R = {−wi : i ∈M},
and where M = {i ∈ L : −wi /∈ C ′} and L = {1, . . . , l}. Let H be the

convex hull of T .

We will show that the assumption that u is zm-pointwise undominated

implies that C ′ and H are disjoint. If there exists h ∈ C ′∩H then h can be

written as w + v0 where w ∈ C and v0 ∈ co(SZ). Also, since h ∈ H, it can

be written as v+ + v−+ y, where v+ ∈ co(E+), v− ∈ co(E−) and y ∈ co(R).
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(More specifically, for some q1, q2, q3 ∈ [ 0, 1 ] with q1 + q2 + q3 = 1 we have

v+ = q1v
′
+ for some v′+ in the convex hull of E+, and v− = q2v

′
− for some

v′− in the convex hull of E−, and y = q3z for some z in the convex hull of

R.) Since −y ∈ C, w − y ∈ C. Let v = w − y + u = −v0 + v+ + v− + u.

Then v ∈ GJu, because v − u = w − y ∈ C.

For j ∈ {1, . . . , n}, if u(j) > 0 then v0(j) = v−(j) = 0, so v(j) = u(j) +
v+(j) ≤ u(j). Similarly, if u(j) < 0 then v(j) = u(j) + v−(j) ≥ u(j). Thus,

if u(j) > 0 then v(j) ≤ u(j); and if u(j) < 0 then v(j) ≥ u(j). Since, u is

zm-pointwise undominated in G, u is zm-pointwise undominated in GJu,

by Lemma 33. Lemma 28 then implies that for all j ∈ {1, . . . , n}, if u(j) 6=
0 then v(j) = u(j), and thus v+(j) = v−(j) = 0, and so, v+ = v− = 0
(since also, if u(j) = 0 then v+(j) = v−(j) = 0, by definition of v+ and v−,

and of E+ and E−). This implies that w + v0 = y and y ∈ H. Also, since 0
is neither in the convex hull of E+ nor E−, we have q1 = q2 = 0, and thus

q3 = 1, and so, y is in the convex hull of R. By definition of convex hull,

we can write y as
∑
i∈M ti(−wi), with each ti ≥ 0, and for some k ∈ M ,

tk > 0. Then −tkwk = w + ∑
i∈M,i6=k tiwi + v0. The right-hand-side is in

co(S), which equals C ′, which implies that −wk ∈ C ′, which contradicts

k ∈M . Thus, C ′ and H are disjoint.

Both C ′ and H are convex and topologically closed, and H is com-

pact. A strict separating hyperplane theorem (see e.g., Theorem 2.1.5

of [BGW09]) implies that there exists vector µ ∈ IRn and c ∈ IR such that

for all g ∈ C ′, µ · g > c and for all h ∈ H, µ · h < c. Since 0 ∈ C ′, we have

µ · 0 > c, so c < 0.

Now, if g and−g are both in C ′ then µ·g = 0. (Else µ·g < 0 or µ·(−g) < 0;

without loss of generality assume µ · g < 0; then there exists r > 0 such

that µ · (rg) = r(µ · g) < c, which contradicts rg ∈ C ′.) This implies that

if u(j) = 0 (so j ∈ Z and ej,−ej ∈ C ′) then µ · ej = 0 and thus µ(j) = 0.

Also, if i ∈ L −M , then wi,−wi ∈ C ′, so µ · wi = 0. For any i ∈ M , we

have that −wi ∈ H, so µ · (−wi) < c < 0, so µ · wi > 0. Thus for any

wi ∈ W , µ · wi ≥ 0, and therefore for any w ∈ C, µ · w ≥ 0, since w is a

positive linear combination of the elements of W .

If u(j) > 0, then −ej ∈ H, so µ · ej > −c > 0, so µ(j) > 0. Similarly, if

u(j) < 0 then µ(j) < 0. Thus, µ agrees on signs with u. This, by using

Lemma 35, implies that µ · u > 0 (since u 6= 0), and we let µ′ = µ
µ·u . So
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µ′ · u = 1, and µ′ agrees on signs with µ and then u too.

For any v ∈ G, v ∈ GJu, and so v − u is in C; we have shown that

µ′ · (v − u) ≥ 0, so µ′ · v ≥ µ′ · u = 1. Theorem 31 then implies that u is

rescale-optimal in G. �

5.4.6 Rescale-Optimality in Terms of Positive Linear Combi-

nations

Here we extend the characterisation of rescale-optimality given in Theorem 31,

leading to a computational method for testing rescale-optimality, and thus to a

method for testing if α <F
Λ β, for α, β ∈ IRn. Theorem 31 implies that non-zero

u is rescale-optimal inG if and only if there exists a vector µ that agrees on signs

with u with µ ·w ≥ µ ·u for all w ∈ G. The main result of this section is Theorem

38, showing that µ is a positive linear combination of certain vectors when G

is a polyhedron. Recall the definitions of GI = {w ∈ IRn : ∀i ∈ I, w · λi ≥ ai},
GJu = {w ∈ IRn : ∀i ∈ Ju, w · λi ≥ ai} and Ju = {i ∈ I : λi · u = ai} from the

previous section. The following lemma is used in the proof.

Lemma 37

Consider a polyhedron GI and non-zero u ∈ GI . Then u is rescale-optimal

in GI if and only if u is rescale-optimal in GJu.

This follows from Theorem 36 and Lemma 33, since GI and GJu are polyhedra.

However, we give a more direct proof in the appendix.

Theorem 38: Rescale-Optimality in Terms of Positive Linear Combina-

tions

Let G be a polyhedron, which we write as GI = {w ∈ IRn : ∀i ∈ I,

w · λi ≥ ai}, for finite I, and with each λi ∈ IRn and ai ∈ IR. Consider

any non-zero vector u in GI . Then, u is rescale-optimal in GI if and only
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if there exists µ ∈ IRn that agrees on signs with u such that µ · u = 1 and

µ ∈ co({λi : i ∈ Ju}).

Recall the example illustrating Theorem 31 where u = (δ, 1 − δ) for some (ar-

bitrary) δ ∈ (0, 1). We can see that the set {λi : i ∈ Ju} equals {(1, 1)}. So,

choosing µ = (1, 1) gives that u is rescale-optimal in Λ≥ because u and µ agree

on signs, u · µ = 1, and µ ∈ co({(1, 1)}).

Note that this theorem implies that if non-zero u is rescale-optimal in GI then

Ju is non-empty, since 0 is the only positive linear combination of the empty set,

and µ 6= 0.

Proof: First consider µ ∈ IRn such that µ · u = 1. Then it can be seen

that {w : w · µ ≥ 1}+ {−u} = ({µ})∗. Thus, adding −u to both sets gives

GJu ⊆ {w : w · µ ≥ 1} if and only if GJu + {−u} ⊆ ({µ})∗ which is if and

only if {λi : i ∈ Ju}∗ ⊆ ({µ})∗, using Lemma 34, which, by Lemma 3, is if

and only if, µ ∈ co({λi : i ∈ Ju}).

By Lemma 37, u is rescale-optimal in GI if and only if u is rescale-optimal

in GJu, which, by Theorem 31, is if and only if there exists µ ∈ IRn agree-

ing on signs with u such that µ · u = 1 and GJu ⊆ {w : w · µ ≥ 1}, i.e.,

µ ∈ co({λi : i ∈ Ju}), by the earlier argument. �

We have the following corollary (using the same notation), which shows that

testing if u is rescale-optimal in GI can be performed in polynomial time: by

first checking that u ∈ GI (i.e., for all i ∈ I, u · λi ≥ ai), and then testing if a set

of inequalities has a solution, using a linear programming solver.

Corollary 39: Computation of Rescale-optimality

Let u be a non-zero element of IRn. Then, u is rescale-optimal in GI if

and only if u ∈ GI and there exists non-negative reals ri for each i ∈ Ju,

and vector τ ∈ IRn with for all j ∈ {1, . . . , n}, τ(j) ≥ 1, and τ(j)u(j) =∑
i∈Ju riλi(j).
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Proof: First suppose that u is rescale-optimal in GI . Then u ∈ GI , and,

by Theorem 38, there exists µ ∈ IRn that agrees on signs with u such that

µ · u = 1 and there exist non-negative r′i ∈ IR such that µ = ∑
i∈Ju r

′
iλi.

For all j ∈ {1, . . . , n} such that u(j) 6= 0, define tj = µ(j)/u(j), which

is greater than zero, because µ and u agree on signs, and let t be the

minimum of these values. Define τ by τ(j) = 1 if u(j) = 0 and otherwise,

define τ(j) = tj/t. Then for all j ∈ {1, . . . , n}, τ(j) ≥ 1, and τ(j)u(j) =
µ(j)/t = ∑

i∈Ju(r′i/t)λi(j).

Conversely, suppose that u ∈ GI and there exists non-negative reals ri for

each i ∈ Ju and vector τ ∈ IRn with for all j ∈ {1, . . . , n}, τ(j) ≥ 1, and

τ(j)u(j) = ∑
i∈Ju riλi(j). Define µ ∈ IRn to be τ�u

(τ�u)·u . Then µ · u = 1,

and µ agrees on signs with u, and is a positive linear combination of

{λi : i ∈ Ju}. Theorem 38 then can be applied to give the result. �

Theorem 38 implies the following, which leads to a computational method for

checking dominance with respect to <F
Λ.

Theorem 40

Consider any finite Λ ⊆ IRn and any u ∈ IRn. Define Θu =
{λ ∈ Λ : λ · u = 1}. Then, u is in SF(Λ) if and only if u ∈ Λ≥ and there

exists µ ∈ IRn such that µ agrees on signs with u, and µ ∈ co(Θu). Also, u is

in SF(Λ) if and only if u ∈ Λ≥ and there exists µ ∈ IRn and some subset ∆
of Θu such that |∆| ≤ n+ 1, and µ ∈ co(∆), and µ agrees on signs with u.

Proof: Proposition 20 implies that SF(Λ) equals the set of all rescale-

optimal elements of Λ≥. Hence, Theorem 38 implies that u ∈ SF(Λ) if

and only if u ∈ Λ≥ and there exists µ ∈ IRn that agrees on signs with u

such that µ ∈ co(Θu) and µ · u = 1. First, we will show that the condition

µ · u = 1 can be omitted.

Suppose first that u ∈ Λ≥ and there exists µ ∈ IRn that agrees on signs

with u such that µ ∈ co(Θu). Now, u is a non-zero vector, since u ∈ Λ≥.

Preference Inference Based on Maximising
Margin

109 Mojtaba Montazery Hedeshi



5. SCALING-INVARIANT MAXIMUM MARGIN

PREFERENCE LEARNING

5.5 Simultaneous Rescaling of Features and
Inputs

Since µ agrees on signs with u, we have, by Lemma 35, µ · u > 0. Define

µ′ = µ
µ·u . Then µ′ ∈ co(Λ), µ′ · u = 1, and µ′ and u agree on signs. We

can then apply Theorem 38 to give u ∈ SF(Λ). The converse follows

immediately from the same theorem.

The last part follows from Carathéodory’s Theorem (see e.g., 3.1.2

in [NP06]) which states that for any w ∈ IRn and any S ⊆ IRn, if w ∈ co(S)
then there exists S ′ ⊆ S with |S ′| ≤ n+ 1 such that w ∈ co(S ′). �

Now, we have the following procedure to compute the <F
Λ relation; Proposi-

tion 18 implies that for α, β ∈ IRn, α 6<F
Λ β if and only if there exists u ∈ SF(Λ)

such that α ·u < β ·u, which, by Theorem 40, is if and only if there exists u ∈ IRn

and µ ∈ IRn, such that (i) u ·(β−α) > 0, (ii) for all i ∈ I, u ·λi ≥ 1 (i.e., u ∈ Λ≥),

(iii) for all j = {1, . . . , n}, u(j) = 0 ⇐⇒ µ(j) = 0, and u(j) > 0 ⇐⇒ µ(j) > 0
(i.e., agreeing on signs), and (iv) there exists some subset ∆ of Θu (as defined

above) such that |∆| ≤ n+1, and there exist non-negative reals ri for each i ∈ I
such that µ = ∑

i∈I riλi where ri = 0 if λi 6∈ ∆ (i.e., µ ∈ co(∆)). The (iv) part

holds if and only if there exist non-negative reals ri for each i ∈ I such that for

all i ∈ I, either λi ∈ ∆ ⇒ u · λi = 1 or λi 6∈ ∆ ⇒ ri = 0,
∑
i∈I(ri 6= 0) ≤ n + 1,

and µ = ∑
i∈I riλi.

5.5 Simultaneous Rescaling of Features and Inputs

Having defined <I
Λ and <F

Λ relations, it is also natural to consider both kinds

of rescaling simultaneously: preference inputs and features. In this section, we

define and characterise a preference relation based on both kinds of rescaling.

Definition 38: SIF(Λ) and <I,F
Λ

We define the set SIF(Λ) by w ∈ SIF(Λ) if there exists t ∈ (0, 1]m such that

w ∈ SF(Λt); i.e., SIF(Λ) = {ω?Λt�τ � τ : t ∈ (0, 1]m, τ ∈ IRn
+}. We define

relation <I,F
Λ by α <I,F

Λ β ⇐⇒ for all w ∈ SIF(Λ), w · α ≥ w · β.

Preference Inference Based on Maximising
Margin

110 Mojtaba Montazery Hedeshi



5. SCALING-INVARIANT MAXIMUM MARGIN

PREFERENCE LEARNING

5.5 Simultaneous Rescaling of Features and
Inputs

This definition implies that α <I,F
Λ β if and only if for all rescalings of the fea-

tures and the preference inputs, α is max-margin preferred to β. We have the

following characterisation, which leads to a computational method for checking

if α <I,F
Λ β.

Theorem 41

u ∈ SIF(Λ) if and only if u ∈ Λ≥ and there exists µ ∈ IRn that agrees on

signs with u such that µ ∈ co(Λ).

Consider Λ as in Example 13. For any choice of µ ∈ co(Λ), we have either

µ = (0, 0) or µ(1) > 0 and µ(2) > 0 (see Figure 5.1(a)). Because (0, 0) 6∈ Λ≥,

u ∈ SIF(Λ) if u(1) > 0 and u(2) > 0 (to agree on signs with µ); however,

u 6= (0, 0) because (0, 0) 6∈ Λ≥. As a result, SIF(Λ) is the part of Λ≥ (i.e., the

darkly shaded region) that is strictly within the first quadrant in Figure 5.1(b).

It can be seen that (SIF(Λ))∗ is the first quadrant in Figure 5.1(a). This implies

that for γ ∈ IRn, γ <I,F
Λ 0 if and only if γ is in the first quadrant in Figure 5.1(a).

Proof:

We first show that SIF(Λ) ⊆ Λ≥. We have SIF(Λ) = ⋃
t SF(Λt), where the

union is over all t ∈ (0, 1]m. Also, by Proposition 20, SF(Λt) ⊆ Λ≥t , and

thus, SF(Λt) ⊆ Λ≥, by Lemma 12. Therefore, SIF(Λ) ⊆ Λ≥.

Now suppose that u ∈ SIF(Λ); as shown above, we then have u ∈ Λ≥.

By definition of SIF(Λ) there exists t ∈ (0, 1]m such that u ∈ SF(Λt).
Theorem 40 implies that there exists µ ∈ IRn, that agrees on signs with

u, such that µ ∈ co({tiλi ∈ Λt : tiλi · u = 1}), and thus, in particular, µ is

in co(Λt), which equals co(Λ). Hence, there exists µ ∈ IRn, that agrees on

signs with u, such that µ ∈ co(Λ).

For the converse, assume that u ∈ Λ≥ and there exists µ ∈ IRn, that

agrees on signs with u, such that µ ∈ co(Λ). Let us define t ∈ IRm
+

by t(i) = 1
λi·u for all i ∈ {1, . . . ,m}. Because u ∈ Λ≥ we have

λi · u ≥ 1, and thus, t(i) ∈ (0, 1]. Then, for all i we have tiλi · u = 1,

which implies that u ∈ Λ≥t and also that Λ = {λi ∈ Λ : tiλi · u = 1}.
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Now, co({λi ∈ Λ : tiλi · u = 1}) equals co({tiλi ∈ Λt : tiλi · u = 1}), and

hence, µ ∈ co({tiλi ∈ Λt : tiλi · u = 1}). Since, u ∈ Λ≥t , Theorem 40 im-

plies that u ∈ SF(Λt). We therefore have that u ∈ SIF(Λ). �

Now, we have the following procedure to compute the <I,F
Λ relation; Defini-

tion 38 implies that for α, β ∈ IRn, α 6<I,F
Λ β if and only if there exists u ∈ SIF(Λ)

such that α ·u < β ·u, which, by Theorem 41, is if and only if there exists u ∈ IRn

and µ ∈ IRn, such that (i) u ·(β−α) > 0, (ii) for all i ∈ I, u ·λi ≥ 1 (i.e., u ∈ Λ≥),

(iii) for all j = {1, . . . , n}, u(j) = 0 ⇐⇒ µ(j) = 0, and u(j) > 0 ⇐⇒ µ(j) > 0
(i.e., agreeing on signs), and (iv) there exist non-negative reals ri for each i ∈ I
such that µ = ∑

i∈I riλi (i.e., µ ∈ co(Λ)).

5.6 Dealing with Inconsistencies

There are a number ways of extending the approach to deal with inconsistent

input information, i.e., when Λ≥ is empty. One desirable property of such a

method is that it should not depend on an arbitrary ordering of the input set Λ.

Here, we describe three possible approaches for restoring consistency, which all

satisfy this property.

The first approach is iteratively eliminating the elements of Λ that are least

consistent with others. Define the function C : Λ→ IR such that for every i ∈ I,

C(λi) = ∑
j∈I−{i} λi · λj. This function expresses a kind of degree of consistency

of the element λi with other elements of Λ, where the smaller the value of C(λi)
is, the less consistency there is between λi and the other elements of Λ. Then,

the procedure below is followed:

1. If Λ is consistent (i.e., Λ≥ 6= ∅), return Λ.

2. Find γ ∈ Λ that minimises C, i.e., γ = arg minλ∈ΛC(λ).

3. Remove γ from Λ, i.e., Λ = Λ− {γ} and go to 1.

The second method forms a consistent subset of Λ based on the sum of the

vectors. Let µ = ∑
λ∈Λ λ and define Λµ to be {λ ∈ Λ : λ · µ > 0}. Unless µ is the

zero vector, Λµ is non-empty (if for all λ ∈ Λ, λ · µ ≤ 0 then (∑
λ∈Λ λ) · µ ≤ 0,

i.e., µ · µ ≤ 0, which only happens if µ = 0). Also, Λµ is consistent because

we at least have that µ ∈ (Λµ)>, and so a positive multiple of µ is in (Λµ)≥,

Preference Inference Based on Maximising
Margin

112 Mojtaba Montazery Hedeshi



5. SCALING-INVARIANT MAXIMUM MARGIN

PREFERENCE LEARNING

5.7 Properties of Relations and Computation
of Inferences

showing that the latter is non-empty. As a result, we can define ω?Λµ to be the

solution of the maximum margin approach for Λµ. Then, we return Λω?Λµ
=

{λ ∈ Λ : λ · ω?Λµ > 0} which is again consistent due to a similar reason. Here, it

is evident that Λµ ⊆ Λω?Λµ
⊆ Λ.

A third approach involves adding m extra real variables (i.e., m dummy fea-

tures), one for each λi (with i ∈ I = {1, . . . ,m}) and extend each λi to the extra

m variables by it having a value ε in the corresponding column, and zeros in

the other m− 1 columns. Here, ε is a strictly positive (typically small) number

that relates inversely to the penalty for softening the constraints.

More formally, we say that u ∈ IRn+m extends v ∈ IRn if for each j = 1, . . . , n,

u(j) = v(j). For each i ∈ I we define δi as follows: δi extends λi, and δi(n+ i) =
ε, and δi(n + j) = 0 for j ∈ I − {i}. Let ∆, the extended preference inputs set,

equal {δi : i ∈ I}.

Consider any w ∈ IRn, and any u ∈ IRn+m that extends w. Then, for each i ∈ I,

u · δi = w · λi + εu(n+ i). Thus, u · δi ≥ 1 if and only if u(n+ i) ≥ 1
ε
(1− w · λi).

If w · λi ≥ 1 then we can satisfy the constraint u · δi ≥ 1 by setting u(n+ i) = 0.

Otherwise, we can satisfy the constraint by letting u(n + i) = 1
ε
(1− w · λi). (In

fact, since we are interested in minimising the norm, or a rescaled version of the

norm, we only need to consider this particular way of extending w to IRn+m.)

This implies that any w ∈ IRn can be extended to an element of ∆≥; so, in

particular, the extended input set ∆ is always consistent. However, if w is not

close to satisfying λi, i.e., if w · λi is a large negative number, then the value of

u(n+ i), and hence the norm of u, will be large. This shows that vectors w ∈ IRn

that come close to satisfying the input constraints will be favoured.

The definitions and mathematical machinery for the various preference rela-

tions defined above can then proceed as in the previous sections but now work-

ing within IRn+m. When testing dominance the test vectors α and β are ex-

tended with the same value (e.g., 0) for the extra m components.

5.7 Properties of Relations and Computation of In-

ferences

In previous sections, we defined a number of preference relations. In Sec-

tion 5.7.1 we give some properties, in particular, regarding the relationships be-
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tween the preference relations. In Section 5.7.2 we express the computational

characterisations, derived in earlier sections, in terms of constraints, which en-

able simple implementation.

5.7.1 Properties of the Different Preference Relations

We have considered the following preference relations: the consistency-based

relation <C
Λ (Section 5.2.1), the relation <I

Λ based on rescaling preference in-

puts for the maximum margin preference relation (Section 5.3), relation <F
Λ

based on rescaling of features (Section 5.4) and relation <I,F
Λ based on rescal-

ing both inputs and features (Section 5.5).

For each of the relations <C
Λ,<

I
Λ,<

F
Λ and <I,F

Λ , the corresponding set of scenarios
is defined to be Λ≥, SI(Λ), SF(Λ) and SIF(Λ), respectively. For u ∈ IRn let us

define total pre-order ≥u by α ≥u β ⇐⇒ u · α ≥ u · β. Let < be any of the

relations <C
Λ,<

I
Λ,<

F
Λ and <I,F

Λ and let S be the corresponding set of scenarios

for each relation. We then have that< is the intersection of relations≥u over all

u ∈ S: see Section 5.2.1, and Proposition 9, Proposition 18 and Definition 38.

The four relations, as well as <mmΛ , are all reflexive and transitive, and thus

pre-orders (with <mmΛ being a total pre-order). This is because each relation is

equal to an intersection of pre-orders. For similar reasons, if < is any of the five

relations then λ < 0 for any λ ∈ Λ; and for α, β, γ ∈ IRn and r ∈ IR+, if α < β

then α + γ < β + γ and rα < rβ.

We have the following relationships between the sets of scenarios:

ω?Λ ∈ SI(Λ) ∩ SF(Λ) and SI(Λ) ∪ SF(Λ) ⊆ SIF(Λ) ⊆ Λ≥.

This implies the following relationships between the relations (see Figure 5.4):

<mmΛ ⊇ <I
Λ ∪ <F

Λ, and <I
Λ ∩ <F

Λ ⊇ <
I,F
Λ ⊇ <C

Λ.

5.7.2 Summary of Computational Characterisations

For finite subsets Λ of IRn, and arbitrary α, β ∈ IRn, we would like to be able to

determine which of the following hold: α <C
Λ β, α <I

Λ β, α <F
Λ β and α <I,F

Λ β.

As usual, we label Λ as {λi : i ∈ I}. We use the results of previous sections to

express, in terms of constraints, the condition that α does not dominate β, with

respect to each of the four relations.
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<C
Λ

<I,F
Λ

<I
Λ

<F
Λ

<mmΛ

Figure 5.4: The Venn diagram that depicts relationships between the preference
relations defined in this chapter.

<C
Λ<
C
Λ<
C
Λ: α 6<C

Λ β if and only if, by Proposition 4(ii), there exists u ∈ Λ≥ such that

u · β > u · α. This holds if and only if there exists u ∈ IRn, such that

• u · (β − α) > 0 and

• ∀i ∈ I, u · λi ≥ 1.

<I
Λ<
I
Λ<
I
Λ: α 6<I

Λ β if and only if there exists u ∈ SI(Λ) such that u·β > u·α. This holds,

by Corollary 17, if and only if there exists u ∈ IRn, and non-negative reals

ri for each i ∈ I, such that

• u · (β − α) > 0;

• ∀i ∈ I, u · λi ≥ 1; and

• u = ∑
i∈I riλi.

Note that if t was not restricted to (0, 1]m in the definition of SI(Λ), then

the second constraint (i.e., u·λi ≥ 1) would be replaced by u·λi > 0 which

is computationally more expensive due to the strict inequality. However,

as we proved in Proposition 8, the result for both cases is the same.

<F
Λ<
F
Λ<
F
Λ: α 6<F

Λ β if and only if there exists u ∈ SF(Λ) such that u · β > u · α. This

holds, by Theorem 40, if and only if there exists u ∈ IRn and µ ∈ IRn, and
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non-negative reals ri for each i ∈ I, such that

• u · (β − α) > 0;

• ∀i ∈ I, u · λi ≥ 1;

• ∀i ∈ I, [u · λi = 1 or ri = 0];

• µ = ∑
i∈I riλi;

•
∑
i∈I(ri 6= 0) ≤ n+ 1; and

• ∀j = {1, . . . , n}, u(j) = 0 ⇐⇒ µ(j) = 0, and u(j) > 0 ⇐⇒ µ(j) >
0.

In CPLEX, a disjunctive constraint such as [w · λi = 1 or ri = 0] can be

expressed as (w · λi == 1) + (ri == 0) ≥ 1 (each logical proposition is

treated as an integer; 0 for false and 1 for true).

<I,F
Λ<
I,F
Λ<
I,F
Λ : α 6<I,F

Λ β if and only if there exists u ∈ SIF(Λ) such that u · β > u · α. This

holds, by Theorem 41, if and only if there exists u ∈ IRn and µ ∈ IRn, and

non-negative reals ri for each i ∈ I, such that

• u · (β − α) > 0;

• ∀i ∈ I, u · λi ≥ 1;

• µ = ∑
i∈I riλi; and

• ∀j = {1, . . . , n}, u(j) = 0 ⇐⇒ µ(j) = 0, and u(j) > 0 ⇐⇒ µ(j) >
0.

5.8 Optimality Operators

In many decision-making situations, there is no clear ordering on decisions

(alternatives). There can often be a set of different scenarios with a different

ordering on alternatives in each scenario. For example, for different scalings of

preference inputs, we may have different orderings over a set of alternatives. In

such a setup there are a number of natural ways of defining the set of optimal

solutions (best alternatives or top recommended solutions).

We consider here two kinds of optimality operators in the sense of [WRM15];

namely the set of undominated solutions, which is a natural generalisation of the

Pareto-optimal set; and the set of possibly optimal solutions. The set of possibly
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Algorithm 1 Finding Undominated Elements (UNDS(A)) Incrementally
1: function INCREMENTAL-UNDOMINATED(A)
2: Ω = {} . This set contains the undominated elements found so far.
3: for all α ∈ A do
4: ***************** Stage one *****************
5: for all ω ∈ Ω do
6: if ω < α & α 6< ω then . α is dominated by ω?
7: go to 21 . Proceed to the next α.
8: end if
9: end for

10: *******************************************
11: Reaching this point means α is not dominated by any element of Ω.
12: Now, we will eliminate any ω in Ω that is dominated by α.
13: ***************** Stage two *****************
14: for all ω ∈ Ω do
15: if α < ω & ω 6< α then . α dominates ω?
16: Ω = Ω− {ω}
17: end if
18: end for
19: *******************************************
20: Ω = Ω + {α}
21: end for
22: return Ω
23: end function

optimal alternatives has been considered in a number of different situations,

including for voting rules [XC08], for soft constraint optimisation [RVW11],

and for multi-objective optimisation [BP15, WRM15].

Let < be any of the relations <C
Λ,<

I
Λ,<

F
Λ and <I,F

Λ , and let S be the correspond-

ing set of scenarios for each relation (see Section 5.7.1), which are respectively

Λ≥, SI(Λ), SF(Λ) and SIF(Λ). We have then α < β if and only if, for all u ∈ S,

u · α ≥ u · β. We define � to be the strict part of <, so that α � β if and only if

α < β and β 6< α.

For a given set of alternatives A, the two optimality operators are defined as

follows:

UNDS(A) (= UND�(A)) is the set of undominated elements with respect to

relation �, i.e., α ∈ UNDS(A) if and only if there is no β ∈ A such that

β � α.

POS(A) is the set of elements that are optimal in some scenario. Thus, α ∈
POS(A) if and only if there exists u ∈ S such that for all β ∈ A, α·u ≥ β ·u.

Preference Inference Based on Maximising
Margin

117 Mojtaba Montazery Hedeshi



5. SCALING-INVARIANT MAXIMUM MARGIN

PREFERENCE LEARNING 5.8 Optimality Operators

From the definition of UNDS(A) we have α ∈ UNDS(A) if and only if there is

no β ∈ A such that β < α and α 6< β. Thus, in order to compute UNDS(A)
we can make use of the computation methods proposed in Section 5.7.2 for

computing <. In contrast, POS(A) cannot be computed just from <, because

POS(A) is not a function of < but rather a function of S (i.e., SF, SI etc).

However, excluding the first constraint in the computation of each < relation

(in Section 5.7.2, i.e., <I
Λ, <F

Λ etc) gives a set of constraints that determines if

u is in S. Therefore, we define CS(A,α) to be a set of constraints like < just by

replacing the first constraint with ∀β ∈ A, α · u ≥ β · u. As a result, α ∈ POS(A)
if and only if CS(A,α) has a solution which is if and only if there exists u ∈ S
such that ∀β ∈ A, α · u ≥ β · u. For example, CSI(A,α) will be the following set

of constraints (compare this with <I
Λ in Section 5.7.2):

• ∀β ∈ A, u · (α− β) ≥ 0;

• ∀i ∈ I, u · λi ≥ 1; and

• u = ∑
i∈I riλi.

Typically (and as we found in our experiments), POS(A) is a smaller set than

UNDS(A), although an alternative could be possibly optimal without being un-

dominated.

Proposition 4 in [WRM15] implies that UNDS(A) and POS(A) are optimality

operators, and so from Proposition 2 in [WRM15] the computation of them can

be done incrementally. We exploit this for each of the four sets of scenarios.

Algorithm 1 shows how UNDS(A) can be found incrementally. The algorithm

consists of two stages for each α ∈ A. In the first stage, we examine if α is

undominated among the undominated elements Ω found so far. We proceed

to the next stage if α is undominated and remove those elements of Ω that are

dominated by α (so they are no longer undominated).

The set of possibly optimal elements POS(A) is built up in an incremental way

in Algorithm 2. In this algorithm, FS(A,α) is a function such that it returns

the solution of CS(A,α) if a solution is found, and NULL otherwise. Here, Ψ
is a set of pairs where the first component of a pair is the potentially possibly

optimal element, and the second one is the scenario in which the first compo-

nent has been found to be optimal. Regarding this notation, Ψ↓ is the set of

first components in Ψ; i.e., Ψ↓ = {ψ : (ψ, u) ∈ Ψ}. In Line 6, once it is found

out that α is a possibly optimal element within Ψ↓, it is included in Ψ along
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Algorithm 2 Finding Possibly Optimal Elements (POS(A)) Incrementally
1: function INCREMENTAL-PO(A)
2: Ψ = {}
3: for all α ∈ A do
4: u = FS(Ψ↓, α) . Solving for α against POs that are found so far.
5: if u is not NULL then . α is a PO element within Ψ↓?
6: Ψ = Ψ + {(α, u)} . Keep also the solution u for later use.
7: REFINE-PREVIOUS-POS(Ψ, α)
8: end if
9: end for

10: return Ω
11: end function
12: ****************************************************************
13: The following function eliminates ψ ∈ Ψ↓ which are no longer PO due to

arrival of α.
14: *****************************************************************
15: function REFINE-PREVIOUS-POS(Ψ, α)
16: for all (ψ, v) ∈ Ω do
17: if ψ · v < α · v then . Is α better than ψ in the scenario v in which ψ was optimal?

18: Ψ = Ψ− {(ψ, v)}
19: u = FS(Ψ↓, ψ) . Check if there is another solution which makes ψ optimal.

20: if u is not NULL then
21: Ψ = Ψ + {(ψ, u)} . Add ψ again but with the new solution u (rather than v).

22: end if
23: end if
24: end for
25: end function

with its associated solution (scenario). Then, in the function Refine-Previous-
POs, we remove any (ψ, v) ∈ Ψ which is not possibly optimal anymore because

of adding α. In Line 18, the existing possibly optimal element ψ is removed

from Ψ because it is not as good as the incoming possibly optimal element α

in its own associated scenario v. However, it does not mean that ψ cannot be

possibly optimal; there might be another scenario u in which ψ is better than

all elements of Ψ including α. If it is the case, we include ψ again in Ψ but with

this new scenario u instead of v.

5.9 Experimental Testing

The experiments make use of two databases, namely Ridesharing Database and

Car Preference Database. We have explained the properties of the ridesharing
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Table 5.2: The results relate to determining decisive pairs, among 1000 pairs of
test vectors with respect to preference relations <F

Λ, <I
Λ, the intersection of <I

Λ
and <F

Λ (<I∧F
Λ ), <I,F

Λ , and <C
Λ. The bold numbers indicate that it is not always

the case that <F
Λ is a weaker relation than <I

Λ. The last row includes the mean
of the values of each column, rounded to the nearest integer.

m
Decisive Pairs (%) Time (msec)

<F
Λ <I

Λ <I∧F
Λ <I,F

Λ <C
Λ <F

Λ <I
Λ <I,F

Λ <C
Λ

Ridesharing Database

1. 24 21 16 9 3 1 517 36 55 18
2. 29 92 31 31 26 0.3 2434 23 40 16
3. 31 232323 282828 13 1 0.1 800 25 38 13
4. 36 81 35 35 31 23 4768 24 43 14
5. 38 36 19 17 5 2 2799 24 47 17
6. 41 61 12 12 12 12 5123 23 45 20
7. 53 40 20 19 19 19 1134 24 41 20
8. 55 97 26 26 24 8 1833 26 45 19
9. 62 48 24 24 11 1 4983 27 50 14
10. 94 64 35 35 5 2 5084 27 54 23
11. 127 62 24 24 24 13 6439 28 57 21
12. 129 80 36 36 19 1 2928 30 49 25
13. 134 69 28 28 28 16 7374 30 48 19

Mean 66 59 26 24 16 8 3555 27 48 19

Car Preference Database

1. 26 65 32 31 22 10 2731 28 64 27
2. 30 42 36 28 21 12 1962 26 94 23
3. 30 36 19 17 11 7 4700 23 56 25
4. 35 56 33 30 22 9 6612 24 149 22
5. 35 65 18 17 11 5 5850 25 77 22
6. 35 494949 616161 41 34 20 377 26 72 31
7. 40 53 36 33 24 13 1411 56 173 78
8. 40 68 46 46 34 15 2879 26 64 25
9. 40 42 39 28 21 14 1150 26 78 27
10. 41 51 35 29 24 12 1317 28 97 23

Mean 35 53 35 30 22 12 2899 29 93 30
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database in Chapter 4. The second database is the result of a survey expressing

the preferences of different users over specific cars [ASBP13]. For each car 7
features are considered (e.g., engine size).

We base our experiments on 13 benchmarks derived from the ridesharing

database and 10 benchmarks derived from the car preference database. Each

benchmark corresponds to the inferred preferences of a different user. The pref-

erence of alternative ai (i.e., a ridesharing alternative or a car) over bi leads to

ai − bi(= λi) being included in Λ.

A pre-processing phase deletes some elements of Λ, in order to make it con-

sistent (i.e., Λ≥ 6= ∅). In order to do that, we adopt the first and the second

approaches discussed in Section 5.6 respectively for the first and the second

database. To conduct the experiments, CPLEX 12.6.3 is used as the solver on

a computer facilitated by an Intel Xeon E312xx 2.20 GHz processor and 8 GB

RAM memory.

5.9.1 Decisive Pairs

Here, we would like to examine how decisive each relation is, i.e., which re-

lation is weaker and by how much. We randomly generate 1000 pairs (α, β),
based on a uniform distribution for each feature. A pair (α, β) is called decisive
for a preference relation if one of them can (strictly) dominate the other one;

for example, the pair (α, β) is decisive for <I
Λ if and only if α �IΛ β or β �IΛ α.

This is iff either (α <I
Λ β and β 6<I

Λ α) or (β <I
Λ α and α 6<I

Λ β). We also consider

another relation <I∧F
Λ which is the intersection of <I

Λ and <F
Λ, so that α <I∧F

Λ β

⇐⇒ α <I
Λ β and α <F

Λ β (note that this relation differs from the relation <I,F
Λ ).

To determine whether a pair is decisive we need to run the solver, based on

the proposed computation methods in Section 5.7.2, twice; once for testing if

α < β and a second time for β < α.

Table 5.2 shows the percentage of decisive pairs for <F
Λ, <I

Λ, <I∧F
Λ , <I,F

Λ and <C
Λ,

as well as the running time per pair. Although for most of the benchmarks, <F
Λ is

more decisive than <I
Λ, the bold numbers show that this is not always the case.

Also in some rows, like the first row, we see that <I
Λ is greater than <I∧F

Λ , which

implies that <I
Λ 6⊆<F

Λ. In terms of running time, <I
Λ is around 130 and 100 times

faster than <F
Λ on average for the ridesharing database and the car preference

database respectively. Also, the results illustrate the fact that <C
Λ ⊆ <

I,F
Λ ⊆ <I∧F

Λ .
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Table 5.3: A comparison, between the number of possibly optimal elements
and the number of undominated elements among 100 alternatives with regard
to preference relations <C

Λ, <I,F
Λ , <I

Λ, and <F
Λ. The I ∩ F column relates to the

intersection of the I and F columns. The bold numbers illustrate that the F and
I ∩ F sets are not always identical (so that the F optimality set is not always
a subset of the I optimality set), and the encircled numbers relate to the cases
when |POS(A)| > |UNDS(A)|. The last row includes the mean of values of each
column, rounded to the nearest integer.

|POS(A)| |UNDS(A)|
C I,F I F I ∩ F C I,F I F I ∩ F

Ridesharing Database

1. 38 26 20 666 444 72 55 33 161616 131313
2. 45 13 12 2 2 86 20 15 3 3
3. 64 37 21 666 555 97 74 30 191919 181818
4. 7 7 7 3 3 7 7 7 4 4
5. 33 32 21 131313 121212 63 54 38 17 17
6. 14 14 14 5 5 18 18 18 5 5
7. 10 10 10 6 6 18 18 17 7 7
8. 18 9 9 1 1 25 12 12 1 1
9. 34 17 13 6 6 78 19 15 8 8
10. 22 15 8 2 2 50 38 13 2 2
11. 20 14 14 2 2 27 19 19 3 3
12. 41 12 9 2 2 79 24 15 2 2
13. 16 12 12 4 4 29 16 16 6 6

Mean 28 17 13 4 4 50 29 19 7 7

Car Preference Database

1. 14 14 11 666 555 18 18 12 6 6
2. 14 10 3 555 222 15 11 4 555 333
3. 34 30 16 777 333 36 31 26 12 12
4. 17 11 8 2 2 20 13 11 3 3
5. 29 22 21 11 11 34 26 21 999 777
6. 8 5 3 2 2 8 5 3 2 2
7. 12 6 5 3 3 12 6 5 3 3
8. 14 11 5 444 222 15 13 8 444 222
9. 14 11 7 555 444 14 11 7 444 333
10. 15 10 9 4 4 16 10 9 4 4

Mean 17 13 9 5 4 19 14 11 5 5
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Table 5.4: A comparison, between the running time for finding possibly optimal
elements and undominated elements among 100 alternatives with regard to
preference relations <C

Λ, <I,F
Λ , <I

Λ and <F
Λ. The last row includes the mean of

values of each column, rounded to the nearest integer.

POS(A) Time (s) UNDS(A) Time (s)

C I,F I F C I,F I F
Ridesharing Database

1. 31 53 18 66 215 187 97 128
2. 41 39 22 505 152 46 24 516
3. 37 103 17 234 176 241 43 570
4. 7 11 13 29 9 18 10 870
5. 13 29 22 572 124 166 68 1710
6. 17 22 21 277 32 53 29 1723
7. 11 14 17 86 24 32 21 259
8. 13 16 8 334 42 20 12 243
9. 26 34 9 405 162 42 23 1729
10. 27 31 14 654 151 136 25 1147
11. 15 27 13 412 51 48 33 1835
12. 41 23 14 330 272 46 22 558
13. 27 24 19 539 68 46 29 2087

Mean 24 33 16 342 114 83 34 1029

Car Preference Database

1. 14 62 21 226 37 88 19 471
2. 10 47 8 185 25 38 11 870
3. 18 33 13 407 51 91 53 2344
4. 10 51 15 338 19 42 13 2126
5. 22 35 17 603 43 156 33 1535
6. 11 30 13 40 35 44 53 367
7. 12 48 20 98 63 63 55 275
8. 10 52 10 294 20 22 8 415
9. 10 24 13 55 22 50 6 72
10. 7 34 10 149 26 41 9 374

Mean 12 42 14 240 34 64 26 885
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5.9.2 Optimal Elements

The next phase of experiments is devoted to finding optimal solutions with re-

spect to the two kinds of optimality operator discussed in Section 5.8. To do

so, a set of 100 alternatives (i.e., the set A) is randomly generated, based on a

uniform distribution for each feature. Then, for each relation, the number of

possibly optimal and undominated elements in A is counted; see Table 5.3. The

numbers in the I∩F columns relate to the intersection of the I and F optimality

sets; for example, the left-hand I ∩ F column gives the cardinalities of the sets

POSI(Λ) ∩ POSF(Λ). The bold numbers show that the F and I ∩ F columns are

not identical, and thus illustrate that e.g., POSF(Λ) is not necessarily a subset

of POSI(Λ). In the ridesharing database, it can be seen that for the most con-

servative relation, <C
Λ, the optimality operators return a substantial proportion

of alternatives as optimal solutions (roughly half for UNDS(A)). Moreover, the

number of undominated elements for the car preference database—unlike the

ridesharing database—is fairly similar to the number of possibly optimal ele-

ments, and we sometimes even have |POS(A)| > |UNDS(A)| (see the encircled

numbers).

Table 5.4 shows the time for finding possibly optimal and undominated solu-

tions, where the former is faster than the latter by a factor ranging from 1.5 to

4.8 on average; this is partly because of |POS(A)| being usually smaller than

|UNDS(A)| particularly for the ridesharing database. Because the computation

of<F
Λ was very much slower than the other relations, the times in the F columns

are still greatest, despite the number of optimal solutions being smaller. Over-

all, the computational cost of the <F
Λ may make it less useful, even though it is

more decisive, and thus leads to smaller sets of optimal solutions. Instead one

might, for instance, favour POSI(Λ), POSIF(Λ) and UNDSI(Λ) since they generate

reasonably sized optimality sets much faster.

5.10 Summary and Discussion

The maximum margin method for preference learning learns a utility function

from a set of input preferences, in order to predict further preferences. How-

ever, in many situations, it can be argued that the scaling of preference inputs

should not affect the induced preference relation. We have defined a relation

<I
Λ that is a more robust version of the maximum margin preference infer-
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ence <mmΛ , and which is invariant to the scaling of preference inputs. It is also

reasonable to consider invariance to the way that features are scaled because,

in maximum margin inference, features should be scaled before applying the

method; this is due to the fact that the objective function in maximum margin

method is sensitive to the scale of feature domains. Thus, we have also defined

the <F
Λ relation which is invariant to the scaling of features. With these two

types of rescaling being complementary, it is also natural to consider both types

simultaneously, leading to a further preference relation <I,F
Λ . We derived char-

acterisations for the relations <I
Λ, <F

Λ and <I,F
Λ , which lead to computational

procedures. We also characterised the situation when the maximum margin

relation is insensitive to the scaling of features, i.e., <F
Λ equals <mmΛ . We then

discussed three basic approaches to restore consistency of input data. Two opti-

mality operators—UNDS(A) and POS(A)—have been considered to define how

a set of optimal solutions can be extracted from the available alternatives. We

proposed two algorithms in order to compute UNDS(A) and POS(A) in an in-

cremental manner. Our experiments, which used 23 benchmarks derived from

two sets of real preference data, compared the different relations in terms of

decisiveness and the set of optimal solutions regarding UNDS(A) and POS(A),
and showed that the computational methods are practically feasible for a mod-

erate number of instances/features. The relation associated with only scaling

the features was the most decisive but by far the slowest for computing the as-

sociated optimality classes. Overall, one might consider <I
Λ as a relation that

keeps quite a good balance between decisiveness and computation time.

In the future, it would be interesting to explore extensions of our approaches

including (i) integration of the approach with a conversational recommender

system; (ii) developing computational methods for certain kinds of kernel; (iii)

considering soft margin optimisation, i.e., more sophisticated approaches for

dealing with an inconsistent dataset; (iv) taking into account more general

kinds of input preference statement; and (v) exploring connections with impre-

cise probability, based on linear constraints on probabilities.

Appendix of Chapter 5

The appendix includes all the proofs, of the results in this chapter, that do not

appear in the main body of the paper.
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Lemma 2. Consider any Λ ⊆ IRn. If Λ> is non-empty then Λ∗ is the topological
closure of Λ>.

Proof: Let us write the topological closure operator as Cl(·), so that Cl(S) is the

topological closure of S, which equals S plus all the limit points of S. Basic

properties of Cl(·) include: (a) S ⊆ T implies Cl(S) ⊆ Cl(T ), and (b) Cl(S) = S

if S is a topologically closed set.

It is clear that Λ> ⊆ Λ∗ which implies that Cl(Λ>) ⊆ Cl(Λ∗); also, Cl(Λ∗) = Λ∗

since Λ∗ is a topologically closed set. We thus have Cl(Λ>) ⊆ Λ∗.

Now, we will show that Λ∗ ⊆ Cl(Λ>). To do so, we will prove that for any x ∈ Λ∗

there is a sequence of elements of Λ> that converges to x. Choose arbitrary

x ∈ Λ∗ and y ∈ Λ>. For each δ ∈ (0, 1), and each λ ∈ Λ, x · λ ≥ 0 and y · λ > 0,

because x ∈ Λ∗ and y ∈ Λ>, and thus, (δx+(1−δ)y)·λ = δ(x·λ)+(1−δ)(y·λ) > 0,

and so, δx + (1 − δ)y ∈ Λ>. As δ tends to 1, δx + (1 − δ)y tends to x, showing

that x ∈ Cl(Λ>), as required. �

Lemma 3. Consider any finite Λ ⊆ IRn and any u ∈ IRn. Then, Λ∗ ⊆ {u}∗ if and
only if u ∈ co(Λ).

Proof: Because Λ∗ = (co(Λ))∗ we have that Λ∗ ⊆ ({u})∗ if and only if (co(Λ))∗ ⊆
(co({u}))∗. Now, clearly, if u ∈ co(Λ) then (co(Λ))∗ ⊆ ({u})∗, and thus Λ∗ ⊆
({u})∗. To prove the converse, it is sufficient to show that (co(Λ))∗ ⊆ (co({u}))∗

implies u ∈ co(Λ). Now, (co(Λ))∗ ⊆ (co({u}))∗ implies (co(Λ))∗∗ ⊇ (co({u}))∗∗.
Convex cones co(Λ) and co({u}) are both topologically closed (because Λ is

finite), so, by a fundamental result for convex cones (see e.g., [BV04, Section

2.6.1]) (co(Λ))∗∗ = co(Λ) and (co({u}))∗∗ = co({u}), and thus co({u}) ⊆ co(Λ),
which implies that u ∈ co(Λ). �

Lemma 6. Consider any finite Λ ⊆ IRn, any t ∈ IRm
+ , any r ∈ IR+, and any

v ∈ IRn. If t′ = t
r

then the following results hold.

(i) v ∈ Λ≥t if and only if rv is in Λ≥t′ .

(ii) ω?Λt′
= rω?Λt

; i.e., v has the minimum norm in Λ≥t if and only if rv has the
minimum norm in Λ≥t′ .

Proof: (i): v ∈ Λ≥t if and only if for all i ∈ I, v · (tiλi) ≥ 1, which is if and only if

for all i ∈ I, ( ti
r
rv) ·λi ≥ 1, which holds if and only if for all i ∈ I, rv · (t′iλi) ≥ 1,
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which is iff rv ∈ Λ≥t′ .

(ii): v has the minimum norm in Λ≥t if and only if v ∈ Λ≥t and for all u ∈ Λ≥t ,

‖u‖ ≥ ‖v‖. Part (i) tells us that v ∈ Λ≥t ⇐⇒ rv ∈ Λ≥t′ . Now, for all u ∈ Λ≥t ,

‖u‖ ≥ ‖v‖ holds if and only if for all u ∈ Λ≥t , ‖ru‖ ≥ ‖rv‖ which, from (i), is

if and only if for all ru ∈ Λ≥t′ , ‖ru‖ ≥ ‖rv‖, i.e., for all u′ ∈ Λ≥t′ , ‖u′‖ ≥ ‖rv‖.
Thus, v has the minimum norm in Λ≥t if and only if v ∈ Λ≥t and for all u′ ∈ Λ≥t′ ,
‖u′‖ ≥ ‖rv‖. This holds if and only if rv has the minimum norm in Λ≥t′ . �

Lemma 14. Consider any u ∈ G where G ⊆ IRn is a convex set. Then, u has the
minimum norm in G if and only if for all v ∈ G, u · (v − u) ≥ 0.

Proof:⇒: Firstly, for the case when v = u, the result is easily obtained because

u · (v − u) = 0. Now, consider any v ∈ G \ {u}. We define vδ = δv + (1 − δ)u
for each δ ∈ (0, 1]. It is clear that vδ ∈ G because v and u both are in the

convex set G, and since u has the minimum norm in G, for all δ ∈ (0, 1] we

have that ‖vδ‖ ≥ ‖u‖. Now, assume that u · (v − u) < 0. We show that this

assumption leads to ‖vδ‖ < ‖u‖ for some δ ∈ (0, 1], which will prove the first

part by contradiction. To do this, we rewrite ‖vδ‖2 − ‖u‖2 as follows:

‖vδ‖2 − ‖u‖2 = ‖δ(v − u) + u)‖2 − ‖u‖2

= (δ(v − u) + u)) · (δ(v − u) + u))− u · u,

which equals δ2(v − u) · (v − u) + 2δu · (v − u), i.e., δ(δ‖v − u‖2 + 2u · (v − u)).
Now, since u · (v − u) < 0, for sufficiently small δ, ‖vδ‖2 − ‖u‖2 < 0, and thus

‖vδ‖ < ‖u‖.

⇐: Consider any v ∈ G \ {u}. Since u 6= v, ‖v − u‖2 > 0, which implies that

(v − u) · (v − u) > 0, and thus, ‖v‖2 + ‖u‖2 > 2v · u. Also, u · (v − u) ≥ 0 leads

to v · u ≥ ‖u‖2. Hence, ‖v‖2 + ‖u‖2 > 2‖u‖2, and thus, ‖v‖ > ‖u‖, showing that

u has minimum norm in G. �

Lemma 23. Let u, v ∈ IRn. There exists k ∈ {1, . . . , n} such that |u(k)| < |v(k)|
if and only if there exists τ ∈ IRn

+ such that ‖u� τ‖ < ‖v � τ‖. Thus, for all
j ∈ {1, . . . , n}, |u(j)| ≥ |v(j)| if and only if for all τ ∈ IRn

+, ‖u� τ‖ ≥ ‖v � τ‖.

Proof:⇒: Assume first that there exists k ∈ {1, . . . , n} such that |u(k)| < |v(k)|.
For ε > 0, define τε ∈ IRn

+ by τε(k) = 1 + ε, and, for j 6= k, τε(j) = ε. Then

u � τε = εu + u(k)ek, where ek is the unit vector in the kth direction, which
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leads to ‖u� τε‖2 = (u� τε) · (u� τε) equalling ε2u · u+ (1 + 2ε)u(k)2. Similarly,

‖v � τε‖2 = ε2v · v + (1 + 2ε)v(k)2. Since u(k)2 < v(k)2, for sufficiently small

ε > 0, we will have ‖u� τε‖2 < ‖v � τε‖2.

⇐: Now assume that there exists τ ∈ IRn
+ such that ‖u� τ‖ < ‖v � τ‖. Then

for some k ∈ {1, . . . , n}, |(u� τ)(k)| < |(v � τ)(k)|, i.e., |u(k)τ(k)| < |v(k)τ(k)|,
which implies |u(k)| < |v(k)|, since τ(k) is non-zero. �

Lemma 24. Let G be a convex subset of IRn, and let j be any element of
{1, . . . , n}. Then either

(i) there exists w ∈ G such that w(j) = 0; or

(ii) for all w ∈ G, w(j) > 0; or

(iii) for all w ∈ G, w(j) < 0.

Proof: To prove a contradiction, suppose that neither (i), (ii) nor (iii) hold for

j, so for all w ∈ G, w(j) 6= 0, and there exists u, v ∈ G such that u(j) > 0 and

v(j) < 0. Let δ = u(j)
u(j)−v(j) , so that 1− δ = −v(j)

u(j)−v(j) . Let vδ = δv+ (1− δ)u, which

is in G because G is convex and δ ∈ (0, 1). Then, vδ(j) = 0, which shows that

(i) holds for j, contradicting the earlier assumption. �

Lemma 28. Consider any convex set G ∈ IRn. Then, u is zm-pointwise undomi-
nated in convex G if and only if for all v ∈ G, either

(i) v(j) = u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0; or

(ii) there exists k ∈ {1, . . . , n} such that either 0 < u(k) < v(k) or 0 > u(k) >
v(k).

Proof: First, let us suppose that u is not zm-pointwise undominated in G. We

will show that there exists v ∈ G such that neither condition (i) nor condition

(ii) hold for v. Since u is not zm-pointwise undominated in G, there exists

v ∈ G that zm-pointwise dominates u. By definition, there exists j ∈ {1, . . . , n}
such that v(j) 6= u(j) 6= 0, and thus, condition (i) does not hold for v; also for

all k ∈ {1, . . . , n} with u(k) 6= 0, either 0 ≤ v(k) ≤ u(k) or 0 ≥ v(k) ≥ u(k),
which means that condition (ii) in this lemma does not hold for v.

Conversely, suppose that it is not the case that for all v ∈ G, either (i) v(j) =
u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0; or (ii) there exists k ∈ {1, . . . , n}
such that either 0 < u(k) < v(k) or 0 > u(k) > v(k). Then, there exists v ∈ G
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such that (i) there exists k ∈ {1, . . . , n} such that u(k) 6= 0 and u(k) 6= v(k);
and (ii) for all j ∈ {1, . . . , n}, if u(j) > 0 then v(j) ≤ u(j); and if u(j) < 0 then

v(j) ≥ u(j). Thus, there exists v ∈ G such that (i) there exists k ∈ Nu such that

u(k) 6= v(k); and (ii) for all j ∈ Nu, if u(j) > 0 then v(j) ≤ u(j); and if u(j) < 0
then v(j) ≥ u(j) (where Nu = {j ∈ {1, . . . , n} : u(j) 6= 0}, as in Definition 36).

For δ ∈ (0, 1] let vδ = δv + (1 − δ)u, which is in G. Then there exists δ ∈ (0, 1]
such that (i) there exists k ∈ Nu such that u(k) 6= vδ(k); and (ii) for all j ∈ Nu,

if u(j) > 0 then 0 < vδ(j) ≤ u(j); and if u(j) < 0 then 0 > vδ(j) ≥ u(j). Thus,

vδ zm-pointwise dominates u showing that u is not pointwise undominated in

G. �

Lemma 29. Let u, v ∈ IRn, with u 6= v, and let τ ∈ IRn
+. For δ ∈ (0, 1] let

vδ = δv + (1− δ)u. Then the following hold:

(i) For any δ ∈ (0, 1], ‖vδ � τ‖2−‖u� τ‖2 = δ2‖(v − u)� τ‖2 + 2δ(τ � τ �u) ·
(v − u).

(ii) (τ � τ � u) · (v − u) ≥ 0 if and only if for all δ ∈ (0, 1], ‖vδ � τ‖ > ‖u� τ‖.

(iii) There exists τ ∈ IRn
+ such that (τ � τ � u) · (v − u) ≥ 0 if and only if either

(a) v(j) = u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0; or (b) there exists
k ∈ {1, . . . , n} such that either 0 < u(k) < v(k) or 0 > u(k) > v(k).

Proof: (i): Using vδ = u+ δ(v−u), we have that vδ� τ = (u� τ) + δ(v−u)� τ .

Then, ‖vδ � τ‖2 = (vδ � τ) · (vδ � τ) = (u � τ) · (u � τ) + δ2‖(v − u)� τ‖2 +
2δ(u� τ) · ((v − u)� τ), which leads to the result.

(ii): If (τ � τ � u) · (v − u) ≥ 0 then (i) immediately implies that for all

δ ∈ (0, 1], ‖vδ � τ‖ > ‖u� τ‖, since ‖(v − u)� τ‖ is non-zero (because u 6= v).

Conversely, suppose that (τ � τ � u) · (v − u) < 0. Choosing δ such that

δ‖(v − u)� τ‖2 ≤ −2(τ�τ�u)·(v−u) gives, using (i), that ‖vδ � τ‖ ≤ ‖u� τ‖,
proving (ii).

(iii), ⇒: Suppose that there exists τ ∈ IRn
+ such that (τ � τ � u) · (v − u) ≥ 0,

and it is not the case that there exists k ∈ {1, . . . , n} such that either 0 <

u(k) < v(k) or 0 > u(k) > v(k). Then, we can see that for each j ∈ {1, . . . , n},
(τ � τ � u)(j)(v − u)(j) = τ(j)2u(j)(v(j) − u(j)) ≤ 0 (since it clearly holds

if u(j) = 0; if u(j) > 0 then v(j) ≤ u(j) so it also holds; if u(j) < 0 then

v(j) ≥ u(j) so it holds then too). The sum (over each j) of these n terms is at

least zero, since it is equal to (τ�τ�u)·(v−u) and thus, for each j ∈ {1, . . . , n},
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(τ � τ � u)(j)(v − u)(j) = 0. This implies that v(j) = u(j) for all j ∈ {1, . . . , n}
such that u(j) 6= 0.

⇐: If (a) v(j) = u(j) for all j ∈ {1, . . . , n} such that u(j) 6= 0 then (τ�τ�u)·(v−
u) ≥ 0. Now, assume that (b) holds, i.e., there exists k ∈ {1, . . . , n} such that

either 0 < u(k) < v(k) or 0 > u(k) > v(k). For ε > 0, define τε by τε(k) =
√

1 + ε,

and τε(j) =
√
ε for all j 6= k. Then, τε� τε�u = u(k)ek + εu, where ek is the unit

vector in the kth direction, so (τε�τε�u)·(v−u) = u(k)(v(k)−u(k))+εu·(v−u),
which is greater than zero for sufficiently small ε, since u(k)(v(k)− u(k)) > 0.�

Lemma 32. Consider any u ∈ GI and any v ∈ GJu. Then there exists δ′ ∈ (0, 1)
such that for all δ with 0 < δ ≤ δ′, δv + (1− δ)u ∈ GI .

Proof: Let x = v − u, and, for all δ ∈ (0, 1), let vδ = u + δx = δv + (1 − δ)u.

Since u, v ∈ GJu, we have vδ ∈ GJu for all δ ∈ (0, 1). We will next show that

for all sufficiently small δ, vδ ∈ GI , i.e., that for all i ∈ I, vδ · λi ≥ ai. Since,

vδ ∈ GJu, this holds for all i ∈ Ju. Now, consider any i ∈ I \ Ju. By definition

of Ju we have u · λi > ai. This implies that there exists δi > 0 with for all δ

with 0 < δ ≤ δi, (u · λi) + δ(x · λi) > ai, and thus vδ · λi > ai. Let us choose

δ′ = min {δi : i ∈ I \ Ju}. Then for all δ with 0 < δ ≤ δ′, and for all i ∈ I \ Ju,
vδ · λi > ai, so for all i ∈ I, vδ · λi ≥ ai, which shows that vδ ∈ GI . �

Lemma 33. Consider non-zero u ∈ GI (as defined above). Then u is zm-pointwise
undominated in GI if and only if u is zm-pointwise undominated in GJu.

Proof: ⇒: Suppose that u is zm-pointwise undominated in GI . Consider any

v ∈ GJu. By Lemma 32, there exists δ ∈ (0, 1) such that vδ ∈ GI , where

vδ = δv + (1 − δ)u = u + δ(v − u). Proposition 30(ii) implies that there exists

τ ∈ IRn
+ such that for all w ∈ GI , (τ � τ � u) · (w − u) ≥ 0. In particular,

(τ � τ � u) · (vδ − u) ≥ 0, i.e., (τ � τ � u) · (δ(v − u)) ≥ 0, which implies that

(τ � τ � u) · (v − u) ≥ 0. Note that δ does not depend on the choice of v. Thus,

there exists τ ∈ IRn
+ such that for all v ∈ GJu, (τ � τ � u) · (v− u) ≥ 0. Applying

Proposition 30(ii) again gives that u is zm-pointwise undominated in GJu.

⇐: This is immediate because GI ⊆ GJu. �

Lemma 35. For u, v ∈ IRn, If u and v agree on signs and u 6= 0 then u · v > 0.
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Proof: Because u 6= 0, there exists k ∈ {1, . . . , n} with u(k) 6= 0. Then, since u

and v agree on signs, v(k) is non-zero and the same sign as u(k), so u(k)v(k) >
0. Also, for any j ∈ {1, . . . , n}, u(j)v(j) ≥ 0, and thus, u · v > 0. �

Lemma 37. Consider a polyhedron GI and non-zero u ∈ GI . Then u is rescale-
optimal in GI if and only if u is rescale-optimal in GJu.

Proof: Firstly, since GI ⊆ GJu, if u is rescale-optimal in GJu then u is rescale-

optimal in GI (since the same scaling function τ can be used). We will go

on to prove the converse; so, let us assume that u is rescale-optimal in GI .

Theorem 31 implies that there exists µ ∈ IRn agreeing on signs with u such that

µ ·u = 1 and for all w ∈ GI , µ ·w ≥ 1. Consider arbitrary v ∈ GJu; we will show

that µ · v ≥ 1.

Let x = v − u, and, for all δ ∈ (0, 1), let vδ = δv + (1 − δ)u = u + δx. By

Lemma 32, there exists δ ∈ (0, 1) such that vδ ∈ GI . This implies that µ · vδ ≥ 1,

so µ · u + δµ · x ≥ 1, and hence δµ · x ≥ 0 and µ · x ≥ 0, and therefore,

µ · v ≥ µ · u = 1.

We have shown that for all v ∈ GJu, µ · v ≥ 1; we also have that µ and u agree

on signs and µ · u = 1. Using Theorem 31, this implies that u is rescale-optimal

in GJu, as required. �
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6. RESCALE-INVARIANT SVM FOR BINARY

CLASSIFICATION 6.1 Introduction

6.1 Introduction

In the previous chapter, we discussed that the maximum margin preference

learning method is sensitive to the way that features are scaled. This is also

the case for SVM [Bur98] as one of the best-known classification approaches;

i.e., different ways of scaling of features may lead to different classification

results. Considering the fact that rescaling (normalisation) of features is a nec-

essary pre-processing phase for SVM, it is therefore natural to consider a more

cautious classification in which an instance is strongly positively (negatively)

classified if it is labelled as positive (negative) for all choices of scaling; the

other instances, whose classification can depend on the choice of scaling, are

labelled as neutral. Thus, this method refines the set of positively (negatively)

classified instances in order to improve the level of confidence in the classi-

fication decisions. This could be helpful in certain sensitive decision-making

applications such as disease diagnosis; e.g., the test for presence of a particular

disease would fall into three categories, positive, negative, and requires further
examination.

In this chapter, we derive a way of characterising the approach for binary

SVM that allows determining when an instance strongly belongs to a class and

when the classification is invariant to rescaling. The characterisation leads to

a computational method to determine whether one sample is strongly positive,

strongly negative or neither. Our experimental results back up the intuition that

being strongly positive suggests stronger confidence that an instance really is

positive.

There are some studies attempting to account for the dependence on feature

scaling in margin-based optimisation methods from a different perspective; for

example, authors in [JS09] try to deal with this problem by maximizing the

margin relative to the spread of data, or another approach that is discussed

in [DS03] considers a selection of features so that the classifier will be scaling-

invariant with respect to those features. Also, note that the motivation behind

this work is different from studies, like [XCS06], which are concerned with im-

proving the robustness of SVM against outliers and noise, since we are specifi-

cally focusing on the uncertainty caused by rescaling of features.

The rest of this chapter is organised as follows. In Section 6.2, we extend the

terminology of conventional binary SVM to facilitate our results. Section 6.3

considers the effect of rescaling and defines strong classification. In Section 6.4,
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we characterise strong classification using the concept of rescale-optimality,

where the rescale-optimal vectors are those that can be made optimal in the

SVM objective function for some rescaling. This characterisation leads to a

method for computing strong classification, as described in Section 6.5. In Sec-

tion 6.6, the presented approach is evaluated with 18 benchmarks, which are

derived from six real data sets.

6.2 Standard SVM for Binary Classification

In this section, we introduce some notation, along with some relevant results

for standard SVM. This enables easy generalisation to the rescale-invariant case.

In this chapter, as an initial step, we just consider the case when the training set

is consistent; i.e., the instances are linearly separable. However, we can take

similar approaches described in Section 5.6 to deal with inconsistencies.

Recall the formalism that was used in Section 2.3 for conventional SVM, where

X ⊆ IRn × {+1,−1} is the set of training samples, a sample is expressed as a

pair of (x, y), X+ = {x+ : (x+,+1) ∈ X}, and X− = {x− : (x−,−1) ∈ X}.

We say that X is non-trivial if both X+ and X− are non-empty. We define the

following terms for any X ⊆ IRn × {+1,−1} which are used throughout the

chapter, and illustrated in Example 17 below.

• Λ(X) = {x+−x−
2 : x+ ∈ X+, x− ∈ X−}

• I(X) = {1, . . . , |X+||X−|}

• G(X) = {w ∈ IRn : ∀λ ∈ Λ(X), w · λ ≥ 1}

• MPw = minx+∈X+ w · x+

• MNw = minx−∈X− w · (−x−)

Example 17 » Representation of The Notation

Suppose that n = 2, X+ = {(−1, 5), (5,−1), (7/5, 7/5)} and X− = {(1, 1)},
with the points marked in Figure 6.1(a). Then, Λ(X) is {(−1, 2), (2,−1),
(1/5, 1/5)}, I(X) = {1, 2, 3}, and G(X) is the shaded region in Fig-
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2.5x
1 +

2.5x
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6

(5,−1)

(−1, 5)

( 7
5 ,
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5 )

(1,1) x1
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1
−
x 2

=
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1 +
1
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(1,
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G(X)

Figure 6.1: (a) The input samples discussed in Example 17 are shown as black
(positive class) and white (negative class) circles. (b) The shaded region shows
G(X), with every element of the line segment between (3, 2) and (2, 3) being
rescale-optimal in G(X).

ure 6.1(b). For w = (2.5, 2.5) (which is in G(X)), MPw and MNw are
7 and −5 respectively.

By assuming a linear relationship between the feature vector and the class label,

as we showed in Section 2.3, each input point (x, y) ∈ X expresses a linear

constraint y(w ·x+b) ≥ 1 with an unknown weight vector w ∈ IRn and unknown

intercept term b ∈ IR. Thus, the feasible set C(X) is defined as:

C(X) = {(w, b) ∈ (IRn, IR) : ∀(x, y) ∈ X, y(w · x+ b) ≥ 1}.

To cope with the restriction caused by the linearity assumption of the model,

we could transform x from IRn to a bigger space (say H) by forming additional

features based on the basic features. However, in this study, we assume this

transformation has been explicitly defined; we do not consider making use of

(non-linear) kernels [ABR64]. For certain problems, the linear kernel works

sufficiently well, for instance, when the number of features is large [HCL+03,

Appendix C].

As we discussed in Section 2.3, the main idea in SVM is that from the feasible set
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C(X) a pair (w, b) is chosen that maximises the margin; and this corresponds

to the situation when w has the minimum norm in π(C(X)), where π is the

projection function π : (IRn, IR)→ IRn given by π(w, b) = w.

We will see in Proposition 43 below that G(X) = π(C(X)). This fact allows us

to make use of general mathematical results from the previous chapter, which

considers rescaling of features in preference learning. The following lemma is

used to prove the proposition.

Lemma 42

Consider any finite and non-trivial X ⊆ IRn × {+1,−1} and w ∈ IRn and

b ∈ IR. Then the following all hold.

(i) minλ∈Λ(X) w · λ = 1
2(MPw + MNw).

(ii) (w, b) ∈ C(X) if and only if 1−MPw ≤ b ≤ MNw − 1.

(iii) w ∈ G(X) if and only if MPw + MNw ≥ 2, i.e., 1 − MPw ≤ MNw − 1.

Also, if w has minimal norm in G(X) then MPw + MNw = 2.

Proof: (i): minλ∈Λ(X) w · λ = 1
2 minx+∈X+,x−∈X−(w · x+ − w · x−), which

equals 1
2(minx+∈X+ w · x+ + minx−∈X− −w · x−), i.e., 1

2(MPw + MNw).

(ii): First assume that (w, b) ∈ C(X). The definitions of C(X) implies that

for all x+ ∈ X+, x+ ·w+ b ≥ 1, and for all x− ∈ X−, −x− ·w− b ≥ 1. This

leads to MPw+b ≥ 1 and MNw−b ≥ 1 , because MPw = minx+∈X+ w·x+ and

MNw = minx−∈X− w · (−x−). Rearranging gives 1−MPw ≤ b ≤ MNw − 1.

To prove the converse, suppose that 1 − MPw ≤ b ≤ MNw − 1. Then,

MPw + b ≥ 1 and MNw − b ≥ 1. The first inequality implies that for all

x+ ∈ X+, w · x+ + b ≥ 1, and the second inequality implies that for all

x− ∈ X−, −w · x− − b ≥ 1, and thus −(w · x− + b) ≥ 1. Together these

imply that (w, b) ∈ C(X).

(iii): w ∈ G(X) if and only if for all λ ∈ Λ(X), w · λ ≥ 1, which is

if and only if minλ∈Λ(X) w · λ ≥ 1. By part (i), this holds if and only if

MPw + MNw ≥ 2.
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Table 6.1: The glossary of symbols being used throughout this chapter.

Symbol Meaning

n number of features.

X+ ⊂ IRn, input samples with positive labels; e.g., black circles in Fig-
ure 6.1(a).

X− ⊂ IRn, input samples with negative labels; e.g., white circles in
Figure 6.1(a).

X ⊂ IRn × {+1,−1}, all input samples, i.e., the union of X+ and X−

plus another dimension to include labels.

· the dot product, e.g., (2, 3) · (3, 1) = 9.

C(X) the feasible set defined as {(w, b) ∈ (IRn, IR) : ∀(x, y) ∈ X, y(w ·
x+ b) ≥ 1}.

π the projection function π : (IRn, IR)→ IRn given by π(w, b) = w.

Λ(X) defined as {x+−x−
2 : x+ ∈ X+, x− ∈ X−}.

I(X) defined as {1, . . . , |X+||X−|}; i.e., the index set for Λ(X).

G(X) defined as {w ∈ IRn : ∀λ ∈ Λ(X), w · λ ≥ 1}; e.g., the shaded re-
gion in Figure 6.1(b).

MPw for a given w is minx+∈X+ w · x+.

MNw for a given w is minx−∈X− w · (−x−).

‖w‖ Euclidean norm of w.

w∗ the element with minimal norm in G(X); e.g., (2.5, 2.5) in Fig-
ure 6.1(b).

δ ∈ IRn, the translation (shift) vector.

τ ∈ IRn
+, the rescaling vector.

� pointwise multiplication, e.g., (2, 3)� (3, 1) = (6, 3).

Xτ defined as {(x� τ, y) : (x, y) ∈ X}, i.e., X being rescaled by τ .

w∗τ the element with minimal norm in G(Xτ ).

RO(X) defined as {w∗τ � τ : τ ∈ IRn
+}; e.g., all elements on the line seg-

ment between (3, 2) and (2, 3) in Figure 6.1(b).
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Assume that w has minimal norm in G(X). Let aw = minλ∈Λ(X) w ·λ. Since

w ∈ G(X), aw ≥ 1. Then 1
aw
w is an element of G(X) with norm no more

than the norm of w, and so has equal norm. This implies aw = 1. By part

(i), MPw + MNw = 2. �

Proposition 43

Consider any finite and non-trivial X ⊆ IRn×{+1,−1} and w ∈ IRn. Then,

w ∈ π(C(X)) if and only if w ∈ G(X). Thus, π(C(X)) = G(X).

Proof: w ∈ π(C(X)) if and only if there exists b ∈ IR such that

(w, b) ∈ C(X), which, by Lemma 42 part (ii) is if and only if there ex-

ists b ∈ IR such that 1 − MPw ≤ b ≤ MNw − 1. This holds if and only if

1−MPw ≤ MNw − 1, i.e., MPw + MNw ≥ 2, which, by Lemma 42 part (iii),

holds if and only if w ∈ G(X). �

As is well-known, the solution that is picked by SVM from C(X) is unique (see

e.g., [BC99]). The following theorem restates this fact, making use of our

notation.

Theorem 44: SVM Solution Uniqueness

Consider any non-trivial finite X ⊆ IRn × {+1,−1}. If C(X) is non-empty

then there exists a unique element (w, b) ∈ C(X) such that w has minimal

norm in π(C(X)). For that unique element, b = 1−MPw = −1 + MNw.

Proof: By Proposition 43, G(X) = π(C(X)), which is non-empty because

C(X) is non-empty. G(X) is a convex set, so there exists a unique ele-

ment w in G(X) = π(C(X)) with minimal norm. Suppose that b is such
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that (w, b) ∈ C(X). Then, by Lemma 42(iii), MPw + MNw = 2, and thus,

1 − MPw = MNw − 1. Lemma 42(ii) then implies that b = 1 − MPw =
MNw − 1. Thus, there exists a unique b such that (w, b) ∈ C(X). �

In Example 17, (2.5, 2.5) clearly is the unique element with minimal norm in

G(X), and the corresponding b is−6 (= 1−MP = −1+MN). Thus, its associated

hyperplane 2.5x1 + 2.5x2− 6 = 0, the dotted line in Figure 6.1(a), produces the

maximum margin.

Let us denote the solution of SVM, which by Theorem 44 is unique, by (w∗, b∗),
where b∗ = 1−MPw∗ = −1 + MNw∗. Thereafter, the feature vector α ∈ IRn with

unknown class label is classified as the positive (+1) class label if w∗ ·α+b∗ ≥ 0,

and as the negative (−1) class label otherwise.

Theorem 44 leads easily to the following characterisation of classification,

which is of a form that makes our extension in the following sections more

straight-forward.

Proposition 45: Classification

Consider any non-trivial finite X ⊆ IRn × {+1,−1} and any α ∈ IRn. Then,

the vector α is positively (resp. negatively) classified if and only if there

exists x+ ∈ X+ (resp. x− ∈ X−) such that w∗ · (x+−α) ≤ 1 (resp. w∗ · (α−
x−) < 1).

Proof: The vector α is positively (resp. negatively) classified if and

only if w∗ · α + b∗ ≥ 0 (resp. w∗ · α + b∗ < 0), which is, by Theo-

rem 44, iff w∗ · α + 1 − MPw∗ ≥ 0 (resp. w∗ · α − 1 + MNw∗ < 0), i.e.,

MPw∗ ≤ w∗ · α + 1 (resp. MNw∗ < 1 − w∗ · α). This holds, from the defi-

nition of MPw∗ (resp. MNw∗), if and only if minx+∈X+ w∗ · x+ ≤ w∗ · α + 1
(resp. minx−∈X− w∗ · (−x−) < 1 − w∗ · α), which is if and only if there

exists x+ ∈ X+ (resp. x− ∈ X−) such that w∗ · x+ ≤ w∗ · α + 1 (resp.

−w∗ · x− < 1− w∗ · α). This immediately leads to the result. �

Preference Inference Based on Maximising
Margin

139 Mojtaba Montazery Hedeshi



6. RESCALE-INVARIANT SVM FOR BINARY

CLASSIFICATION 6.3 Rescaling SVM

From now on, we just work with the positive class; the results can be easily

applied to the negative class as well.

6.3 Rescaling SVM

In this section we consider how performing certain affine transformations, i.e.,

translations and rescalings, on the domain of each feature, affect the result of

SVM. We define a vector as being strongly positively classified, if it is positively

classified under all affine transformations of each feature domain.

It is a known fact that the maximum margin hyperplane is essentially unaffected

by a translation of feature space (see e.g., [Mei03]); i.e., by moving the origin,

the normal vector to the separating hyperplane and hence the result of SVM

does not change. Lemma 46 states this formally.

Lemma 46

Consider any finite and non-trivial X ⊆ IRn × {+1,−1}, any α, δ ∈ IRn,

and let Xδ = {(x+ δ, y) : (x, y) ∈ X}. Then, α is positively classified with

respect toX if and only if the vector α+δ is positively classified with respect

to Xδ.

Proof: Λ(Xδ) can be written as { (x++δ)−(x−+δ)
2 : x+ ∈ X+, x− ∈ X−},

which is clearly equal to Λ(X), and thus G(Xδ) = G(X). This implies

that w∗ for X and Xδ is the same.

Now, α is positively classified with respect to X, if and only if, by Proposi-

tion 45, there exists x+ ∈ X+ such that w∗ · (x+ − α) ≤ 1, which is if and

only if there exists x+ ∈ X+ such that w∗ · ((x+ + δ) − (α + δ)) ≤ 1. This

holds iff α + δ is positively classified with respect to Xδ. �

In contrast with translations, changing the scales of features may significantly

affect the result of SVM. Consider the effect of a rescaling τ ∈ IRn
+, so that a

feature vector x ∈ IRn is transformed into x� τ (recall the definition of � from
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Section 5.4). Therefore, X becomes Xτ = {(x� τ, y) : (x, y) ∈ X}. We write

the element of G(Xτ ) with minimal norm as w∗τ .

Example 18 » The Effect of Rescaling on Classification

If we rescale X in Example 17 by τ = (5, 1) then X+
τ will be {(−5, 5),

(25,−1), (7, 7/5)}, X−τ becomes {(5, 1)}, and consequently, Λ(Xτ ) = {
(−5, 2), (10,−1), (1, 1/5)}. It can be shown that w∗τ equals (3/5, 2) and
b∗τ = −6. Now, let α = (−1, 4) and so α � τ = (−5, 4). Clearly, when
there is no scaling, α is positively classified since (2.5, 2.5) · (−1, 4) − 6 =
1.5 > 0, but under scaling τ , α � τ is negatively classified because
(3/5, 2) · (−5, 4)− 6 = −1 < 0.

For a rescaling vector τ ∈ IRn
+, we say that α ∈ IRn is positively classified under

rescaling τ iff α � τ is positively classified with respect to Xτ , which, by using

Proposition 45, is if and only if there exists x+
τ ∈ X+

τ such that w∗τ · (x+
τ − (α �

τ)) ≤ 1. This holds iff there exists x+ ∈ X+ such that w∗τ ·((x+�τ)−(α�τ)) ≤ 1,

i.e., (w∗τ � τ) · (x+ − α) ≤ 1.

Let us say that α ∈ IRn is strongly positively classified if and only if it is positively

classified under any rescaling τ ∈ IRn
+ and any shift δ ∈ IRn. This is if and only

if it is positively classified under any rescaling and no shift (i.e., a shift of δ = 0,

the zero vector).

Definition 39: Strongly Positive Classification

For α ∈ IRn, we define YX(α) = 1 if and only if α is strongly positively

classified; i.e., for all τ ∈ IRn
+ there exists x+ ∈ X+ such that (w∗τ �τ) · (x+−

α) ≤ 1.

6.4 Characterisations Using Rescale Optimality

Here we use the notion of rescale-optimality from Section 5.4, and make use

of general mathematical results from there. This leads to the computational
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technique in Section 6.5 for testing if a vector is strongly positively classified.

For the sake of convenience, we repeat the definition of rescale-optimal here

with respect to the notation of this chapter.

Definition 40: rescale-optimal

For any non-trivial finite X ⊆ IRn×{+1,−1}, and w ∈ G(X), we say that w

is rescale-optimal in G(X) if there exists τ ∈ IRn
+ such that for all u ∈ G(X),

‖u� τ‖2 ≥ ‖w � τ‖2.

It can be seen intuitively that every element of the line segment between (3, 2)
and (2, 3) in Figure 6.1(b) is rescale-optimal; if τ(1) > τ(2) (i.e., with the ratio
τ(1)
τ(2) being increased) then w∗τ � τ moves from (2.5, 2.5) towards (3, 2). Similarly,

increasing the ratio τ(2)
τ(1) from 1 moves w∗τ � τ from (2.5, 2.5) towards (2, 3). For

instance, in Example 18, τ(1) = 5τ(2) leads to w∗τ � τ = (3, 2).

We define RO(X) to be {w∗τ � τ : τ ∈ IRn
+} (in the previous chapter we used the

term SF(Λ) for this set). Hence, it is clear, from Definition 39, that YX(α) = 1 if

and only if

∀w ∈ RO(X), ∃x+ ∈ X+, s.t. w · (x+ − α) ≤ 1.

The following proposition, which follows immediately from Proposition 20,

states that the set of all rescale-optimal elements of G(X) is RO(X).

Proposition 47

Consider any non-trivial finite X ⊆ IRn×{+1,−1}, and any w ∈ IRn. Then,

w is rescale-optimal in G(X) if and only if w is in RO(X).

As a result of the equivalence of RO(X) to the set of all rescale-optimal elements

of G(X), we have the following proposition.
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Proposition 48

Consider any non-trivial finite X ⊆ IRn×{+1,−1}, and any α ∈ IRn. Then,

YX(α) = 1 if and only if for every rescale-optimal element w in G(X), there

exists x+ ∈ X+ such that w · (x+ − α) ≤ 1.

Theorem 38 in Section 5.4 expresses rescale-optimal elements in terms of posi-

tive linear combinations; this theorem is used in Theorem 49 below which leads

to a computational procedure for strong classification.

Theorem 49

Consider any finite non-trivialX ⊆ IRn×{+1,−1}, and any non-zero vector

w ∈ G(X). Then, w is rescale-optimal in G(X) if and only if there exists

µ ∈ IRn and non-negative reals ri, for each i ∈ I(X), such that (a) µ agrees

on signs with w; (b) µ = ∑
i∈I riλi; and (c), for each i ∈ I(X) either ri = 0

or λi · w = 1, where λi is the ith element of Λ(X).

Proof: Theorem 38 implies that w is rescale-optimal in G(X) if and only

if there exists µ ∈ IRn and non-negative reals ri (for each i ∈ I(X)) such

that conditions (a), (b), (c) and (d) hold, where (a), (b) and (c) are the

conditions above, and (d) is the condition that w · µ = 1.

⇒: this follows immediately from Theorem 38.

⇐: Assume that there exists µ ∈ IRn and non-negative reals ri (for each

i ∈ I(X)) such that conditions (a), (b), (c) hold. w is not the zero vector,

since w ∈ G(X). Condition (a), that µ agrees on signs with w, implies

that µ · w > 0. Let µ′ = µ
µ·w , and for each i ∈ I(X) define r′i = ri

µ·w . Then,

(a) µ′ agrees on signs with w, (b) µ′ = ∑
i∈I r

′
iλi, (c) for each i ∈ I(X)

either r′i = 0 or λi · w = 1, and (d) w · µ′ = 1. Theorem 38 then implies

that w is rescale-optimal in G(X). �
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In the following section, we characterise the situations in which rescaling the

values of the features makes no difference to the result of the classification, in

which case, strong classification is the same as the standard classification.

6.4.1 Determining Invariance to Rescaling

Theorem 50 below shows that rescaling the features vector makes no differ-

ence in the classification when there is a unique rescale-optimal vector in G(X)
(and the vector thus has the minimal norm in G(X), using the identity rescal-

ing). Recall that in the previous chapter, we already characterised when there

is a unique rescale-optimal vector in Theorem 25, and proposed a polynomial

algorithm to determine that unique element in Corollary 26.

Theorem 50

Consider any non-trivial finite X ⊆ IRn × {+1,−1}. Let Pos(X) be the set

of all α ∈ IRn that are positively classified, and let SPos(X) be the set of α

that are strongly positively classified. Then Pos(X) = SPos(X) if and only

if there exists a unique rescale-optimal element in G(X), i.e., RO(X) is a

singleton set.

Proof: For w ∈ IRn, let Posw be the set of all α ∈ IRn such that there

exists x+ ∈ X+ such that w · (x+ − α) ≤ 1. Then, by Proposition 45,

Pos(X) = Posw∗, and using Proposition 48, SPos(X) is the intersection of

Posw over all rescale-optimal w in G(X). Note that w∗ is rescale optimal

in G(X) (using the identity rescaling). Thus, if there is a single rescale-

optimal w then w = w∗ and so Pos(X) = SPos(X).

To prove the converse, suppose that Pos(X) = SPos(X), which implies that

for all rescale-optimal w in G(X), Posw contains Posw∗. Now, we can write

Posw as {α ∈ IRn : α · w ≥ MPw − 1} because MPw = minx+∈X+ w ·x+, and

thus Posw is a half-space with normal vector w. Hence, since Posw contains

Posw∗, there exists a real scalar q > 0 with w∗ = qw. Then for any τ ∈ IRn
+,

‖w∗ � τ‖2 = q2‖w � τ‖2. By Definition 40, q = 1, since both w and w∗
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Figure 6.2: The shaded region shows G(X) for the case explained in Example
19, with (1, 1) being the unique rescale-optimal element in G(X).

are rescale-optimal, and hence w = w∗. This shows that there is a unique

rescale-optimal element in G(X). �

Example 19 » Invariance to Rescaling

Consider modifying Example 17 by just removing (7/5, 7/5) from X+. Then,
Λ(X) = {(−1, 2), (2,−1)}, and G(X) becomes the intersection of the
half-spaces −x1 + 2x2 ≥ 1 and 2x1 − x2 ≥ 1, with a single extremal
point (1, 1). This point pointwise dominates every other element in G(X)
(see Figure 6.2). Pointwise dominating every other element, from The-
orem 25, means that (1, 1) will be the unique element of G(X) that is
rescale-optimal. Using Theorem 50, this implies that the classification is
invariant to the rescaling (in this example).
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6.5 Computation of Strong Classification

Here we express if an instance is strongly positively classified in terms of a set

of constraints.

For a set X ⊆ IRn × {+1,−1} and arbitrary α ∈ IRn, we would like to deter-

mine if YX(α) = 1, i.e., if α is strongly positively classified. We can infer from

Proposition 48 that YX(α) 6= 1 if and only if there exists a rescale-optimal ele-

ment w in G(X) such that for all x+ ∈ X+, w · (x+ − α) > 1. By taking into

account Theorem 49, we obtain a set of inequalities to determine if YX(α) 6= 1
as follows.

Let λi be the ith element of Λ(X) where i ∈ I(X). Now, YX(α) 6= 1 if and only

if there exists w ∈ IRn and µ ∈ IRn, and non-negative reals ri for each i ∈ I(X)
such that

• ∀x+ ∈ X+, w · (x+ − α) > 1;

• ∀i ∈ I(X), w · λi ≥ 1; (i.e., w ∈ G(X))

• ∀i ∈ I(X), [w · λi = 1 or ri = 0];

• ∀j = 1, . . . , n, w(j) = 0 ⇐⇒ µ(j) = 0, and w(j) > 0 ⇐⇒ µ(j) > 0;

(i.e., agreeing on signs);

• µ = ∑
i∈I(X) riλi.

The number of constraints here is 2|X+||X−|+ |X+|+ n+ 2.

6.6 Experimental Results

The experiments make use of the UCI machine learning repository1 from which

six real data sets are chosen, namely Breast Cancer Wisconsin [SWM93], Pima
Indians Diabetes, Blood Transfusion Service Center [YYT09], Indian Liver Patient,
Fertility [MGDJ+12], and Banknote Authentication. In fact, we include data sets

that meet three criteria: (i) the data set has only two classes, (ii) the data set

consists of only numeric features, and (iii) number of features is at most 10. The

first two criteria ensure that the data set complies with the proposed method in

this chapter, and the third made the computation especially fast. Thereafter, 18

1http://archive.ics.uci.edu/ml/

Preference Inference Based on Maximising
Margin

146 Mojtaba Montazery Hedeshi



6. RESCALE-INVARIANT SVM FOR BINARY

CLASSIFICATION 6.6 Experimental Results

Table 6.2: The specifications of 18 benchmarks which are used for the experi-
ments; these are derived from six real data sets.

Bench. |X| |I(X)| Data Set Features (n)

1. 16 63
Breast Cancer Wisconsin 92. 20 84

3. 25 126

4. 22 72
Pima Indians Diabetes 85. 28 171

6. 18 65

7. 20 64
Blood Transfusion 48. 25 46

9. 25 144

10. 25 84
Indian Liver Patient 1011. 15 36

12. 21 108

13. 30 104
Fertility 914. 20 81

15. 15 14

16. 25 156
Banknote Authentication 417. 20 100

18. 15 50

benchmarks are derived from those data sets. Table 6.2 contains specifications

of these benchmarks.

For constructing a benchmark, a random selector creates two disjoint sets from

a data set, one for learning (i.e., X) and one for testing. However, a pre-

processing phase, similar to the first procedure described in Section5.6, deletes

some elements of the learning set in order to make it consistent (i.e., C(X) 6= ∅),
since we consider only the consistent case.

For each instance in the testing set (say α), the rescaling method determines—

based on the learning set X—either (i) it is strongly positive (YX(α) = 1), or

(ii) it is strongly negative (YX(α) = −1), or (iii) it is neutral (YX(α) 6= 1 and

YX(α) 6= −1).

The number and percentage of neutral instances for each benchmark can be

found in Table 6.3. The ratio of neutral instances for the benchmarks (i.e.,

those instances being classified differently under different rescaling) varies from

6% to 95% with a mean of 55.9%. That means that for more than half of the

instances, rescaling the feature values can change the result of the SVM classifi-
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cation. That points out the unreliability of standard SVM–specifically for larger

numbers like 95%–with respect to being sensitive to the way the features are

scaled.

In a testing set, among the non-neutral instances, we can also count:

1. The number of negative instances improperly strongly classified as positive

(False Positive).

2. The number of positive instances properly strongly classified as positive

(True Positive).

3. The number of positive instances improperly strongly classified as negative

(False Negative).

4. The number of negative instances properly strongly classified as negative

(True Negative).

Conventional SVM can also predict a class label for each instance, positive or

negative. As a result, we have False Positive (FP), True Positive (TP), False

Negative (FN) and True Negative (TN) for SVM as well. Tables 6.4 and 6.5

compare these measures between the two methods. Note that the value of

FP + TN (resp. FN + TP) for the rescaling method is not (necessarily) equal

to the total number of the testing instances with real negative (resp. positive)

class label because some instances are classified as neutral.

In Tables 6.4 and 6.5, we also compare the Positive Predictive Value (PPV) and

Negative Predictive Value (NPV) of the two methods. PPV is the fraction of truly

positive instances among positively classified ones. Similarly, NPV is the fraction

of truly negative instances among negatively classified ones. Thus,

PPV = TP
FP + TP

, and

NPV = TN
FN + TN

.

The measures PPV and NPV are widely used in medical contexts in order to

validate a disease diagnostic test [PMP+08]. To illustrate, PPV expresses that if

a patient’s test is positive how likely it is that he really has the disease. Similarly,

NPV means that if a patient’s test is negative how likely it is that she really does

not have the disease. The results show an increase of 5.5% in PPV and NPV for

the benchmarks on average.

Note that our approach is not intended to be a competitor of SVM in terms
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Table 6.3: The number and ratio of instances labelled as neutral by the rescaling
method are shown for each benchmark.

Benchmark Neutral # Total # Ratio(%)

1. 261 683 38
2. 53 100 53
3. 53 100 53
4. 186 200 93
5. 168 200 84
6. 91 100 91
7. 35 100 35
8. 6 100 6
9. 9 100 9
10. 72 100 72
11. 93 100 93
12. 191 200 95
13. 46 70 66
14. 56 81 69
15. 79 85 93
16. 14 100 14
17. 12 100 12
18. 30 100 30

Mean 55.9

of classification accuracy. What it does is to highlight certain instances where

we can have greater confidence, with the other instances having reduced con-

fidence because the result of the classification could be changed if a different

scaling of the features were used. This is why PPV and NPV are appropriate

measures for the experimental results.

The approach discussed in Section 6.5 was implemented using the solver CPLEX

12.6.2. Determining whether an instance is strongly positive or strongly neg-

ative or neutral for any of benchmarks takes less than a couple of seconds,

making use of a computer facilitated by a Core i7 2.60 GHz processor and 8 GB

RAM memory.

6.7 Discussion and Summary

The scaling of individual features, before applying an SVM method, can be

subjective and arbitrary. However, the way features are scaled can make a dif-

ference; in fact, for a little more than half of the instances in our experiments,
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Table 6.4: A comparison, using 18 benchmarks, between the PPV of SVM and
the rescaling method. The undefined values, labelled -, are excluded from the
mean.

Bench.
SVM Rescaling Method

FP TP PPV(%) FP TP PPV(%)

1. 15 439 97 0 333 100
2. 3 71 96 0 46 100
3. 9 64 88 0 47 100

4. 25 48 66 1 1 50
5. 38 53 58 1 2 67
6. 8 15 65 0 0 -

7. 25 6 19 5 4 44
8. 7 4 43 4 3 36
9. 27 9 25 25 8 24

10. 15 13 46 0 2 100
11. 35 15 30 1 0 0
12. 44 23 34 3 4 57

13. 15 2 12 1 0 0
14. 19 1 5 3 1 25
15. 11 3 21 0 0 -

16. 3 45 94 3 38 93
17. 1 42 98 1 38 97
18. 3 44 94 0 32 100

Mean 56.56 62.06

rescaling the feature values can change the result of the SVM classification.

Based on this fact, we say an instance strongly belongs to a class if it belongs

to that class for all rescalings of features. This new definition boosts the con-

fidence of labelling instances by excluding those instances which are classified

differently under different scalings.

Building on the general mathematical results of the previous chapter, we have

developed a computational procedure that can test if an instance is strongly

positive, i.e., labelled positive for every affine way of rescaling the values of

each feature (and similarly for the negative case). We also have a polynomial

algorithm for determining when, for a given training set, the classification of

any possible instance is not affected by rescaling. Our experiments also showed

a slight improvement in the value of prediction, i.e., the likelihood that if an

instance is classified as a particular class, it truly belongs to that class.
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Table 6.5: A comparison, using 18 benchmarks, between the NPV of SVM and
the rescaling method. The undefined values, labelled -, are excluded from the
mean.

Bench.
SVM Rescaling Method

FN TN NPV(%) FN TN NPV(%)

1. 10 219 96 3 86 97
2. 1 25 96 0 1 100
3. 0 27 100 0 0 -

4. 22 105 83 0 12 100
5. 14 95 87 0 29 100
6. 21 56 73 0 9 100

7. 17 52 75 11 45 80
8. 18 71 80 18 69 79
9. 9 55 86 8 50 86

10. 19 53 74 9 17 65
11. 13 37 74 2 4 67
12. 27 106 80 3 4 100

13. 6 47 89 1 22 96
14. 6 55 90 1 20 95
15. 8 63 89 0 6 100

16. 2 50 96 0 45 100
17. 1 56 98 0 49 100
18. 2 51 96 0 38 100

Mean 86.00 91.47

There are many potential future directions following from this work; for in-

stance, extending the method to cope with inconsistencies in a more sophis-

ticated way (i.e., soft margin SVM); attempting to develop the computational

method for certain kernels; performing multi-class classification by making use

of repeated binary-class classification (e.g., using one-vs-all or one-vs-one ap-

proaches); and computing variations of the method where the user can limit

the rescaling range for different features.
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7. CONCLUSION 7.1 Summary

In this chapter, we discuss what has been achieved in the thesis, and we describe

some possible future directions.

7.1 Summary

There is an increasing need for effective and reliable techniques to assist users

in decision-making problems; e.g., choosing an item from a set of alternatives.

Examples of these items could be products, movies, vacation packages or cam-

eras. Any approach that is adopted to fulfil this demand should be able to take

into account user preferences. In this thesis, we have made some contributions

towards user preferences learning especially based on the maximum margin

method.

In Chapter 4, we applied the maximum margin preference relations (referred to

as SVPL) to a ridesharing application. Ridesharing can potentially have many

benefits such as reducing traffic congestion, pollution and the cost of travel,

but matching drivers and riders as optimal as possible is a main challenge. In

contrast to the traditional ride-matching systems, we have presented a matching

approach in which the user’s preferences contribute to the matching process.

This approach learns user preferences from past ridesharing records of the user

and incorporate them to recommend better matchings. Our experiments have

shown that considering the user preferences can improve the ranking accuracy

of ride opportunities, and thus users’ satisfaction degrees.

However, as we observed in Chapter 5, the maximum margin preference rela-

tion, <mm, is sensitive to the rescaling of preference inputs or features. How-

ever, it makes sense for a preference relation to be scaling invariant; regarding

the invariance to the rescaling of preference inputs, if the user prefers the fea-

ture vector a to b, then it is often expected that 2a is also preferred to 2b. With

respect to the invariance to the rescaling of features, while scaling of features

is a crucial pre-processing task, the way that it is done it can highly depend

on the received instances. As a result, this idea led us to develop three pref-

erence relations that are more robust in a sense that they are invariant to the

scaling of (i) preference inputs (<I
Λ), (ii) features (<F

Λ), and (iii) preference

inputs and features simultaneously (<I,F
Λ ). We investigated the relationships

between these preference relations, along with two other relations <mm and

<C
Λ. Also, we presented two incremental algorithms to find the optimal/best

Preference Inference Based on Maximising
Margin

153 Mojtaba Montazery Hedeshi



7. CONCLUSION 7.2 Possible Future Work

elements with respect to these relations; (i) the set of undominated elements

consisting of the elements that there is no other element that can strictly dom-

inate them, and (ii) the set of possibly optimal elements which consists of the

elements that are optimal in some scenario (i.e., some scaling). The experi-

ments, which were carried out on two real databases, highlighted the level of

decisiveness, the computation speed, and the number of the optimal elements

for each preference relation.

Rescaling of the domain of each feature is not only an issue for the maximum

margin preference relation, but also it can change the result of the standard

SVM in the classification task. Because of this we proposed, in Chapter 6, a kind

of classification method that is invariant to the way that features are scaled.

One merit of this method is that it identifies those instances that are classified

differently under some different scaling. The experiments showed an increase

in the likelihood that if an instance is classified as a particular class, it truly

belongs to that class.

7.2 Possible Future Work

There are several future directions which will be worth investigating; in this

section, we briefly discuss some of those.

More General Preference Statements: In this thesis, we considered that pref-

erences inputs are stated in the form of pairwise comparisons; i.e., the fea-

ture vector ai ∈ IRn has been preferred to bi ∈ IRn, for each i ∈ {1, . . . ,m}.
One extension would be to also take into account more general kinds of

input preference statements such as a ceteris paribus semantics (as being

used in a CP-net). For example, in the ridesharing application, Alice may

state that “I prefer a female rider to share my trip with, provided all other

features are the same”.

Uncertainty in Preference Statements: It would be also interesting to extend

our methods to consider a level of confidence (or certainty) associated

with each preference statement. That could naturally arise in many

decision-making problems especially when we have implicit preference

elicitation. For instance, in a situation where there is no background

information about a new user, we could make use of users’ preferences

(votes) and might, for instance, imply that the new user will prefer the

Preference Inference Based on Maximising
Margin

154 Mojtaba Montazery Hedeshi



7. CONCLUSION 7.2 Possible Future Work

hotel A to B with probability of 65%. There are some approaches in the

classification context that could be helpful here, in which each training

instance is associated with a weight (see e.g., [YSW07]).

Using The Kernel Trick: As we have seen, our rescaling-invariant methods for

preference learning and classification are built on an assumption that the

(utility) function is linear. However, as we explained in Section 4.4.3, the

kernel trick can be used to manage non-linearly-representable data in a

linear manner. Thus, one interesting direction for future work would be

to find computational methods for certain kernels. To do so, we need

to rewrite the computation method such that (i) all unknown variables

that live in IRn vanish, and (ii) all alternatives appear in the form of dot

products. We can do this in a straight-forward way for the <I
Λ relation

as follows. Suppose that the feature vectors are mapped from IRn to a

higher dimensional space H with the function Φ. Therefore, by seeing

Section 5.7.2, α 6<I
Λ β if and only if there exists Φ(u) ∈ H, and non-

negative reals ri for each i ∈ I, such that

• Φ(u) · (Φ(β)− Φ(α)) > 0;

• ∀i ∈ I, Φ(u) · Φ(λi) ≥ 1; and

• Φ(u) = ∑
i∈I riΦ(λi).

By using the third constraint, we can eliminate Φ(u) which is an unknown

variable. Hence, α 6<I
Λ β if and only if there exists non-negative reals ri

for each i ∈ I, such that

• (∑
i∈I riΦ(λi)) · (Φ(β)− Φ(α)) > 0;

• ∀i ∈ I, (∑
j∈I rjΦ(λj)) · Φ(λi) ≥ 1.

Now, we consider the kernel function K : IRn × IRn → IR such that

K(x, y) = Φ(x) · Φ(y). So, we have, α 6<I
Λ β if and only if there exists

non-negative reals ri for each i ∈ I, such that

•
∑
i∈I ri(K(λi, β)−K(λi, α)) > 0;

• ∀i ∈ I,
∑
j∈I rjK(λj, λi) ≥ 1.

Data Inconsistency Handling: We described some approaches in Section 5.6

in order to restore the consistency in the data. Nonetheless, a more so-

phisticated method, in which no pre-processing on the data is needed,

might be more desirable. That could, for example, include introducing a
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set of parameters representing the cost of violating each constraint, and

changing the computation methods to minimise the total cost.

Restricting The Rescaling Range: In the features-rescaling-invariant meth-

ods (either in the preference learning context or the classification), it

may seem natural to explore variations of the method where the user

can restrict the rescaling range for different features. i.e., for j ∈
{1, . . . , n}, τ(j) ∈ (0, UBj] with UBj ∈ IR+ (instead of τ(j) ∈ IR+).

Multi-Class Classification: One obvious expansion of the rescaling-invariant

classification method is to perform rescaling-invariant multi-class classifi-

cation. That means if we have three classes c1, c2, and c3, an instance is

strongly classified as c1 if it is classified as c1 for all the choices of scal-

ing of features. One way to do that would be to adopt some well-known

strategies such as one-vs-all and one-vs-one [Bis06] to repeat the binary

classification. For example, in one-vs-all strategy, the training samples of

classes c2 and c3 are grouped into one, and then we can run the binary

rescaling-invariant method to find those instances that strongly belong to

the c1 class. In the same way, the classes c1 and c3 can make a group, and

then strongly classified c2 instances will be determined.
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