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Superfluid toroidal currents in atomic condensates

Eileen Nugent,1,* Dermot McPeake,2,1 and J. F. McCann1
1Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Irelan

2NMRC, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland
~Received 1 August 2003; published 15 December 2003!

The dynamics of toroidal condensates in the presence of condensate flow and dipole perturbation have been
investigated. The Bogoliubov spectrum of a condensate is calculated for an oblate torus using a discrete-
variable representation and a spectral method to high accuracy. The transition from spheroidal to toroidal
geometry of the trap displaces the energy levels into narrow bands. The lowest-order acoustic modes are
quantized with the dispersion relationv;umuvs with m50,61,62, . . . . Acondensate with toroidal currentk
splits theumu co-rotating and counter-rotating pairs by the amountDE'2umu\2k^r 22&. Radial dipole excita-
tions are the lowest-energy dissipation modes. For highly occupied condensates the nonlinearity creates an
asymmetric mix of dipole circulation and nonlinear shifts in the spectrum of excitations so that the center of
mass circulates around the axis of symmetry of the trap. We outline an experimental method to study these
excitations.

DOI: 10.1103/PhysRevA.68.063606 PACS number~s!: 03.75.Kk, 03.75.Lm
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I. INTRODUCTION

The elementary excitations of trapped Bose Einstein c
densates have been extensively studied in recent years. T
collective modes are coherent macroscopic matter waves
can be used in many applications in cold atom Physics. S
the trap geometry defines the mode spectrum and amplitu
recent studies have considered spheroidal condensates@1,2#
and condensates in topologies such as toroidal traps@3–5#. A
toroidal trap is of particular interest as it can be employed
a storage ring for coherent atom waves@6# or ultracold mol-
ecules@7# enabling investigations of persistent currents,
sephson effects, phase fluctuations, and high-precision
nac or gravitational interferometry. More adventuro
possibilities for toroidal condensates include the construc
of a mode-locked atom laser@8# and the creation of sonic
black holes in tight ring-shaped condensates@9#. A narrow
ring of condensate, effectively reducing the dimensionality
one-dimension~1D!, could be applied to dark soliton propa
gation @10# or low-dimensional quantum degeneracy inclu
ing the Tonks gas regime@11,12#. In the case of supercur
rents the dimensionality of the system is important. In 1D
T.0 superfluidity strictly speaking cannot exist; at fini
temperatures supercurrents have a finite lifetime indepen
of the system size. It has been shown however that in
weak-interaction limit where the interaction strength is d
creased in parallel with temperature, the decay rate is ex
nentially suppressed leading to supercurrents which are lo
lived in comparison to the lifetime of the system@13#. The
decay of supercurrents in 1D is also qualitatively different
2D and 3D the normal decay mechanism is to vortices wh
are system-size dependent, however in 1D one cannot d
a vortex, and the decay is to excitations which are indep
dent of the system size and as such may be describe
terms of the microscopic parameters of the system@14#.

Toroidal traps have been around for some time, being

*Electronic address: e.nugent@am.qub.ac.uk
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ployed in early experiments with sodium vapors@15#. In this
case a blue-detuned laser was used as a measure to co
act Majorana spin flips; a loss mechanism which can
problematic in the cooling required for condensation.
more recent experiments the toroidal topology has been u
in the study of vortex nucleation and superfluidity@16#. Re-
cent theoretical work concerning toroidal condensates
concentrated on excitations in traps which have some t
dependence in their topology@17# and on vortex-vortex dy-
namics which have been shown to be strongly distorted
such a geometry@18#. The stability of multiply quantized
toroidal currents has been studied by Refs.@5,17#. The spec-
trum of single-particle excitations for cigar-shaped toroid
traps with circulation has also been considered@4#. Although
a wide variety of toroidal trap parameters is possible, one
the advantages of such a system, the most easily acces
experiments appear to be based on oblate shaped trap
this paper we study results for the spectrum of collect
excitations of oblate toroidal condensates within the Bo
liubov approximation, and explore the dynamical stability
ring currents around the torus. The main features we note
generic to this design of trap and would apply to simi
geometries. Perturbations of superfluid ring currents by
off-set of the trapping potential are studied. For example
a toroidal trap the central repulsive potential acts as a p
ning site for the vortex and thus the stability of the flow c
be studied. The excitation spectrum, mode densities, fl
rate, and center-of-mass motion for this system are obta
by employing both a time-dependent and time-independ
methods@19,20#. A simple, but accurate, formula is pre
sented for the lowest angular acoustic modes of excita
and the splitting energy of these modes when a backgro
current is present.

II. THE MODEL

A. The weakly interacting Bose gas

For a cold dilute weakly interacting gas, the ground st
~condensate mode! dominates the collective dynamics of th
system. In experimental realizations one can achieve t
peratures such thatT!Tc ~typically 0.1 to 1mK) and den-
©2003 The American Physical Society06-1
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NUGENT, McPEAKE, AND McCANN PHYSICAL REVIEW A68, 063606 ~2003!
sities such that the gas is weakly interacting and highly
lute. Under such conditions, the condensate ofN0@1 atoms
is well described by a mean field, or wave function, go
erned by the Gross-Pitaevskii equation, and the quasipar
excitations are acoustic waves within this field. If the pert
bations of the condensate are small, then it is appropriate
convenient to use the linear response approximation, wh
is equivalent to the Bogoliubov approximation for singl
particle excitations in highly condensed quantized Bo
gases at zero temperature.

Consider a dilute system ofN0 atoms, each of massma ,
trapped by an external potentialVext(x,t) and interacting
weakly through the two-body potentialV(x,x8). At low tem-
peratures and densities, the atom-atom interaction can
represented perturbatively by thes-wave pseudopotential
V(x,x8)5(4p\2as /ma)d (3)(x2x8), and as is the s-wave
scattering length. The dynamics follow from the Hartr
variational principle,

dE
t1

t2
dtE d3xc* @H01 1

2 gc* c2 i\] t#c50, ~1!

where g5(4p\2/ma)N0as , H052(\2/2ma)¹21Vext2m,
and the chemical potentialm plays the role of a Lagrang
multiplier. Supposing that the temperatures are sufficien
low that the condensate can be represented by a Bogoliu
mean field f. The single-particle excitations can be d
scribed by the linear response ansatz,

c~x,t !5a0~ t !f~x!1(
j Þ0

@aj~ t !uj~x!e2 iv j t

1aj* ~ t !v j* ~x!e1 iv j t#, ~2!

wheref represents the highly occupied condensate; tha
ua0u'AN@uaj u, j Þ0. From the variationdf* , and linear
expansion in the small parametersaj ,aj* taken as constant
the stationary Gross-Pitaevskii equation and Bogoliub
equations follow

H0f1gufu2f50, ~3!

with (f,f)51 and *d3xf (x)* g(x)[( f ,g). The Bogoliu-
bov modes are solutions of the coupled linear equations

~H012gufu2!uj1gf2v j51\v juj , ~4!

~H012gufu2!v j1gf* 2uj52\v jv j . ~5!

Time-reversal symmetry of Eqs.~4! and~5! is reflected in the
fact that every set of solutions$v j ,uj ,v j% has a correspond
ing set $2v j ,v j* ,uj* % and the normalization convention
(ui ,uj )2(v i ,v j )5d i j .

B. Toroidal condensates

Conventional atom traps provide a confinement of
condensate in the radial and axial directions. We write this
a spheroidal potential of the typeV5 1

2 mav r
2(r 21l2z2),

wherer is the radial coordinate,v r the radial frequency, and
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z the axial coordinate. Herel is the aspect ratio of the har
monic potential, so thatl.1 flattens the condensate into a
oblate pancake shape. Typically,v r;2p3200 Hz, so that
the natural timescale for oscillation is of the order of mil
seconds. If this potential is supplemented by a repulsive c
then the toroidal shape can be realized. The conventio
method is to use blue-detuned laser light to create a dip
force. In the experiment of Daviset al. @15# the ac Stark shift
from the green light of an argon-ion laser (l5514 nm), de-
tuned from theD line (l5589 nm) of the trapped sodium
atoms created the dipole force. If the laser beam is alig
along thez axis of the trap at the diffraction limit focus the
the potential if a function of r only: U(r )5\I (r )
3(8t2DI sat)

21, whereI sat is the saturation intensity of the
level, D is the detuning, andt is the lifetime of the upper
atomic level@21#. Across the focus the intensity variation
Gaussian:I (r )5I 0exp(2r2/s2), where the on-axis intensity
is related to the powerP and waist of the beamw0 by I 0

52P/pw0
2. So the width and height of the central barri

can be controlled by these parameters. Consider a typ
case for a trap containing sodium atoms; an argon-ion la
beam of 3.5 W focused to a waistw0530 mm, would give a
frequency shift of 7 MHz atr 50. Compared with trap fre-
quencies of the order ofv r /2p;1002400 Hz, this would
be sufficient to create a hole along the trap axis and form
toroidal condensate. The combination of the fields gives
external potential: Vext(x,0)5 1

2 mav r
2(r 21l2z2)1h0exp

(2r2/s2), where the repulsive central barrier is defined
height and width parametersh0 and s, respectively. The
radial minimum of the well is displaced tor 0

5sAln(4h0 /s2). For convenience we use scaled dimensio
less units for length, time, and energy, name
(\/2mav r)

1/2,v r
21 , and\v r , respectively. Then it is conve

nient to define the interaction strength by the dimensionl
parameter C[8pN0as(\/2mav r)

21/2, as N0→`,C→`,
while the ideal gas corresponds toC→0. For the pancake
geometryl@1 the central barrier heighth0 controls the tran-
sition from spheroid to torus. The radiusr 0 of the potential
well minimum provides a guide to the size of the torus. C
lective excitations for a quartic toroidal potential of the for
V(r ,z)ext5

1
2 mav r

2@(r 22r 0
2)21l2z2# were considered by

Salasnichet al. @4# and the variation in chemical potentia
and frequency with respect to particle number was stud
The geometry chosen@4# was a prolate shape such thatl
51/A8 in contrast to the oblate case considered here.
example of a toroidal condensate density in static equi
rium is shown in Fig. 1. The trap parameters areh0

550\v r , ands52A\/2mav r so thatr 0'4, and the inter-
action strength isC51000. For strong interaction, highC,
the radius of gyrationr K about the symmetry axis is a bette
estimate of condensate radius; where r K

2

[* ufu2r 2d3x/* ufu2d3x. For the pancake shape (h050)r K

53.2, but as the barrier is raised toh0510 then there is
some depletion of condensate at the center, so that it exp
to r K53.8. Finally for a high central barrier,h0550, the
condensate is excluded from the trap axis and a narrow
6-2
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SUPERFLUID TOROIDAL CURRENTS IN ATOMIC . . . PHYSICAL REVIEW A 68, 063606 ~2003!
is formed withr K54.6 as shown in Fig. 1. Here the max
mum condensate density is located close to the potentia
ergy minimumr 0'4 in accord with hydrostatic equilibrium
@22#.

C. Bogoliubov spectrum

In this paper we are primarily interested in the low-lyin
axisymmetric excitations arising from weak perturbation
the condensate, so that detailed results will be presented
the first few monopole, dipole, and quadrupole excitatio
only. For finiteC, the spectrum of excitations must be det
mined by numerical solution of Eqs.~3!–~5!. Separating
variables gives

f~r ,z,w!5f̃k~r ,z!eikw ~6!

so that the condensate, with circulationk and real amplitude
f̃, is the solution of the equation

L(k)f̃k2guf̃ku2f̃k50, ~7!

where

L(s)[2
\2

2ma
S ]2

]r 21
1

r

]

]r
1

]2

]z2
2

s2

r 2D 1 1
2 mav r

2~r 21l2z2!

1h0exp~2r 2/s2!12guf̃ku22m. ~8!

The cylindrical symmetry of the condensate means that sm
amplitude excitations can be described by radial (nr), axial
(nz), and rotational~m! quantum numbers, each with an a
sociated parity. Herem5nu2k50,61,62, . . . denotes an-
gular momentum with respect to the condensate, w
nr ,nz50,1,2,3, . . . . Thequasiparticle amplitudes

unr ,m,nz
~r ,z,w![ũnr ,nz

~r ,z!ei (m1k)w, ~9!

vnr ,m,nz
~r ,z,w![ ṽnr ,nz

~r ,z!ei (m2k)w, ~10!

FIG. 1. Torus potential~dashed line! and condensate densit
ufu2 ~full line! as a function of radius in the planez50. The radial
potential corresponds toh0550\v r ands52A\/2mav r . The con-
densate circulation isk50 and the interaction strength isC
51000. The scaled condensate probability densityufu2 is given in
units (\/2mav r)

3/2.
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with corresponding angular frequencyvnr ,m,nz
are solutions

of the eigenvalue problem,

L(m1k)ũ~r ,z!1gf̃k
2ṽ~r ,z!51\vũ~r ,z!, ~11!

L(m2k)ṽ~r ,z!1gf̃k
2ũ~r ,z!52\v ṽ~r ,z!. ~12!

The equations are discretised on a 2D grid using Lagra
functions @19#; the radial coordinate is defined atM grid
points (r 1 ,r 2 , . . . ,r M) and the axial coordinate atN points
(z1 ,z2 , . . . ,zN). Therefore

f̃k~r ,z!5 (
k51

M

(
l 51

N

f̃k
kl~r k ,zl !lk

21/2m l
21/2f k~r !gl~z!,

~13!

where f ,g are Lagrangian interpolating functions such tha

E
0

`

f i* ~r ! f k~r !2prdr'l id ik , ~14!

E
2`

`

gj* ~z!gl~z!dz'm jd j l . ~15!

The functions for ther coordinate are chosen to be gener
ized Laguerre polynomials@19#, scaled to encompass the e
tire condensate, with typicallyM550 mesh points. On the
other hand, Hermite polynomials are used in thez direction
so that

gl~z!5 (
l 50

N21

x l* ~zl !x l~z!, ~16!

wherex l(z)5hN
21/2w(z)1/2Hl(z). andHl(z) are the Hermite

polynomials associated with weightsw(z)5e2z2
and nor-

malization factorhN52Np1/2N!. A high degree of accuracy
was found with onlyN530 points. The resultant eigenvalu
problem was solved using the following approach. The c
densate density was found using Newton’s method for
~7!. The decoupled linear eigenvalue problem Eqs.~11! and
~12! was solved by conversion to HessenbergQR form fol-
lowed by inverse iteration@23#. Convergence was establishe
by a combination of grid scaling and number of mesh poin
so that at least six-figure precision was assured for all
quencies~see Tables I and II!.

D. Spectrum of torus excitations

The Bogoliubov mode frequencies for a toroidal conde
sate without circulation (k50) are shown in Figs. 2 and 3
for two different barrier heights. The variation in frequenci
as the particle number~C! increases is shown. In the absen
of circulation for the low barrierh0510 ~Fig. 2! the effect of
increasing the interaction strength, or equivalently increas
the number of atoms in the condensate, is to spread the s
tral lines of the low-lying modes, while the highly excited
state frequencies are relatively insensitive asC increases. In
contrast to the prolate toroid results@4# the effect of increas-
ing atom number, increasingC, leads to an increase in th
6-3
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NUGENT, McPEAKE, AND McCANN PHYSICAL REVIEW A68, 063606 ~2003!
gap between the low-frequency excitations. The threem50
modes shown are, in increasing frequency, the gapless m
v50, the first breathing mode, and the first axial dipo
modev5A7. The lowest degenerate modesm561 are the
fundamental radial dipoles, at higher frequencyv;2 we ob-
serve an octupole mode, and finally thexz quadrupole atv
;2.8 is very close to the axial dipole. The increasing den
of states for higher excitations is familiar from studies
spherical condensates and is reproduced here. Finally
lowest pair ofm52 states, corresponding to quadrupole e
citation in the radial coordinate are far below the next hig
excitations of this symmetry.

TABLE II. Excitation frequenciesv/v r of the toroidal conden-
sate with circulationk51 with variation in the central barrie
height h0. The condensate interaction strength isC
[8pN0as(\/2mav r)

21/251000.

m h0 /\v r50 h0 /\v r510 h0 /\v r550

2.646 2.646 2.646
3.310 3.243 3.954

m50 3.471 3.600 3.970
4.691 4.480 4.771
4.728 4.807 5.609
4.936 5.027 5.882

20.320 0.501 0.447
umu51 1.000 0.875 0.652

2.613 2.417 2.451
3.085 2.942 2.823

1.197 1.061 0.890
1.640 1.498 1.260

umu52 3.499 3.037 2.790
3.322 3.321 3.114
4.925 4.530 4.396
4.840 4.561 4.471

TABLE I. Angular frequenciesv/v r of the first-excited radial
dipole modes. The table compares the numerical accuracy o
time-dependent linear response method~TDLR! with e50.02 with
the time-independent methods~BdG! and the agreement is bette
than 2% in all cases. The condensate interaction strengthC
[8pN0as(\/2mav r)

21/251000 and the axial mode isnz50. Re-
sults are presented fork50 andk51.

h0 /\v r510 h0 /\v r550
Mode TDLR BdG TDLR BdG

k50
m511 0.772 0.771 0.563 0.554
k50
m521 0.772 0.771 0.563 0.554
k51
m511 0.875 0.874 0.657 0.652
k51
m521 0.496 0.501 0.448 0.447
06360
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As the toroidal shape is more sharply defined (h0550)
the high-frequency modes become more tightly group
~Fig. 3! and the gap to the lowest-order excitations wide
The long-wavelength low-energy modes are circulatio
around the torus, as shown in Fig. 3. The acoustic mo
@22# appropriate in the limitC→`, are sinusoidal oscilla-
tions in densitydr and follow the microscopic wave equa
tion, in our units:

2v2dr52“•~@m2Vext#“dr!. ~17!

The angular waves satisfy the periodic boundary conditi
dr(w12pm)5dr(w). Taking the volume average of Eq
~17! over the radial and axial densities givesv5umuvs ,
where

vs
2E E f2r 22prdrdz52CE E f42prdrdz, ~18!

he

FIG. 2. Excitation spectrum for the axisymmetric modes
semitoroidal condensate without circulation (k50) as a function of
interaction strengthC. Trap parameters arel5A7, s52. The sym-
metries of the modes arem50 (s), umu51 (L), umu52 (* ).

FIG. 3. Excitation spectrum for the axisymmetric modes of
roidal condensate without circulation (k50) as a function of inter-
action strengthC. Trap parameters arel5A7, s52, andh0550.
The mode symmetries arem50 (s), umu51 (L), umu
52 (* ).
6-4
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SUPERFLUID TOROIDAL CURRENTS IN ATOMIC . . . PHYSICAL REVIEW A 68, 063606 ~2003!
so that

v5umuA2C^f2&/^r 2&. ~19!

The results in Fig. 2 reflect the change in dispersion rela
v;m2 to v;m for the lower-frequency modes as the inte
action strength increases. The value ofvs varies slowly with
changes in the interaction strengthC, see Fig. 3. It is worth
noting that the simple formula~19! gives a good estimate o
the frequency spectrum. For example, forC51000 vs
'0.58 in good agreement with the results shown~Fig. 3!
while for C54300 the value isvs'0.75. The relation~19! is
quite general and can be applied to any toroidal geome
For a large radius but tightly confined torus, so that^r 2&
'r 0

2 the relation simplifies to the 1D result as expected,

v5umuA2C/^f2&r 0
21 , ~20!

where the wave number is quantized according toumu/r 0,
and the speed of sound is proportional to the square roo
the atom density. One might assume, for a given radial
axial modes, that this pattern of frequencies for them sub-
levels would be repeated for the higher-frequency bands
fact this is not the case as confirmed in Figs. 2 and 3.
bands become mixed and thev;umu relation does not hold
A more extensive list of the frequencies including the high
excited modes is given in Table II.

E. Toroidal current flow

If the condensate itself has a currentkÞ0, then the cen-
tral barrier acts as a pinning site for the vortex. Furtherm
in the presence of a vortex the6umu degeneracy of the ex
citation modes is removed, this removal of degeneracy a
occurs in the more general case of a vortex in a conden
confined to an axially symmetric potential and the frequen
shifts for quadrupole excitations in this system have b
calculated@24#. Perturbations of the external potential are
interest since it allows us to study imperfections in the t
oidal trap potential, and also the dissipation of the ring c
rent. We propose that these modes can be studied by a la
displacement of the trap. In Fig. 4 the spectrum of exc
tions of a singly quantized current loopk51 are presented
In this figure we consider the transition from a conventio
pancake geometryh050, through a semitoroidal traph0
510, before reaching the torus shapeh0550. The presence
of the barrier creates a narrower radial well, so that them
50 radial excitations are pushed to higher frequencies.
axial m50 dipole modev5l'2.65 is unaffected of course
The splitting of them degeneracy is greatest for the spher
dal h050 case, in particular, the lowest pair ofumu51
modes. The co-rotating modem511 has a positive fre-
quency lying close to the lowestm52 mode. The anomalou
or counter-rotating modem521 has a negative frequenc
but a positive norm. Anomalous modes arise when a cond
sate has a stable topological excitation such as a vortex
deed the presence of a vortex is a necessary condition fo
anomalous excitation as its presence is required to sa
conservation of energy and momentum in the system@25#. In
this case the central barrier raises the anomalous mod
06360
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positive frequencies effectively creating a stable pinning s
for toroidal flow. The stability of high circulation current in
toroidal traps has been discussed in detail by Buschet al.
@17#. The splitting of theumu51 pair reduces as the barrie
rises and the condensate becomes toroidal. The closing o
energy gap reflects the fact that the barrier expels conden
density from the center so that them521 cannot occupy the
vortex core region and create a large energy gap. Theumu
51 modes will be evident when dipole excitations of t
circulating flow are discussed. Them562 states, degener
ate in Fig. 3, are also split by the condensate flow and in
toroidal limit, h0550. The energy splittings are proportion
to umu the current momentum. This follows from the Bog
liubov equations when the centrifugal energy terms can
considered as perturbations. First-order perturbation the
applied to Eqs.~11! and ~12! gives the energy shift,

D\v'
\2~m1k!2

2ma
~u0 ,r 22u0!1

\2~m2k!2

2ma
~v0 ,r 22v0!,

~21!

where u0 and v0 are the unperturbed quasiparticle stat
This gives the energy splittingDE5\(v12v2),

DE'4umuk
\2

2ma
E ~u0* u02v0* v0!r 22d3r. ~22!

If the condensate and excitations are tightly confined aro
the radiusr K then

DE'4umuk
\2

2mar K
2 . ~23!

The splitting decreases asC, and hencer K increases. Refer-
ring to Table I forh0550, the umu51 splitting is close to
that given by the perturbation expression@Eq. ~23!# DE
'0.19. However the lowestumu52 modes in Table I have a
splitting ~0.37! which is slightly smaller than the perturbatio
result 0.38.

FIG. 4. Excitation spectrum for modes of a condensate w
circulation k51. The mode symmetries are umu
50 (s), 1 (L), 2 (* ). Frequencies are plotted as a function
barrier height h0 in a trap characterized byl5A7 and s
52A\/2mav r , with interaction strengthC51000. See also Table
II.
6-5
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NUGENT, McPEAKE, AND McCANN PHYSICAL REVIEW A68, 063606 ~2003!
The simplest experimental scheme to observe th
modes is to displace the potential in the horizontal plane
follow the motion of the condensate center of mass. Cons
a sudden adjustment of the trapping potential

Vext~x,y,z!→Vext~x2«,y,z!. ~24!

The effect on the center of mass is shown in Figs. 5 and
which the trajectory is traced out as time evolves. Th

FIG. 5. Center-of-mass trajectory of a toroidal condensate
rentk51 displaced in thex direction from the trap center@x andy
are expectation values for thex and y coordinate in units of
(\/2mav r)

1/2]. The torus has parametersl5A7, s52A\/2mav r ,
and h0550\v r and interaction strengthC51000. The figure
shows the path traced out over a total timeT580 in the horizontal
plane by the condensate center of mass following a small horizo
displacement of the trap axis«51. The combination of thex-dipole
and y-dipole oscillations leading to precession of the condens
These dipole modes are degenerate and nearly in phase. The
trum density of thex-dipole oscillations is shown in Fig. 7.

FIG. 6. Center-of-mass trajectory of a toroidal condensate~cur-
rentk51) after displacement in thex direction@x andy are expec-
tation values for thex andy coordinates in units of (\/2mav r)

1/2].
As in Fig. 5 the torus has parametersl5A7, s52A\/2mav r , and
h0550\v r ; however, the atom number is much higher in this ca
C54300. The figure shows the path traced out over a timeT580
in the horizontal plane by the condensate center of mass follow
a small horizontal displacement of the trap«51. The center of
mass performs a circular motion due to two effects: thex and y
dipole states are not degenerate in frequency and the amplitude
out of phase, by roughly;p/2.
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graphs were obtained by direct solution of the tim
dependent Gross-Pitaevskii equation, following from taki
arbitrary variation ofc* in Eq. ~1!:

@H01gucu22 i\] t#c50. ~25!

For very small perturbations the nonlinearity is small and
time-dependent linear response method~TDLR! is equiva-
lent to the stationary Bogoliubov equation method outlin
above. This employs a direct numerical solution, in com
nation with spectral analysis and can be used to determ
the frequency spectrum@19# and the strength of each fre
quency component, that is, the population of modes and d
sity fluctuations of the collective excitations. This can
done efficiently and accurately using spectral methods.
initial state can be determined by imposing the phase acc
ing to the value ofk and evolving in imaginary time@19#.
The calculations presented here were performed on a
364364 grid. The scaling of grid spacing according to t
degree of confinement ensures maximum spatial resolu
of the condensate, so that thez dimension is more tightly
confined. The time step chosen,Dt'0.00132p/v r , is dic-
tated by the characteristic timescale of the excitations
power-spectral-density estimate which used a Kaiser w
dowing function was employed to analyze the various m
ments of interest in terms of its component frequencies.
example, thex-dipole moment can be transformed as fo
lows:

Px~v!5U E
0

T

e2 ivt^x&dtU2

. ~26!

The spectral data obtained for a very small trap displacem
«50.02 confirms the mode frequencies from t
Bogoliubov-de Gennes equation, and establishes the a
racy of the method. As shown in Table I, the frequenc
using this method are accurate to within a few percent. Ho
ever a realistic measurement process based on density i
ing requires a much larger amplitude motion in order to
solve the fluctuations. In this case, the nonlinear effect can
important. In our scheme, which we propose as a via
method to measure the spectrum, we consider the trap
placed by a substantial amount«51 in order to resolve the
oscillations in the plane. When circulation of the toroid
current is disturbed in this manner the effect is to create la
counter-circulating currents. If these currents are in ph
and of equal magnitude the condensate would execute a
dulum motion. In general, the motion will be 2D if the sym
metry is broken. In terms of experimental observables,
effect appears as oscillations of the center of mass wit
precessional motion. Similar precessional motion for qu
rupole excitation of a spheroidal vortex state has been no
@19#. The locus of the center of mass in the horizontal pla
from t50 to t580 is shown in Fig. 5 forC51000 and
h0 /\v0510. Initially the condensate moves fromx50,y
50 towards the equilibrium pointx51,y50, however, this
motion is converted an irregular precessing pendulum m
tion. The rate of precession is proportional to the splitting
levels. However the center-of-mass motion is not simple
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clearer understanding of the motion follows from a spec
analysis of thex and y dipole moments. In fact, the appa
ently irregular motion is dominated by only a few comp
nents of the low-frequency dipoles. In both the caseh0510
~Fig. 7! and h0550 ~Fig. 8! the m511 mode is stronger
than the modem521 and this dictates a motion with pos
tive helicity, that is, the condensate precession is in the s
sense as the flow. However, the frequencies are significa
different from the linear model and thex-y degeneracy is
removed due to the nonlinearity of the response in thx
direction. In Fig. 7, the torus parameters arel5A7, s
52A\/2mav r , andh0550\v r . The condensate interactio
strength isC51000 with trap displacemente51. Compar-
ing thex frequencies with the values of Table I we note t
y-dipole frequencies are very similar in both cases, but
x-dipole pair splitting is increased when the trap displa
ment is this large. The motion shown in Fig. 5 is a super
sition of a fasterx dipole with a slowery dipole. The results
for the higher interaction strengthC54300 show the split-
ting of theumu51 lines narrowing as the size of the conde
sate increases. The figure shows the shifting upwards of
mode frequencies and a narrowing of them561 doublet
splitting consistent with an expanded condensate with
higher sound speed. The modes shown have frequencievx
50.625,0.804,2.095,2.284. The correspondingy dipole
modes have similar strengths but with frequenciesvy
50.657,0.792,2.086,2.275. The nonlinear interactions g
different splittings for thex andy dipoles:dvx50.179 com-
pared withdvy50.135 both of which are slightly smalle

FIG. 7. Spectral density~arbitrary units! of the x-dipole of a
condensate with circulationk51 corresponding to Fig. 5:Px(v)
The torus parameters arel5A7, s52A\/2mav r , and h0

550\v r . The condensate interaction strength isC51000 with trap
displacemente51. The figure shows the dominance of thr
modes, the low frequencym561 doublet, and an excitedm5
21 mode. The center of the doublet corresponds to the freque
vs5A2C^f2&/^r 2&'0.58. In the graph the frequency peaks a
shifted from the linear response results given in Table I and h
a broader splitting than the Bogoliubov approximation. T
x-dipole modes, shown above, have frequenciesvx

50.421,0.666,2.237,2.441 while the correspondingy-dipole modes
have frequencies:vy50.449,0.657,2.234,2.422.
06360
l

e
tly

e
-
-

-
he

a

e

than the linear perturbation theory~23! dv'0.200. The ma-
jor contrast between Figs. 5 and 6 is the orbiting moti
observed for the higher value ofC, although the frequency
components shown in Figs. 7 and 8 are of similar relat
strengths, thex and y dipoles have a large phase differen
close to p/2 for C54300 and explains the more circula
character of the motion. This is slightly surprising in that t
usual behavior of collective mode of oscillations is that t
frequency dependence onN is relatively weak for largeN. In
this respect, collective excitation frequencies are usuall
poor method of estimating condensate fraction compa
with the hydrostatic pressure. However, in this case the
oidal geometry seems to retain the quantum features of
excitations even for large particle number.

III. CONCLUSIONS

In this paper we studied the spectrum of collective ex
tations of oblate toroidal condensates within the Bogoliub
approximation, and explored the dynamical stability of ri
currents around the torus. The main features we noted
generic to this design of trap and would apply to simi
geometries and would be exhibited in experiments on to
dal condensates. The transition from spheroidal to toro
geometry of the trap displaces the energy levels into nar
bands. The lowest-order modes are quasi-one-dimensi
circulations with dispersion relationv;mvs with m quan-
tized. When the condensate has an toroidal current flow,
low-energy circulations are split into co-rotating and count
rotating pairs. A simple, but accurate, formula is presen

cy

e

FIG. 8. Spectral density~arbitrary units! of x-dipole of conden-
sate with circulationk51 corresponding to Fig. 6:Px(v) The torus
parameters arel5A7, s52A\/2mav r andh0550\v r . The con-
densate interaction strength isC54300 with trap displacemente
51. The center of the doublet corresponds to the frequencyvs

5A2C^f2&/^r 2&'0.75 The figure shows the shifting upwards
the mode frequencies and a narrowing of them561 doublet split-
ting consistent with an expanded condensate with a higher so
speed. The modes shown above have frequencies:vx

50.625,0.804,2.095,2.284. The correspondingy dipole modes, not
shown, have similar strengths but with frequenciesvy

50.657,0.792,2.086,2.275.
6-7
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for the lowest angular acoustic modes of excitation, and
splitting energy when a background current is present.
stability of the flow is maintained by the central barrier a
ing as a pinning site. Instabilities will most readily occur b
radial dipole excitations. The dipole states are nearly deg
erate in the toroidal limit. Small condensate currents wh
disturbed create slow precessional motion through the ce
of the trap through mixing of the degeneratex andy dipole
states. For a tightly confined torus, these modes are
.R

er

.
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separated in energy and accessible to observation. We
pose an experiment that would detect these modes. A re
tic measurement requires resolution of the global conden
motion. Large displacements, such as those we propose,
rise to small nonlinear shifts in the frequencies beyond
Bogoliubov model. We also note that the highly occupi
condensate performs a circular orbiting motion of the cen
of mass. Such features are resolvable and experimen
measurable with current technology and expertise.
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