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Superfluid toroidal currents in atomic condensates

Eileen Nugent* Dermot McPeaké! and J. F. McCanh
1Department of Applied Mathematics and Theoretical Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland
2NMRC, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland
(Received 1 August 2003; published 15 December 2003

The dynamics of toroidal condensates in the presence of condensate flow and dipole perturbation have been
investigated. The Bogoliubov spectrum of a condensate is calculated for an oblate torus using a discrete-
variable representation and a spectral method to high accuracy. The transition from spheroidal to toroidal
geometry of the trap displaces the energy levels into narrow bands. The lowest-order acoustic modes are
quantized with the dispersion relatian~|m|ws with m=0,=1,+2, . ... Acondensate with toroidal currert
splits the|m| co-rotating and counter-rotating pairs by the amaiBt~2|m|%2«(r ~2). Radial dipole excita-
tions are the lowest-energy dissipation modes. For highly occupied condensates the nonlinearity creates an
asymmetric mix of dipole circulation and nonlinear shifts in the spectrum of excitations so that the center of
mass circulates around the axis of symmetry of the trap. We outline an experimental method to study these

excitations.
DOI: 10.1103/PhysRevA.68.063606 PACS nuntfer03.75.Kk, 03.75.Lm
I. INTRODUCTION ployed in early experiments with sodium vapgt$]. In this

case a blue-detuned laser was used as a measure to counter-
The elementary excitations of trapped Bose Einstein conact Majorana spin flips; a loss mechanism which can be
densates have been extensively studied in recent years. They@blematic in the cooling required for condensation. In
collective modes are coherent macroscopic matter waves thAt0re recent experiments the toroidal topology has been used
can be used in many applications in cold atom Physics. Sinc® the study of vortex nucleation and superfluidii]. Re-
the trap geometry defines the mode spectrum and amplitudeSENt theoretical work concerning toroidal condensates has
recent studies have considered spheroidal condeniag@s concentrated on excitations in traps which have some time

. . . dependence in their topolod{t7] and on vortex-vortex dy-
and_condens_ates n t(_)polog_les such as toroidal {&p8]. A namics which have been shown to be strongly distorted by
toroidal trap is of particular interest as it can be employed a

) Juch a geometry18]. The stability of multiply quantized
a storage ring fgr C‘?heref.“ atom wayés or ultracold mol- toroidal gurrents)[has], been studiec}/ by REEsl%Ythe spec-
ecules[7] enabling investigations of persistent currents, JOyym of single-particle excitations for cigar-shaped toroidal
sephson effeqts, .phase_fluctuatlons, and high-precision Saﬂ'aps with circulation has also been consideiid Although
nac or gravitational interferometry. More adventurousy wide variety of toroidal trap parameters is possible, one of
possibilities for toroidal condensates include the constructioghe advantages of such a system, the most easily accessible
of a mode-locked atom las¢8] and the creation of sonic experiments appear to be based on oblate shaped traps. In
black holes in tight ring-shaped condensdi@k A narrow  this paper we study results for the spectrum of collective
ring of condensate, effectively reducing the dimensionality toexcitations of oblate toroidal condensates within the Bogo-
one-dimensior{1D), could be applied to dark soliton propa- liubov approximation, and explore the dynamical stability of
gation[10] or low-dimensional quantum degeneracy includ-ring currents around the torus. The main features we note are
ing the Tonks gas regimgl1,17. In the case of supercur- generic to this design of trap and would apply to similar
rents the dimensionality of the system is important. In 1D aggeometries. Perturbations of superfluid ring currents by an
T>0 superfluidity strictly speaking cannot exist; at finite off-set of the trapping potential are studied. For example, in
temperatures supercurrents have a finite lifetime independeft toroidal trap the central repulsive potential acts as a pin-
of the system size. It has been shown however that in thBing site for the vortex and thus the stability of the flow can
weak-interaction limit where the interaction strength is de-P€ studied. The excitation spectrum, mode densities, flow
creased in parallel with temperature, the decay rate is expd@t®; and center-of-mass motion for this system are obtained
nentially suppressed leading to supercurrents which are long?y €Mploying both a time-dependent and time-independent

lived in comparison to the lifetime of the systdim3]. The ethods[19,20. A simple, but accurate, formula is pre-
sented for the lowest angular acoustic modes of excitation

decay of supercurrents in 1D is also qualitatively different, in o
2D and 3D the normal decay mechanism is to vortices whicrind the splitting energy of these modes when a background
urrent is present.

are system-size dependent, however in 1D one cannot define

a vortex, and the decay is to excitations which are indepen- Il. THE MODEL
dent of the system size and as such may be described in ' _
terms of the microscopic parameters of the sysfa#). A. The weakly interacting Bose gas

Toroidal traps have been around for some time, being em- For a cold dilute weakly interacting gas, the ground state
(condensate moglelominates the collective dynamics of the
system. In experimental realizations one can achieve tem-

*Electronic address: e.nugent@am.qub.ac.uk peratures such that<T, (typically 0.1 to 1K) and den-
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sities such that the gas is weakly interacting and highly diz the axial coordinate. Herk is the aspect ratio of the har-
lute. Under such conditions, the condensat®&gf1 atoms monic potential, so that>1 flattens the condensate into an
is well described by a mean field, or wave function, gov-oblate pancake shape. Typicalby,~ 27X 200 Hz, so that
erned by the Gross-Pitaevskii equation, and the quasipartici¢e natural timescale for oscillation is of the order of milli-
excitations are acoustic waves within this field. If the pertur-secondsl If this potentiaj is Supp]emented by a repu|sive core
bations of the condensate are small, then it is appropriate anflen the toroidal shape can be realized. The conventional
convenient to use the linear response approximation, whickethod is to use blue-detuned laser light to create a dipole
is equivalent to the Bogoliubov approximation for single- ¢5rce. |n the experiment of Davit al.[15] the ac Stark shift
particle excitations in highly condensed quantized Bosehom the green light of an argon-ion laser£514 nm), de-
gases afc ZEro tgmperature. tuned from theD line (A=589 nm) of the trapped sodium
Consider a dilute system &, atoms, each of mass,, atoms created the dipole force. If the laser beam is aligned

trapped by an external potentidl.,(X,t) and interacting . . T
i , ~ along thez axis of the trap at the diffraction limit focus then
weakly through the two-body potentis(x,x"). At low tem 6@6 potential if a function ofr only: U(r)=fl(r)

peratures and densities, the atom-atom interaction can 5 1 . I .
represented perturbatively by ttewave pseudopotential: x(87 AI_Saf) ' Wher_elsat IS th_e satur_atlc_)n intensity of the
V(x,x')=(4mh%a./m,) 8P (x—x'), and a, is the swave IeveI,_A is the detuning, and is the I|f(-_3t|me pf the_upper_
scattering length. The dynamics follow from the Hartreeatom'c_ level[21]. Across the focus the |nten3|ty.ve.1r|at|or_1 is
variational principle, Gaussiani (r)=1exp(—r%d¢?), where the on-axis intensity
is related to the poweP and waist of the beanw, by I,
=2P/7wj. So the width and height of the central barrier
can be controlled by these parameters. Consider a typical
case for a trap containing sodium atoms; an argon-ion laser
where g=(47h2/my)Noas, Ho=—(#?/2m;)V?+Veu—p,  beam of 3.5 W focused to a waist,= 30 um, would give a
and the chemical potentigl plays the role of a Lagrange frequency shift of 7 MHz at =0. Compared with trap fre-
multiplier. Supposing that the temperatures are sufficientl;quencies of the order ab,/2m~100—400 Hz, this would
low that the condensate can be represented by a Bogoliubgye syfficient to create a hole along the trap axis and form a
mean field ¢. The single-particle excitations can be de-ggidal condensate. The combination of the fields gives the
scribed by the linear response ansatz, external  potential: Vg, (x,0)= %mawf(r2+)\222)+hoexp
(—r?lo?), where the repulsive central barrier is defined by

t
5J; 2dtJ d3xy* [Ho+ 29y* y—ihd, =0, (1)

z//(x,t)zao(t)qb(x)JrE [aj(t)uj(x)e*“"Jt height and width parametets, and o, respectively. The
170 radial minimum of the well is displaced torg,
+a}*(t)u}*(x)e“‘"i‘], 2 = o\In(4hy/?). For convenience we use scaled dimension-

less units for length, time, and energy, namely,
where ¢ represents the highly occupied condensate; that iSA/2m,w,) Y2 w, t, andfw, , respectively. Then it is conve-
|ao|~\/ﬁ>|aj|, j#0. From the variations¢*, and linear nient to define the interaction strength by the dimensionless
expansion in the small parametezs,a® taken as constant, parameter C=8mNyag(h/2m,w,) Y2 as Ny—o,C—x,
the stationary Gross-Pitaevskii equation and Bogoliubowvhile the ideal gas corresponds @—0. For the pancake
equations follow geometryA>1 the central barrier heigl, controls the tran-
2, sition from spheroid to torus. The radiug of the potential
Ho¢+9g|¢|°¢=0, ) well minimum provides a guide to the size of the torus. Col-
: _ 3 * — . lective excitations for a quartic toroidal potential of the form
with (¢,4)=1 andJd xf(x)"g(x)=(f.g). The Bogoliu V(r,2)ex= sMaw?[ (r2—r3)2+\%2%] were considered by

bov modes are solutions of the coupled linear equations: 3 1 ' :
Salasnichet al. [4] and the variation in chemical potential

(Ho+ Zg|¢|2)uj+g¢20j =+hoju;, (4) and frequency with respect to particle number was studied.
The geometry chosefd] was a prolate shape such that
(Ho+2g|¢|H)vj+ge*2uj=—tfiw;. (5)  =1/{y8 in contrast to the oblate case considered here. An

_ ) ) example of a toroidal condensate density in static equilib-
Time-reversal symmetry of Eq&}) and(5) is reflected in the rium is shown in Fig. 1. The trap parameters dig

_fact that every fet Sf solutior{gv; , u; ,vj_} h:_:ls a corresp_ond_— —50kw, , ando=2Al2m,e; SO thatr;~4, and the inter-
ing set{~w;,v",ui’} and the normalization convention is ;i strength i<C=1000. For strong interaction, hig@,
(Ui up) = (viv) = & the radius of gyratiom, about the symmetry axis is a better
. estimate of condensate radius; where r2

B. Toroidal condensates Ef|¢|2r2d3x/f|¢|2d3x. For the pancake shapy=0)ry

Conventional atom traps provide a confinement of the=3.2, but as the barrier is raised ky=10 then there is
condensate in the radial and axial directions. We write this asome depletion of condensate at the center, so that it expands
a spheroidal potential of the typ¥=3m.w?(r?+\2z%), to r=3.8. Finally for a high central barrieh,=50, the
wherer is the radial coordinatey, the radial frequency, and condensate is excluded from the trap axis and a narrow ring

063606-2
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0.008 50 with corresponding angular frequenaylr mn, are solutions
o of the eigenvalue problem,
= 40F
> 0.006 = ~ ~ o ~
g) 3 ‘C(m+K)u(rvz)+g¢KU(r!Z):+ﬁwu(rvz)1 (ll)
o) 30 %
@ 0.004F = ~ ~ o~ ~
E 20 Lim- v (r,z)+g¢u(r,z)=—hov(r,z). (12
<
+
§ 0.002F g The equations are discretised on a 2D grid using Lagrange
3 10> functions [19]; the radial coordinate is defined & grid
points (,r», ... ,ry) and the axial coordinate &t points
% > 4 5 3 p (21,25, . .. zy). Therefore
Scaled radial coordinate, r  (trap units) MoN
FIG. 1. Torus potentialdashed ling and condensate density 7¢3K(r,2)=k§_)1 |Z1 DR(re.z)N o V(0 9i(2),
|#|2 (full line) as a function of radius in the plarze=0. The radial T (13)
potential corresponds to,=50% w, ando=2A/2m,w,. The con-

densate circulation isk=0 and the interaction strength i€

1€ rengtn 8 wheref,g are Lagrangian interpolating functions such that
=1000. The scaled condensate probability derlgiy is given in

units (&/2myw, )2 o

f f;k(r)fk(r)Z’]Trdr“)\i&k, (14)
is formed withr,=4.6 as shown in Fig. 1. Here the maxi- 0
mum condensate density is located close to the potential en- "
Frg]y minimumry~4 in accord with hydrostatic equilibrium f 97 (2)9/(2)dz= ;5 . (15
22]. -

The functions for the coordinate are chosen to be general-

ized Laguerre polynomialsl 9], scaled to encompass the en-
In this paper we are primarily interested in the low-lying tire condensate, with typicalliy =50 mesh points. On the

axisymmetric excitations arising from weak perturbation ofother hand, Hermite polynomials are used in #hdirection

the condensate, so that detailed results will be presented fso that

the first few monopole, dipole, and quadrupole excitations

only. For finiteC, the spectrum of excitations must be deter-

mined by numerical solution of Eq¢3)—(5). Separating gl(Z):lzo Xt (z)xi(2), (16)

variables gives

C. Bogoliubov spectrum

N—-1

wherey,(z) =hyYw(2)¥?H,(z). andH,(z) are the Hermite

polynomials associated with weighw;(z):e*22 and nor-
malization factorhy=2N72N!. A high degree of accuracy
was found with onlyN =30 points. The resultant eigenvalue
problem was solved using the following approach. The con-
~ ~ 197 densate density was found using Newton’s method for Eq.
Ligbe—9lbd ¢=0, () (7). The decoupled linear eigenvalue problem Ed4) and
(12) was solved by conversion to Hessenb&® form fol-

B(r,2,0)=b,(r,2)€*¢ (6)

so that the condensate, with circulatierand real amplitude
$, is the solution of the equation

where lowed by inverse iteratiof23]. Convergence was established
22 19 2 2 by a combination of grid scaling and number of mesh points,
Lro=— — | — = il +imuw(r2+\222) so that at least six-figure precision was assured for all fre-
(s) 2 J 2 9 2 2 2 MW, R
Mg\ Jr= 1 odr gz r quenciegqsee Tables | and )l
+hoexp(— 1%/ a?) +29(¢, |~ p. ®)

D. Spectrum of torus excitations

The cylindrical symmetry of the condensate means that small The Bogoliubov mode frequencies for a toroidal conden-
amplitude excitations can be described by radig) ( axial ~ sate without circulation £=0) are shown in Figs. 2 and 3
(n,), and rotationalm) quantum numbers, each with an as- for two different barrier heights. The variation in frequencies

sociated parity. Herem=n,— x=0,+1,+2, ... denotes an- as the particle numbec) increases is shown. In the absence
gular momentum with respect to the condensate, whiléf circulation for the low barriehy= 10 (Fig. 2) the effect of
n,,n,=0,1,2,3. ... Thequasiparticle amplitudes increasing the interaction strength, or equivalently increasing
the number of atoms in the condensate, is to spread the spec-
Un, menz(r,z,q;)zﬁnr'nz(r,z)ei(mw)«»’ (9) tral lines of the low-lying modes, while the highly excited-

state frequencies are relatively insensitiveCagcreases. In
~ . contrast to the prolate toroid resul#| the effect of increas-
— i(m—«)e h . . - .
Un, mn(1:Z.@)=vn n(T,2)€ ' (10 ing atom number, increasing, leads to an increase in the

063606-3
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TABLE I. Angular frequencies»/ o, of the first-excited radial — T 1 1 1

dipole modes. The table compares the numerical accuracy of the 5
time-dependent linear response metlidDLR) with e=0.02 with §;— 3<
the time-independent methodBdG) and the agreement is better i §
than 2% in all cases. The condensate interaction strengt® is &
=87Ngag(/2m,w,) " ?=1000 and the axial mode is,=0. Re- S L9
sults are presented far=0 andx=1. g

ho /%@, =10 ho /% w, =50 i
Mode TDLR BdG TDLR BdG g 1

[&]
k=0 i k
m=+1 0.772 0.771 0.563 0.554 )
k=0 0¢
0 200 400 600 800 1000

m=1— 1 0.772 0.771 0.563 0.554 Interaction strength: C
K=
m=+1 0.875 0.874 0.657 0.652 FIG. 2. Excitation spectrum for the axisymmetric modes of
k=1 semitoroidal condensate without circulation=€ 0) as a function of
m=-1 0.496 0.501 0.448 0.447 interaction strengtiC. Trap parameters are= \/7 o=2. The sym-

metries of the modes are=0 (O), [m|=1 (¢), |[m|=2 (*).

As the toroidal shape is more sharply defindg = 50)

o . he high-frequency modes become more tightly grouped
mfdes ShOV.V” are, In increasing frequency, Fhe gaplesg mocﬁgig_ 3 and the gap to the lowest-order excitations widens.
©=0, the first breathing mode, and the first axial deOIeThe long-wavelength low-energy modes are circulations
modew= /7. The lowest degenerate modes- +1 are the 46 the torus, as shown in Fig. 3. The acoustic modes
fundamental radial dipoles, at higher frequemey 2 we ob- [22] appropriate in the limitC—«, are sinusoidal oscilla-

serve an octupole mode, and finally the quadrupole atv  ions in densitysp and follow the microscopic wave equa-
~2.8is very close to the axial dipole. The increasing density, in our units:

of states for higher excitations is familiar from studies of

spherical condensates and is reproduced here. Finally the —w?8p=2V-([;t— VeV p). (17
lowest pair ofm=2 states, corresponding to quadrupole ex-

citation in the radial coordinate are far below the next highefThe angular waves satisfy the periodic boundary conditions

gap between the low-frequency excitations. The thmee0

excitations of this symmetry. op(e+2mm)=Sp(p). Taking the volume average of Eq.
(17) over the radial and axial densities gives=|m|ws,
where

TABLE Il. Excitation frequenciess/ w, of the toroidal conden-
sate with circulationk=1 with variation in the central barrier

height hy. The condensate interaction strength i€ wgff¢2r22mdrdzzchf¢42ﬂ.rdrdzi (18
=87Ngag(/2myw,) " Y?=1000.

m ho /i, =0 ho/hw, =10  hyltw,=50
2.646 2.646 2.646 I TT I *
3.310 3.243 3.954 o BEE ¢ 14
Q2 8 8
m=0 3.471 3.600 3.970 o
4.691 4.480 4,771 g 2| _
4.728 4.807 5.609 g
4.936 5.027 5.882 p=
5]
—-0.320 0.501 0.447 ® 1F * ¥
Im|=1 1.000 0.875 0.652 S *
X | L ¥ o
2.613 2.417 2.451 w *0 o <
3.085 2.942 2.823 0 govr ]
0 200 400 600 800 1000
1.197 1.061 0.890 .
Interaction strength
1.640 1.498 1.260 teraction strength C
|m|=2 3.499 3.037 2.790 FIG. 3. Excitation spectrum for the axisymmetric modes of to-
3.322 3.321 3.114 roidal condensate without circulatior € 0) as a function of inter-
4.925 4.530 4.396 action strengttC. Trap parameters ate=\7, o=2, andh,=50.
4.840 4.561 4.471 The mode symmetries aren=0 (O), |m|=1 (<), |m|

=2 (*).
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so that .

o=|m|y2C({¢?)/{r?). (19

The results in Fig. 2 reflect the change in dispersion relation
w~m? to w~m for the lower-frequency modes as the inter-
action strength increases. The valuamfvaries slowly with
changes in the interaction strendih see Fig. 3. It is worth
noting that the simple formulél9) gives a good estimate of
the frequency spectrum. For example, f@r=1000 wg
~0.58 in good agreement with the results shoffig. 3
while for C=4300 the value i®¢~0.75. The relatiori19) is
quite general and can be applied to any toroidal geometry. A0 90 20 30 20 50
For a large radius but tightly confined torus, so tket) Barrier height, h, / o,

~r§ the relation simplifies to the 1D result as expected,

0 §o---@mmmmmmmmm oo

Excitation frequencies w/®

FIG. 4. Excitation spectrum for modes of a condensate with
w=|m|\2C/{¢$?)r,*, (200 circulation k=1. The mode symmetries are |m|
=0 (O), 1 (¥), 2 (*). Frequencies are plotted as a function of
where the wave number is quantized accordingnd/r g, barrier heighth, in a trap characterized by\=.7 and o
and the speed of sound is proportional to the square root of 2./#/2m,e,, with interaction strengtiC=1000. See also Table
the atom density. One might assume, for a given radial and.

axial modes, that this pattern of frequencies for theub- " _ ) ) o )
levels would be repeated for the higher-frequency bands. IROSItIVE frequencies effectively creating a stable pinning site
fact this is not the case as confirmed in Figs. 2 and 3. Thé&er toroidal flow. The stability of high circulation current in
bands become mixed and the-|m| relation does not hold. toroidal traps has been discussed in detail by Bustal.

A more extensive list of the frequencies including the highly[17]- The splitting of thelm[=1 pair reduces as the barrier
excited modes is given in Table II. rises and the condensate becomes toroidal. The closing of the

energy gap reflects the fact that the barrier expels condensate
density from the center so that thie= — 1 cannot occupy the
vortex core region and create a large energy gap. [Tije

If the condensate itself has a current 0, then the cen- =1 modes will be evident when dipole excitations of the
tral barrier acts as a pinning site for the vortex. Furthermoresirculating flow are discussed. The= + 2 states, degener-
in the presence of a vortex the|m| degeneracy of the ex- ate in Fig. 3, are also split by the condensate flow and in the
citation modes is removed, this removal of degeneracy als@roidal limit, h,=50. The energy splittings are proportional
occurs in the more general case of a vortex in a condensatg |m| the current momentum. This follows from the Bogo-
confined to an axially symmetric potential and the frequencyiiubov equations when the centrifugal energy terms can be
shifts for quadrupole excitations in this system have beeonsidered as perturbations. First-order perturbation theory
calculated24]. Perturbations of the external potential are of applied to Eqs(11) and(12) gives the energy shift,
interest since it allows us to study imperfections in the tor-

E. Toroidal current flow

oidal trap potential, and also the dissipation of the ring cur- _ A2 (m+ k)? Y A% (m—x)? N
rent. We propose that these modes can be studied by a laterd @™~ 2m, (Ug,r™“Up) + 2m, (vo.r ™ “vo),
displacement of the trap. In Fig. 4 the spectrum of excita- (21)

tions of a singly quantized current loop=1 are presented. ] ]

In this figure we consider the transition from a conventionalWhere uo and vo are the unperturbed quasiparticle states.
pancake geometrjn,=0, through a semitoroidal trap,  1Nis gives the energy splittingE=7(w, —w_),

=10, before reaching the torus shamg=50. The presence 52

of the barrier creates a narrower radial well, so thatrthe AEm4|m|K—f (U ug—vgvo)r 2dr. (22

=0 radial excitations are pushed to higher frequencies. The 2m,

axialm=0 dipole modew=\~2.65 is unaffected of course. f the condensate and excitations are tightly confined around
The splitting of thgm deggneracy is greatest for the spheroi-ihe radius then
dal hy=0 case, in particular, the lowest pair ¢fn|=1

modes. The co-rotating moda=+1 has a positive fre-

guency lying close to the lowesi=2 mode. The anomalous AE”‘”“"W'
or counter-rotating moden=—1 has a negative frequency,

but a positive norm. Anomalous modes arise when a conderFhe splitting decreases & and hence increases. Refer-
sate has a stable topological excitation such as a vortex, iming to Table | forhy=50, the|m|=1 splitting is close to
deed the presence of a vortex is a necessary condition for @hat given by the perturbation expressipq. (23)] AE
anomalous excitation as its presence is required to satisf¥0.19. However the lowe$m|=2 modes in Table | have a
conservation of energy and momentum in the syqt2sh In  splitting (0.37) which is slightly smaller than the perturbation
this case the central barrier raises the anomalous mode tesult 0.38.

2
(23)
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graphs were obtained by direct solution of the time-
dependent Gross-Pitaevskii equation, following from taking
arbitrary variation ofy* in Eq. (1):

[Ho+0|y|?—ifia]y=0. (25

For very small perturbations the nonlinearity is small and the
time-dependent linear response metid®LR) is equiva-
lent to the stationary Bogoliubov equation method outlined
above. This employs a direct numerical solution, in combi-
nation with spectral analysis and can be used to determine
the frequency spectrurfil9] and the strength of each fre-
quency component, that is, the population of modes and den-
sity fluctuations of the collective excitations. This can be
FIG. 5. Center-of-mass trajectory of a toroidal condensate curdone efficiently and accurately using spectral methods. The
rentx=1 displaced in the direction from the trap centéx andy Initial state can be determined by imposing the phase accord-
are expectation values for the and y coordinate in units of ing to the value of« and evolving in imaginary timg19].
(A12m,w,) 2. The torus has parametexs=\7, o=2\k/2m,w;, The calculations presented here were performed on a 64
and hg=50tw, and interaction strengtiC=1000. The figure X 64X64 grid. The scaling of grid spacing according to the
shows the path traced out over a total tifive 80 in the horizontal ~ degree of confinement ensures maximum spatial resolution
plane by the condensate center of mass following a small horizontadf the condensate, so that tlzedimension is more tightly
displacement of the trap axéis=1. The combination of the-dipole confined. The time step choselt~0.001X 27/ w, , is dic-
and y-dipole oscillations leading to precession of the condensateggted by the characteristic timescale of the excitations. A
These dipole modes are degenerate and nearly in phase. The spegswer-spectral-density estimate which used a Kaiser win-
trum density of thex-dipole oscillations is shown in Fig. 7. dowing function was employed to analyze the various mo-
ments of interest in terms of its component frequencies. For

The _S|mpl_est expenmental' sgheme tq observe thes xample, thex-dipole moment can be transformed as fol-
modes is to displace the potential in the horizontal plane an WS

follow the motion of the condensate center of mass. Consider
a sudden adjustment of the trapping potential

02 04 06 08 1 12 14 16 1.8
X

2

Px(w)z‘ foTe’i‘”t(x)dt (26)

Vext(X,¥,2) = Ve X—£,Y,2). (24

The effect on the center of mass is shown in Figs. 5 and 6 iThe spectral data obtained for a very small trap displacement
which the trajectory is traced out as time evolves. Thesg =0.02 confirms the mode frequencies from the
Bogoliubov-de Gennes equation, and establishes the accu-
racy of the method. As shown in Table I, the frequencies
using this method are accurate to within a few percent. How-
ever a realistic measurement process based on density imag-
ing requires a much larger amplitude motion in order to re-
solve the fluctuations. In this case, the nonlinear effect can be
important. In our scheme, which we propose as a viable
method to measure the spectrum, we consider the trap dis-
placed by a substantial amount1 in order to resolve the
oscillations in the plane. When circulation of the toroidal
current is disturbed in this manner the effect is to create large
N counter-circulating currents. If these currents are in phase
02 04 06 08 1 12 14 16 1.8 and of equal magnitude the condensate would execute a pen-
X dulum motion. In general, the motion will be 2D if the sym-
metry is broken. In terms of experimental observables, the
rentx=1) after displacement in thedirection[x andy are expec- effect appears as OSC".lat.lonS of the center Of. mass with a
tation values for thec andy coordinates in units off{/2m,w,)/. preceSSIOQaI motlon. Slmllar. precessional motion for quad-
As in Fig. 5 the torus has parametars: \7, o= 2 Jh/2m,e;, and rupole excitation of a spheroidal vortex state hgs been noted
hy=50% w, ; however, the atom number is much higher in this case[lg]' The locus of th_e center Of mass in the horizontal plane
C=4300. The figure shows the path traced out over a fime80 ~ TOM t=0 to t=80 is shown in Fig. 5 forC=1000 and
in the horizontal plane by the condensate center of mass followindlo/% @o=10. Initially the condensate moves fror=0y
a small horizontal displacement of the trap=1. The center of =0 towards the equilibrium point=1y=0, however, this
mass performs a circular motion due to two effects: thendy ~ motion is converted an irregular precessing pendulum mo-
dipole states are not degenerate in frequency and the amplitudes dfen. The rate of precession is proportional to the splitting of
out of phase, by roughly- /2. levels. However the center-of-mass motion is not simple. A

FIG. 6. Center-of-mass trajectory of a toroidal condengate-
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FIG. 7. Spectral densityarbitrary unit$ of the x-dipole of a FIG. 8. Spectral densitfarbitrary unit$ of x-dipole of conden-

condensate with circulatior=1 corresponding to Fig. 52, (w)  Sate with circulationc=1 corresponding to Fig. 62,(w) The torus
The torus parameters ara=\7, o=2\A/2m,e,, and h, parameters are= 7, o=2\h/2m,», andh,=50iw, . The con-
=50k w, . The condensate interaction strengtiCis 1000 with trap ~ densate interaction strength @&=4300 with trap displacemerd
displacemente=1. The figure shows the dominance of three =1. The center of the doublet corresponds to the frequengy
modes, the low frequencyn= =1 doublet, and an exciteth= = v2C(¢“)/(r*)=~0.75 The figure shows the shifting upwards of
—1 mode. The center of the doublet corresponds to the frequendiie mode frequencies and a narrowing of thre =1 doublet split-
ws=\2C($?)/{(r?)~0.58. In the graph the frequency peaks areting consistent with an expanded condensate with a higher sound
shifted from the linear response results given in Table | and havéPeed. The modes shown above have frequencies:

a broader splitting than the Bogoliubov approximation. The =0.625,0.804,2.095,2.284. The correspondirdjpole modes, not
x-dipole  modes, shown above, have frequencies, shown, have similar strengths but with frequencies,
=0.421,0.666,2.237,2.441 while the correspondirtipole modes ~ =0.657,0.792,2.086,2.275.

have frequencies»,=0.449,0.657,2.234,2.422.

than the linear perturbation theof®3) dw=~0.200. The ma-

clearer understanding of the motion follows from a spectraiof contrast between Figs. 5 and 6 is the orbiting motion
analysis of thex andy dipole moments. In fact, the appar- observed for the higher value @, although the frequency
ently irregular motion is dominated by only a few compo- components shown in Figs. 7 and 8 are of S|m|Ia_r relative
nents of the low-frequency dipoles. In both the chge: 10 strengths, thex andy dipoles have a I.arge phase dlﬁgrence
(Fig. 7) and hy="50 (Fig. 8 the m=+1 mode is stronger close tow/2 for C=4300 and explains the more circular
than the moden=—1 and this dictates a motion with posi- character of the motion. This is slightly surprising in that the

tive helicity, that is, the condensate precession is in the sa ual behavior of collective mode of oscillations is that the
sense as the flow. However, the frequencies are significantly€duency dependence ohis relatively weak for largé\. In

different from the linear model and they degeneracy is is respect, collective excitation frequencies are usually a
removed due to the nonlinearity of the response in xhe poor method of estimating condensate_ fraqtlon compared
direction. In Fig. 7, the torus parameters are=\7, o with the hydrostatic pressure. However, in this case the tor-

=2 hi2m.e,, andhy=50kw, . The condensate interaction 0|d§\tl gtq_eometry s::en:s to reta}[l_nI the qut?ntum features of the
strength isC=1000 with trap displacemerg=1. Compar- excitations even for farge particie number.

ing thex frequencies with the values of Table | we note the
y-dipole frequencies are very similar in both cases, but the
x-dipole pair splitting is increased when the trap displace-
ment is this large. The motion shown in Fig. 5 is a superpo- In this paper we studied the spectrum of collective exci-
sition of a fastei dipole with a slowely dipole. The results tations of oblate toroidal condensates within the Bogoliubov
for the higher interaction streng@i=4300 show the split- approximation, and explored the dynamical stability of ring
ting of the|m|=1 lines narrowing as the size of the conden-currents around the torus. The main features we noted are
sate increases. The figure shows the shifting upwards of thgeneric to this design of trap and would apply to similar
mode frequencies and a narrowing of thie=*+1 doublet geometries and would be exhibited in experiments on toroi-
splitting consistent with an expanded condensate with @al condensates. The transition from spheroidal to toroidal
higher sound speed. The modes shown have frequenagies geometry of the trap displaces the energy levels into narrow
=0.625,0.804,2.095,2.284. The correspondigg dipole  bands. The lowest-order modes are quasi-one-dimensional
modes have similar strengths but with frequencieg  circulations with dispersion relatio®~mog with m quan-
=0.657,0.792,2.086,2.275. The nonlinear interactions givéized. When the condensate has an toroidal current flow, the
different splittings for the< andy dipoles:dw,=0.179 com- low-energy circulations are split into co-rotating and counter-
pared with dw,=0.135 both of which are slightly smaller rotating pairs. A simple, but accurate, formula is presented

IIl. CONCLUSIONS
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for the lowest angular acoustic modes of excitation, and theeparated in energy and accessible to observation. We pro-
splitting energy when a background current is present. Theose an experiment that would detect these modes. A realis-
stability of the flow is maintained by the central barrier act-tic measurement requires resolution of the global condensate
ing as a pinning site. Instabilities will most readily occur by motion. Large displacements, such as those we propose, give
radial dipole excitations. The dipole states are nearly degemnise to small nonlinear shifts in the frequencies beyond the
erate in the toroidal limit. Small condensate currents wherBogoliubov model. We also note that the highly occupied
disturbed create slow precessional motion through the centeondensate performs a circular orbiting motion of the center
of the trap through mixing of the degeneratandy dipole  of mass. Such features are resolvable and experimentally
states. For a tightly confined torus, these modes are wetheasurable with current technology and expertise.
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