
Title Developing low-cost testbeds for enhancing security techniques
in wireless sensor network protocols

Authors O'Mahony, George D.;Harris, Philip J.;Murphy, Colin C.

Publication date 2019-06

Original Citation Mahony, G. D. O., Harris, P. J. and Murphy, C. C. (2019) 'Developing
Low-Cost Testbeds for Enhancing Security Techniques in Wireless
Sensor Network Protocols', 2019 30th Irish Signals and Systems
Conference (ISSC), Maynooth, Ireland, 17-18 June, pp. 1-6. doi:
10.1109/ISSC.2019.8904967

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/8904967 - 10.1109/
ISSC.2019.8904967

Rights © 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-26 11:32:49

Item downloaded
from

https://hdl.handle.net/10468/9535

https://hdl.handle.net/10468/9535

Developing Low-Cost Testbeds for Enhancing
Security Techniques in Wireless Sensor Network

Protocols
George D. O’Mahony
Dept. of Electrical and
Electronic Engineering,
University College Cork

Cork, Ireland
george.omahony@umail.ucc.ie

Philip J. Harris
United Technologies Research

Center Ireland
(UTRC-I)

Cork, Ireland
harrispj@utrc.utc.com

Colin C. Murphy
Dept. of Electrical and
Electronic Engineering,
University College Cork

Cork, Ireland
colinmurphy@ucc.ie

Abstract—Wireless sensor network (WSN) applications have
expanded considerably over the past decade or so and now,
solutions exit for various innovative applications. These wireless
networks adopt commercial off the shelf devices and standardized
protocols, which inherently creates security challenges. These
challenges are ever changing as malicious interference and intru-
sion techniques evolve and dynamic efficient hardware becomes
increasingly accessible. This paper presents the development of
multiple low-cost hardware and software platforms designed
so security enhancements and modifications to WSN protocol
architecture and packet structure can be designed and tested.
Each testbed has been built satisfying the requirements of
being available as unmodified commercial off the shelf (COTS)
components and based on open source software. The testbeds
provide versatility through operating on various operating sys-
tems including Windows and Linux, are reproducible and can
be deployed in a way which replicates real world WSNs. Each
distinct system provides remote access, real time and off line
data analysis, specific control of each network node and the
ability to upload data from the WSN. This paper describes
in-detail the individual pieces of suitable hardware for WSN
protocol and packet structure design and illustrates the system
architecture required to form testbeds which can experimentally
validate modifications to a WSN protocol. Additionally, a baseline
is defined and encapsulates the ZigBee standard. Example results
of the distinct testbeds in operation are provided along with the
specific open source software being used.

Index Terms—COTS, Hardware, IoT, Low-cost, Open Source,
Packet, PHY, Protocol, Security, Spectrum, Testbed, WSN &
ZigBee.

I. INTRODUCTION

As WSN applications extend their usability and become
integrated in safety critical applications [1], new challenges
in terms of security emerge due to stricter operational and
availability requirements. This trend is a direct result of
over a decade of research and development which has lead
to feasible solutions to various innovative applications [2],
including space-based WSNs [1], the Internet of Things (IoT),
wireless networked control systems (WNCS) [3], aerospace
applications [4] and using LEO satellites as WSN components

This work was supported in part by the Irish Research Council and
United Technologies Research Center Ireland under the Enterprise Partnership
Scheme Postgraduate scholarship EPSPG/2016/66.

[5]. WSNs typically consist of lightweight devices used to
sense the physical world, have unique security issues due to
their design and have deployments which inherently require
security levels higher than typical wireless networks. Usual
WSN devices hinder the use of complex or computation-
ally intensive security protocols and propriety protocols in
use can typically be reverse engineered by available tools.
Consequently, network compromise, whether malicious or
unintentional, can have significant consequences for privacy
and/or safety. Therefore, the security and availability of the
communication link and the delivery of authentic and confi-
dential packets are essential for safety critical WSNs.

Furthermore, WSN protocol security is becoming increas-
ingly important due to the ever expanding number of IoT
devices and WSN applications, leading to increased levels of
congestion in the radio spectrum, especially in the 2.4 GHz
industrial scientific and medical (ISM) band. WSN protocols
in use have very similar PHY and MAC approaches, which
are typically based on a certain standard, for example, IEEE
80.2.15.4. Thus, the packet structure seems to follow a con-
ventional approach, which, potentially, allows certain aspects
to be exploited. In turn, this may result in some interesting
innovations in the research space. This issues complexity
deepens by virtue of each protocol coexisting with a variety of
other protocols operating at the same frequency, for example,
IEEE 802.11 and Bluetooth. Clearly, the spectrum must be
shared in a efficient and non disrupting manor where WSN
protocols must be secure from both unintentional interference
and intentional security threats.

This paper identifies low cost methods of experimenting
with security techniques in WSN protocols and packet struc-
tures for safety critical applications, where security is not op-
tional but essential. A low-cost versatile COTS hardware and
open source software approach is described and designed to
achieve an understanding of existing WSN security techniques,
with a focus on the packet structure. This approach expands
to show how modifications, aimed to improve resilience to
malicious attacks and/or coexistence, to packet structure and/or

TABLE I
IEEE 802.15.4 (ZIGBEE) PHY PARAMETERS

Parameter: 2.4 GHz PHY Value:
Number of Channels 16

Channel Spacing / Width 5MHz / 2MHz
Data / Symbol Rate 250kbps / 62.5ksymbolsps

Chip Rate 2 Mchipsps
Modulation / Spreading O-QPSK / DSSS

Pulse Shaping Half Sine / Normal Raised Cosine

protocol security techniques, can be experimentally developed,
fine tuned and compared to current standards, like ZigBee.

This paper is organized as follows: Section II describes
both the hardware used to construct the testbeds and the
baseline signal model, ZigBee. Section III describes a subset of
identified security threats in WSNs and ZigBee’s main security
feature. Section IV specifies the testbeds and their potential
ability to test enhancements to security features in WSNs
protocols. Section V provides validation results, section VI
outlines future work, while section VII concludes this paper.

II. HARDWARE

Before any hardware is defined a signal model is chosen,
so a baseline for WSN protocol security can be established.
Here, IEEE 802.15.4 2.4 GHz radio frequency band based
ZigBee is adopted and it is currently the de facto standard in
WSN communication, as almost all available commercial and
research sensor nodes are equipped with ZigBee transceiver
chips [6]. ZigBee’s relevant physical layer parameters are
shown in Table I. The 16 relevant channel center frequencies
are provided in (1), where Fc is the center frequency and
i is the channel number. Each of these channels operate in
the unlicensed ISM frequency band and have to coexist with
various protocols including, but not limited to, WiFi and
Bluetooth. ZigBee is constructed using the PHY and MAC
from IEEE 802.15.4, where the PHY uses direct sequence
spread spectrum (DSSS) and offset quadrature phase shift
keying (O-QPSK) and the MAC uses carrier sense multiple
access with collision avoidance (CSMA-CA). It works using
PANs (Personal Area Networks) and the topology can be either
mesh, star or peer-to-peer. This signal model is used both as
a baseline for the testbeds in section IV, and as a comparison
to any potential methodologies for enhancing the security of
WSN protocols. Due to being based on IEEE 802.15.4, it is
likely that any developed methodologies can transverse various
protocols, as IEEE 802.15.4 is commonly adopted.

Fc = 2405 + 5(i− 11) MHz, for i = 11, 12, ...26 (1)

• XBee Devices: These devices are the designated ZigBee
nodes and operate ZigBee Pro 2007, but can also specifically
run either the IEEE 802.15.4 or DIGI’s DigiMesh 2.4 pro-
tocols. These COTS devices are low cost (3 pack kit ≈e90)
and have specifications as per Table II. Each device, along
with the network, is configured using DIGI’s XCTU software

TABLE II
XBEE DEVICE SPECIFICATIONS

Parameter: Value
Data Rate 250kbps

Indoor Range 60m
Transmit Power −5dBm→ 5dBm

Receiver Sensitivity −100→ −102 dBm
Frequency Band / No. Channel 2.4GHz / 16

Interference Immunity DSSS
Encryption (Optional) 128-bit AES

Reliable Packet Delivery Retries/Acknowledgments

and includes selecting the channel, PAN ID, Tx power and
node use. The specific device types are [7]:
1) Coordinator: A full function device (FFD) which is

responsible for controlling the entire network, relaying
messages and authenticating devices.

2) Router: A FFD responsible for forwarding and relaying
data packets. This device type can communicate with the
coordinator and end devices.

3) End Device: A reduced function device which commu-
nicates with the coordinator or a router only and cannot
communicate with other end devices or relay packets.

The devices can utilize cluster topologies, which typically
improves stability, reduces energy consumption and com-
presses the amount of transmitted data. Cluster head net-
works have many uses, for example, relay nodes (RN) which
aggregate data and forward to Nanosatellites [5]. Here, the
XBee devices are controlled and programmed through a
development board which requires a USB connection and are
programmed (after initial configuration) using the digi-xbee
python3 library. Remote control and power of each XBee can
be obtained by using a Raspberry Pi or equivalent, providing
realistic deployment scenarios and real time data analysis.

• Raspberry Pi: This is a small credit card sized affordable
(≈e60) computer which can be utilized in a number of
ways to provide remote control and low-cost operation of
USB powered devices. Once initial setup is performed,
a remote connection can be achieved through a secure
shell (SSH) on Windows, using a putty terminal and the
devices IP address, or on Linux by using the command
”ssh pi@IP−Address”. Different Raspberry Pi models are
employed, including the Pi 2 Model B, Pi 3 Model B and Pi 3
Model B+ (shown in Fig. 1), and the main specifications are
provided in Table III. These small computers run a Debian
based operating system called Raspbian and can run full
Linux applications, like GNU Radio, python scripts, terminal
commands etc. Hence, each Raspberry Pi can use the digi-
xbee python3 library to control a XBee device, store and
analyze data/results and upload any necessary information.
Built in WLAN or a WLAN USB dongle provides remote
access and the ability to update code and hardware without
the need to be physically at the test-bed. These devices
support real world deployment scenarios as, typically, WSNs
are left unattended and deployed where remote access or

TABLE III
RASPBERRY PI SPECIFICATIONS

Pi 2 Model B A 900MHz quad-core ARM Cortex-A7 CPU
1GB RAM

4 USB ports
Pi 3 Model B Quad Core 1.2GHz Broadcom BCM2837 64 bit CPU

1 GB RAM
4 USB Ports

BCM43438 wireless LAN
Bluetooth Low Energy (BLE)

Pi 3 Model B + 1.4GHz Broadcom BCM2837B0,
Cortex-A53 64-bit SoC

1 GB RAM
4 USB 2.0 Ports

2.4 GHz and 5 GHz IEEE 802.11.b/g/n/ac WLAN
Bluetooth 4.2, BLE

Fig. 1. Raspberry Pi Model 3 B+ with main elements identified

monitoring is the norm.
• LimeSDR Mini: This software defined radio (SDR) is

described by the manufacturers [8] as “the perfect way to
start experimenting with and building your own wireless net-
works, protocols, and testers”. This statement fits perfectly
into the development of WSN based experimental testbeds
and specifications for the LimeSDR Mini are provided in
Table IV. These specifications highlight the wide range of
functionality that the LimeSDR Mini encompasses, which
can be used to test and develop security measures for en-
hancements to both protocol and frame design. This SDR is
used with GNU Radio and Pothos Flow for implementation,
through signal processing blocks, by exploiting the Lime-
Suite tool and has full visualization as a spectral analyzer
through SDRConsole. Beneficially, it can run on a Raspberry
Pi by using GNU Radio and LimeSuite. Importantly, it can
be used in multiple testbeds to experiment with existing and
modified design approaches along with other WSN aspects,
like mitigation strategies.

• Analog Pluto SDR: The Pluto is an Analog Devices SDR
(≈e100) and has specifications as per Table IV. This SDR
is controlled and analyzed by either, using Simulink, through
the communications systems toolbox add on, or GNU Radio.
This provides certain advantages and tests a variety of attack
styles quickly, while exploiting Matlab for efficient analysis.
The Simulink add on includes a transmitter and receiver
Simulink block for quick set up and the communications
toolbox provides various blocks for different modulation
methods, filter, mixers etc., which can be applied to create
various PHY layer outputs and create signals, which match

TABLE IV
SDR SPECIFICATIONS

LimeSDR Mini Analog Pluto
Connectivity USB (FTDI FT601) USB

Frequency Range: 10MHz − 3.5GHz 325MHz − 3.8GHz
RF Bandwidth: 30.72MHz 20MHz
Sample Rate: 30.72Msps 65.2ksps− 61.44Msps

Sample Depth: 12 bits 12 bits
Transmit Power: Max 10 dBm 7 dBm
TX/RX channels 1 TX, 1 RX 1 TX, 1 RX

TABLE V
TEKTRONIX RTSA 306B SPECIFICATIONS

Frequency Range 9KHz to 6.2GHz
Acquisition Bandwidth 40 MHz

Typical Accuracy +/− 20ppm
ADC Sample Rate and bit width 112 Msps, 14bits

specific protocols or attack styles, as seen in Fig 9.
• TI CC2531EMK: This USB dongle employs TI’s Packet

Sniffer software [9] to both capture and decode ZigBee
packets and has been successfully tested on XBee transmitted
packets. The decoded information includes PAN ID, source
and destination address, packet length, packet type (data or
acknowledgment) and the payload, which is decoded if no
encryption is used or if the key is known. A Raspberry Pi,
or a Linux system, operates the dongle in a limited capacity
but can still provide address information and payload.

• Tektronix Real Time Spectrum Analyzer (RTSA) 306B:
This is a USB powered RTSA and can analyze network op-
eration, identify nodes, estimate node type, visualize signal
structure and analyze how signals co-exist with each-other.
Through Tektronix Digital Phosphor technology (DPX), the
RTSA can visualize the RF spectrum and provide pixel infor-
mation. Consequently, attack, protocol and coexisting signals
are identifiable during an experiment. The RTSA’s main
specifications are provided in Table V and, conveniently, it
has Matlab support through the Instrument Control Toolbox.

III. SECURITY

WSNs require security, especially when the networks are
used in hostile environments or in critical applications like
military, aerospace, commercial or the IoT. Protocols in use are
susceptible to various attacks which need to be understood and
the effects outlined. Certain techniques have been developed to
allow WSN protocols to be resilient to these attacks, however,
it is likely more enhancements are required. The hardware
described in Section II can be used to demonstrate the effects
of certain malicious attacks on a commercially and industry
adopted protocol, presenting security vulnerabilities in the
process. A selection of these attacks are categorized as follows:
• Conventional Jamming Attacks, typically, aim to overpower

legitimate signals with spurious radio-frequency transmis-
sions. While higher jamming power increases effectiveness,
it is also easier to detect, as such, adversaries typically

optimize the interference signal to maximize packet loss
while minimizing total broadcast power. Examples include,
constant, deceptive, random and reactive jammers.

• MAC Layer Attacks react to the protocol being used in
the network by eavesdropping on and/or sniffing (CC2531)
network packets. Intelligence and learning based jammers
use the analyzed results to attack based on specific net-
work operation and include replay attacks, spoofed packets,
matched protocol interference [10] and forcing a device to
remain in listening mode.

• Network Layer Attacks, generally, cause either a denial of
service (DoS), a privacy or an impersonation attack and
include selective forwarding, sinkhole, blackhole, Sybil and
HELLO flood attacks.

• System Coexistence: In certain situations spectrum co-
existence and sharing is seen as an attack. Examples include
when a secondary user (SU) occupies a primary user’s (PU)
spectrum, causing interference when the intention was to
maximize spectrum use and the deliberate denial of spectrum
sharing, when a specific user consumes all resources.
The main security protection in ZigBee is the 128-bit

advanced encryption standard (AES). AES is dependent on
the predistribution, initialization, use and storage of the 128
bit key, which has 10 transformation rounds that convert the
plaintext into the final output, called the ciphertext. In ZigBee,
the packet payload is encrypted while the synchronization
and physical layer headers are not. The encryption and data
integrity is provided through the use of the counter mode
cipher block chaining message authentication code protocol.

IV. TESTBED ARCHITECTURE

The developed testbeds satisfy certain requirements to allow
each testbed to be reconfigurable, useful in multiple situations
and mimic real world environments and operating conditions.
The testbeds are low cost (each SDR less than e150 and other
devices less than e60), built using COTS components and
leverage open source software. Therefore, the testbeds will
resemble real world WSNs which are, typically, constructed
using COTS components and are deployable in variable con-
ditions and situations. The RTSA is an analysis tool and is
exclusively used for spectral analysis and is not required for
testbed operation. The testbeds are as follows:
1) Baseline
Initially, a baseline needs to be established and used in order
to fully understand the security levels which are evident in a
known protocol already in use in industry and commercial
applications. The baseline test-bed contains the Digi XBee
devices which are powered and controlled remotely using
various Raspberry Pi models. Using a Raspberry Pi with XBee
devices was previously described using the GPIO serial port in
[11] and in [12], [13], [14], [2] and [15], where one Raspberry
Pi device is normally used as a base station attached to the
network coordinator and provides client services, which allows
applications, like environmental monitoring, to be established.

Here, the approach is different as the grove development
board is exploited to allow complete control and access to

Fig. 2. XBee configuration, visualized using DIGI’s XCTU software

every node, which has been setup using XCTU software. This
concept authorizes full control of each node, packet analysis
on each receiver and transmitter and data analytics at each
node location. This is integral, as the vision for this WSN test-
bed is to experimentally test and highlight network, protocol
and frame vulnerabilities, initially using ZigBee. The node
connections can be visualized in Fig. 2 and it mimics typical
WSN operation as the nodes are static, use the cluster head
network model and are sufficiently dispersed. This ZigBee
based test-bed includes one coordinator (cluster head) and
multiple receivers (cluster members) and each individual XBee
device is connected to a Raspberry Pi, which uses the digi-
xbee python3 library to control the XBee nodes and allow
remote access through built in wireless LAN or USB dongles.
Basic example code which uses a XBee device to transmit
a message every 2 minutes and the corresponding receiver
code is provided in Fig. 3. Under baseline operation, it is
envisaged that each cluster member will send a data packet
every x minutes, while all packets are monitored by each
Raspberry Pi device. The remote access aspect is typical of
WSN deployments, as they are usually deployed and left
unattended and the data is uploaded through a gateway that
can be accessed from clients monitoring the network.

This setup was previously validated, by the authors, in [10],
where it was tested for a combined 111 hours of operation.
The validated testbed allows basic operation of a WSN to
be monitored and for various WSN attacks, applied using a
SDR, to be experimentally validated for their effectiveness on
a working ZigBee WSN and for the identification of specific
attack events. Results can be compared with theoretical anal-
ysis and modeling of various protocols and frame structures
currently in use, including ZigBee, WirelessHart, ISA100.11a,
MiWi, 6LoWPAN and Thread. By using this testbed, identified
WSN vulnerabilities can be logged and transferable security
enhancing methodologies designed.
2) Protocol Development:
This testbed has been developed so enhancements to the
security of existing WSN protocols and methodologies can be
designed. The main components are SDRs, which, here, are
the LimeSDR Mini devices. These SDRs can be controlled

from digi.xbee.devices import ZigBeeDevice, RemoteZigBeeDevice
from digi.xbee.reader import XBee64BitAddress
import time
Transmitter running on XBee Router

XBee_Router = ZigBeeDevice("/dev/ttyUSB0",9600)
XBee_Router.open()
Remote_XBee_Coord = RemoteZigBeeDevice(XBee_Router,\
XBee64BitAddress.from_hex_string(Coord_64_Bit_Address))
try:
while True:
Data = "Test Packet"
XBee_Router.send_data(Remote_XBee_Coord, Data)
time.sleep(120)
except:
XBee_Router.close()
Receiver running on XBee Coordinator

XBee_Coord = ZigBeeDevice("/dev/ttyUSB0",9600)
XBee_Coord.open()
try:
while True:
Received_Message = XBee_Coord.read_data(1000)
Remote_XBee_Receiver = Received_Message.remote_device
Received_Data = Received_Message.data
except:
XBee_Coord.close()

Fig. 3. Python3 code controlling a Raspberry Pi connected XBee device

using GNU Radio running on a desktop PC or on a Raspberry
Pi device. The LimeSDR Mini devices have the ability to run
multiple protocols and output different signal structures, which
means the concept is not restricted to only one protocol but
can, instead, start with ZigBee and expand as time progresses.
Initially, two LimeSDR Minis are used to design and initialize
a full duplex communication session between two nodes,
which must be comparable to the baseline setup and the packet
sniffer can be used to see if the packets are credible. Funda-
mentally, this approach tries to design and experimentally test,
tune and compare modified protocols, where the alterations
focus on improving the security of WSN protocols and frame
structures. By adding a third LimeSDR Mini, the node-to-
node communications can be tested under no attack and
attack conditions. Firstly, this allows for protocol and frame
vulnerabilities (identified through baseline experimentation
and theoretical analysis) to be identified and compared to the
baseline. Any modifications can then be put through a series
of tests to see if any significant improvement on the baseline
is achieved. By having an embedded Linux option using the
Raspberry Pi, variable deployments and channel effects are
achievable and facilitate a more realistic setup.
3) Comparison:

By exploiting the Raspberry Pi devices, remote access, real
time and off-line data analysis and specific control of network
nodes, a comparison testbed is achievable. This approach
combines the baseline and protocol development approaches
to facilitate a real time comparison of an existing protocol
and a modified version. The XBee nodes and SDRs operate
under similar channel and environmental conditions, while
mimicking real world scenarios by running simultaneously on
a Raspberry Pi platform. Thus, by utilizing communication
between three Raspberry Pis, three XBee nodes and three
LimeSDR Minis, fully comparable results are attainable.

V. EXAMPLE RESULTS

To highlight the versatility of the low-cost open source
testbeds described in section IV, operation was confirmed on
Windows 7, Ubuntu 18.04 LTS and Raspbian stretch version

Fig. 4. Example flow graph for transmitting a signal using LimeSDR Mini

Fig. 5. DPX image proving successful LimeSDR Mini transmission

9 running on a Raspberry Pi Model 3 B+. Each OS was tested
using specific GNU Radio flow graphs and variations of the
python code in Fig. 3. A simple cosine signal was used as the
transmitting signal and the flow graph is provided in Fig. 4,
while it is visualized by the RTSA in Fig. 5. A simple FM
radio receiver using a known local signal, 106.1 MHz here,
was used to test reception and the flow graph is provided in
Fig. 6. The signal structure of a ZigBee packet transmitted
using a XBee node is provided in Fig. 7 and it confirmed, along
with monitored packets on associated Raspberry Pi devices,
a successful transmission. Additionally, the coexistence issue
explained in section III is visualized using the RTSA in Fig.
8, where a ZigBee signal coexists with Bluetooth and WiFi
signals. Finally, the versatility of using a SDR was highlighted
by transmitting a matched ZigBee signal [10] (Fig. 9) using
the Pluto SDR and Simulink software.

Fig. 6. Example flow graph for FM radio reception

Fig. 7. DPX image of a ZigBee signal at 2.455 GHz

Fig. 8. ZigBee signal coexisting with WiFi and Bluetooth

VI. FUTURE WORK

Future progressions of the testbeds described in this paper
include the analysis of existing protocol structures and security
techniques. This analysis, executed with an emphasis on why
each security aspect is used, will provide insights into how
to improve WSN protocols in terms of security and design
methodologies. Additionally, the specific packet structures
in use will be analyzed and the reasons behind its design
identified, so as to find methodologies which may help to
improve security. This analysis work can be tested using the
baseline setup to get results from a working network. Any
design improvements will be experimentally tested using the
protocol development testbed and a real time comparison will
examine whether changes make a significant improvement.
The baseline and protocol development testbeds must be
compared before any design alterations are made, so as to
clarify a working baseline in the SDR approach.

VII. CONCLUSION

This paper described a low-cost approach to design and test
modifications made to WSN protocols and make a comparison
to the industrially and commercially adopted protocol, ZigBee.
The approach involved distinct testbeds based on ZigBee and
SDRs, which were comparable to real world applications,
due to the use of Raspberry Pi devices for remote access
and dispersed deployment. Analysis was provided through
a spectrum analyzer, packet sniffer and embedded Linux on
Raspberry Pi. The testbeds were low-cost versatile COTS open
source approaches to WSN research and were tested on mul-
tiple operating systems, including Windows and Linux. Uses

Fig. 9. A matched ZigBee signal produced by a SDR

include identifying WSN security vulnerabilities, analyzing
both WSN security techniques and attacks on WSNs and
for developing transferable methodologies for secure packet
structure and protocol design.

REFERENCES

[1] T. Vladimirova, C. P. Bridges, J. R. Paul, S. A. Malik, and M. N.
Sweeting, “Space-based wireless sensor networks: Design issues,” IEEE
Aerospace Conference, pp. 1–14, 2010.

[2] S. G. Nikhade, “Wireless sensor network system using Raspberry Pi
and zigbee for environmental monitoring applications,” International
Conference on Smart Technologies and Management for Computing,
Communication, Controls, Energy and Materials, pp. 376–381, 2015.

[3] P. Park, S. C. Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless
Network Design for Control Systems: A Survey,” IEEE Communiations
Surveys and Tutorials, vol. 20, no. 2, pp. 978–1013, 2018.

[4] R. K. Yedavalli and R. K. Belapurkar, “Application of wireless sensor
networks to aircraft control and health management systems,” Journal
of Control Theory and Applications, vol. 9, no. 1, pp. 28–33, 2011.

[5] A. Addaim, A. Kherras, and Z. Guennoun, “Design of WSN with Relay
Nodes Connected Directly with a LEO Nanosatellite,” International
Journal of Computer and Communication Engineering, vol. 3, no. 5,
pp. 310–316, 2014.

[6] B. Stelte and G. D. Rodosek, “Thwarting attacks on ZigBee - Removal
of the KillerBee stinger,” in Proceedings of the 9th International
Conference on Network and Service Management, 2013, pp. 219–226.

[7] Q. Yang and L. Huang, Inside Radio: An Attack and Defense Guide,
2018.

[8] Lime Microsystems, “LimeSDR Mini.” [Online]. Available:
https://www.crowdsupply.com/lime-micro/limesdr-mini

[9] Texas Instruments, “SmartRF Protocol Packet Sniffer.” [Online].
Available: http://www.ti.com/tool/PACKET-SNIFFER

[10] G. D. O Mahony, P. J. Harris, and C. C. Murphy, “Analyzing the
Vulnerability of Wireless Sensor Networks to a Malicious Matched
Protocol Attack,” in 52nd IEEE International Carnahan Conference on
Security Technology (ICCST). IEEE, 2018, pp. 1–5.

[11] Chenxi Ouyang, “Design and Implementation of a Wireless Zigbee Mesh
Network,” Ph.D. dissertation, 2014.

[12] S. G. Nikhade and A. A. Agashe, “Wireless sensor network communi-
cation terminal based on embedded Linux and Xbee,” in International
Conference on Circuits, Power and Computing Technologies. IEEE,
2014, pp. 1468–1473.

[13] M. Tao, X. Hong, C. Qu, J. Zhang, and W. Wei, “Fast access for
ZigBee-enabled IoT Devices Using Raspberry Pi,” Proceedings of the
30th Chinese Control and Decision Conference, pp. 4281–4285, 2018.

[14] S. R. Akbar, W. Kurniawan, M. H. H. Ichsan, I. Arwani, and M. T.
Handono, “Pervasive device and service discovery protocol in XBee
sensor network,” in International Conference on Advanced Computer
Science and Information Systems. IEEE, 2017, pp. 79–84.

[15] S. Ferdoush and X. Li, “Wireless sensor network system design using
Raspberry Pi and Arduino for environmental monitoring applications,”
Procedia Computer Science, vol. 34, pp. 103–110, 2014.

