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Abstract  

Quantitative analysis of penetrative deformation in sedimentary rocks of fold and 

thrust belts has largely been carried out using clast based strain analysis 

techniques. These methods analyse the geometric deviations from an original state 

that populations of clasts, or strain markers, have undergone. The characterisation 

of these geometric changes, or strain, in the early stages of rock deformation is not 

entirely straight forward. This is in part due to the paucity of information on the 

original state of the strain markers, but also the uncertainty of the relative 

rheological properties of the strain markers and their matrix during deformation, as 

well as the interaction of two competing fabrics, such as bedding and cleavage. 

Furthermore one of the single largest setbacks for accurate strain analysis has been 

associated with the methods themselves, they are traditionally time consuming, 

labour intensive and results can vary between users. A suite of semi-automated 

techniques have been tested and found to work very well, but in low strain 

environments the problems discussed above persist. Additionally these techniques 

have been compared to Anisotropy of Magnetic Susceptibility (AMS) analyses, 

which is a particularly sensitive tool for the characterisation of low strain in 

sedimentary lithologies.  
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1. Introduction 

The Earth’s lithosphere is deformed as a consequence of global-scale plate tectonic 

interactions. In order to fully understand these processes it is necessary to 

accurately characterise and quantify deformation patterns from past mountain 

building events. This typically involves analysis of the geometric changes that the 

rock bodies being studied have undergone due to deformation.  

The characterisation of these geometric changes or strain in the early stages of rock 

deformation is not entirely straight forward, for a truly accurate measurement of 

strain the 3D geometries of objects of known original shape need to be recorded 

then a relationship between the pre-deformed shape and deformed shape can be 

established. Unfortunately objects that have a known original shape are far from 

ubiquitous and a variety of strain analysis techniques have been developed to 

account for this paucity. These techniques are typically based on the behaviour of 

populations of approximately ellipsoidal objects such as sedimentary clasts. This 

allows strain analysis to be carried out in almost all rock types. The major drawback 

of these methods is that they are not capable of accurately constraining weak 

deformation and they cannot account for non-passive behaviour.  

In samples with very weak deformation the original fabric can dominate the overall 

rock fabric more so than the developing strain fabric. This can lead to some 

difficulties when attempting to characterise deformation. Additionally most 

methodologies for strain analysis rely on the assumption that the strain markers 

acted passively during deformation, i.e. the marker and surrounding matrix material 

respond identically to the deformation. In reality, there is a contrast in competency 

between strain markers and their surrounding matrix, which means that they react 
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differently during deformation. Neglecting this leads to a significant 

underestimation of strain estimates. Analysis of magnetic fabrics is used in this 

study to identify the geometries and relative strength of these weak tectonic 

fabrics. The magnetic susceptibility of a rock relates the induced magnetisation to 

the magnetic field in which the rock is immersed and typically defines an ellipsoid 

that allows imaging of the rock fabric. AMS ellipsoid geometries are sensitive to 

finite-strain and stress directions in tectonised rocks (Borradaile and Jackson, 2010) 

and is a particularly sensitive tool for the characterisation of low strain in these 

lithologies.  

1.1. Aims and objectives 

The purpose of this thesis is threefold:  

1) To determine the accuracy of recently developed geological strain analysis 

techniques, the Delaunay Triangulation Nearest Neighbour (DTNNM) and Mean 

Radial Length (MRL) methods that have been incorporated into a Mathematica 

package (Appendix 1; Mulchrone et al., 2013)  

2); To evaluate the relationship between the results determined from the strain 

analysis techniques and the magnetic fabric of the samples determined from 

Anisotropy of Magnetic Susceptibility (AMS) measurements and  

3); To relate both the strain estimate results and the AMS results to regional 

deformation in each study area.  

To this extent the thesis can be split in to two main sections: 

I Theory and analysis methods (Chapters 2 & 3) 

Chapter 2. Theory and Development of Strain Analysis Methods  

Chapter 3. Theory of Anisotropy of Magnetic Susceptibility  



Chapter 1: Introduction       4 
 

II Field Applications (Chapters 4, 5 & 6) 

Chapter 4. Analysis of The Deformation of a Carbonate Platform Incorporated into 

the Sevier Fold and Thrust Belt, Northwest Montana.   

Chapter 5. A comparison of Anisotropy of Magnetic Susceptibility Studies to Clast 

Based Strain Analysis in Sandstones from the Outer Margin of the Sevier Fold and 

Thrust Belt, Western Wyoming. 

Chapter 6. Application of Strain and AMS Studies to the Irish Variscides of the 

eastern Munster Basin.  

These are the followed by a discussion and conclusion in Chapter 7. 

1.2. Previous Studies 

The study of rock deformation, strain analysis and petrofabric techniques, such as 

AMS, is often a large component of structural geology studies. To this extent a large 

amount of research has been dedicated to this field. A brief literature review of the 

main topics is presented below, with more detailed accounts of previous work 

presented in each respective chapter.  

The natural deformation of sedimentary rocks and the resulting formation of a 

tectonic fabric has been studied since the mid to late 19th century (Darwin, 1846; 

Harker, 1885; Haughton, 1856; Sedgwick, 1835; Sharpe, 1847; Sorby, 1849). It was 

not until Cloos’ seminal study on oolites (1947) that quantitative strain analysis 

studies were truly carried out. Ramsay (1967) provided the first complete 

description of a variety of strain analysis methods and the following half century of 

research on strain analysis studies were largely spring boarded from these seminal 

texts.  
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Although the pioneering discoveries in magnetism were recorded, along with the 

similarities between electricity and magnetism, in 1600 by Gilbert, it was not until 

1820 when Oersted discovered how an electric current induced torque in a 

magnetic compass (Jones and Childers, 2001). This paved the way for fundamental 

research on electromagnetism, including Amperes discoveries of the properties of 

the magnetic fields produced by electrical currents. In 1905, Einstein confirmed 

through quantum physics that magnetism and electricity were intrinsically linked 

(Einstein, 1923). Shortly after these discoveries on the effects of an electrical 

current on a magnetic field, research began on the effects of placing different 

minerals into a magnetic field and it was found that crystal orientation was related 

to their magnetic susceptibility and hence detectable through magnetic properties 

(Voight and Kinoshita, 1907). This led to the analysis of rock fabrics using magnetic 

properties, with both Ising (1942) and Graham (1954) noting that induced 

magnetism in the rock specimen being analysed was easier along bedding or 

schistosity planes. Graham established that the axes of Anisotropy of Magnetic 

Susceptibility (AMS) of a rock could be related to grain fabrics.  

This was a major development in the study of petrofabrics, as AMS is capable of 

accurately averaging the orientation distribution and alignment intensity of all the 

rock components in a specimen in a quick, reproducible and objective manner. AMS 

has since been used to establish flow directions in igneous intrusions (Bouchez, 

1997; Petronis et al., 2012; Stevenson et al., 2008, 2007), evaluation of tectonic 

fabrics (Bakhtari et al., 1998; Debacker et al., 2004; Imaz et al., 2000; Parés, 2004; 

Parés, 2002) and as a comparison to strain analysis techniques (Burmeister et al., 

2009; Evans et al., 2003; Hirt et al., 1988; Lüneburg et al., 1999; for more complete 
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reviews of AMS and tectonic fabrics interested readers are referred to Borradaile 

and Jackson, 2004 & 2010).       

Despite the advances in these fields, the identification and quantification of initial 

tectonic fabrics formed at the onset of deformation has either been elusive or 

unsatisfactory. This is partly due to the variety of mechanisms by which rocks 

deform and the complications of estimating strain in rocks that have a significant 

primary fabric.  

 

1.3. Purpose of study 

Strain analysis studies are a fundamental process in reconstructing pre-tectonic 

geometries. Strain data provides the basic information for the restoration of 

stratigraphic thicknesses (Ramsay, 1969) sedimentary basins and for accurately 

balancing cross sections (Dahlstrom, 1969). Furthermore strain estimates can be 

related to the rheological properties of deformed rocks and the deformation 

mechanisms that occur (Etheridge and Vernon, 1981; Lisle and Savage, 1983; Lisle, 

1985). By analysing rocks using a suite of strain analysis techniques and fabric tools 

various interpretations can be made on the manner in which rocks can deform and 

how these mechanisms relate to regional structures. 
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2. Introduction to Strain Analysis 

This chapter presents a brief review of the background theory of traditional strain 

analysis methods, the theory behind two specific methods, namely the Mean Radial 

Length method and the Delaunay Triangulation Nearest Neighbour Method, as well 

as the Intercepts method and reviews some of the problems associated with these 

methods. Hence this chapter provides the relevant background information for one 

of the primary questions addressed in this thesis; how effective are these 

traditional methods at detecting and accurately quantifying strain in areas of low 

grade deformation.    

2.1. Stress and Strain 

Strain is a direct result of an applied stress to a body. Stress can be simply divided 

into two types of forces: forces that act throughout the entire volume of a body and 

are proportional to its mass, and forces that act upon an internal or external surface 

of a body. The first, known as body forces, are seen in gravity and centrifugal forces 

etc., they are measured in units of force per unit volume. The second are surface 

forces which are seen in everyday occurrences, such as a hammer striking a surface; 

they are measured in units of force per measured area (for a more complete review 

of stress within a geological context the reader is referred to Ramsay, 1967). 

Structural geologists are primarily concerned with surface forces and their effects. 

As stress conditions within the earths lithosphere change these changes can lead to 

deformation or strain of the crustal rocks (Ramsay, 1967). The concept of 

measuring strain in rocks has had its role in geology since the seminal work on the 

development of cleavage by Sorby (1853) and has evolved drastically since those 
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early studies. To properly evaluate methods of strain analysis, it is necessary to at 

least define strain and characterise what features of strain can be measured.  

When external forces act on a rock mass the rock is deformed, causing a change in 

its shape or size (Hobbs and Talbot, 1966; Nevin, 1949). Change in shape of a rock is 

called distortion, whereas a change in size is called dilation. Both of these usually 

occur during a single deformation event, resulting in strain (Hobbs and Talbot, 

1966). Strain can be considered to be the geometrical expression of the amount of 

deformation caused by the action of a system of stresses on a body, therefore it is 

essentially a quantitative measure of deformation and defines the distortion and 

dilation components (Hobbs and Talbot, 1966). This specification does not include 

rigid body rotations or translations which can also be part of the deformation 

(Hobbs and Talbot, 1966). These distortion and dilation components result in bulk 

strain and are accommodated by crystal plasticity, grain boundary sliding and 

pressure solution (Ramsay and Huber, 1983). Consequently finite strain can be 

defined as the end result of a deformation history that can incorporate overlapping 

or sequential deformation events (Borradaile and Jackson, 2004). As a result 

discrete sub-fabrics may form at different stages, by different mechanisms, 

involving different mineral and/or grain-size fractions (Borradaile and Jackson, 

2004).  

Given the inhomogeneous composition of rocks and complexities of tectonic forces, 

most deformation and resulting strain is inhomogeneous. Although some work has 

been carried out on finite inhomogeneous strain, it is generally considered too 

complicated to yield sensible and meaningful results; instead it is customary to 
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divide the deformed body into regions of homogeneous strain (Ramsay, 1967). 

Regions of homogeneous strain are defined as those in which all initially straight 

lines remain straight after deformation (Hobbs and Talbot, 1966). This definition 

implies that an initial sphere undergoing deformation becomes an ellipsoid (Hobbs 

and Talbot, 1966). Natural stresses tend to act in three dimensions and the 

resulting strain developed is typically triaxial (Hobbs and Talbot, 1966). To calculate 

the degree of strain in three dimensions, three (or more) mutually perpendicular 

lines of known initial lengths and orientations are required (Ramsay, 1967). It is 

rarely possible to obtain a complete data set, additionally information is typically 

restricted to  objects that can be recognized before and after strain (Hobbs and 

Talbot, 1966). Furthermore evaluations must be made as to whether these strain 

markers reflect bulk strain, the strain the entire rock mass is undergoing (Hobbs and 

Talbot, 1966). If the marker and the host rock have different rheological properties 

then the marker will not represent the bulk strain (Borradaile, 1987; Hobbs and 

Talbot, 1966; Meere et al., 2008; Treagus and Treagus, 2002; Vitale and Mazzoli, 

2005). Similarly if any rigid body rotation of the strain marker has occurred it will 

not reflect the bulk strain (Hobbs and Talbot, 1966).  

2.1.1. Measuring Strain 

Various methods have been developed to quantify strain, most of which rely on 

objects of a known initial shape. This approach was first taken by Phillips (1843) and 

Sharpe (1847) who used deformed fossils, with Sharpe (1847) noting that the most 

deformed fossils were present in the beds with the most intense cleavage. This led 

to Sorby’s interpretation of cleavage development (1853). Haughton (1856) 
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provided the first mathematical description of length changes in fossils due to strain 

in naturally deformed rocks. This was then followed by the introduction of the 

strain ellipsoid concept by Harker (1886), which established a framework for strain 

to be considered and compared across study areas. It was not until the quantitative 

studies on distorted ooids by Cloos (1947) that truly numerical and methodological 

strategies were fully applied to strain analysis.  

By the early and mid-sixties it was generally thought that strain analysis depended 

solely on the presence of strain markers of known initial shape, such as fossils or 

reduction spots (DeSitter, 1964), until Ramsay (1967) set out strain analysis 

methods which allowed objects, such as sedimentary clasts, of non-spherical and 

fluctuating initial shape to be used for analysis as strain markers. These methods 

depended on clast orientation, repacking and intraclast deformation of clasts due 

to deformation (discussed in detail below). This was a key development in strain 

analysis, as it allowed estimates to be made from material that did not have any 

high quality strain markers such as reduction spots.   

 

2.1.2. The Strain Ellipsoid 

The clearest method of graphically displaying strain in three dimensions is the strain 

ellipsoid. As mentioned above any spherical object will develop an ellipsoidal 

geometry while undergoing homogeneous deformation (Means, 1976; Ramsay, 

1967). Similarly if the object being strained is not spherical, its strain ellipsoid can 

be calculated by selecting three mutually perpendicular axes (the principal strain 

axes) x, y & z, so that they are parallel to the greatest, intermediate and least 
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elongation of the strained body respectively (Ramsay, 1967). The three principal 

axes of this ellipsoid represent the three principal longitudinal strains (Figure 2. 1; 

Ramsay, 1967). The geometry of these strain axes is the result of the acting 

principal stresses (σ1≤σ2≥σ3).  

 

Calculating the lengths of these axes is relatively simple: each axis is equal to the 

unit diameter of the initial sphere plus the elongation (e) along each individual axis 

(elongation can be positive or negative), (1+e1)≥(1+e2)≥(1+e3)(Ramsay, 1967). The 

principal strains are denoted as λ1 ≥ λ2 ≥ λ3  with λ1 taken as the direction parallel to 

the longest diameter of the ellipsoid and λ3 as the shortest diameter (Means, 1976). 

The strain shape of the ellipsoid can be quantified using K, where K= 
         

         
. The 

shape of a strain ellipsoid can range from oblate, which represents pure flattening 

strain, to prolate, which represents pure stretching strain. These geometries are 

easily plotted on a Flinn diagram (Flinn, 1962a, 1956) and will be discussed in detail 

below. 

Figure 2. 1 The strain ellipsoid with principal stresses, σ, and strains, λ.  



Chapter 2: Strain Analysis       13 
 

Under homogeneous deformation these principal directions/axes remain mutually 

perpendicular (Means, 1976; Ramsay, 1967). Planes through the ellipsoid 

containing any two of the principal directions are considered as the principal planes 

of strain, and their intersection of the strain ellipsoid can be traced as ellipses 

(Means, 1976). The axial ratio of one of these strain ellipses is termed R and the 

orientation of the long axis in relation to a reference orientation is termed Φ. For a 

complete review of the background theory interested readers should refer to the 

work of Ramsay (1967) and Means (1976).  

 

2.2. Measuring Strain 

As mentioned above, Ramsay (1967) developed methods whereby strain estimates 

could be made using parameters derived from the following: strain marker 

orientation, strain marker shape, position of strain marker centres, distance 

between centres and the angle between centres. The two main types of methods 

that emerged were the Rf/Ø method and centre to centre or nearest neighbour 

method (Ramsay, 1967). The Rf/Ø method determined finite strain from randomly 

oriented populations of deformed elliptical objects, while the centre to centre 

method used the distance between centres of adjacent objects, provided the 

objects were evenly distributed prior to deformation.  

Subsequent to the initial Rf/Ø method, alternative methods based on marker shape 

and orientation have since been developed (Borradaile, 1976; Dunnet and Siddans, 

1971; Dunnet, 1969; Elliott, 1970; Lisle, 1985, 1977a, 1977b; Matthews et al., 1974; 

Mulchrone and Meere, 2001; Mulchrone et al., 2003; Peach and Lisle, 1979; Robin, 
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1977; Shimamoto and Ikeda, 1976; Yu and Zheng, 1984). Dunnet (1969) developed 

an Rf/Ø diagram method, while Elliott (1970) applied a similar graphical approach, 

the shape factor grid. Dunnet and Siddans (1971) took non-random initial 

distributions into consideration for the Rf/Ø diagram method. Unfortunately these 

methods are subjective and essentially non-repeatable. An algebraic method that 

accommodated statistical analysis of any errors produced was introduced by 

Matthews et al. (1974). The drawback of this method was that the orientation of 

the principal strain axis needed to be calculated independently prior to using the 

method. Similarly Robin, (1977) derived a method that allowed analysis of strain 

markers of any shape but required prior independent knowledge of the principal 

strain axes. In order to address some of the above issues with calculating strain 

from distributions of elliptical objects, Mulchrone et al. (2003) introduced a non-

graphical and repeatable approach to strain analysis, the Mean Radial Length (MRL) 

method. 

The second strain analysis methodology is based on using object to object 

separation and assumes that the marker objects are anti-clustered and that the 

relative position of the centres of these objects is directly related to the orientation 

and magnitude of the finite strain ellipse (Ramsay, 1967). Compared to the Rf/Ø 

method the centre to centre method involves relatively complicated calculations 

and is particularly labour intensive. As a result has received significantly less 

attention then the Rf/Ø method. The first major modification of the Ramsay’s 

centre to centre method was the development of a graphical approach which used 

all object-object separations by Fry (1979). This was subsequently further improved 
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as the Normalised Fry Method (Erslev, 1988) and the enhanced Normalised Fry 

Method (Erslev and Ge, 1990). McNaught (1994) further extended these methods 

by facilitating the use of non-elliptical markers by determining best-fit ellipses for 

these irregular shaped objects. The Fry methods have been regularly incorporated 

into automated analysis tools (Ailleres et al., 1995; Launeau and Robin, 1996; 

Launeau et al., 2010). Despite popularity and ease of use, these methods are 

subjective and not entirely repeatable. Mulchrone (2002) used Delaunay 

triangulation, to characterise nearest neighbour separations and define object 

centres. This Delaunay Triangulation Nearest Neighbour Method (DTNNM) was 

argued to be less subjective and a more computationally efficient strain analysis 

technique than the Fry methods (Mulchrone, 2002). 

 

2.2.1. Mean Radial Length (MRL) 

The Mean Radial Length (MRL) (Mulchrone et al., 2003) method relies on the 

orientation of grains to determine strain. The premise of the MRL method is that 

the mean radial length of a truly isotropic distribution of ellipses is a constant, 

independent of orientation, and as result forms a circle (Figure 2. 2). If the 

population of ellipses become deformed, either by shape change or rotation, this 

circle becomes an ellipse (Mulchrone et al., 2003). The resulting ellipse can then be 

related to the finite strain ellipse in the same manner any physical circle is after 

deformation (Mulchrone et al., 2003). To paraphrase, a population of randomly 

oriented ellipses have an MRL equal to a circle, while a population of ellipses with a 
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preferred orientation have an MRL equal to an ellipse representative of the strain 

ellipse.  

The MRL method can be applied accurately if the deformation being measured is 

homogenous and passive, and if the viscosity contrast is low between the ellipsoidal 

markers and the matrix (Mulchrone et al., 2003). Additionally the following 

assumptions are made for the ellipse populations in the unstrained state: the long 

axis orientation is a uniform random variable; and the distribution of axial ratios (R) 

is independent of orientation, (i.e. R is isotropic).   

 

Figure 2. 2 The MRL relies on the orientation of grains to determine strain. The method requires 
that randomly orientated ellipses have a Mean Radial Length that equates to a circle, whereas 
ellipses with a preferred orientation have MRL averages that equate to an ellipse. A. Shows two 
ellipses orientated at 90° and  B. plots their mean radial length. C. Shows four ellipses orientated at 
45° and  D. plots their mean radial length. Redrawn from Mulchrone et al. (2003). 
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2.2.2. Delaunay Triangulation Nearest Neighbour Method (DTNNM) 

As mentioned above Ramsay (1967) first introduced the concept of calculating 

finite strain by using the distance between centres of adjacent objects. The method 

involves determining the centres of objects that were originally nearest neighbours, 

and connecting these object centres with tie lines and analysing the changes in 

length and orientation of these tie lines due to deformation (Ramsay and Huber, 

1983). The technique is based on the assumption that the lines between nearest 

neighbours had a uniformally random distribution in the unstrained state. In the 

strained state distances between clasts become shorter in the tectonic shortening 

direction and longer in the tectonic stretching direction.  

Therefore the tie lines can be used to calculate the shape and orientation of the 

strain ellipse, as line orientation and line length change with deformation (Ramsay 

and Huber, 1983). The centre to centre technique enables the estimation of bulk 

rock strain using the redistribution of rock components (ooids, grains , clasts, etc.) 

in the deformed rock and the distances between these points as extended line 

elements (Ramsay and Huber, 1983). 

Implementation of this technique in two dimensions involves determining pairs of 

nearest neighbours, calculating the distance between their centres (di) and the 

orientation of the line joining them (αi) (Figure 2. 3). The minimum and maximum 

average values of di (dmin and dmax) are estimated by plotting di against αi in a 

polar plot. By dividing dmax by dmin the axial ratio is calculated and this provides an 

estimate of ellipticity, R (Ramsay and Huber, 1983). The orientation of the 

extensional axis of the strain ellipse is taken parallel the orientation of dmax. The 

Nearest Neighbour method is essentially a measure of strain due to matrix 
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deformation and pressure solution (Mulchrone, 2002) and as a result measures bulk 

rock strain and is generally closer to the true finite strain (Meere et al., 2008; 

Pastor-Galán et al., 2009). Despite this, the centre-centre methods are relatively 

unused compared to other Rf/Ø methods. This is in part due to problems in 

objectively defining the object centres, the high number of individual calculations 

required and related labour intensity as well as interpretation problems (Erslev, 

1988).  

The application of Delaunay Triangulation to the centre-centre method removed 

subjectivity in measurement in defining centres (Mulchrone, 2002). The subsequent 

automation of the technique (Mulchrone, 2005) reduced the labour intensity 

associated with the large number of calculations. The more recent work by 

Mulchrone et al. (2013) further reduced the labour intensity by introducing a semi-

automated process for identifying objects and the required parameters and 

combining it with a statistical analysis method.  

Unfortunately problems with the validity of the estimates derived from the centre-

centre method still exist. This is mainly due to the complex relationship between 

the original object shapes and the competency contrast between the objects and 

the matrix, as well as the influence of neighbouring objects (Ramsay and Huber, 

1983). Furthermore the variation in tie line lengths is independent of initial line 

orientation and is a function of particle size and initial degree of packing (Ramsay 

and Huber, 1983). 
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Figure 2. 3  A. The lengths, d, and orientations, α, of tie lines joining object centres are 
marked. Centre to centre techniques are based on the assumption that the tie-lines between 
nearest neighbours have a uniformally random distribution in the unstrained state. In the 
strained state distances become shorter in the tectonic shortening direction, as seen in B. C. 
Polar plot of d vs α, the apex of the curve shows the orientation of the longest direction and 
the nadir shows the orientation of the shortest direction. Redrawn from Park (1997). 



Chapter 2: Strain Analysis       20 
 

2.2.3. Automation 

The use of MRL and DTNNM requires the analysis of multiple parameters for at 

least 150 objects per calculation to maintain statistical integrity (Meere and 

Mulchrone, 2003). In order to reduce the labour intensity and subjectivity in 

determining the required parameters of the MRL and DTNNM methods Mulchrone 

et al. (2013) combined the MRL and DTNNM method in a Mathematica package 

that carries out image analysis, estimates strain and calculates statistical analysis of 

the errors in one work flow. This semi-automated method requires the manual 

tracing of grain boundaries from a microphotograph (Figure 2.4 A&B), after which 

the Mathematica package then identifies the grain boundaries (Figure 2. 1Figure 

2.4C) and all of their morphological parameters required to calculate the DTNNM 

(Figure 2.4 D&E) and MRL results as well as bootstrapping the data, to provide 

confidence intervals (Figure 2.4 F&G).  

This integration of image analysis, parameter extraction and strain analysis routines 

significantly reduces the time and labour intensity of geological strain analysis 

studies. Although automation of strain analysis techniques has received 

considerable attention in the past (Ailleres et al., 1995; Erslev and Ge, 1990; 

Heilbronner, 2000; Masuda et al., 1991; McNaught, 1994; Mukul, 1998; Mulchrone 

et al., 2005; Panozzo, 1984), there is still a large degree of user input into the 

process. The main limiting step has been the recognition and fitting of best fit 

ellipses to geological strain markers such as sedimentary clasts. It has been found 

that an initial manual identification of the boundaries of the objects to be analysed, 

followed by completely automated strain analysis is the most mentally bearable 
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and least subjective method (Mulchrone et al., 2013). The manual identification of 

object boundaries can be done relatively quickly with tracing paper and an ink pen. 

They can then be scanned and analysed using the Mathematica code developed by 

Mulchrone et al. (2013) with very little extra input from the user. Additionally the 

grain boundary maps can also be analysed for grain size, shape and sorting analysis 

using a similar piece of Mathematica code developed by McCarthy (in prep).     

2.2.4. Statistical Analysis  

The strain estimates from the MRL and DTNNM methods were analysed using the 

Bootstrap method to calculate errors associated with the data and provide 

confidence intervals for R and Φ.  As mentioned above the Bootstrap method has 

been incorporated into the Mathematica code for strain analysis presented by 

Mulchrone et al. (2013). The Bootstrap method constructs approximate sampling 

distributions for complex statistical estimates (Efron and Gong, 1983; Efron, 1979). 

It generates multiple “samples” of a given dataset by repeatedly resampling the 

original dataset with replacement. By analysing the multiple generated samples 

multiple parameter estimates can be calculated. These artificial parameter 

estimates should closely approximate the true sampling distribution of the 

parameters, allowing estimation of suitable confidence intervals by calculating the 

90, 95 and 99% percentiles. In higher dimensions (in 2D strain analysis that data are 

bivariate), elliptical regions centred on the mean are found which enclose a 

specified percentage of the data using the built-in EllipsoidQuantile function of 

Mathematica (Mulchrone et al., 2013). 
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Figure 2.4 Generalised workflow for the automation of the MRL and DTNNM methods. A. 
Photograph of a sample. B. Manual trace of grain boundaries. C. Identification of grain 
boundaries in Mathematica. D. Polar plot of the nearest neighbour data, r (distance from 
origin) is plotted against  orientation and superimposes the curve representing the best-fit 
ellipse. E. Cartesian or Fry style plot of the nearest neighbour data. F. Bootstrap plot of the 
MRL data with 90, 95 & 99% confidence intervals and the actual estimate marked by a star. 
G. Bootstrap plot of the DTNNM data. 
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While the Bootstrap method has been shown to be applicable to geological strain 

analysis (McNaught, 2002; Mulchrone et al., 2003), the complete background 

theory for bootstrapping strain estimate data is beyond the scope of this research 

(Interested readers are referred to Efron, 1979; Efron and Gong, 1983; McNaught, 

2002; Mulchrone et al., 2003).  

2.2.5. Intercepts 

As a comparison to the clast based methods discussed above, analysis using the 

Intercepts software package (Launeau and Robin, 1996; Launeau et al., 2010) has 

been applied to the same samples. This method is a style of measuring crystal 

preferred orientation (CPO) and records the orientation of all the linear elements in 

an image. It is a quick and relatively simple way of establishing a quantitative 

measure of fabric strength. The intercepts can be applied to unprocessed images 

and applies various thresholding methods to define grain boundaries, as well as the 

grain boundary maps produced for the MRL and DTNNM methods.  

The Intercepts method involves analysing a circular area of an image at 6° intervals 

along a set of parallel lines spaced with one pixel intervals (Launeau and Cruden, 

1998). The intercepts between object boundaries and the analysis lines in all 

directions are recorded. This is the “rose of intercepts”, by dividing the total area of 

objects by their number of intercepts in each direction provides the “mean rose of 

intercept lengths” (Launeau and Cruden, 1998). This is a measure of the images’ 

anisotropy and similar to strain analysis studies this is represented by a ratio, R, and 

the orientation of the long axis Φ (Figure 2.5). The intercepts method is a measure 

of fabric strength rather than a method of estimating strain, therefore its R values 
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may represent an underestimate compared to the MRL and DTNNM, but the 

orientations produced should be similar. For the Intercepts analyses of the 

unprocessed photos and the grain boundary maps, mean tensor values are 

reported and for the Shape Preferred Orientation (SPO) analysis of the grain 

boundary maps, the mean shape results are reported.  

 

2.2.6. Plotting Strain Data 

As mentioned above the traditional method for reporting 2D strain data typically 

involves R and Φ, which represent the axial ratio of the strain ellipse and the 

orientation of the long axis of that ellipse, respectively. The majority of 2D strain 

graphs in this study plot R against Φ. Additionally, in order to represent strain 

orientations in comparison to AMS fabrics the Φ angle is plotted as a pitch in the 

sampling plane on a stereonet.  

Figure 2. 5 Generalised output from Intercepts software. Both rows represent output for the 
sample, with the top row displaying the results for an unprocessed image and the bottom 
row displaying the results for an image of manually traced grain boundaries. Modified from 
Launeau and Robin (1996).  
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Determining the orientations and magnitudes of the principal axes of the strain 

ellipsoid requires data from strain ellipses measured from a minimum of two planes 

throughout a sample. This is not a trivial calculation and as a consequence 

numerous attempts have been made at determining the most accurate best fit 

ellipsoid (Launeau and Robin, 2005; Mookerjee and Nickleach, 2011; Owens, 1984; 

Ramsay, 1967; Robin, 2002). Ramsay (1967) considered three mutually 

perpendicular planes and derived a series of equations to solve for the best-fit 

ellipsoid. Owens (1984) described a method for the calculation of the best-fit strain 

ellipsoid from 3 or more non-perpendicular planes using a least squares approach, 

as well as applying a scale factor. The Robin method (Robin, 2002; Robin & 

Launeau, 2005) utilised a similar algebraic approach, with or without a scale factor 

in the Ellipsoid application. Mookerjee and Nickleach (2011) presented a method 

which attempts to minimise the errors between the best-fit ellipsoid and any of the 

measured planes used as input data.  

 

The most conventional and practical method of representing finite strain states is to 

use the strain ellipsoid. Flinn plots (Figure 2. 6; Flinn, 1956 & 1962) are used to 

represent all possible ellipsoid geometries in a 2D space. The standard convention 

is to use a logarithmic plot, where the ratio of the maximum to intermediate 

ellipsoid axes (lg X/Y) is plotted as ordinate and the ratio of the minimum to 

intermediate axes (lg Y/Z) is plotted as abscissa (Flinn, 1956, 1962; Ramsay, 1967). 

When plotted in this manner prolate spheroids plot along the vertical axis and 

oblate spheroids plot along the horizontal. As these ellipsoids become less 

spherical, they plot further away from the origin (Wood, 1973). The ratio K 
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((X/Y)/(Y/Z)) can be used to describe the symmetry of the ellipsoid. If K>1 then the 

ellipsoid is considered to have an axial symmetric constriction and has one long axis 

and two shorter axes, (Ramsay, 1967). If K<1 the ellipsoid is considered to be axially 

symmetrically flattened and has two long axes and one shorter axis (Park, 1997). 

Between these two fields of flattening and constriction is the field of plane strain 

(K=1) and which only occurs when strain is acting in the XZ plane. K represents the 

slope of a line from the data point to the origin at (1,1), so that     
 

 
   with 

  
 

 
  and   

 

 
. K on the diagram can define a series of domains, so that when 

    the finite strain ellipsoid is uniaxial oblate and has been flattened 

perpendicular to Z. As K tends towards 1 the ellipsoid moves away from being 

purely uniaxial, but remains in the oblate and flattened domain. For K values 

greater than 1 the ellipsoid lies in the prolate or constrictive domain, and for 

    the ellipsoid is purely uniaxial prolate and stretched along the X axis (Park, 

1997). The degree of how far removed the ellipsoid is from spherical (ellipsoid 

eccentricity) is calculated as√               .   
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2.3. Strain Markers, Progressive Deformation and Cleavage Development 

Regardless of what strain markers are used to facilitate strain analysis they are all 

subject to deformation and the variety of mechanisms that accommodate 

deformation. Hence it is important to consider these deformation mechanisms and 

how they affect populations of strain markers.   

2.3.1. Fabric Development 

In order to accommodate the shape change of a rock mass undergoing 

deformation, individual mineral components are required to become rearranged 

mechanically either by rotation or internal deformation, with some components 

undergoing mass transfer, through mechanisms such as solution and precipitation 

Figure 2. 6 Flinn plot, showing range of ellipsoid geometries, modified from Ramsay (1967). 
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(Ramsay, 1967; Ramsay and Huber, 1983; Vernon, 2004). This combination of 

textural and chemical alteration, due to strain and mass transfer, results in a 

geometric organisation of the rock’s various components, such as preferred 

orientations of minerals (Sorby, 1856; Wood, 1974). This results in a tectonic fabric 

or cleavage. The term fabric refers to the total sum of grain shape, grain size and 

grain configuration in a rock (Dennis, 1967). While fabric can refer to undeformed 

rocks, cleavage can be defined as a population of elements of a secondary planar 

fabric that impart a mechanical anisotropy to a deformed rock (Dennis, 1967). This 

anisotropy is essentially the result of a flow phenomenon that typically forms 

perpendicular to the direction of maximum shortening  (Cloos, 1947; Hobbs and 

Talbot, 1966; Means, 1976; Ramsay, 1967; Wood, 1974). Cleavage is a set of 

systematic variations in mineralogy and fabric, that have been brought about by the 

need to accommodate distortion of the rock body (Davis and Reynolds, 1996). 

These systematic variations in mineralogy and fabric produce a domainal structure, 

or structural lamination, composed of alternating cleavage domains and 

microlithon domains (Davis and Reynolds, 1996). The cleaved domains are typically 

thin and mica rich and can be anastomosing to subparallel laminations in which the 

fabric of the host rock has been strongly rearranged and/or partially removed 

(Davis and Reynolds, 1996). The microlithon domains are typically narrow lenses in 

which the mineralogy and fabric of the protolith have largely been preserved (Davis 

and Reynolds, 1996).These tectonic fabrics can initiate mechanically during 

diagenesis and continue to develop by chemical-mechanical processes during low 

grade metamorphism (Vernon, 2004). The majority of phyllosilicate alignment and 

resulting cleavage development occurs by solution of old grains and 
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neocrystallisation as well as physical grain rotation, when dewatering and 

lithification processes have completed or are near completion (Vernon, 2004). 

Therefore cleavage formation cannot be viewed simply as a purely mechanical 

process, as chemical reactions are intimately involved with the later stages, 

additionally the compositional domains of cleavage require redistribution of 

chemical components (Vernon, 2004). This has serious implications for strain 

analysis.  

 

Figure 2. 7 Progressive deformation stages as discussed in the text (From Ramsay and Huber, 
1983). A. represents an initially compacted sedimentary rock. B. is the earliest deformation stage 
and represents an extremely weak tectonic lineation. C. as the strength of the tectonic lineation 
becomes approximately equal to the strength of the bedding foliation a pencil cleavage is formed. 
D. the tectonic lineation starts to become a foliation, forming embryonic cleavage. E. the tectonic 
foliation has become the dominant fabric in the rock and a penetrative cleavage is formed. F. as 
flattening continues the rock mass undergoes stretching. The Flinn diagram illustrates this 
evolution form an initially oblate fabric through prolate and back into oblate.  



Chapter 2: Strain Analysis       30 
 

2.3.2. Progressive Fabric Development  

The reorganisation of the components of a rock mass into a tectonic fabric can be 

considered as a series of progressive changes or a deformation continuum (Ramsay 

and Huber, 1983). This progressive deformation can be viewed synchronously with 

changes in the strain ellipsoid. Ramsay and Huber (1983) presented this simply by 

defining stages of a hypothetical undeformed sedimentary rock mass featuring a 

primary bedding plane fissility (Figure 2.7 A) undergoing progressive deformation.   

The onset of deformation starts with a contraction sub-parallel to the 

bedding plane (Figure 2.7 B). This can be accompanied by volume loss associated 

with mechanical closure of pore space and expulsion of pore water, if this process 

had not completed during diagenesis. The initial bedding plane fissility will become 

less distinct due to the rotation of platy elements and the development of weak 

linear orientation of acicular minerals. This first stage results in a weak bedding 

fabric and extremely weak tectonic lineation.  

As tectonic strain increases and deformation and volume loss continues a 

more defined linear fabric is developed (Figure 2.7 C), usually producing a pencil 

cleavage. This stage is associated with 10 to 25% shortening and the strain ellipsoid 

takes on a prolate geometry.  

With increasing strain the prolate/linear fabric tends towards a flattened or 

oblate fabric (Figure 2.7 D). This is brought about by progressive shortening in the 

tectonic Z direction and elongation in the X direction. Mineral rotations and/or new 
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mineral growth along the tectonic extension plane form a weak or embryonic 

cleavage.  

When the tectonic strain has become strong enough to sufficiently overprint 

bedding a dominant planar cross cutting fabric or cleavage is formed. Platy and 

acicular minerals are well oriented in the cleavage plane (Figure 2.7 E). The 

resulting strain ellipsoid should have an oblate or flattened ‘pancake’ geometry. 

The development of cleavage concludes with a progressively intensifying linear 

structure in the cleavage surface parallel to the tectonic X direction and a strongly 

developed planar cleavage (Figure 2.7 F). This cleavage is inherently linked to the 

finite strain state, with the fabric forming perpendicular to the shortest axis (Z) of 

the finite strain ellipsoid and increases with intensity with the strain ratio Rxz 

(Ramsay and Huber, 1983). 

2.3.3. Conditions for Cleavage Development 

Tectonic fabric development is typically associated with grain or clast alignment, 

brought about by mechanical grain rotation, pressure solution and 

neocrystallisation. While slaty cleavage is typically associated with lithologies that 

are too fine for strain analysis techniques that require clear definition of grain 

boundaries and geometries, spaced cleavage in fold and thrust belts is typically 

associated with lithologies that display alignment of clasts big enough to allow for 

strain analysis studies. The presence of spaced cleavage provides some information 

in regards to the conditions associated with fabric development. Spaced cleavage 

initiates under low grade metamorphism, with approximate temperatures of 200°C 

and pressures of 5 kb (Engelder and Marshak, 1985; Marshak and Engelder, 1985; 
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Mitra and Yonkee, 1985). This typically equates to crustal depths of 5-8km depth.  

Spaced or disjunctive cleavage is characterised by a planar/domainal fabric with 

zones of less deformed microlithons, which resemble the protolith, and deformed 

selvage zones (Davidson et al., 1998; Holl and Anastasio, 1995). These selvages are 

associated with clay rich seams are fine grained, optically opaque and have straight 

to anastomosing geometries with straight or serrated edges (Davidson et al., 1998). 

These dark fine grained areas are composed of insoluble residues that have become 

concentrated due to dissolution of quartz or calcite, depending on the bulk 

chemistry of the rock (Alvarez et al., 1976, 1978; Engelder and Marshak, 1985; 

Marshak and Engelder, 1985; Davidson et al., 1998; Vernon, 2004; Passchier and 

Trouw, 2005). Pressure solution is driven by diffusive mass transfer, involving 

dissolution, evidenced by sutured grain boundaries, and precipitation, evidenced by 

fibrous overgrowths (Davidson et al., 1998; Vernon, 2004). This process initiates 

with strain concentrating at grain-to-grain contacts causing the dissolution and 

concentration of this dissolved grain material in grain boundary fluid films (Marshak 

and Engelder, 1985). This dissolved material then diffuses to areas of lower strain 

precipitates (Marshak and Engelder, 1985).  Davidson et al. (1998) argue that these 

dissolution planes and fibrous overgrowths define the principal axes of the finite 

strain ellipsoid (X>Y>Z) in the same manner that slaty cleavage defines these axes 

(Wood, 1974).   
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2.4. Problems with Strain Analysis 

The stark conclusions reached by Hobbs and Talbot (1966) on the limits of strain 

analysis seem to be the same limitations that prevail today. These limitations are 

summarised below:  

1) the initial shapes of many geological bodies cannot be exactly measured 

within a small enough range to yield useful results;  

2) even if the initial shapes can be measured within a tight range, not 

enough information can be gleaned from the rock to solve the mathematical 

problem unless assumptions concerning the state of strain are made; 

3) the assumptions made by geologists concerning the states of strain in 

deformed rocks are not justified, since they are often part of the required 

information. 

An important concern for any strain analysis is the properties of the strain markers 

studied. Clearly the most ideal strain markers are those that were originally 

spherical that deform passively with no competency contrast between the marker 

and the host. If this holds true then the post finite strain shape of the marker will 

reflect that of the finite strain ellipsoid (Ramsay, 1967). So true strain markers are 

those “geologic bodies within a rock which, during the deformation of that rock, 

have retained their identity but did not differ from their surrounding material in 

their mechanical behaviour" (Robin, 1977). Unfortunately these strain markers, 

such as reduction spots, are far from ubiquitous, leading to the development of 

methods based on the properties of object populations discussed above. The single 

most conceptual problem for these methods besides assumptions concerning the 

primary fabric of a rock mass, such as the initial orientation of objects and degree of 
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packing, is that of passive deformation. Rock particles and their surrounding matrix 

rarely deform in a passive or homogeneous manner, this is due to ductility 

contrasts between the marker and the host rock. 

2.4.1. Primary Fabric 

The largest problem for most strain analysis methods that employ sedimentary 

clasts as strain markers is that of an initial primary fabric. Most strain analysis 

methods, particularly the Rf/Ø  style, rely on the assumption that clastic sediments 

have a random initial orientation fabric. This is rarely true, as most sediments have 

a preferred orientation prior to deformation (Holst, 1982; Paterson and Yu, 1994; 

Seymour and Boulter, 1979).  

Even if a random depositional fabric existed, a preferred orientation would 

probably develop during diagenesis and compaction through active or partly rigid 

body rotation (Borradaile 1987). The only cross-sections that might exhibit random 

initial fabrics are those that are parallel to bedding. Patterson and Yu (1994) 

highlighted further points concerning the assumptions made by structural 

geologists when considering the primary fabrics of sedimentary rocks used for 

strain analysis. These incorrect assumptions typically made during strain analysis 

include (Paterson and Yu, 1994): individual grains are spherical prior to straining; 

orientations and shapes of grain populations define spherical, pre-strain fabric 

ellipsoids (i.e. grains have an initial uniform distribution); pre-strain fabric ellipsoids 

are symmetric around bedding; and initial fabrics are recognizable even after 

straining. Taking these incorrect assumptions into account clearly illustrates that 

the starting or pre strain fabric ellipse/ellipsoid is rarely circular/spherical. Paterson 
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and Yu (1994) argued that failing to take the consequences of these assumptions 

into account has serious implications for strain analysis, particularly due to the wide 

range of pre-strain ellipsoid shapes. The first major implication discussed by 

Paterson and Yu (1994) is that small strain ellipse principal ratios (1.5 or less) may 

be largely influenced by depositional fabrics. Furthermore the XY planes of the 

estimated strain ellipsoids may not be parallel to the foliation, except at large 

strains (strain ratios >3.0) (Paterson and Yu, 1994).  

To resolve these implications they suggest that a correction for the existence of 

primary fabrics must be applied. This largely echoes earlier reports that suggested 

that minor deviations in the types of primary fabrics can cause significant errors in 

finite strain estimates (Seymour and Boulter, 1979). Multiple efforts have been 

made to remove the effects of primary fabrics on strain estimates (Dunnet and 

Siddans, 1971; Elliott, 1970; Holst, 1982; Lisle, 1977a; Matthews et al., 1974; 

Seymour and Boulter, 1979; Shimamoto and Ikeda, 1976), but unfortunately most 

of these procedures utilise one or more of the above assumptions and/or assume 

the existence of independent information concerning the strain ellipsoid. The 

algebraic approach of Wheeler (1986) involves superimposing the tectonic strain 

ellipsoid on a bedding symmetrical ellipsoid. Paterson and Yu (1994) contested this 

method on the grounds that sandstones rarely have bedding as a definite symmetry 

plane and that data for primary fabric ellipsoid ratios and orientations is usually 

non-existent. To counter this they suggested that the final strain estimate could be 

bracketed into a triangular area on a Flinn plot (Figure 2.8) by multiplying the 

estimated strain ellipsoid by an average reciprocal pre-strain ellipsoid (Paterson and 

Yu, 1994). The obvious problem is that of what magnitude and orientation of the 
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principal axes to use for the pre-strain ellipsoid. The magnitude of the principal axes 

can be derived by determining an average of multiple measured pre-strain 

ellipsoids (the averages used by Paterson and Yu (1994) are 1.31:1.14:1).  While 

magnitude data can easily be averaged across multiple samples, unless some 

information is known about the primary fabrics orientation, orientation data 

presents a problem in that it can vary greatly across multiple samples. In order to 

resolve this, the estimated strain ellipsoid can be multiplied by the reciprocal pre 

strain ellipsoid multiple times in numerous orientations to create an error bracket. 

Although this seems complicated, Ramsay (1967) showed that all possible 

combinations of two ellipsoids result in an approximate triangular region on a Flinn 

plot.  

The three extreme points reflect three of the six possible ways of coaxially 

combining two ellipsoids. Although this may seem counterproductive in terms of 

strain analysis, in that it might add too large an error bracket to what is already an 

approximate measurement, it will have a larger effect on weakly deformed samples 

and a much smaller effect on strongly deformed samples. The principal axial ratios 

of pre-strain ellipsoids tend to be small and as a result the triangular-shaped 

confidence bracket will be relatively small when estimated finite strain ellipsoids 

are combined with pre-strain ellipsoids (Paterson and Yu, 1994) 

 

The method of Paterson and Yu (1994) can be simplified into a two-step process: 

calculation of a reciprocal pre-strain ellipsoid using the estimated/averaged pre-

strain axial ratios and orientation; and the multiplication of this reciprocal ellipsoid 
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and the estimated strain ellipsoid, the resulting ellipsoid is then representative of a 

theoretically more correct estimate of the strain ellipsoid (Wheeler, 1986). 

 

 

2.4.2. Non-Passive Deformation 

Most of the existing strain analysis techniques make the assumption that clasts 

used as markers deform passively, i.e. the marker and surrounding rock matrix 

responded to deformation identically. Meere et al. (2008) concluded that a number 

of existing strain analysis techniques using sedimentary clasts yield significant 

underestimates of finite strain when these clasts have not behaved passively. 

Unfortunately for these methods it has been well established that there are 

significant competency contrasts between sedimentary clasts and their matrix 

(Ramsay, 1967; Gay, 1968a,b). This competency contrast is inherently linked to the 

Figure 2. 8 Resulting triangular fields in Flinn plot 
space after combining two ellipsoids (From 
Paterson and Yu, 1994; after Ramsay, 1967).The 
three extreme points represent three of the 
possible ways to coaxially combine two ellipsoids.  
These triangular areas are representative of the 
potential error margin when superimposing a 
strain ellipse on a pre-existing bedding fabric 
ellipse. 
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viscosity contrast between different clast types and the matrix (Ramsay, 1967; Gay, 

1968a,b). This at its most basic represents a two component system. Gay (1968a)  

discussed the effect the viscosity ratio between clasts and their matrix has on the 

style of deformation. It was found that clasts with a low viscosity deformed faster 

than the bulk rock strain ellipse, while clasts with high viscosities resisted 

deformation and deformed slower than the bulk rock strain ellipse (Gay, 1968a). 

Gay (1968a) concluded that the viscosity ratio between a clast and the matrix is 

dependent on the relative proportion of clasts and matrix. It is important to note 

that the viscosity of a matrix is in itself a mean viscosity. When the ratio of clasts to 

matrix is low there is a high ductility contrast as the clast to matrix ratio increases 

the ductility contrast reduces. This is arguably due to the reduced ability of the 

matrix to flow due to the increase in clast on clast interaction. As mentioned above, 

object concentration, packing and interaction clearly have a significant influence on 

finite strain estimates in two component systems due to the effect they have on the 

viscosity contrasts (Gay, 1968a; Mandal et al., 2003; Vitale and Mazzoli, 2005).  

Higher object concentrations have been shown by Mandal et al. (2003) to reduce 

strain partitioning. Similarly Vitale and Mazzoli (2005) demonstrated that higher 

ooid concentrations in deformed oolites lead to higher underestimates of bulk 

strain with less of an effect on object strain. From this work alone it is clear that 

using clasts with high viscosity contrasts to matrix as strain markers, as is often the 

case in sandstones and conglomerates, causes significant bulk strain 

underestimates. Treagus and Treagus (2002) while addressing these competency 

contrasts found that Rf/Ø style methods (Dunnet, 1969; Ramsay, 1967) 



Chapter 2: Strain Analysis       39 
 

characterised clast strain whereas centre to centre methods (Fry, 1979; Ramsay, 

1967) characterised bulk rock strain. Meere et al. (2008) attributed non-passive 

deformation to a relatively incompetent clay-rich matrix and that this ductile matrix 

effectively cushioned clasts from internal deformation. This behaviour 

accommodated high degrees of competent clast long-axis alignment achieved by a 

combination of rigid body rotation, layer boundary slip and particle–particle 

interactions (Meere et al., 2008). Where this behaviour occurs there is typically 

little or no evidence of penetrative deformation, despite evidence from traditional 

strain markers such as reduction spots and deformed burrows (Meere et al., 2008). 

This non-passive deformation particularly affects the clast strain estimates and the 

intercepts methods of calculating strain, mainly because these methods are 

recording the amount of rigid body rotation and repacking of clasts achieved by 

grain boundary slipping during deformation. Meere et al. (2008) found  that the 

effective bulk strain values (Rb) from centre to centre methods are generally closer 

to the true strain estimates, yet they still report significant underestimates and 

poor correlations with true strain, confirming the earlier reports from Treagus and 

Treagus (2002). 
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3. Introduction to Anisotropy of Magnetic Susceptibility 
3.1. Introduction 

Magnetic susceptibility measures how magnetised a material can become and its 

anisotropy is the preferential direction of magnetisation (Jones and Childers, 2001). 

This essentially relates the induced magnetisation to the magnetic field in which the 

material is immersed through the equation K=M/H, where K is susceptibility, M is 

magnetisation & H is the induction field (Borradaile and Jackson, 2004). Anisotropy 

of Magnetic Susceptibility (AMS) can average the orientation-distribution (OD) of all 

rock components contributing to its magnetic susceptibility, including minerals, 

crystal lattices and all sub-fabrics (Borradaile and Jackson, 2010). Therefore the 

result is dependent on the magnetic (mineral susceptibility and anisotropy) and 

physical (shape, size, and preferred orientation) properties of these components 

(Tarling and Hrouda, 1993). Hence AMS properties can aid fabric interpretation 

such as preferred grain orientations, current directions and strain histories 

(Borradaile and Jackson, 2010).  

The anisotropic response of a sample is an average of the different magnetic 

responses of all the mineral ODs, and is dictated by the intrinsic susceptibility of 

each mineral in the sample (Borradaile and Jackson, 2010). The simplest way to 

visualise the results is by using the AMS ellipsoid, similar to the strain ellipsoid, 

represented by three mutually orthogonal principal axes Kmax ≥Kint ≥ Kmin (or K1 

≥K2 ≥ K3 (Borradaile, 1988, Borradaile and Jackson, 2010). These axes are the 

eigenvectors and eigenvalues of K, i.e. the bulk susceptibility or kmean ( ̅  

        

 
). A structurally significant magnetic foliation (the plane perpendicular to 

K3, defined by K1 and K2) and lineation (parallel to Kmax) can be obtained from this 
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ellipsoid (Borradaile and Jackson, 2004). Additionally the overall shape of the AMS 

ellipsoid can be useful for structural interpretations, with three main geometries 

being oblate (K1 ≅ K2 > K3, with K3 perpendicular to magnetic foliation), prolate 

(K1 > K2 ≅ K3, with K1 parallel to magnetic lineation) and triaxial (K1 ≠ K2 ≠K3). 

AMS is capable of recording contributions from multiple ferromagnetic (sensu lato), 

paramagnetic, and diamagnetic minerals that grew at different times and were 

deformed by different mechanisms. Consequently, AMS often represents a 

composite fabric related to multiple depositional, diagenetic and tectonic 

processes, which complicates fabric interpretation (Borradaile and Jackson, 2004). 

This chapter discusses the background theory of AMS and interpretations of the 

AMS results, and how the magnetic ellipsoid can be related to strain and 

petrofabric studies.  

3.2. Magnetization 

3.2.1. Magnetization of a Material 

The magnetic properties of any substance are derived from the motion of 

electrically charged particles (Tarling and Hrouda, 1993). Electrons have 

magnetizations that are controlled by their axial spin and their orbital motion 

around a nucleus (Tarling and Hrouda, 1993). In order to naturally reduce the 

magnetostatic energy produced by these motions of electrically charged particles, 

electrons are organised into pairs in shells of variable electron capacity (Tarling and 

Hrouda, 1993). However, all materials magnetise in response to an applied 

magnetic field, by developing a preferred orientation in the spin and angular 

momentum of all electrons (Tarling and Hrouda, 1993). This results in an increase in 
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the magnetic moment (the measured intensity of magnetization) (Tarling and 

Hrouda, 1993). The strength of this magnetic response is controlled by two factors: 

the number of unpaired electrons in the atomic shells of an atom and the strength 

of the applied field. For atoms with complete atomic shells the net magnetic 

moment is very weak (diamagnetic), whereas atoms with increasing unpaired 

electrons in their atomic shells have an increasingly stronger magnetic response to 

an applied field (paramagnetic) (Tarling and Hrouda, 1993; Dunlop and Ozdemir, 

1997). This occurs because unpaired electrons promote the alignment of angular 

momentum and spin of electrons, resulting in an electrostatic charge (Dunlop and 

Ozdemir, 1997; Tarling and Hrouda, 1993). The strength of the magnetization (M) is 

also related to the strength of the applied field (H) and how magnetisable the 

material is, i.e. the material’s susceptibility (K): M=KH (Tarling and Hrouda, 1993). 

Clearly susceptibility of a material is controlled by atomic configuration, but is also 

affected by crystal structure (Borradaile and Jackson, 2010; Tarling and Hrouda, 

1993). In a well organised crystal structure the alignment of electrons due to 

magnetisation creates poles on the crystal surface at either end of the crystal’s long 

axis (Dunlop and Ozdemir, 1997; Tarling and Hrouda, 1993). The anisotropy of 

susceptibility will therefore depend on both the composition of a material and the 

orientation of the crystalline axes relative to the applied field (Borradaile and 

Henry, 1997).   

The units used in AMS studies are typically reported in systeme internationale (SI) 

units. Older publications (pre-1980) report units in CGS, which can be converted 

into SI units (Tarling and Hrouda, 1993).  The SI units for magnetization are based 
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on current loops, if a current loop has a radius r and a current i, then the magnetic 

field, H, produced at the centre of the loop can be defined as   
 

  
, which can be 

measured in Amperes per metre (A/M) (Moskowitz, 1991).  

The magnetic moment, m, of the current loop is defined as m = i X Area, measured 

in A m2 (Moskowitz, 1991). The intensity of magnetization, M, within that field is 

defined as the magnetic moment per unit volume, M =m/v, and is measured in 

Amperes per metre (A/M) the same unit used to measure H (Moskowitz, 1991). The 

susceptibility, K, is defined as the ratio of magnetization to magnetic field, K = M/H 

(Moskowitz, 1991) and is dimensionless.  

3.2.2. Classes of Magnetic Behaviour 

Materials can be classed by their responses to an applied magnetic field. The 

analysis of these responses is different from the study of palaeomagnetic fabrics, 

which are controlled by the residual magnetisation in the absence of an inducing 

field. Depending on the type of response to an applied magnetic field materials can 

be classed as magnetically disordered (diamagnetic or paramagnetic) or ordered 

(ferromagnetic, ferrimagnetic or antiferromagnetic) (Borradaile and Jackson, 2010; 

Dunlop and Ozdemir, 1997).  

3.2.2.1. Diamagnetism 

The weakest of these magnetic responses is a negative susceptibility called 

diamagnetism that is always present in all materials, but is usually masked by 

larger, positive effects such as ferromagnetism and paramagnetism (Borradaile and 

Jackson, 2010; Jones and Childers, 2001). This negative susceptibility indicates that 
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the direction of the induced moment is opposite to the direction of the applied 

field. This is caused by the change in the atomic electron orbits about the direction 

of the field, resulting in a magnetic field opposite to the applied field (Figure 3. 

1A)(Jones and Childers, 2001).  

This type of response only occurs when a magnetic field is applied to a material 

with complete atomic shells (Tarling and Hrouda, 1993) and is caused by a change 

in the atomic electron orbits about the direction of the field, resulting in a magnetic 

field opposite to the applied field (Jones and Childers, 2001). The resulting negative 

polarisation of ions disappears when the applied field is removed  (Jones and 

Childers, 2001). More simply put the resulting magnetisation is opposite to the 

direction of the applied field (Tarling and Hrouda, 1993) and in terms of M=KH, M 

has a weakly negative, non-permanent response to increasing H (O’Driscoll et al., 

2008). The most common rock forming diamagnetic components are quartz, calcite, 

dolomite and coal. Because they do not contain iron, nickel or chrome, so cannot 

form ferromagnetic minerals under metamorphic conditions (Tarling and Hrouda, 

1993).The magnetic response of diamagnetic minerals only becomes significant 

when ferromagnetic paramagnetic minerals are practically absent (<.0001% and < 

1% respectively; Tarling and Hrouda, 1993). The mean susceptibilities for quartz, 

calcite and dolomite are -13.4x10-6, -13.8x10-6 and -38x10-6 S.I respectively.  

3.2.2.2. Paramagnetism 

For materials with atoms that have incomplete electron shells, a paramagnetic 

response is displayed when an external magnetic field is applied (Borradaile and 

Jackson, 2010; Dunlop and Ozdemir, 1997; Jones and Childers, 2001; Tarling and 
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Hrouda, 1993). Paramagnetism is characterised by the partial alignment of 

magnetic moments parallel to the applied field and is therefore, a much stronger 

positive response than diamagnetism (Dunlop and Ozdemir, 1997; Tarling and 

Hrouda, 1993). Like in the case of diamagnetism the orientation of each moment is 

independent of the orientation of its neighbouring moments, but unlike 

diamagnetism paramagnetism arises from atoms with permanent magnetic dipole 

moments that exist independently of any applied field (Jones and Childers, 2001).  

As a result of this independence these moments are randomly orientated and have 

no net magnetisation in the absence of an applied field (Figure 3. 1B); therefore 

their response is non-permanent (Jones and Childers, 2001). However, when a 

magnetic field is applied,  the moments align preferentially along the direction of 

the applied field causing a net magnetisation (Jones and Childers, 2001). 

Paramagnetic grains have a positive proportional non-permanent relationship 

between H and M, even at high strengths, and M is zero when H is zero (the 

magnetisation is not permanent) (O’Driscoll et al., 2008). Furthermore 

paramagnetism depends inversely on the absolute temperature in such a way that 

the susceptibility decreases with increasing temperature according to the Curie Law 

(Jones and Childers, 2001; O’Driscoll et al., 2008). Paramagnetic behaviour is 

predominantly displayed by iron-bearing silicates (biotite, muscovite, pyroxene and 

amphibole etc.) as well as some Fe-Ti oxides (ilmenite etc.) and iron sulphides 

(pyrite, etc.) (Tarling and Hrouda, 1993). In sedimentary rocks paramagnetic 

minerals are typically micas present as fine grained matrix material. Biotite rich 

rocks are ideal for AMS studies as the magnetic fabric of biotite populations is 
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similar to that of their lattice fabric and the magnetic axes of biotite are parallel to 

its crystallographic (shape) axes (Bouchez, 1997). The average susceptibilities of 

paramagnetic minerals are typically around 500x10-6 SI with biotite usually having a 

susceptibility of 1100x10-6 SI (Tarling and Hrouda, 1993).  

  

Figure 3. 1 Different types of magnetization behaviours. The left hand row illustrates 
the magnetic behaviour of the five main types in the absence of a magnetic field. Note 
that only ferromagnetic (s.s.) and ferrimagnetic types have a net magnetic moment 
when no external magnetic field is applied. The right hand row illustrates the effects of 
an applied magnetic field. A. Diamagnetic minerals become very weakly magnetized in 
the opposite direction to that of the applied field; this magnetization disappears with 
the removal of the applied field, as the magnetic moments become randomised. B. 
Paramagnetic minerals become weakly magnetized in the same direction to that of the 
applied field; this magnetization disappears with the removal of the applied field, as 
the magnetic moments become randomised. C. Ferromagnetic minerals acquire and 
retain a strong magnetization as their magnetic moments are all aligned.  D. 
Ferrimagnetic minerals acquire and retain a weaker magnetization than ferromagnetic 
minerals as their magnetic moments are anti-parallel, but of differing magnitudes. E. 
Antiferromagnetic minerals become moderately magnetized in the direction of the 
applied field, but do not retain the magnetization as their magnetic moments are 
exactly anti-parallel. Redrawn and modified from Tarling and Hrouda  (1993). 
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3.2.2.3. Ferromagnetism 

The third type of magnetic response or behavior is that of ferromagnetism, this 

type is caused by cooperative interactions of individual ionic moments (Jones and 

Childers, 2001). Unlike that of diamagnetism and paramagnetism the individual 

moments of ferromagnetic (sensu lato) materials are not independent and interact 

strongly (Jones and Childers, 2001). Ferromagnetism only occurs when the electron 

spins have been coupled in an arrangement that aligns all the individual spin 

magnetisations without applied magnetic field (Tarling and Hrouda, 1993). This type 

of magnetisation is limited to the first transition elements and is a function of the 

unpaired electrons in their 3d shell (Tarling and Hrouda, 1993). These domains 

contain aligned ionic moments, and for crystals that contain multiple domains the 

polarisation of these domains is normally in different directions (Jones and Childers, 

2001; Tarling and Hrouda, 1993). These domains increase in size when they are 

preferentially aligned close to the direction of an applied field and those that are in 

other directions decrease, resulting in a large net magnetisation (Jones and 

Childers, 2001). Ferromagnetic materials possess a strong positive proportional 

relationship between M and H, but with a maximum value of M (O’Driscoll et al., 

2008).  

Ferromagnetic responses can be split into three types: ferromagnetic (sensu stricto; 

Figure 3. 1C), antiferromagnetic (Figure 3. 1 E) and ferrimagnetic (Figure 3. 1D). 

Ferromagnetic (s.s) behaviour is characterised by the alignment of all magnetic 

vectors in the same direction, brought about by the coupling of electron spins in 

adjacent cations (Tarling and Hrouda, 1993).  This kind of behaviour is seen in 
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metallic transition elements, such as iron, nickel and cobalt. A more complicated 

behaviour is exhibited by oxides of these metallic elements, whereby the electron 

spins of cations are shared via an oxygen anion (Tarling and Hrouda, 1993). This 

results in the reversal of the electron spins in adjacent cations, creating oppositely 

magnetised lattices in the material (Tarling and Hrouda, 1993). If these lattices are 

of equal strength antiferromagnetic behaviour occurs, whereby there is no net 

magnetisation, whereas if one lattice is stronger than the other then a net 

magnetisation is present in that direction, this is termed ferrimagnetic behaviour 

(Tarling and Hrouda, 1993).  

In Fe-bearing silicate dominated rocks, the magnetocrystalline anisotropy of 

paramagnetic silicates such as biotite or amphibole will control the AMS fabric 

when magnetite is absent or of very low volume percent (<0.1 Vol. % magnetite) 

(Tarling and Hrouda, 1993). For magnetite bearing rocks the contribution of 

paramagnetic minerals is negligible because of the high intrinsic magnetic 

susceptibility of magnetite (Tarling and Hrouda, 1993). The magnetic fabric of 

magnetite bearing rocks is dictated by the shape anisotropy of the magnetite grains 

(Tarling and Hrouda, 1993). In a magnetite bearing rock, due to the higher 

susceptibility of magnetite compared to other minerals, the bulk susceptibility will 

be much higher than for a paramagnetic rock of the same iron content  (Bouchez, 

1997). The other important ferromagnetic mineral in terms of sedimentary rocks is 

hematite. The magnetic susceptibility of hematite is controlled by its 

crystallography, with K1 being parallel to the basal planes (Borradaile, 1988). 
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Magnetite has a typical bulk susceptibility of 5 SI, while that of hematite is 6x10-3 SI 

(Borradaile, 1988).  

The bulk magnetic susceptibility of a material is the sum of all the contributions: K = 

Kpara + Kferro + Kantiferro + Kdia is approximately equal to Kpara + Kferro, since 

Kantiferro and Kdia are almost negligible (Bouchez, 1997). 

3.3. Magnetic Responses of Minerals in Sedimentary Rocks  

From the above discussion on magnetization it is clear that the magnetic anisotropy 

of a rock depends on the degree of alignment and anisotropies of the minerals that 

it is composed of (Tarling and Hrouda, 1993).  

If ferromagnetic minerals, such as iron oxides like magnetite or hematite, are 

present in proportions of more than a few percent they can dominate a rock’s 

magnetic properties (Tarling and Hrouda, 1993). Rocks with sufficient amounts of 

magnetite or hematite typically have bulk susceptibilities >5x10-4. In rocks with 

weak bulk susceptibility (<5x10-4 Si) the magnetic fabric is typically controlled by the 

paramagnetic minerals, whereas rocks with diamagnetic minerals as the dominant 

components have negative bulk susceptibilities (Tarling and Hrouda, 1993).  

The ferromagnetic (S.L.) components of sedimentary rocks can be detrital or 

authigenic and their presence is controlled by sediment source, sediment 

composition, diagenesis conditions and the composition of circulating fluids. 

Detrital grains are usually subject to alteration during diagenesis due to changes in 

the redox conditions, this is particularly true of magnetite (Tarling and Hrouda, 

1993). Hematite is usually the most important ferromagnetic mineral in 
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sedimentary rocks, as it is chemically robust in oxidizing conditions, and 

furthermore it is particularly common as an authigenic growth mineral (Tarling and 

Hrouda, 1993). It regularly replaces magnetite and can form rims around other 

mineral species, such as quartz, and accentuates their shape anisotropy. It can also 

be found as fine grained groundmass crystals (Tarling and Hrouda, 1993).  

Paramagnetic minerals become more important with low percentages of 

ferromagnetic minerals. The most common paramagnetic minerals in sedimentary 

rocks tend to be phylosillicates and their anisotropy is largely shape controlled 

(Tarling and Hrouda, 1993). The diamagnetic minerals, such as quartz and calcite, in 

a rock only become the dominant magnetic minerals if ferromagnetic and 

paramagnetic minerals make up less than 0.0001% and 10% respectively of the 

total rock composition (Tarling and Hrouda, 1993).   

3.4. Determining Petrofabrics using Anisotropy of Magnetic Susceptibility  

Graham (1954) first suggested that magnetic fabrics could be a valuable tool in 

petrofabric anlaysis and established a link between LPS and AMS. Since then there 

has been a flourish of research applying AMS to petrofabrics. As discussed in 

Chapter 2, a rock’s fabric or petrofabric “includes the complete spatial and 

geometrical configuration of all the components that make up a rock” (Hobbs et al., 

1976). This includes textures, structures and  preferred orientation of a rocks 

components. AMS is capable of measuring an entire petrofabric and providing some 

information regarding the components that control that fabric. Unfortunately the 

parameters that are used to describe the petrofabric are far from universal. In this 

study Jelinek’s (1981) parameters are primarily used. A brief discussion of how 
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these parameters are derived, what they represent and how they are presented is 

outlined below.  

3.4.1. AMS Parameters 

In order to easily represent and derive comparable results from AMS studies, the 

magnetic fabric is described by the magnetic susceptibility tensor. This can be 

presented as an ellipsoid with three principal susceptibility magnitudes and 

corresponding orthogonal principal axis directions (K1≥K2≥K3) (Figure 3. 2; Tarling 

and Hrouda, 1993), similar to the strain ellipsoid. These axes are the eigenvectors 

and eigenvalues of K, the bulk susceptibility ( ̅  
        

 
). This is the arithmetic 

mean, which is most commonly used in most magnetic studies. In studies where the 

where the magnitude of the anisotropy is correlated to strain the geometric mean 

has regularly been used:    √        
 

. The geometric mean is quite useful 

as it describes the radius of the initial undeformed sphere (Hirt and Almqvist, 2012; 

Hirt et al., 1988; Kligfield et al., 1981; Tarling and Hrouda, 1993).  

Originally Flinn diagrams (Flinn, 1956 and 1962) were borrowed from strain ellipse 

theory to represent AMS ellipsoid geometries. Flinn diagrams for AMS are 

constructed by plotting a (K1/K2) against b (K2/K3) (Flinn, 1956 & 1962). Shape is 

represented by K, the slope of a line from the data point to the origin at (1,1), so 

that     
 

 
   with   

 

 
  and   

 

 
. When     the finite strain ellipsoid is 

uniaxial oblate and has been flattened perpendicular to Z. As K tends towards 1 the 

ellipsoid moves away from being purely uniaxial, but remains in the oblate and 

flattened domain. For K values greater than 1 the ellipsoid lies in the prolate or 

constrictive domain, and for     the ellipsoid is purely uniaxial prolate and 
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stretched along the X axis. Flinn diagrams were later modified by Ramsay to include 

a logarithmic scale, so that Ramsay’s K = ln(a)/ln(b) (1967). This handling of the AMS 

parameters is quite simple and is considered to oversimplify the graphical 

representation (Borradaile and Jackson, 2004), but despite this it is still regularly 

used (Weil and Yonkee, 2009). One of the advantages of Flinn’s method is that 

magnetic lineation and foliation can be calculated quite easily: linear anisotropy 

degree (    
    

    
 ), and planar anisotropy degree (    

    

    
).  

 

Jelinek re-evaluated the statistical methods for the characterisation of anisotropy in 

two landmark papers (1978 & 1981). These re-evaluations are still widely preferred 

and also used in this research. Jelinek’s shape parameter is represented by Tj = 

[  (
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[           ]

[           ]
 and the corrected anisotropy degree is commonly 

Figure 3. 2  Magnetic susceptibility ellipsoid  with three mutually orthogonal axes. These axes 
correspond to the maximum (K1), intermediate (K2) and minimum (K3) susceptibility values, whose 
magnitudes and orientations can be defined in Cartesian coordinates. 
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represented by P’ or Pj and was derived from Nagata’s (1961) P= Kmax/Kmin (1961), 

where: 
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Jelinek’s K’ (1984) is a less used alternative to the Kmean and depends on the 

deviatoric susceptibilities (K1-K)≥(K2-K)≥(K3-K),  and is defined as    

√
                       

 
. The parameters Tj and Pj can be plotted against each 

other in a convenient manner on separate Cartesian axes (Figure 3. 3), Tj values 

range from -1 (prolate) to +1 (oblate), with a Tj value of 0 representing a triaxial 

ellipse, whereas Pj describes degree or strength of ellipsoid shape expression. 

Borradaile & Jackson (2004) proposed an alternative of plotting Tj vs Pj in a polar 

plot (Figure 3. 4) so that slight variations in shape at lower anisotropies plot closer 

together.  
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Jelinek also proposed the use of the U-parameter as a descriptor of shape that did 

not depend on bulk susceptibility. The U-parameter is defined as   
         

     
 

and ranges from +1 to -1. Schmidt et al. (2006) in a study of calcite proposed the 

use of ΔK, defined as ΔK = K1-K3. These parameters are quite useful for studies of 

rocks that have a significant diamagnetic contribution as they do not depend on 

bulk susceptibility, and are not affected when the bulk susceptibility is near zero. 

Hirt and Almqvist (2012) argued that ΔK and U were more accurate representations 

of degree of anisotropy and shape of the anisotropy ellipsoid in rocks and minerals 

with bulk susceptibility values that approximated zero.  

Figure 3. 3 An example plot of Tj vs Pj (P’). Oblate ellipsoids plot between 0 and +1 with prolate ellipsoids 
plotting between 0 and -1 on the vertical axis; purely triaxial ellipsoids plot at 0. The horizontal axis (P’) 
represents the strength of ellipsoid shape. Data shown is from Triassic sandstones in the Rocky 
Mountains, Wyoming.    
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Figure 3. 5 The three main ellipsoid  geometries (A. oblate, B. triaxial and C. prolate) and their 
representative stereographic projections. Stereographic representation of  ellipsoid geometries, modified 
from Tarling & Hrouda (1993) 

Figure 3. 4 An example of a polar plot proposed by Borradaile and Jackson (2004). This plot shows the 
same data as Figure 3. 3. Oblate ellipsoids between 0 and +1, prolate ellipsoids plot between 0 and -1, 
while purely triaxial ellipsoids plot at 0. Degree of anisotropy or strength of ellipsoid shape is plotted 
along the horizontal axis. The advantage of this plot is that low anisotropy ellipsoids plot closer together.  



Chapter 3: Anisotropy of Magnetic Susceptibility      57 
 

3.4.2. Causes of AMS Ellipsoid Geometries 

Generally speaking prolate ellipsoids (3.4 C) typically result from the stretching and 

extension of minerals and define a linear fabric, whereas oblate ellipsoids (3.4 Error! 

Reference source not found.A) typically form due to flattening and define a planar 

fabric. Despite this it is important to stress that the AMS ellipsoid is the result of 

multiple processes and mineral contributions, furthermore multiple sub-fabrics can 

exist in a single sample (Hirt and Almqvist, 2012). As a result great care must be 

taken when making interpretations based on the geometries of the magnetic 

ellipsoid. It is important to note that any progressive change or evolution of an AMS 

fabric will depend on strain, strength of primary fabrics, mineralogy, as well as 

deformation mechanisms (Bakhtari et al., 1998; Borradaile and Henry, 1997; 

Borradaile and Jackson, 2010, 2004; Borradaile and Tarling, 1981; Parés and van der 

Pluijm, 2002; Parés, 2004; Parés et al., 1999a; Tarling and Hrouda, 1993). Despite 

these complications, systematic changes in AMS ellipsoid geometries have been 

observed in fold and thrust belts as primary fabrics become replaced or overprinted 

by tectonic fabrics as progressive deformation occurs (Bakhtari et al., 1998; 

Borradaile and Henry, 1997; Borradaile and Jackson, 2010, 2004; Parés and van der 

Pluijm, 2002; Parés, 2004; Parés et al., 1999a). This suite of AMS geometries has 

been characterised by the relationship of magnetic foliations and lineations to 

bedding. Magnetic foliation (the plane perpendicular to K3, defined by K1 and K2) 

can be parallel to bedding in undeformed or weakly deformed rocks and can be 

parallel to cleavage in strongly deformed rocks, but can also represent a composite 

fabric of bedding and cleavage (Bakhtari et al., 1998; Borradaile and Henry, 1997; 

Borradaile and Jackson, 2010, 2004; Parés and van der Pluijm, 2002; Parés, 2004; 
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Parés et al., 1999a). Magnetic lineation (parallel to K1) has been interpreted to 

represent the intersection between layer parallel shortening and bedding fabrics 

and is largely subparallel to regional structural trend (Bakhtari et al., 1998), but this 

is not always the case (Borradaile, 1991; Borradaile and Tarling, 1981; Tarling and 

Hrouda, 1993).  

Alternatively the magnetic lineation has been interpreted to track the maximum 

extension direction and is sub perpendicular to structural trend (Weil and Yonkee, 

2009). Mixed patterns also occur (Aubourg et al., 1991), and oblique fabrics locally 

develop in complex structures (Saint-Bezar et al., 2002). The magnetic lineation in 

deformed sedimentary rocks can be the result of two competing magnetic fabrics, 

essentially where the combination of two foliations produce a lineation (Borradaile 

and Tarling, 1981; Housen et al., 1993).  These magnetic foliations can be due to 

bedding and tectonic controls (Borradaile and Tarling, 1981) or post tectonic 

mineralisations (Saint-Bezar et al., 2002).  
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3.5. Establishing which Minerals or Sub-Fabrics Control the AMS Ellipsoid 

The single greatest drawback of AMS methodology is determining what rock 

components define the magnetic response of a sample. Varying temperatures, field 

strengths and frequencies can provide methods of establishing the magnetic 

response of specific components (Dunlop and Ozdemir, 1997; Tarling and Hrouda, 

1993), but this is largely beyond the scope of this study. The bulk susceptibility of a 

sample is mainly controlled by the concentration of various minerals, as shown in 

Figure 3. 6.  

 

On a first principal basis it can be determined whether magnetic fabrics are 

dominated by diamagnetic, paramagnetic, or ferromagnetic (s.l.) phases based on 

the bulk susceptibility and degree of anisotropy (Hirt and Almqvist, 2012; Pierre 

Figure 3. 6 The control of mineral contribution percentages on bulk susceptibility. Redrawn 
from Tarling and Hrouda (1993).  
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Rochette, 1987). When the bulk susceptibility is <3x10-4 SI and P is <1.35, then 

ferromagnetic minerals are typically not dominating the anisotropy and 

paramagnetic minerals are the main magnetic mineral in the sample (Hirt and 

Almqvist, 2012; Rochette, 1987). When the susceptibility is close to zero, then 

diamagnetic minerals start to have a significant role on the net anisotropy (Hirt and 

Almqvist, 2012; Rochette, 1987). The other methods used in this study to 

determine the magnetic carriers are largely limited to comparisons of K with the 

values and orientations of the principal axes, as well as the comparison of 

normalized to non-normalized data (Borradaile and Jackson, 2010). 

3.5.1. Comparison of Bulk Susceptibility (Km) to Principal Axes 

Susceptibilities (Ki) 

When a paramagnetic silicate mineral and a ferromagnetic mineral appear to 

control susceptibility, a plot of Ki versus Kmean (Figure 3.7) can reveal relationships 

between the principal axes and bulk susceptibility (Borradaile and Jackson, 2010). If 

Figure 3. 7 Plot of principal axes susceptibilities versus bulk susceptibility for samples of 
uniform mineralogy that have undergone vary degrees of deformation. This shows that for 
this case susceptibilities are controlled by a petrofabric (From Borradaile and Jackson, 
2010). 
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anisotropy increases with K and the principal axis (Ki) curves intersect at the mean 

matrix susceptibility then rock-AMS is controlled by the relative abundance of the 

high-anisotropy, lower K mineral rather than the lower anisotropy, high- K mineral 

(Borradaile and Jackson, 2010).  

3.5.2. Comparison of Pj and Tj for specimens of different K 

The bulk susceptibility, K, is the average of all magnetic contributions of minerals in 

a sample. Similarly Pj represents an average of mineral anisotropies while Tj is a 

complex sum of mineral orientation distributions.  

Plotting the frequency distribution of K-values allows the identification of any sub-

sample groups with significantly different bulk susceptibility (Figure 3. 8). A 

subsequent plot of Pj against K for these groups will illustrate any correlation 

between anisotropy and susceptibility (Figure 3. 9). Similarly separating these 

groups and plotting them on a Pj-Tj may reveal samples whose AMS ellipsoid 

geometries are controlled by composition rather than by tectonic history etc. 

(Borradaile and Jackson, 2010).  

3.5.3. Comparison of Normalised vs Non-Normalised AMS Ellipsoids  

Normalisation of AMS data involves dividing the magnitudes of the principal axes 

(K1, K2 & K3) by K (Figure 3. 10). This normalises all specimens to a bulk unit 

susceptibility and prevents specimens with high bulk susceptibility from dominating 

the results (Borradaile and Jackson, 2010).  Specimens can be compared on the 

basis of their normalised AMS ellipsoids, allowing any sub-fabrics to be identified by 

comparing normalised AMS ellipsoids to non-normalised ellipsoids (Borradaile and 

Jackson, 2010).  
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Figure 3. 8 Example histogram of the bulk susceptibility of a sample set. This allows a quick 
evaluation of the dominant magnetic minerals. In this case the dominant magnetic fabric is 
paramagnetic (<3x10

-4
 SI), although a ferromagnetic fabric is clearly present in some samples. Data is 

from Triassic sandstones in the Rocky Mountains, Wyoming.  

Figure 3. 9 Example plot of Km vs Pj. This plot indicates variations in anisotropy susceptibility, for this 
data set it suggests that variations in susceptibility or composition do not have a major control on 
anisotropy. The inset plot shows the same data below the range of 1.5x10

-4
. Data is the same as shown  

in Figure 3. 8. 
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3.6. Relationship between AMS and Strain 

Graham (1954) first suggested that magnetic fabrics could be a valuable tool in 

petrofabric anlaysis and established a link between layer parallel shortening and 

AMS. Since that initial link was established a considerable amount of research into 

anisotropy of magnetic susceptibility and its relationship to deformation and the 

strain ellipse has been carried out (Amrouch et al., 2010; Averbuch et al., 1992; 

Bakhtari et al., 1998; Borradaile, 1991; Borradaile and Henry, 1997; Borradaile and 

Jackson, 2010, 2004; Borradaile and Tarling, 1981; Fuller, 1963; Graham, 1954; Hirt 

and Almqvist, 2012; Housen et al., 1993; Housen and Pluijm, 1991; Kissel et al., 

1986; Mamtani and Vishnu, 2011; Oliva-Urcia et al., 2010; Parés, 2004; Parés and 

van der Pluijm, 2002; Parés et al., 1999b; Saint-Bezar et al., 2002; Tarling and 

Hrouda, 1993; Tripathy et al., 2009; Weil and Yonkee, 2009; Wood et al., 1976). 

Despite these research efforts no universally accepted relationship between the 

two has been determined.  

Figure 3. 10 The effects of normalisation (From Borradaile and Jackson, 2004). The top left diagram shows a 
fabric with a high susceptibility mineral overshadowing the fabric of the low susceptibility minerals. The top 
right illustrates the effects of normalisation, in that all components have the same magnitude. The lower 
diagrams show a similar situation for sub-fabrics.  
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Fuller (1963) described the parallel relationship of the principal axes of AMS 

ellipsoids and strain ellipsoids derived from the Slate Belt of North Wales (1963). 

This was followed by a more rigorous study that claimed to quantitatively correlate 

the magnitude of the AMS ellipsoid axes to the magnitudes of the strain ellipsoid 

axes by Wood et al. (1976). This was largely based on the link between preferred 

crystal orientation and the strain ellipsoid. Considering that AMS accurately 

measures the PCO of a rock’s components and that that successive grain/rock 

component reorientation was a consequence of progressive deformation and 

tectonic strain (Ramsay, 1967; Ramsay and Huber, 1983) the magnetic ellipsoid can 

be conceptually correlated with the strain ellipsoid.  

Although both Tarling (1976) and Borradaile (1991) concluded that AMS could be 

used as a tool to determine principal rock fabrics, the direction of the net total 

strain to which the fabric has been subjected leading to a possible determination of 

the orientation of the strain ellipsoid, they identified the problems arising from 

direct comparisons of the finite strain ellipsoid to an AMS ellipsoid. Tarling (1976) 

stated that although AMS is highly sensitive to slight changes in grain shape of the 

ferromagnetic minerals that can occur due to deformation being applied to 

undeformed rocks, the method is insensitive to these processes caused by higher 

strain rates. Therefore it is unlikely that magnetic fabrics could provide a reliable 

indicator of the magnitude of strain.  

Kligfield et al. (1983) argued that AMS could effectively record changes in 

progressive deformation, but it was also thought that the AMS fabrics were 

primarily controlled by ferromagnetic components alone. Bakhtari et al. (1998) 
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used AMS to identify tectonic lineations and tracked a deformation gradient using 

magnetic fabrics. Similarly Pares et al. (1999, 2002 & 2004) used AMS to track 

progressive changes in deformation and to identify weak tectonic lineations and 

foliations that form prior to cleavage. They further confirmed that the correlation 

between AMS and strain required information on the magnitude and orientation of 

the pre-deformational ellipsoid, identification of the rock’s magnetic carriers and 

their orientations and coaxial deformation without recrystallisation of the rocks 

components (Parés, 2004). Borradaile & Jackson (2004) reiterated the earlier 

arguments of Borradaile (1988) by concluding that AMS ellipsoid shapes rarely 

correlate with finite strain magnitudes and that rock composition, not strain, is a 

primary control on anisotropy degree, but moderate strains can affect the AMS 

ellipsoid shape and very high strains would affect degree of magnetic anisotropy.  

3.6.1. Interpreting Magnetic Lineations and Foliations 

Even the simple correlation between the orientation of the axes of the AMS 

ellipsoid and strain ellipsoid proposed by earlier researchers (Graham, 1954; Fuller, 

1963 and Wood et al., 1976) needs to be approached with caution. This can be 

clearly seen by relating the magnetic lineation (Lm, defined by the long axis of the 

AMS ellipsoid and given by a cluster of K1 axes) of a sample to surrounding 

structural controls. As suggested by Borradaile and Tarling (1981) and later 

confirmed by Parés and van der Pluijm (2002) with field data and numerical and 

experimental models, the magnetic lineation is usually controlled by the interaction 

of two fabrics. They inferred that the magnetic lineation can parallel or track the 

intersection of two competing planar fabrics, such as bedding and cleavage in 
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sedimentary rocks undergoing deformation (Parés and van der Pluijm, 2002). This is 

not always the case as the magnetic lineation can also parallel the tectonic 

stretching direction (Parés and van der Pluijm, 2002).  

On a more regional scale the magnetic lineation can also develop parallel to fold 

axes under very low deformation intensity (Kissel et al., 1986). Furthermore the 

magnetic lineation is affected by other factors besides strain. The extent to which 

the magnetic lineation parallels the intersection between two planar fabrics or 

tectonic extension direction depends on the original AMS tensor, which in turn 

depends on the lithology and the deformation intensity (Parés and van der Pluijm, 

2002). The original AMS tensor is somewhat controlled by the rock’s primary fabric 

and composition, therefore lithologies that have a distinct pre-deformational fabric 

will require relatively higher levels of deformation before the magnetic lineations 

track the intersection between two planar fabrics or tectonic extension direction 

(Parés and van der Pluijm, 2002). Likewise lithologies that have a weak pre-

deformational fabric will more readily develop magnetic lineations that align with 

tectonically significant directions (Parés and van der Pluijm, 2002). Borradaile and 

Henry (1997) argued that the correlation of principal directions of the magnetic and 

strain ellipses, while valid in some situations is invalid in cases where the strain 

fabric fails to overprint the primary fabric, where inverse fabrics might be present 

and where deformation has not been coaxial.   

This is a very similar misconception to that which is regularly ignored in structural 

geology and strain analysis and highlighted by Paterson and Yu (1994). The original 

tensor is not necessarily spherical and can have any range of geometries, 
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orientations or magnitudes, although they are typically weak, oblate and aligned 

parallel to bedding in sedimentary lithologies. These original tensor conditions need 

to be significantly overprinted by deformation before the AMS ellipsoid is likely to 

show any resemblance to the strain ellipsoid, in the same way that strain needs to 

overcome primary fabrics before the measured strain ellipsoid will resemble the 

actual strain ellipsoid. Borradaile and Henry (1997) discussed this in further detail as 

well as some considerations for modelling the interaction of two planar features.  

Despite this, AMS can still be used effectively in the study of low grade 

deformation. Grouping of K1 orientations occurs under progressive deformation 

and is occasionally accompanied by a girdle containing K2 and K3 axes. This 

particular axis distribution is thought to be the first evidence for layer parallel 

shortening in sedimentary rocks (Parés and van der Pluijm, 2002). Similarly the 

relationship of the magnetic foliation (the plane containing the K1 and K2 axes or 

the pole to K3) to significant structures can be interpreted in numerous ways. In 

sedimentary rocks undergoing deformation, it can be parallel to either bedding or 

cleavage, alternatively there may be a weak foliation that is not necessarily 

structurally significant. When the magnetic foliation is parallel to cleavage, it forms 

perpendicular to the shortest axis of the finite strain ellipsoid (Pares, 2004). In this 

situation, the minimum susceptibility axis is perpendicular to cleavage and the 

maximum susceptibility axis or magnetic lineation is parallel to the tectonic 

extension or the intersection of bedding and cleavage (Pares, 2004).  

From this review of previous research establishing the link between the AMS 

ellipsoid, preferred orientations of mineral grains, and strain, it should be clear that 
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the evolution of the AMS ellipsoid geometry (and magnetic lineation and foliation) 

in terms of its shape and shape strength is determined by the pre-deformation AMS 

tensor, the angle between this original AMS ellipsoid relative to the strain ellipsoid 

and the degree of deformation.  Therefore, when making any interpretation using 

AMS, it is necessary to be aware that the tectonic significance of magnetic foliations 

and lineations can vary across lithologies, outcrops or orogenic belts. Furthermore 

it is not possible to derive finite strain directly from the AMS ellipsoid. Hence with 

that in mind AMS is used in this study to accurately and quickly quantify the 

petrofabric and determine the origin of that fabric (i.e. whether it is purely 

sedimentary, composite bedding/tectonic or dominantly tectonic etc.).  

3.7. Primary Sedimentary and Diagenetic Fabrics 

Primary fabrics in sedimentary rocks are typically controlled by depositional and 

diagenetic processes. The initial depositional fabrics are determined by the 

gravitational and hydrodynamic forces that are prevalent during sedimentation. 

These fabrics are typically weakly oblate, but can be prolate if a current was 

prevalent during deposition (Tarling and Hrouda, 1993). Once deposition has 

ceased and any active currents have been removed, gravitational loading takes over 

and compacts the sediments, rotating grains into a horizontal oblate fabric (Tarling 

and Hrouda, 1993). Subsequent early-stage diagenesis can lead to chemical 

alterations, that can have implications for magnetic studies, particularly the 

generation of sulphuric and humic fluids and gases, as well as bacterial compounds 

by biochemical reactions. During reduction, bacteria convert Fe3+ to Fe2+, hence 

ferromagnetic grains such as magnetite, maghaemite and hematite become 
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reduced. This results in decrease in bulk magnetic susceptibility, but promotes the 

formation of paramagnetic iron sulphides (Tarling and Hrouda, 1993). Increased 

lithostatic overburden is typically associated with late stage diagenesis, resulting in 

a more pronounced flattened oblate fabric (Tarling and Hrouda, 1993).  

3.8. Relationship of AMS Geometries to Bedding and Tectonic Fabrics 

The development of AMS fabrics in sedimentary rocks with a primary bedding fabric 

undergoing LPS follows the path outlined in Figure 3. 11 (Parés et al., 1999a). The 

K1 axes become re-orientated so that they are normal to the principal strain axis, 

producing a magnetic foliation parallel to the flattening plane. As compression 

continues K3 forms a girdle that is parallel to the principal strain axis, and the AMS 

ellipsoid tends towards prolate as the tectonic fabric competes with the original 

fabric to produce a composite fabric. With continued compression the tectonic 

fabric becomes the dominant fabric and the AMS ellipsoid becomes oblate and the 

magnetic foliation is parallel to the cleavage plane. 
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For ease of classification of AMS geometries and their relationship with 

bedding/tectonic controls, four main types of ellipsoid geometries have been 

designated in this study (Figure 3. 12). These classifications, which are similar to the 

threefold classification of Bakhtari et al.  (1998) and follow the interpretations of 

Parés et al. (1999, 2002 & 2004), are summarised below:  

Type 1: Relates to a dominantly sedimentary fabric attributed to deposition and 

diagenesis (compaction and cementation), which are characterized by an oblate 

AMS ellipsoid. The Kmax and Kint axes are scattered in a girdle roughly conforming 

to bedding and Kmin plots as the pole to bedding. In this case the magnetic foliation 

is conformable to bedding and no magnetic lineation is present as Kmax is too 

scattered.  

Figure 3. 11  The progression in ellipsoid shapes under progressive deformation using a Pj-Tj plot. Pj 
represents degree of anisotropy and increases in this imply increasing strength of the ellipsoid 
shape. Tj represents the shape parameter; positive numbers imply an oblate ellipsoid, whereas 
negative values imply a prolate ellipsoid, perfectly triaxial ellipsoids are represented by Tj values of 
0. Modified from Pares (2004). The representative fabric block diagrams are from Ramsay and 
Huber (1983). 
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Type 2: Relates to minor LPS, whereby the tectonic fabric is weaker than the 

primary sedimentary fabric and the AMS ellipsoid can still be weakly oblate and 

conformable with bedding but tends towards a triaxial geometry. Kmin remains 

perpendicular to bedding, Kmax and Kint although still plotting on the bedding 

plane become well defined, with Kmax roughly clustering parallel to the 

intersection of an incipient LPS fabric with bedding. The magnetic foliation remains 

conformable with bedding, but the magnetic lineation is typically perpendicular to 

the shortening direction or parallel to regional fold axes.  

Type 3: Is the point at moderate LPS where the tectonic fabric starts to dominate 

and the AMS ellipsoid is tending towards prolate geometries. Kmax is now strongly 

clustered parallel to the intersection of LPS and bedding fabrics, while Kmin begins 

to scatter away from the bedding pole, possibly forming a girdle with Kint 

potentially conforming to bedding. At this stage the magnetic foliation is quite weak 

and the magnetic lineation becomes more defined.  

Type 4: This type is characterised by flattened oblate AMS ellipsoids perpendicular 

or at least a high angle to bedding, that represent well defined tectonic fabrics. 

Kmax (Kmax may cluster either parallel to structural trend or down the dip of 

cleavage) and Kint define a girdle parallel to a tectonic cleavage, while Kmin clusters 

perpendicular to cleavage. Typically as the tectonic fabric becomes the dominant 

petrofabric the magnetic foliation is now at a high angle to bedding and 

conformable to cleavage, while magnetic lineation may still be clustered at the 

intersection of bedding and cleavage, but Kmax may also be scattered in the plane 

of cleavage.  
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This method of classification provides a quick and simple method of visualising the 

evolution of a petrofabric under continuous deformation. 

 

3.9. AMS Methodologies  

3.9.1. Sample Selection 

For this study samples were collected as orientated blocks in the field. The purpose 

of the study is to analyse the accuracy of strain estimates made in sedimentary 

rocks that have undergone low grade deformation, therefore deviation of a 

petrofabric from the primary bedding fabric is minimal. In order to reduce error and 

avoid introducing calculation problems in the analysis, samples were selected with 

this in mind. Samples were only selected where good control on bedding fabric 

orientation could be recorded, tectonic fabrics were also recorded when present. 

Additionally lithologies with complex sedimentary fabrics, such as syn-sedimentary 

deformation, burrowing, cross bedding etc. were avoided, as were coarse grained 

rocks such as conglomerates that had clasts that would be larger than the specimen 

size for the AMS analysis.  Individual sampling strategies for each study area are 

described in their respective chapters.  

Figure 3. 12 The evolution of ellipsoid geometries by progressive deformation (LPS) of an originally 
horizontal bedding fabric (Type 1). As this deformation continues the AMS ellipsoid becomes triaxial and 
starts to resemble Type 2. The first visible stage of deformation is associated with the development of a 
lineation, typically represented by a prolate ellipsoid. As deformation continues this lineation becomes a 
foliation that is perpendicular to the original bedding plane. Modified from Bakhtari et al. (1998).  
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For practical reasons samples with well-defined bedding planes were collected. This 

allows for good structural control but also provides a smooth flat drilling surface. As 

a result sample size was largely determined by bed thickness. Lithologies with a 

high degree of bedding plane or cleavage plane fissility were avoided as they would 

not survive drilling intact to yield a minimum of six sub-specimens. Before a 

selected block was removed it was orientated in the following fashion (Figure 3. 

13). A strike line and dip mark were drawn on the bedding surface selected for 

drilling using a permanent marker. The dip mark represents the maximum 

inclination of the surface and the strike line was recorded using the left hand rule 

with an extra arrow marked at the left hand of the strike line to ensure correct 

reorientation. The locality information was recorded and the sample was 

photographed, the sample was then removed from the outcrop using a sledge 

hammer and chisel, and it was then ensured that the original orientation marks and 

labels had maintained their integrity and were duplicated for good measure.  

 Figure 3. 13 Block marking prior to extraction.  
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3.9.2. Lab Preparation 

Prior to drilling, the drilling surface of each samples was cleaned and painted to 

ensure that any orientation mark would not wash off during the drilling process. 

Once the paint dried the field orientation mark was extended and duplicated with 

multiple dip marks per strike line. These represented targets for each core to be 

drilled. Samples were drilled using a table mounted drill press.  

The samples to be drilled were placed on the drill-table and adjusted until the 

drilling surface was perfectly horizontal and perpendicular to the drill bit. This 

ensured that the samples were drilled perpendicular to bedding. Using the drill 

press 25mm diameter cores were removed from the block (Figure 3. 14). The 

orientation marks were then drawn vertically down the sides of each core with a 

downward facing tick mark on the left hand side. The drill cores were then cut into 

22mm cylindrical sub samples or specimens (Figure 3. 14) using a non-magnetic, 

diamond tipped saw blade. The minimum number of specimens required for Jelinek 

statistics (1981) to be applied satisfactorily is six, therefore a minimum of seven 

specimens were prepared per sample and due to time constraints the maximum 

number of specimens prepared was usually sixteen.   

 

Figure 3. 14 Schematic diagram of the sample preparation process.  
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3.9.3. AMS Analysis 

The AMS of the specimens was analysed using a MFK1-A Kappabridge (AGICO, 

Czech Republic) in the Rock Magnetism Lab at New Mexico Highlands University 

(Figure 3. 15). The MFK1-A has an operating frequency of 875Hz and an average 

sensitivity of ~2.0 × 10–8 SI. The AMS of each specimen was measured in three 

orientations as well as a bulk susceptibility measurement, according to the Agico 

user guide (see www.agico.com). The results for each specimen were combined 

reorientated with respect to their original field position and Jelinek statistics were 

evaluated using Anisoft (Figure 3. 16; version 4.2; AGICO, Czech Republic). Anisoft 

presents the Jelinek statistics in a table format, as well as displaying the normalised 

ellipsoid axes with 95% confidence ellipses on a lower hemisphere stereographic 

projection. Axes are deemed to be independent if the 95% confidence intervals do 

not overlap, i.e. not part of a girdle. The AMS results can be related back to 

structures seen in individual specimens (Figure 3. 17) or the whole sample.  

 Figure 3. 15 Agico MFK1-A Kappabridge with workstation, Rock Magnetics Lab, NMHU.  

http://www.agico.com/
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Figure 3. 16 Example of output from Anisoft. A lower hemisphere stereographic projection of the 
AMS tensor principal axes 1 sample is shown top left. The small symbols represent normalised 
measurements for individual specimens. The larger symbols represent the mean axes directions for 
the entire sample. 95% confidence ellipses as calculated using Jelinek statistics (1981) are also 
plotted. For this example the axes distribution suggest that both a magnetic foliation and lineation 
are present. The magnetic foliation is defined by the girdle formed by K1 and K2, while the lineation 
is defined by K1 alone. Also the confidence ellipses indicate that the principal axes are distinct as 
they do not overlap. Jelinek statistics and parameters are displayed top right. The graphs shown 
bottom left and bottom right, represent Pj vs Km and Pj vs Tj respectively. The Pj vs Km plot shows 
that anisotropy has little variation with varying susceptibility values, while the Pj-Tj plot indicates 
that the overall ellipsoid shape is strongly oblate.  

Figure 3. 17 The AMS response of a single specimen with a linear element and weak bedding planes. 
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4. Introduction 

The fold and thrust Belt of Northwestern Montana (Figure 4.1) is characterised by 

eastward propagating thrusts that have largely placed Mississippian Madison Group 

carbonates as well as Cambrian and Devonian lithologies above Cretaceous and 

Jurassic shales and sandstones (Mudge, 1970). The Sawtooth Range (Figure 4.2) is 

part of the frontal imbricate thrust system of this belt, formed during the Sevier 

Orogeny (DeCelles, 2004). The central Sawtooth Range is an arcuate zone of north 

trending, closely spaced, westerly dipping, imbricate thrust sheets and associated 

folds. This structural regime and deformation was largely caused by the 

emplacement of the Lewis, Eldorado and Hoadley Thrust Slab during the Sevier 

Orogeny in the Late Cretaceous to Early Paleocene (Holl and Anastasio, 1992; Sears, 

2001).  The superb exposures of faulted Mississippian limestones in the Sun River 

Valley provide an Ideal location to test the ability of AMS to detect incipient 

tectonic fabrics.  

4.1. North American Cordillera 

The modern day Cordilleran belt of North America was formed by collision tectonics 

and resulting orogenesis (Figure 4.3), through the Mesozoic and Cenozoic (DeCelles, 

2004). Throughout the early Mesozoic, the western coast of America was a large 

subduction zone that extended along the length of the continent (DeCelles, 2004; 

Park, 1988). The Farralon plate was subducted, at a shallow angle, under the North 

American plate creating a contractional arc (Miall, 2009). This subduction zone was 

accompanied by a volcanic arc to the east, represented by the Cordilleran Mesozoic 
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batholiths belt (Park, 1988), and the Cordilleran fold and thrust belt on the 

easternmost margin (Figure 4.4; DeCelles, 2004).   

Figure 4. 1 Tectonic maps of North America. A. Simplified map of North American Cordillera. B. 
Terrane map of northwest America. Tectonic map of northwest Montana. Modified from Fuentes et 
al. 2012. 
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The Cordilleran orogenic system of Montana and southern Canada is composed of 

three main tectonic areas or regimes (Fuentes et al., 2009):  

 a western complex of accreted terranes;  

 the eastern fold-and-thrust belt, that features Paleozoic and Mesozoic 

strata, with Proterozoic strata in the hinterland;  

 and a foreland basin composed of Mesozoic to early Paleogene strata that 

has been incorporated into the fold-and-thrust belt. 

 

  

Figure 4. 2 Aerial photograph looking north across the Sawtooth Range, the Gibson Reservoir is right 
foreground and the Sun River extends eastward from the reservoir.  Thrust geometries can be clearly 
seen with consistent westward dips.    
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Figure 4. 4 Typical cross section across the Cordillera (From Hildebrand, 2009). 

Figure 4. 3 Kinematic reconstructions of Cordilleran belt (After DeCelles, 2004). CRO, Coast Range 
Ophiolite; FAT, Foothills Arc Terrane; GVFA, Great Valley forearc basin; Ec, Eclogitisation; FA/NA 
Farallon-North American convergence rates; NAS, North Atlantic spreading rates.  
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The western complex is a tectonic collage of allochthonous terranes that were 

emplaced largely by strike-slip deformation (DeCelles, 2004; Hildebrand, 2009). The 

eastern foreland thrust and fold belt (i.e. Rocky Mts. of Montana and Canada) was 

produced by continued convergent deformation of the western continental margin 

from Mesozoic to early Cenozoic time (Sears, 2001). The thrust front consists of an 

east directed set of thrust sheets defining a belt up to 300km wide (DeCelles, 2004; 

Hildebrand, 2009). This front developed on the Precambrian basement of the North 

American Craton (Park, 1988). Extension in the late Cenozoic has occurred across 

the region and has exploited the pre-existing thrust faults and reactivated them as 

normal faults (DeCelles, 2004; Hildebrand, 2009). This activity led to the formation 

of structures like the Basin-and-Range province (DeCelles, 2004; Hildebrand, 2009). 

4.2. Sevier and Laramide Orogeny 

Most reviews of the American Cordillera refer to the Laramide and Sevier Orogenies 

as separate events or more confusingly use the terms interchangeably. The two 

‘orogenies’ (the Laramide and the Sevier) were produced by the same collision and 

crustal shortening event, collision of the Farrallon and North American plates 

(DeCelles, 2004). The Laramide Orogeny developed in the late Campanian of the 

Upper Cretaceous and continued into the Oligocene, this is largely synchronous 

with the Sevier (Late Jurrassic-Upper Cretaceous; DeCelles, 2004). Laramide 

deformation is characterised by basement cored uplifts, that partitioned or 

separated the Cordillera foreland basin (the Western Interior Basin (WIB)), into a 

series of smaller basins, separated by the uplifted basement blocks (Tetons, Uinta 

Arch, etc.; Miall 1990).  
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Each uplifted basement segment (or Laramide range) is bound by moderate to 

steep angle reverse faults that may extend into the lower crust (DeCelles, 2004). 

Miall (1990) argues that these segments were uplifted due to the widespread 

contraction caused by the low angle subduction and that the subducting slab 

remained mechanically coupled to the overlying crust (Miall, 1990). Sevier 

deformation is largely associated with the formation of a fold and thrust belt to the 

west of the WIB. This Sevier thrust belt is a narrow zone of regional scale thin 

skinned thrust faults and related folds that extends from Canada to California, the 

limits of its southern extent are unclear due to structural complexities (DeCelles, 

2004). The Sevier belt was classically considered to be defined by thin skinned 

deformation, yet DeCelles (2004, and references within) show that segments of the 

Precambrian metamorphic rocks of the basement have been involved in faulting 

and that these ‘thin skinned’ brittle thrusts are linked with ductile shear zones to 

the west at a structurally lower level  

The Laramide and Sevier orogens have been separated by differing styles of 

deformation, which seems unnecessary, misleading and confusing. The general 

consensus has been that the Laramide Orogeny is largely an interior orogeny that 

produced “basement-cored” uplifts that reactivated pre-existing Pre-Cambrian 

normal faults, while the Sevier Orogeny was a more western thin-skinned 

compressional event that exploited weaknesses in bedding planes in Paleozoic and 

Mesozoic strata (DeCelles, 2004). The segregation of these two differing styles of 

deformation into two separate orogenies seems a little unnecessary and 

impractical, the most sensible solution would be to accept that they are the result 
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of differing rheological properties in the crust. Similarly DeCelles (2004) argues that 

all of the thrust systems that were formed east of the Cordilleran magmatic arc and 

that were active from the Late Jurassic to the Eocene should be considered to be 

part of a coherent Cordilleran orogenic wedge.  

4.3. Geological Setting 

4.3.1. Regional Tectonics  

The Cordilleran orogenic belt of western North America formed during Jurassic–

Eocene time in response to convergence between Pacific domain plates and the 

North American plate (Allmendinger, 1992; Bird, 1984; Burchfiel et al., 1992; 

DeCelles, 2004; Dickinson, 2004; Hildebrand, 2009; Monger et al., 1982; Saleeby et 

al., 1992). The resulting subduction led to the accretion of fringing arcs, granitic 

intrusions and allochthonous terranes (Dickinson, 2004). This terrane structure in 

the U.S. is largely obscured by the Columbia River Basalt Group, but these 

structures extend into Canada and are well studied due to the excellent exposures 

(Fuentes et al., 2012).  

The composite Intermontane Superterrane is the easternmost terrane accreted to 

the North American plate during the Mid-Late Jurassic (Colpron et al., 2007; 

Dickinson, 2004) while the westernmost terrane in the Cordillera, the Insular 

Superterrane, is the result of a complex accretion history that commenced in the 

Mid Jurassic (Colpron et al., 2007). A fold and thrust belt developed in the back arc 

basin region and included the sedimentary sequences of the Belt Supergroup that 

were carried on the North American cratonic basement (Fuentes et al., 2012). The 

Belt Supergroup is a 15km (approx.) thick Proterozoic succession of clastic, 
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carbonate, and igneous rocks deposited in an intra-continental rift (Harrison, 1972; 

Price and Sears, 2000; Sears, 2001). Paleozoic strata including carbonate shelf 

material and minor clastic rocks were deposited over the Supergroup units after the 

Precambrian rifting event (Fuentes et al., 2012).  

These units then became incorporated into thrust sheets in the easternmost 

regions of the orogenic foreland while the western regions of the retroarc thrust 

belt are dominated by rocks of the Belt Supergroup (Fuentes et al., 2012). In the 

Sawtooth Range this division in the thrust belt is largely defined by the Lewis, 

Eldorado and Hoadley (LEH) thrusts and smaller associated thrusts, (Fuentes et al., 

2012; Sears, 2001). The LEH effectively splits the Sawtooth Range into two sensible 

divisions, a major hangingwall or thrust sheet (LEH) in the western regions and a 

deformed footwall towards the east (Sawtooth). The hangingwall of the LEH 

consists mainly of Proterozoic strata caught up in the thrust system (DeCelles, 2004) 

and  associated structures that have been displaced along with the thrust front, 

such as the Purcell Anticlinorium (Sears, 2001; DeCelles, 2004). The footwall is 

represented by the frontal Sawtooth Range which consists of deformed Paleozoic 

and Mesozoic strata incorporated into thrust sheets with detachments in Cambrian 

to Mississippian lithologies (Fuentes et al., 2012; Holl and Anastasio, 1992). To the 

east of the thrust front lies the foothills region which is characterised by weakly 

folded and deformed Mesozoic deposits, with more deeply buried structures in 

Paleozoic rocks inferred from seismic data (Fuentes et al., 2012; Holl and Anastasio, 

1992).  
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4.3.2. Lewis Thrust System 

The dominant structure in northwestern Montana is the Lewis thrust system (Figure 

4.5; Fuentes et al., 2012; Sears, 2001). The hangingwall of this thrust system is 

referred to as the LEH Thrust slab and is composed of a thick sequence of 

Proterozoic and Lower Paleozoic rocks. This thrust slab overlies the deformed 

Paleozoic and Mesozoic strata of the Sawtooth Range in its footwall (Mudge, 1982; 

Sears, 2001). The Sawtooth Range is composed of closely spaced imbricated sheets 

of Paleozoic and Mesozoic rocks (Mudge, 1982), this imbricate sequence plunges 

northward beneath the Lewis thrust salient and diverges into the Flathead and 

Waterton duplexes (Fuentes et al., 2012). To the south of the Sawtooth Range, the 

thrust front is disrupted by a complex array of strike-slip faults, the Lewis and Clark 

line (Fuentes et al., 2012). From a 145km balanced cross sections Fuentes et al. 

(2012) argue that there has been approximately 135km of east-west shortening in 

the area. This shortening was accommodated by progressive eastward thrusting.  

The crustal scale LEH Thrust slab is comprised of a large allocthon, 70 -110 km wide 

and up to 30km thick that tapers eastward (Sears, 2001). The total displacement on 

this thrust sheet varies from 40km at Rogers Pass to 140km at the Montana-Alberta 

border (Sears, 2001). This thrust sheet is mainly composed of siliclastic 

Mesoproterozoic to Phanerozoic Strata.  

Movement on the Lewis Thrust System has been constrained by a variety of studies. 

Illite dating in clay-bearing fault gouge by 40Ar/39Ar, suggest contractional periods 

for Lewis Thrust between 72 and 52Ma (van der Pluijm et al., 2006). Sears (2001) 

argued that ash-fall deposits deposited on both the footwall and hanging-wall LEH 

Thrust slab constrain a latest age that compression must have started by 74Ma, 
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similarly Fuentes et al. (2012) suggest that the ash deposits could have been 

deposited on moving thrust sheets and that an earlier date for initiation of 

contraction cannot be ruled out. Sears (2001) further constrained the age of thrust 

sheet movement by correlating 76Ma andesitic sills intruded in undeformed 

Cretaceous strata in both the LEH thrust slab and its footwall prior to thrusting. 

Fuentes et al (2012) have provided new dates for one of these sills west of Gibson 

Reservoir using U-Pb geochronology of zircons sampled by laser ablation–

multicollector–inductively coupled plasma mass spectrometry (LA-MCICPMS). This 

analysis yielded an age of 82.8 ± 0.8 Ma for this sill sample and therefore a new 

maximum age of deformation of Cretaceous rocks in the footwall of the Lewis 

Thrust system. Similarly the data for cessation of movement of the Lewis Thrust 

system is constrained by undeformed intrusives cross cutting faults associated with 

thrusting. A monzonite intrusion that cross cuts the Steinbach Thrust in the Rogers 

Pass Area has a U-Pb age of 52.6 ± 0.4 Ma and limits the youngest possible 

movement in this area (Fuentes et al., 2012).  

Thrusts in the Sawtooth Range developed as a response to movement in the Lewis 

Thrust system and therefore should postdate displacement on the Lewis thrust. 

Timing of maximum burial metamorphism temperatures have been constrained by 

dating illite/smectite growth in Cretaceous bentonite beds caught up in thrust 

sheets, yielding K/Ar ages of 72-56Ma (Hoffman et al., 1976). Additionally the 

youngest lithologies cut by thrust faults is the Maastrichtian Willow Creek 

Formation (Mudge and Earhart, 1983).  
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Figure 4. 5 Structural relationship between LEH and Sawtooth Range, modified from 
Fuentes et al. (2012). A. Location map of LEH and Sawtooth Range. B. Simplified cross 
section of the LEH and the structures in its footwall. Cross section is from the South 
Canadian Cordillera, trace indicated in A. The Waterton duplex is thought to be the 
northern downplunge extension of the Sawtooth Range. C. Map of the Lewis Thrust 
system in Montana. Location of Cross section in Figure 4.7 is indicated. 
 



Chapter 4: Sawtooth Range, NW Montana      89 
 

 

Figure 4. 6  Geological map of the Central Sawtooth Range and surrounding areas. Modified from 
Fuentes et al. (2012). Line of cross section in Figure 4.7 is indicated.  
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Figure 4. 7 Cross section of line indicated in Figure 4.5 (Modified from Fuentes et al., 2012).  
Rectangle indicates location of the Sawtooth Range Inset shows detailed cross section for the 
Sawtooth Range. 
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4.3.3. Sawtooth Range 

The Sawtooth Range exposes primarily Paleozoic and Mesozoic sedimentary rocks 

(Figure 4. 6 and Figure 4. 7). The Mississippian carbonates of the Allan Mountain 

Limestone Formation and Castle Reef Dolomite Formation are the main lithologies 

incorporated in the thrust sequences in the eastern sections, although occasional 

Devonian sequences are exposed (Mudge et al., 1962). Further west Devonian and 

Figure 4. 9 View looking northeast across Diversion Lake at Home Thrust and the overlying 
Sawtooth Thrust. 

Figure 4. 8 Schematic cross section of the Sawtooth Range modified and redrawn from Alt (1984). 
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Cambrian strata are incorporated and exposed. The carbonate units are typically 

interbedded limestone and dolomite, unconformably overlain by Jurassic and 

Cretaceous siliciclastic strata  (Mudge, 1972a).  The main structures of the area are 

characterized by thrusts that climb from a detachment in the upper Devonian and 

culminates in the Cretaceous, with minor detachments in the  Mississippian Allan 

Mountain Limestone (Mitra, 1986). Close spacing of thrust surfaces led to the steep 

fault surface dips and sigmoidal geometries (Mitra, 1986). Although individual 

thrust fronts are sometimes characterised by ramp flats (Figure 4.8). Figure 4.9 

illustrates the location of individual thrusts discussed in the text.  

Due to the emplacement of the LEH thrust sheet the strata in its footwall 

experienced elevated temperature conditions. Maximum temperature conditions 

have been constrained between 100˚C-175˚C, from illitic mineral assemblages in 

Cretaceous shales (Gill et al., 2002; Hoffman et al., 1976; O’Brien et al., 2006). 

O’Brien et al. (2006) concluded that chemical remagnetisation associated with 

these temperature conditions had occurred prior to thrusting and rotation of the 

carbonates. This largely concurs with vitrinite reflectance studies that suggested 

that only very localised frictional heating was associated with large scale thrusting 

(Bustin, 1983). This suggests that any heating associated with the thrust related 

deformation of the Sawtooth Range did not exceed the temperatures associated 

with the prior heating event. Holl and Anastasio (1992) determined that the 

deformation of the strata of the Sawtooth Range accommodated a minimum bulk 

shortening of 60%. This shortening was primarily enabled by thrusting associated 

with the forward developing imbricate fan, thrusting in turn was enabled by 
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progressive development of mesoscopic fault arrays that allowed the base of the 

thrust sheets to deform by cataclastic flow (Figure 4. 10; Holl and Anastasio, 1992). 

The dominant structures observed at an outcrop scale are regular fractures that are 

typically at a high angle to bedding (Figure 4.9). Tectonic fabrics where developed 

are at a high angle to bedding and limited to occassional stylolitisation and 

cleavage.   

Figure 4. 10 Base of the French Thrust, with the Madison Limestone thrust over the 
Cretaceous Blackleaf Formation. Brittle deformation increases towards the base of the thrust 
sheet. Also present is an extensive fracture network. 
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Figure 4. 11 Stratigraphic column drawn from description of Mudge (1972a). 
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4.3.4. Stratigraphy 

4.3.4.1. Stratigraphy of the Sawtooth Range 

The Sawtooth Range of the LEH footwall is comprised of Paleozoic and Mesozoic 

strata (Mudge, 1982) but the most prominent lithologies in the Sun River Canyon 

area are the Missisippian carbonates of the Madison Group. The Madison Group is 

divided into the Allan Mountain Limestone Formation and Castle Reef Dolomite 

Formation (Figure 4.11 & 4.12, Mudge, 1972). The Allan Mountain Limestone 

Formation is characterised by thin beds of dark-gray limestone whereas the Castle 

Reef Dolomite Formationis mostly thick beds of light-gray dolomite (Mudge et al., 

1962). These carbonates are unconformably overlain by Mesozoic strata, and are 

themselves resting unconformably on Cambrian and Devonian carbonates (Mudge, 

1972). The Mesozoic sequences are composed of Jurassic and Cretaceous marine 

and non-marine, foreland-basin, mudstones and minor sandstones (Mudge, 1972).  

4.3.5. Madison Group Limestones 

The boundary between Devonian and Mississippian strata has been clearly 

established in the Sun River Canyon by Mudge (1972a), described as a “slight 

disconformity at the base of a limestone sequence of the Madison Group that 

contains crinoidal debris and Mississippian corals in the exposure at the north end 

of Sawtooth Ridge. The base of the Mississippian Madison Group is represented by 

the Allan Mountain Limestone Formation, first named by Mudge et al. (1962) from 

exposures on Allan Mountain. This group is present in nearly every thrust sheet in 

the Sun River Canyon.  
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The Allan Mountain Limestone Formation is approximately 180 metres thick and is 

divided into three distinctive members (Mudge, 1972a). The lower member is 

mainly composed of argillaceous dolomitic limestone interbedded with thin shale 

layers. The first 15m of the member is comprised of 1m thick grey limestone beds, 

interbedded with  1m thick brown calcareous mudstones that thin bedded. The 

member is also abundant in fossils, which Mudge et al. (1962) have classified as 

faunal Zone A.  

The middle member is a thinly bedded, fine-grained, dark limestone, with 

occasional  dolomitic beds, and is characterised by regular occurrences of chert 

nodules and lenses (Mudge, 1972a). The contact between the lower member and 

the middle member is gradational and below the lowest occurrence of bedded 

chert (Mudge, 1972a).    

The upper member varies from thin to thick beds of fine grained and dark gray 

limestone and dolomitic limestone (Mudge, 1972a). Chert while present is less 

abundant than in the middle member. Crystalline encrinite beds and lenses are 

particularly common in this member This member is also dominated by corals and 

brachiopods.   

The upper Mississippian Madison Group is represented by the Castle Reef Dolomite 

Formation (Mudge et al., 1962). The Castle Reef Dolomite Formation is typically 

present on the crests and western slopes of the mountain ridges in the Sun River 

Canyon area. It varies in thickness from 200m-250m (Mudge, 1972a). The Castle 

Reef Dolomite Formation has been split into two members by Mudge (1972a), the 

lower member and the Sun River Member. The Castle Reef Dolomite Formation 
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overlies the Allan Mountain Limestone Formation conformably, with the contact at 

the base of the lowest thin (1-3m thick) fine grained dolomite bed in the Madison 

Group (Mudge et al., 1962). Not only is this boundary defined by the presence of 

this dolomite, but also by the decrease in abundance of Homalophyllites, a small 

solitary horn coral, in the Castle Reef Dolomite Formation.  

The lower member varies from thick bedded crystalline dolomite, calcitic dolomite, 

dolomitic limestone, and limestone (Mudge, 1972a). The crystalline dolomitic beds 

are occasionally cross-bedded coarse grained and dominantly composed of crinoid 

debris (Mudge, 1972a). Approximately thirty metres above the thin dolomite unit, 

denoting the base of the lower member is a distinctive widespread thinly bedded 

dark chert (Mudge, 1972a). Additionally the lower member contains a varied fauna, 

mostly brachiopods and corals comprising part of the faunal Zone C from Mudge et 

al. (1962).   

The contact between the lower member and the Sun River Member is not well 

defined across the area. In the east the Sun River Member base is marked by a 

crystalline light-grey dolomite, overlying a crystalline encrinite of the lower member 

(Mudge et al., 1962). In the west the basal dolomite of the Sun River Member 

overlies the fine grained upper dolomite of the lower member (Mudge et al., 1962). 

The Sun River Member, first described by Chamberlin (1955), is not as widespread 

or as thick as the other members probably due to extensive pre-Jurassic erosion 

(Mudge, 1972a). Mudge (1972a) reported thicknesses that varied from 75-135m. 

The Sun River Member is composed of very fine to medium-grained crystalline light 

grey dolomite, with occasional interbedded calcitic dolomite (Mudge, 1972a).The 
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lower section of this member has frequent lenses of dolomitised coarse crystalline 

encrinite (Mudge, 1972a). Also silicified corals and brachiopods are present in 

dolomite beds, implying that silicification preceded dolomitisation (Mudge et al., 

1962). The coral assemblage from the Sun River member forms the fauna Zone D of 

Mudge et al. (1962). 

4.3.6. Faunal Zones 

Mudge et al. (1962) applied the faunal zonation of Madison strata of Sandro and 

Dutro (1960) to the lithologies of the Sawtooth Range, this zonation scheme is 

largely based on corralline material. Zone A is defined by the regularly occurrence 

of the rugose coral Cyathaxonia (Carruthers, 1912), it is present at the base of the 

lower member of the Allan Mountain Limestone Formation and becomes less 

abundant upsection (Mudge et al., 1962). Zone B is largely limited to the middle 

member of the Allan Mountain Limestone and is characterised by various 

brachiopods and small horn corals (Mudge et al., 1962). Zone C is the most 

extensive zone and stretches from the upper member of the Allan Mountain 

Limestone Formation to the middle of the Sun River Member of the Castle Reef 

Dolomite Formation (Mudge et al., 1962). The zone is characterised by corals, 

Figure 4. 12 Stratigraphy of the Madison Group, modified from Mudge (1972a). 
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particularly Homalophyllites, and abundant brachiopods (Mudge et al., 1962). Zone 

D is restricted to the to top part of the Castle Reef Sun River Member and is 

characterised by silicified brachiopods and rugose corals (Mudge et al., 1962).  

Despite the wide range and abundance of fossils, particularly Syringopora and 

Vesiculophyllum, the most abundant fossils in the Madison Group are the coarse 

crystalline beds of crinoidal debris or encrinites (Mudge, 1972a).  

The environmental reconstruction of the upper Madison Group is an important 

consideration for the dolomitisation and diagenetic processes that occurred after 

deposition. The upper Sun River Member is characterised by faunal zone D which in 

turn is dominated by Perditocardinia, Faberophyllum, and Lithostrotion 

Siphonodendron (Mudge et al., 1962).  Perditocardinia is an epifaunal brachiopod 

that is typically found in shallow subtidal environments  (Sepkoski, 2002). Similarly 

Faberophyllum and Lithostrotion Siphonodendron are rugose horn corals that are 

also found in shallow marine environments (Sepkoski, 2002). Mudge et al. (1962 

and 1972) concluded that shoal conditions with warm shallow open marine waters 

was the main depositional environment controlling Madison Group sedimentation. 

 

4.3.7. Mississippian-Jurassic Unconformity 

The erosive unconformity at the top of the preserved Sun River member is 

significant for a number of reasons, firstly it represents a period of approximately 

130ma spanning from Late Mississippian to Middle Jurassic (Mudge, 1972a), 

secondly it provides some information regarding the post-depositional and 

diagenetic conditions for the Madison Group. Some lithologies representative of 

the missing strata occur in some parts of Montana and Alberta (Mudge, 1972a; and 



Chapter 4: Sawtooth Range, NW Montana      100 
 

references there within), with Pennsylvanian and Permian sedimentary units widely 

exposed across western Montana, Triassic and Lower Jurassic units are less 

common in western Montana and surrounding areas. Mudge (1972a) argued that if 

evaporite beds were interbedded in the missing Upper Mississippian strata of the 

Sun River Canyon, as is the case in eastern and southern Montana, they could have 

accounted for the required magnesium for dolomitisation of the upper Madison by 

seepage refluxion. Solution widened joints and clam borings infilled with Mid-

Jurassic sands, confirm that Mississippian strata was regularly exposed at the 

surface until Jurassic sedimentation (Mudge, 1972a). This extensive erosion led to 

the removal of the characteristic Karst topography of the Mississippian strata in 

Montana (Mudge, 1972a). 

4.3.8. Dolomitisation of the Upper Madison 

As previously mentioned Mudge (1972a) argued that if evaporites were present in 

the Sun River area, seepage refluxion from hypersaline brines may have driven 

dolomitisation. A more local source for the required magnesium was also suggested 

by Mudge (1972a), with magnesium being sourced from the abundant encrinites. A 

sufficient local source seems unlikely considering Mudge et al. (1962) showed that 

the magnesium percentage decreases downwards in the Madison strata which is 

suggestive of an external source located above the Madison, rather than a localised 

internal source. Also this implies dolomitisation occurred after deposition of the 

majority of the sequence and it’s overlying beds. Additionally the dolomitising fluids 

were shown to be selective towards fine-grained argillaceous units, with these units 
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showing a gradual decrease in magnesium towards adjacent coarse-grained 

encrinites and limestones (Mudge et al., 1962).  

Similar to the conclusions of Mudge (1972a), Balch (1987) summarised the post-

depositional and diagenetic evolution of the Madison group in southern Montana 

using several phases (Figure 4.13):  

1. Extensive dolomitisation of inner-shelf carbonate sediments beneath 

evaporites;  

2. Surface exposure of dolomitised sediments, leading to desiccation and 

brecciation as well as circulation of groundwater during evaporite 

deposition; 

3. Early Visean epeirogenic uplift leading to regional karstification and 

associated solution breccias; 

4. Late Serpukhovian to Early Bashkirian sedimentation; 

5. Moscovian epeirogenic uplift leading to further erosion and a second 

stage of karstification; 

6. Continued Pennsylvanian sedimentation 

7. Late Cretaceous tectonism.  

Evaporites overlying Madison Group limestones in southern Montana are generally 

held to have formed in an arid climate marine regressions of the interior seaway 

(Balch, 1988). Marine regressions would have led to precipitation of gypsum and 

anhydrite  and increased salinity of the shelf sediment pore waters (Balch, 1987). 

These brines were enriched in magnesium and dolomitised their host sediments 

(Balch, 1988). Sediments beneath the shelf were dolomitised by brines that seeped 

downwards through them (Balch, 1987). Mid-Visean epeirogenic uplift the 

Cordilleran shelf brought upper Madison carbonates above groundwater level, 

which would have promoted the erosion and karstification of the upper 100m of 

the Madison (Balch, 1987).  



Chapter 4: Sawtooth Range, NW Montana      102 
 

Diagenesis of the Madison Group units in Wyoming was described extensively by 

Westphal et al. (Figure 4.14; 2004). The first diagenetic alteration they identified 

was the development of micritic envelopes, followed by bedding normal 

mechanical compaction (Westphal et al., 2004). The resulting bedding parallel fabric 

and minor grain deformation was interpreted to indicate an absence of a 

widespread early cement framework prior to initial compaction (Westphal et al., 

2004). 

Compaction and pressure-solution related cementation developed synchronously 

with mechanical compaction (Westphal et al., 2004). Interestingly Westphal et al. 

(2004) reported that dolomitisation was restricted to the lower sequences with 

little preference of lithologies for the dolomitising fluids, while the upper units are 

preserved as limestones. Stylolite formation due to deep burial was concluded to 

postdate dolomitisation and cement formation, with stylolites cross-cutting 

cements and calcite spar (Westphal et al., 2004). Late Cretaceous tectonic activity 

induced subsequent fracturing and brecciation.  
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Figure 4. 13 Diagenetic and dolomitisation phases in the Madison Group, Southern Montana, 
continued overleaf (modified from Balch, 1988). 
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4.4. Deformation within Thrusts 

As mentioned above the main structures of the Sawtooth Range are characterised 

by thrust faults that place Madison Limestones over Cretaceous Shales (Holl and 

Anastasio, 1992). The emplacement of these thrusts was enabled by progressive 

development of mesoscopic fault arrays that allowed the base of the thrust sheets 

to deform by cataclastic flow (Figure 4.15; Holl and Anastasio, 1992). This brittle 

deformation is the most pervasive style of deformation at the front of each thrust 

sheet, with little or no penetrative deformation present. Holl and Anastasio (1992) 

characterised the deformation at the base of each thrust sheet in the Sun River 

Canyon area into Brittle Deformation Zones (BDZ’s) composed of arrays of 

mesoscopic faults. The fault spacing, attitude, and slip direction have systematic 

Figure 4. 14 Diagenetic sequence of the Madison Group in Wyoming (Westphal et al., 2004). 
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patterns within each BDZ, additionally fault density decreases away from each main 

thrust surface (Holl and Anastasio, 1992).  

Although the ratio of BDZ width to overall fault displacement was found to be 

constant across separate thrust sheets, Holl and Anastasio (1992) found that there 

was some correlation between BDZ thickness and displacement for thrust sheets in 

the Sun River Canyon, whereby BDZs widen uniformly with increased displacement. 

This is in agreement with the earlier conclusions of Wojtal and Mitra (1986), that as 

a thrust sheet propagates forward an array of interlocking fractures/minor faults 

forms and effectively splits the base of the thrust sheet into metre and sub-metre 

sized blocks (Figure 4.16).  With continued fault movement more fractures develop 

until the dense network of faults can no longer accommodate the required 

displacement and the BDZ needs to widen  (Wojtal and Mitra, 1986). Interestingly, 

despite this extensive brittle deformation, penetrative grain-scale deformation was 

reported as uniformly low across each thrust sheet studied (Holl and Anastasio, 

1992). As mentioned above penetrative deformation fabrics where developed are 

Figure 4. 15 Brittle Deformation Zones in the Sawtooth Range (Holl and Anastasio, 1992). 
A. BDZ divisions. Percentages of BDZ divisions are indicated. B. Distribution of minor faults 
in each BDZ division. Percentages relative abundance of mesoscopic faults. 
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at a high angle to bedding and largely limited to stylolitisation and occasional 

spaced cleavage. The distribution of cleavage and tectonic stylolites appear to 

increase towards the back and away from the base of individual thrust sheets 

(Figure 4.17 & 4.18). Unfortunately due to the sparsity of their occurrences, it is not 

possible to be certain about this distribution using field data alone. The regular 

spaced fractures are illustrated in Figure 4.19 & 4.20. 

 
Figure 4. 17 Fault types across  a schematic thrust sheet (redrawn from Holl and Anastasio, 
1992). 

Figure 4. 16 Stylolitisation perpendicular to a bedding plane in Allan Member Limestone. 
Also visible are conjugate shear fractures and extension fractures.   
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Figure 4. 18 Vertical solution seams cross-cutting bedding and running parallel to the 
hammer handle. Bedding is  also vertical in this case,identified by lenses of chert above the 
hammer.   

Figure 4. 19 Fracture development in Allan Member Limestone at the back of the Norwegian 
Thrust. 



Chapter 4: Sawtooth Range, NW Montana      109 
 

In thin section most samples are too fine grained (Figure 4.21) for accurate strain 

analysis using the clast based techniques discussed in Chapter 2. Furthermore these 

fine grained samples do not appear to exhibit any grain scale strain. Some samples 

have coarser grained textures (Figure 4.22) and these also display evidence for grain 

scale deformation, such as  type 1 calcite twinning (Ferrill et al., 2004) and grain 

boundary bulging (Passchier and Trouw, 2005). Both of these textures indicate 

deformation temperatures below 170°C.  

 

 

Figure 4. 20 Bedding/fracture relationships from Beaver Thrust.  
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Figure 4. 221 Thin section of sample Wy3. Field of view is approximately 4mm. The fine 
grained texture observed is typical of the Allan Mountain Limestones studied and is too fine 
grained for accurate strain analysis 

Figure 4. 212  Thin section of sample Wy18. Field of view is approximately 4mm.  The coarse 
grained texture while ideal for strain analysis is rarely observed. Microstructural deformation 
observed is mainly grain boundary bulging and calcite twinning.  
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4.5. Application of AMS 

4.5.1. Methods 

Oriented block samples for AMS analysis were collected in the Madison limestone 

units in a traverse along the Sun River Valley running from east to west and parallel 

to the direction of thrust transport. Only outcrops with well-defined structural 

relationships bedding, cleavage, etc. were sampled. Additionally lithologies with 

complex sedimentary fabrics, such as syn-sedimentary deformation, burrowing, 

cross bedding etc. were avoided, as these might add further complexities to the 

relationship between bedding and tectonic fabrics. AMS samples and structural 

data were obtained from 72 sites from the Diversion Thrust to the Allan Mountain 

Thrust. Due to the abundance of brittle deformation structures observed in the 

front of each thrust sheet it was difficult to extract block samples from these areas, 

as a result there are less samples from the front of individual sheets than there are 

from the middle or back of sheets. Additionally the most western thrust sheets 

(Allan Mountain and Big George Thrusts) had a higher abundance of brittle 

structures, resultingly no block samples from these thrust sheets survived drilling. 

The location of analysed samples is indicated in Figure 4.23. 

On average 8-14 core samples, measuring 25.4mm diameter and 22mm length, 

were drilled from each block sample. Out of the block samples collected, 43 

samples survived drilling and provided enough sub-specimens to be statistically 

viable (Borradaile and Shortreed, 2011). This yielded 479 individual specimens for 

analysis. AMS analyses were carried out using the procedures described in Chapter 

3. 
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4.5.2. Results 

Bulk susceptibility  varies from -3.80E-05 to 1.90E-04 with the majority of samples 

yielding, a negative or extremely weak susceptibilities (Figure 4. 24A). Negative and 

extremely weak positive susceptibilities are common in very pure limestones. 

Calcite or dolomite, which are diamagnetic minerals (Hunt et al., 1995), are the 

dominant carrier of the AMS fabric in samples with negative bulk susceptibilities. 

The specimens with positive susceptibility values up to 1.90E-04 are indicative of 

minor amounts of paramagnetic minerals, likely phyllosilicates, but these value are 

too low to indicate the presence of any dominant ferromagnetic minerals 

(Rochette, 1987). The degree of anisotropy values (Pj) have a wide range from 1.01 

to 2 (Figure 4. 24B).  This variation in Pj values does not appear to be affected by 

changes in bulk susceptibility and, therefore, implies that Pj is controlled by either 

primary or tectonic fabrics rather than composition in the limestones of this study. 

Additionally there is no obvious correlation between the shape parameter (Tj) and 

bulk susceptibility (Figure 4. 24C). Pj and Tj values are plotted for all specimens 

Figure 4. 23 Map of sample localities . 
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(Figure 4.25 A) and mean block samples (Figure 4.25 B) in each main thrust sheet.  It 

is evident from these plots that all thrust sheets sampled exhibit a range of AMS 

ellipsoid geometries from weak oblate through prolate with some samples 

exhibiting strong oblate geometries.   

The  contribution of diamagnetic minerals in the sample suite from the Madison 

limestones complicates AMS interpretations. In pure calcite and dolomite, the 

principal susceptibility axis with the most negative magnitude is aligned along the 

minerals c-axis (Borradaile et al., 2012), which is typically perpendicular to 

schistosity or tectonic cleavage (Flinn, 1965). Therefore, the most negative 

susceptibility axis in calcites largely coincides with the normal to the dominant 

foliation (Borradaile et al., 2012). In order to compare the diamagnetic fabrics to 

paramagnetic fabrics, k1 is represented by the most negative axis and k3 is 

represented by the least negative axis for diamagnetic specimens (Borradaile et al., 

2012). 

To identify regional magnetic fabrics, specimens have been split into two groups,  

paramagnetic and diamagnetic, and plotted on stereonets with bedding and 

cleavage, where observed (Figure 4. 25 A&B). These plots show a considerable 

amount of scatter for both paramagnetic and diamagnetic samples; regardless of 

being corrected for bedding tilt  (Figure 4. 25 C&D). Despite the scatter, there is a 

slight degree of clustering of K1 axes along bedding, cleavage, and particularly the 

bedding/cleavage intersection lineation. Similar diagrams to Figure 4. 25 are 

presented plotting K1 only, K1 and K2 and K3 only in Figure 4. 27, Figure 4. 26 and 

Figure 4. 29 respectively. Presenting the data in this fashion allows for a clearer 
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representation of the principal axes distribution. Contoured plots of the magnetic 

lineation (K1) are shown in Figure 4.30. Similar to the stereographic projections 

there is no obvious distinct trend in the orientation of K1 (mahgnetic lineation), 

regardless of whether the specimens were paramagnetic or diamagnetic.   

Whilst the stereographic projections of all the data do not reveal any convincing 

trends or patterns the stereographic projections of the AMS ellipsoid for 

representative block samples for all thrust sheets sampled as shown in Figure 4.31, 

yields further insights into petrofabric development in the Madison limestones. In 

addition to the overall diagram stereographic projections of the AMS ellipsoid for 

all block samples for individual thrust sheet sampled are shown in Figure 4.32 to 

Figure 4.36. AMS fabric types in the Madison Limestones evolve from Type 1 to 

Type 4 and there appears to be no consistent spatial control on fabric types. 

Lathough there does appear to be an increase in the number of type 3 and 4 

magnetic fabric types in the Castle Reef Dolomite. This distribution agrees with the 

increased number of observed tectonic stylolites and may be due to differences in 

deformation styles between the Castle Reef Dolomite Formation and the Allan 

Mountain Limestone Formation, rather than localisation of strain. In additioin to 

the full range of magnetic fabric types observed within each sheet, it is interesting 

to note that some samples that have been recorded as type 1 or 2 occur next to 

samples that have been recorded as type 4, as in the case of GR18 and GR19 in the 

Beaver Thrust. This is taken to be indicative of the domainal manner in which 

tectonic fabrics develop in limestones, with microlithons formed between areas of 

cleavage development. Similarly the Pj-Tj plots for each thrust sheet (Figure 4.37) 

exhibit the same patterns of AMS ellipsoid evolutions, from weakly oblate to 
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strongly oblate, through a prolate stage, with the exception of the French thrust 

sheet, regardless of their position in the thrust belt. The pattern observed in the 

French thrust sheet could be due to the lower sample count. 

Figure 4. 24 AMS results A. Histogram of bulk susceptibility for all samples. B. Bulk susceptibility 
values versus corrected degree of anisotropy (Pj) C. Bulk susceptibility versus shape parameter (Tj). 
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Figure 4.25 Jelinek plots. A. Pj versus Tj plots for all specimens collected across 5 thrust sheets. B. Pj 
versus Tj for mean samples. 
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Figure 4. 25 Stereographic projections of principal axes for all specimens separated into two 
groups, paramagnetic (A.)and diamagnetic (B.). Individual bedding planes are indicated and 
primarily dip to westward. Average cleavage orientation is indicated. The second row shows 
the same data but corrected for bedding tilt for both paramagnetic (C.) and diamagnetic (D.) 
samples. Hollow symbols represent points plotting in the upper hemisphere.   
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Figure 4. 27 Stereographic projections of K1 axes for all specimens separated into two groups, 
paramagnetic (A.) and diamagnetic (B.). Individual bedding planes and average cleavage orientation is 
indicated. C. and D. show the same data corrected for bedding tilt for paramagnetic and diamagnetic 
specimens respectively. 

Figure 4. 26 Stereographic projections of K1 and K2 axes  for all specimens separated into two 
groups, paramagnetic (A.) and diamagnetic (B.). Individual bedding planes and average cleavage 
orientation is indicated. C. and D. show the same data corrected for bedding tilt for paramagnetic 
and diamagnetic specimens respectively. 
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Figure 4. 29 Stereographic projections of K3 for all specimens separated into two groups, paramagnetic 
(A.) and diamagnetic (B.). Individual bedding planes and average cleavage orientation is indicated. C. and 
D. show the same data corrected for bedding tilt for paramagnetic and diamagnetic specimens 
respectively. 

Figure 4. 28 Contoured stereonets 
and rose diagrams of K1 from the 
data in Figure 4.26. Contoured plot 
of K1 of paramagnetic specimens. B. 
Contoured plot of K1 of diamagnetic 
specimens. C. Rose diagram of K1 
for paramagnetic specimens. D. 
Rose diagram of K1 for diamagnetic 
specimens. 
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Figure 4. 30 Stereographic projections of principal susceptibility axes for representative 
block samples across the the sampled thrust sheets. Also shown is the inclination of 
magnetic foliation relative to bedding and tectonic stylolites. Magnetic fabric types are 
indicated. Inset illustrates evolution of magnetic fabric types assuming horizontal bedding.  
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Figure 4. 31 Stereographic projections of principal susceptibility axes for block samples 
across the Diversion thrust sheet. Also shown is the inclination of magnetic foliation 
relative to bedding and tectonic stylolites. Larger symbols indicate mean principal axes. 

Figure 4. 32 Stereographic projections of principal susceptibility axes for block samples 
across the Sawtooth and Home thrust sheets. Also shown is the inclination of magnetic 
foliation relative to bedding and tectonic stylolites.  
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Figure 4. 33 Stereographic projections of principal susceptibility axes for block samples 
across the French thrust sheet. Also shown is the inclination of magnetic foliation relative 
to bedding and tectonic stylolites.  

Figure 4. 34 Stereographic projections of principal susceptibility axes for block samples 
across the Norwegian thrust sheet. Also shown is the inclination of magnetic foliation 
relative to bedding and tectonic stylolites.  
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Figure 4. 35 Stereographic projections of principal susceptibility axes for block samples 
across the Beaver thrust sheet. Also shown is the inclination of magnetic foliation relative 
to bedding and tectonic stylolites.  

 

4.6. Discussion 

The AMS fabrics exhibit a range of fabric types that are commonly seen in fold and 

thrust belts (Bakhtari et al., 1998; Pares and Parés, 2004; Weil and Yonkee, 2009). 

These fabric types evolve from bedding controlled to tectonic cleavage controlled 

through an intermediate stage with blended fabrics (Bakhtari et al., 1998; 

Borradaile et al., 2012). This evolution of fabric type is evident in the Pj-Tj plots, 

whereby ellipsoid shapes vary from weakly oblate with flattening parallel to 

bedding, to prolate with stretching parallel to the extension direction with a final 

stage of oblate with flattening perpendicular to bedding (Parés, 2004).  
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Figure 4. 36 Pj-Tj plots of samples 
from each thrust sheet. A. Diversion 
thrust. B. Sawtooth thrust. C. French 
thrust. D. Norwegian thrust. E. Beaver 
thrust. Interestingly all thrust sheets, 
with the exception of French, exhibit 
the same pattern of AMS ellipsoid 
evolution from weakly oblate to 
strongly oblate through a prolate 
stage. F. Conceptual evolution of 
magnetic fabric types as discussed in 
Chapter 3.. 
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Although penetrative tectonic fabrics are poorly developed at an outcrop scale, 

there is a regular correlation with AMS fabrics and recorded cleavage fabrics at a 

high angle to bedding, with K1 axes plotting along a cleavage plane or at the 

cleavage bedding intersection lineation . The poor development of penetrative 

fabrics in the Madison Limestones may be attributed to the relatively low 

temperature conditions they experienced. The temperatures of 100˚C-175˚C 

constrained by illitic mineral assemblages (Gill et al., 2002; Hoffman et al., 1976; 

O’Brien et al., 2006) are below the temperatures required (200˚C-300˚C) for 

intracrystalline plastic flow of calcite to become a dominant deformation 

mechanism (Engelder and Marshak, 1985).  

 

The presence of a tectonic stylolitic fabric consistently at a high angle to bedding 

suggests that this fabric developed prior to thrusting and rotation of the 

carbonates. This is further confirmed by the coaxial folding of stylolites with 

bedding (Ward and Sears, 2007). If any cleavage developed during thrusting it 

would be expected to develop at a oblique angle to bedding as suggested by Evans 

and Dunne (Figure 4. 37; 1991) Sanderson (Figure 4.39; 1982). Evans and Dunne 

(1991) used finite strain variation in the North Mountain thrust sheet of the central 

Appalachians to help outline its kinematic history. They outlined four typical 

deformation events associated with thrust sheet evolution (Figure 4. 37):  

1. initial Layer Parallel Shortening (LPS);  

2. bending and folding at ramp hinge; 

3. syn -thrusting related simple shear;  

4. and post-emplacement flattening (Evans and Dunne, 1991). 
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This model shows LPS development preceding or synchronous with the 

emplacement of an underlying thrust tip  (Evans and Dunne, 1991). This is followed 

by further deformation as the thrust sheet undergoes folding and bending at a 

ramp hinge, resulting in interlayer slip, non-layer-parallel shortening and strains 

associated with bending. The third stage is syn-thrusting transport simple shear is 

parallel to the basal thrust. A final stage of post-emplacement flattening may occur.  

 Evans and Dunne (1991) also highlighted that the style of penetrative strain 

recorded in thrust sheets is dependent on whether the right temperature and 

pressure conditions are present to accommodate grain scale deformation, and that 

these conditions can vary temporally and spatially within a thrust sheet.  

Similar studies in the Wyoming fold and thrust belt suggested that LPS developed in 

individual thrust sheets prior to thrusting and as a consequence of the overriding 

thrust slab (Wiltschko and Dorr, 1983). Deformation during thrusting was limited to 

brittle deformation in the limestones of the hanging wall (Holl and Anastasio, 1992) 

and plastic deformation in the Cretaceous shale in the footwall, similar to the 

findings of Wu (1993).  

The development of AMS fabrics in sedimentary rocks with a primary bedding fabric 

undergoing LPS has been well studied (Bakhtari et al., 1998; Borradaile and Jackson, 

2010; Pares, 2004; Parés et al., 1999) and can be summarised as follows: 

Sedimentary fabric characterised by weakly oblate ellipsoids with flattening parallel 

to bedding have  K1 and K2 axes scattered in a girdle representing the magnetic 

foliation and roughly conforming to bedding and K3 plots as the normal to the 

magnetic foliation/bedding. As LPS initiates the tectonic fabric is weaker than the 

primary sedimentary fabric and the AMS ellipsoid can be weakly oblate and 
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conformable with bedding, but tends towards a triaxial geometry with K1 axes 

clustering in the direction of extension and defining a magnetic lineation. With 

increased shortening, the magnetic ellipsoid becomes prolate with K1 axes  

increasing in definition and K2 axes roughly equal to K3 axes. The final stage 

involves a magnetic foliation perpendicular to bedding with K1 axes and K2 axes 

forming a great circle girdle parallel to cleavage. K1 axes, the magnetic lineation, 

may still be clustered at the intersection of bedding and cleavage, or scattered in 

the plane of cleavage. This range of ellipsoid geometries is also observed in the 

Madison limestones for both the paramagnetic and diamagnetic samples, once K1 

axes and K3 axes are swapped for the diamagnetic samples (Figure 4.26) It is 

interesting to note, that despite this variation in magnetic fabric types, there does  

not appear to be a regular distribution of bedding controlled versus cleavage 

controlled fabric types within the thrusts sheets.  

 

Figure 4. 37 Evolution of 
deformation events during 
thrust sheet evolution (Evans 
and Dunne, 1991). A. Initial 
Layer Parallel Shortening (LPS). 
B. Bending and folding at ramp 
hinge. C. Syn-thrusting related 
simple shear. D. Post-
emplacement flattening. The 
maximum extension direction 
is shown by short lines, while 
the crosshatching shows areas 
with overprinted strains. 
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Both the models of Sanderson (1982) and Evans and Dunne (1991) suggest strain 

developing within a thrust sheet during thrusting. The  AMS results presented and 

discussed above do not identify any penetrative deformation that could be linked 

to syn-thrusting strain. Furthermore the only penetrative tectonic fabric identified 

was consistently perpendicular to bedding and appeared to have a domainal 

nature. Therefore a schematic model for strain evolution in the Sawtooth Range is 

proposed in Figure 4.39. The first stage of deformation involves thrust fault 

initiation, facilitated by brittle deformation in the hangingwall fault boundary as 

described by Holl and Anastasio (1991). As this fault develops LPS is occurs in the 

relatively undeformed footwall, which responds by developing an incipient 

cleavage. Further movement of the thrust fault along the footwall ramp promotes 

Figure 4. 38 Strain 
development during 
thrusting (redrawn from 
Sanderson 1982). Top figure 
illustrates hypothetical strain 
ellipsoids during thrusting. 
Cross-hatching in lower 
figure shows areas of 
overprinted strains.  
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fracturing in structurally competent units such as the Allan Mountain Limestone 

and Castle Reef Dolomite. With further faulting the BDZ widens and cleavage 

development continues in the footwall. When deformation transfers further into 

the foreland a new thrust fault develops in the footwall and cleavage development 

ceases as compression is accommodated by a new phase of thrusting.  

 

4.7. Conclusions  

The carbonate dominated thrust sheets in the Sawtooth Range were emplaced in a 

largely passive manner. This rotation was facilitated by brittle deformation at the 

base of the thrust sheets (Holl and Anastasio, 1992) as well as plastic deformation 

in the Cretaceous strata of the footwalls. The emplacement of these sheets 

effectively rotated an early or pre-thrusting LPS fabric. Furthermore no penetrative 

fabric developed in the carbonates by deformation associated with thrusting has 

been detected by the AMS analyses. Despite weak/absent penetrative deformation 

the use of AMS has allowed interpretations to be made of finite strain distributions 

and as a result thrust sheet deformation can be modelled.  
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Figure 4. 39 Schematic model of strain evolution in the Sawtooth Range. A. Pre-deformation 
stage. B. Minor thrust fault develops, movement is accomodated by brittle deformation along 
fault surface, footwall undergoes LPS and incipient cleavage develops as a result. C. 
Displacement along fault increases, brittle deformation zone (BDZ) widens  and high angle 
fractures develop in competen strata as they are transported along the footwall ramp. D. 
Continued development of BDZ and high angle fractures. E. New thrust fault develops in 
footwall. Cleavage and tectonic stylolites reach maximum development prior to rotation of 
strata due to thrusting F. BDZ and high angle fractures develop in new thrust sheet. 
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5. Introduction 

The Cordilleran Mountain Belt of North America is one of the world’s classic 

foreland fold and thrust belts. The Sevier Belt represents the thin skinned front of 

this orogeny, consisting of thrust faults and folds that shortened and transported 

sequences of Devonian to Cretaceous strata eastward. There is a general increase in 

deformation westwards which provides an ideal geological setting to explore the 

potential link between Anisotropy of Magnetic Susceptibility (AMS) and results 

from clast based strain analyses of sandstones. Studies attempting to define the 

relationship between AMS and finite strain have been in vogue since the link 

between layer parallel shortening and AMS was first established. The 

understanding of this relationship, despite proven strong correlations between the 

AMS tensors and tectonic directions, is complicated by competing sub-fabrics, as 

well as the various magnetic properties of the minerals contributing to the AMS 

fabric. 

Rather than trying to estimate finite strain directly from the AMS ellipsoid, AMS is 

being used to accurately and quickly qualify the petrofabric and determine the 

origin of that fabric (i.e. whether it is purely sedimentary, composite 

bedding/tectonic or dominantly tectonic etc.). These AMS results have been 

compared to a suite of semi-automated strain analysis techniques.  

5.1.1. Geological Setting 

The Wyoming Salient is a major feature of the Sevier Fold and Thrust Belt and part 

of the North American Cordillera Complex (Figure 5. 1; Armstrong and Oriel, 1965; 

DeCelles, 2004; Weil and Yonkee, 2009; Yonkee and Weil, 2010). This Cordillera 
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complex was formed by subduction of the oceanic Farallon and Kula plates beneath 

the North American continental plate from the Jurassic to Paleogene (Bird, 1988; 

DeCelles, 2004; Dickinson and Snyder, 1978; Hildebrand, 2009). The Sevier fold and 

thrust belt represents the foreland of the Cordilleran orogenic belt (DeCelles and 

Coogan, 2006). It is best characterised by thin skinned deformation, consisting of 

thrust faults and related folds (Figure 5. 2; Mitra and Yonkee, 1985; Mitra, 1994) 

and can be divided into a series of salients that are typically bound by basement 

cored uplifts (Lawton et al., 1994). The Wyoming section forms a broad salient, 

bound to the north and south by the basement-cored Gros Ventre and Uinta uplifts 

of the Laramide foreland (Weil, Yonkee, & Sussman, 2009), is convex to the east, 

and  associated with several major thrust faults (Mitra and Yonkee, 1985).  

This Wyoming Salient is divided into two broad systems, a western zone of thrusts 

that transported Neoproterozoic to Paleozoic strata and an eastern region of 

thinner cratonic Paleozoic strata. This eastern thrust system is dominated by thin 

skinned fold thrust structures that were active from the late Cretaceous to early 

Tertiary and transported Paleozoic and Mesozoic sediments eastward. The foreland 

of this thrust system interacted with the synchronous basement uplifts attributed 

to Laramide deformation (Mitra, 1994). The main thrusts in the eastern system are 

the Crawford, Absaroka, and Hogsback-Darby-Prospect Thrusts (Figure 5. 2). These 

were emplaced in a piggyback sequence from west to east, respectively, and are 

thought to share a basal decollement in Cambrian shale (Mitra and Yonkee, 1985). 

The timing of thrust emplacements is well constrained by synorogenic deposits 

(Figure 5. 4; Liu et al., 2005) ; the Willard, Paris and Meade thrusts of the western 
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system were active during the Early Cretaceous, whilst the Crawford and Absaroka 

thrusts were active during the Middle and Late Cretaceous, respectively, and the 

Hogsback-Darby-Prospect sequence was emplaced during the Paleocene and 

Eocene (Wiltschko and Dorr, 1983).  

This study is largely concerned with the thin skinned deformation of the eastern 

thrust system (Mitra and Yonkee, 1985). Spaced cleavage is developed in some 

lithologies and is thought to have formed during early Layer Parallel Shortening 

(LPS). Early LPS initiated during footwall deformation as the Willard Meade Thrust 

slabs were emplaced (Mitra, 1994).  

 

Figure 5. 1 Regional tectonic map of the North American Cordillera redrawn from 
DeCelles & Coogan (2006). The Sevier Fold and Thrust Belt is highlighted in grey and the 
field area is marked by the rectangle. Location of cross section in figure 5.2 indicated by 
X-X’. 

X            X’  
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Figure 5. 2 East-West cross section of the Wyoming 
Salient (from Yonkee and Weil, 2010). 
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5.1.2. LPS and Petrofabric Development in Thrust Sheets 

Fold and thrust belts typically develop through sequential stacking of thrust sheets 

from the hinterland to the foreland of the orogenic belt (Bally et al., 1970; Boyer 

and Elliott, 1982; Dahlstrom, 1977, 1969; Mitra, 1994; Price, 1981). Generally thrust 

sheets are displaced along inclined faults that ascend through the stratigraphy and 

merge at depth along a basal shear zone or decollement (Boyer and Elliott, 1982). 

The Wyoming Thrust Belt displays a listric fault geometry with the structures cutting 

up section towards the east (the direction of transport) and  dipping to the west 

(Mitra and Yonkee, 1985), with the exposed sections of the thrusts displaying ramp-

flat geometries (Figure 5. 2; Mitra, 1994, Yonkee and Weil, 2010). The ramps 

typically occur in more competent intervals, such as thick-bedded carbonate and 

sandstone, and flats occur in incompetent intervals, such as shale and evaporites 

(Mitra, 1994). The major thrusts developed sequentially from west to east towards 

the foreland from the late Jurassic to early Eocene (Wiltschko & Dorr, 1983). The 

Paris-Willard sheet was emplaced first, and was followed successively by the 

Meade, Crawford, Absaroka, Darby and Prospect Thrusts (Figure 5. 3 and Figure 5.4; 

Wiltschko & Dorr, 1983; Mitra & Yonkee, 1985; Liu et al., 2005). The movement on 

these thrusts was recorded by the deposition of synorogenic conglomerates that 

provides timing of thrust fault movement and cleavage development (Wiltschko 

and Dorr, 1983). LPS developed at high angles to bedding in individual thrust 

sheets, as internal shortening of an individual thrust sheet started after the 

preceding thrust sheet was emplaced, and prior to movement of the shortening 

thrust sheet (Wiltschko & Dorr, 1983; Mitra & Yonkee, 1985; Mitra, 1994).   
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Figure 5. 3 Regional patterns of LPS 
and strain in the  Triassic Ankareh 
Formation (Modified from Yonkee 
and Weil, 2010). A. LPS directions 
estimated from cleavage, high-angle 
fracture sets, and minor faults. C. 
Orientation and magnitude of bed-
parallel strain ellipses estimated from 
shapes of reduction spots. Low 
strains are recorded in the centre of 
the salient, with strain increasing 
westward and towards the salient 
tips. 

Figure 5. 4 Time-space history of thrust faulting and distribution of synorogenic sediments 
in the Sevier Thrust Belt (Modified from Liu et al., 2005).  
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Figure 5. 5 Cleavage intensity map modified from Mitra and Yonkee (1985). Cleavage intensity was 
determined from field measurements and illite vein width. Increasing cleavage intensities are 
marked by darker shades of grey. There is a significant increase in cleavage with proximity to the 
over-riding thrust sheet, with the more westerly thrust sheets displaying greater amounts of 
deformation. Sample locations are identified in italics with magnetic fabric types indicated in 
circles. Only stereoplots for samples with both AMS and strain analysis data are shown. Location of 
cross section in Figure 5.6 is indicated by A-A’. 
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Regional patterns of LPS have been well documented by Yonkee and Weil (Figure 5. 

3; 2010), with low strains recorded in the centre of the salient, with estimated 

strain increasing westward and towards the salient tips. Deformation temperatures 

within each thrust sheet was previously determined using illite crystallinity and 

shows that while there is no continuous temperature gradient across the thrust 

belt, conditions rarely exceeded 200°C (Mitra & Yonkee, 1985). Additionally, 

deformation pressures were interpreted to be <5kBars (Yonkee, 1990). In the case 

of the Wyoming Salient, the compressional deformation has been accommodated 

by a spaced cleavage with occasional tectonic stylolites, slaty cleavage and pencil 

cleavage formation, largely induced by pressure solution, due to the depressed 

thermal gradient associated with the emplacement of an overriding thrust sheet 

(Mitra & Yonkee, 1985). Cleavage has been described as spaced partings 

perpendicular to bedding and is orthogonal to the compression direction as 

evidenced by reduction spot data (Yonkee & Weil, 2010). Cleavage is more 

developed in the western thrusts systems (Figure 5. 5), due to the higher degree of 

deformation (Figure 5.6), with estimates for the degree of LPS across the Wyoming 

salient varying from <5% to 30% (Yonkee & Weil, 2009).  

Figure 5. 6 Cross section of the A-A’ transect indicated in the 

previous diagram (Modified from Yonkee and Weil, 2010). 



Chapter 5: Sevier Thrust Belt, Wyoming      140 
 

5.1.2.1. Ankareh Formation 

The Triassic Ankareh Formation (Figure 5. 7) was chosen for this study due to its 

suitable mineralogy for AMS studies, it consists of bedded sandstones and 

calcareous mudstones. The sandstone units vary from quartz arenites to arkose 

sandstones that are often hematite stained pervasively throughout the matrix 

(Brandley and Rigby, 1988; Kummel, 1954; Weil and Yonkee, 2009). These rocks are 

interpreted as continental to near-shore supratidal, meandering stream, and 

floodplain deposits (Brandley & Rigby, 1988). Bedding structures are typically well 

defined (Figure 5. 8), with detrital micas moderately aligned along bedding planes 

in most samples. The majority of samples are texturally mature, in that they are 

relatively well sorted, have little or no matrix  and are composed of sub-rounded to 

rounded equant grains (Figure 5. 8). Quartz grains are the dominant mineral phase 

that varies from silt to sand sized consisting of 70-95% of the grains with varying 

amounts of matrix. Quartz grains are typically interlocking with sutured grain 

boundary contacts, interpreted as pressure solution contact formed during 

diagenesis and/or early deformation. Occasionally, sub grain rotation is observed 

and is more frequent in samples with a higher strain index (Hirth and Tullis, 1992; 

Passchier and Trouw, 2005). Quartz is also present as the primary matrix material 

and occurs as mineral overgrowths. Overgrowths when present are usually 

accompanied by hematite rims between the overgrowth material and the host 

mineral. Detrital grains of mainly plagioclase with occasional orthoclase feldspars 

varying from 5–15%. The feldspars invariably feature alteration to a fine grained 

material, presumably sericite, suggesting widespread hydrothermal alteration. 

Detrital biotite and muscovite are present in minor amounts (less than 10%) in the 



Chapter 5: Sevier Thrust Belt, Wyoming      141 
 

finer grained samples. Calcite occurs as cement in the finer grained samples, and is 

also rarely present as detrital calcite lithic grains.  The presence of hematite rims 

enclosed in quartz overgrowths suggests that it formed prior to or during 

diagenesis.  

In thin section, cleavage is best seen in the finer grained samples, and is typically 

present as interleaving, discontinuous and anastomosing seams. The seams are 

usually less than 0.5mm with spacing of approximately 5mm. The cleavage is often 

associated with high concentrations of fine grained clays and iron oxides material. 

These materials  are typical of spaced cleavage (Engelder and Marshak, 1985), with 

seams of residual minerals, encompassing less deformed microlithons, after the 

dissolution of quartz and calcite. Where this residual material is coarse enough to 

determine the orientation, the long axis of the crystals is parallel to the long axis of 

the seams. 
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Figure 5. 7 Stratigraphic column 
of the Wyoming salient area 
with the Ankareh Formation 
highlighted in grey, redrawn 
from Brandley & Rigby (1990). 
Lithology types and thicknesses 
indicated in the diagram are 
intended to be schematic.  
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5.2. AMS and Strain Analysis 

Oriented block samples for AMS and strain analysis were collected along two 

parallel transects, Bridger and Jackson, across the Wyoming Salient running from 

east to west and perpendicular to the regional tectonic grain. Only outcrops with 

well-defined structural relationships, bedding, cleavage, etc. were sampled. 

Additionally lithologies with complex sedimentary fabrics, such as syn-sedimentary 

deformation, burrowing, and cross bedding were avoided, as these might add 

further complexities to the relationship between bedding and tectonic fabrics. 

Strain estimates were made from samples with clear relationships between 

observed structures and AMS properties.  

Figure 5. 8 Cleavage/bedding relationships in the Jackson transect. Inset shows 

microphotograph of Ankareh Formation. Quartz clasts have hematite rims and quartz 

overgrowths. Clasts are typically interlocking with sutured boundaries, suggesting deformation 

by pressure solution.  
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5.2.1. Application of AMS 

On average 8-14 core samples were drilled from each block sample. Out of the 35 

block samples collected, 27 samples survived drilling and provided enough sub 

specimens to be statistically viable. Each core sample was cut into 22mm x 25mm 

right-cylinder specimens with a minimum of five specimens obtained from each 

sample. This yielded 349 individual specimens for analysis. AMS analyses were 

carried out using the MFK1-A Kappabridge (AGICO, Czech Republic) at the New 

Mexico Highlands University Paleomagnetic-Rock Magnetic Laboratory.  

5.2.2. Strain Analysis  

Strain analysis was carried out on oriented bedding parallel thin sections prepared 

from AMS cores (Figure 5.9). Out of the 20 samples selected for strain analysis, 15 

were suitable for analysis.   The MRL (Mulchrone et al., 2003) and DTNNM 

(Mulchrone, 2002) methods were applied using the semi-automated software and 

methodologies described in Mulchrone et al. (2013). These methods determine 2D 

finite strain by determining properties of populations of sedimentary clasts and 

comparing these data to assumed pre-strain conditions. Bedding plane strain is 

considered a good proxy for layer-parallel tectonic shortening as compaction tends 

to act perpendicular to bedding. Furthermore, bedding parallel sections are less 

likely to be affected by variations in primary fabrics (Paterson and Yu, 1994). Strain 

analysis required grain boundary maps of a least 150 grains, as recommended by 

Meere and Mulchrone (2003), and were manually traced from oriented 

microphotographs. These images were then analysed by the software presented in 

Mulchrone et al. (2013), which calculated all of the required parameters.  
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5.3. AMS Results 

Bulk susceptibility for site samples varies from 0.0025 x 10-3 to 1.2 x 10-3, these 

values suggest that the AMS fabrics are dominated by paramagnetic phyllosilicates 

Figure 5. 9 Strain analysis workflow modified from (Mulchrone et al, 2013). A. Raw 

image of Wy26a. B. Input image. C. Processed image. D. Polar plot showing variations 

in ellipse length ratios versus orientation. E. Cartesian plot of the data from D. F. 

Bootstrap data for Mean Radial Length Method. The value of the actual estimate is 

shown by the star, the grey dots represent 1000 estimates. Ellipses shown are the 90, 

95 and 99% confidence ellipses. G.  Bootstrap data for Delaunay Triangulation 

Nearest Neighbour Method. The value of the actual estimate is shown by the star, 

the grey dots represent 200 estimates. 
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and haematite although the high bulk susceptibility values (< 1.0 x 10-3) detected in 

some samples suggest trace amounts of titanomagnetite. The presence of 

titanomagnetite does not appear to have had a major effect on the AMS ellipsoid 

geometries. The bulk susceptibilities of the specimens have a largely bimodal 

distribution (Figure 5. 10A). With the majority of specimens (78%) yielding a bulk 

susceptibilities less than 0.5 x 10-3, 17% is >0.5 x 10-3 and <1.2 x 10-3, and 3.4% is >10 

x 10-3. The specimens with >10 x 10-3 are all from one sample, Wy11. The high bulk 

susceptibility is indicative of at least 0.1 % magnetite or >1% haemo-ilmenite or 

>10% haematite (Tarling and Hrouda, 1993). The population of bulk susceptibilities 

between >0.5 x 10-3 and <1.2 x 10-3 are indicative of susceptibilities influenced by 

haematite. The population of specimens with bulk susceptibilities <0.5 x 10-3 is 

largely controlled by paramagnetic minerals, with some contributions from 

ferromagnetic minerals, probably haematite. Within this subpopulation 74% (or 

58% of the total) is <0.3 x 10-3 indicating little or no influence from ferromagnetic 

minerals. The susceptibility plots versus bulk susceptibility are reported in μSI units 

(1 x 10-6) (Figure 5. 10B), the plot of corrected degree of anisotropy (Pj) vs bulk 

susceptibility indicates that the degree of anisotropy is not controlled by samples 

with higher bulk susceptibilities. Figure 5. 10C&D plots the degree of anisotropy (Pj) 

versus shape parameter (Tj) for individual specimens and  for mean samples. The 

shape parameter, Tj, varies from -0.837 to 0.914, showing a range of ellipsoid 

shapes from prolate to oblate, but the majority of samples range from weakly 

oblate to triaxial, with an average of 0.088. The degree of anisotropy, Pj, varies 

from 1.006 to 1.794 but is typically moderate to low with an average of 1.07 

indicating 7% anisotropy.  Figure 5. 11 is a plot of the same data in Figure 5. 10C&D, 
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but plotted in a Borradaile-Jackson Polar plot. This plot is similar to the Tj-Pj plot in 

that it displays the same information, with the advantage that samples with weaker 

anisotropies (Pj) plot closer to the origin regardless of shape. It is clear from this 

plot that the majority of samples weakly oblate geometries, but some prolate and 

strongly oblate geometries are present. AMS ellipsoid geometries generally evolve 

in the manner described in Section 3.1, whereby AMS fabrics are dominated by 

bedding in the east representing Type 1 and gradually change to tectonic 

dominated AMS ellipsoids in the west, representing Type 4 geometries.  

  

Figure 5. 10 Plots of AMS data. A. Histogram of susceptibility values for individual 
specimens. B. Degree of anisotropy versus bulk susceptibility for individual specimens 
and inset shows a smaller range of bulk susceptibilities. The cluster of specimens with a 
high bulk susceptibility are all from the same sample Wy11 and possibly represent higher 
amounts of hematite. 
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Figure 5. 10 Cont. C. Degree of anisotropy (Pj) versus shape parameter (Tj) for individual 

specimens. D. Degree of anisotropy (Pj) versus shape parameter (Tj) for mean samples.  
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In order to identify a regional pattern in the magnetic fabrics a series of plots of all 

the orientations and declinations of all of the principal susceptibility axes are 

presented below (Figure 5. 12-Figure 5. 20). Figure 5. 12 illustrates the orientations 

of the maximum susceptibility axis (K1) for all individual specimens in both a rose 

diagram and a stereographic projection of the contoured distribution of K1. 

Although there is some scatter it is clear from these plots that K1 is typically 

plunging approximately 40° towards the SW. Similarly Figure 5. 13 illustrates the 

intermediate susceptibility axis (K2) for all individual specimens. The rose diagram 

Figure 5. 11 Borradaile-Jackson Polar plot of all individual specimens as well as 
mean samples. This plot is similar to Tj-Pj plot in that it displays the same 
information, with the advantage that samples with weaker anisotropies (Pj) 
plotting closer to the origin regardless of shape. 
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illustrates a clear north/south trend, while the contoured plot illustrates a possible 

North/South girdle with significant scatter. Figure 5. 14 is a similar diagram but for 

the minimum susceptibility axis (K3). Interestingly the rose diagram of K3 

orientations doesn’t seem to highlight any strong preffered orientation, whilst the 

contoured plot identifies a weak girdle, with a small cluster in its centre, plunging to 

the shallowly to the east. This distribution could be seen to be roughly 

perpendicular to K2.  

To put the distribution of the principal susceptibility axes into more of a structural 

context, they have been plotted on a stereonet with the bedding planes they were 

collected from, also shown in orange are typical cleavage planes observed in the 

field (Figure 5. 15). Despite considerable scatter in this plot it is clear that K1 is 

largely associated with bedding, but also defines a cluster plunging to the South-

West. This southwest cluster aligns closely with the intersection of cleavage and 

bedding. K2 is typically trending North-South and appears to be aligned with 

cleavage. K3 is largely scattered, but has a small cluster plotting as the pole to 

bedding. Figure 5. 16 plots the same data as Figure 5. 15 but has been corrected for 

bedding tilt. Interestingly this correction results in a horizontal/shallow plunging K1 

distribution, but a highly scattered K2 and K3 distribution. A largely horizontal K1 

distribution would be typical of a sedimentary fabric. Figures Figure 5. 17 to Figure 

5. 20 show the same data as Figure 5. 15, but only showing K1 and K2 (Figure 5. 17 

and Figure 5. 18), or K3 (Figure 5. 19 Figure 5. 20) to make their distribution 

patterns clearer.  
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Figure 5. 12 Top: Rose diagram of the K1 orientations for all specimens. Bottom: Contoured 
plot of K1 plunge and trend.  
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Figure 5. 13 Top: Rose diagram of the K2 orientations for all specimens. Bottom: Contoured 
plot of K2 plunge and trend. 
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 Figure 5. 14 Top: Rose diagram of the K3 orientations for all specimens. Bottom: 
Contoured plot of K3 plunge and trend. 
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Figure 5. 15 Stereographic projections of principal susceptibility axes for all specimens (K1: 
red squares; K2: blue triangles; K3: green circles). Individual bedding planes are indicated 
and primarily dip shallowly westward. Typical cleavage planes are indicated in orange.  

 
Figure 5. 16 Stereographic projections of principal susceptibility axes for all specimens with 
correction for bedding. Bedding is now horizontal. Typical cleavage planes are indicated in 
orange. Hollow symbols represent points on upper hemisphere. 
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Figure 5. 17 Stereographic projections of maximum and intermediate susceptibility axes (K1 
& K2) for all specimens. Individual bedding planes are plotted in black and primarily dip 
shallowly westward. Typical cleavage planes are plotted in orange.  

 
Figure 5. 18 Stereographic projections of maximum and intermediate susceptibility axes for 
all specimens with correction for bedding. Bedding is now horizontal. Typical cleavage 
planes are indicated in orange. 
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Figure 5. 19 Stereographic projections of the minimum susceptibility axes (K3) for all 
specimens. Individual bedding planes are plotted in black and primarily dip shallowly 
westward. Typical cleavage planes are plotted in orange.  

 
Figure 5. 20 Stereographic projections of minimum susceptibility axes (K3) for all specimens 
with correction for bedding. Bedding is now horizontal. Typical cleavage planes are 
indicated in orange. 
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The large degree of scatter in the regional stereographic plots can be attributed to the 

range of magnetic fabric types measured in the Wyoming Salient, illustrated in Figure 5.5, 

but also in Figures 5.21-24. In the Figures 5.21-5.24 each sample is represented by a 

stereographic projection of the principal axes of the magnetic ellipsoid for each sub-

specimen, as well as a plot of bulk susceptibility vs Pj, a Pj-Tj plot and a L/F diagram (for 

further discussion on the significance of these plots see Chapter 3).  These plots were used 

to determine magnetic fabric types presented in Figure 5.5. 

Wy29 and Wy30 (Figure 5.21) have very similar bedding controlled fabrics (K1 and K2 lie on 

the bedding plane), although Wy29 is tending more towards triaxial rather than oblate and 

as a result has a larger degree of scatter. Wy26 (Figure 5.21) is also characterised by K1 

lying on the bedding plane is more triaxial than Wy29. Wy25 (Figure 5.21) features a 

magnetic foliation (girdle of K1 and K2) 90° to bedding, possibly representing a tectonic 

fabric. Wy24 (Figure 5.21) has a very simmilar bedding controlled fabric as Wy30. Wy28 

(Figure 5.21) is similar to Wy26 but has a much stronger clustering of K1 and represents a 

type 3 magnetic fabric. Wy27 (Figure 5.22) has particularly large confidence ellipses and 

any interpretation should not be regarded. Wy21 (Figure 5.22) clearly has a high degree of 

scatter but there is a relatively strong foliation 90 degrees to bedding. Wy23 (Figure 5.22) is 

similar to Wy29 in that the magnetic foliation closely follows the bedding plane but is 

tending more towards a triaxial/prolate geometry. Wy16 (Figure 5.22) has a very strong 

magnetic lineation 90° to the bedding plane. Wy18, Wy15 (Figure 5.22) and Wy1 and Wy2 

(Figure 5.23) are characterised by a strong magnetic foliation perpendicular to the bedding 

plane. Wy3 (Figure 5.23) has a large degree of scatter and significantly large confidence 

ellipses, despite this K1 defines a girdle perpendicular to bedding. Similarly Wy4 (Figure 

5.23) has very large confidence ellipses, but in they case they overlap and as a result any 

interpretation of this sample is rendered meaningless. Wy6 and Wy7 (Figure 5.23) have  

triaxial geometries with the magnetic foliation lying in the bedding planes. Wy8 and Wy10 
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(Figure 5.24) have a similar oblate geometry as Wy30 with the magnetic foliation parallel to 

bedding. Wy11 (Figure 5.24) has a strong magnetic foliation perpendicular to the bedding 

plane. Wy12 (Figure 5.24) is similar to Wy11 but is tending towards triaxial rather than 

oblate. Wy13 (Figure 5.24) is tending towards prolate and K1 and K2 are still lying on the 

bedding plane. Wy14 (Figure 5.24) is characterised by a shallow plunging oblate magnetic 

foliation that is significantly deviated from the bedding plane, which is probably due to 

some miscalculation of the drilling angle. 
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Figure 5. 21 AMS results for individual  samples. Shown for each sample is a stereographic 
projection of the principal susceptibility axes with mean axis orientations represented by the 
larger symbols. Also included are graphs of characteristic AMS parameters, a Pj-Tj plot, Flinn 
plot and a plot bulk susceptibility versus Pj (anisotropy) are shown clockwise from upper right to 
lower left respectively. 
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Figure 5. 22 AMS results for individual  samples. 



Chapter 5: Sevier Thrust Belt, Wyoming      161 
 

  

Figure 5. 23 AMS results for individual  samples. 
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Figure 5. 24 AMS results for individual  samples. 
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5.4. Strain Analysis Results 

Axial ratio estimates from the strain analyses show a range of estimates from 1.008 

to 1.1969 for MRL and 1.04 to 1.42 for DTNNM (Figure 5. 25). As expected the 

DTNNM estimates are typically higher than the MRL estimates. Despite both 

methods showing significant differences in R values, the Φ orientations usually only 

vary by 20°; although at times the variations are up to 70° for 5 estimates. There is 

generally less variation in angle recorded for samples with higher strains.  

  

Figure 5. 25 R and phi 
directions for strain 
estimates. Top. Jackson 
samples. Bottom. Bridger 
samples. IP: Intercepts 
Photo; IT: Intercepts Trace; 
SPO: Shape Preferred 
Orientation from 
Intercepts; DTNNM: 
Delaunay Triangulation 
Nearest Neighbour 
Method; MRL: Mean 
Radial Length. 
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Similarly, the Intercepts analyses report low strain estimates. The measurements on 

the raw images returned the lowest R values, ranging from 1.006 to 1.070. The 

Intercepts of the grain boundary maps ranged from 1.028 to 1.240, while the SPO 

returned slightly higher values ranging from 1.04 to 1.20. Φ  values for the 

intercepts analyses generally only vary by 20° although some samples show 

variation of up to 50° (Figure 5. 25). These results are comparable to strain data 

obtained from reduction spots ranging from 1.02-1.24 (Yonkee and Weil, 2010).  

Figure 5. 26 Strain estimates for Wy30 from the DTNNM and MRL analyses. A.  Fry plot of the 
nearest neighbour data. B. Polar plot of the nearest neighbour data, r (distance from origin) is 
plotted against orientation. The curve representing the best-fit ellipse is indicated by the 
dashed line.  C.   R/Φ plot for the DTNNM analysis, the black star represents the estimate and 
the grey dots represent bootstrap. The bootstrap intervals shown are  90%, 95% and 
99%confidence intervals. 
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In order to make it easier to compare the results the strain results have been split 

into two groups according to which traverse they were collected from, Jackson and 

Bridger. The strain estimates for the Jackson and Bridger traverses are shown in  

Figure 5. 26 to Figure 5. 34 and Figure 5. 44 to Figure 5. 49 respectively, while the 

results from the Intercepts and SPO analyses are shown in Figure 5. 35 to Figure 5. 

43 and Figure 5. 50 to Figure 5. 55, a summary of all these results is presented in 

Figure 5. 25.  

 

Figure 5. 27 Strain estimates for Wy28 from the DTNNM and MRL analyses. 
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The DTNNM and MRL results for Wy30 (Figure 5. 26) are clearly low strain estimates 

represented by the Fry plot (Figure 5. 26A) and polar plot (Figure 5. 26B). The Fry 

plot shows a largely even distribution of clast centres, additionally it has a very 

good fit for the best fit ellipse. The polar plot reinforces this low strain result with 

the best fit curve having a flat line pattern. The graphs of bootstrap data for 

DTNNM (Figure 5. 26C) and MRL (Figure 5. 26D) show a wide range of Φ 

orientations which is typical for low strain samples.  Similarly the results for Wy28 

(Figure 5. 27) are also low strain estimates, represented by a circular Fry plot and 

near flatline polar plot. Again the confidence intervals for the bootstrap data  

(Figure 5. 27C&D)show a wide range in Φ orientations. 

Figure 5. 28 Strain estimates for Wy27 from the DTNNM and MRL analyses. 
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 Wy27 shows a slight increase in strain estimate for both DTNNM and MRL (Figure 

5. 28). This can be seen in both the Fry plot (Figure 5. 28A) and the polar plot 

(Figure 5. 28B). The Fry plot has an elliptical distribution and the polar plot has a 

slight peak in the best fit curve between 5° and 15°. As is expected for samples with 

higher strains the confidence ellipses of the bootstrap data become significantly 

tighter (Figure 5. 28C&D). Additionally DTNNM reports a higher strain estimate than 

MRL.   

Wy26 (Figure 5. 29) has a similar moderate strain estimate as Wy27 and again 

DTNNM reports a much higher estimate than MRL (Figure 5. 29C&D). 

Figure 5. 29 Strain estimates for Wy26 from the DTNNM and MRL analyses. 
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The DTNNM and MRL results for Wy25 (Figure 5. 30) record lower strain estimates 

than Wy26 and Wy27, with DTNNM (Figure 5. 30C) recording very different results 

in both Φ orientation and R compared to MRL (Figure 5. 30D).  

Wy24 (Figure 5. 31) has very similar low strain estimates to Wy30 and Wy28, shown 

by the circular Fry plot (Figure 5. 31A) and the near flatline in the polar plot (Figure 

5. 31B). Both the DTNNM and MRL analyses report similar estimates for R, but 

report very different estimates for Φ orientations (Figure 5. 31C&D) again typical 

for low strain samples.  

  

Figure 5. 30 Strain estimates for Wy25 from the DTNNM and MRL analyses. 
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Wy21 (Figure 5. 32) shows similar results to Wy24 with a circular Fry plot (Figure 5. 

32A) and the near flatline in the polar plot (Figure 5. 32B). Interestingly both the 

DTNNM and MRL analyses report very similar estimates for R and Φ orientations 

(Figure 5. 32C&D) despite the low strain estimates.  

Wy 18 (Figure 5. 33) has a very similar low strain estimate to Wy21 with a near 

circular Fry plot (Figure 5. 33A) and the flatline in the polar plot (Figure 5. 33B). 

Again typically for low strain estimates the bootstrap data for the DTNNM and MRL 

analyses (Figure 5. 33C&D) have very wide confidence intervals.   

Figure 5. 31 Strain estimates for Wy24 from the DTNNM and MRL analyses. 



Chapter 5: Sevier Thrust Belt, Wyoming      170 
 

Wy15 (Figure 5. 34) has a similar low strain estimate as Wy18, but DTNNM analyses 

report a slightly higher estimate (Figure 5. 34A,B&C) than MRL (Figure 5. 34D). Both 

of the DTNNM and MRL analyses have very wide confidence intervals of the 

bootstrap data.  

The Intercepts and SPO results for the Jackson traverse are shown in Figure 5. 35 to 

Figure 5. 40. They typically report very low estimates (below R=1.15) of strain or 

rock fabric even for samples such as Wy27 and Wy26  where DTNNM analyses 

report higher strains.  

 

Figure 5. 32 Strain estimates for Wy21 from the DTNNM and MRL analyses. 



Chapter 5: Sevier Thrust Belt, Wyoming      171 
 

 

  

Figure 5. 33 Strain estimates for Wy18 from the DTNNM and MRL analyses. 

Figure 5. 34 Strain estimates for Wy18 from the DTNNM and MRL analyses. 
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Figure 5. 35 Intercepts and SPO software for Wy30, similar to the strain analyses R and Φ 

estimates are produced. A. Rose of traverses from Intercepts. B. Mean shape from SPO.   

 

 

 

 

Figure 5. 36 Intercepts and SPO software for Wy28. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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Figure 5. 37 Intercepts and SPO software for Wy27. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

 

 

 

Figure 5. 38 Intercepts and SPO software for Wy26. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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Figure 5. 39 Intercepts and SPO software for Wy25. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

 

 

 

Figure 5. 40 Intercepts and SPO software for Wy24. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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Figure 5. 41 Intercepts and SPO software for Wy21. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

 

 

 

Figure 5. 42 Intercepts and SPO software for Wy18. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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Figure 5. 43 Intercepts and SPO software for Wy15. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

The strain estimates for the Bridger traverse (Figure 5. 44-Figure 5. 49) are very 

similar to those of the Jackson traverse, in that they are quite low (R=1.05-1.1), with 

only one sample,Wy10, with an estimate of R=1.2. The Intercepts results (Figure 5. 

50 to Figure 5. 55) are also quite low for the Bridger traverse.   
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Figure 5. 44 Strain estimates for Wy2 from the DTNNM and MRL analyses. 

 
Figure 5. 45 Strain estimates for Wy3 from the DTNNM and MRL analyses.   
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Figure 5. 46 Strain estimates for Wy7 from the DTNNM and MRL analyses. 

 
Figure 5. 47 Strain estimates for Wy10 from the DTNNM and MRL analyses. 
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Figure 5. 48 Strain estimates for Wy11 from the DTNNM and MRL analyses. 

 
Figure 5. 49 Strain estimates for Wy12 from the DTNNM and MRL analyses. 
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Figure 5. 50 Intercepts and SPO software for Wy2. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

Figure 5. 51 Intercepts and SPO software for Wy3. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

Figure 5. 52 Intercepts and SPO software for Wy7. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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Figure 5. 53 Intercepts and SPO software for Wy10. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

Figure 5. 54 Intercepts and SPO software for Wy11. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   

 

Figure 5. 55 Intercepts and SPO software for Wy12. A. Rose of traverses from Intercepts. B. 
Mean shape from SPO.   
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5.5. Discussion 

The majority of samples yield bulk susceptibilities (<5X10-4) suggesting that the  

magnetic fabrics are controlled by the crystal lattice orientation of paramagnetic 

and minor ferromagnetic minerals (Tarling and Hrouda, 1993). AMS fabrics that are 

dominated by phyllosilicates or haematite are generally related to the preferred 

crystallographic orientation of those minerals (Borradaile and Jackson, 2010). There 

is no obvious correlation between high anisotropies and bulk susceptibilities, 

suggesting that the anisotropy is controlled by the bedding and cleavage fabrics 

rather than the magnetic contribution of constituent minerals, such as magnetite. 

Therefore, in this case, the AMS fabric reflects the crystalline anisotropy of the 

phyllosilicate and iron oxide grains. The moderate corrected degree of anisotropy 

values (Pj), below 1.1 (Figure 5. 10), are typical anisotropy values reported for 

sedimentary rocks from fold and thrust belts with low grade deformation and a 

weak spaced cleavage (Weil and Yonkee, 2010, Borradaile and Jackson, 2010). Clay 

spaced cleavage is typically developed in rocks with anisotropies from 1.0 to 1.1 

with slaty cleavage being developed in rocks with higher anisotropies (Pares, 2004).  

In a similar study, Weil & Yonkee (2009) used lineation intensity (Ln’): 

Ln’= Ln ( ), 

as a measure of deformation, but samples reported here that fit in the type 4 

classification show a strong foliation and a weak lineation despite being at a higher 

level of deformation. This variation in lineation intensity could also be linked to the 

magnetic mineralogy with >10% hematite required to produce a prolate fabric, but 
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only 0.01% titanomagnetite. That said, the magnetic lineation clearly varies with 

deformation intensity and is largely interpreted as a zone-axis of phyllosilicate and 

hematite grains parallel to the cleavage bedding intersection lineation.  

  

Figure 5. 56 Pitch of strain ellipse long axis orientations vs AMS ellipsoid principal 

axes for samples from the Jackson transect. The orientation of the estimated 

bedding parallel strain ellipse from each method is represented by the symbols 

indicated in the key. Magnetic fabric type is indicated by MF.  
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Figure 5. 57 Pitch of estimated strain ellipse long axis orientations vs AMS ellipsoid 

principal axes for samples from the Bridger transect. 
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Considering the complexities of correlating AMS results to strain, four magnetic 

fabric types that relate AMS to bedding and cleavage have been established 

(Section 3.1). This allows for a simple manner to determine the presence of a 

tectonic fabric and the  relative strength of the fabric compared to bedding: Type 1 

no detectable tectonic fabric and a slightly oblate ellipsoid parallel to bedding; Type 

2 weak tectonic lineation in the plane of bedding and parallel to tectonic trend, 

magnetic foliation is still dominated by bedding; Type 3 strong tectonic lineation 

with no clear magnetic foliation and the magnetic ellipsoid is triaxial; Type 4 

magnetic foliation is at a high angle to bedding and parallel to cleavage while 

magnetic lineation, if present, is plunging down the cleavage plane or represents 

the cleavage bedding intersection lineation. Taking these 4 fabric types into 

account, the samples across both transects show changes in magnetic fabric type 

from type 1 to type 4 that largely agree with the increase in cleavage intensity 

(Figure. 3; Mitra, 1994).  

Additionally, samples from the Bridger transect have lower strains than the Jackson 

transect.  This is also in agreement with the results from Yonkee and Weil (2010) 

who concluded that higher strains were localised at the tips of the salient due to 

interaction with basement cored uplifts. Despite these general regional 

correlations, there is no clear relationship between degree of anisotropy, Pj, and 

strain ratio, R, for any of the strain analysis methods (Figure 5.58). Similarly, there is 

no clear correlation between magnetic lineation intensity, Ln L’, and strain ratio, R. 

This is not surprising considering previous work by Borradaile et al (1981, 1997, 

2004, 2010 & 2012) stating that there is rarely a correlation between the 

magnitudes of the strain ellipse and the AMS ellipsoid. Yet, it is generally 
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considered that there can be some relationship between the principal axes of these 

ellipsoids (Borradaile, 2012). To investigate this relationship in the bedding parallel 

sections, the long axis of the strain ellipse, Φ, recorded from DTNNM, MRL and the 

Intercepts methods were plotted as rakes on the bedding plane surfaces on equal 

area stereographic projections so that they could be compared to the orientations 

of the principal axes of the AMS ellipsoid and magnetic lineations and foliations 

(Figure 5. 56 and Figure 5. 57).   

Out of the 15 samples that had interpretable AMS results and usable strain data, 4 

samples (Wy30, Wy24, Wy28 & Wy10) had bedding dominant AMS results (Type 1) 

and the remaining 11 appeared to have some tectonic influence on their 

petrofabric recorded by AMS. Wy26 and Wy7 display Type 3 AMS results in that 

there is a strong magnetic lineation at the intersection of bedding and cleavage 

(Figure 5.56 and 5.57) and both of these samples show a weak correlation between 

K1 orientations and the estimated long axis of the strain ellipse. The remaining 9 

samples display Type 4 geometries with a magnetic foliation (defined by K1 & K2 

girdles) perpendicular to bedding and parallel to cleavage. It was expected that the 

intersection of the magnetic foliation and the bedding plane would closely correlate 

with the estimated Φ of the bedding parallel strain ellipse. This relationship was 

only clearly evident for two samples (Wy21 & Wy25). This clearly shows that the 

long axis of the 2D strain ellipse estimated from the bedding plane samples does 

not always correlate with the trace of the K1 susceptibility axis in the bedding plane 

(Figure 5. 58). This raises the question of how reliable recorded Phi (Φ) orientations 

are at lower strains.  
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Both transects have a general increase in strain estimates from west to east, also 

agreeing with the cleavage distribution (Mitra, 1993) and strain results from Yonkee 

and Weil (2010).  

Differences between AMS and strain calculations can be explained by a number of 

factors. Strain analysis methods have a number of inherent inaccuracies associated 

with them, including significant discrepancies in orientations when producing thin 

sections. Furthermore, the calculations involved in the MRL and DTNNM methods 

are dependent on certain assumptions concerning passive deformation, primary 

clast distributions, and shapes being correct. Additionally, as concluded by Paterson 

and Yu (1994), undeformed sandstones can have significant primary fabrics that can 

affect small strain ratios (1.5 or less). Therefore, the development of a weak 

tectonic fabric may not completely overprint the primary fabric resulting in a 

blended fabric being detected.  

Finally, AMS measures the magnetic contribution of all of the minerals present in a 

sample and, as a result, AMS is dominated by the iron rich minerals such as 

phyllosilicates. Whereas quartz, despite being a major constituent of most of the 

samples, has little effect on the AMS results, due to its weak diamagnetic 

behaviour. On the other hand, strain estimates from DTNNM, MRL and Intercepts 

are largely based on quartz clasts.  

 

 

 



Chapter 5: Sevier Thrust Belt, Wyoming      189 
 

 

 

Figure 5. 59 Schematic model of AMS fabric type development during thrust sheet 
emplacement. Also shown is the estimated bedding parallel strain ellipse from strain 
analysis techniques, in regimes with poorly developed penetrative deformation these 
techniques typically report near circular (low-strain) ellipses. As penetrative deformation 
increases they report more elliptical results, these higher strain results are not always 
comparable to AMS results or structures observed in the field.  

Figure 5. 58 Deviation of estimated strain ellipse x axis from trace of K1 axis in the 

bedding plane vs axial ratio of estimated strain ellipse (R).  
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5.6. Conclusions  

The AMS fabrics in the sedimentary rocks of the Wyoming Salient are interpreted to 

be controlled by phyllosilicates and minor amounts of hematite, therefore variation 

in AMS is not related to mineralogy, but deformation. In these situations, AMS can 

effectively be used to measure the bulk petrofabric, and as a result shows good 

correlations with structures observed in the field, such as bedding and cleavage. 

Despite this there is a poor relationship between the AMS parameters and the 

estimated strain recorded in bedding parallel sections (Figure 5.59). Stereographic 

projections of principal axes of the AMS ellipsoid and the long axis of the estimated 

strain ellipse shows that the long axis does not always correlate with K1 even when 

K1 lies on the bedding plane. Comparison of strain analysis methods confirms that 

DTNNM typically produces higher strain estimates than methods such as MRL that 

are solely dependent on shape and orientation of the clasts. Despite these higher 

estimates, they are rarely comparable to AMS results or structures observed in the 

field in low strain regimes such as the Wyoming Salient.  
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6. Introduction 

This chapter presents a re-evaluation of the development of the Variscan Fold Belt 

in Southern Ireland and addresses the use of strain analysis techniques and AMS in 

determining the development and extent of Variscan penetrative tectonic fabrics in 

the eastern Upper Devonian Munster Basin.  

The Variscan Orogeny initiated in the Devonian and culminated during the Late 

Carboniferous peak and ended in the Permian. It involved the collision of 

Gondwana and Laurussia, leading to their amalgamation and formation of Pangaea 

(McCann et al., 2006; Woodcock and Strachan, 2009). The resulting orogenic belt is 

a broad curvilinear feature that extends across Northern Europe. The traditional 

front of this orogeny is largely regarded as a narrow zone in Britain and Ireland, 

where tight folding and thrust dominated tectonics switches to open folding 

(Cooper et al., 1986, 1984; Gill, 1962; Max and Lefort, 1984; Naylor, 1978a; 

Sanderson, 1984). This front is poorly defined in outcrop and its exact location is 

still debated (Cooper et al., 1984; Gardiner, 1978; Gill, 1962; Keeley, 1996; 

Vermeulen, 2000), as is the role of basement structures during deformation. 

Whether the orogeny acted in a thick skinned or thin skinned manner is just as 

debatable (Cooper et al., 1986, 1984; Ford et al., 1991; Max and Lefort, 1984; 

Sanderson, 1984).  

6.1. Regional Tectonics 

In order to fully understand the role of the basement and pre-existing structures in 

the development of the Munster Basin and its subsequent inversion due to the 
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Variscan Orogeny, earlier orogenic events must be considered. To this end a brief 

review of the Caledonian and Acadian orogenies is presented below.   

The Caledonian Orogeny refers to all Palaeozoic tectonic events associated with the 

opening and closing of the Iapetus Ocean that occurred on the Margins of 

Laurentia, Baltica and Avalonia (McCarthy, 2013; McKerrow et al., 2000; Woodcock 

and Strachan, 2012). The relevant structures for this study are those that formed 

during the collision of Laurentia and Avalonia which took place between 605-

420Ma (McKerrow et al., 2000). This 200Ma period involved a series of orogenic 

phases, but the most relevant are those of the final closure between 440Ma to 

400Ma (Figure 6. 1).  This orogeny essentially formed the Laurussian continent or 

Old Red Sandstone Continent by the end of the Silurian (Woodcock and Strachan, 

2012). In Britain and Ireland this major boundary between Laurentia and the micro-

continent Avalonia is represented by the Iapetus Suture. Although it is poorly 

exposed it has been traced across the Scottish-English border through the Solway 

Firth, north of the Isle of Man and then southwest across Ireland (Figure 6. 1; 

Woodcock and Strachan, 2012). The trace of the suture in Scotland is evidenced by 

Ordovician faunal contrasts between the Lake District and the northern belt of the 

Southern Uplands. Furthermore the Silurian rocks of the Southern Uplands have 

been interpreted to form part of an accretionary prism that were scraped onto the 

Laurentian margin as the oceanic crust of the Iapetus ocean was subducted 

northward beneath Laurentia (Stone et al., 1987; Woodcock and Strachan, 2012). 

This infers that the Iapetus Suture lies to their south (Woodcock and Strachan, 

2012; and references therein). Soper et al. (1992) interpreted deep seismic lines in 
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the Irish Sea to feature Avalonian crust dipping to the north and underlying 

Laurentian crust near the Solway Firth. This suture trace continues across Eastern 

Ireland with the lithologies of the Longford – Down massif being interpreted as a 

continuation of the Southern Uplands accretionary prism (Woodcock and Strachan, 

2012). Also xenoliths of schistose and mylonitic volcanic rocks found in intrusives in 

the massif are similar to the Borrowdale Volcanic Group of the Lake District, adding 

further evidence of the thrusting of the Laurentian crust over Avalonia (Woodcock 

and Strachan, 2012).  

Further to the southwest evidence of the suture becomes obscured by 

Carboniferous Limestones and is thought to follow one of two possible traces. 

Either along the Silvermines Fault running between the Slieve Aughty and Slieve 

Bernagh Ordovician and Silurian inliers and the Silurian sequences at Slieve Pheim 

and Slieve Bloom (Woodcock and Strachan, 2012),  or following a more southerly 

course and possibly merging with the North Kerry Lineament (Woodcock and 

Strachan, 2012). While determining which trace the Iapetus follows is outside of the 

scope of this research, regardless of which trace it follows the orientation of the 

resulting structures is largely ENE-WSW.  

The closure of the Iapetus in Ireland was largely associated with sinistral 

transpressive deformation between the end of the Silurian and Early Devonian up 

until approximately 410Ma (Dewey and Strachan, 2003; Soper et al., 1992). This 

deformation became dominantly orogen parallel with significant sinistral strike-slip 

movement on pre-existing major structures, such as the Great Glen Fault (Dewey 

and Strachan, 2003). As plate motion between Baltica and Laurentia switched from 
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sinistral convergence to sinistral divergence, this transpressive regime was replaced 

by a transtensive regime that maintained sinistral sense of shear at 410Ma (Dewey 

and Strachan, 2003; Woodcock and Strachan, 2012). This produced a series of 

transtensional Early Devonian basins. Earliest Devonian deposition in these basins 

in Ireland is particularly significant as it provides indirect evidence for controlling 

structures after the closure of the Iapetus. The Dingle Basin is host to the only 

major outcrops of sedimentary deposits of this age in Ireland (Woodcock and 

Strachan, 2012). The Dingle Basin initiated during convergence of Avalonia and 

Laurentia with the North Kerry Lineament (NKL) and Dingle Bay Lineament (DBL), 

both large scale ENE-WSW striking fault  zones, as the main basin bounding and 

ultimately controlling structures (Richmond and Williams, 2000).  The later 

sedimentary sequences in the Dingle Basin record the onset of transtension 

followed by Acadian deformation (Meere and Mulchrone, 2006; Richmond and 

Williams, 2000; Todd, 2000).   
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The period of transtension that linked the culmination of the Caledonian and the 

onset of Acadian compression lasted approximately between 420 and 400Ma 

(Figure 6. 2; McClay et al., 1986). Acadian deformation in Ireland has been 

constrained between Mid-Emsian-Mid-Frasnian (402-380) by a significant strain 

unconformity (Meere and Mulchrone, 2006). This deformation has been 

interpreted to have been caused by northward subduction of the Rheic Oceanic 

lithosphere under the southern Avalonian margin (Figure 6. 3 and Figure 6. 4; 

Woodcock et al., 2007). As a result of this crustal shortening, the deformation was 

concentrated in Lower Palaeozoic basins on the northwest Avalonian margin 

Figure 6. 1 Final closure of the Iapetus Ocean (A,B,C & E after Soper et al., 1992, and D after 
Woodcock and Strachan, 2012).  A. The Iapetus Ocean closes by northward movement of the 
Avalonian micro-continent towards Laurentia. B. Coeval docking of Avalonia and Baltica with 
Laurentia. C. Caledonian faults become zones of major sinistral strikeslip movement  causing 
the juxtaposing amalgamation of different British and Irish terranes. D. Cross section of the 
Iapetus Suture from line indicated in C. E. Major Caledonian structures in Britain and Ireland.   
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(Woodcock and Strachan, 2012). This was primarily driven by thick-skinned 

tectonics, as these basins had been considerably thinned and stretched by the 

previous period of transtension, making them quite weak. The Iapetus Suture itself 

and the now rigid accretionary prism to its north would have acted as obstacles to 

northward propagating deformation (Woodcock and Strachan, 2012).  

Upon cessation of Acadian compression, orogenic collapse drove a new phase of 

extension, largely to the south of the Acadian mountain belt possibly concentrated 

along the Avalonian-Rheic margin. This rifting was focused on pre-existing ENE-

WSW Acadian faults and ultimately formed the Munster Basin. Continued extension 

accommodated deposition of thick clastic sequences supplied from upland areas in 

the north and northeast. As the basin developed, marine conditions became 

prevalent in the Late Devonian. This basin was then deformed by the Variscan 

Orogeny.  
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Figure 6. 2 Palaeogeographic reconstructions from Early Ordovician to Late Carboniferous 
(from Schaetz, 2004), detailing the Caledonian Orogeny (A--C), the Acadian Orogeny (D) 
and the onset of the Variscan Orogeny (E).  
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Figure 6. 3 Acadian Structures in Britain and Ireland (From Woodcock and Strachan, 2012). A. 
Regional tectonics of Acadian deformation. B. Kinematics of Acadian deformation. C. Plate 
tectonic model of Acadian subduction. D. Location of Acadian deformation in Britain and Ireland.   
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Figure 6. 4 Comparison of Variscan and Acadian cleavage orientations in Britain and Ireland 
(redrawn from Woodcock and Strachan, 2012). NCSB: North Celtic Sea Basin; SCSB: South 
Celtic Sea Basin. 

The Variscan Orogeny resulted from the Devonian-Early Carboniferous accretion of 

Gondwana derived terranes/microplates onto the southern margin of Laurussia 

leading to the development of Pangaea (Timmerman, 2004; Woodcock and 

Strachan, 2012). The orogeny as a whole is considered to be a classical example of 

an obduction collision zone, with a prolonged period of deformation ranging over 

100Ma (Woodcock & Strachan, 2009). The involved terranes were mainly 

Neoproterozoic crust with passive margin sequences and accreted Ordovician-

Devonian island arcs (Timmerman, 2004). Once the Silurian-Early Devonian 

Caledonian orogeny concluded and formed Laurussia, its southern margin 

experienced a phase of rifting in the upper Devonian. This separated Avalonia from 

the Armorican microplate with a largely E-W trending back arc basin (the 

Rhenohercynian Ocean) (Timmerman, 2004). The opening of this basin is thought to 

have initiated by 397 +/-2Ma (Timmerman, 2004). It is generally thought that this 
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late Carboniferous extension could not have been purely gravity driven and was 

aided by far field extensional stress  (Henk, 1999; Timmerman, 2004). This may 

have been brought about by dextral translation between Laurussia and Gondwana 

causing extensional stress (Timmerman, 2004).  

Early Carboniferous subduction and closure of the Rhenohercynian Ocean, followed 

by accretion of a magmatic arc and docking of microcontinents, caused reactivation 

of older lineaments in the Variscan foreland (Timmerman, 2004). The resulting 

Variscan Belt is an east-west trending orogenic belt that stretches across most of 

Europe.  

The Variscan orogenic belt is broadly split into a series of zones across Europe, 

Northern Africa and North America (Figure 6.5; reviews of these zones are 

presented in Woodcock and Strachan, 2012; Dewey and Burke, 1973). The threefold 

division of Dewey and Burke (1973) provides a simplistic view of the Variscides 

across their full extent (Figure 6. 5). Their Zone 1 largely consists of a Lower 

Carboniferous shelf and Upper Carboniferous coal basins. Zone 2 comprises of a 

paratectonic zone of Mid-Devonian volcanic activity and northward progressing 

Upper Mississppian to Lower Pennsylvanian (Namurian) flysch deposits, while Zone 

3 is characterised by Precambrian Basement deformed during the Mid-

Pennsylvanian (Westphalian) Asturic phase of Variscan deformation, leading to the 

development of gneissic domes and migmatite belts. Both Zone 3 and southern 

parts of Zone 2 were intruded by Mid-Upper Pennsylvanian Granites. The boundary 

between Zone 2 and Zone 3 has been interpreted as a suture zone between 

Northern and Southern Europe partly evidenced by the Lizard Ophiolite of Cornwall 

(Laurent, 1972; Dewey and Burke, 1973). This continental collision began during the 
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Upper Mississippian and had largely ceased by the Upper Pennsylvanian (Dewey 

and Burke, 1973). The main phase of deformation and crustal thickening was during 

the Mid-Pennsylvanian (Westphalian) Asturic Phase.  

Ireland and the British Isles are largely associated with the northern 

Rhenohercynian Zone (Figure 6. 6; Woodcock & Strachan, 2012). This zone is 

composed of Late Paleozoic sedimentary and volcanic sequences, deposited during 

the extensive thinning of the southern continental margin of Eastern Avalonia, 

which exhibit multiple phases and styles of deformation, such as oblique thrust 

traces, lateral ramps, out-of- sequence thrusts and areas of backthrusting (Gill, 

1962; Cooper et al., 1984; Woodcock & Strachan, 2012). Additionally the 

orientation of these structures typically deviates from the classic Variscan E-W 

trend. This plethora of structures can be accounted for by the rift-fault architecture 

of the eastern Avalonian continental margin prior to collision; the transpressive 

nature of the collisional deformation; the multiple phases of Variscan folding and 

thrusting (Bretonian, Sudetian and Asturian); and the late orogenic extensional 

collapse (Woodcock & Strachan, 2009).  

The orientation of Variscan structures in Irelandtends towards a NE-SW trend and 

have been attributed to the reactivation of pre-existing Caledonian structures 

(Gardiner, 1978). Additionally the direction of Variscan compression was directed 

north-westward, which led to an oblique closure and subsequent inversion of the 

former extensional basin (Woodcock & Strachan, 2012; Price and Todd, 1984). This 

would have led to a dextral transpressive regime with orogen parallel shear focused 

along steeply dipping reactivated Caledonian structures (Sanderson, 1984). These 

Caledonian structures are either thought to extend to the basement (Sanderson, 
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1984) or level out to a sole thrust (Cooper et al., 1984). The faulted margins of some 

basins acted as buttresses to the northward propagating deformation front and 

would have caused areas of backthrusting (Woodcock & Strachan, 2012). This is 

perfectly exemplified by the margins of the Munster and South Munster Basins 

(Figure 6.6C; Meere, 1995).   

  

Figure 6. 5 Late Carboniferous paleogeographic reconstruction of the Variscides in Europe 
and North America. Modified after Dewey and Burke (1973). 
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Figure 6. 6  A. Overview of the Variscan Orogenic Belt, modified from Dewey and Burke (1973) . 
B. Structural zones and cratons in the European Variscides, redrawn from Woodcock and 
Strachan (2012).  C. Basic structural map and structural interpretation of the Munster Basin, 
modified from Meere (1995). CCF: Coomnacronia Fault; MRF: Muckross Fault; KMF: Killarney-
Mallow Fault; Kenmare-Cork Fault; DCF: Dunmanus- Castletown Fault; CM: Comeragh 
Moutains.  
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6.2. The futile search for the Variscan Front  

In relatively simple fold and thrust belts it is customary to define an orogenic front. 

This is typically represented by the last major thrust surface, although there may be 

minor thrusting or folding between this front and the foreland bulge; this is 

exhibited in the Rocky Mountains of the North American Cordillera. The definition 

of a front that represents the limit of an orogenic belt is essentially a cartographic 

convenience (Shackleton, 1984). Despite this point of view there has been a great 

deal of research dedicated to defining the ‘Variscan Front’, which has been 

described as a distinct structural line in Britain and Ireland (Coward, 1990; Naylor, 

1978a). Unfortunately this line is not well-defined across its entirety and not only is 

its exact location widely disputed, but also the structural styles that define it.  

The ‘Variscan Front' is shown as a diffuse transition from a more pervasive style of 

deformation associated with thrusting, within the belt, that dies out to one of 

markedly heterogeneous deformation in the foreland (Sanderson, 1984; Williams 

and Chapman, 1986). This diffuse transition area in Ireland is a narrow area where 

thrusting in thick Upper Palaeozoics in the south gives way to simple folding in thin 

Upper Palaeozoics to the north (Max and Lefort, 1984).  

It is not surprising that with these structural variations along strike on the ‘Variscan 

Front’ that attempts have also been to define the front by gravity and magnetic 

data than by any single geological criterion (Ford et al., 1992; Max and Lefort, 1984; 

Vermeulen, 2000). Unfortunately despite these attempts no satisfactory front or 

series of criteria to determine a front have as yet emerged. This may be partly 

explained by the varying role of the basement structures during Variscan 

deformation across the orogen. The front in Ireland has been attributed to a variety 
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of structures, the main contenders including the Dingle Bay Galtee Mountain Fault 

(DBGF), the South Ireland Lineament (SIL) and the Dingle-Dungarvan Line (DDL) 

(Figure 6. 7; Cooper and Collins, 1984; Gardiner and MacCarthy, 1981; Gill, 1962; 

Williams, 1989). 

The DBGF is the northern most of these three possible margins extending from 

Dingle Bay to the north side of the Galtee Mountains (Williams et al. 1989). The SIL 

is a Caledonian structure that has an E-W trend under ORS Upper Palaeozoic cover 

and may be related to the shear zone that defines the East Carlow Deformation 

Zone (ECDZ)(Gardiner and MacCarthy, 1981; Gardiner, 1978; McArdle et al., 1987). 

The DDL is largely considered as the main location of the Variscan ‘Front’ (Gill, 

1962; Cooper et al., 1984; Price & Todd, 1988). In the west the DDL is defined by 

the Killarney Mallow Fault Zone (KMFZ), a distinct frontal thrust (Cooper & Collins, 

1984, 1986; Meere, 1995a) and coincides with the cleavage front. The KMFZ was 

one of the major basin controlling faults that was subsequently exploited by 

Variscan compression (Meere, 1995a). Seismic studies by Landes et al, (2000 & 

2003) have shown that pervasive Variscan deformation has been mainly confined to 

the hangingwall of the KMFZ. They argue that this suggests a thin-skinned style of 

deformation, but it could lend support to the obstacle tectonics style of 

deformation suggested by Meere (1995a). 

North of the cleavage front, deformation of the Late Palaeozoic cover sequence was 

not as intense, characterised by the development of open cylindrical folds and the 

absence of a regionally developed tectonic fabric. The sharp transition in tectonic 

style at the western end of the orogen is considered by Meere (1992, 1995a) to be 

a consequence of an obstacle effect of a granitic horst basement block to the north. 
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This block impeded the development of a significant tectonic fabric north of the 

front, allowing only the late stage development of the large wavelength open folds 

without significant cleavage development. Whereas in the east the DDL has been 

defined as the southern limb of the Dungarvan Syncline, a tight 80 km long near-

horizontally plunging syncline, where a number of strike faults are seen in the 

Upper Palaeozoic strata (Max & Lefort, 1984). The location of this syncline marks a 

gradual transition from more intense folding and thrusting in the south to more 

upright, open folding and basement influence to the north of this line. The 

continuity and horizontal extent of this syncline is unique in southern Ireland since, 

to the south,  very tight triclinic folds are often the rule while to the north fold 

plunges in Upper Palaeozoic rocks are controlled by the position of major faults and 

broad domes cored by Lower Palaeozoic rocks (Max & Lefort, 1984).  

South of the DDL, observed deformation includes initial LPS and cleavage 

development, followed by buckling, thrusting and the reactivation of basin 

controlling faults (Cooper et al. 1984; Price & Todd 1988; Clayton 1989; Meere 

1995a,b). Cooper et al. (1984) recognised a transition zone to the north of the DDL 

that encapsulated elements of both deformation styles where folding is open and 

upright but a penetrative tectonic fabric persists. Murphy (1990) identified a thrust 

sequence north of the Knockmealdown Mountains that coincided with the earlier 

‘cleavage front’ of Cooper et al. (1984) and suggested that this may represent the 

inverted northern margin of the Munster Basin. Additionally there have been 

attempts to correlate the Variscan Front in Ireland with that in SE Britain (Max & 

Lefort, 1984; Shackleton, 1984), with Max and Lefort (1984) arguing that the only 
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feasible lineation of the three discussed above that could be traced across the Celtic 

Sea is the DDL. 

Gardiner (1978) argued that the traditional Variscan Front in Ireland was a localised 

feature, due to the nature of the Avalonian Basement, and that the actual front lay 

somewhere to the south. This line of thought was elaborated further by Gardiner 

and Sheridan (1981), whereby the traditional Variscan Front in Ireland (the DDL) 

was interpreted to reflect pre-existing structural controls in a localised basin. These 

pre-existing structures are a result of the interaction of Acadian and Caledonian 

structures. Gardiner and Sheridan (1981) further argued that no direct correlation 

could be made between the structures in Southern Ireland and those in Wales. This 

argument stems from the distinct Caledonian structural trend in the Irish Sea and 

North Celtic Sea (Figure 6. 8).   

Despite the problems and futility of defining such a boundary, it still holds regional 

significance as any such boundary would mark the northern limit of the Rheno-

Hercynian zone of the Variscides (Read & Watson 1975). Before any interpretation 

of the Variscan deformation can be made in southern Ireland, serious consideration 

must be given to the Munster Basin, its geometry, margins and fill, as well as the 

underlying structures that ultimately controlled these factors and its subsequent 

inversion. Unfortunately little or no direct evidence of basin-basement structures 

has been observed at outcrop, therefore the majority of observations need to be 

inferred from the basin fill structures.   
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Figure 6. 7 Proposed locations  for the Variscan “Front”. The location of the Munster Basin 
indicated in grey. NKL: North Kerry Lineament; DBGMF: Dingle Bay Galtee Mountain Fault; 
VCMF: Valentia Comeragh Mountain Fault; SIL: Southern Ireland Lineament; KMFZ: Kerry 
Mallow Fault Zone; AFFZ: Ardfinnan Fault Zone; CM: Comeragh Mountains; WBL: Wexford 
Bay Lineament. The VCMF is comprised of the Coomnacronia Fault (CCF) in the west, the 
KMFZ, the AFFZ and the Comeragh Mountain Fault in the east. 

CCF 

SIL 
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6.3. The Munster Basin 

6.3.1. Introduction  

The late Devonian and Carboniferous Munster Basin of Southern Ireland (Figure 6. 

9), has been traditionally viewed as an extensional half-graben, that became 

progressively inverted as the Variscan deformation front propagated northward 

(Naylor, 1978a). This basin formed in the backdrop of post Caledonian and Acadian 

deformation that was followed by Mid-Upper Devonian extension (Coward, 1990). 

This extension came about by heterogeneous stretching of the lithosphere 

Figure 6. 8 Variscan structures in Western Europe and the alternative front of Gardiner and 
Sheridan (1981). NCSB: North Celtic Sea Basin; SCSB: South Celtic Sea Basin. 
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(Coward, 1986; Price and Todd, 1988). The reactivation of earlier Caledonian and 

Acadian structures was driven by this extension, so that this Devonian basin is 

bound by faults with similar strikes and dips to Caledonian in an extensional 

template (Price & Todd, 1988; Coward, 1990). After Caledonian and Acadian 

deformation had ceased, erosion and orogenic collapse occurred resulting in active 

extension that persisted throughout the Upper Devonian (Powell, 1989). This 

resulted in a series of normal faults orientated along the North East- South West 

trend of previous Caledonian and Acadian shortening, with the main extension 

direction being to the south (Gardiner and MacCarthy, 1981; Gardiner and 

Sheridan, 1981; Gardiner, 1978; Price and Todd, 1988; Sanderson, 1984). This 

extension was dominated by movements on southerly downthrowing faults that 

formed an a syn-rift, sedimentary basin bound by NE-SW trending faults (Williams & 

Ford, 1990).  

The style of subsequent Variscan deformation was largely affected by the position 

and reactivation of these pre-existing faults as well as the geometry of the 

basement floor. During the Early Carboniferous, extension was transferred to 

previously unextended areas northwards to form the Shannon Trough and 

southwards to form the South Munster Basin (Price, 1988; Price & Todd, 1988). 

Despite this dominant N-S extension the Munster Basin did not develop as a simple 

pull-apart basin, which would have resulted in main depocentre being parallel to 

the basin axis. Price and Todd (1988) argued that the main depocentre migrated in 

a perpendicular orientation to the main basin axis. Similarly it has been argued that 

the Munster Basin exhibits features of both a simple pull-apart basin and a strike-

slip basin (Gardiner and MacCarthy, 1981; Gardiner and Sheridan, 1981; MacCarthy, 
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1990).It has been argued that it developed as a rift basin with sinistral strike-slip 

components accommodated by reactivation of NE-oriented Caledonian faults under 

N-S extensional stress (Sanderson, 1984; Price & Todd, 1988).   

6.3.2. Basement Structures & Basin Geometry  

It is well established in the literature that the geometry of the Munster Basin is 

controlled by the reactivation of long-lived basement structures of Caledonian or 

pre-Caledonian age hosted in Avalonian crust (Todd 1989; Williams et al. 1989; Ford 

et al., 1991, 1992). Despite this, the location and significance of these structures 

and their representative margins is still debatable. The northern margin is by far the 

most studied, in part due to its supposed link with the Variscan Front, whereas the 

southern and eastern margins have only received fleeting attention.  

Figure 6. 9 Major structures in Southern Ireland. The location of suspected buried granites 
in the basement of the Munster Basin are indicated by transparent red shading. NKL: North 
Kerry Lineament; DBGMF: Dingle Bay Galtee Mountain Fault: VCMF: Valentia Comeragh 
Mountain Fault; KMFZ: Kilarney Mallow Fault Zone; AFFZ: Ardfinnan Fault Zone; DDL: 
Dingle Dungarvan Line; ECDZ: East Carlow Deformation Zone; WBL: Wexford Basin 
Lineament; GM: Galtee Mountains; CM: Comeragh Mountains. 
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6.3.2.1. Northern margin of the Munster Basin 

The northern margin of the Munster Basin, is defined by rapid southward 

thickening of Upper Devonian sediments and a change in sedimentary facies along 

an NE-SW trending line from south of Dingle Bay following a line somewhere 

between the Galtee and Comeragh Mountains (Sanderson, 1984). This northern 

margin largely coincides with changes in the structural style of the Variscides 

(Cooper et al., 1984). In the northwest the northern margin is defined by the Dingle 

Bay Lineament (Price & Todd, 1984). This has been interpreted as a Caledonian 

structure that was reactivated as a late Devonian southerly dipping normal fault  

(Todd, 1988). The associated faults of this lineament were reactivated as NE-SW 

thrust faults during Variscan compression (Todd, 1988). From the eastern end of 

Dingle Bay the boundary fault zone becomes a NW-SE aligned dextral oblique slip 

fault (Muckross Fault; Price & Todd, 1988). This margin can be traced eastwards 

towards the Leinster Massif (Price & Todd, 1988; Graham, 1983). Whether it can be 

traced along the KMFZ (Price & Todd, 1988) or further north along the DBGF Zone 

(Williams et al., 1989) is debatable. The Muckross Fault has been interpreted as a 

transfer zone linking the Dingle Bay Lineament and KMFZ (Price & Todd, 1988).  

The Killarney-Mallow Fault generally trends E-W and is a simpler thrust fault with a 

reverse displacement of 5-7 km (Cooper et al., 1984). The Killarney-Mallow Fault is 

seen to be the main controlling fault at the northern margin of the Munster Basin 

(Meere, 1995a; Williams, 1989). Buried granite in its footwall may have contributed 

to the to its uplift (Meere, 1995a). Many of these structures can be identified in the 

Bouguer gravity anomaly map of Readman et al. (Figure 6.10; 1997). 



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      214 
 

 The confining structures at the eastern end of the basin are much less constrained 

and the KMFZ cannot clearly be traced eastward (Cooper et al. 1986; Ford 1987). 

The main faults in this area have been identified as the North Galtee Mountain 

Fault and major faults north of the Comeragh and Knockmealdown mountains 

(Gardiner and Sheridan, 1981; Murphy, 1990).  

Penney (1980) suggested that the 1500m basin fill isopach (Figure6.11) should be 

used as an approximation for the location of the marginal fault systems. This would 

lead to the margin extending from the DBL, north of the Galtee Mountains, 

Figure 6. 10 Bouguer gravity anomaly map from Readman et al. (1997). The most striking 
feature of this map is the correlation of low gravity with granitic massifs. Interestingly the 
low gravity anomaly associated Leinster Massif appears to continue under the sediments 
of the Munster Basin. 
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following the Galtee Mountain Fault. Similarly MacCarthy (1990) chose the 1000m 

isopach to represent the basin margin. Meere (unpublished) favoured the 2000m 

isopach contour, which traces a similar line and coincides with the Coomnacronia 

Fault (CCF)(Figure 6.7). The CCF strikes in an ENE-WSW orientation with southerly 

dip and can be traced in excess of 35km (Vermeulen et al, 2000). Furthermore the 

2000m isopach closely follows the KMFZ, runs south of the Galtee mountains, 

following the Ardfinnan thrust faults and Northern Knockmealdown-Comeragh 

Mountain Faults. Regardless of which isopach is followed they abruptly turn south 

at the northeast corner of the Comeragh Mountains. This turning point coincides 

with a series of N-S faults in the Crotty’s Rock area of the Comeraghs, which could 

be considered to be the eastern margin of the Munster Basin. The eastern margin is 

controlled by a high in the Avalonian basement (Gardiner, 1978). The Lower 

Palaeozoic Leinster Massif acted as a stable marginal block to the east which is 

confirmed by a condensed ORS sequence in this area.  

 

Figure 6. 11 Sediment thickness isopachs for the Munster Basin and surrounding areas 
(redrawn from MacCarthy 1990). 
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6.3.2.2. Southern Margin 

The Southern margin of the Munster Basin is not exposed onshore and hence is 

poorly constrained, but it is thought to be close to the modern southern coastline 

(Naylor, 1983).  Southward thinning from the main basin depocentre of Beara and 

Iveragh Peninsulas suggests that this margin was a relatively positive structure 

during deposition of the basin fill (Gardiner and MacCarthy, 1981; MacCarthy, 

1990). This is further supported by sediment supply from the south (Gardiner and 

MacCarthy, 1981). Furthermore the basement high has been inferred as a structural 

boundary separating the Southern Irish Domain and Southern Welsh Domain 

(Gardiner and Sheridan, 1981).  

6.3.2.3. Eastern Margin  

The eastern margin of the Munster Basin has been defined by the conglomerate 

sequences in the Comeragh Mountains (Penney, 1980; Williams, 2000). Due to the 

considerable amount of conglomerate material, these deposits have been 

interpreted as a fault controlled alluvial fan (Penney, 1980; Williams, 2000). 

Additionally the basement floor rises significantly towards the this margin 

(Gardiner, 1978; Penney, 1980).  

6.3.2.4. South Munster Basin  

The Carboniferous South Munster Basin is also controlled by a northern fault 

margin, the Cork-Kenmare Fault (KCF; Figure 6.6C). A distinctive change in the 

subsidence patterns in the Munster Basin occurred during the latest Devonian and 

early Carboniferous, coincident with a marine transgression (MacCarthy, 1990). 
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During the late Devonian the zone of fastest subsidence shifted south as 

extensional strain shifted to other previously unextended areas. This may have 

been due to the locking-up of the Devonian faults on rotation. It may also have 

been due to the extension of thicker crust with pre-existing lines of weakness 

defined by Caledonian faults in preference to areas hardened by Devonian 

extensional strain. This shift in extension was accompanied by increased sediment 

accumulation, forming the South Munster Basin (Price & Todd, 1988; MacCarthy, 

1990). The development of this basin closely coincides with a marine transgression 

during the Fammenian (MacCarthy, 1990). The main faults responsible for this 

extension were identified by Williams et al.  (1989) as the Cork-KenmareFault which 

they modelled this as an E-W trending fault. MacCarthy (1990) suggested that the 

Cork-Kenmare Fault and Dunmanus-Castletown Fault had significant transfer faults 

similar in orientation to the more northerly Muckross Fault (Figure 6.6C). 

Vermeulen et al. (2000) showed that that the Cork-Kenmare Fault has a ENE-WSW 

trend rather than the earlier E-W trend suggested by Williams et al. (1989). They 

also suggested that it merges into the KMFZ at depth and possibly represents a 

footwall shortcut (Vermeulen et al., 2000).  
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6.3.2.5. The Role of Basement Structures in Basin Development 

From the discussion on the bounding faults of the Munster Basin it is clear that the 

existing basement structures had a significant role during its development. To 

understand the geometry of the Munster Basin or the controls that acted upon it 

during deformation it is necessary to establish the nature of the structures that 

controlled its formation. As previously discussed the geometry of the Munster Basin 

was controlled by the reactivation of long-lived basement structures of Caledonian 

or pre-Caledonian age hosted in Avalonian crust (Gardiner, 1978; Todd, 1989; 

Williams et al., 1989; Ford et al., 1991, 1992). Badham (1982) suggested the 

probability of major strike-slip movement in the basement associated with the 

recognized thrusts and reverse faults. Max & Lefort (1984) further highlighted the 

stepped or disrupted nature of the basement at depth evidenced by linear edge 

affects and disruptions of both gravity and magnetic patterns. These observations 

imply complex basement structures.  

The Late Caledonian closure of the Iapetus by sinistral oblique convergence 

between Laurentia and Avalonia had completed by the Late Silurian (Dewey & 

Strachan, 2003; Soper & Woodcock, 2003). This was followed by sinistral 

transtension and formation of a series of small pull-apart basins (Meere & 

Mulchrone, 2006). This transtensive basin development ceased by the Early-Mid-

Devonian with the onset of Acadian compression. Acadian compression, which 

peaked in the Late Emsian, has been attributed to either the northward 

convergence of Armorica with eastern Avalonia or the subduction of the Rheic 

Ocean under Avalonia (Soper & Woodcock, 2003; Meere & Mulchrone, 2006). The 

northern Avalonian margin experienced dominantly sinistral transcurrent 
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movements during this event. Acadian transpression was followed by prolonged 

crustal extension that led to the development of the Munster and South Munster 

Basins (Meere & Mulchrone, 2006). This extension was driven by far field stresses 

related to the dextral transtensional rifting of the northern Avalonian margin from 

the Mid-Devonian to the Late Carboniferous (Soper et al. 1992; Vaughan & 

Johnston 1992; Holdsworth 1994; Johnston & Philips 1995; D'Lemos et al. 1997). 

This led to a transtensional regime for the development of the Munster Basin with 

dominantly N-S extension in the eastern basin margin and a minor component of 

dextral strike slip displacement along its western section (Sanderson, 1984). The 

Late Carboniferous saw the onset of Variscan compression, which reactivated 

normal faults formed during previous periods of extension and inverted the 

Munster and South Munster Basins (Cooper et al., 1984).   

6.3.2.6. Basement Floor-Fill Interface                                                                                                                                                          

Extensional basins are typically associated with low angle detachments (Cheadle et 

al., 1987; Seranne & Seguret, 1987; Enfield & Coward, 1987). It has been argued 

that the significant extension in the Munster Basin, evidenced by the thickness of 

the Devonian and Carboniferous sediments ( > 2 Sanderson, 1984), suggests a 

similar detachment is present at its base. If any such decollement is/was present, in 

order for it to satisfy the half-graben geometry, it must have dipped to the south, 

with a steep northward ramp at the northern margin (i.e. the DDL, DBGF or SIL 

discussed above)(Price & Todd, 1988). This detachment would have been within the 

basement structures of the Munster Basin, and linked to steeper faults which 

controlled Late Devonian sedimentation (Todd, 1988; Williams et al. 1989; Price & 

Todd, 1988). Ford et al. (1991) concluded through geophysical modelling that any 
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basal detachment must lie within the pre-Upper Devonian basement at mid-upper 

crustal levels (approx. 5-9km). The level of this detachment also rises towards the 

east (Ford et al., 1991).  

If this reactivated extensional framework model is correct then it becomes obvious 

that the basin floor and bounding structures have an inherent control on 

deformation. The ramp/flat geometry of the surface at the base of the detachment 

would have had a major influence on the deformation developing above the 

detachment. The position of the ramps would determine the location of both the 

extensional and contractional strains. Price & Todd (1988) argued that the coupled 

pop-ups and triangle zones which are common within  the Southern Variscides 

(Cooper et al., 1984) may be due to the inversion of local half-grabens rather than a 

consequence of deformation above a northward-propagating sole.  

In addition to the basin floor having ramp flat geometry, it was proposed (Gardiner, 

1978) and later confirmed by geophysical surveying (Ford et al., 1991; Vermeulen, 

2000) that there was a gradual decrease in depth to basin floor from west to east. 

Ford et al. (1991) combined gravity and seismic data to build two comprehensive 

cross section models across the Variscides. These models, while interpretative, shed 

some light on depth of deformation and the lithologies involved. One of the most 

significant conclusions from this was that the basement had to have been involved 

in Variscan deformation and that any detachment present has to lie within the 

basement at mid-upper crustal levels (Ford et al., 1991). The models of Ford et al. 

(1991) have important implications for the eastern part of the Munster Basin. They 

clearly show that the basin fill has reduced drastically in volume compared to the 

west, with ORS typically having a thickness of 2.5 km in agreement with earlier 
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sedimentary interpretations (Trayner 1985; Murphy 1988), indicating that the 

basement floor rises towards the east.  

The gravity field anomalies are characterised by a buried extension of the Leinster 

Granite but also by the interface between the basement lithology and the ORS 

(Ford et al., 1991). These anomalies have been interpreted to show significant rises 

in basement level. This interpretation if correct requires that the earlier cross 

section models are re-evaluated, especially the thin skinned models that suggested 

that the basement rocks were not involved in deformation. Additionally these 

models cast some doubt that the principal Variscan detachment surface lies at the 

ORS-basement interface.  

The presence of a granitic body in the Avalonian basement might have inhibited 

subsidence during the Upper Palaeozoic extensional phases due to its buoyant mass 

(Ford et al., 1991). This might account for the significant variation in depth of the 

detachment from west to east, as the Variscan decollement might have exploited 

its upper surface. Additionally this could explain the change in structural styles 

between the east and west parts of the basin. The Variscan detachment could have 

exploited the top surface of the inferred granite laccolith. Exploitation of the upper 

surface of a granite body may have led to a reduction in the deformation of the 

extensional framework of the basement, hence accounting for the more open style 

of folding and reduced thrust faults in the north east region of the Munster Basin.  

The basement rises significantly towards the northern end of the Knockmealdown 

Mountains (Ford et al., 1991). This structural rise was previously modelled as  a 

small thrust wedge that controlled the cleavage ‘front’ (Cooper et al., 1986). In a 

similar study Vermeulen et al. (2000) confirmed the role of some significant 
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structures in southern Ireland, particularly the role of the KMFZ and the DBGF. They 

concluded that the DBGF was a north dipping ENE-WSW fault and its main role was 

as the southern fault margin to the Dingle Basin. Similarly they concluded that the 

ENE-WSW KMFZ was the south dipping northern margin of the Munster Basin. 

These two structures were modelled as the boundaries of a basement ridge or 

horst, that separated the Dingle and Munster basins.  It was further proposed that 

this ridge was the remnant of a Caledonian shear zone. This shear zone is a likely 

conduit for the ascent of mafic mantle melts and possibly influenced the siting of 

buried Caledonian granites. Furthermore if the buried granites in Killarney and at 

the cornerstone of the Comeraghs are lateral extensions of the Leinster Granite, it 

would imply that they would have to share the same siting structure that allowed 

the ascent and emplacement of the Leinster Granite.  

An interesting finding of the Varnet study was that the floor of the Munster Basin 

south of the CKL is not particularly topographically varied (Vermeulen et al., 2000). 

Vermeulen et al. (2000) suggested that this indicates that underlying basement 

material might have escaped major deformation. Therefore it can be inferred that 

the large scale Variscan folds are not cored by folded Avalonian basement and that 

the basin fill must have detached from the basement and deformed independently 

(Vermeulen et al., 2000). This further confirms that two styles of deformation 

would have occurred: thin skinned deformation by folding and thrusting of the 

basin fill and reactivation of existing basement structures. If the CKL is a footwall 

shortcut as argued by Vermeulen et al. (2000), it is possible that as this became 

reactivated it became more involved in deformation north of the SMB. 



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      223 
 

These observations seem to be consistent with the thick-skinned model, it seems 

unlikely for Caledonian structures to be reactivated without becoming involved in 

the deformation. Following this model, structural variation along strike can 

probably be explained by variation in basement structures. 

6.3.2.7. Basin Fill 

The Munster Basin accumulated more than 7km of non-marine sediments during 

the Late to Middle Devonian (Late Givetian to Famennian)(MacCarthy, 1990). These 

Old Red Sandstones of the Munster Basin are dominantly fluviatile and aeolian in 

their nature (Penney, 1980; Graham 1983; Todd et al. 1988), and although fluviatile 

sedimentation is prone to extreme lateral variation, it is now well-established that 

syndepositional faulting and associated folding influenced facies, stratigraphic and 

dispersal patterns as the basin developed (Naylor et al. 1988; Price 1988; Todd 

1988; Williams et al. 1988). The most significant of these faults have been argued to 

be reactivated Caledonian structures (Todd, 1988). Although a rift structure has 

been established for the Munster Basin sediment, transport was mainly from the 

north (MacCarthy, 1990). This is suggestive of material being shed from an Acadian 

high (itself centred on reactivated Caledonian structures) to the north. Large south 

facing fault scarps, accommodate the simplest sedimentological interpretations 

(MacCarthy, 1990; Penney, 1980), with fault-induced variation in sedimentary 

facies of the basin fill is described by multiple authors (Todd, 1988; Williams et al., 

1988; MacCarthy, 1990). Generally coarser alluvial facies are concentrated around 

fault-bounded margins of the basin (Price and Todd, 1988) and the alignment of 

facies belts within the basin is typically parallel with the tectonic strike (Graham 

1983). In the east alluvial fan deposits have been identified in the Comeraghs and 
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Knockmealdowns (Penney, 1980; Murphy, 1990). Subsidence along this southerly 

facing fault scarp was greatest in the western Iveragh and Beara regions of the 

basin, and accommodated sediment packages in excess of 6km (Naylor and Jones 

1967). This succession is seen to thin rapidly northward across the Dingle Bay 

lineament. In contrast, the basin fill thickens gradually towards the southern 

depocentre and thins south of it (Gardiner and MacCarthy, 1981; Gardiner and 

Sheridan, 1981; MacCarthy, 1990; Price and Todd, 1988). Additionally fill thickness 

varies from east to west, with the east area having a thinner fill than the west (Ford 

et al., 1991; Gardiner, 1978; Price and Todd, 1988). This has been ascribed to 

development of localised half-grabens that led to a complex facies arrangement 

(Price and Todd, 1988). As discussed above Gardiner (1978) suggested that this was 

due to a decreasing depth to the basement towards the east. Ford et al. (1991) 

later confirmed this using geophysical modelling. Penny (1980) described 

considerable thinning of ORS formations between the Comeraghs and Slievenamon 

and postulated that this was due to the location of the northern margin of the 

Munster Basin. 

 A distinctive change in the subsidence patterns in the Munster Basin occurred 

during the latest Devonian and Early Carboniferous, coincident with a marine 

transgression. The zone of fastest subsidence shifted south, with an accompanied 

increased sediment accumulation, forming the South Munster Basin (Price & Todd, 

1988).   
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6.3.2.8. Role of Igneous and Volcanic Sequences  

Further interpretations on basin structure and evolution can be based on evidence 

from igneous activity in and out of the Munster Basin.  

The Leinster Granite emplaced into a shear zone (East Carlow) that was actively 

sinistrally transtensional due to NW-SE extension (Cooper and Bruck, 1983; 

O’Mahony, 2000; Grogan, 2004) by 405 +/- 2Ma (O’Connor et al., 1989). This 

granite has been traced under the Munster Basin fill (Ford et al., 1991; Masson and 

Jacob, 1998) and has a marked strike swing from NE-SW to a more E-W orientation 

as it approaches the Munster Basin. Interestingly this largely mirrors the trace of 

the Iapetus Suture.   

Igneous activity within the Munster Basin ranges from Mid-Devonian tholeiitic 

volcanism (384.5Ma), Late Devonian and Dinantian alkaline basaltic intrusions, to 

Upper Carboniferous, possibly Permian, alkaline sills (Pracht, 2000). The magmatism 

associated with the Coomnacronia Fault (CCF) and Valentia Harbour area has been 

interpreted to be contemporaneous with major basin fault activity during a period 

of crustal stretching (Pracht, 2000). This activity is considered to be largely 

synchronous with the Lough Guitane Igneous Complex (384.9Ma; Pracht, 2000) 

which is also associated with extensional fault activity. These faults would have 

acted as magma conduits facilitating ascent and controlling emplacement sites 

(Graham et al., 1995; Pracht, 2000). Similarly magmatism on the Beara Peninsula is 

focused along ENE-WSW orientated faults. The upper mantle xenoliths found in 

lamprophyres on Blackball head imply that these faults must be linked to deep-

seated basement structures (Pracht, 2000).   
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In the Comeragh Mountains of the East Munster Basin igneous activity is Upper 

Devonian in age and largely confined to the Crotty’s Rock area (Penney, 1978). 

Mugearite lava flows are interbedded with conglomerates north of Coumshingaun, 

striking in a similar orientation to the main east boundary fault of the Comeraghs 

(NNE-SSW; Penney, 1978). The evolution and southward progression of magmatic 

centres in the western part of the Munster Basin has been linked with basin 

development and progressive crustal thinning of the underlying basement (Pracht, 

2000).  

6.4. Variscan Deformation 

The general structure of the southern Irish Variscides is dominated by axially 

extensive major folds with steeply dipping axial planes (Cooper et al., 1984; Gill, 

1962; Naylor, 1978a). The axial traces of these folds have an arcuate trend from NE-

SW in the south-west to E-W in the east (Gardiner and Sheridan, 1981). Additionally 

the folds have a systematic variation in their direction of vergence, with southward 

vergence in the southern part of the basin, to northward vergence closer to the 

northern margins (Cooper et al., 1984). Dextral strike-slip faulting along NE-SW to E-

W trends suggests a component of E-W simple shear within the zone during the 

deformation (Sanderson 1984). Price and Todd (1988)  argued that the lack of 

significant lateral offset across major faults, illustrated that this dextral shearing 

was subordinate to the N-S compression. South of the DBL, a major segment of Gills 

(1962) Variscan thrust front, structures formed by Variscan deformation are 

dominantly upright folds, faults and thrusts that typically have ENE-WSW to E-W 

trends (Figure 6. 12; Gill, 1962; Cooper et al., 1984; Cooper et al., 1986). In this area 

cleavage is typically well developed and dominantly axially planar to fold axes 
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(Cooper et al., 1984). North of the thrust front deformation decreases rapidly, with 

thrusts becoming less frequent and penetrative deformation decreasing from 40% 

to 12% (Cooper et al., 1984; Cooper et al., 1986).   

Figure 6. 12 Thin Skinned deformation model of Cooper et al. (1986). 
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6.4.1. Variscan Structural Zonation 

The varying structures observed across the Variscides in Ireland were first organised 

in to three structural divisions by Gill (1962). Zone 1 was described as a Caledonian 

platform north of Galway Bay with gentle folding in Carboniferous lithologies. Zone 

2 was composed of mainly steeper folds, some minor thrusting and occasional 

basement influence south of this Caledonian platform and north of the Thrust Front 

of Zone 3 defined by the DDL. Zone 3 was described as an area of intensely folded, 

strongly cleaved Palaeozoic sediments with a Variscan trend. Cooper et al. ( Figure 

6. 13; 1986) rearranged this zonation and incorporated transition zones and sub-

zones. Cooper et al.’s (1986) Zone 1 was described as the strongly folded and 

cleaved Zone 3 of Gill (1962), and included a transition zone whereby there was a 

gradual decrease in deformation between Zone 1 and Zone 2. The DDL or thrust 

front was maintained as the northern margin of this zone, while the cleavage front 

was identified within the transition zone. Zone 2 similar to Gill’s original division 

shows increasing involvement with basement structures and minor folding, while 

Zone 3 exhibits more dominant involvement of Caledonian structures and rare 

folding (Cooper et al., 1986).  

Figure 6. 13 Variscan structural zones modified from Cooper et al. (1984). TZ: Transition 
Zone. Palaeozoic inliers and Leinster Massif indicated in orange shades. 
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6.4.2. Thin-Skinned vs Thick-Skinned 

It is now well established that this Variscan shortening was accommodated by 

reactivation of the pre-existing high-angle extensional fault system (Meere, 1995a; 

Powell, 1989; Price and Todd, 1988). This indicates that Variscan deformation was 

influenced and potentially controlled by pre-existing Caledonian and Early Devonian 

extensional structures. The contractional deformation of the Variscan orogeny then 

overprinted this extensional regime (Price and Todd, 1988). Whether this 

deformation represents the thin skinned model of Cooper et al. (1984 & 1986) and 

Ford (1985, 1987) or the thick skinned transpression model of Sanderson (1984) 

and Max and Lefort (1984) has not been fully resolved. These two models are the 

most well known and will be discussed here with the alternative models of Price 

and Todd (1988) and Gardiner and Sheridan (1981). Although the terms Thick- 

Skinned and Thin-Skinned can be interpreted in different ways, the essential 

difference is the depth that the near surface structures are considered to extend  

(Sanderson, 1984).  

6.4.2.1. Thin-Skinned Orogenic Models 

The idea of a Variscan Thrust Front in southern Ireland was first suggested by Gill 

(1962) and later supported by Cooper et al. (1984, 1986).This thrust front was 

argued to be the DDL (discussed above). Naylor and Sevastupolo (1979) first 

suggested that deformation intensity decreased gradually across the DDL. Cooper 

et al. (1984, 1986) interpreted the Irish Variscides to be a thin-skinned model of 

linked faults, formed by deformation involving a northward-propagating sole-thrust 

over a largely passive basement. Cooper et al. (1986) suggested that this sole-thrust 

died out somewhere south of Tuam. This sole-thrust would have originated to the 
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south of Ireland, passing beneath the Celtic Sea (BIRPS & ECORS 1986) presumably 

back in the hinterland of the Varsican orogen in Europe (Shackleton, 1984). 

The thin skinned model has been supported and further developed by numerous 

authors (Cooper and Trayner, 1986; Ford, 1987). It is quite simple in that it suggests 

a deforming sediment pile being carried on a northward propagating thrust slab, 

that exploited structural weaknesses in the basement such as granite - host rock 

horizons (Cooper et al., 1986). Although the result of extensive field work, this 

model is not without problems. The cross sections of Cooper et al. (1984, 1986) 

show no variation in stratigraphic thickness in the ORS from north to south.  If the 

considerable thinning of the ORS sequences from south to north were taken into 

account, this would require significant rises in the basement to accommodate their 

model. Additionally the concept of a single sole thrust also seems unlikely 

considering the extent of reactivated normal faults involved in the deformation. 

Furthermore thin skinned deformation refers to shortening that only involves the 

sedimentary cover, the presence of reactivated Caledonian and Acadian structures 

preclude this thin skinned model.  

6.4.2.2. Thick-Skinned Orogenic Models 

In contrast to the northward propagating thrust model of Cooper et al. (1986), Max 

and Lefort (1984) argued for Variscan deformation focused along a dextral shear 

zone accommodated by reactivated Caledonian structures. Sanderson (1984) 

proposed a thick-skinned transpressive model for Variscan deformation with 

components of both N-S compression and dextral shearing. This model essentially 

featured active basement blocks with their boundaries propagating upwards into 

the major thrusts within the cover sequences (Figure 6. 14). This thick-skinned 
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model would lead to crustal thickening within the basin, as well as strain 

discontinuities and zones of complex strain at its margins (Sanderson, 1984).  

Transpressive deformation requires oblique or strike-slip boundary conditions, 

supporting the dextral strike-slip plate tectonic Variscan model (Badham & Halls, 

1975; Badham, 1982). Palaeomagnetic reconstructions of the oblique collision 

between the European and African plates suggest that dextral shear was a major 

component of Variscan deformation (Smith, Briden & Drewry, 1973; Scotese et al., 

1979). In light of the sinistral strike-slip models for development of the Munster 

Basin discussed above, it is unlikely that these structures would not reactivate 

during basin inversion in the opposite sense as they did during basin opening. This 

coupled with the reactivated Caledonian structures makes it more likely that 

Variscan deformation in Southern Ireland had a significant basement involvement. 

Figure 6. 14 Thin skinned vs thick skinned models, redrawn from Sanderson (1984). A. Thin 
skinned model of Cooper  et  al. (1984). B. Thick skinned model of Sanderson  (1984).   
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6.4.3. Inversion of an Extensional Framework 

Neither the thin-skinned or thick-skinned model of Variscan deformation discussed 

above completely incorporated the original extensional framework or pre-existing 

basin structures. Despite this both Cooper et al. (1984, 1986) and Sanderson (1984) 

acknowledge that the major normal faults, which influenced sedimentation during 

the Late Palaeozoic, were reactivated at the end of the Carboniferous during the 

Variscan deformation as thrusts. Price and Todd (1988) highlighted the role the 

extensional structures had on influencing deformation. In their model Variscan 

shortening developed initially by the contraction of the extensional structures that 

formed during the late Palaeozoic (Price & Todd, 1988). Their model can be 

summarised as follows:  

1) The development of the Munster Basin initiated in the Late Devonian by 

extension concentrated on pre-existing ENE-WSW Caledonian faults such as the 

DBL.  

2) The DBL accommodated rapid extension, such that crustal extension was greater 

than sub-crustal lithospheric extension; leading  to a cold rift extension.  

3) North and south of the Munster basin some uplift occurred as a result of sub-

crustal extension exceeding crustal stretching.  

4) Extensional normal faults became locked by the Dinantian and extension shifted 

north (Shannon Trough) and south (South Munster Basin) of the main Munster 

basin.  

5) End-Carboniferous inversion of the Munster Basin with reactivation of 

extensional faults as thrusts, e.g. DBL. 
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Variscan deformation in southern Ireland was as a result centred on the inversion of 

this original extensional template (Price & Todd, 1988). Hence the geometry of the 

basin structure exerted a fundamental influence on location, intensity and style of 

contractional deformation (Price & Todd, 1988). The extensional framework was 

itself to some extent derived by reactivation of Caledonian structures. Any faults 

that were suitably oriented with respect to the developing compressional stress 

field were reactivated (Corfield et al., 1991). This correlation between extensional 

structures and contractional thrusts is interpreted to indicate that the extensional 

structural framework of the basin, including a basal low-angle detachment and an 

array of superjacent normal faults, was reused during transpressive inversion of the 

basin to produce the fold-thrust belt (Price and Todd, 1988). The basin fill was then 

deformed above these reactivated basement structures, by layer parallel 

shortening, buckling and thrusting as described in Cooper et al. (1984, 1986). This 

essentially suggests that the sedimentary fill of this basin became delaminated from 

the basement structures, hence accommodating thin-skinned deformation in the 

cover sequences and thick-skinned reactivation of pre-Variscan structures. 

Additionally Price and Todd (1988) argue that the basal detachment was a localized 

inherited feature and had no discrete link to the main European orogen, nor to any 

of the other basins in Ireland. This supports the earlier argument of Gardiner (1978) 

that the Variscan Front in Ireland was a localised feature controlled by the pre-

existing structural regime.  

The reactivated extensional basin model involves elements of both simple and pure 

shear, with pure shear from north south compression being most dominant. This 

transpressive element and deformation was concentrated between the extensional 
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structures with the transpression boundaries coinciding with the original basin 

margins fits well with the required kinematics for Sanderson’s (1984) thick skinned 

transpressive model, but probably on a thinner scale. This also satisfies Max and 

Lefort’s (1984) dextral shear model to a minor extent.  

6.4.4. Basin Inversion Mechanics 

Basin inversion, as mentioned above, involves reactivation of pre-existing 

structures, with reactivation defined as the accommodation of geologically 

separable displacement events along pre-existing structures (Holdsworth et al., 

1997). As a result of this reactivation, the uplift of the basin fill is largely dependent 

on the re-use of the basin bounding faults (Corfield et al., 1996). Lowell (1995) 

concluded that transpressive stresses are the most effective cause of inversion, 

when steep pre-existing faults are reactivated a strike-slip component prevents 

these faults from locking up due to direct compression. Inversion structures 

dominated by younger low-angle thrusts rather than reactivated normal faults, 

imply a dominant element of pure shear compression (Lowell, 1995). Basin 

inversion and reactivation of an extensional framework typically involves 

decoupling of the basin fill from the basin floor, as indicated for the Munster Basin 

by Vermeulen (1998). Decoupling of the fill from the basin floor allows the fill to 

shorten and deform against buttresses such as the normal fault footwalls Figure 6. 

15; Butler, 1989; Meere, 1995a). Furthermore basin inversion with fill-floor 

detachment accommodates compression of the basin basement back to a similar 

pre-extensional setting without need for major deformation of that lithology 

(Figure 6. 15; Cooper et al., 1989).   
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Figure 6. 15 Stages of basin inversion from 
Cooper et al. (1989).  

Figure 6. 16 Buttressing 
structures in a 
reactivation setting 
(from Butler, 1989). A. 
Pre-deformation rift 
structures. B. Post-
deformation structures, 
with decollement shown 
between the basement 
and cover material. In 
this model the zone of 
highest deformation is 
shown nearest to the 
buttressing surface, 
additionally there is no 
reactivation of the 
original normal fault.  
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6.4.5. Deep Seismic Surveys 

A series of seismic  surveys have been carried out across the Munster Basin, to the 

west and to the south of the basin. Of particular importance are the Varnet lines 

(Landes et al., 2000; Vermeulen et al., 1998, 2000). The Varnet lines run 

approximately north-south from the Shannon estuary to the south coast (Figure 6. 

17). Both lines cross cut the general structural trend of the Variscan and Caledonian 

structures in Southern Ireland (Vermeulen, 1998). Two distinct crustal boundaries 

have been defined on the Varnet lines at 11-14km and 22km depth (Vermeulen et 

al., 1998). The upper boundary separates brittle structures in the upper crust from 

middle crust, additionally these brittle structures merge into a decollement surface 

at this boundary (Vermeulen et al., 1998). The lower boundary represents the 

brittle –ductile transition and most major structures stop at this boundary. The 

KMFZ is identified as a south facing structure and marks the syn-rift boundary of the 

basin. Vermeulen et al. (1998) inferred that the basement horst of KMFZ and 

DBGML is controlled by a continuation of the buoyant Leinster Granite Massif. 

Interestingly the floor of the Munster Basin is interpreted as an undeformed, 

relatively flat surface from the Varnet lines (Vermeulen et al., 1998).  

 In addition to the Varnet lines the WIRE lines were used by Klemperer et al. (1991) 

to establish the presence of Caledonian structures at depth. Their tectonic 

interpretation of the WIRE lines highlights the steep nature of the Variscan reverse 

faults (Figure 6. 18).  
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Figure 6. 17 Varnet profiles from Vermeulen et al. (1998). A. Map of the Varnet lines. B. 
Varnet line A. C. Varnet line B.  
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6.4.6. Strike Swing Component 

It is clear from any geological map of the Munster Basin that the Irish Variscides 

feature a significant strike swing element. Similarly the South Munster Basin, is 

controlled by a northern fault margin (the CKFS), that exhibits a regional strike 

swing consisting of ENE-WSW elements in the west and more E-W elements in the 

east (Price and Todd, 1988). Occasionally at the eastern margin there are some 

cases of E-W axial trace trend tending towards a more WNW-ESE trend (Murphy, 

1990). This is probably caused by lateral fold/strain retardation along the eastern 

margin of the Munster Basin.  

This regional strike bend in both the Munster Basin and South Munster Basin is 

more than likely inherited from the Avalonian basement structures (Price and Todd, 

Figure 6. 18 Tectonic interpretation from the West of Ireland based on WIRE profiles (from 
Klemperer et al., 1991). 
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1988; Ford et al., 1992). It is also evident that this structural grain is markedly 

influenced by the geometry of the northern basin margin with sharp lateral 

truncations of fold axial traces where they come in contact with basin-ward 

promontories along this margin (Meere, 1995a). Variscan compression was largely 

orthogonal to the northern basement ridge of Vermeulen et al (2000), and 

resultingly layer parallel shortening and cleavage development were constrained by 

this regional strain barrier, similar to the model of Meere (1995a).  

Few of the earlier models for basin inversion have entirely accounted for the strike 

swing of the bounding structures (Cooper et al. 1984, Sanderson 1984, Price & Todd 

1988, Meere 1995). Murphy (1990) attributed the arcuate trend of the Irish 

Variscides to a central surge zone within the orogen. The dominance of sinistral 

shear on Variscan cross faults required for this model is yet to be found (Meere 

1992). Bresser & Walter (1999) suggested that the 10-15 degree clockwise offset of 

major Variscan faults to regional folds could be due to the strike slip component 

and to the transpressive tectonic setting during fold development. 

 

6.4.7. Previous Strain Studies  

Through strain studies and balanced sections across the western region of the 

Munster Basin, Meere (1995a) concluded that the basement had a significant role 

in Variscan deformation as well as producing a significantly thicker orogenic model, 

compared to the earlier models (Cooper et al., 1984 & 1986; Ford, 1985 & 1987). 

Similarly Ford et al. (1991) interpreted gravity data to suggest that pre-Upper 

Devonian basement had to be involved during the Variscan deformation. It has 

been shown that the KMFZ separates two distinct structural regimes, a high strain 
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zone to the south (approx. 40% bulk shortening) and a low strain zone (approx. 12% 

bulk shortening) to the north (Meere, 1995a). This finite strain pattern is observed 

across the orogen and has been interpreted to be the result of the combined effect 

of a fault bound, possibly granitic, basement obstacle in the Killarney area and an 

increased Upper Devonian sedimentary pile thickness at the western end of the 

Munster Basin (Meere, 1995a). During Variscan compression cleavage development 

was essentially a coaxial event that was locally orthogonal to the northern 

basement block, defined by the strike of the northern margin of the Munster Basin. 

As a result LPS and cleavage development were constrained by this regional strain 

barrier. Therefore a possible litmus test for the location of a confining basin margin 

that experienced deformation largely perpendicular to this margin will be the 

distribution of penetrative strain. The northern margin regardless of its location has 

largely been agreed to be a half graben structure of Caledonide/Acadian basement. 

This rigid structure would act as a significant buttress to strain, hence increasing 

strain at the fill/margin contact, as well as creating a marked decrease in strain 

beyond this margin. This model of obstacle style tectonics has been discussed by 

Meere (1995a). It is argued here that the cleavage front or high to low strain 

transition should be used to define the front.  

The gradual transition zones of Variscan deformation of Cooper et al. (1984 and 

1986) could imply areas where these obstacles are less well defined. Despite 

defining the northern limb of the Dungarvan syncline (eastern counterpart of the 

DDL) as the “Variscan Front” (Figure 6.7; Gill 1962; Cooper et al. 1984 and 1986; 

Murphy, 1990), the cleavage front was established at the northern tip of the 

Knockmealdown and Comeragh mountains (Cooper et al., 1984 and 1986; Trayner, 
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1985). The DDL marked a gradual transition from intense folding and thrusting in 

the south to more upright, open folding and basement influence to the north of this 

line (Cooper et al., 1986). While it is hard to argue with this northward decrease in 

deformation, including penetrative deformation from Ardmore to Dungarvan, there 

is a marked increase in penetrative deformation and fault activity in the northern 

region of the Comeragh Mountains, followed by a marked decrease in all styles of 

deformation directly north of the Comeraghs. Furthermore Wardlaw (1961 and 

1962) described moderately high grade deformation of limestones associated with 

high angle reverse faulting in the Ardfinnan syncline, along strike from the northern 

end of the Comeraghs. Similarly Murphy (1990) discussed a 'thrust sequence' north 

of the Knockmealdown Mountains, which he suggested to be the inverted northern 

margin of the Munster Basin, again along strike from the northern end of the 

Comeraghs. If the cleavage front is taken as the principal criterion for defining of 

the Variscan front, then it would coincide conveniently with the northern margin of 

the Munster Basin.  

 

6.5. Revised Model 

Considering the models and geophysical studies discussed above, a revised model 

for the northern margin of the Munster Basin and the Variscan Front is required. As 

earlier proposed by Gardiner (1978) these two structures are inherently linked, 

therefore any proposed model needs to satisfy sedimentological distributions as 

well as the strain distribution. With this in mind the Valentia Comeragh Mountain 

Fault (VCMF)(Meere pers comm) satisfies both of these criteria reasonably well. The 

VCMF is proposed to follow the ENE-WSW Coomnacronia Fault (CCF) in the western 
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end of the basin where, it merges with the Muckross Fault, a transfer fault between 

the CCF and the KMFZ, before following the Killarney Mallow Fault Zone to the 

Ardfinnan Fault Zone (AFFZ) (Figure 6.7 and 6.9). At this point it is difficult to exactly 

determine the orientation or location of its continuation. The presence of a well-

defined cleavage in the Comeragh Mountains suggests that the VCFS continues on a 

ENE-WSW trend, staying north of the Comeragh Mountains and possibly merging 

with a Caledonian structure in the East Carlow Deformation Zone.  

This proposed line for the VCFS closely follows the 2000m isopach of MacCarthy 

(1990) with the exception of a marked offset along the KMFZ, possibly due to the 

higher level of deformation seen at this structure. Additionally it coincides with the 

northern edge of conglomerate lithologies at the northern end of the 

Knockmealdown and Comeragh Mountains that have both been interpreted as 

alluvial fans, with paleoflow directions to the south (Capewell, 1957; Penney, 1980; 

Murphy, 1990). Furthermore there is a relatively thin sedimentary cover sequence 

north of the VCMF and a distinct thickening of this cover sequence to the south of 

this structure. This line of evidence alone suggests that the VCMF had a significant 

role in the development of the Munster Basin and was possibly the main controlling 

fault at the northern margin.  

As described above the VCMF is thought to merge eastward with the ECDZ, but the 

continuation of that of that horst is debatable. In a study of magnetic data across 

the ECDZ, McArdle et al. (1987) argued that the ECDZ extended westwards 

following a line of significant thrusting at Ardfinnan and Mitchelstown (WardLaw, 

1961) and that it merged with the South Irish Lineament (SIL) of Gardiner and 

McCarthy (1981). The SIL was described to largely follow the DBL and KMFZ 
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towards the Mitchelstown area where it develops a sharp bend and largely parallels 

the Iapetus Suture, running north of the Leinster Massif (Gardiner and MacCarthy, 

1981).  This SIL could be the same structure as VCMF and represent the southern 

boundary of the Caledonian shear zone ridge of Vermeulen et al. (2000). 

Furthermore if the buried granites in Killarney and at the cornerstone of the 

Comeraghs are lateral extensions of the Leinster Granite, it would imply that they 

would have to share the same siting structure that allowed the ascent and 

emplacement of the Leinster Granite.  

If the VCMF merges with the ECDZ, an eastern boundary for the Munster Basin 

needs to be defined. If, as discussed above the 2000m isopach is chosen to define 

the basin margin, then this would coincide with the eastern extent of 

conglomerates in the Comeragh Mountains as well as a series of NNE-SSW faults in 

the Crottys Rock area (Figure 6.20) that define a basin-ward thickening of basin fill 

to the west. A basement high of the ECDZ is probably present at the eastern 

margin. Gravity data suggests that the Leinster granite may extend as far south as 

Portlaw (Murphy, 1974). Penney (1980) described beryl in quartz veins on 

Croaghaun Hill (directly east of the Crottys Rock Fault) that may be caused by late 

stage hydrothermal activity associated with a buried granite. Both suggest the 

presence of a raised basement in that area. Additionally to the south of the Crottys 

Rock area and along strike of the faults exposed there, the Muggorts Bay Inlier is 

exposed, possibly representing a basement high, immediately east of the basin 

margin. Further to the south along strike lies the Ballyquin Shear Zone, an area of 

intense deformation and distinct dextral shearing. This shear zone could represent 

an area of complex strain discussed in Sanderson’s thick-skinned model (1984).  
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The gradual decrease in depth to basement floor towards the north east of the 

basin could account for the marked differences in deformation style. The most 

intense folding and thrusting is delineated by the Dingle Dungarvan Line. North of 

this structure detachment of the sedimentary cover from the basement is not as 

intense, hence the more open style of folding. LPS continues further north of this 

structure and is effectively terminated at the VCFS.  

6.6. Eastern Munster Basin 

In order to attempt resolution of the series of unanswered problems above AMS 

and strain analyses have been carried out in the Comeragh Mountain and Ardmore 

areas of the eastern Munster Basin. The lithologies of the eastern Munster Basin 

are characterised by coarse conglomeratic alluvial fan sediments deposited in the 

Devonian that give way to Carboniferous fluvio-tidal sediments (Figure 6. 19 and 

Figure 6. 20).  

Figure 6. 19 Schematic for sedimentation patterns in the Munster Basin (from 
Keeley, 1996).  
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Figure 6. 20 Main lithologies and structures of the eastern Munster Basin. Major structures 

are reproduced from Sleeman and McConnell (1995) while faults from the Comeragh 

Mountain area are reproduced from Capewell (1957) and Penney (1980). 

 

6.6.1. Lithologies of the East Munster Basin 

6.6.1.1. Old Red Sandstone Successions  

The Devonian Old Red Sandstone of East Munster is divided into four successions 

(Figure 6. 21): the Galtee Mountain Succession, the Slievenamon-Portlaw 

Succession, the Comeragh Mountain Succession and the East Cork Succession 

(Sleeman and McConnell, 1995). The Galtee Mountain Succession is interpreted to 
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be a proximal alluvial fan sequence derived from the north (Sleeman and 

McConnell, 1995). This succession lies outside of the study area and will not be 

discussed in detail. The Slievenamon-Portlaw Succession is exposed north of the 

Comeragh Mountain range on the flanks of Slievenamon and the Portlaw area and 

it has been interpreted as an extra-basinal sequence. The Comeragh Mountain 

Succession has been interpreted to be an alluvial fan sequence, with basal 

conglomerate clasts derived from a Lower Palaeozoic source to the east. The East 

Cork Succession represents central basin deposits and is characterised by finer 

grained lithologies (Sleeman and McConnell, 1995).   

 

6.6.1.2. The Slievenamon-Portlaw Succession 

The Slievenamon-Portlaw Succession is limited to the north and east of the 

Comeragh Mountain range. This extra-basinal sequence has three main formations: 

the Coumshingaun Formation, the Carrigmaclea Formation and the Kiltorcan  

Formation. The Coumshingaun Formation in this succession is only present as a very 

thin bed of conglomerates overlying the Lower Palaeozoic (Penney, 1980; Sleeman 

and McConnell, 1995). The Carrigmaclea Formation is composed of quartz 

conglomerates and coarse to pebbly sandstones  (Sleeman and McConnell, 1995). 

This formation was deposited in a braided stream environment (Sleeman and 

McConnell, 1995). Similar to the Coumshingaun Formation in this area it is quite 

thin and poorly exposed (Sleeman and McConnell, 1995). The Kiltorcan  Formation 

is characterised by a thick sequence (525m) of white to yellow sandstones 

Slievenamon-Portlaw Succession (Penney, 1978; Murphy, 1985; Sleeman and 

McConnell, 1995).  
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6.6.1.3. The Comeragh Mountain Succession 

The Comeragh Mountain Succession is the thickest sequence of Old Red Sandstone 

in the East Munster Basin and is largely dominated by conglomerate formations. 

The main lithologies in the area are the Coumshingaun Conglomerate Formation, 

the Comeragh Conglomerate Sandstone Formation, the Nier Group and the 

Kiltorcan Formation (Capewell, 1957; Penney, 1980). The deposition of these 

sequences was largely fault controlled, furthermore their deposition was a on a 

steep eastward rising Lower Palaeozoic surface (Capewell, 1957; Penney, 1980). 

The 850m basal conglomerates of the Coumshingaun Group were deposited as an 

alluvial fan that displays an upward coarsening trend, representing a response to 

uplift in the source area to the east (Penney, 1980; Sleeman and McConnell, 1995). 

The overlying sequences were deposited as a fan-margin sequences of braided 

stream sediments, terminal alluvial fan systems and their associated floodplain 

sediments (Sleeman and McConnell, 1995). The unconformable contact between 

the Coumshingaun Formation and the underlying Palaeozoic typically features a 

breccia of Lower Palaeozoic slate fragments in the base of the Coumshingaun 

Formation (Penney, 1980). The Lower Palaeozoic volcanic, intrusive and 

sedimentary clasts of the Lower Coumshingaun Formation suggest that the source 

of this material was immediately to the east (Capewell, 1956). Two mica- granite 

and tourmaline bearing clasts in the upper parts of the formation suggest gradual 

increase in provenance range (Capewell, 1957). They have been inferred to have 

been deposited in a piedmont setting to the west of a Palaeozoic basement high in 

the east. The contact between them is either unconformable as mentioned above, 
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or faulted As a result the exact relationship between the ORS sequences and the 

Palaeozoic basement is not always clear.  

The sequence rapidly thins out towards the north, west and south of the main N-S 

fault between Coumshingaun and Croaghaun (Capewell, 1956; Penney, 1980). 

Penney (1980) interpreted the northward thinning to mark the location of the 

northern margin of the Munster Basin, between Glenpatrick and Slevenamon. The 

southward thinning of the Coumshingaun and Treanearla Formations becomes well 

marked south of the Maum Fault towards the cliff section at Ballyvoyle (Penney, 

1980), possibly alluding to the significance of this fault, whilst the compact 

sequence exposed at Ballyvoyle is thought to represent an area of extreme thinning 

as an out of basin sequence. Westward thinning of the conglomerate units is more 

gradual and accompanied by the overlap of the Nier and Kiltorcan Formations. 

Overlying the Coumshingaun Formation is the Comeragh Conglomerate-Sandstone 

Group, which is divided into the Coumaraglin Formation, the Treanearla Formation, 

the Sheskin Formation and the Kilnafrehan Formation (Sleeman and McConnell, 

1995). The Coumaraglin Formation only outcrops in the Coumaraglin area and is 

characterised by coarse-medium grained green sandstones, with a significant 

percentage of feldspar clasts (Sleeman and McConnell, 1995). The Treanearla 

Formation conformably lies on the Coumshingaun Formation and is composed of 

thick-bedded conglomerates and matrix supported conglomerates (Penney, 1980; 

Sleeman and McConnell, 1995). The Sheskin Formation overlies the Treanearla 

Formation and is comprised of interbedded conglomerates, sandstones and 

siltstones that largely fine upwards (MacCarthy et al., 1978; Sleeman and 
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McConnell, 1995). The overlying Kilnafrehan Formation is composed of red 

conglomerates and sandstones  (Sleeman and McConnell, 1995).  

In the Croaghaun area of the Comeragh Mountains a conglomeratic formation, 

similar to the Comeragh Group, the Croaghaun Formation is exposed (Capewell, 

1957; Penney, 1980). The relationship of this formation to surrounding formations 

is debatable. Penney (1980) argued that the formation was a lateral equivalent of 

the Comeragh Group, while Capewell (1957) argued that the Croaghaun Formation 

was older than the Comeragh Group. Similarly Gardiner (1983) suggested that the 

Croaghaun Formation could represent an earlier Devonian basin that had been 

inverted. The main difference between this formation and the surrounding 

Comeragh Group is that it is dominantly green and is folded around a north-south 

axial trend rather than the usual east west Variscan trend (Penney, 1980).  

The Comeragh Group is succeeded by the overlying Nier Group and Kiltorcan 

Formation. The Nier Group is dominantly composed of purple silty sandstones and 

is divided into the Ballytrasna and Knockmealdown Formations (Capewell, 1957). 

The Ballytrasna Formation is typically present as a red sandstone but contains large 

amounts of quartz pebbles (Sleeman and McConnell, 1995). Similarly the 

Knockmealdown Formation is dominantly red sandstone with conglomerates at the 

base (Sleeman and McConnell, 1995).   

In the Comeraghs the Kiltorcan Formation is characterised by a large amount of 

feldspathic material, interpreted by Penney (1980) to coincide with the unroofing of 

the Leinster Granite. The Kiltorcan has a largely consistent thickness across the 

area, which Sleeman and McConnell (1995) inferred to suggest that there was little 

or no fault influence active during its deposition. The Kiltorcan is largely comprised 
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of cross-stratified sandstone units with upward fining sequences deposited in high 

sinuosity single channel river systems (Murphy, 1985).  

6.6.1.4. The East Cork Succession 

The East Cork Succession occurs south of the Dungarvan Syncline. It is divided into 

the Gortanamill Formation, the Ballytrasna Formation and the Gyleen Formation.  

The Gortanamill Formation is composed of green fine sand and siltstones deposited 

in a fluvial distributary system (Sleeman and McConnell, 1995). In the East Cork 

Succession the Ballytrasna Formation is dominantly composed of red sandstones 

and much finer than in the Comeragh Succession (Sleeman and McConnell, 1995). 

The Gyleen Formation is dominantly mudstones with occasional sandstones and is 

characterised by fining upward sequences (MacCarthy, 1978). Additionally it has 

been interpreted to be equivalent to the Kiltorcan Formation in the north (Sleeman 

and McConnell, 1995).  

 

  

Figure 6. 21 Old Red Sandstone successions of the East Cork and Waterford area, 
redrawn from Sleeman and McConnell (1995).  
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6.6.2. Lower Carboniferous 

In the North Munster Shelf the Lower Carboniferous exhibits widespread lateral 

variation (Figure 6. 22; Sleeman and McConnell, 1995), but the only unit relevant to 

this study is the Crows Point Formation.  

 

6.6.2.1. Crows Point Formation 

The Crows Point Formation is a thick-bedded, coarse and pebbly sandstone that lies 

near the base of the Carboniferous, overlying the Castle Slate Member. It only 

outcrops between Youghal and Helvick Head. In the Ardmore area the formation is 

characterised by thin quartz pebble conglomerate layers (Sleeman and McConnell, 

1995). The pebble clasts are typically between 1 and 3cm. This unit has largely been 

interpreted to have been deposited in an estuarine fluvio-tidal environment 

(MacCarthy, 1979; Murphy, 1985). Additionally the sediment source for the Crows 

Point is in the east from Lower Palaeozoic material, but it also features considerable 

reworking of material (Murphy, 1985).  

  

Figure 6. 22 Carboniferous divisions in East Cork and Waterford according to Sleeman and 
McConnell (1995). 
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6.6.3.  Structures in the eastern Munster Basin Area 

The eastern Munster Basin is characterised by large scale open folding and high 

angle faults, unfortunately due to poor exposure exact relationships have not been 

defined. 

6.6.3.1. Regional Fold Patterns 

Regional folding in the area has a relatively simple pattern with three major fold 

anticlines striking east-west present in the area: the Watergrasshill, 

Knockmealdown and Galtee Mountain Anticlines (Sleeman and McConnell, 1995).  

The Galtee Anticline is a large open structure, whereas increasingly tighter and 

steeper minor folds are present towards the south, such as  the westward plunging 

Knockmealdown and Watergrasshill Anticlines. A similar decrease in fold amplitude 

is seen from west to east, evidenced in the Knockmealdown Anticline where folds 

become increasingly more open in the Comeragh Mountains than in the 

Knockmealdown Mountains.  

6.6.3.2. Fault Populations 

The main faults in the area can be divided into three groups: a N-S group, a WNW-

ESE group and an ENE-WSW group (Capewell, 1957). The N-S trending group is the 

most prevalent across the area. These faults are best exemplified by the 

Coumshingaun Fault and the Kilclooney/Carrigduff Fault (Figure 6.20). The 

Coumshingaun Fault is a sub-vertical fault that extends from Crottys Rock to 

Fauscoum. It has a minimum westward downthrow of 120m and merges with the 

Carrigduff Fault south of the Mahon River (Capewell, 1957). It is possible that the 

majority of these N-S faults are splays of the main bounding fault of the eastern 
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margin of the Munster Basin, the Carrigduff Fault.  It is argued here that this fault 

continues as far south as Ballyvoyle if not as far as Helvick Head.  

The WNW-ESE group are best exposed in the south of the Comeraghs (Capewell, 

1957), namely the Maum Fault and a series of smaller faults in Coumknockmahon, 

as well as some other small faults in the Coum Iarthar Glas. These faults closely 

parallel the faults and fold axes seen in the Dungarvan Syncline.  

The ENE-WSW group become more dominant towards the north of the Comeraghs 

(Capewell, 1957). These faults are steep to sub-vertical and parallel the inferred 

trace for the northern margin of the Munster Basin, as well as the dominant 

structural trend of the Lower Palaeozoic basement (Mc Ardle et al., 1981).   

6.6.3.3. Cleavage 

Penetrative deformation in the Munster Basin is largely restricted to a single 

pervasive cleavage that is typically perpendicular to bedding and parallel to fold 

axial planes (Bresser and Walter, 1999; Capewell, 1956; Cooper and Collins, 1984a; 

Cooper et al., 1986; Naylor, 1978b; Naylor et al., 1981). Meere et al. (2013) 

reported cleavage from the South Munster Basin that dipped steeply parallel to the 

axial plane in mudstones and a less steep cleavage that converges towards the axial 

plane in coarser sandstones. This pattern of cleavage development was interpreted 

as the result of significant layer-parallel shortening prior to the onset of regional 

folding. Similarly cleavage morphology (Engelder and Marshak, 1985; Powell, 1979) 

varies depending on lithology, with a continuous penetrative cleavage in fine 

grained lithologies and a spaced disjunctive cleavage in coarser lithologies (Bresser 

and Walter, 1999; Naylor et al., 1981). Cleavage has generally been described as a 

pressure solution cleavage (Bresser and Walter, 1999; Cooper and Collins, 1984a; 
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Cooper et al., 1986; Meere et al., 2013; Naylor et al., 1981; Nenna and Aydin, 2011; 

Sanderson, 1984), with minor authigenic mica growth focused in the cleavage 

planes (Bresser and Walter, 1999). The microlithons between the phylosillicate rich 

cleavage domains are typically quartz rich (Murphy, 1985).  

Cleavage development has usually been described as an early (pre-folding) event 

(Coe and Selwood, 1963; Cooper et al., 1986, 1984; Ford, 1987), but there has been 

some debate as to whether cleavage development continued syn-folding (Trayner 

& Cooper, 1984; Price 1986; Meere, 1992) or whether there were multiple cleavage 

forming events and polyphase deformation in the South Munster Basin (Gill, 1962; 

Selwood, 1963). Polyphase deformation was interpreted from cleaved diorite sills 

that cross cut folds (Coe and Selwood, 1963; Coe, 1966), although these have been 

interpreted as syntectonic intrusions emplaced during one continuous deformation 

regime, due to the lack of two distinct cleavages in the field (Sanderson, 1984). 

Similarly Capewell (1975) described only one compressional episode and only one 

cleavage. Murphy (1985) reported particularly low angles between bedding and 

cleavage in fine grained lithologies on fold limbs in the Dungarvan and Lismore 

area, and attributed this to continuous cleavage formation throughout LPS and 

folding.  This orientation of cleavage with respect to bedding is not observed in the 

coarser units, suggesting that this intense reorganisation of cleavage in the finer 

grained lithologies is probably largely due to flexural slip folding, but does not rule 

out syn-folding cleavage development. Cleavage development synchronous with 

folding has been proposed by some authors (Price, 1986; Meere, 1992; Meere et 

al., 2013). LPS and the resulting cleavage formation have been interpreted from 

extensive field work to form prior to or at the early stages of folding, with cleavage 
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typically at high angles to bedding (Figure 6. 24; Cooper et al., 1986). Trayner and 

Cooper, (1984) argued that the presence of sheared cleavage is suggestive of 

cleavage development during initial stages of folding. Cleavage parallel shearing has 

been described by Bresser and Walter (1999) and attributed to a late stage dextral 

strike slip component.  

The deformation sequence in the South Munster Basin has been split into three 

phases by Meere et al. (Figure 4.24; 2013): 

Phase one is represented by an early phase of LPS and development of a 

slaty cleavage orthogonal to bedding in mudstones and a more disjunctive 

spaced cleavage in sandstones.  

LPS continues in Phase two, with initial cleavage domains becoming 

concentrated at regularly spaced intervals into wider disjunctive dissolution 

zones in sandstones.  

Phase three includes the onset of folding and rotation of the stratigraphy. As 

folding develops, the cleavage domains in the sandstones are preferentially 

exploited by high-angle reverse shear.  

Sanderson (1984) described sutured boundaries between quartz clasts, with 

occasional fibrous quartz/chlorite/mica pressure fringes, and attributed this 

deformation to pressure solution controlled diffusion creep. Beach and King (1978) 

discussed the extensive marginal solution of quartz clasts in cleavage domains and 

considerable recrystallisation of a fine clay matrix to white mica in cleavage 

domains in the Caha Mt. Formation. Similarly Sanderson (1984) described sutured 

boundaries between quartz clasts, with occasional fibrous quartz/chlorite/mica 

pressure fringes, and attributed this deformation to pressure solution controlled 
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diffusion creep. Beach and King (1978) inferred that the reactions involved in the 

pressure solution involved transformation of chlorite and a fine clay matrix to white 

mica. The transformation of chlorite consumes silica, reducing quartz in the 

cleavage domain, while the fine clay to mica reaction releases silica, this released 

silica typically is removed from the cleavage domain by diffusive transfer, resulting 

in an overall loss of silica from the cleavage domains (Beach and King, 1978). It is 

important to note that both reactions cause a 15-35% decrease of volume of the 

minerals (Beach and King, 1978).  

Field evidence suggests cleavage intensity generally decreases northwards towards 

the Dingle Dungarvan Line (Murphy, 1990. Furthermore cleavage intensity observed 

in the Crows Point Formation appears to decrease on an eastward trend from 

Whiting Bay towards Ballyquin. This eastward decrease may suggest a basin 

boundary control on cleavage development, with the Ballyquin exposures thought 

to sit at the basin margin or just external to the basin. Their position on the basin 

margin may be further supported by the extensive shearing deformation that cross-

cuts and deforms the Variscan cleavage. This localised late stage shearing could 

support Sanderson’s (1984) transpression model with complex deformation at the 

basin margins.  These minor shear zones appear to be conjugate (Figure 6.25 and 

Figure 6.26) and are characterised by ductile realignment of clasts that were 

originally aligned in an east-west cleavage (Figure 6.25 and Figure 6.26). The 

conjugate pairs imply continued north-south compression. Within the shear zones 

quartz pebbles are stretched and flattened, whereas in the cleavage planes pebbles 

maintain their rounded near spherical shape. This ductile deformation of Variscan 

cleavage might be indicative of late stage deformation, possibly associated with 
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fault movement. The conjugate shear planes are themselves overprinted by 

apparently conjugate, brittle-ductile curved tension gashes. Similar curved tension 

gashes are also present in the Whiting Bay exposures.  

Figure 6. 23 Sheared cleavage development in the South Munster Basin, from Meere et al. 
(2013). A Initial cleavage development. B. Development of cleavage domains. C. Buckling 
and compressional faulting of cleavage domains. D.  Regional and outcrop scale folding, 
leading to reverse simple shear along cleavage planes. 

Figure 6. 24 Deformation sequence of the Irish Variscides from Cooper et al. (1986). 
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Figure 6. 25 Overview of shearing at Ballyquin. N51 58.324 W7 42.147. 

Figure 6. 26 Sinistral shear zone at Ballyquin, with clear deformation and reorientation of 
‘Variscan Cleavage’. N51 58.324 W7 42.147. 
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North of the Dungarvan syncline cleavage is generally less intense than to the 

south, but there is an cleavage intensity increases from the Coumfea area of the 

Comeragh Mountains towards the Clonmel Syncline (Figure 6.20). Furthermore the 

style of cleavage is quite different from the tightly spaced and occasionally sheared 

cleavage of the southern Munster Basin to a more spaced disjunctive cleavage and 

a realignment of clasts in coarse sands and conglomerate units. This cleavage does 

not appear to be present north of the Comeragh Mountains.  

Figure 6. 27 Cleavage bedding relationships in Coum Mahon. N52 13.579 W7 32.664. 
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Figure 6. 28 Bedding/cleavage relationships in Coumshingaun. N52 14.915 W7 30.960. 

Figure 6. 29 Bedding in the Slievenamon area, despite tectonic folding of beds there is no 
trace of a penetrative tectonic fabric.  N52 20.477 W7 27.601. 
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A similar distribution of deformation is observed on a microstructural scale, with 

the most intense deformation textures observed in the Whiting Bay area and no 

observed microstructural deformation in the Slievenamon area.  

Quartz clasts in the Whiting Bay area exhibit a range of microstuctures from grain 

boundary bulging to dominantly sub-grain rotation with minor occurrences of grain 

boundary migration (Figure 6. 30). In the conglomerates of the Comeragh 

Mountains despite relatively strong realignment of grains,  quartz clasts display 

minor grain boundary bulging and the lithic clasts appear largely undeformed with 

the exception of pressure solution seams that are largely parallel to cleavage 

(Figure 6. 31 and Figure 6. 32). North of the Comeraghs the ORS units of the 

Slievenamon area exhibit no microstructural evidence of tectonic deformation 

(Figure 6. 33).  
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Figure 6. 30 Microstructures observed in the Crows Point Formation from Whiting Bay. Grain boundary bulging 
(BLG) and sub grain rotation (SGR) appear to be the dominant deformation mechanisms. Image is 
approximately 2mm across.  

 
Figure 6. 31 Microstructures observed in a sandy unit from Coumshingaun. A weak 
pressure solution cleavage is observed, which appears to deform the matrix and lithic clasts 
equally. Image is approximately 2mm across.  
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Figure 6. 32 Microstructures observed in the Comeragh Conglomerate in the Knocknafrinn 
area in the northern Comeraghs. Quartz grains have been deformed by minor amounts of 
sub-grain rotation and grain boundary bulging.  Image is approximately 2mm across. 

 
Figure 6. 33 Microstructures observed in the Slievenamon area . No deformation of grains 
or a preferred fabric is visible . Image is approximately 2mm across.   

SGR 
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6.7. AMS and Strain Analysis  

Oriented block samples for AMS and strain analysis were collected from sites along 

the eastern margin of the Munster Basin, as well as sites that were out of the basin.  

This sampling distribution allows investigation into the strain distribution across 

basinal, marginal and extra-basinal lithologies. The samples for this study were 

taken from the Comeragh Mountain Succession, the Slievenamon-Portlaw 

Succession and the East Cork Succession as well as the Crows Point Formation of 

the Lower Carboniferous. Only outcrops with well-defined structural relationships 

bedding, cleavage, etc. were sampled. Additionally lithologies with complex 

sedimentary fabrics, such as syn-sedimentary deformation, burrowing, cross 

bedding etc. were avoided, as these might add further complexities to the 

relationship between bedding and tectonic fabrics. Strain and AMS data and was 

obtained from 26 and 19 sites respectively   

Strain analysis was carried out using the DTNNM and MRL methodologies described 

in Chapter 2 on three mutually perpendicular thin sections from each sample. 

Detailed strain analysis of this kind allowed for the development of 3D strain 

ellipsoid models using Mathematica.  

On average 8-14 core samples, measuring 25.4mm in diameter and 22mm in length, 

were drilled from each block sample. Out of the 30 block samples collected, 19 

samples survived drilling and provided enough sub specimens to be statistically 

viable. This yielded 230 individual cores for analysis. AMS analyses were carried out 

using methods described in chapter 3. Additionally high temperature low field 

magnetic susceptibility measurements were carried out to clarify the magnetic 

source.   
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6.7.1. High-Temperature Low Field Magnetic Susceptibility 

The high temperature, low-field susceptibility measurements were made using a 

CS4 furnace attachment for the Agico MFK1-A Kappabridge. The experiment 

involves taking susceptibility measurements during a stepwise heating/cooling 

(from 25°C to 700°C) of individual powdered samples. This experiment provides an 

evaluation of the magnetic carriers in a sample, by interpreting Curie Point data. 

The Curie Points of ferromagnetic minerals, which are highly sensitive to 

temperature, represent the point where super-exchange coupling forces 

breakdown due to heating (Dunlop and Özdemir, 1997). This causes the 

spontaneous magnetic ordering that characterises ferromagnetic minerals to cease 

and they then behave super-paramagnetically (this effect ceases once the sample is 

cooled below the Curie Point). Therefore heating of a ferromagnetic mineral 

creates an increase in its bulk susceptibility until the Curie Point is reached and then 

all ferromagnetic behaviour is essentially removed. The temperature at which this 

occurs is dependent on composition of the mineral. The Curie Points of some pure 

ferromagnetic minerals include magnetite 580°C (this temperature decreases 

linearly with increasing Ti content), hematite 675°C, pyrrhotite 310°C, and greigite 

330°C (Dunlop and Ozdemir, 1997). Conversely paramagnetic minerals decrease in 

susceptibility during heating, whereas diamagnetic minerals are not affected by 

temperature changes. This allows the three magnetic behaviours to be identified by 

examining the overall morphologies of the heating-cooling curves (Dunlop and 

Ozdemir, 1997). Not only can these experiments provide information about the 

particular minerals in a sample, the grainsize of ferromagnetic minerals can be 

estimated using the shape of the Hopkinson Peak (Dunlop and Ozdemir, 1997). The 
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Hopkinson Peak can be identified by either a convex bump or a positive slope in 

anisotropy immediately prior to the Curie Point (Liss et al., 2004). Narrow abrupt 

peaks represent single domain grains while mixed or multi-domain grains are 

represented by a smoother peak (Dunlop and Ozdemir, 1997). Heating may lead to 

new mineral growth during the experiment, which can affect the susceptibility of 

the sample and is usually identified by non-reversibility of the cooling curve.  

The location of samples used for Curie Point experiments are shown in Figure 6. 34, 

and their heating and cooling profiles are shown in Figures 6.35 & 36. All of the 

samples presented have irreversible cooling curves indicating phase changes during 

the experiments. All samples, with the exception of BB11, show a relatively well 

defined Hopkinson Peak between 528-570°C. This is indicative of the Curie Point of 

magnetite (Curie points of the most important minerals are listed in Table 6.1), with 

varying amounts of Ti. With the exception of BB1, the Hopkinson Peaks are 

represented by abrupt spikes prior to sudden decreases in susceptibility, suggesting 

the presence of SD magnetite grains. BB12 features a more gradual sloping 

Hopkinson Peak, suggestive of MD magnetite. Samples BB12, BB13 and BB6 also 

display a smaller similar peak between 657-670°C, suggestive of the hematite Curie 

Point. The distinctly different heating curve shown by BB11 is interesting 

considering the uncertainty regarding the origin of the Croaghaun Formation.  

BQB1 and BQB2, taken from the Crows Point Formation at Ballyquin, have the most 

pronounced Hopkinson Peaks, between 540-580°C, again suggesting the presence 

of SD magnetite grains, but of a higher percentage than the other samples. 

Additionally they both have minor increases in susceptibility between 262-303°C. 

This is representative of a monoclinic pyrrhotite Curie Point (Dunlop and Ozdemir, 
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2001). Pyrrhotite is not normally found in sedimentary sequences, but could be 

derived detritus from exhumed metamorphic basement rocks (Horng and Roberts, 

2006). The Crows Point Formation represents a distinct change to an eastern source 

of sediment deposited fluvio-tidal sequence at the base of the Carboniferous. This 

change in provenance might explain the different heating curves.  

 

Figure 6. 34 Location of samples used for Curie Point experiments.  
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Figure 6. 35 Heating and cooling curves for samples shown in the previous figure. The 
heating and cooling curves are represented by the red and blue lines respectively.  
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Mineral Curie Temperature (°C) 

Magnetite 580 
Maghemite 590-675 
Titano-Magnetite 150 
Hematite 675 (Neel temp) 
Pyrrhotite Mono 270 / Hex 325 
Greigite 333 

Table 6. 1 Table of important magnetic mineral Curie Point temperatures.   

  

Figure 6. 36 Heating and cooling curves and sample list with lithologies.  
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6.7.2. AMS Results 

Bulk susceptibility for all specimens varies from 2.07X10-6 to 1.6X10-3, and an 

average of 5.11X10-4. Bulk susceptibility for mean samples varies from 3.25X10-5 to 

8.99X10-5, with an average of 4.32X10-4. These values in conjunction with the Curie 

Point experiments suggest that the AMS fabrics are dominated by paramagnetic 

phyllosilicates, rather than ferromagnetic minerals, such as haematite. Some of the 

higher bulk susceptibility values detected in some specimens might suggest minor 

amounts of haematite. The bulk susceptibilities of the specimens have a largely 

bimodal distribution, with a very weak susceptibility group (≤4X10-4) and a relatively 

higher susceptibility group (≥5X10-4) (Figure 6. 37 and Figure 6. 38.).  

 

 

  

Figure 6. 37 Plot of bulk susceptibility for all individual specimens. Two groups can are 
visible, a low susceptibility group (<4X10-4) and a higher susceptibility group (>5X10-4). The 
magnetic response of the low susceptibility is controlled by paramagnetic minerals, such as 
phyllosilicates, while the higher susceptibility group may have minor amounts of 
ferromagnetic minerals such as hematite. 
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Furthermore it can be seen from the plot of degree of anisotropy (Pj) vs bulk 

susceptibility (Figure 6. 39 and 6. 40) that the degree of anisotropy is not controlled 

by samples with higher bulk susceptibilities. This suggests that the magnetic fabric 

or anisotropy is controlled by the cleavage or bedding rather than a highly magnetic 

mineral.  Similarly there is no clear correlation between the shape parameters of 

the samples and their bulk susceptibility (Figure 6.41 and 6.42). The shape 

parameter, Tj, varies from -0.482 to 0.837 (only two samples display a bulk prolate 

shape), showing a range of ellipsoid shapes from prolate to oblate, but the majority 

of samples are moderately to strongly oblate, with an average of 0.9802 (Figure 

6.43 and 6.44). The degree of anisotropy, Pj, varies from 1.008 to 1.35 and is 

typically low with an average of 1.04775, but not so low that their results cannot be 

considered significant.  

 

  

Figure 6. 38 Plot of bulk susceptibility for samples. Both the low susceptibility and high 
susceptibility groups are visible. 
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Figure 6. 39 Plot of degree of anisotropy versus susceptibiliy for individual specimens. 
There is no clear relationship between anisotropy and susceptibility.  

Figure 6. 40 Plot of degree of anisotropy versus susceptibiliy for samples. Again there is no 
clear relationship between anisotropy and susceptibility.  
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Figure 6. 41 Plot of susceptibility versus shape parameter for individual specimens. Similar to 
the plots of anisotropy versus susceptibility, there appears to be no clear correlation between 
magnetic ellipsoid shape and susceptibility. 
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Figure 6. 42 Plot of susceptibility versus shape parameter for samples. Similar to  Again there 
appears to be no clear correlation between magnetic ellipsoid shape and susceptibility. 
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Figure 6.43 Plot of anisotropy versus shape parameter for individual specimens. The majority of 
specimens have a weakly oblate shape (i.e. they have a Pj value of <1.05 and a positive Tj value) 
this is typically suggestive of magnetic fabrics that are dominantly controlled by bedding. There 
are some weakly prolate specimens (negative Tj values), suggestive of a weak tectonic fabric. 
Even less samples have well defined oblate shapes, suggestive of a stronger tectonic fabric.  
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Figure 6. 44 Plot of anisotropy versus shape parameter for mean samples. A 
similar distribution is seen as in the previous diagram.  
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6.7.2.1. Orientations of Principal Susceptibility Axes 

The orientation of the principal susceptibility axes of all the individual specimens is 

plotted in Figure 6. 45. At first look this stereonet looks significantly scattered, but it 

can be seen that K1 is largely clustered around 05=>085, and K2 and K3 are 

dispersed in a north south girdle. Plotting the orientations of the principal 

susceptibilities separately (Figure 6. 46 to Figure 6. 48) illustrates a clear regional 

trend for K1: the axis of maximum susceptibility (the magnetic lineation), is largely 

horizontal and orientated east-west. The calculated mean plane of K1 is and the 

principal eigenvector (mean cluster lineation) is 6=>85.9. K2, the intermediate 

susceptibility axis, has a much larger degree of scatter than either K1 or K3 (Figure 

6. 47). The contoured stereonet illustrates this scatter, but also shows a weak 

horizontal north-south cluster, as well as a weak north-south girdle. This is also 

seen in the Woodcock plot (Figure 6. 49), whereby K2 sits very close to the 

girdle/cluster transition. The distribution of the K3 axes largely forms a north-south 

girdle, additionally there is a considerable vertical cluster of points within this girdle 

with two weaker horizontal clusters of points.   

The locations of individual block samples and their representative stereographic 

projections of the principal susceptibility axes are shown in Figure 6.50. From this 

figure the distribution of the principal susceptibility axes becomes more clear. 

North of the Dungarvan Syncline the magnetic foliation (K1 and K2) correlates well 

with observed bedding, with the magnetic lineation (K1) occasionally correlating 

with S1. South of the Dungarvan Syncline the magnetic foliation occasionally 

correlates with Variscan cleavage (S1). This distribution is further discussed in the 

following section on magnetic fabric types.  
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Figure 6. 45 Stereonet of principal susceptibility axes for individual specimens. 
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Figure 6. 46 Orientation of K1 for individual specimens. A) Contoured plot for K1 B) Rose 
diagram of K1 orientations. 
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Figure 6. 47 Orientation of K2 for individual specimens. A) Contoured plot for K2 B) Rose 
diagram of K2 orientations. 
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Figure 6. 48 Orientation of K3 for individual specimens. A) Contoured plot for K3 B) Rose diagram of K3 
orientations. 
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6.7.2.2. Magnetic Fabric Types 

The stereographic projections for individual samples are presented in Figure 6.50, 

from this figure the magnetic fabric types across the area can be determined and 

are presented in Figure 6. 51. In terms of the ellipsoid geometries they generally 

evolve in the manner described in section 3.1, whereby AMS fabrics range from 

bedding controlled (Type 1) to tectonically controlled (Type 4). The samples with 

the most tectonic influence are in the south, with a marked decrease in tectonic 

influence northwards regardless of whether the samples are within basin or not. 

There is a slight increase in tectonic influence parallel to the Tullaghorton fault.  

Figure 6. 49 Woodcock diagram for individual specimens  
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Figure 6. 50 Map showing stereographic projection of principal susceptibility axes for each 

sample analysed.  
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Figure 6. 51 Map of AMS fabric types, previously described in Chapter 3. It is interesting to 
note that the only  purely tectonic fabric types are from south of the DDL, although there is 
a large concentration of intermediate types near the northern margin of the Comeragh 
Mountains.  

 

6.7.3. Strain Results  

Considering the results from the Wyoming Salient, the DTNNM and MRL methods 

(Mulchrone et al., 2013) were considered to provide a representative suite of strain 

analyses. Unlike the Wyoming Salient study three mutually perpendicular sections 
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were analysed from each sample (Fig. 6.52), this approach was taken due to the 

complexity of the deformation history of the Munster Basin. This approach also 

allowed for the modelling of 3D ellipsoids, but this turned out to be rather 

unproductive considering the low strains reported. The results from the DTNNM 

and MRL analyses show a wide range of results, varying from 1.03-1.9 and 1.02-1.6 

respectively, but the majority of samples yielded low  strains estimates.  

 

Figure 6. 52 Schematic diagram of thin section orientations. A sections are parallel to the 
bedding plane. B sections are parallel to the strike of bedding, but perpendicular to the 
plane of bedding. C sections are perpendicular to both the bedding plane and the strike of 
the bedding plane. The inset illustrates the relative orientation of negative and positive  
values, the long axis of the estimated strain ellipse. 

 

6.7.3.1. Bedding Parallel Sections 

The estimated strain results from both the DTNNM and MRL analyses for bedding 

parallel sections (A sections) are shown in Figure 6. 53 and Figure 6. 54. Both maps 

show the orientation and axial ratio of the estimated strain ellipse. Interestingly 

there is a distinct strain gradient defined by the DDL for both methods, with higher 

strains to the south of the Dungarvan syncline. Although there are some higher 

strains recorded in the northern Comeraghs, but not as strong as would be 

expected considering the microstructures shown in Figure 6.31 and 6.32. The 
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distribution largely agrees with the AMS ellipsoids reported in Figure 6. 50, where 

samples with a dominantly tectonic influence are to the south, while bedding 

dominated samples are to the north. 

The results and confidence intervals for individual samples are shown in Figure 6. 

55 to Figure 6. 76. These figures show the Fry plot, a polar plot and R/Φ plots for 

both the DTNNM and MRL estimates. The Fry and polar plots are used to determine 

the degree of fit for the DTNNM data (for a detailed discussion see Chapter 2). The 

R/Φ plots show the actual estimate (small star) from either DTNNM or MRL data 

and bootstrapped estimates (circles), from which the 90%, 95% and 99% confidence 

ellipses are calculated.  

A summary plot of all the estimated R values from both methods is presented in 

Figure 6. 77. It is clear from the summary plot (Figure 6.77) that DTNNM produces 

higher strain estimates than the MRL technique. The higher strain estimates from 

DTNNM compared to MRL are not suprising, considering that MRL only accounts for 

grain rotation and/or grain shape change and does not account for matrix 

deformation. On the other hand DTNNM accounts for movement of grains relative 

to each other and includes some measure of matrix deformation.   



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      285 
 

Figure 6. 53 Map of strain ellipses estimated using the DTNNM technique from bedding 
parallel planes (A sections). 
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Figure 6. 54 Map of strain ellipses estimated using the MRL technique from bedding 
parallel planes (A sections).  
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Figure 6. 55 Strain estimates for Wb1A from the DTNNM and MRL analyses. A. Fry plot of 
the nearest neighbour data.B. Polar plot of the nearest neighbour data.C. DTNNM strain 
estimate and bootstrap data. D. MRL strain estimate and bootstrap data. 

 
Figure 6. 56 DTNNM and MRL strain estimates for BQ1A. 
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Figure 6. 57 DTNNM and MRL strain estimates for BQ2A. 

 

Figure 6. 58 DTNNM and MRL strain estimates for BN1A. 
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Figure 6. 59 DTNNM and MRL strain estimates for HH1A. 

 

Figure 6. 60 DTNNM and MRL strain estimates for BV1A. 
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Figure 6. 61 DTNNM and MRL strain estimates for BB1A. 

 

Figure 6. 62 DTNNM and MRL strain estimates for BB2A. 
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Figure 6. 63 DTNNM and MRL strain estimates for BB3A. 

 

Figure 6. 64 DTNNM and MRL strain estimates for BB4A. 
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Figure 6. 65 DTNNM and MRL strain estimates for BB15A. 

 

Figure 6. 66 DTNNM and MRL strain estimates for BB11A. 
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Figure 6. 67 DTNNM and MRL strain estimates for BB12A. 

 

Figure 6. 68 DTNNM and MRL strain estimates for BB14A. 
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Figure 6. 69 DTNNM and MRL strain estimates for BB6A. 

  

Figure 6. 70 DTNNM and MRL strain estimates for BB7A. 
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Figure 6. 71 DTNNM and MRL strain estimates for BB5A. 

 

Figure 6. 72 DTNNM and MRL strain estimates for BB17A. 



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      296 
 

 

Figure 6. 73 DTNNM and MRL strain estimates for BB8A. 

 

Figure 6. 74 DTNNM and MRL strain estimates for BB18A. 
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Figure 6. 75 DTNNM and MRL strain estimates for BB10A.  

 

Figure 6. 76 DTNNM and MRL strain estimates for BB9A.  



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      298 
 

 
Figure 6. 77 Estimated R values for DTNNM and MRL analyses of the bedding plane parallel 
(A) sections. DTNNM has produced higher strain estimates than MRL.   
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6.7.3.2. C SECTIONS 

The C sections, which are orthogonal to the bedding plane and strike are largely cut 

parallel to the orogenic shortening direction and in areas of higher strain they 

should display a tectonic fabric at a high angle to bedding . Similar to the A sections 

the strain analyses report largely low strains across the eastern Munster Basin with 

higher strains to the south of the DDL (Figure 6. 78).  The estimated axial ratios and 

phi orientations from the DTNNM and MRL analyses for individual samples are 

presented in Figure 6. 79 to Figure 6. 100. Summary plots are presented in Figure 6. 

101 and Figure 6. 102. Figure 6. 101 illustrates the estimated R values for both 

DTNNM and MRL, again DTNNM typically  yields higher strain estimates than MRL.  

Figure 6. 102 is an R/Phi plot of both the MRL and DTNNM analyses. This plot is 

useful in that a Phi value of 0° is parallel to bedding, and estimated strain ellipses 

with Phi values approaching 90° or -90° are suggestive of a relatively strong tectonic 

fabric. Despite low strains this plot shows that approximately half of the samples 

have estimated strain ellipses with long axes at a high angle (>70°) to bedding.   
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Figure 6. 78 Schematic cross section showing relative location of estimated strain ellipses 
from C sections. 
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Figure 6. 79 DTNNM and MRL strain estimates for WB1C. 

 

Figure 6. 80 DTNNM and MRL strain estimates for BQ1C. 
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Figure 6. 81 DTNNM and MRL strain estimates for BQ2C. 

 

Figure 6. 82 DTNNM and MRL strain estimates for BN1C. 
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Figure 6. 83 DTNNM and MRL strain estimates for HH1C. 

 

Figure 6. 84 DTNNM and MRL strain estimates for BV1C. 
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Figure 6. 85 DTNNM and MRL strain estimates for BB1C. 

 

Figure 6. 86 DTNNM and MRL strain estimates for BB2C. 
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Figure 6. 87 DTNNM and MRL strain estimates for BB3C. 

 

Figure 6. 88 DTNNM and MRL strain estimates for BB4C. 
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Figure 6. 89 DTNNM and MRL strain estimates for BB15C. 

 

Figure 6. 90 DTNNM and MRL strain estimates for BB11C. 
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Figure 6. 91 DTNNM and MRL strain estimates for BB12C. 

 

Figure 6. 92 DTNNM and MRL strain estimates for BB14C. 
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Figure 6. 93 DTNNM and MRL strain estimates for BB6C. 

 

Figure 6. 94 DTNNM and MRL strain estimates for BB7C. 
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Figure 6. 95 DTNNM and MRL strain estimates for BB5C. 

 

Figure 6. 96 DTNNM and MRL strain estimates for BB17C. 
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Figure 6. 97 DTNNM and MRL strain estimates for BB8C. 

 

Figure 6. 98 DTNNM and MRL strain estimates for BB18C. 
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Figure 6. 99 DTNNM and MRL strain estimates for BB10C. 

 

Figure 6. 100 DTNNM and MRL strain estimates for BB9C. 
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Figure 6. 101 . Estimated R values for DTNNM and MRL analyses of the orogen parallel sections. DTNNM has 
produced higher strain estimates than MRL.  

 

Figure 6. 102 R/Phi for the C sections, in this case  Phi orientations represent deviations away from the trace of 
bedding in the section.  
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6.7.3.3. Strike Parallel Sections 

The estimated axial ratios and phi orientations from both DTNNM and MRL 

analyses of the strike parallel sections (B sections) are presented in Figure 6. 103 to 

Figure 6. 119. Summary plots are presented in Figure 6. 120 and Figure 6. 121. 

Figure 6. 120 illustrates the estimated R values for both DTNNM and MRL. It is clear 

from this plot that the strain is again typically low, less than 1.3 for most samples, 

but also that DTNNM yields higher strain estimates than MRL.  Figure 6. 121 is an 

R/Phi plot of both the MRL and DTNNM analyses, as expected for the strike parallel 

sections the majority of samples show low strain and the Phi orientations are near 

parallel to bedding. Only 11 results record Phi orientations that are nearly 

orthogonal to bedding, but again these are typically weak, with only one sample 

with an R value >1.3. There is one sample (BB12) that has a DTNNM R value of 1.9 

but this is bedding parallel and is interpreted to be a bedding fabric rather than a 

result of tectonic strain. This value raises a serious issue with the validity of these 

methods, as if bedding fabrics can yield results of R=1.9, then estimating true strain 

in low strain environments becomes problematic. 
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Figure 6. 103 DTNNM and MRL strain estimates for BV1B.  

 

Figure 6. 104 DTNNM and MRL strain estimates for BB1B. 
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Figure 6. 105 DTNNM and MRL strain estimates for BB2B. 

 

Figure 6. 106 DTNNM and MRL strain estimates for BB3B. 
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Figure 6. 107 DTNNM and MRL strain estimates for BB4B. 

 

Figure 6. 108 DTNNM and MRL strain estimates for BB15B. 
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Figure 6. 109 DTNNM and MRL strain estimates for BB11B. 

 

Figure 6. 110 DTNNM and MRL strain estimates for BB12B. 
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Figure 6. 111 DTNNM and MRL strain estimates for BB14B. 

 

Figure 6. 112 DTNNM and MRL strain estimates for BB6B. 
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Figure 6. 113 DTNNM and MRL strain estimates for BB7B. 

 

Figure 6. 114 DTNNM and MRL strain estimates for BB5B. 



Chapter 6: The Variscides of Southern Ireland and the Munster Basin      320 
 

 

Figure 6. 115 DTNNM and MRL strain estimates for BB17B. 

 

Figure 6. 116 DTNNM and MRL strain estimates for BB8B. 
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Figure 6. 117 DTNNM and MRL strain estimates for BB18B. 

 

Figure 6. 118 DTNNM and MRL strain estimates for BB10B. 
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Figure 6. 119 DTNNM and MRL strain estimates for BB9B. 

 

Figure 6. 120 Estimated R values for DTNNM and MRL analyses of the strike parallel 
sections. DTNNM has produced higher strain estimates than MRL.  
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Figure 6. 121 R/Phi for the strike parallel sections, in this case Phi orientations represent deviations away from 
the trace of bedding in the section.  

 

6.8. Discussion and Conclusion 

As previously described the bulk susceptibility for most samples is a <9X10-4, these 

values are consistent with paramagnetic minerals, minor haematite and trace 

magnetite, confirmed by the Curie Point experiments. Therefore the magnetic 

fabrics presented above can be regarded to be controlled by the preferred 

crystallographic orientation of those minerals, and as a result the AMS reflect either 

bedding or tectonic fabrics, or a combination of the two.  

In terms of magnetic fabric types discussed in Chapter 3, unsurprisingly the only 

purely tectonic fabric types are from south of the DDL, although there is a large 

concentration of intermediate types near the northern margin of the Comeragh 

Mountains, which give way to sedimentary fabric types north of the Comeraghs.  
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This distribution of magnetic fabric types agrees with earlier research that the 

strongest tectonic fabrics are present south of the DDL (Cooper et al., 1984 and 

1986). Interestingly the area of strongest tectonic fabrics according to AMS in the 

eastern Munster Basin does not coincide with the DDL, but further south with the 

Cork-Kenmare line (Figure 6.122).  

 

The strain analyses produce a similar distribution of moderately high to low strains 

from south to north, again with the highest strains reported in the Whiting Bay and 

Ballyquin areas, both in close proximity to the Cork-Kenmare Line.  

Estimated strain results from the Eastern Munster Basin are surprisingly low, 

compared to the higher strains recorded in the western Munster Basin (Meere, 

1995a). This could be due to a number of reasons, particularly the decrease in 

depth to basement, which may reduce the butressing effect during inversion 

discussed earlier.  

Considering that strain analysis techniques that utilise sedimentary clasts as strain 

markers have been shown to be ineffective at low strains, it is recommended here 

that other methods, such as AMS, are used to determine the degree of deformation 

across the basin.  

Despite this there is a clear strain gradient from south to north, whereby strain 

decreases rapidly towards the north. Similarly there is another possible strain 

gradient across the northern margin of the Comeragh Mountains, with little no real 

indication of strain north of the Comeraghs. This is confirmed by both AMS and 

microstructural analysis.  
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Strain analysis of the Irish Variscides, raises more problems with the strain analysis 

techniques, beyond the inherent inaccuracies such as passive strain and clast 

distribution. The estimated strain in the B sections is comparable to that of those 

measured in the A and C sections. This is interesting as the B sections should be 

expected to display considerably lower strains than the bedding parallel sections or 

the sections cut perpendicular to the trace of cleavage. In particular the high 

DTNNM estimate of R=1.9 that is parallel to bedding for the B section from BB12, is 

a highly significant primary fabric. The presence of a strong primary fabric is 

confirmed by AMS with the magnetic foliation parallel to bedding. Such a high 

primary fabric would seriously negate weak strains (<1.5; Paterson and Yu, 1994). 

The relatively weak tectonic fabrics observed in the Comeragh area may not have 

completely overprinted the strong primary fabric, leading to the development of 

blended fabrics and ultimately largely inconclusive strain results.  

Both the AMS and strain analyses largely coincide with previous structural studies 

and the field evidence. The lower strains and significantly more open styles of 

deformation in the eastern Munster Basin could imply the more dominant role of 

the basement structures in the area, but without up to date and high quality 

seismic geophysical surveys, this remains entirely circumspect. 

The signifiacnt conclusion of this case study is that the cleavage ‘front’ of Murphy 

(1990) can be extended from the Knockmealdowns to the Comeraghs (Figure 

6.122), although the style of deformation changes from a tightly spaced thrust 

faults to more open steeply dipping reverse faults. Additionally the complex 

shearing deformation observed at Ballyquin is suggestive of the transpression 
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model of Sanderson (1984) and probably indicates the proximity of an eastern 

margin controlling fault (Figure 6.122). The Muggorts bay Inlier and the condensed 

ORS sequence at Ballyvoyle as well as the lack of significant deformation at Helvick 

Head lend some support to this (Figure 6.122).  

While this study lends no new significant evidence to the debate concerning the 

location of a Variscan ‘Front’ it is the authors opinion that the significant Caledonian 

structures that provided a framework for the deformation of the Munster Basin can 

not be ignored. A significant reactivated Caledonian ridge or shear zone that 

correlates with the KMFZ and runs between the  Galtee Mountains/Slievenamon 

and the Knockmealdowns/Comeragh Mountains was identified by Vermeulen et al. 

(2000). This ridge not only acted as a the northern margin of the Munster Basin, but 

would have acted as the main buttressing structure during basin inversion. Similar 

smaller faults, such as the Cork-Kenmare Line,  acted as minor butressing structures 

and controlled deposition of the South Munster Basin. Unsuprisingly the areas with 

the highest deformation recorded in this study closely correlate with both of those 

structures.  
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Figure 6.122 Summary of conclusions and potential interpretation of the Eastern Munster 
Basin. 
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7. Discussion and Conclusion 

As this thesis was written in a manner so that each chapter has a self contained 

discussion and brief conclusion, I aim to keep this chapter as concise as possible. 

Conclusions from the three main study areas are summarised, as are any specific 

problems and suggestions for potential future work. Additionally the various merits 

of the automated strain analysis techniques and AMS are briefly discussed.  

   

7.1. Summary of Regional Conclusions 

7.1.1. Sawtooth Range, Montana 

The carbonate thrust sheets of the Sawtooth Range display an interesting range of 

deformation styles, from brittle structures associated with the mechanism of thrust 

sheet emplacement at the base of each sheet to a more penetrative deformation 

associated with the emplacement of the overriding thrust sheet (discussed in 

Chapter 4). The Sun River Canyon area was originally targeted as a locality to test 

the semi-automated strain analysis techniques discussed in Chapter 2 and compare 

them to AMS analyses, due to excellent exposures of repeated sequences. 

Unfortunately the majority of lithologies in this area are too fine grained to carry 

out accurate strain analysis. Despite this setback, the exposures of the Sun River 

Canyon, provided an excellent setting to study the development of incipient 

tectonic fabrics in a fold and thrust belt, as well as an opportunity to further 

establish the ability of AMS to detect these incipient tectonic fabrics.  

The samples analysed using AMS can be effectively split into two groups, 

diamagnetic and paramagnetic. Regardless of their magnetic behaviour both groups 
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exhibit the full range of magnetic fabric types typically found in fold and thrust belts 

(Bakhtari et al., 1998; Pares and Parés, 2004; Weil and Yonkee, 2009). AMS ellipsoid 

shapes varied from weakly oblate with flattening parallel to bedding, to triaxial, 

then prolate with stretching parallel to the extension direction and finally oblate 

with flattening perpendicular to bedding. These fabric types and a four-fold 

classification scheme are discussed in detail in Chapter 3.  

Although penetrative tectonic fabrics are poorly developed at an outcrop scale, 

there is a regular correlation with AMS fabrics and recorded cleavage fabrics at a 

high angle to bedding, with the magnetic lineation (K1) plotting along cleavage 

plane or at the cleavage bedding intersection lineation. 

Conclusions from the AMS analysis confirmed that penetrative deformation 

developed as a response to the emplacement of the overriding thrust sheet and no 

penetrative deformation developed within the thrust sheet being emplaced   

 

7.1.1.1. Problems Encountered 

One of the biggest problems encountered in the study of the Sawtooth Range was 

the highly fractured nature of the Madison Limestones. This severely reduced the 

number of samples that survived, but also where samples could successfully be 

collected. Additionally a regular problem encountered in AMS analyses of rocks 

with a dominant diamagnetic response such as limestones and dolomites is the 

relatively weak response to the applied field, sometimes these weak responses can 

be low enough that they are close to the sensitivity limits of the kappabridge . This 

leads to significantly large confidence intervals and introduces a slight degree of 

doubt for the exact response of some samples, particularly for samples that have a 
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complicated magnetic fabric, such as the presence of two competing petro-fabrics, 

i.e. bedding and cleavage.  

This is an inherent problem when working with diamagnetic materials, although 

Hirt et al. (2012) showed that the degree of anisotropy increases with a decrease in 

temperature for carbonate and phyllosilicate minerals. A slightly more practical 

approach is to increase the number of individual specimens analysed per block 

sample in order to reduce the uncertainty.   

7.1.1.2. Future work 

Although the above research identifies clear trends in the development of an 

incipient tectonic fabric in the thrust sheets of the Sawtooth Range using AMS 

alone, a possible further study would be to analyse a single thrust sheet with a  

higher sampling density. This would allow for a more complete profile of the subtle 

changes in magnetic fabrics, and ultimately a better understanding of the 

development of penetrative deformation in a thrust sheet. Additionally a more 

complete microstructural analysis, including a study of calcite twinning, would 

complement this analysis.   

Another study of direct relevance to the petroleum industry would be to establish 

the effects on porosity and permeability that this interplay of brittle and 

penetrative deformation structures have in foreland thrust belt systems.  
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7.1.2. Sevier Belt, Wyoming 

The eastern thrust system of the Wyoming Salient provided an opportunity to carry 

out a similar AMS analysis as that carried out in the Limestones of the Sawtooth 

Range, except in coarser grained clastic sediments, which allowed for strain analysis 

using the automated techniques discussed in Chapter  2. 

Similar to the thrust sheets of the Sawtooth Range the eastern thrust system is 

dominated by thin skinned fold and thrust structures. Spaced cleavage developed 

during early Layer Parallel Shortening (LPS), which initiated during footwall 

deformation as the overlying thrust sheets were emplaced (Mitra, 1994).  

The samples analysed from the Ankareh Formation of the Wyoming Salient had 

relatively weak, but positive susceptibilities (<0.5X10-3 SI), these values are typical 

of samples  whose magnetic response is dominated by phyllosilicates and minor 

amounts of hematite. Therefore AMS can be effectively applied to determine the 

relative strength and orientation of the petrofabric. The four-fold classification of 

magnetic fabrics types defined in Chapter 3 correlated well with both the 

bedding/cleavage relationships observed in the field and the cleavage intensity map 

of Mitra and Yonkee (1985). Although the moderate values for the corrected 

degree of anisotropy (Pj), <1.1, are expected for sedimentary units in fold and 

thrust belts with low grade deformation and a weak spaced cleavage (Pares, 2004; 

Borradaile and Jackson, 2010), Pj values can not be used independently to 

determine degree of deformation. Similarly the magnetic lineation intensity (Ln’) 

cannot be used for this purpose. Weil & Yonkee (2009) used Ln’ as a measure of 

deformation, but samples reported here that fit in the Type 4 classification show a 

strong foliation and a weak lineation despite being at a higher level of deformation.  
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That said the orientation of the magnetic lineation itself does vary with 

deformation intensity and regularly correlates with the cleavage bedding 

intersection lineation, which is  in agreement with earlier research (Bakhtari et al., 

1998; Pares, 2002; Rochette and Vialon, 1984; Rochette, 1987; Rochette et al., 

1992).  

It was found that despite evidence of tectonic fabrics from AMS analyses and clear 

strain markers recorded by Yonkee and Weil (2010), the semi-automated strain 

analysis techniques are not sensitive enough to accurately determine strain. Only 

two of the samples analysed yielded strain estimates >1.2 (both from DTNNM 

analysis), the rest of the samples not only yielded low strain estimates, but the long 

axis of the estimated strain ellipses deviated significantly from the traces of 

cleavage and the magnetic foliation in the bedding plane.  

Despite the low strain estimates there was a slight gradient with estimated strains 

increasing towards the west in both transects, again agreeing with the cleavage 

distribution (Mitra and Yonkee, 1985) and strain results from Yonkee and Weil 

(2010). Another conclusion from the Wyoming study is that DTNNM yielded higher 

estimates of strain ratios compared to either the MRL or intercepts suite. 

 

7.1.2.1. Future Work 

Further study in the Wyoming Salient could include extending the study area 

further westward into the Absaroka and Meade thrust sheets. This would provide 

samples with higher degrees of deformation and allow a comparison of AMS and 

the strain analysis techniques for higher strains.  
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7.1.3. Variscides, Southern Ireland 

The Variscides of Southern Ireland provided an interesting field area to further 

compare AMS and strain analysis techniques. The question of a ‘Variscan Front’ has 

dominated most of the previous research carried out on the Irish Variscides. While 

now a largely redundant question, there is an inherent link between the northern 

margin of the Munster Basin and a deformation front. 

Most earlier research has placed the main deformation front at the Dingle 

Dungarvan Line (DDL)(Gill, 1962; Cooper et al., 1984 and 1986), more recent 

geophysical work suggests that it could be further north (Readman et., 1997; 

Vermeulen et al., 2000), and some structural studies have placed it in Clare (Bresser 

and Walter, 1999)  possibly being associated with an eastward extension of the 

ECDZ and the Caledonian structure that facilitated the ascent and emplacement of 

the Leinster Granite.  

It was hoped that AMS and strain analyses of the eastern Munster Basin might yield 

some insights into the location of a major deformation front. The AMS analyses 

yielded average bulk susceptibilities of .51x10-3, again largely dominated by 

phyllosilicates and minor amounts of hematite. The four-fold classification scheme 

of magnetic fabric types again correlated well with the bedding/cleavage 

relationships observed in the field, but also confirmed that the most intense 

tectonic fabrics are present south of the DDL. The vast majority of samples yielded  

yielded corrected degree of anisotropy (PJ) values less than 1.1, with only one 

sample from Ballyquin yielding a Pj value of 1.35. 

The strain analyses although yielding particularly low strain estimates correlated 

with most of the higher deformation areas identified by AMS. Both the AMS and 
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strain analyses show that the most intense deformation is limited to south of the 

DDL, but also that there is a slight increase in deformation at the northern of the 

Comeragh Mountains. Although no exact gradient has been determined it largely 

coincides with the cleavage front of Cooper et al. (1986). 

Additionally, similar to the strain estimates of the Wyoming study, DTNNM typically 

yielded higher estimates of strain ratios compared to MRL for samples from the 

Munster Basin. 

7.1.3.1. Problems 

One of the most distinct problems of working in the eastern Munster Basin is the 

paucity of insightful outcrop inland. There is no exposed contact between the basin 

fill and its basement structures, which leaves any conclusions made on the 

structural relationship of these two elements largely open to interpretation. 

 

7.1.3.2. Future Work  

There are still many unanswered questions regarding the deformation of the 

Munster Basin and strain and AMS analyses have yielded few extra insights into this 

process. With this in mind, there is plenty of scope for more geophysical surveys in 

the eastern Munster Basin, as well as an updated review of Irish Variscides focusing 

on the role of the Caledonian structural template. 

.  
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7.2. Use of Anisotropy of Magnetic Susceptibility (AMS) to Detect Strain 

As discussed in Chapter 3, many attempts have been made at correlating the AMS 

ellipsoid with the strain ellipsoid. The pitfalls of this approach include complex 

mineral assemblages that have very different magnetic contributions, but also 

fundamentally unlike the strain ellipsoid, which is a hypothetical construct that 

allows visualisation of shape change due to deformation, the AMS ellipsoid, 

represents inherent properties of the sample being analysed, and is not always a 

sphere in the unstrained state.  

Considering these complexities, quantifying strain directly from AMS results is not 

to be recommended. That said AMS is highly effective at identifying fabrics and to 

take advantage of that a four-fold classification, modified from the three-fold of 

Bakhtari et al. (1998), has been established. This classification scheme relates AMS 

to bedding and cleavage and allows for simple determination of the presence and 

relative strength of a tectonic fabric compared to bedding. These fabric types are:  

Type 1 no detectable tectonic fabric and a slightly oblate ellipsoid parallel to 

bedding;  

Type 2 weak magnetic/tectonic lineation in the plane of bedding and parallel to 

tectonic trend, magnetic foliation is still parallel with bedding;  

Type 3 stronger magnetic/tectonic lineation and a triaxial magnetic ellipsoid;  

Type 4 magnetic foliation is at a high angle to bedding and parallel to cleavage 

while the magnetic lineation,  if defined, is plunging down the cleavage plane or 

represents the cleavage bedding intersection lineation.  
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7.3. The Effectiveness of Semi-Automated DTNNM and MRL Techniques 

One of the main conclusions of this thesis is the inaccuracy of the DTNNM and MRL 

methods in low strain environments. This insensitivity can be explained by a 

number of inherent inaccuracies associated with these methods. The calculations 

involved in the MRL and DTNNM methods assume that deformation is essentially 

passive and that original pre-strain clast distributions, shapes and orientations yield 

strain estimates near 1.0. The problem of non-passive deformation (when clasts 

and matrix deform at different rates due to differing rheological properties) has 

been previously discussed by Meere et al. (2008), this typically leads to deformation 

being concentrated in the matrix, while clasts may be relatively undeformed. This is 

a fundamental flaw in clast based techniques. 

There has been little research done on the nature of these primary fabrics, one of 

the key papers addressing this, Paterson and Yu (1994), concluded that undeformed 

sandstones have significant primary fabrics that can mask the effect of low strain 

ratios (<1.4). Considering that few samples analysed in this study yielded a strain 

ellipse ratio greater than 1.5, it is not entirely possible to determine just how 

effective these methods actually are. However it has become clear that DTNNM 

provides a higher estimate of strain ratios then MRL (Figure 7.1).  
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Figure 7. 1 Comparison of estimated strain ratios for MRL and DTNNM methods from both 
Munster and Wyoming.  

 

7.4. Strain analysis vs AMS 

In this study there is a clear discrepancy between the strain analysis results and the 

AMS analyses. This is in part due to the high sensitivity of AMS and the inaccuracies 

in the strain analysis methods when measuring, but also because of what the two 

separate techniques measure. AMS measures the magnetic contribution of all of 
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the minerals present in a sample and, as a result in most sandstones AMS is 

dominated by iron rich phyllosilicate minerals. While this provides a very valuable 

tool for evaluating petrofabrics, it must be noted that quartz, a major constituent of 

most clastic sedimentary rocks, has little effect on the AMS results, due to its weak 

diamagnetic behaviour. Conversely strain estimates from the DTNNM and MRL 

methods are largely based on quartz clasts. 

AMS despite being highly effective, is much more labour intensive (block collection 

and specimen preparation) than strain analysis techniques and requires access to a 

kappabridge. The strain analysis techniques, despite the accuracy of these methods 

at low strains being under question in this thesis, are capable of quantifying 

deformation at moderate to high strains, and they are not as labour intensive as 

AMS (although considerable patience is required) and only require access to 

oriented thin sections and a computer with an installation of Mathematica.  

 

7.5. Further Work 

An interesting avenue of potential future work would be to analyse a wide range of 

non-deformed sedimentary lithologies in order to build a complete database of 

primary fabrics and their elliptical properties for different rock types. This might 

allow for a minimum strain threshold to be established, after which point strain 

estimates can be expected to be reliable. 

Additionally applying strain analysis techniques to artificially deformed sediments 

might also yield more insights on the evolution of primary fabrics during 

deformation.  
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7.6. Conclusions 

Estimating finite strain is a fundamental part of quantifying deformation patterns 

and processes. The general approach, in the absence of independent strain 

markers, i.e. reduction spots, is to estimate finite strain from either object-to-object 

separations (DTNNM) or the random orientation (MRL) of populations of deformed 

objects, such as sedimentary clasts. Unfortunately, these methods are regularly 

applied in low strain environments such as the forelands of fold and thrust belts.  

This thesis suggests that in such low strain environments, where estimates of the 

axial strain ratio are less than 1.4, the traditional clast-based strain analysis 

techniques (DTNNM and MRL) are not capable of accurately identifying or 

quantifying deformation. This is in part due to the assumptions these methods are 

based on, but also the presence of preferred orientation of clasts due to bedding.  

However, the Anisotropy of Magnetic Susceptibility (AMS) analyses are more than 

capable of detecting the presence of incipient tectonic fabrics, but also their 

orientation and relative strengths. An important suggestion for all studies using 

these traditional strain analysis techniques would therefore be, where possible, to 

fully analyse primary pre-strain preffered orientations in the lithologies being 

studied.  
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Appendix 1     A 1 
 

Appendix 1: Mathematica code for Image analysis, 

semi-automatic parameter extraction and strain 

analysis; Article and link to Mathematica code 

 

The strain analysis software used in this study was written for the Mathematica 

platform, due to its ability to handle the different tasks required for accurate strain 

anlysis. It is available from https://github.com/daithimaccarthaigh and has been 

publishhed in Computers and Geoscience (Mulchrone et al., 2013). This article is 

included here for reference. 

https://github.com/daithimaccarthaigh
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Appendix 2     A 9 
 

Appendix 2: AMS data for Chapter 4; Sawtooth Range, 

NW Montana 

A2.1. The AMS data for the samples collected in the Sawtooth Range are 

presented here, with tables for both the individual specimen data and the mean 

sample data. The individual specimen data are split into two groups, depending on 

their magnetic response, i.e. diamagnetic or paramagnetic.  
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Diamagnetic  Specimens 
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Lat/Long Data for Sawtooth Samples

  

WGS 84 Lat/Lon hdddｰmm.mmm'

Name Position Altitude Date Modified

BGR1 N47 37.215 W112 42.233 1464 m 06/09/2012 17:22

BGR10 N47 36.994 W112 43.948 1369 m 6/19/2012 7:23:38 PM 

BGR11 N47 36.996 W112 43.941 1371 m 6/19/2012 7:23:04 PM 

BGR12 N47 37.026 W112 43.901 1373 m 6/19/2012 7:32:10 PM 

BGR13 N47 36.998 W112 43.841 1379 m 6/20/2012 5:52:49 PM 

BGR14 N47 36.825 W112 44.043 1384 m 6/20/2012 6:35:24 PM 

BGR15 N47 36.832 W112 44.030 1382 m 6/20/2012 7:12:06 PM 

BGR16 N47 36.867 W112 44.011 1382 m 6/20/2012 7:02:12 PM 

BGR17 N47 36.542 W112 44.431 1380 m 6/20/2012 8:07:46 PM 

BGR18 N47 36.529 W112 44.422 1385 m 6/20/2012 8:34:48 PM 

BGR19 N47 36.397 W112 45.064 1388 m 6/20/2012 9:08:02 PM 

BGR191 N47 36.394 W112 45.066 1386 m 6/20/2012 9:14:18 PM 

BGR2 N47 37.223 W112 42.252 1443 m 06/09/2012 17:29

BGR20 N47 36.429 W112 45.017 1387 m 6/20/2012 9:24:27 PM 

BGR21 N47 36.454 W112 45.185 1389 m 6/20/2012 9:46:18 PM 

BGR3 N47 37.241 W112 42.292 1394 m 06/09/2012 18:10

BGR4 N47 37.236 W112 42.329 1426 m 06/09/2012 17:44

BGR5 N47 37.235 W112 42.364 1396 m 06/09/2012 18:08

BGR6 N47 37.112 W112 42.629 1371 m 06/09/2012 19:11

BGR7 N47 37.037 W112 42.648 1375 m 06/09/2012 19:25

BGR8 N47 36.998 W112 42.651 1369 m 06/09/2012 19:42

BGR81 N47 36.996 W112 42.652 1370 m 06/09/2012 20:14

BGR9 N47 36.986 W112 43.957 1371 m 6/19/2012 7:12:53 PM 

GR10 N47 36.613 W112 44.305 1388 m 7/24/2011 9:04:14 PM 

GR12 N47 36.608 W112 44.326 1393 m 7/24/2011 9:25:50 PM 

GR13 N47 36.599 W112 44.343 1393 m 7/24/2011 9:17:42 PM 

GR15 N47 36.210 W112 45.757 1470 m 7/25/2011 8:09:07 PM 

GR17 N47 36.182 W112 45.746 1468 m 7/25/2011 8:54:45 PM 

GR18 N47 36.148 W112 45.715 1470 m 7/25/2011 9:05:39 PM 

GR19 N47 36.151 W112 45.706 1471 m 7/25/2011 9:15:19 PM 

GR20 N47 36.160 W112 45.665 1467 m 7/25/2011 9:20:02 PM 

GR21 N47 36.171 W112 45.639 1465 m 7/25/2011 9:32:43 PM 

GR23 N47 36.186 W112 45.619 1465 m 7/25/2011 9:53:26 PM 

GR24 N47 36.294 W112 45.572 1447 m 7/25/2011 10:18:10 PM 

GR25 N47 36.246 W112 45.709 1546 m 7/26/2011 1:07:11 AM 

GR3 N47 37.232 W112 42.365 1379 m 6/18/2011 10:18:49 PM 

GR30 N47 36.301 W112 45.617 1523 m 7/26/2011 1:49:10 AM 

GR32 N47 36.573 W112 45.600 1497 m 7/26/2011 2:11:23 AM 

GR33 N47 36.538 W112 44.426 1383 m 7/26/2011 6:31:12 PM 

GR34 N47 36.398 W112 45.066 1387 m 7/26/2011 6:51:03 PM 

GR35 N47 36.429 W112 45.039 1391 m 7/26/2011 6:57:20 PM 

GR36 N47 36.430 W112 45.012 1309 m 7/26/2011 7:02:55 PM 

GR37 N47 36.445 W112 44.869 1355 m 7/26/2011 7:28:02 PM 

GR38 N47 36.438 W112 45.162 1364 m 7/26/2011 8:37:58 PM 

GR39 N47 36.489 W112 45.027 1378 m 7/26/2011 9:03:24 PM 

GR5 N47 36.445 W112 44.901 1387 m 6/18/2011 11:47:23 PM 

GR6 N47 37.198 W112 43.227 1400 m 7/24/2011 7:09:34 PM 

GR8 N47 37.198 W112 43.223 1398 m 7/24/2011 7:41:33 PM 
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Appendix 3: AMS and strain data for Chapter 5; 

Eastern Thrust System, Wyoming Salient 

The AMS data for the samples collected in the Wyoming Salient are 

presented here, with tables for both the individual specimen data and the mean 

sample data. The block sample data are split into two groups, depending on which 

transect they were collected on. 
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Individual Specimens 
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Strain Analysis Data 
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Lat/Long Data for Sevier Samples 

WGS 84 Lat/Lon hdddｰmm.mmm'

Name Position Altitude Date Modified

WY1 N42 30.633 W110 30.510 2415 m 7/21/2012 3:31:23 AM 

WY10 N42 33.983 W110 44.142 2676 m 7/21/2012 10:33:49 PM 

WY11 N42 30.099 W110 47.312 2392 m 7/21/2012 10:57:16 PM 

WY12 N42 29.409 W110 50.539 2322 m 7/21/2012 11:25:33 PM 

WY13 N42 31.767 W110 53.823 2207 m 7/22/2012 12:30:54 AM 

WY14 N42 31.651 W110 53.942 2200 m 7/22/2012 12:50:31 AM 

WY15 N43 10.599 W110 59.690 1716 m 7/22/2012 2:58:00 AM 

WY16 N43 12.370 W110 50.735 1769 m 7/22/2012 7:57:49 PM 

WY18 N43 12.208 W110 51.676 1778 m 7/22/2012 9:20:55 PM 

WY19 N43 12.232 W110 51.632 1777 m 7/22/2012 9:19:08 PM 

WY2 N42 30.633 W110 30.513 2415 m 7/21/2012 3:43:07 AM 

WY21 N43 20.802 W110 49.361 1931 m 7/23/2012 6:11:00 PM 

WY23 N43 20.925 W110 49.611 1942 m 7/23/2012 6:35:54 PM 

WY24 N43 17.881 W110 47.977 1820 m 7/23/2012 6:58:08 PM 

WY241 N43 17.883 W110 47.974 1818 m 7/23/2012 7:06:23 PM 

WY25 N43 14.105 W110 46.773 1791 m 7/23/2012 7:33:36 PM 

WY251 N43 13.881 W110 46.856 1781 m 7/23/2012 7:42:55 PM 

WY26 N43 13.971 W110 46.761 1784 m 7/23/2012 7:49:32 PM 

WY27 N43 12.870 W110 47.201 1775 m 7/23/2012 8:05:03 PM 

WY28 N43 12.900 W110 47.159 1775 m 7/23/2012 8:09:29 PM 

WY29 N43 16.356 W110 31.581 1932 m 7/23/2012 9:58:15 PM 

WY3 N42 30.010 W110 31.339 2423 m 7/21/2012 6:00:38 PM 

WY30 N43 16.983 W110 32.018 1927 m 7/23/2012 10:14:14 PM 

WY4 N42 30.463 W110 30.918 2412 m 7/21/2012 6:23:36 PM 

WY6 N42 27.610 W110 35.083 2502 m 7/21/2012 8:02:19 PM 

WY7 N42 27.198 W110 35.016 2459 m 7/21/2012 8:14:18 PM 

WY8 N42 34.573 W110 44.056 2763 m 7/21/2012 10:01:53 PM 

WY9 N42 34.727 W110 44.330 2749 m 7/21/2012 10:22:40 PM 



Appendix 4      A 46 
 

Appendix 4: AMS and strain data for Chapter 6; 

Eastern Munster Basin, Southern Ireland 

The AMS and strain data for the samples collected in the Eastern Munster 

Basin are presented here. 
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Strain Data A sections 
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Strain Data B sections 
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Strain Data C Sections 
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Lat/Long Data for Munster Samples

 

 

WGS 84 Lat/Lon hdddｰmm.mmm'

Name Position Altitude Date Modified

107013 N52 18.149 W7 43.700 327 m 05/05/2013 13:45

107015 N52 09.727 W7 50.552 66 m 05/04/2013 16:11

107016 N52 09.930 W7 56.173 52 m 05/04/2013 17:12

180723 N52 10.195 W7 35.333 273 m 05/04/2013 14:54

187024 N52 10.433 W7 37.657 248 m 05/04/2013 15:20

187025 N52 14.649 W7 27.649 230 m 05/06/2013 10:13

257024 N52 20.477 W7 27.601 57 m 05/05/2013 19:03

257025 N52 19.664 W7 38.575 230 m 05/05/2013 15:48

26702A N52 16.806 W7 39.051 141 m 05/05/2013 14:25

26702B N52 18.242 W7 37.931 406 m 05/05/2013 15:09

26702C N52 24.469 W7 35.896 155 m 05/05/2013 17:41

BB12 N52 15.601 W7 30.507 407 m 05/06/2013 12:53

BB13 N52 15.627 W7 31.270 624 m 05/06/2013 14:17

BN1 N52 00.381 W7 34.790 2 m 03/02/2012 14:54

BQ1 N51 58.279 W7 42.161 4 m 03/02/2012 17:35

BQ2 N51 58.277 W7 42.162 4 m 03/02/2012 17:37

BQB1 N51 58.324 W7 42.147 13 m 05/04/2013 12:06

BQB2 N51 58.277 W7 42.191 6 m 05/04/2013 12:15

BV1 N52 06.346 W7 30.508 2 m 11/29/2012 1:14:16 PM 

BVB1 N52 06.376 W7 30.578 10 m 05/04/2013 14:00

CS1 N52 15.191 W7 30.813 445 m 01/12/2013 12:34

CS2 N52 15.135 W7 30.927 427 m 01/12/2013 13:00

CS3 N52 14.915 W7 30.960 402 m 01/12/2013 13:30

HH1 N52 03.279 W7 32.593 5 m 03/02/2012 13:08

HHB1 N52 03.281 W7 32.620 6 m 05/04/2013 12:51

MB1 N52 01.213 W7 35.105 6 m 03/02/2012 16:29

MF1 N52 13.513 W7 32.658 760 m 12/14/2012 11:01:12 AM 

MF2 N52 13.486 W7 32.664 773 m 12/14/2012 11:23:22 AM 

MF3 N52 13.579 W7 32.664 760 m 12/14/2012 11:53:13 AM 

MF4 N52 13.638 W7 32.723 766 m 12/14/2012 12:17:16 PM 

MR11 N52 12.658 W7 30.432 105 m 01/12/2013 15:59

WB1 N51 56.901 W7 45.889 7 m 03/02/2012 18:05

WB2 N51 56.785 W7 45.917 8 m 03/02/2012 18:17

WBB1 N51 56.896 W7 45.880 9 m 05/04/2013 10:59




