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We study the generation of angular momentum carrying states for a single cold particle by breaking the
symmetry of a spatial adiabatic passage process in a two-dimensional system consisting of three harmonic
potential wells. By following a superposition of two eigenstates of the system, a single cold particle is completely
transferred to the degenerate first excited states of the final trap, which are resonantly coupled via tunneling to
the ground states of the initial and middle traps. Depending on the total time of the process, angular momentum
is generated in the final trap, with values that oscillate between ±�. This process is discussed in terms of
the asymptotic eigenstates of the individual wells and the results are checked by simulations of the full two-
dimensional Schrödinger equation.
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I. INTRODUCTION

Controlling the states of quantum particles is a challenging
task and a topic of significant present activity in the fields of
atom optics, quantum computation, quantum metrology, and
quantum simulation of condensed matter systems [1]. In partic-
ular, the generation of angular momentum for matter waves is
attracting much attention, for instance, in studying superfluid
properties of Bose-Einstein condensates (BECs) [2]. These
condensates can sustain vortices, which have been envisioned
to be used in applications for interferometry, for example,
gyroscopy with counterrotating vortex superpositions [3], for
quantum information, such as coherent superpositions of arbi-
trary winding numbers [4], or entangled vortex states [5], and
as a way to study the behavior of random polynomial roots [6].
Different techniques have been proposed and experimentally
reported to generate angular momentum with single atoms and
BECs, such as stirring with a laser beam [7], phase imprinting
[8], transfer of orbital angular momentum from optical
states [9,10], rotating traps [2,11], turbulence [12], dynamical
instabilities [13], or merging multiple trapped BECs [14].

At the same time, adiabatic techniques to control the
external degrees of freedom of massive particles have been
developed [15], based on the spatial analog of the stimulated
Raman adiabatic passage (STIRAP) technique [16]. For the
center-of-mass degree of freedom, this is usually realized by
considering a triple-well configuration and assuming that only
a single state in each trap contributes to the dynamics. Up
to now, all proposals in which the spatial adiabatic passage
technique has been discussed have been effectively one
dimensional: The traps are arranged in a linear geometry and a
single particle in one of the outer traps is coherently transferred
to the other outermost trap with very high fidelity. Significant
work has been done for this process by discussing efficiency
and robustness for single atoms [15,17], electrons [18], atomic
vortices [19], holes [20], and BECs [21]. Proposals for spatial
adiabatic passage for cold atoms propagating in systems of
three coupled waveguides have also been discussed using
effective one-dimensional (1D) models [22]. Recently, spatial
adiabatic passage for light propagating in a system of three

coupled optical waveguides [23] has been experimentally
reported.

In this work, we go beyond those well-understood 1D
spatial adiabatic passage systems and focus on the possibilities
offered by their extension to two dimensions. The inclusion of
this degree of freedom allows considering different scenarios
in which all traps can be tunnel coupled simultaneously.
Contrary to the well-discussed 1D models for spatial adiabatic
passage, the two-dimensional (2D) scenario has no fully
equivalent model in quantum optics, where the STIRAP tech-
nique involves only two laser couplings of adjacent transitions
of a three-level atomic system. Furthermore, understanding
the fundamentals of 2D spatial adiabatic passage opens the
possibility to study physical scenarios that require a full 2D
description, such as the implementation of new interferometric
schemes [24], which take advantage of the existing level
crossings, or the generation of angular momentum carrying
states. Angular momentum is an inherent 2D quantity, which
can only be created in systems in which rotational symmetry
is broken. We demonstrate that, by applying a spatial adiabatic
passage sequence in a system of three traps with broken spatial
symmetry, a single particle can be completely transferred from
the ground vibrational state of the initial trap to the two
degenerate first excited states of the final trap. Depending
on the total time of the process, this can generate angular
momentum with values oscillating between ±�. Furthermore,
the process is robust since both the complete transfer and
the generation of angular momentum occur within a broad
range of parameter values. We model the generation of
angular momentum by using the asymptotic states of the
individual traps and the results are confirmed with a numerical
integration of the full 2D Schrödinger equation. Note that such
a two-dimensional process constitutes an alternative method to
standard techniques for the generation of angular momentum
in ultracold atoms [7–14].

II. PHYSICAL SYSTEM

We consider a system consisting of three 2D harmonic
potentials (labeled A, B, and C) (see Fig. 1), where initially
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FIG. 1. (Color online) Schematic representation of the system of
three harmonic traps with broken spatial symmetry. Traps A and B

have a trapping frequency ω and trap C has a trapping frequency ω/2.

a single particle is located in the vibrational ground state of
trap A. The trapping frequencies of A and B are equal (ωA =
ωB = ω) and the one for C is half that value (ωC = ω/2),
so a resonance exists between the ground levels of traps A

and B and the first excited level of trap C. Since the first
excited energy level of trap C is double degenerate, it supports
an angular momentum carrying state through a superposition
of the two energy eigenstates ψC

1,0(x,y) and ψC
0,1(x,y) in the

chosen x-y reference frame. In particular, maximum angular
momentum 〈Lz〉 = ±� occurs when the two degenerate states
(i) are equally populated and (ii) have a phase difference of
π/2, i.e.,

ψC
n=1,l=±1(r,θ ) = 1√

2

[
ψC

1,0(x,y) ± iψC
0,1(x,y)

]
. (1)

Here the ψC
n=1,l=±1(r,θ ) are the eigenfunctions of the first

excited states of the C trap in polar coordinates, with n and l

being the principal quantum number and the z component of
the angular momentum, respectively.

The first thing to note is that an effective 1D configuration
in which all traps are arranged in a straight line along the x axis
can only lead to population transfer to the state ψC

1,0(x,y) and
not to the generation of angular momentum. To populate both
of the degenerate states it is necessary to break the symmetry
of the linear configuration and here we do this by considering
geometries in which the A trap is rotated around the B trap
and forms an angle β with respect to the x axis, as can be
seen in Fig. 1. The positions of the trap centers are xA =
−dAB cos β, yA = −dAB sin β, xB = yB = 0, xC = dBC , and
yC = 0, where dAB and dBC are the distances between the
A and B and the B and C traps, respectively. In the x-y
reference frame, the ground states in the A and B traps can be
expressed as ψA

0,0 = φω
0 (x + dAB cos β)φω

0 (y + dAB sin β) and
ψB

0,0 = φω
0 (x)φω

0 (y), respectively. For the C trap with ω/2 we

consider the eigenfunctions ψC
1,0 = φ

ω/2
1 (x − dBC)φω/2

0 (y) and

ψC
0,1 = φ

ω/2
0 (x − dBC)φω/2

1 (y). Here φω̃
n are the single-particle

eigenfunctions for the nth vibrational state of the 1D quantum
harmonic oscillator with trapping frequency ω̃.

The breaking of symmetry introduces two effects with
respect to effective 1D configurations: (i) The traps A and
C can get close enough to allow direct tunnel coupling and
(ii) there is no longer a preferred direction along which one
of the states in C can line up. Thus, since the position of the

A trap with respect to the C trap forms an angle γ with the x

axis, there is a population transfer between states ψA
0,0 and ψC

1,0

with coupling rate JAC
1,0 , but also between ψA

0,0 and ψC
0,1 with

coupling rate JAC
0,1 . Therefore, both first excited states of the C

trap become involved in the dynamics of the system, which in
the basis {ψA

0,0,ψ
B
0,0,ψ

C
1,0,ψ

C
0,1} can be described by the 4 × 4

Hamiltonian

H = �

⎛
⎜⎜⎜⎝

0 −JAB −JAC
1,0 −JAC

0,1

−JAB 0 −JBC 0

−JAC
1,0 −JBC 0 0

−JAC
0,1 0 0 0

⎞
⎟⎟⎟⎠. (2)

The coupling rates depend on the trap separation and can be
calculated analytically due to the harmonicity of the potentials
[15]. Additionally, the coupling rates between the ground state
in A and the first excited states in C depend on the angle γ

as JAC
1,0 = Jω,ω/2 cos γ and JAC

0,1 = Jω,ω/2 sin γ , where Jω,ω/2

is the coupling rate between the ground state of a trap with
trapping frequency ω and a resonant first excited state of a trap
with trapping frequency ω/2. It is straightforward to check that
the Hamiltonian (2) possesses four nondegenerate eigenvalues,
except for JBC/

√
2 = JAB = JAC

1,0 = JAC
0,1 when two of them

become degenerate.

III. GENERATION OF ANGULAR MOMENTUM
CARRYING STATES

The generation of angular momentum occurs along with
the transfer of the particle from the A to the C trap through
a spatial adiabatic passage process [15,17]. This corresponds
to a counterintuitive temporal sequence of the couplings, i.e.,
with the particle initially located in A and the position of B

being fixed, the approach and separation sequence of the C

trap towards the B trap along the x axis is initiated a time δ

before the A trap approaches and separates from the B trap,
keeping the angle β constant. In the following, we will analyze
this process in terms of the overall energy eigenvalues and
eigenstates of the system by diagonalizing the Hamiltonian in
Eq. (2). To approach and separate the traps, the evolution of
the distances dBC and dAB follows a cosine function evaluated
between 0 and 2π [see Fig. 2(a), left]. The right-hand-side
panel of Fig. 2(a) shows the corresponding tunneling rates and
Fig. 2(b) displays the temporal evolution of all four energy
eigenvalues of the Hamiltonian. Note that for the chosen
parameters no level crossing occurs.

The population of each asymptotic level of the traps for
the four energy eigenstates of the system is shown in Fig. 3.
Since initially the particle is in the A trap, the eigenfunction
of the system at t = 0 can be written as a superposition of the
eigenstates 
2 and 
3 as

ψ(t = 0) = 1√
2

[
2(t = 0) + 
3(t = 0)] = ψA
0,0, (3)

where 
2(t = 0) = (ψA
0,0 + ψC

0,1)/
√

2 and 
3(t = 0) =
(ψA

0,0 − ψC
0,1)/

√
2. If the process is adiabatic and level cross-

ings are absent, this superposition of eigenstates is followed
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FIG. 2. (Color online) (a) Temporal evolution of the distances
between traps dAB , dBC , and dAC (left panel) and the couplings
J AB , J BC , J AC

1,0 , and J AC
0,1 (right panel), during the spatial adiabatic

passage process. (b) Energy eigenvalues as a function of time. The
parameter values are β = 0.55π , δ = 0.2T , and dBC and dAB with
values between 10α and 3.5α and between 9α and 2.5α, respectively,
where α = √

�/mω, m is the mass of the particle, and T is the total
time of the process.

all through the process, leading to a final state of the form

ψ(t = T ) = 1√
2

[

2(t = T ) exp

(
− i

�

∫ T

0
E2(t)dt

)

+
3(t = T ) exp

(
− i

�

∫ T

0
E3(t)dt

)]
. (4)

As it can be seen from Fig. 3, at the end of the process
the eigenstates 
2 and 
3 only involve the asymptotic states
of the C trap: 
2(t = T ) = aψC

0,1 − bψC
1,0 and 
3(t = T ) =

bψC
0,1 + aψC

1,0, where |a|2 + |b|2 = 1. This means that by
following the two eigenstates 
2 and 
3, a complete transfer of
population from the initial trap A to the final trap C is achieved.
Noting that the superpositions (aψC

0,1 − bψC
1,0) and (bψC

0,1 +
aψC

1,0) are also two asymptotic eigenstates of the C trap in a
reference frame rotated with respect to ψC

1,0 and ψC
0,1, we call

them ψ ′C
0,1 = 
2(t = T ) and ψ ′C

1,0 = 
3(t = T ). It is then easy
to see from Eq. (4) that ψ ′C

0,1 and ψ ′C
1,0 are equally populated

and that the phase difference between them is given by

ϕ(t = T ) = 1

�

∫ T

0
[E3(t) − E2(t)]dt. (5)

From Fig. 2(b) it can be seen that the phase difference will be
directly proportional to T since the energy difference between
the energy eigenvalues E3 and E2 follows the same pattern,
independently of the total time of the process. Rewriting
Eq. (4) in polar coordinates, it is possible to show that the
expected value of the angular momentum is a function of the
phase difference ϕ,

〈Lz(T )〉 = � sin[ϕ(T )]. (6)

Therefore, the generated angular momentum 〈Lz〉 will
follow a sinusoidal curve as a function of T with a maximum

at ϕ = (n + 1/2)π for n ∈ N. We have checked that the
above process works for all angles 0 < β < βt , which is
the parameter range in which the energy eigenspectrum and
eigenfunctions are similar to the ones shown in Figs. 2 and 3.
The only significative variation is that the energy difference
between E3 and E2 is smaller for smaller angles, leading
to longer oscillation periods of the angular momentum as a
function of T . Around βt ≈ 0.625π , the energy eigenstates

3 and 
4 become almost degenerate at one point during
the evolution, which limits the possibility to follow the
superposition of the states 
2 and 
3 adiabatically. As
discussed earlier, this particular time corresponds to the instant
at which JBC/

√
2 ≈ JAB ≈ JAC

1,0 ≈ JAC
0,1 and βt therefore

represents the angle up to which both a complete transfer
and the generation of angular momentum work efficiently.

IV. NUMERICAL SIMULATIONS

Although above we used the asymptotic states of the
individual traps to describe the dynamics of the system, the
full dynamics is governed by the 2D Schrödinger equation

i�
∂

∂t
ψ(x,y) =

[
− �

2

2m
∇2 + V (x,y)

]
ψ(x,y), (7)

where ∇2 is the 2D Laplace operator and V (x,y) is the trapping
potential, which we assume to be constructed from truncated
harmonic oscillator potentials

V (x,y) = min
i=A,B,C

{
1
2mω2

i [(x − xi)
2 + (y − yi)

2]
}
. (8)

Here (xi,yi) with i = A,B,C are the positions of the individual
trap centers, ωA = ωB = ω, and ωC = ω/2. To establish the
validity of our model above, we present in the following
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FIG. 3. (Color online) Temporal evolution of the population of
each asymptotic level of the traps (ψA

0,0, ψB
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1,0, and ψC
0,1) for the

four eigenstates of the system (
1, 
2, 
3, and 
4). The parameter
values are the same as in Fig. 2.
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FIG. 4. (Color online) Temporal evolution of the population dis-
tribution of the single particle in the system of three traps with broken
spatial symmetry for T = 5183ω−1 and the parameter values as in
Fig. 2. The adiabatic following of the superposition of 
2(t) and 
3(t)
can be observed by comparing with Fig. 3: From t = 0.42T to 0.48T

oscillations corresponding to the phase difference between 
2(t <

0.5T ) = (ψA
0,0 + ψC

0,1)/
√

2 and 
3(t < 0.5T ) = (ψA
0,0 − ψC

0,1)/
√

2
are shown; for t = 0.58T and 0.6T oscillations due to the phase
difference between 
2(t > 0.5T ) = ψ ′C

0,1 and 
3(t > 0.5T ) = ψ ′C
1,0

are also observed.

the numerical solution of Eq. (7), with the trapping potential
Eq. (8) in the regime where β < βt .

The population distribution at different times is shown in
Fig. 4 for a process of total time T = 5183ω−1. One can
see that a single particle is completely transferred from the
A trap to the C trap, where a state with maximum angular
momentum 〈Lz〉 = −� is created, which corresponds to the
adiabatic following of the eigenstates 
2 and 
3 (see also
point c in Fig. 5).

In agreement with Eq. (6), Fig. 5 shows the sinusoidal
behavior of the angular momentum generated in the C trap
as a function of T , with maximum values of ±�. We have
numerically checked that, as long as the process is performed
adiabatically, both the generation of angular momentum
and the complete population transfer into the C trap work
efficiently over a broad range of parameter values, including
different distances between the traps and angles ranging from
very small values of β up to βt ≈ 0.625π . Thus the process is
very robust and highly versatile.

Finally, let us briefly comment on a possible implementa-
tion of the above scheme using current technology. Optical
microtraps, where atoms are trapped in the focal point of
a red-detuned laser beam, can be used to create versatile
potentials for single atoms and the presented triple-well system
can, for example, be built using holographic techniques with
programmable spatial light modulators [25]. This setup allows
for the storage of a single atom per trap and the dynamical
control of the trapping potentials, especially on time scales
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FIG. 5. (Color online) Generated angular momentum as a func-
tion of the total time of the process T (upper plot) and final states in
the C trap and their phases for four different final total times a, b, c,
and d (lower plots). The parameter values are the same as in Fig. 2.

required by the adiabaticity condition. Note that the process
we describe can also be realized for light in three-dimensional
laser-written optical waveguide arrays [26].

V. CONCLUSION

We have extended the spatial adiabatic passage technique
to the 2D case, demonstrating that angular momentum can
be successfully generated by breaking the symmetry of the
coupling sequence in a system of three harmonic traps of
different trapping frequencies. Starting with a single particle in
the ground state of a harmonic trap with frequency ω, it can be
fully transferred to the degenerate first excited states of a final
harmonic trap of frequency ω/2 by following adiabatically a
superposition of two energy eigenstates of the system. The
energy difference between these two eigenstates results in a
phase difference between the equally populated excited states
of the final harmonic trap, which leads to the generation of
angular momentum. The obtained values oscillate between
±� and depend on the total time of the process. We have
modeled this process by using the asymptotic levels of the three
harmonic traps and checked the results against the numerical
solution of the full two-dimensional Schrödinger equation
for a broad range of parameter values. Our work shows that
adiabatic techniques for center-of-mass states hold significant
potential for processes that have no direct equivalent in, for
example, the control of internal degrees of freedom.
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