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2022





Contents

Contents iii

1 Introduction 1

2 Preliminaries 11
2.1 Partitions and Ordered Partitions . . . . . . . . . . . . . . . . . . 11

2.1.1 Basics on Set Partitions . . . . . . . . . . . . . . . . . . . 11
2.1.2 Basics on Ordered Set Partitions . . . . . . . . . . . . . . 13
2.1.3 Crossings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.4 Oriented Crossings . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Basics of *-Algebraic Probability Theory . . . . . . . . . . . . . . 26
2.3 Distributional Symmetries . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Exchangeability . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Spreadability . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Braidability . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 *-Algebraic Central Limit Theorems 43
3.1 Classical Central Limit Theorems . . . . . . . . . . . . . . . . . . 43
3.2 Singleton Vanishing Properties . . . . . . . . . . . . . . . . . . . . 49
3.3 CLTs for Exchangeable Sequences . . . . . . . . . . . . . . . . . . 52
3.4 CLTs for Spreadable Sequences . . . . . . . . . . . . . . . . . . . 64
3.5 Factorization Properties . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Large N -Limit Models . . . . . . . . . . . . . . . . . . . . . . . . 83

4 CLTs for Quantum Coin Tossing 87
4.1 A Concrete Model . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Combinatorics of the Model . . . . . . . . . . . . . . . . . . . . . 95
4.3 CLTs for ω-Sequences of Partial Isometries . . . . . . . . . . . . . 106

4.3.1 Univariate Version of the CLT . . . . . . . . . . . . . . . . 106
4.3.2 Multivariate Versions of the CLT . . . . . . . . . . . . . . 121

5 Circular and Semicircular Systems 129
5.1 q-Circular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 q-Semicircular Systems . . . . . . . . . . . . . . . . . . . . . . . . 133

iii



iv CONTENTS

5.3 z-Circular Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.4 z-Semicircular Systems . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Future Work 147

Bibliography 149



This is to certify that the work I am submitting is my own and has not been
submitted for another degree, either at University College Cork or elsewhere. All
external references and sources are clearly acknowledged and identified within the
contents. I have read and understood the regulations of University College Cork
concerning plagiarism and intellectual property.

Ayman Alahmade



Abstract

Distributional symmetries and invariance principles in noncommutative probabil-
ity theory provide sufficient conditions for the existence of central limit laws. In
contrast to classical probability theory, there exist many different central limit
laws for exchangeable sequences of noncommutative random variables and still
little is known about their concrete form. This thesis goes one step further and
investigates central limit laws for non-exchangeable spreadable sequences in the
context of *-algebraic probability spaces. This provides first results on a new type
of combinatorics underlying multivariate central limit theorems (CLTs).

The starting point of the thesis has been a quite simple family of spreadable
sequences, which is parametrized by a unimodular complex parameter ω. Each
sequence of this family is spreadable, but not exchangeable for ω 6= ±1. More-
over, the sequences from this family provide CLTs, which interpolate between the
normal distribution (ω = 1) and the symmetric Bernoulli distribution (ω = −1),
but differ from q-Gaussian distributions (−1 < q < 1). An algebraic structure,
which underlies the considered family, is identified and used to define so-called
‘ω-sequences of partial isometries’. These ω-sequences encode all information, as
it is relevant for computations of *-algebraic CLTs. Explicit combinatorial for-
mulas are established for CLTs associated to such ω-sequences, which involve the
counting of oriented crossings of directed ordered pair partitions. The limiting
distributions of certain multivariate CLTs associated to ω-sequences show some
features as they are defining for ‘z-circular systems’ [MN01]. This similarity, as
well as the well-known relation between q-circular systems and q-semicircular sys-
tems (for −1 ≤ q ≤ 1), guides the introduction of ‘z-semicircular systems’ in
this thesis. Finally, it is shown that the class of z-semicircular systems is stable
under certain multivariate central limits. In other words, the moment formulas of
z-semicircular systems are reproduced in large N -limit formulas of central limit
type.
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for his time, encouragement, and guidance throughout my studies. Without his
knowledge, passion, and excellent supervision I would have been very challenged
to accomplish this thesis. I have really enjoyed working with him. Furthermore, I
would like to thank Dr. Andreas Amann for several helpful conceptual discussions
on the computation of moments at an early stage of the project. In particular, his
computational support with PYTHON is appreciated for verifying the correctness
of my calculations of moments.

Many thanks also go to the staff of the School of Mathematical Sciences for
their administrative advice. Special thanks go to Taibah University for giving
me the opportunity and the financial support to pursue my Ph.D. degree at the
University College Cork.

My sincere thanks also go to my dear parents for their encouragement. With
all my heart I would like to thank my wife and my daughter for their continuous
patience, love, and support. Many thanks also go to my brothers and sisters for
their unconditional support. Also, I would like to send big thanks to my friends
for their unconditional support.





Chapter 1

Introduction

Nowadays, the central limit theorem is considered to be the unofficial
sovereign of probability theory. – Henk Tijms (2004)

The Central Limit Theorem (CLT) is considered to be among the most im-
portant results in classical probability. It tells that an appropriately scaled sum
of N identically distributed, independent random variables converges to a Gaus-
sian (or normal) distributed random variable in the large N -limit. As classical
physics needs to be replaced by quantum physics in many modern applications,
the methods and results from classical theory need to be revised such that they
apply to quantum phenomenon, where possible. This creates the subject of quan-
tum probability or, in terms of a systematic algebraization of probability theory,
the subject of noncommutative probability. Present thesis contributes to this pro-
gramme of algebraization by investigating certain central limit laws in an algebraic
framework of noncommutative probability.

Central limit theorems in quantum probability theory were established by
mathematicians starting the early 1970s. To our knowledge, early versions of
quantum CLTs were provided for certain bosonic and fermionic systems by Hud-
son et al. in [CH71, H73, CGH77], resulting in normal distributions as central
limit laws. More algebraic versions of CLTs were established starting the end of
the 1970s by von Waldenfels et al. in [GW78, W78, W86, W87]. Furthermore,
algebraic versions of the CLT were also studied by Schürmann and von Waldenfels
in [SW88, W90, S91].

Since then other algebraic versions of the CLT have been established and limit
distributions beyond that of the normal distribution have been obtained. Quite
general algebraic approaches to CLTs were given by Speicher in [Sp90, Sp92, Sp93]
and further studies were done by Speicher and von Waldenfels in [SW94], as well
as Bożejko and Speicher in [BS96]. Using mainly combinatorial arguments, these
publications provide quite general conditions for the existence of large N -limits
as they are considered for algebraic CLTs.

More concrete results and central limit laws were obtained in the context of q-
Gaussian random variables Xq for −1 ≤ q ≤ 1. The distribution of these random
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2 CHAPTER 1. INTRODUCTION

variables is given by the probability measure µq on R such that one has for the
n-th moment

E(Xn
q ) =

∫
R
tnµq(dt).

Here the measure µq has support [ −2√
1−q ,

2√
1−q ] for −1 < q < 1 and support R for

q = 1. Furthermore, µq is continuous for −1 < q ≤ 1 with density function

fq(t) =

√
1− q
2π

√
4− (1− q)t2

∞∑
k=1

(−1)k−1q
k(k−1)

2 U2k−2

(
t
√

1− q
2

)
,

where Uk denotes the k-th Chebyshev polynomial of the second kind [Sz09] and
f1(t) := limq→1 fq(t) is the normal distribution. As special cases, one obtains the
symmetric Bernoulli distribution µ−1 = 1

2
(δ−1+δ1), Wigner semicircle distribution

µ0 with density f0(t) =
√
4−t2
2π

on the interval [−2, 2], and the Gaussian distribution

µ1 with density f1(t) = 1√
2π

exp(− t2

2
) on R. Alternatively, as shown in [LM95] for

example, the n-th moment of a q-Gaussian random variable can be computed as

E(Xn
q ) =

∑
π∈P2(n)

qcr(π), (1.1)

where P2(n) is the set of pair partitions of the set {1, 2, . . . , n} and cr(π) denotes
the number of crossings of the pair partition π (see Section 2.1 for further in-
formation on set partitions etc.). We note that, for even n = 2k ∈ N, the map
[−1, 1] 3 q 7→ E(X2k

q ) is a polynomial of degree k
2
(k − 1) with integer coefficients.

Explicit computations of the first few even moments yield

E(X2
q ) = 1,

E(X4
q ) = 2 + q,

E(X6
q ) = 5 + 6q + 3q2 + q3,

E(X8
q ) = 14 + 28q + 28q2 + 20q3 + 10q4 + 4q5 + q6.

A mathematical rigorous realization of systems of q-Gaussian random variables is
obtained by Bożejko and Speicher in [BS91, BS92] via their construction of gen-
eralized Brownian motions on q-Fock spaces. The classical and noncommutative
aspects of q-Gaussian processes are further studied in [BKS97]. Moreover, it was
shown by Speicher in [Sp92] that the distribution of q-Brownian motions (and
thus any q-Gaussian random variable) can be obtained by algebraic central limit
techniques via stochastic mixtures of commuting and anti-commuting noncommu-
tative random variables. Thus the distribution of q-Gaussian random variables
provides a family of central limit laws, which continuously interpolates between
the normal distribution (q = 1), Wigner semicircle law (q = 0), and symmetric
Bernoulli distribution (q = −1).
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Building on the results for q-Gaussian random variables in [BS92, BKS97],
Mingo and Nica in [MN01] show that certain averages of random unitaries in
noncommutative tori converge to what they call q-circular systems, for some real
parameter q with −1 < q < 1. These q-circular systems can be seen to be
closely related to so-called ‘q-semicircular systems’ or, in other words, systems
of q-Gaussian random variables. The main results of Mingo and Nica in [MN01]
are around their introduction of z-circular systems for z ∈ C and |z| < 1. These
systems are defined through moment formulas, which essentially count oriented
crossings of certain pair partitions. Moreover, these systems reduce to q-circular
systems whenever z = z. It is shown by Mingo and Nica that these z-circular
systems can be also obtained as certain averages of random unitaries in noncom-
mutative tori. In contrast to the situation for q-circular systems, it is still an open
problem to find a suitable deformed Fock space realization of z-circular systems
in terms of annihilation and creation operators (compare also [MN01, Remark
1.12]).

As noticed in [Kö10], distributional symmetries and invariance principles in
noncommutative probability theory provide sufficient conditions for the existence
of noncommutative central limit laws. Already for exchangeable sequences of
noncommutative random variables a huge variety of concrete central limit laws
seems to exist and little is known about these laws. Essentially, depending on the
underlying algebraic structure, there is the need to identify central limit laws in a
case-by-case study. For example, recently Köstler and Nica have shown in [KN20]
that the central limit law associated to certain characters of the infinite symmetric
group is closely related to the distribution of certain GUE random matrices.

Actually, there is a hierarchy of distributional symmetries and invariance prin-
ciples in noncommutative probability. In particular, it is shown in [GK09, Kö10]
that exchangeability implies braidability, and that braidability implies spreadabil-
ity. This motivates to study in more detail CLTs for exchangeable, braidable or
spreadable sequences.

In this thesis we investigate CLTs for non-exchangeable spreadable sequences
in the context of *-algebraic probability spaces, to provide the first results on
the combinatorics of CLTs for certain non-exchangeable spreadable sequences.
We emphasize that so far no central limit law is concretely identified in the wider
context of non-exchangeable spreadable sequences, aside of those in the framework
of Boolean or (anti-)monotone independence (see [Mu11, Wy08], for example).

The starting point of the investigations in this thesis has been the construction
of a so-called braidable sequence x ≡ (xn)∞n=1 in the infinite algebraic tensor
product of complex 2× 2 matrices A =

⊗∞
n=1M2(C) such that

x1 =

[
0 1
1 0

]
⊗ 1⊗N

2 , xn+1 = unxnu
∗
n (n ∈ N). (1.2)
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Here the unitary matrices un ∈ A are given by the amplifications

un = 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
(n− 1)-fold

⊗ U ⊗ 1⊗N
2

of the unitary matrix

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ω

 ∈M2(C)⊗M2(C) (ω ∈ T), (1.3)

where T := {z ∈ C | |z| = 1}. It is elementary to verify that the unitaries un
satisfy the braid relations

uiujui = ujuiuj for |i− j| = 1,

uiuj = ujui for |i− j| > 1.

We remark here that a unitary matrix U ∈ M2(C) ⊗ M2(C) implements the
commuting square

U(M2(C)⊗ 12)U
∗ ⊂ M2(C)⊗M2(C)

∪ ∪
C 12 ⊗ 12 ⊂ M2(C)⊗ 12

if and only if U is of the form (1.3) for some ω ∈ T, up to biunitary equivalence
(see [KSV96, Proposition 12]). Thus the constructed sequence x is also of special
interest as it represents a simple example of a braidable sequence in the context
of Jones subfactor theory [GHJ89, JS97].

Throughout we consider the infinite tensor product algebra A =
⊗∞

n=1M2(C)
to be equipped with the tensor product state tr : A → C given by tr = ⊗Ntr2,
where tr2 denotes the normalized trace on M2(C). The pair (A, tr) is an example of
a *-algebraic probability space such that the sequence x ⊂ A can be interpreted
as a sequence of quantum coin tosses. The starting point of this thesis is the
following abstract CLT for the braidable sequence x, which is proved in Theorem
4.3.6:

Theorem 1.0.1. Let the sequence x ≡ (xn)∞n=1 ⊂ A be given as constructed above
in (1.2) for some fixed ω ∈ T, and let SN := 1√

N
(x1 + x2 + . . .+ xN). Then there

exists a unique probability measure µω on R such that, for any n ∈ N,

Mn(ω) := lim
N→∞

tr(SnN) =

∫
R
tnµω(dt).

One meets for ω = 1 an algebraic reformulation of the classical central limit
theorem for an infinite sequence of independent identically distributed coin tosses.
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Consequently, µ1 is the probability measure of a centred Gaussian random variable
with variance 1 and moments

Mn(1) =

{
0 for n odd,

(n− 1)!! for n even.

It is also known for ω = −1 that one obtains the symmetric Bernoulli distribution
µ−1 = 1

2
(δ1 + δ−1) as central limit law such that

Mn(−1) =

{
0 for n odd,

1 for n even.

So far the probability measures µω seem to be unknown in the published litera-
ture for ω ∈ T\{−1, 1}. We aim at establishing combinatorial formulas for the
moments Mn(ω), similar to those in (1.1) for q-Gaussian random variables. In
other words, we aim at computing the large N -limit for all moments of order n as
explicitly as possible. It will follow from algebraic CLTs for spreadable sequences
(see Theorem 3.4.9) that all odd moments vanish, i.e. one has

Mn(ω) = 0

for any ω ∈ T and odd n ∈ N. Furthermore, brute force computation in matrices
allows us to determine explicitly the first few moments of even order in terms of
q = <ω as follows:

M2(ω) = lim
N→∞

ϕ(S2
N) = 1,

M4(ω) = lim
N→∞

ϕ(S4
N) = 2 + q,

M6(ω) = lim
N→∞

ϕ(S6
N) = 5 + 6q + 3q2 + q3,

M8(ω) = lim
N→∞

ϕ(S8
N) =

1

3
(44 + 88q + 81q2 + 52q3 + 30q4 + 16q5 + 4q6).

One can recognize that M2(ω), M4(ω) and M6(ω) are the moments of a centred
q-Gaussian random variable Xq with variance 1. But M8(ω) differs from the 8-th
moment of Xq for ω ∈ T\{1,−1} (and q = <ω), as

E(X8
q ) = 14 + 28q + 28q2 + 20q3 + 10q4 + 4q5 + q6.

To be more precise, M8(ω) is now a polynomial in the variable q = <ω of degree 6
with some non-integer-valued coefficients, in contrast to the moment formula (1.1)
of q-Gaussian random variables. This difference becomes apparent for ω = ± i
and thus q = 0, as the 2k-th moment of a centred 0-Gaussian random variable
with variance 1 is given by the Catalan number Ck = 1

k+1

(
2k
k

)
:

C1 = 1 = M2(± i), C3 = 5 = M6(± i),

C2 = 2 = M4(± i), C4 = 14 < 44/3 = M8(± i).



6 CHAPTER 1. INTRODUCTION

These observations rule out that the moment sequence
(
Mn(ω)

)∞
n=1

is that of a
q-Gaussian random variable for ω ∈ T\{1,−1} with q = <ω.

Key to the computation of higher even moments is the following quantum
decomposition of the braidable sequence x. Let

a1 =

[
0 1
0 0

]
⊗ 1⊗N

2 , an+1 = unanu
∗
n (n ∈ N).

Now each term xn of the sequence x can be written as xn = an + a∗n with the
sequence a ≡ (an)∞n=1 ⊂ A enjoying the following algebraic properties:

aiaj = ωajai, aia
∗
j = ω̄a∗jai for 1 ≤ i < j <∞,

aiai = 0, aia
∗
i + a∗i ai = 1 for 1 ≤ i <∞.

We will see that sequences with such algebraic properties provide sufficient struc-
ture for establishing algebraic CLTs. We abstractly introduce them as ω-sequences
of partial isometries in Definition 4.2.1.

Our investigations reveal that certain mixed moments of ω-sequences can be
expressed in terms of oriented crossings of directed ordered pair partitions. Here
our notion of an oriented crossing is inspired by the one which is used by Mingo
and Nica in [MN01]. As detailed in Subsection 2.1.4, a directed ordered pair
partition of the set [2k] := {1, 2, . . . , 2k} (with k ∈ N) can be uniquely addressed
by a triple (π, ε, σ), where π is a pair partition of the set [2k], and ε is a map
which assigns a direction to each pair of π, and σ ∈ Sk is a permutation encoding
the order of the pairs of π. This provides all data as required for the notion of
oriented crossings, such that one can talk about the number of positive oriented
crossings cr+(π, ε, σ) and the number of negative oriented crossings cr−(π, ε, σ) of
a directed ordered pair partition.

Our first main result is Theorem 4.2.9, which establishes properties of ω-
sequences as they are relevant for the computation of the moments Mn(ω). The
informal notion of a ‘balanced pair distribution’ stipulates certain conditions on
the pair (π, ε) as stated in Theorem 4.2.9(iv).

Theorem 1.0.2. An ω-sequence of partial isometries a ≡ (an)∞n=1 ⊂ A has the
balanced pair distribution

ϕ
(
a
ε(1)
i(1) · · · a

ε(2k)
i(2k)

)
=

1

2k
ωcr+(π,ε,σ) ωcr−(π,ε,σ)

for i : [2k] → N with π = ker(i) and σ ∈ Sk. Here the direction map ε : [2k] →
{∗, 1} and the permutation σ ∈ Sk are as specified in Theorem 4.2.9(iv).

Having established certain properties of ω-sequences in Theorem 4.2.9, we
prove in Theorem 4.3.1 an explicit combinatorial formula for the CLT associated
to an ω-sequence of partial isometries for a (tracial) *-algebraic probability space.
In particular, this result applies to the concrete ω-sequence x in the algebraic
probability space (A, ϕ) as introduced above. We informally state this result for
the convenience of the reader.
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Theorem 1.0.3. Let a ≡ (an)∞n=1 ⊂ A be an ω-sequence of partial isometries and
let the sequence x ≡ (xn)∞n=1 ⊂ A be the sequence defined by xn := an + a∗n. Let
k ∈ N. Then one has M2k−1(ω) = 0 and

M2k(ω) = lim
N→∞

ϕ(S2k
N ) =

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ).

This result for the moment formula shares some features with the defining
moment formulas for z-circular systems by Mingo and Nica (see Definition 5.3.1),
as both formulas involve oriented crossings. This similarity, as well as the relation
between q-circular systems and q-semicircular systems (see Chapter 5), guides
us to introduce the notion of a z-semicircular system. The following definition
is taken from Chapter 5 and its moment formula features a certain multivariate
version of Theorem 1.0.3, as we have proven it in Theorem 4.3.8.

Definition 1.0.4. Let (A, ψ) be a *-algebraic probability space and fix z ∈ C with

|z| ≤ 1. The family Ỹ ≡ (ŝr)
s
r=1 ⊆ A with (s ≥ 1) is said to form a z-semicircular

system in (A, ψ) if

- ŝr = ŝ∗r for all r ∈ [s] = {1, 2, . . . , s};

- for every odd n > 1, r : [n]→ [s],

ψ(ŝr(1) · · · ŝr(n)) = 0;

- for every even n > 1 with n = 2k, r : [n]→ [s],

ψ(ŝr(1) · · · ŝr(2k)) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ).

We show that the class of z-semicircular systems is stable under certain mul-
tivariate central limits. In other words, the moment formulas of z-semicircular
systems are reproduced in large N -limit formulas of central limit type.

Theorem 1.0.5. Suppose the sequence Ỹ ≡ (ŝr)
∞
r=1 ⊆ A forms a z-semicircular

system in (A, ψ). Let s ∈ N and

S̃r,N :=
1√
N

(
ŝr + ŝs+r + . . .+ ŝ(N−1)s+r

)
for r ∈ {1, 2, . . . , s}. Then one has for all r : [2k − 1]→ N and k ∈ N,

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k−1),N) = 0,

and, for all r : [2k]→ N and k ∈ N,

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k),N) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ).
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We are left to outline the structure of this thesis. In Chapter 2, we introduce
the necessary background of set partitions and ordered set partitions. Also, we
introduce the notion of oriented crossings as they are relevant for the combina-
torics of CLTs in the context of braided sequences. Moreover, we introduce the
most common distributional symmetries such as exchangeability, spreadability,
and braidability, to the extent as we will make use of them in the context of
CLTs. In particular, we give a *-algebraic proof that braidability implies spread-
ability (see Theorem 2.3.22).

We start in Chapter 3 with reviewing the classical central limit theorem, in-
cluding a multivariate version of it. Also, we present singleton vanishing prop-
erties (SVPs), as they are known in the literature to play a role for multivariate
versions of *-algebraic CLTs. Additionally, we refine the notion of exchangeabil-
ity/spreadability of sequences of random variables to that of C-jointly and C-
separately exchangeable/spreadable families of random variables, for some ‘color
set’ C. We provide multivariate CLTs, which correspond to these refined notions of
distributional symmetries or invariance principles. So far C-separately exchange-
able/spreadable families of random variables have not been addressed explicitly
in the published results on *-algebraic CLTs. Related results will be used later
for CLTs associated to ω-sequences of partial isometries (which we introduce in
Chapter 4). Also, we discuss how one can construct C-jointly and C-separately
exchangeable/spreadable sequences from a single exchangeable or spreadable se-
quence. Furthermore, we present factorization properties of mixed moments in
the context of distributional invariance principles. We will make use of these fac-
torization properties for SVPs when establishing concrete moment formulas for
CLTs associated to ω-sequences of partial isometries.

Chapter 4 is the main objective of this thesis. We construct a braidable se-
quence x ≡ (xn)∞n=1 in the infinite algebraic tensor product of complex 2× 2 ma-
trices A =

⊗∞
n=1M2(C). Also, we extract algebraic properties of the constructed

braidable sequence. In turn we use these algebraic properties to abstractly in-
troduce ω-sequences of partial isometries. We investigate some properties of ω-
sequences, as we will need them when establishing CLTs associated to ω-sequences
of partial isometries for a (tracial) *-algebraic probability space. In particular, we
prove explicit combinatorial formulas for moments as they appear in the large
N -limit of algebraic CLTs, including their multivariate versions, for ω-sequences.
These combinatorial formulas reveal that the moment formulas count oriented
crossings of directed ordered pair partitions in the large N -limit and differ from
those of q-Gaussian random variables starting the 8-th moment.

Chapter 5 starts with reviewing multivariate versions of CLTs for q-circular
and q-semicircular systems. We show that such systems are exchangeable and thus
yield CLTs. In particular, we show that certain multivariate CLTs associated to
q-circular systems and q-semicircular systems have moment formulas which repro-
duce those of q-circular systems and q-semicircular systems, respectively. Inspired
by the notion of a ‘z-circular system’, defined and studied by Mingo and Nica in



9

[MN01], we introduce the notion of a ‘z-semicircular system’. These generalize the
corresponding notions of q-circular and q-semicircular systems from the parameter
q ∈ [−1, 1] to the parameter z ∈ C with |z| ≤ 1. We show that such systems are
spreadable and satisfy SVPs. Thus z-circular systems and z-semicircular systems
yield CLTs such that their moment formulas generalize those moment formulas
obtained from CLTs associated to ω-sequences of partial isometries. In partic-
ular, we show that certain multivariate CLTs for z-(semi)circular systems yield
z-(semi)circular systems in the large N -limit.





Chapter 2

Preliminaries

We present definitions and notations for set partitions and ordered set partitions
as they are relevant within the context of algebraic central limit theorems. In par-
ticular, this includes the notions of (oriented) crossings of (directed ordered) pair
partitions. Also, we introduce some basics of *-algebraic probability spaces. Fi-
nally, we briefly discuss distributional symmetries such as exchangeability, spread-
ability, and braidability.

2.1 Partitions and Ordered Partitions

We introduce basic definitions and notations of set partitions and ordered set par-
titions, as we will make use of them in the context of central limit theorems for
exchangeable and spreadable sequences. Furthermore, we introduce the cross-
ing of a partition and an oriented crossing for ordered pair partitions, adapting
the approach of [MN01, Subsection 1.4] as appropriate within our combinatorial
treatment of *-algebraic CLTs.

2.1.1 Basics on Set Partitions

We start with providing the basics of set partitions as we will make use of them
for CLTs which emerge from the distributional symmetry of exchangeability.

Definition 2.1.1. Let A be a finite set.
(1) A set partition of A is a set of mutually disjoint subsets π = {V1, . . . , Vk} such
that

⋃k
i=1 Vi = A, Vi ∩ Vj = ∅, for 1 ≤ i, j ≤ k, where k is called the size of the

partition and Vi is called a block of π.
(2) The set of all partitions of A is denoted by P(A).
(3) A partition π = {V1, . . . , Vk} of the set A is called a pair partition if |Vi| = 2,
for i = 1, . . . , k. Here |Vi| denotes the cardinality of the set Vi. In other words,
each block Vi contains exactly two elements.

11
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(4) The set of all pair partitions of A is denoted by P2(A).
(5) A block Vi of the partition π ∈ P(A) is called a singleton if |Vi| = 1.

Notation 2.1.2. We write [n] for the set {1, 2, . . . , n} for n ∈ N. For A = [n] we
will also write P(n) instead of P([n]).

Example 2.1.3. Consider the set A = {1, 2, 3, 4, 5, 6}. Then the partition π =
{{1, 4, 5}, {2, 3}, {6}} of A is of size 3 and has the blocks V1 = {1, 4, 5}, V2 = {2, 3},
and V3 = {6}. This partition represented by the figure below.

1 2 3 4 5 6

This partition π contains a singleton since its block V3 has only one element.

Example 2.1.4. The partition π =
{
{1, 4}, {2, 5}, {3, 6}

}
of the set [6] is a pair

partition with 3 blocks. We visualize this pair partition also by the following
diagram.

1 2 3 4 5 6

Lemma 2.1.5. Let k ∈ N. The set of all pair partitions P2(2k) has

|P2(2k)| = (2k − 1) · (2k − 3) · . . . · 1 = (2k − 1)!! (2.1)

elements.

Proof. Consider the first element of the set [2k]. There are (2k − 1) choices for
the second element to obtain the first block. We keep repeating this procedure
until all elements are paired. Thus there are a total of (2k − 1)!! choices.

We introduce next restrictions of partitions as we will meet them again in
Theorem 3.3.13, a CLT for certain exchangeable families of random variables.

Definition 2.1.6. Let W ⊂ [n] be non-empty. The W -restriction of π =
{V1, V2, . . . , Vk} ∈ P(n) is given by the partition

π|W := {Wi1 ,Wi2 , . . . ,Wi`} ∈ P(W ),

where Wi := Vi ∩W with i ∈ I := {i ∈ [k] | Vi ∩W 6= ∅} and 1 ≤ i1 < i2 < · · · <
i` ≤ k.

Note that π|W 6= ∅ is ensured for any W -restriction of a partition π. Let us
also remind that, by definition, a block of a partition is a non-empty set. Thus,
for a set W 6= ∅ and a partition π as given above, the set {V1 ∩W, . . . , Vk ∩W}
is a partition of W if and only if Vi ∩W 6= ∅ for all i ∈ [k]. In other words, any
empty set Vj ∩W needs to be removed from {V1 ∩W, . . . , Vk ∩W}, until all its
elements are non-empty sets.
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Example 2.1.7. Let π = {V1, V2, V3, V4} =
{
{1, 3, 4}, {2, 5, 8, 9}, {6, 10}, {7}

}
∈

P(10) and W = {2, 4, 5, 7, 8, 9} ⊂ [10]. Then one has

V1 ∩W = {4}, V2 ∩W = {2, 5, 8, 9}, V3 ∩W = ∅, V4 ∩W = {7}.

Thus the W -restriction of π is given by π|W = {V1 ∩W,V2 ∩W,V4 ∩W} ∈ P(W ).

Definition 2.1.8. Let A and B be non-empty sets. The kernel set partition of
the function f : A→ B, denoted by ker(f), is the partition of A into the level sets
of f . That means two elements a1, a2 ∈ A belong to the same block of ker(f) if
and only if f(a1) = f(a2).

Usually, we are interested in the level sets of a function i : [n] → N. In this
case, [n] is partitioned into finitely many level sets which are also called blocks of
the kernel set partition ker(i).

Lemma 2.1.9. The following are equivalent for two functions i, j : [n]→ N:

(a) i(r) = i(s)⇐⇒ j(r) = j(s) for all r, s ∈ [n];

(b) ker(i) = ker(j);

(c) i = σ ◦ j for some σ ∈ S∞.

Here S∞ denotes the group of all bijections σ : N→ N which permute only finitely
many elements of N.

Definition 2.1.10. We say that the two functions i, j : [n]→ N are equivalent, in
symbols: i ∼ j, if one (and thus all) of the conditions of Lemma 2.1.9 are satisfied.

Proof of Lemma 2.1.9. ‘(a) ⇐⇒ (b)’ is evident.
‘(b) =⇒ (c)’: We infer from ker(i) = ker(j) that i(k) = i(`) if and only if j(k) =
j(`). Thus the map Ran j 3 j(k) 7→ i(k) ∈ Ran i is bijective and extends to a
bijective map σ : N→ N such that σ(m) = m for m > max{Ran i ∪ Ran j}.
‘(c) =⇒ (b)’: We infer from the bijectivity of the map σ ∈ S∞ that ker(j) =
ker(σ ◦ j) = ker(i).

2.1.2 Basics on Ordered Set Partitions

We continue with providing the basics of ordered set partitions as we will need
them for CLTs which emerge from the distributional invariance principle of spread-
ability. We closely follow notations and conventions as introduced in [HL19].

Definition 2.1.11. Let A be a finite set and suppose {V1, . . . , Vk} is a set parti-
tion of A.
(1) An ordered set partition π of A is a sequence (V1, . . . , Vk). In other words,
it is a set partition of A where each block is decorated with label to track the
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order. The size of the ordered partition |π| is the size of the underlying partition
{V1, . . . , Vk}.
(2) The set of ordered set partitions of A is denoted by OP(A). If A = [n], then
we also write OP(A) as OP(n).
(3) The ordered partition π = (V1, . . . , Vk) ∈ OP(A) is called an ordered pair
partition if |Vi| = 2 for all 1 ≤ i ≤ k.
(4) The set of all ordered set pair partitions is denoted by OP2(A).
(5) The map OP(A) 3 π 7→ π ∈ P(A) is defined as π = (V1, . . . , Vk) 7→
{V1, . . . , Vk} = π.

Note that, in general, the set A may not be equipped with an order and
an order is only given for the blocks of a partition of this set A. Thus, if
π = (V1, . . . , Vk) ∈ OP(A), then its blocks are labelled by the ordered set [k].
Whenever there is no risk of confusion, we will say that an ordered partition
π ∈ OP(A) has the ‘Property A’ if the corresponding partition π ∈ P(A) has the
‘Property A’. For example, V ∈ π denotes the block V ∈ π, or a block Vi of the
ordered set partition π is called a singleton if Vi is a singleton of π.

Example 2.1.12. We further discuss Example 2.1.3 in the context of ordered
set partitions. Consider the set partition {{1, 4, 5}, {2, 3}, {6}} of the set A =
{1, 2, 3, 4, 5, 6} and denote its three blocks by V1 = {1, 4, 5}, V2 = {2, 3}, and
V3 = {6}. Then there are 3! ordered set partitions πσ ∈ OP(6) of the explicit
form

πσ = (Vσ(1), Vσ(2), Vσ(3)) (σ ∈ S3).

Here S3 denotes the permutation group on the set [3]. The ordered partition πσ are
represented by the figure below, where σ−1 denotes the inverse of the permutation
σ ∈ S3.

1 2 3 4 5 6

σ−1(1)

σ−1(2)
σ−1(3)

Note that the map OP(6) 3 πσ 7→ πσ ∈ P(6), loosely phrasing, drops the ‘deco-
ration’ of the partition, such that above figure becomes the following diagram:

1 2 3 4 5 6

Example 2.1.13. Consider the pair partition
{
{1, 4}, {2, 5}, {3, 6}

}
∈ P2(6) and

denote its three blocks by V1 = {1, 4}, V2 = {2, 5}, and V3 = {3, 6}. For σ ∈
S3, the six ordered pair partitions (Vσ(1), Vσ(2), Vσ(3)) are visualized again by the
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following diagram:

1 2 3 4 5 6

σ−1(1)

σ−1(2)

σ−1(3)

Lemma 2.1.14. Let k ∈ N. The set of all ordered pair partitions OP2(2k) has

|OP2(2k)| = k! |P2(2k)| = k! · (2k − 1)!!

elements.

Proof. We already know |P2(2k)| = (2k − 1)!! from Lemma 2.1.5, and there are
k! possibilities to order the blocks of each pair partition in P(2k).

We introduce next restrictions of ordered partitions as we will meet them again
in Theorems 3.4.9 and 3.4.13, a CLT for certain spreadable families of random
variables.

Definition 2.1.15. Let W ⊂ [n] be non-empty. The W -restriction of π =
(V1, V2, . . . , Vk) ∈ OP(n) is given by the ordered partition

π|W := (Wi1 ,Wi2 , . . . ,Wi`) ∈ P(W ),

where Wi := Vi ∩W with i ∈ I := {i ∈ [k] | Vi ∩W 6= ∅} and 1 ≤ i1 < i2 < · · · <
i` ≤ k.

Note again that, as already discussed after Definition 2.1.6, π|W 6= ∅ is ensured
for any W -restriction of an ordered partition π.

We repeat Example 2.1.7 in the context of ordered partitions for the conve-
nience of the reader.

Example 2.1.16. Let π = (V1, V2, V3, V4) =
(
{1, 3, 4}, {2, 5, 8, 9}, {6, 10}, {7}

)
∈

OP(10) and W = {2, 4, 5, 7, 8, 9} ⊂ [10]. Then one has

V1 ∩W = {4}, V2 ∩W = {2, 5, 8, 9}, V3 ∩W = ∅, V4 ∩W = {7}.

Thus the W -restriction of the ordered partition π is given by π|W = (V1 ∩W,V2 ∩
W,V4 ∩W ) ∈ OP(W ).

Notation 2.1.17. Let (B,<) be an (totally) ordered set and suppose B1, B2 are
subsets of B. We will write B1 < B2 if b1 < b2 for all b1 ∈ B1 and b2 ∈ B2.

Definition 2.1.18. Let A be a set and (B,<) be an (totally) ordered set. The
ordered kernel set partition of the function i : A → B, denoted by kerO(i), is the
ordered partition π = (V1, . . . , Vk) ∈ OP(A) such that {V1, . . . , Vk} = ker(i) for
some 1 ≤ k ≤ n with n = |A| and i(Vi) < i(Vj) for all 1 ≤ i < j ≤ k.
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Remark 2.1.19. We will be mainly interested in the sets A = [n] and B = N in
Definition 2.1.18. This is also the setting for which Hasebe and Lehner introduce
ordered kernel set partitions in [HL19, Definition 3.3]. The ordered kernel set
partition kerO(i) of the function i : [n] → N can be constructed as follows. Pick
the smallest element in the image of i, say i(r1), and then define the first block
V1 = {r ∈ [n]|i(r) = i(r1)}. Then choosing the second smallest element, say
i(r2), define V2 = {r ∈ [n]|i(r) = i(r2)}. Repeating this procedure until all
elements in [n] are associated to a block, we obtain the ordered set partition
kerO(i) := (V1, . . . , Vk), where k is the size of the ordered partition.

Example 2.1.20. Let A = [10] and B = N (equipped with its natural order).
Consider the function i : [10]→ N with kernel set partition

ker(i) = {{1, 3, 4}, {2, 5, 8, 9}, {6, 10}, {7}}.

Note that the specific order of listing these blocks does not matter for ker(i). If
i(2) < i(7) < i(1) < i(6), then i has the ordered set kernel partition

kerO(i) = ({2, 5, 8, 9}, {7}, {1, 3, 4}, {6, 10}).

If i(1) < i(6) < i(7) < i(2), then i has the ordered set kernel partition

kerO(i) = ({1, 3, 4}, {6, 10}, {7}, {2, 5, 8, 9}).

There are 4! possibilities of how the four values i(1), i(2), i(3), and i(4) can be
ordered. Defining the blocks

V1 := {1, 3, 4}, V2 := {2, 5, 8, 9}, V3 := {6, 10}, V4 := {7},

there is a bijective correspondence between ordered kernel set partitions kerO(i)
with kernel set partition ker(i) = {V1, V2, V3, V4} and permutations σ ∈ S4 such
that kerO(i) = (Vσ(1), Vσ(2), Vσ(3), Vσ(4)). Note that we did not make use of that
the set A = [10] is actually an ordered set. Also, we did not make use of the fact
that the set [4] (labelling the blocks V1 to V4) is an ordered set.

Let (A,<) and (B,<) be ordered sets. A function f : A → B is said to be
order preserving if a < a′ implies f(a) < f(a′) for all a, a′ ∈ A.

Lemma 2.1.21. The following are equivalent for two functions i, j : [n]→ N:

(a) i(r) ≤ i(s)⇐⇒ j(r) ≤ j(s) for all r, s ∈ [n];

(b) kerO(i) = kerO(j);

(c) τ ◦ i = σ ◦ j for some σ, τ ∈ S∞ with order preserving restrictions σ|Ran j and
τ |Ran i.
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Actually, one can choose in Lemma 2.1.21 (c) either τ or σ to be the trivial
permutation.

Definition 2.1.22. We say that the two functions i, j : [n] → N are order equiv-
alent, in symbols: i ∼O j, if one (and thus all) of the conditions of Lemma 2.1.21
are satisfied.

Proof of Lemma 2.1.21. ‘(a) =⇒ (b)’: Since (a) implies i(r) = i(s) ⇐⇒ j(r) =
j(s) for all r, s ∈ [n], it follows that ker(i) = ker(j) = {V1, V2, . . . Vk} for some
V1, V2, . . . , Vk which we may choose such that i(Vi) < i(Vj) for 1 ≤ i < j ≤ k. Do-
ing so we conclude from the order relations in (a) that one also has j(Vi) < j(Vj)
for 1 ≤ i < j ≤ k. But this shows kerO(i) = kerO(j).
‘(b) =⇒ (a)’: Suppose kerO(i) = kerO(j) = (V1, V2, . . . , Vk). It is immediate from
the definition of an ordered kernel set partition that i(r) ≤ i(s) implies r ∈ Vi and
s ∈ Vj with 1 ≤ i ≤ j ≤ k. But the latter implies j(r) ≤ j(s). Exchanging the
roles of i and j, the same argument ensures that j(r) ≤ j(s) implies i(r) ≤ i(s).
‘(a) =⇒ (c)’: Consider the two order equivalent n-tuples (i(1), . . . , i(n)) and
(j(1), . . . , j(n)), and let (k(1), . . . ,k(n)) be another order equivalent tuple such
that min{k(`) | 1 ≤ ` ≤ n} > max{i(`), j(`) | 1 ≤ ` ≤ n}. Clearly, there exist two
permutations σ, τ ∈ S∞ with τ ◦ i = k and σ ◦ j = k such that τ |Ran i and σ|Ran j

are order preserving.
‘(c) =⇒ (a)’: Clearly τ ◦ i(r) ≤ τ ◦ i(s) if and only if σ ◦ j(r) ≤ σ ◦ j(s). Since
the restrictions of τ and σ to the ranges of i and j, respectively, are order pre-
serving we also know that τ ◦ i(r) ≤ τ ◦ i(s) if and only if i(r) ≤ i(s), as well
as σ ◦ j(r) ≤ σ ◦ j(s) if and only if j(r) ≤ j(s). As the considered relations are
transitive, we arrive at the equivalence claimed in (a).

Example 2.1.23. Let the functions i, j : [5] → N be given by the two tuples
(1, 3, 4, 1, 3) and (1, 2, 5, 1, 2), respectively. We find two permutations σ, τ ∈ S∞
such that their restrictions σ|Ran j and τ |Ran i are order preserving maps such that
τ ◦ i = σ ◦ j. To see this consider the tuple (1, 10, 100, 1, 10) which corresponds
to a function k : [n] → N. Clearly, there exist permutations σ, τ ∈ S∞ such that
σ|Ran j and τ |Ran i are order preserving such that τ ◦ i = k and σ ◦ j = k.

Alternatively, one could have taken for k : [5] → N the function which is
determined by the tuple (1, 2, 3, 1, 2), as both other tuples can be obtained from
this one by ‘spreading’. Now the argument is that there exist permutations σ, τ ∈
S∞ such that i = τ ◦k and j = σ ◦k with order preserving restrictions σ|Rank and
τ |Rank.

So far we have considered ordered set partitions P(A) where A was assumed
to be a set.

Definition 2.1.24. Let (A,<) be an ordered finite set. The partition π =
{V1, . . . , Vk} ∈ P(A) or the ordered partition π = (V1, . . . , Vk) ∈ OP(A) are
said to be in standard order if minV1 < minV2 < · · · < minVk.
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We will frequently make use of the fact that the ordered set partitions of an
ordered finite set (A,<) are in a bijective correspondence with pairs consisting of
a set partition and a permutation.

Notation 2.1.25. Let (A,<) be a finite ordered set and suppose 1 ≤ k ≤ |A|.
We write

P(A, k) := {π ∈ P(A) | π is standard ordered with |π| = k }

and
OP(A, k) := {π ∈ OP(A) | |π| = k}

for set partitions and ordered set partitions of length k, respectively. If A =
[n], then P([n], k) and OP([n], k) will be also written as P(n, k) and OP(n, k),
respectively.

Note that P(A, k) = {π ∈ P(A) | |A| = k}, as the standard ordering only
effects the labeling of the blocks of the partition π. Insisting on writing down the
partition π in standard order is of advantage for the formulation of the follow-
ing bijective correspondence between ordered partitions, pairs of partitions, and
permutations.

Lemma 2.1.26. Let A be a finite ordered set. The map

P(A, k)× Sk 3 ({V1, . . . , Vk}, σ) 7→ (Vσ(1), . . . , Vσ(k)) ∈ OP(A, k)

is bijective.

Proof. We show that the map, as stated in the lemma, is both injective and
surjective. Suppose {V1, . . . , Vk}, {Ṽ1, . . . , Ṽk} ∈ P(A, k) and the permutations

σ, σ̃ ∈ Sk satisfy (Vσ(1), . . . , Vσ(k)) = (Ṽσ̃(1), . . . , Ṽσ̃(k)). Thus

{V1, . . . , Vk} = {Vσ(1), . . . , Vσ(k)}
= {Ṽσ̃(1), . . . , Ṽσ̃(k)} = {Ṽ1, . . . , Ṽk}.

We conclude from this that Vi = Ṽi for all 1 ≤ i ≤ k, since both partitions
{V1, . . . , Vk} and {Ṽ1, . . . , Ṽk} are in standard order. We conclude from this on
the level of ordered partitions that

(Ṽσ(1), . . . , Ṽσ(k)) = (Vσ(1), . . . , Vσ(k)) = (Ṽσ̃(1), . . . , Ṽσ̃(k)),

and thus σ = σ̃. This insures the injectivity of the map. We are left to prove the
surjectivity of the map. So let π ∈ OP(A, k) of the form π = (W1, . . . ,Wk) which
may not be in standard order. Since A is an ordered set, the blocks W1 to Wk can
be reordered by a permutation σ ∈ Sk such that (Wσ(1), . . . ,Wσ(k)) is in standard
order. Now put Vi := Wσ(i) for 1 ≤ i ≤ k. Then we have

({V1, . . . , Vk}, σ−1) 7→ (Vσ−1(1), . . . , Vσ−1(k)) = (W1, . . . ,Wk),

since Vσ−1(i) = Wσ(σ−1(i)) = Wi. Thus the map is also surjective.
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Corollary 2.1.27. Let A be a finite ordered set with even cardinality |A| = 2k.
The map

P2(A)× Sk 3 ({V1, . . . , Vk}, σ) 7→ (Vσ(1), . . . , Vσ(k)) ∈ OP2(A)

is bijective.

Proof. Clearly P2(A) ⊂ P(A, k) and OP2(A) ⊂ OP(A, k). Clearly, the bijection

P(A, k)× Sk 3 ({V1, . . . , Vk}, σ) 7→ (Vσ(1), . . . , Vσ(k)) ∈ OP(A, k)

restricts to a bijection from P2(A)× Sk onto OP2(A).

Remark 2.1.28. It can be seen that, for an ordered finite set A, the map
OP(A) 3 π 7→ π ∈ P(A) restricts to a bijection from the subset of standard
ordered partitions in OP(A) to the set of partitions P(A).

2.1.3 Crossings

We introduce next the notation of crossing partitions. This requires the set A to
be a equipped with an order relation <, to obtain an ordered set (A,<). When
considering for A the sets N or [n], we assume throughout that they are equipped
with the canonical order relation. For brevity, we will address the ordered sets
(N, <) and ([n], <) just as N or [n], respectively.

Definition 2.1.29. (1) A partition π = {V1, . . . , Vk} of the finite (ordered) set
[n] is said to be a crossing partition if there exist elements p1 < q1 < p2 < q2 in
[n] such that p1, p2 ∈ Vp and q1, q2 ∈ Vq for some distinct p, q ∈ [k].
(2) A partition π = {V1, . . . , Vk} of the (ordered) set [n] is said to be non-crossing
if it is not a crossing partition. The set of non-crossing partitions of the (ordered)
set [n] is denoted by NP(n).
(3) Suppose π = {V1, . . . , Vk} ∈ P2(2k) is a pair partition which has listed its
blocks V1, V2, . . . , Vk in increasing order of their minimal elements. We denote by
cr(π) the total number of crossings of the pair partition π which is given by the
explicit formula

cr(π) = card{(i, j) | 1 ≤ i < j ≤ k, Vi and Vj are crossing }.

Example 2.1.30. Consider the partition π =
{
{1, 5, 6}, {2, 3}, {4, 7}

}
of the

ordered set [7]. Then π is a crossing partitions since 1 < 4 < 5 < 7 and 1, 5 ∈
{1, 5, 6} and 4, 7 ∈ {4, 7}. This is visualized in the following diagram.

1 2 3 4 5 6 7
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1 2 3 4 5 6

Figure 2.1: Pair partition π ∈ P(6) with cr(π) = 3.

Example 2.1.31. The pair partition π =
{
{1, 4}, {2, 5}{3, 6}

}
∈ P2(6) has

cr(π) = 3 crossings, as it can be read off from Figure 2.1, as already shown
in Example 2.1.4: We use this example to illustrate an alternative method to
visualize pair partitions of an ordered finite set. So consider π ∈ P2(6) as given
above. We arrange the elements of the ordered set [6] counterclockwise on the
circumference of circle and connect the two elements of each pair by an arc which
drawn inside of the circle. This results for the pair partition π in three crossings
as shown in Figure 2.2.

1

2

3

4

5

6

Figure 2.2: Pair partition π ∈ P(6) with cr(π) = 3.

If the underlying set A is an ordered set, then the notion of a crossing partition
transfers to ordered partitions. We will make use of this only when the ordered
set A is given by [n].

Definition 2.1.32. An ordered set partition π ∈ OP(n) is non-crossing if the
partition π has this property. The set of non-crossing ordered partitions is denoted
by NOP(n).

2.1.4 Oriented Crossings

The concept of an oriented crossing is well-studied for braids and is also under-
lying the definition of so-called z-circular systems by Mingo and Nica in [MN01].
Independently, we have identified that oriented crossings are of relevance for the
combinatorics which emerges from certain CLTs of braidable sequences. We in-
troduce next the idea of an oriented crossing for ordered pair partitions, adapting
the approach of Mingo and Nica in [MN01, Subsection 1.4] as appropriate within
our combinatorial treatment of *-algebraic CLTs.
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Let C,D,E, F be distinct points in the plane such that the line segment CD
crosses the line segment EF . To formulate the idea of an oriented crossing one
needs additional data about

(α) the direction of each of the two line segments,

(β) the order of the two line segments,

such that one can determine an orientation of the crossing according to the right-

hand rule. Thus one has to consider the two directed line segments
−−→
CD and

−→
EF .

Furthermore, these two directed line segments need to be decorated by labels to

specify the order of
−−→
CD and

−→
EF in their vector product. Thus, if the vector

−→w :=
−−→
CD×

−→
EF is oriented upwards of the plane spanned by the two vectors

−−→
CD

and
−→
EF , then

−−→
CD and

−→
EF are said to have a positive crossing. If −→w is oriented

downwards of this plane, then we say that
−−→
CD and

−→
EF are said to have a negative

crossing. These conventions can be remembered by the so called right-hand rule,
see Figure 2.3. To be more precise, in the left diagram of Figure 2.3, the thumb
represents the line segment with the smaller label ‘1’ and points into the direction
of the point ‘D’. Furthermore, the index finger represents the line segment with
the larger label ‘2’ and points into the direction of ‘F’. Consequently, the middle
finger points ‘upwards’, and thus the crossing needs to be decorated with a plus
sign.

E

FC

D
2

1

+

E

FC

D
1

2

−

Figure 2.3: Positive crossing (left) and negative crossing (right).

Equally well the order of the two line segments may be encoded topologically
by drawing the first line segment above the second one, as it is done for geometric
braids and shown in Figure 2.4.

E

FC

D

−

E

FC

D

+

Figure 2.4: Positive crossing (left) and negative crossing (right).

Alternatively, we may display the direction of the line segments by drawing an
asterix at the point from which the directed line segment emerges. This convention
allows us to draw an oriented crossing as shown in Figure 2.5.
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E*

FC*

D

−

E*

FC*

D

+

Figure 2.5: Positive crossing (left) and negative crossing (right).

Quite in parallel to displaying pair partitions for ordered finite sets, as shown
in Figure 2.1 and Figure 2.2, ordered pair partitions can be displayed as depicted
for the standard ordered pair partition π = ({1, 4}, {2, 5}, {3, 6}) ∈ OP2(6) in
Figure 2.6. The elements of the ordered set [6] are again displayed in linear order
(Figure 2.6 (i)) or counterclockwise on the circumference of a circle (Figure 2.6
(ii) & (iii)). Additionally, one needs now to keep track of the order of the blocks
of the partition, which is done graphically by labelling each of the three blocks
(see Figure 2.6 (i) & (ii)) or, alternatively, by topologically specifying the order
of the blocks (as shown in Figure 2.6 (iii)). To be more precise, the counter-
clockwise oriented circumference of the circle is embedded into three-dimensional
space. Now an arc connecting two points on the circumference is thought of to
be a strand connecting these two points. The counterclockwise orientation of the
circumference allows us to specify what is considered topologically to be ‘on top’
or ‘below’. So, the 1-labelled strand runs on top of all strands, the 2-labelled
strand runs below the 1-labelled strand and, more generally, the (k + 1)-labelled
strand runs below the k-labelled strand (as shown for k = 1, 2 in Figure 2.6 (iii)).

Next we need to take care about having ‘directed pairs’ or, addressing this
more geometrically, directed line segments or arcs. Essentially, repeating Figure
2.6, this is illustrated in Figure 2.7 by drawing arced arrows instead of arcs.

Algebraically it will be more convenient to encode the direction of line segments
or arcs by decorating the ‘source’ (from which the arc emerges) by the asterix ‘*’
and the ‘target’(where the arc arrives) by the symbol ‘1’ (which is suppressed in
writing to maintain a light notation).

1 2 3 4 5 6

1

2

3

1

2

3

4

5

612

3

1

2

3

4

5

6

Figure 2.6: Standard ordered pair partition π = ({1, 4}, {2, 5}, {3, 6}) ∈ OP2(6)
pictured in three different ways: (i) left, (ii) middle, and (iii) right.
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1 2 3 4 5 6

1
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1

2

3

4
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1

2

3

4

5

6

Figure 2.7: Three ways to picture a directed standard ordered pair partition(
{1, 4}, {2, 5}, {3, 6}

)
∈ OP2(6).

Definition 2.1.33. (i) The map ε : [n]→ {∗, 1} is called a direction map (associ-
ated to the set of pair partitions P2(n)) if the pre-images of ε satisfy card ε−1({∗}) =
card ε−1({1}). Such a map ε is also said to be balanced.
(ii) Let π ∈ P2(n) be given. The direction map ε : [n] → {∗, 1} is said to be
π-balanced if ε(V ) = {∗, 1} for every V ∈ π.
(iii) Suppose the direction map ε : [n] → {∗, 1} is given for n = 2k with k ∈ N.
Then

P2(n, ε) :=

{
π ∈ P2(n)

∣∣∣∣∣ ε(minV ) 6= ε(maxV ) for all V ∈ π
and minV1 < minV2 < · · · < minVk

}

is called the ε-restricted set of (standard ordered) pair partitions. Furthermore,

OP2(n, ε) :=
{
π ∈ OP2(n)

∣∣ε(minV ) 6= ε(maxV ) for all V ∈ π
}

is called the ε-restricted set of ordered pair partitions.

An ε-restricted set of ordered pair partitions is illustrated in Figure 2.8. Actu-
ally Figure 2.8 is an example of standard ordered pair partition. Figure 2.9 shows
the more general case of a possibly not-standard ordered pair partition, where
a geometric representation through underpass or overpass strands is specified by
the permutation σ.

We recall from Corollary 2.1.27 that there exists a bijective correspondence
between ordered pair partitions of OP2(2k) and pairs of (standard ordered) pair
partitions of P2(2k) and permutations in Sk. We address next that this corre-
spondence is also valid for ε-restricted sets of ordered pair partitions.

Corollary 2.1.34. Let the direction map ε : [n]→ {∗, 1} be given for n = 2k with
k ∈ N. The map

P2(n, ε)× Sk 3 ({V1, . . . , Vk}, σ) 7→ (Vσ(1), . . . , Vσ(k)) ∈ OP2(A, ε)

is bijective.
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1* 2* 3 4 5 6*

1

2

3

1*

2*

3

4

5

6*12

3

1*

2*

3

4

5

6*

Figure 2.8: Three alternative ways to picture the directed standard ordered pair
partition

(
{1, 4}, {2, 5}, {3, 6}

)
∈ OP2(6, ε) with ε(1) = ε(2) = ε(6) = ∗ and

ε(3) = ε(4) = ε(5) = 1.

Proof. We have already established in Corollary 2.1.27 that the bijective map

P([n], k)× Sk 3 ({V1, . . . , Vk}, σ) 7→ (Vσ(1), . . . , Vσ(k)) ∈ OP([n], k)

restricts to a bijection from P2(A)×Sk to OP2(A). This bijection maps the block
Vi to the block Vσ(i). Clearly, the additional property ε(minV ) 6= ε(maxV ) is
preserved under this bijection. Consequently, this bijection restricts further to a
bijection from P2(n, ε)× Sk onto OP2(n, ε).

Building on the geometric idea of an oriented crossing, the orientation of
crossings is determined by the data of an ε-directed ordered pair partition in
π ∈ OP2(2k, ε) or, equivalently, of the triple

(π, ε, σ) ∈ P2(2k)×
{
f : [2k]→ {∗, 1}

}
× Sk.

For such a triple (π, ε, σ), the orientation of each crossing of the pair partition
π is uniquely determined by the geometric representation of the triple, using the
right-hand rule and as illustrated in Example 2.1.37 below.

1*

2*

3

4

5

6*σ−1(1)σ−1(2)

σ−1(3)

1*

2*

3

4

5

6*31

2

Figure 2.9: ε-Restricted ordered pair partition (Vσ(1), Vσ(2), Vσ(3)) ∈ OP2(6, ε) with
ε(1) = ε(2) = ε(6) = ∗ and ε(3) = ε(4) = ε(5) = 1, blocks V1 = {1, 4}, V2 =
{2, 5}, V3 = {3, 6} and permutation σ ∈ S3 (left), and (V2, V3, V1) ∈ OP2(6, ε)
with σ(1) = 2, σ(2) = 3 and σ(3) = 1 (right).
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Definition 2.1.35. Let an ε-directed ordered pair partition π ∈ OP2(2k, ε) be
given by the triple

(π, ε, σ) ∈ P2(2k)×
{
f : [2k]→ {∗, 1}

}
× Sk.

Then the number of crossings of π which have positive orientation and negative
orientation is denoted by cr+(π, ε, σ) and cr−(π, ε, σ), respectively.

The number of crossings with positive or negative orientation sums up of course
to the number of all crossings of π:

cr+(π, ε, σ) + cr−(π, ε, σ) = cr(π).

Explicit formulas are available for the number of oriented crossings. Let sgn
denote the signum function such that x = |x|sgn(x) for all x ∈ R.

Lemma 2.1.36 ([MN01, 1.4.2]). Let the ε-directed ordered pair partition π =
(Vσ(1), . . . , Vσ(k)) ∈ OP2(2k, ε) be given by the triple (π, ε, σ) where π = {V1, . . . , Vk}
is in standard order. Then one has:

cr+(π, ε, σ) = card

{
(i, j)

∣∣∣∣∣ 1 ≤ i < j ≤ k, Vi and Vj cross,
ε(minVi) · ε(minVj) = sgn

(
σ(j)− σ(i)

) },
cr−(π, ε, σ) = card

{
(i, j)

∣∣∣∣∣ 1 ≤ i < j ≤ k, Vi and Vj cross,
ε(minVi) · ε(minVj) = −sgn

(
σ(j)− σ(i)

) }.
Here the product ‘ε(minVi) · ε(minVj)’ is evaluated according to the following
convention: ‘∗ · 1’ and ‘1 · ∗’ equal −1, the two other products ‘∗ · ∗’ and ‘1 · 1’
equal 1.

Example 2.1.37. For n = 8, consider the standard ordered pair partition

π = {{1, 5}, {2, 6}, {3, 7}, {4, 8}} ∈ P2(8).

Let the direction map ε : [8]→ {1, ∗} be given by ε(1) = ε(2) = ε(3) = ε(4) = 1
and ε(5) = ε(6) = ε(7) = ε(8) = ∗, and the permutation σ ∈ S4 be given by
σ(1) = 2, σ(2) = 3, σ(3) = 4, and σ(4) = 1. Then the ε-restricted standard
ordered pair partition

(
{1, 5}, {2, 6}, {3, 7}, {4, 8}

)
∈ OP2(8, ε) has 6 positive

crossings and 0 negative crossings:

cr+(π, ε, σ0) = 6, cr−(π, ε, σ0) = 0.

Here σ0 ∈ S8 denotes the neutral element of the group. The ε-restricted ordered
partition

(
{2, 6}, {3, 7}, {4, 8}, {1, 5}

)
∈ OP2(8, ε) has 3 positive crossings and 3

negative crossings:

cr+(π, ε, σ) = 3, cr−(π, ε, σ) = 3.
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2.2 Basics of *-Algebraic Probability Theory

In this section we collect basic definitions that are related to noncommutative
probability spaces, which can be found in various books such as [NS06, Sp19].

Definition 2.2.1. A *-algebraic probability space (A, ϕ) consists of a unital *-
algebra A over C and a C-linear functional ϕ : A → C such that ϕ(1A) = 1 and
ϕ(x∗x) ≥ 0 for all x ∈ A. Here 1A denotes the identity of A. A *-algebraic
probability space (A, ϕ) is said to be tracial if ϕ is a trace, i.e. one has ϕ(ab) =
ϕ(ba) for all a, b ∈ A. A *-algebraic probability space (A, ϕ) is said to be classical
if A is commutative, i.e. one has ab = ba for all a, b ∈ A.

Given the *-algebraic probability space (A, ϕ), an element a ∈ A is also called
a random variable. The random variable a ∈ A is said to be centered if ϕ(a) = 0.
Furthermore, a random variable a ∈ A is said to be self-adjoint if a = a∗ and,
more generally, to be normal if a∗a = aa∗.

Frequently, we will make use of the fact that ϕ(a∗) = ϕ(a) for all a ∈ A. In
particular, one has ϕ(a) ∈ R for any self-adjoint random variable a ∈ A. More-
over, one has the following Cauchy-Schwarz inequality for a *-algebraic probability
space (A, ϕ):

|ϕ(x∗y)| ≤
√
ϕ(x∗x)

√
ϕ(y∗y) for x, y ∈ A.

Note that the map A×A 3 (x, y) 7→ ϕ(x∗y) ∈ C is sesquilinear and thus defines
a semi-inner product on the vector space A.

Definition 2.2.2. Let (A, ϕ) be an algebraic probability space and let a ∈ A.
Then ϕ(an) is called the n-th moment of the random variable a. More generally,
for n, d ∈ N and i(1), . . . , i(n) ∈ [d], we call ϕ(ai(1) · · · ai(n)) a joint moment (of
order n) of the family of random variables a1, a2, . . . , ad ∈ A.

Occasionally, joint moments of random variables are also addressed as mixed
moments. For example, ϕ(ambn) is a mixed moment of the two distinct random
variables a, b ∈ A, for any m,n ∈ N.
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Definition 2.2.3. Let (A, ϕ) be a *-algebraic probability space. Two random
variables a, b ∈ A are said to be identically distributed if

ϕ
(
aε(1)aε(2) · · · aε(n)

)
= ϕ

(
bε(1)bε(2) · · · bε(n)

)
for all ε : [n] → {1, ∗} and n ∈ N. More generally, for some index set I, two
families of random variables (ai)i∈I and (bi)i∈I in A are said to be identically
distributed if, for any n ∈ N,

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= ϕ

(
b
ε(1)
i(1) · · · b

ε(n)
i(n)

)
for all i : [n]→ I and ε : [n]→ {1, ∗}.

If a, b ∈ A are normal, then a and b are identically distributed if

ϕ
(
(a∗)ka`

)
= ϕ

(
(b∗)kb`

)
for all k, ` ≥ 0. Note that a classical *-algebraic probability space contains only
normal random variables. If a, b are self-adjoint, then a and b are identically
distributed if

ϕ
(
an
)

= ϕ
(
bn
)

for all n ∈ N.

Definition 2.2.4. Let (A, ϕ) be a classical *-algebraic probability space. The
family of random variables {ai}i∈I ⊂ A, for some index set I, is said to be
(classically) independent if, for any n ∈ N,

ϕ
(
ak1i1 (a∗i1)

`1ak2i2 (a∗i2)
`2 · · · aknin (a∗in)`n

)
= ϕ

(
ak1i1 (a∗i1)

`1
)
ϕ
(
ak2i2 (a∗i2)

`2
)
· · ·ϕ

(
aknin (a∗in)`n

)
for any distinct i1, . . . , in ∈ I and any k1, . . . , kn, `1, . . . `n ∈ N.

Definition 2.2.5. Let (AN , ϕN), with N ∈ N, and (A, ϕ) be *-algebraic proba-
bility spaces. Consider the random variables aN ∈ AN for each N ∈ N and a ∈ A.
The sequence (aN)N∈N is said to converge in distribution towards a, in symbols:

aN
distr−−→ a,

if we have
lim
N→∞

ϕN
(
a
ε(1)
N · · · aε(n)N

)
= ϕ

(
aε(1) · · · aε(n)

)
for all n ∈ N and ε : [n]→ {1, ∗}.

Definition 2.2.6. Let (AN , ϕN), with N ∈ N, and (A, ϕ) be *-algebraic proba-
bility spaces, and let C be a set. Consider for each c ∈ C the random variables
ac,N ∈ AN and ac ∈ A. The tuple (ac,N)c∈C is said to converge in distribution
towards the tuple (ac)c∈C , in symbols:

(ac,N)c∈C
distr−−→ (ac)c∈C ,
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if all joint moments converge towards the corresponding joint moments i.e.

lim
N→∞

ϕN
(
a
ε(1)
t(1),N · · · a

ε(n)
t(n),N

)
= ϕ

(
a
ε(1)
t(1) · · · a

ε(n)
t(n)

)
for all n ∈ N, t : [n]→ C, and ε : [n]→ {1, ∗}.

Definition 2.2.7. Let (A, ϕ) be a *-algebraic probability space.

(i) An endomorphism α of (A, ϕ) is a unital *-homomorphism of A such that
ϕ ◦ α = ϕ. In particular, α is said to be an automorphism of (A, ϕ) if α
is a (unital) *-automorphism of A. The set of endomorphisms of (A, ϕ) is
denoted by End(A, ϕ), and the set of automorphisms of (A, ϕ) is denoted
by Aut(A, ϕ).

(ii) Aα denotes the fixed point algebra of α ∈ End(A, ϕ), i.e. Aα = {a ∈ A |
α(a) = a}.

2.3 Distributional Symmetries

We start with introducing the most common distributional symmetries and in-
variance principles. Our approach adapts that of [GK09, Kö10] to the framework
of *-algebraic probability spaces.

We will introduce presentations of the symmetric groups Sn and S∞ via rela-
tions for generators in Definition 2.3.4. Here we just remind that the symmetric
group Sn is the group of all bijections on the set [n] for n ∈ N. Furthermore, the
infinite symmetric group S∞ is the inductive limit of the groups Sn for n→∞.

Definition 2.3.1. Let (A, ϕ) be a *-algebraic probability space. The sequence of
random variables x ≡ (xn)∞n=1 ⊂ A is said to be

(i) exchangeable if, for all n ∈ N and ε : [n]→ {1, ∗},

ϕ(x
ε(1)
i(1) · · · x

ε(n)
i(n) ) = ϕ(x

ε(1)
σ(i(1)) · · ·x

ε(n)
σ(i(n)))

for all i : [n]→ N and σ ∈ S∞;

(ii) spreadable if, for all n ∈ N and ε : [n]→ {1, ∗},

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
j(1) · · ·x

ε(n)
j(n) )

whenever i, j : [n]→ N are order equivalent;

(iii) stationary if, for all k, n ∈ N and ε : [n]→ {1, ∗},

ϕ(x
ε(1)
i(1) x

ε(2)
i(2) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
i(1)+kx

ε(2)
i(2)+k · · ·x

ε(n)
i(n)+k)

for all i : [n]→ N;
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(iv) identically distributed if, for all k, n ∈ N and ε : [n]→ {1, ∗},

ϕ(x
ε(1)
1 x

ε(2)
1 · · · xε(n)1 ) = ϕ(x

ε(1)
k x

ε(2)
k · · ·xε(n)k ).

Lemma 2.3.2. One has the following hierarchy of distributional symmetries:

(i)⇒ (ii)⇒ (iii)⇒ (iv).

Proof. (i)⇒ (ii) follows from the fact that i ∼O j if and only if there exists some
permutation σ ∈ S∞ such that j = σ ◦ i and σ|{i(1),...,i(n)} is order preserving. All
other implications are clear.

Remark 2.3.3. (i) The role of the infinite symmetric group S∞ in the above
definition of exchangeability could be taken by the larger group SN, the group of
all bijections on N. As exchangeability is about the invariance of joint distribution,
replacing S∞ by SN would be without effect since any joint distribution involves
only finitely many random variables. More precisely, let i(1), . . . , i(n) ∈ N for some
n ∈ N and consider some bijection σ̂ ∈ SN. Then there exist a permutation σ ∈ S∞
such that σ̂(i(k)) = σ(i(k)) for k = 1, 2, . . . , n. As an immediate consequence, a
sequence x ≡ (xn)∞n=1 ⊂ A is exchangeable if and only if, for all n ∈ N,

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
β(i(1)) · · ·x

ε(n)
β(i(n)))

for all ε : [n]→ {1, ∗}, i : [n]→ N, and all bijections β : N→ N.
(ii) The strictly increasing (or order preserving) maps on N form a monoid which
contains the so-called partial shift monoid

S = 〈(θn)∞n=1 | θkθ` = θ`+1θk, 1 ≤ k ≤ ` <∞〉+

as a submonoid. More concretely, this partial shift monoid S can be seen to be
isomorphic to the monoid generated by the partial shifts, denoted for notational
simplicity by the same symbols, (θn)∞n=1 : N→ N, where

θn(i) =

{
i if n > i,

i+ 1 if n ≤ i
.

Roughly phrasing, the partial shifts monoid S relates to the monoid of strictly
increasing maps on N as the infinite symmetric group S∞ relates to the group of
all bijections on N.
(iii) Instead of considering order equivalent sequences for the definition of spread-
ability, one could alternatively demand that the joint distributions are invariant
when replacing the index tuple

(
i(1), . . . , i(n)

)
of the considered random vari-

ables by the index tuple
(
θ(i(1)), . . . , θ(i(n))

)
for any strictly increasing (or or-

der preserving) map θ : N → N. Consequently, a sequence of random variables
x ≡ (xn)∞n=1 ⊂ A is spreadable if and only if, for all n ∈ N,

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
θ(i(1)) · · ·x

ε(n)
θ(i(n)))
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for all ε : [n]→ {1, ∗}, i : [n]→ N, and all order preserving maps θ : N→ N. This
equivalence is also addressed in Proposition 2.3.12.

We continue with further studying the notions of exchangeability and spread-
ability, in particular to provide alternative characterizations for them. These al-
ternative characterizations provide us with a constructive procedure for creating
exchangeable and spreadable sequences (see also [GK09, EGK17]). Furthermore,
this alternative characterization of exchangeability paves the way to a definition
of braidability, which was found as a new distributional symmetry intermediate
to exchangeability and spreadability by Gohm and Köstler (see [GK09, GK12]).

2.3.1 Exchangeability

We provide a constructive procedure for an exchangeable sequence, given a certain
representation of the infinite symmetric group S∞ in the context of *-algebraic
probability spaces. For this purpose, we will make use of the fact that symmetric
groups can be presented in terms of generators and relations. Our presentation
follows [GK09, EGK17] and adapts therein arguments to the setting of *-algebraic
probability spaces.

Definition 2.3.4. The symmetric group Sn, with 1 ≤ n ≤ ∞, is presented by
the Coxeter generators σ1, σ2, . . . , σn−1 satisfying the relations

σiσjσi = σjσiσj if |i− j| = 1, (2.2)

σiσj = σjσi if |i− j| > 1, (2.3)

σ2
i = e. (2.4)

Here e =: σ0 denotes the neutral element of Sn.

We will refer to (2.2) also as braid relations and to (2.3) as commutation
relations. The symmetric group Sn can be seen to be isomorphic to the group
of all bijections on the set [n], such that the Coxeter generator σi corresponds to
the bijection on [n], which transposes i and i+ 1. Throughout we will identify Sn
with the group of all bijections on [n] such that

σi(k) =


k + 1 if k = i,

k − 1 if k = i+ 1,

k otherwise.

Proposition 2.3.5. Let (A, ϕ) be a *-algebraic probability space which is equipped
with a representation ρ : S∞ → Aut(A, ϕ). Suppose further that the sequence
(xn)∞n=1 ⊂ A satisfies

x1 = ρ(σk)x1 (k ≥ 2), (2.5)

xn+1 = ρ(σnσn−1 · · ·σ1)x1 (n ≥ 1). (2.6)
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Then (xn)∞n=1 is exchangeable.

Proof. Suppose the sequence (xn)∞n=1 is given as stated in the proposition. Assume
for now that, for any ε : [n]→ {1, ∗} and ` : [n]→ N,

ϕ(x
ε(1)
`(1) · · ·x

ε(n)
`(n)) = ϕ(x

ε(1)
σi(`(1))

· · ·xε(n)σi(`(n))
) (i ∈ N). (2.7)

Then this immediately implies the exchangeability of the sequence (xn)∞n=1, since
any permutation σ ∈ S∞ can be written as a monomial in the Coxeter generators
σi, i.e. one obtains

ϕ(x
ε(1)
`(1) · · ·x

ε(n)
`(n)) = ϕ(x

ε(1)
σ(`(1)) · · ·x

ε(n)
σ(`(n))) (σ ∈ S∞).

Thus we are left to verify the invariance property claimed in (2.7). Indeed, we
obtain from the invariance of the state ϕ under the *-homomorphism ρ(σi) that

ϕ(x
ε(1)
`(1) · · ·x

ε(n)
`(n)) = ϕ ◦ ρ(σi)

(
x
ε(1)
`(1) · · ·x

ε(n)
`(n)

)
= ϕ

(
ρ(σi)(x

ε(1)
`(1)) · · · ρ(σi)(x

ε(n)
`(n))

)
.

Consequently, it suffices to verify

ρ(σi)(xn) = xσi(n)

for all i, n ∈ N. We consider separately the four cases n = i, n = i+ 1, n > i+ 1,
and n < i.

Case n = i: We verify from the given properties of the sequence and the action
of Coxeter generators on natural numbers that

ρ(σi)xn = ρ(σn)xn

= ρ(σn)ρ(σn−1σn−2 . . . σ1)x1

= ρ(σnσn−1 . . . σ1)x1

= xn+1

= xσi(n).

Case n = i+ 1⇔ i = n− 1: By making use of (2.4), we compute that

ρ(σi)xn = ρ(σn−1)xn

= ρ(σn−1)ρ(σn−1 · · ·σ1)x1
= ρ(σn−1σn−1σn−2 · · ·σ1)x1
= ρ(σn−2σn−3 · · ·σ1)x1
= xn−1

= xσi(n).
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Case n > i+ 1⇔ i < n− 1: Using repeatedly the commutation relations (2.3),
once the braid relation (2.2) and finally the invariance property (2.5), we obtain

ρ(σi)xn = ρ(σi)ρ(σn−1 · · ·σ1)x1
= ρ(σiσn−1 · · ·σi+2σi+1σiσi−1 · · ·σ1)x1
= ρ(σn−1 · · · σi+2σiσi+1σiσi−1 · · ·σ1)x1
= ρ(σn−1 · · · σi+2σi+1σiσi+1σi−1 · · · σ1)x1
= ρ(σn−1 · · · σi+2σi+1σiσi−1 · · ·σ1σi+1)x1

= ρ(σn−1 · · · σ1)ρ(σi+1)x1

= ρ(σn−1 · · ·σ1)x1
= xn

= xσi(n).

Case n < i: Here we use the commutation relations (2.3) and, as i > 1 in this
case, the invariance property (2.5) to compute

ρ(σi)xn = ρ(σi)ρ(σn−1 · · ·σ1)x1
= ρ(σn−1 · · ·σ1)ρ(σi)x1

= xn

= xσi(n).

Altogether, we have verified that ρ(σi)xn = xσi(n) for all i, n ∈ N.

Remark 2.3.6. Actually, the converse of Proposition 2.3.5 is also true if the
*-algebraic probability space (A, ϕ) is equipped with a state ϕ, which restricts
to a faithful state on the unital *-algebra generated by the sequence (xn)∞n=0.
As we will not make further use of this converse, we omit its proof which can be
transferred in a straightforward manner from the arguments provided in the proof
of [GK09, Theorem 1.9].

2.3.2 Spreadability

We present some basics on spreadability as a distributional invariance principle in
the context of *-algebraic probability spaces and refer the reader to [Kö10, GK09,
EGK17] for further information on it. Similar to exchangeability, we present a
procedure on how to construct a spreadable sequence.

Definition 2.3.7. Let S be the monoid of strictly increasing maps on N which is
generated by the partial shifts (θn)∞n=1, where

θn(`) =

{
` if n > `;

`+ 1 if n ≤ `.

We will refer to S also as the partial shifts monoid.
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The following relations are easily verified.

Proposition 2.3.8. One has

θkθn = θn+1θk (2.8)

for any 1 ≤ k ≤ n <∞.

Remark 2.3.9. Note that our labelling of the partial shifts θn differs from that
in [GK09, GK12, EGK17], as we use N instead of N0 for labelling. Nevertheless,
our labelling of partial shifts maintains all relations, in particular the convention
that “θn starts shifting at the point n” or, equivalently, “the strictly increasing
map θn omits the point n”.

Frequently, we will make use of that spreadability can be equivalently formu-
lated in terms of invariance properties with respect to actions of the monoid S on
the index set of a sequence. Related considerations are elementary, but require
some technical preparation for the sake of clarity of the arguments. (This corrects
an erroneous statement in [Kö10, Remark 1.9].)

Lemma 2.3.10. The following are equivalent for two functions i, j : [n]→ N:

(a) there exists θ, θ̃ ∈ S and h : [n]→ N such that i = θ ◦ h and j = θ̃ ◦ h;

(b) i and j are order equivalent, in symbols: i ∼O j.

Proof. ‘(a) ⇒ (b)’: The monoid S is generated by partial shifts θi, which are

order preserving. Thus any θ, θ̃ ∈ S are order preserving. Consequently i = θ ◦ h
and j = θ̃ ◦ h implies i ∼O h and j ∼O h, respectively. Now i ∼O j follows from
the transitivity of equivalence relations.
‘(b) ⇒ (a)’: Suppose i and j are order equivalent. Then the range of i and j
have the same cardinality m ∈ N with 1 ≤ m ≤ n. Furthermore, there exists a
unique h : [n] → N with range {1, . . . ,m} such that h ∼O i and h ∼O j. Since
h(k) ≤ i(k) for all k = 1, . . . , n, there exist some θ ∈ S such that i = θ ◦ h.

Similarly, we conclude that there exists some θ̃ ∈ S such that j = θ̃ ◦ h.

Let us illustrate ‘(b) ⇒ (a)’ of Lemma 2.3.10.

Example 2.3.11. Consider the two order equivalent 7-tuples(
i(1), . . . , i(7)

)
= (3, 5, 3, 6, 5, 6, 3),(

j(1), . . . , j(7)
)

= (1, 4, 1, 7, 4, 7, 1),

which have Ran(i) = {3, 5, 6} and Ran(j) = {1, 4, 7}. Now consider the tuple(
h(1), . . . ,h(7)

)
= (1, 2, 1, 3, 2, 3, 1)

which has the range {1, 2, 3} and which is order equivalent to each of i and j. An
elementary computation shows that one has i = (θ4θ

2
1) ◦ h and j = (θ25θ

2
2) ◦ h.
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Proposition 2.3.12. Let (A, ϕ) be a *-algebraic probability space. The sequence
x ≡ (xn)∞n=1 ⊂ A is spreadable if and only if one of the following equivalent (and
thus both) conditions are satisfied for all fixed n ∈ N:

(a) The sequence x satisfies

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
θ(i(1)) · · · x

ε(n)
θ(i(n)))

for all ε : [n]→ {1, ∗}, i : [n]→ N, and θ ∈ S.

(b) The sequence x satisfies

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
j(1) · · ·x

ε(n)
j(n) )

for all ε : [n]→ {1, ∗} and i, j : [n]→ N with i ∼O j.

Proof. We note that the validity of property ‘(b)’ for all n ∈ N defines spreadabil-
ity, see Definition 2.3.1 (ii).
‘(a) ⇒ (b)’: Suppose i ∼O j. By Lemma 2.3.10, there exists h : [n] → N and

θ, θ̃ ∈ S such that i = θ ◦ h and j = θ̃ ◦ h. Now (a) implies

ϕ(x
ε(1)
i(1) · · ·x

ε(n)
i(n) ) = ϕ(x

ε(1)
θ(h(1)) · · ·x

ε(n)
θ(h(n))) = ϕ(x

ε(1)
h(1) · · ·x

ε(n)
h(n))

= ϕ(x
ε(1)

θ̃(h(1))
· · ·xε(n)

θ̃(h(n))
) = ϕ(x

ε(1)
j(1) · · ·x

ε(n)
j(n) ).

‘(b) ⇒ (a)’: Since any θ ∈ S is order preserving, one has i ∼O θ(i). This ensures
the validity of the claimed implication.

Next we turn our attention to a result, which allows us to construct a spread-
able sequence from knowing the representation of the partial shifts monoid S.

Proposition 2.3.13. Let (A, ϕ) be a *-algebraic probability space which is equipped
with a representation % : S → End(A, ϕ). Suppose further that the sequence
(xn)∞n=1 ⊂ A satisfies

x1 = %(θk)x1 (k ≥ 2), (2.9)

xn+1 = %(θn1 )x1 (n ≥ 1). (2.10)

Then (xn)∞n=1 is spreadable.

Note that (2.10) implies the stationarity of a spreadable sequence, since ϕ ◦
%(θ1) = ϕ.

Proof. Suppose the sequence (xn)∞n=1 is given as stated in the proposition. Let
n ∈ N. Assume for now that, for any ε : [n]→ {1, ∗} and ` : [n]→ N,

ϕ(x
ε(1)
`(1) · · ·x

ε(n)
`(n)) = ϕ(x

ε(1)
θi(`(1))

· · ·xε(n)θi(`(n))
) (i ∈ N). (2.11)
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Then this immediately implies the spreadability of the sequence (xn)∞n=1, since
any θ ∈ S can be written as a monomial in the generators θi, i.e. one obtains

ϕ(x
ε(1)
`(1) · · ·x

ε(n)
`(n)) = ϕ(x

ε(1)
θ(`(1)) · · ·x

ε(n)
θ(`(n))) (θ ∈ S),

which is equivalent to spreadability by Proposition 2.3.12. Thus we are left to
verify the invariance property claimed in (2.11). Indeed, we obtain from the
invariance of the state ϕ under the *-homomorphism %(θi) that

ϕ(x
ε(1)
`(1) · · · x

ε(n)
`(n)) = ϕ ◦ %(θi)

(
x
ε(1)
`(1) · · · x

ε(n)
`(n)

)
= ϕ

(
%(θi)(x

ε(1)
`(1)) · · · %(θi)(x

ε(n)
`(n))

)
.

Consequently, it suffices to verify

%(θi)(xn) = xθi(n)

for all i, n ∈ N. We consider separately the two cases i > n and i ≤ n.

Case i > n: We verify from the given properties of the sequence and the action
of the partial shifts θk on natural numbers that

%(θi)xn = ρ(θiθ
n−1
1 )x1

= ρ(θn−11 θi−n+1)x1

= ρ(θn−11 )x1

= xn = xθi(n).

Here we have used first a multiple times the relations (2.8) and then that i > n⇔
i− n+ 1 > 1 which entails %(θi−n+1)x1 = x1 by the localization property (2.9).

Case i ≤ n: Using again repeatedly the relations (2.8), we compute that

%(θi)xn = ρ(θiθ
n−1
1 )x1

= ρ(θiθ
i−1
1 θn−i1 )x1

= ρ(θi1θ
n−i
1 )x1

= ρ(θn1 )x1

= xn+1 = xθi(n).

Altogether, we have shown that %(θi)xn = xθi(n) for all i, n ∈ N.

2.3.3 Braidability

We discuss the distributional symmetry of braidability in the framework of *-
algebraic probability spaces (see also [EGK17]) and show that braidability implies
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spreadability. Our presented notion of braidability in Definition 2.3.14 generalizes
exchangeability (in the sense of Definition 2.3.1), whenever the latter realized as
done in Proposition 2.3.5 (see also Remark 2.3.6).

Let n ≥ 2. The braid group Bn is presented by the so-called Artin generators
σ̃1, σ̃2, . . . , σ̃n−1 satisfying the following relations:

σ̃iσ̃jσ̃i = σ̃jσ̃iσ̃j if |i− j| = 1, (2.12)

σ̃iσ̃j = σ̃jσ̃i if |i− j| > 1. (2.13)

The inductive limit of the braid groups Bn for n → ∞ is denoted by B∞ and
called the infinite braid group.

Definition 2.3.14. Let (A, ϕ) be a *-algebraic probability space. The sequence
of random variables (xn)n>1 ⊂ A is said to be braidable if there exists a represen-
tation ρ : B∞ → Aut(A, ϕ) such that:

x1 = ρ(σ̃k)x1 if k ≥ 2, (2.14)

xn+1 = ρ(σ̃n · · · σ̃1)x1 if n ≥ 1. (2.15)

Proposition 2.3.15. The exchangeable sequence (xn)∞n=1 from Proposition 2.3.5
is braidable.

Proof. Suppose ρ : S∞ → Aut(A, ϕ) is a representation of the infinite group S∞.
Let ε : B∞ → S∞ denote the epimorphism, which maps Artin generators σ̃n to
Coxeter generators σn for all n ∈ N. Then % := ρ ◦ ε : B∞ → Aut(A, ϕ) defines a
representation of such that an exchangeable sequence is seen to be braidable.

Theorem 2.3.16. Let (A, ϕ) be a *-algebraic probability space. Then a braidable
sequence (xn)∞n=1 ⊂ A is spreadable.

We prepare the proof of this theorem with an elementary result on order
equivalent functions.

Lemma 2.3.17. Suppose i, j : [n] → N are order equivalent. Then there exists a
finite sequence of functions (ha)

b
a=0 : [n] → N such that h0 = i, hb = j and , for

all 0 ≤ a < b,

(i) ha ∼O ha+1;

(ii) Ran(ha)\{ra, ra + 1} = Ran(ha+1)\{ra, ra + 1} for some ra ∈ N.

We omit the elementary proof of this lemma and instead illustrate it by an
example. Note that Lemma 2.3.17 permits the trivial case i = j, but we can of
course assume i 6= j without loss of generality in the following.
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Example 2.3.18. Consider the two order equivalent functions i, j : [7]→ N given
by the two 7-tuples (

i(1), . . . , i(7)
)

= (4, 2, 7, 4, 6, 7, 4),(
j(1), . . . , j(7)

)
= (3, 1, 9, 3, 8, 9, 3).

One has Ran(i) = {2, 4, 6, 7} and Ran(j) = {1, 3, 8, 9}. We construct first order
equivalent functions to match the maximal element in the range of i and with that
of j. Next we construct order equivalent functions to match the second largest
element in the range of i and with that of j, and so on until we have matched
the two smallest elements. Altogether, it is elementary to find order equivalent
functions h0, . . . ,h6 such that h0 = i, h6 = j and

Ran h0 = {2, 4, 6, 7} = Ran i,

Ran h1 = {2, 4, 6, 8},
Ran h2 = {2, 4, 6, 9},
Ran h3 = {2, 4, 7, 9},
Ran h4 = {2, 4, 8, 9},
Ran h5 = {2, 3, 8, 9},
Ran h6 = {1, 3, 8, 9} = Ran j.

Consequently, two consecutive functions ha have all but one point in common in
their range.

Proof of Theorem 2.3.16. Due to Lemma 2.3.17, it suffices to provide a proof for
the situation where the order equivalent functions i and j have a range which
differs only in a single point. To be more precise, consider i : [n]→ N and suppose
that r ∈ Ran(i) and r + 1 6∈ Ran(i). Let j : [n] → N be such that j(k) = i(k)
whenever i(k) 6= r and j(k) = r + 1 whenever i(k) = r. In other words,

j(k) =

{
i(k) for k ∈ {1, n} and i(k) 6= r,

i(k) + 1 for k ∈ {1, n} and i(k) = r.

Clearly i and j are order equivalent. We show next that, for a braidable sequence
(xn)∞n=1,

ϕ(xi(1) · · ·xi(n)) = ϕ(xj(1) · · ·xj(n))
where i and j are as above.

ϕ(xi(1) · · ·xi(n)) = ϕ ◦ ρ(σ̃r)(xi(1) · · ·xi(n)) = ϕ
(
ρ(σ̃r)(xi(1)) · · · ρ(σ̃r)(xi(n))

)
.

We are left to prove that

ρ(σ̃r)(xk) =

{
xk if r 6= k,

xk+1 if r = k.

Thus we will look separately at three cases r = k, r < k, and r > k.
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Case r = k: Using the definition of the sequence (xn)∞n=1 from (2.15), we obtain

ρ(σ̃r)(xk) = ρ(σ̃k)(xk)

= ρ(σ̃k)ρ(σ̃k−1 · · · σ̃1)x1
= ρ(σ̃kσ̃k−1 · · · σ̃1)x1
= xk+1.

Case r < k: We claim that r = k− 1⇔ r+ 1 = k cannot occur. Indeed, by our
assumptions on i, we know that r ∈ Ran(i) and r+1 6∈ Ran(i) 3 k. Consequently,
r < k implies r < k− 1. Thus we compute, by using repeatedly the commutation
relations (2.13), once the braid relation (2.12), and finally Definition 2.3.14,

ρ(σ̃r)(xk) = ρ(σ̃r)ρ(σ̃k−1 · · · σ̃1)x1
= ρ(σ̃rσ̃k−1 · · · σ̃1)x1
= ρ(σ̃rσ̃k−1 · · · σ̃r+2σ̃r+1σ̃rσ̃r−1 · · · σ̃1)x1
= ρ(σ̃k−1 · · · σ̃r+2(σ̃rσ̃r+1σ̃r)σ̃r−1 · · · σ̃1)x1
= ρ(σ̃k−1 · · · σ̃r+2(σ̃r+1σ̃rσ̃r+1)σ̃r−1 · · · σ̃1)x1
= ρ(σ̃k−1 · · · σ̃r+2σ̃r+1σ̃rσ̃r−1 · · · σ̃1σ̃r+1)x1

= ρ(σ̃k−1 · · · σ̃r+2σ̃r+1σ̃rσ̃r−1 · · · σ̃1)x1
= xk.

Case r > k: We use the commutation relations (2.13) and Definition 2.3.14 to
obtain

ρ(σ̃r)(xk) = ρ(σ̃r)ρ(σ̃k−1 · · · σ̃1)x1
= ρ(σ̃rσ̃k−1 · · · σ̃1)x1
= ρ(σ̃k−1 · · · σ̃1σ̃r)x1
= ρ(σ̃k−1 · · · σ̃1)x1
= xk.

So far we have verified that braidability implies spreadability on the level of
a distributional symmetry, where the latter may not invoke the existence of a
representation of the partial shifts monoid S in End(A, ϕ). Next we strengthen
Theorem 2.3.16 by constructing a representation of S from the representation of
the braid group B∞ in Aut(A, ϕ).

Suppose the *-algebraic probability space (A, ϕ) is equipped with the rep-
resentation ρ : B∞ → Aut(A, ϕ). Recall that Aρ(σ̃k) denotes the fixed point *-
subalgebra of ρ(σ̃k) in A. Putting

An :=
⋂
k≥n

Aρ(σ̃k) (n ∈ N),
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we obtain a tower of fixed point *-subalgebras such that

A1 ⊂ A2 ⊂ . . . ⊂
∞⋃
n=1

An =: A∞ ⊂ A.

Definition 2.3.19. Let (A, ϕ) be a *-algebraic probability space which is equipped
with a representation ρ : B∞ → Aut(A, ϕ). The representation ρ is said to have
the generating property if

A =
∞⋃
n=1

⋂
k≥n

Aρ(σ̃k) = A∞.

In general a representation ρ of B∞ may fail to enjoy the generating property
(see [GK09, Proposition 3.3]).

Proposition 2.3.20. A representation ρ : B∞ → Aut(A, ϕ) restricts to a repre-
sentation ρ∞ : B∞ → Aut(A∞, ϕ∞) which has the generating property. Here ϕ∞
denotes the restriction of ϕ to A∞.

Proof. To ensure ρ(B∞)(A∞) ⊂ A∞, it suffices to show that ρ(σ̃m)(A∞) ⊂ A∞
for any m ∈ N. Note that x ∈ A∞ if and only if x ∈ AN for some N ∈ N. We
will show that there exists some n ∈ N such that

ρ(σ̃k)ρ(σ̃m)x = ρ(σ̃m)x (k ≥ n). (2.16)

This implies ρ(σ̃m)x ∈ An ⊂ A∞. So we are left to verify (2.16). We claim that
ρ(σ̃k)(ρ(σ̃m)x) = ρ(σ̃m)x for all k ≥ n := N + m + 1. (Note that m,N ≥ 1.)
Indeed, this is the case, since σ̃k and σ̃m commute and thus

ρ(σ̃kσ̃m)x = ρ(σ̃mσ̃k)x = ρ(σ̃m)x.

Here we have used for the last equality that x is localized in AN and thus AN ⊂
Aρ(σ̃k) since k > N .

We will make use of the following well-known relations between Artin genera-
tors.

Lemma 2.3.21. Let σ̃i, for i ∈ N, denote an Artin generator of B∞. Then one
has

σ̃n+2(σ̃k+1σ̃k+2 · · · σ̃N) = (σ̃k+1σ̃k+2 · · · σ̃N)σ̃n+1 for k ≤ n ≤ N − 2.

Proof. Let’s first consider the case k = n. Using the relations for Artin generators,
one has

σ̃k+2(σ̃k+1σ̃k+2σ̃k+3 · · · σ̃N) = (σ̃k+2σ̃k+1σ̃k+2)σ̃k+3 · · · σ̃N
= (σ̃k+1σ̃k+2σ̃k+1)σ̃k+3 · · · σ̃N (by (2.12))

= (σ̃k+1σ̃k+2σ̃k+3 · · · σ̃N)σ̃k+1 (by (2.13)).
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The calculation for the more general case k < n proceeds along similar lines, after
initially using

σ̃n+2(σ̃k+1 · · · σ̃N) = σ̃n+2(σ̃k+1 · · · σ̃nσ̃n+1σ̃n+2 · · · σ̃N)

= (σ̃k+1 · · · σ̃n)σ̃n+2(σ̃n+1σ̃n+2 · · · σ̃N) (by (2.13)).

Theorem 2.3.22. Suppose ρ : B∞ → Aut(A, ϕ) has the generating property.
Then the limits

α1(x) = lim
N−→∞

ρ(σ̃1σ̃2 · · · σ̃N)(x),

α2(x) = lim
N−→∞

ρ(σ̃2σ̃3 · · · σ̃N)(x),

...

αn(x) = lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(x),

...

exist for any x ∈ A. Furthermore, the maps S 3 θn 7→ %(θn) := αn ∈ End(A, ϕ)
multiplicatively extend to a representation % : S → End(A, ϕ).

Proof. We show first the existence of the claimed limits for some x ∈ A. The
generating property of ρ ensures A = A∞ and thus there exists some M ∈ N such
that x ∈ AM . Thus ρ(σ̃m)(x) = x for all m ≥M . Consequently,

lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(x) = ρ(σ̃nσ̃n+1 · · · σ̃M)(x) (2.17)

for each n. Given x ∈ A∞ and n ∈ N, denote by αn(x) the corresponding limit
element in (2.17).

We show next that the map A 3 x 7→ αn(x) ∈ A∞ defines an endomorphism
of the *-algebraic probability space (A∞, ϕ). Clearly, αn(1A) = 1A. Furthermore,
for x, y ∈ A∞, there exists some M such that x, y ∈ AM . Thus we can compute

αn(xy) = lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(xy)

= ρ(σ̃nσ̃n+1 · · · σ̃M)(xy)

= ρ(σ̃nσ̃n+1 · · · σ̃M)(x) ρ(σ̃nσ̃n+1 · · · σ̃M)(y)

= lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(x) lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(y)

= αn(x)αn(y),
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since ρ(σ) ∈ Aut(A, ϕ) for any σ̃ ∈ B∞. A similar calculation ensures(
αn(x)

)∗
=
(

lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(x)
)∗

=
(
ρ(σ̃nσ̃n+1 · · · σ̃M)(x)

)∗
= ρ(σ̃nσ̃n+1 · · · σ̃M)(x∗)

= lim
N−→∞

ρ(σ̃nσ̃n+1 · · · σ̃N)(x∗)

= αn(x∗).

Thus αn is a unital *-homomorphism of A∞ for which we conclude ϕ ◦ αn = ϕ
from

ϕ ◦ αn(x) = ϕ
(
αn(x)

)
= ϕ

(
ρ(σ̃nσ̃n+1 · · · σ̃M)(x)

)
= ϕ(x)

for any x ∈ A. Altogether, this ensures αn ∈ End(A, ϕ). We are left to verify that
these endomorphisms αn satisfy the relations of the generators θn of the partial
shift monoid S:

αkα` = α`+1αk (1 ≤ k ≤ ` <∞).

We know already that, given x ∈ A∞, there exist some n,m ∈ N with n ≤ m
such that

α`+1αk = lim
N−→∞

lim
M→∞

ρ(σ̃`+1 · · · σ̃N)ρ(σ̃k · · · σ̃M)(x)

= ρ(σ̃`+1 · · · σ̃n)ρ(σ̃k · · · σ̃m)(x)

= ρ
(
(σ̃`+1 · · · σ̃n)(σ̃k · · · σ̃m)

)
(x)

= ρ
(
(σ̃k · · · σ̃m)(σ̃` · · · σ̃n−1)

)
(x) (2.18)

= lim
M−→∞

lim
N−→∞

ρ
(
(σ̃k · · · σ̃M)(σ̃` · · · σ̃N−1)

)
(x)

= αkα`(x).

Here we repeatedly applied Lemma 2.3.21 to obtain (2.18). This establishes that
the multiplicative extension of the maps S 3 θn 7→ αn =: %(θn) defines a repre-
sentation % : S → End(A, ϕ).





Chapter 3

*-Algebraic Central Limit
Theorems

We start this chapter with reviewing the classical central limit theorem, includ-
ing a multivariate version of it. Also, we present singleton vanishing properties
(SVPs), as they are known in the literature to play a role for multivariate ver-
sions of *-algebraic CLTs. Additionally, we refine the notion of exchangeabil-
ity/spreadability of sequences of random variables to that of C-jointly and C-
separately exchangeable/spreadable families of random variables, for some ‘color
set’ C. We provide multivariate CLTs, which correspond to these refined notions of
distributional symmetries or invariance principles. So far C-separately exchange-
able/spreadable families of random variables have not been addressed explicitly
in the published results on *-algebraic CLTs. Related results will be used later
for CLTs associated to ω-sequences of partial isometries (which we introduce in
Chapter 4). Also, we discuss how one can construct C-jointly and C-separately
exchangeable/spreadable sequences from a single exchangeable or spreadable se-
quence. Furthermore, we present factorization properties of mixed moments in
the context of distributional invariance principles. We will make use of these fac-
torization properties for SVPs when establishing concrete moment formulas for
CLTs associated to ω-sequences of partial isometries.

3.1 Classical Central Limit Theorems

In this section we review the combinatorial approaches to the classical CLT and
its multivariate version. Our presentation follows [NS06, Sp19]. Recall the notion
of a classical *-algebraic probability space from Definition 2.2.3 and the notion of
independence from Definition 2.2.4.

Theorem 3.1.1. Let (A, ϕ) be a classical *-algebraic probability space and let
x ≡ (xn)∞n=1 ⊂ A be a sequence such that

(i) xi = x∗i for i ∈ N;

43
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(ii) x is independent and identically distributed.

Then one has for

SN =
1√
N

(
x1 + . . .+ xN −Nϕ(x1)

)
that, for all n ∈ N,

lim
N→∞

ϕ(SnN) =

0 if n odd,

(n− 1)!!
(
ϕ(x21)− ϕ(x1)

2
)n

2
if n even.

Note that ϕ(x21) = ϕ(x∗1x1) ≥ 0 as x1 is self-adjoint, and that ϕ(x21) − ϕ(x1)
2

is the variance of the random variable x1.

Proof. Since all xn are identically distributed,(
x1 + . . .+ xN −Nϕ(x1)

)
= (x1 − ϕ(x1)) + . . .+ (xN − ϕ(xN)). (3.1)

The sequence
(
xn−ϕ(xn)

)∞
n=1

is independent, identically distributed, and centred.
Thus it suffices to calculate the central limit for a centred sequence (xn)∞n=1. In
other other words, we need to compute

ϕ(SnN) =
1

N
n
2

N∑
i(1),...,i(n)=1

ϕ(xi(1) · · ·xi(n)) (3.2)

for N →∞. We will subdivide the proof of this theorem into several steps.

Step 1. The n-tuple of indices (i(1), . . . , i(n)) uniquely corresponds to a function
i : [n] → N, which induces the kernel set partition π := ker(i) = {V1, . . . , Vk} ∈
P(n) (see Definition 2.1.8). Here Vi denotes the blocks of π for some 1 ≤ k ≤ n
and k is the size of the partition. We say that the two tuples i, j : [n] → N are
equivalent, in symbols: i ∼ j, if

i(r) = i(s)⇔ j(r) = j(s) for all 1 ≤ r, s ≤ n.

We conclude from this that

i ∼ j ⇐⇒ ker(i) = ker(j).

Since all the random variables are independent and identically distributed, we
conclude that

ϕ(xi(1) · · ·xi(n)) = ϕ(xj(1) · · ·xj(n)) (3.3)

whenever i ∼ j. Thus
ϕπ := ϕ(xi(1) · · ·xi(n)) (3.4)

is well-defined for the kernel set partition π = ker(i).
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Step 2. The cardinality of the set

{i : [n]→ [N ] | ker(i) = π}

for some partition π ∈ P(n) is given by

A
(N)
|π| = N · (N − 1) · · · (N − |π|+ 1) =

(
N

|π|

)
|π|!.

Note that |π| = k if π = {V1, . . . , Vk} for some 1 ≤ k ≤ n. Therefore, we can
rewrite (3.2) as the finite sum

ϕ(SnN) =
1

N
n
2

∑
π∈P(n)

A
(N)
|π| ϕπ =

1

N
n
2

∑
π∈P(n)

(
N

|π|

)
|π|!ϕπ. (3.5)

As this finite sum is independent of the choice of N , the convergence of each
summand can be discussed separately. This is done in Step 3, where one first
shows that ϕπ vanishes whenever π contains a singleton. Thus the finite sum
over all partitions reduces further to a sum over partitions π with |π| ≤ n/2.

Furthermore, one shows that A
(N)
|π| /N

n/2 vanishes for N →∞ whenever |π| < n/2.
Thus we will arrive in Step 3 at the conclusion that the only contribution to the
limit comes from pair partitions with |π| = n/2, where one has A

(N)
|π| /N

n/2 → 1
for N →∞.

Step 3. We need now to examine the contribution of different partitions. We
will see that some of these partitions will vanish. First we assume that π =
{V1, . . . , Vk} contains a singleton block. Thus there exists a block V ∈ π such
that |V | = 1, let us say V = {`}, for ` ∈ ker(i). Since all xi are classically
independent (see Definition 2.2.4) and centred, we conclude that

ϕπ = ϕ(xi(1) · · ·xi(`−1)xi(`)xi(`+1) · · ·xi(n))
= ϕ(xi(`))ϕ(xi(1) · · ·xi(`−1)xi(`+1) · · ·xi(n)) = 0.

Hence, if the partition π = ker(i) contains a singleton (i.e. a block V with |V | = 1),
this implies ϕπ = 0. Therefore, no partitions with a singleton contributes to the
sum. Thus only those partitions π can contribute to the central limit for which
each block of π has at least two elements. This implies k ≤ n/2 for the number
of blocks of the partition π. We consider separately the two cases k < n/2 and
k = n/2.

Let us first consider the case k < n
2
. Since the monomial A

(N)
k = N(N−1) · · · (N−

k + 1) contains strictly less than n/2 factors, one concludes

lim
N→∞

A
(N)
|π|

N
n
2

=
N(N − 1) · · · (N − k + 1)

N
n
2

= 0.
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In particular, as k < n/2 for any odd number n, no moment ϕπ with an odd order
n can survive in the limit N →∞.
We are left to consider the case k = n

2
, which can only occur for even n and

π ∈ P2(n), i.e. when π is a pair partition. Taking again the limit N →∞ we find
that

A
(N)
n
2

N
n
2

=
N(N − 1) · · · (N − k + 1)

N ·N · · ·N
−→ 1

since numerator and denominator have the same number of factors.

Altogether, we can write (3.5) as

lim
N→∞

ϕ(SnN) =
∑

π∈P2(n)

ϕπ. (3.6)

where we use the convention that summation over an empty set gives zero.

Step 4. Suppose π ∈ P2(n) with π = {V1, . . . , Vk} and n = 2k. Note that there
exists some i : [2k]→ [k] such that π = ker(i). It follows from commutativity and
classical independence that

ϕπ = ϕ(xi(1) · · ·xi(2k)) =
k∏
i=1

ϕ(xixi).

Since all xi are identically distributed, we conclude further that

ϕπ = ϕ(x1x1)
k =

(
ϕ(x1x1)

)n/2
.

Thus (3.6) counts the number of all pair partitions of the set [n]:

|P2({1, . . . , 2k})| = (2k − 1) · (2k − 3) · · · 1 = (2k − 1)!!

Altogether, one arrives at

lim
N→∞

ϕ(SnN) =
∑

π∈P2(n)

ϕ(x∗1x1)
n
2 = (n− 1)!!ϕ(x21)

n
2

when the sequence x is assumed to be centred. The non-centred case is deduced
from above equation by replacing x1 (from the centred setting) by x1 − ϕ(x1) (in
the non-centred setting). This completes the proof of Theorem 3.1.1.

In the following, we review a multivariate version of the classical CLT and show
that the limit distribution is described by the joint distribution of a Gaussian
family as N → ∞ (see [NS06, Remark 8.18]). To ease the notation, we limit
our considerations to the case of centred random variables, as it is elementary to
reduce the general case to such a setting.
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Notation 3.1.2. We recall that (n−1)!! = 0 for an odd non-negative integer and
(−1)!! = 1 by convention. Furthermore, we make use of the convention 00 = 1.

Theorem 3.1.3. Let (A, ϕ) be a classical *-algebraic probability space and suppose
the d-tuple of sequences {(xt,n)∞n=1}t∈[d] ⊂ A is such that

(i) xt,n = (xt,n)∗ for all n ∈ N and t ∈ [d];

(ii) {xt,n | n ∈ N, t ∈ [d]} is a set of mutually independent random variables;

(iii) (xt,n)n∈N is a sequence of centred, identically distributed random variables
(for each t ∈ [d]).

Then one has for

St,N =
xt,1 + . . .+ xt,N√

N
that

lim
N→∞

ϕ(St(1),N · · ·St(n),N) =
∏
c∈[d]

(nc − 1)!!ϕ(x2c,1)
nc
2

where t : [n]→ [d] and nc = |t−1({c})|.
Proof. We need to calculate, for some fixed n ∈ N and t(1), . . . , t(n) ∈ [d], the
limit for N →∞ of

ϕ
(
St(1),N · · ·St(n),N

)
=

1

N
n
2

N∑
i(1),...,i(n)=1

ϕ(xt(1),i(1) · · ·xt(n),i(n)).

Since all random variables commute, we may assume without loss of generality
that 1 ≤ t(1) ≤ t(2) ≤ · · · ≤ t(n) ≤ d. Let ker(t) = {W1, . . . ,Wc} ∈ P(n) for
some 1 ≤ c ≤ d such that wi < wj for all wi ∈ Wi and wj ∈ Wj with i < j. Then∑

i : [n]→[N ]

ϕ(xt(1),i(1) · · · xt(n),i(n)) =
∑

i : W1→[N ]

· · ·
∑

i : Wc→[N ]

ϕ
(
xt(1),i(1) · · ·xt(n),i(n)

)
.

For 1 ≤ m ≤ c, let nm := |Wm| and let im : Wm → [N ] be the restriction of the
index function i : [n] → [N ] . Furthermore, let tm := t(w) for w ∈ Wm. Since all

random variables are independent, and writing below xt,n as x
(t)
n ), we can further

factorize and regroup the right-hand side of above equation such that∑
i : [n]→[N ]

ϕ(xt(1),i(1) · · · xt(n),i(n))

=
∑

i1 : W1→[N ]

· · ·
∑

ic : Wc→[N ]

ϕ
(
x
(t(1))
i1(1)
· · ·x(t(n1))

i1(n1)︸ ︷︷ ︸
n1 factors

)
· · ·ϕ

(
x
(t(n−nc+1))
ic(n−nc+1) · · ·x

(t(n))
ic(n)︸ ︷︷ ︸

nc factors

)

=

 ∑
i1 : W1→[N ]

ϕ
(
x
(t1)
i1(1)
· · ·x(t1)i1(n1)︸ ︷︷ ︸

n1 factors

) · · ·
 ∑

ic : Wc→[N ]

ϕ
(
x
(tc)
ic(n−nc+1) · · ·x

(tc)
ic(n)︸ ︷︷ ︸

nc factors

) .
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Now each of these c factors can be treated similar as it was done in Step 1
of the proof of the classical CLT, Theorem 3.1.1. For this purpose, let W =
{w1, w2, . . . , wk} be a finite subset of N such that 1 ≤ w1 < w2 < · · · < wk for
some k ∈ N. Then

ϕ(t)
π :=

 ∑
j : W→[N ]

ϕ
(
x
(t)
j(w1)
· · ·x(t)j(wk)︸ ︷︷ ︸

k factors

)
is well-defined for any j : W → [N ] with π = ker(j) ∈ P(W ). The cardinality of
the set

{j : W → [N ] | ker(j) = π}
for some partition π ∈ P(W ) is

A
(N)
|π| =

(
N

|π|

)
|π|! = N · (N − 1) · · · (N − |π|+ 1).

Thus we can write∑
i : [n]→[N ]

ϕ(xt(1),i(1) · · ·xt(n),i(n))

=

 ∑
π1∈P(W1)

A
(N)
|π1|ϕ

(t1)
π1

 · · ·
 ∑
πc∈P(Wc)

A
(N)
|πc|ϕ

(tc)
πc

 .

Altogether, since n = n1 + n2 + . . .+ nc, we arrive at

ϕ
(
St(1),N · · ·St(n),N

)
=

1

N
n
2

∑
i : [n]→[N ]

ϕ(xt(1),i(1) · · · xt(n),i(n))

=

N−n12 ∑
π1∈P(W1)

A
(N)
|π1|ϕ

(t1)
π1

 · · ·
N−nc2 ∑

πc∈P(Wc)

A
(N)
|πc|ϕ

(tc)
πc

 .

As explicitly shown in the proof of the univariate CLT, Theorem 3.1.1, only pair
partitions survive as summands in the limit N →∞ in each of the c factors such
that

lim
N→∞

ϕ
(
St(1),N · · ·St(n),N

)
=

 ∑
π1∈P2(W1)

ϕ(t1)
π1

 · · ·
 ∑
πc∈P2(Wc)

ϕ(tc)
πc


=
(

(n1 − 1)!!ϕ(x
(t1)
1 x

(t1)
1 )

n1
2

)
· · ·
(

(nc − 1)!!ϕ(x
(tc)
1 x

(tc)
1 )

nc
2

)
.
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Since {W1,W2, . . . ,Wc} is a partition of the set [n], we know that ni = |Wi| > 0
for all i = 1, 2, . . . , c. Permitting the case that a ‘color’ in [d] may not appear,
and making use of the convention (0− 1)!! = 1, we can rewrite above equation as
the d-fold product

lim
N→∞

ϕ
(
St(1),N · · ·St(n),N

)
=
(

(n1 − 1)!!ϕ(x
(1)
1 x

(1)
1 )

n1
2

)
· · ·
(

(nd − 1)!!ϕ(x
(d)
1 x

(d)
1 )

nd
2

)
,

where now n1 = |t−1({1})|, . . . , nd = |t−1({d})|.

It is well-known that a sequence of centred independent identically distributed
random variables is exchangeable (see Definition 2.3.1) and satisfies a SFP (see
Definition 3.2.1). This motivates us to take distributional invariance principles
and certain factorization properties as an alternative starting point for the for-
mulation of (univariate and) multivariate CLTs in the framework of *-algebraic
probability spaces. Actually, we replace these factorization properties by so-called
singleton vanishing properties, as investigated in the consecutive sections.

3.2 Singleton Vanishing Properties

The singleton factorization property (SFP) of a sequence of random variables is
well-known to play an important role when proving algebraic CLTs. We first
discuss some of its generalizations, as they are appropriate for multivariate CLTs.
Afterwards, as a kind of further generalization, we present singleton vanishing
properties (SVPs) for set-indexed families of random variables, as we will need
them again for multivariate CLTs in *-algebraic probability theory.

Definition 3.2.1. Let (A, ϕ) be a *-algebraic probability space.

(i) The sequence (xn)∞n=1 ⊂ A is said to have the singleton factorization property
(SFP) if, for any n ∈ N,

ϕ
(
x
ε(1)
i(1) · · ·x

ε(n)
i(n)

)
= ϕ

(
x
ε(`)
i(`)

)
· ϕ
(
x
ε(1)
i(1) · · ·x

ε(`−1)
i(`−1) x

ε(`+1)
i(`+1) · · ·x

ε(n)
i(n)

)
for any ε : [n]→ {1, ∗} and i : [n]→ N with {`} ∈ ker(i).

(ii) The family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A, for some index set
C, is said to have the C-joint singleton factorization property (SFP) if, for
any n ∈ N,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(`)
t(`),i(`)

)
· ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(`−1)
t(`−1),i(`−1)x

ε(`+1)
t(`+1),i(`+1) · · ·x

ε(n)
t(n),i(n)

)
for any ε : [n]→ {1, ∗}, any i : [n]→ N, and t : [n]→ C with {`} ∈ ker(i).
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(iii) The family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A, for some index set
C, is said to have the C-separate singleton factorization property (SFP) if,
for any n ∈ N,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(`)
t(`),i(`)

)
· ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(`−1)
t(`−1),i(`−1)x

ε(`+1)
t(`+1),i(`+1) · · · x

ε(n)
t(n),i(n)

)
for any ε : [n]→ {1, ∗}, any i : [n]→ N, and t : [n]→ C with {`} ∈ ker(i|W )
for some W ∈ ker(t).

Note that (i) is the special case of (ii) and (iii) for C = {c}. We illustrate the
singleton factorization property from (iii) by an example.

Example 3.2.2. Let C = {1, 2} and consider the pair of sequences {(xc,n)n∈N |
c ∈ C} ⊂ A. For simplicity, we assume xc,n = x∗c,n for all n ∈ N and c ∈ C.

Moreover, we will write xc,n as x
(c)
n for clarity of the notation. Consider the

moment

ϕ(x
(2)
1 x

(1)
3 x

(1)
1 x

(1)
3 x

(2)
1 ).

One can easily read off from this moment the explicit form of the index functions
i : [5]→ N and t : [5]→ C such that

ker(i) = {{1, 3, 5}, {2, 4}} ∈ P([5])}
ker(t) = {{1, 5}, {2, 3, 4}} =: {W1,W2} ∈ P([5])

ker(i|W1) = {{1, 5}} ∈ P({1, 5})
ker(i|W2) = {{2, 4}, {3}} ∈ P({2, 3, 4})

Since ker(i|W2) contains a singleton the validity of the C-separate SFP implies
that the considered moment factorizes as

ϕ(x
(2)
1 x

(1)
3 x

(1)
1 x

(1)
3 x

(2)
1 ) = ϕ(x

(1)
1 )ϕ(x

(2)
1 x

(1)
3 x

(1)
3 x

(2)
1 ).

Definition 3.2.3. Let (A, ϕ) be a *-algebraic probability space and let C be a
fixed non-empty set. The family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is
said to have the

(i) C-joint singleton vanishing property (SVP) if, for any n ∈ N, for every
ε : [n]→ {1, ∗}, i : [n]→ N, and t : [n]→ C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= 0

whenever there exists a singleton {`} ∈ ker(i) for some ` ∈ [n];
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(ii) C-separate singleton vanishing property (SVP) if, for any n ∈ N, for every
ε : [n]→ {1, ∗}, i : [n]→ N, and t : [n]→ C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= 0

whenever there exists a singleton {`} ∈ ker(i|W ) for some ` ∈ W and some
block W ∈ ker(t).

If C = {c}, the C-joint (or C-separate) SVP of the sequence X is just called SVP.

Lemma 3.2.4. Consider for the family of sequences X as given in Definition
3.2.3:

(a) X has the C-joint SVP;

(b) X has the C-separate SVP.

Then one has ‘(b) =⇒ (a)’, but the converse implication may fail to be true.

Proof. ‘(b) =⇒ (a)’: Consider the moment

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
for some ε : [n] → {1, ∗}, i : [n] → N, t : [n] → C, and put π := ker(i). Suppose
{`} ∈ π for some ` ∈ [n]. Then {`} ∈ W for some blockW ∈ ker(t). Consequently,
{`} ∈ π|W . As we have assumed the C-separate SVP of X , we conclude

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= 0.

As this is true whenever π contains a singleton, it follows that X enjoys the C-
joint SVP. The failure of ‘(a) =⇒ (b)’ is inferred from Example 3.2.5 or Example
3.2.6.

Let us illustrate the failure of the implication ‘(a) =⇒ (b)’.

Example 3.2.5. Let (B, ψ) be a *-algebraic probability space and consider the
*-algebraic infinite tensor product probability space (A, ϕ) =

⊗
n∈N(B, ψ). Let

C = {1, 2} and bc ∈ B with bc = b∗c (for simplicity) be fixed and satisfy ψ(bc) = 0
for c ∈ C . Let xc,n ∈ A denote the canonical embedding of bc ∈ B into the n-th
factor of the infinite tensor product of B with itself. Then the pair of sequences
{(xc,n)∞n=1 | c ∈ C} has the C-joint SVP, but may fail to have the C-separate SVP.
For example, one has

ϕ(x1,1x2,1) = ψ(b1b2),

which gives the partition π = {{1, 2}} and ker(t) = {{1}, {2}} =: {W1,W2}, and
the reduced partitions π|W1

= {{1}} and π|W2
= {{2}}.
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Now the C-separate SVP of X implies ϕ(x1,1x2,1) = 0, whereas this usually
can’t be concluded from the C-joint SVP. To see the latter, just take b = b1 = b2.
Then one has ϕ(x1,1x2,1) = ψ(b2) which may be non-zero. For a concrete example
of this failure, consider B := C(R) to be equipped with the state ψ that is given
by ψ(f) := 1

2
(f(0) + f(1)). Choosing b = f − ψ(f), one has

ϕ(x1,1x2,1) = 0 ⇐⇒ ψ(b2) = ψ(f 2)− ψ(f)2 = 0 ⇐⇒ f(0) = f(1).

So the corresponding concrete pair of sequences X has the C-separate SVP, but
fails to have the C-joint SVP if f(0) 6= f(1).

Example 3.2.6. Let (B, ψ) = (Mn(C), ψ) with ψ(b) = Tr(Db) for some density
matrix D ∈ Mn(C) in the construction of the infinite tensor product probability
space (A, ϕ) from Example 3.2.5. Now choose bc ∈ Mn(C) with Tr(Dbc) = 0 for
c ∈ C. Now the pair of sequences X (as introduced Example 3.2.5) satisfies again
the C-separate SVP. Furthermore, one observes:

X satisfies the C-joint SVP ⇐⇒ Tr(Db1b2) = Tr(Db1) Tr(Db2).

So far we have illustrated these two multivariate versions of the SVP by exam-
ples, which are going essentially along factorization properties of random variables
as one knows them from classical stochastic independence or, more generally ten-
sor independence, or free independence (see for example [NS06, Lecture 5]).

3.3 CLTs for Exchangeable Sequences

Our approach in this section follows [BS96, KN20] in the framework of *-algebraic
probability spaces, and generalizes exchangeability to C-jointly exchangeable and
C-separately exchangeable sequences for some ‘color set’ C. We introduced al-
ready in Definition 2.3.1 that a sequence (xn)∞n=1 is exchangeable if its joint mo-
ments are invariant under any permutations of the random variables.

Definition 3.3.1. Let (A, ϕ) be a *-algebraic probability space and let C be a
fixed non-empty set. The family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is
said to be

(i) C-jointly exchangeable if, for any n ∈ N, for every ε : [n]→ {1, ∗}, i, j : [n]→
N, and ‘color’ function t : [n]→ C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · ·x

ε(n)
t(n),j(n)

)
whenever i ∼ j;
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(ii) C-separately exchangeable if, for any n ∈ N, for every ε : [n] → {1, ∗},
i, j : [n]→ N, and ‘color’ function t : [n]→ C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · · x

ε(n)
t(n),j(n)

)
whenever i|W ∼ j|W for every block W ∈ ker(t).

If C = {c}, a C-jointly (or C-separately) exchangeable sequence X is just said to
be exchangeable.

We will frequently refer to the set C as the ‘color’ set, and to its elements as
‘colors’.

Lemma 3.3.2. Let the family X be given as in Definition 3.3.1 and consider the
following two properties:

(a) X is C-jointly exchangeable;

(b) X is C-separately exchangeable.

Then one has ‘(b) =⇒ (a)’, but the converse implication may fail to be true.

Proof. ‘(b) =⇒ (a)’: Consider the index functions i, j : [n] → N and t : [n] → C,
and let W ∈ Ker(t). We note that i|W ∼ j|W if and only if there exists a
permutation τW ∈ S∞ such that i|W = τW ◦ (j|W ). On the other hand, i ∼ j
if and only if there exists a permutation τ ∈ S∞ such that i = τ ◦ j. Since
i|W = (τ ◦ j)|W = τ ◦ (j|W ), taking τW := τ for all W ∈ ker(t), we conclude that
C-separate exchangeability implies C-joint exchangeability.
The failure of the converse implication ‘(a) =⇒ (b)’ is manifested in Example
3.3.4.

Let us illustrate these two notions of exchangeability.

Example 3.3.3. Let C = {1, 2} and consider the two sequences (x1,n)∞n=1 and

(x2,n)∞n=1, where we will write x
(c)
n for xn,c for simplicity of notation.

1. C-joint exchangeability ensures only

ϕ(x
(1)
1 x

(2)
1 ) = ϕ(x

(1)
k x

(2)
k )

for all k ∈ N. But C-separate exchangeability implies

ϕ(x
(1)
1 x

(2)
1 ) = ϕ(x

(1)
k x

(2)
` )

for any k, ` ∈ N.
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2. C-joint exchangeability implies

ϕ
(
x
(1)
k1
x
(2)
`1
x
(1)
k2
x
(2)
`2

)
= ϕ

(
x
(1)
σ(k1)

x
(2)
σ(`1)

x
(1)
σ(k2)

x
(2)
σ(`2)

)
for any k1, k2, `1, `2 ∈ N and any σ ∈ S∞. But C-separate exchangeability
allows us to conclude

ϕ
(
x
(1)
k1
x
(2)
`1
x
(1)
k2
x
(2)
`2

)
= ϕ

(
x
(1)
σ(k1)

x
(2)
τ(`1)

x
(1)
σ(k2)

x
(2)
τ(`2)

)
for any k1, k2, `1, `2 ∈ N and any σ, τ ∈ S∞.

We illustrate next that C-joint exchangeability may not imply C-separate
exchangeability.

Example 3.3.4. Let (B, ψ) be a *-algebraic probability space and consider the
*-algebraic infinite tensor product probability space (A, ϕ) =

⊗
n∈N(B, ψ). Let

C = {1, 2} and bc ∈ B be fixed for c ∈ C. Let xc,n ∈ A denote the canonical
embedding of bc ∈ B into the n-th factor of the infinite tensor product of B with
itself. In the following, we consider the pair of sequences X = {(xc,n)∞n=1 | c ∈ C}
and write again xc,n as x

(c)
n .

1. X is C-jointly exchangeable, but may fail to be C-separately exchangeable.
For example, one has

ϕ(x
(1)
1 x

(2)
1 ) = ψ(b1b2) = ϕ(x

(1)
k x

(2)
k )

for all k ∈ N. But
ϕ(x

(1)
1 x

(2)
1 ) = ϕ(x

(1)
k x

(2)
` )

is valid for any k, ` ∈ N if and only if ψ(b1b2) = ψ(b1)ψ(b2). Actually, one
can show that X is C-separately exchangeable if and only if

ψ(bi1b
j
2) = ψ(bi1)ψ(bj2)

for all i, j ∈ N. This clearly fails to be the case for b = b1 = b2 ∈ B unless
the state ψ on B is multiplicative, i.e. ψ(bn) = ψ(b)n for all n ∈ N. (A
canonical example for a unital *-algebra B equipped with a multiplicative
state ψ is B := C(R) and ψ(f) := f(0).)

2. Even the additional assumption of the C-separate SVP for X is insufficient
to strengthen the C-joint exchangeability of X to C-separate exchangeabil-
ity. As before,

ϕ(x
(1)
1 x

(1)
1 x

(2)
1 x

(2)
1 ) = ψ(b1b1b2b2) = ϕ(x

(1)
k x

(1)
k x

(2)
k x

(2)
k )

for all k ∈ N. But

ϕ(x
(1)
1 x

(1)
1 x

(2)
1 x

(2)
1 ) = ϕ(x

(1)
k x

(1)
k x

(2)
` x

(2)
` )
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is valid for any k, ` ∈ N if and only if ψ(b1b1b2b2) = ψ(b1b1)ψ(b2b2). Note
that this argument does not involve the consideration of any singletons. As
before, it is easy to find examples such that ψ(b1b1b2b2) 6= ψ(b1b1)ψ(b2b2).
This shows that the C-separate SVP is insufficient to strengthen C-joint
exchangeability to C-separate exchangeability.

We provide next a concrete example for C-separate exchangeability.

Example 3.3.5. Let the *-algebraic probability space (A, ϕ) =
⊗

n∈N(B, ψ) and
the pair of sequences {(xc,n)∞n=1 | c ∈ C} be given as in the previous Example
3.3.4. Additionally, assume that (B, ψ) = (B1, ψ1) ⊗ (B2, ψ2) for two *-algebraic

probability spaces (Bi, ψi) and choose b1 := b̃1 ⊗ 1B2 and b2 := 1B1 ⊗ b̃2 for some

b̃i ∈ Bi (i = 1, 2). Then a straightforward computation shows that the pair of
sequences {(xc,n)∞n=1 | c ∈ C} is C-separately exchangeable.

Remark 3.3.6. (1) If the ‘color’ set is given by C = N, the family of sequences
X ≡ {(xm,n)∞n=1 | m ∈ N} is an array of random variables X ≡ (xm,n)∞m,n=1.
Symmetries and invariance principles for arrays of random variables and, more
generally, set-indexed processes are well-studied in classical probability theory,
see for example [Ka92, Ka05]. Beyond sequences of random variables, there are
various notions of exchangeability available for set-indexed families of random
variables. In particular, there are established notions for ‘(joint) exchangeability’
and ‘separate exchangeability’ for random arrays which should not be confused
with our notions of ‘C-joint exchangeability’ and ‘C-separate exchangeability’.
The ‘color’ set C as index set and the lower index set N of random variables
play different roles in the context of CLTs, in contrast to the index set N2 in the
framework of random arrays.
(2) Families of sequences of random variables have already been considered for
general CLTs in the published literature. These early results did usually stipulate
more general conditions than ‘C-joint exchangeability’, see for example [SW94].
So far, multivariate versions of (noncommutative) CLTs under the stronger as-
sumption of ‘C-separate exchangeability’ seem to be not explicitly treated in the
published literature.

The next result will be used in Theorem 3.3.10, a multivariate version of the
CLT for C-jointly exchangeable families of random variables. Recall from Lemma
3.2.4 that the C-separate SVP implies the C-joint SVP, but the converse may fail.

Lemma 3.3.7. Suppose X is a C-separately exchangeable family of sequences as
stated in Definition 3.3.1. Then the following are equivalent:

(a) X satisfies the C-joint SVP;

(b) X satisfies the C-separate SVP.

In general, this equivalence is not valid for a C-jointly exchangeable family X .
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Proof. Consider the function i : [n] → N with π = ker(i). Suppose π contains

the singleton {k̃}. As t(k̃) ∈ W̃ for some W̃ ∈ ker(t), we conclude that the

restricted partition π|
W̃

contains also the singleton {k̃}. Conversely, suppose π|
W̃

contains the singleton {k̃} for some W̃ ∈ ker(t). Now we use the C-separate
exchangeability of X to conclude that there exists for any σ ∈ S∞ a function
j : [n]→ N with ker(j) = ker(i) such that j|W = i|W for all W ∈ ker(t)\{W̃} and
j|W̃ = σ ◦ i|W̃ . In particular, we can choose the permutation σ ∈ S∞ such that

ker(j) contains the singleton {k̃}.
Altogether, these arguments show that, for some W ∈ ker(t), the function

i : [n]→ N has a restricted kernel set partition ker(i|W ), which contains a singleton
if and only if there exists a function j : [n]→ N with ϕker(j),t = ϕker(i),t, which has
a singleton in its kernel set partition ker(j).

‘(a) ⇒ (b)’: Suppose that ker(i|W ) contains a singleton for some W ∈ ker(t).
By the previous arguments, we find a function j : [n]→ N which contains a single-
ton and satisfies ϕker(j),t = ϕker(i),t. Thus the validity of the C-joint SVP implies
ϕker(i),t = ϕker(j),t = 0.
The converse ‘(b) ⇒ (a)’ is ensured by Lemma 3.2.4 and, essentially, we re-
peat next the arguments of its proof. Suppose ker(i) contains a singleton. Then
ker(i|W ) contains a singleton for some W ∈ ker(t). Thus we conclude ϕker(i),t = 0
from the validity of the C-joint SVP.

We are left to exemplify the failure of this equivalence in the setting of a C-
jointly exchangeable family X . For this purpose, consider the C-jointly exchange-
able family X as constructed in Example 3.3.4, when using b = b1 = b2 ∈ B such
that ψ(b) = 0 and ψ(b2) 6= 0. Then X satisfies the C-joint SVP, but fails to satisfy
the C-separate SVP.

Example 3.3.8. Suppose X is C-separately exchangeable, and write again xc,n
as x

(c)
n , consider the moment

ϕπ,t = ϕ
(
x
(1)
1 x

(2)
2 x

(2)
2 x

(1)
1 x

(1)
1 x

(2)
1

)
,

which has π := ker(i) = {{1, 4, 5, 6}, {2, 3}} and ker(t) = {{1, 4, 5}, {2, 3, 6}} =:
{W1,W2}. We conclude from the C-separate exchangeability that

ϕ
(
x
(1)
1 x

(2)
2 x

(2)
2 x

(1)
1 x

(1)
1 x

(2)
1

)
= ϕ

(
x
(1)
1 x

(2)
2 x

(2)
2 x

(1)
1 x

(1)
1 x

(2)
3

)
,

where we have replaced the last factor x
(2)
1 by x

(2)
3 . So we have found a function j

such that ϕker(i),t = ϕker(j),t and j|W1 = i|W1 , but j|W2 = σ ◦ i|W2 for some σ ∈ S∞.
Note that the partition ker(j) = {{1, 4, 5}, {6}, {2, 3}} contains a singleton, but
ker(i) = {{1, 4, 5, 6}, {2, 3}} contains no singleton.

Altogether, this example indicates how we can turn a singleton of the W -
restricted partition π|W = ker(i|W ) into a singleton of the partition ker(j) while
maintaining the equality ϕker(i),t = ϕker(j),t.
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We recall from Lemma 2.1.9 that two functions i, j : [n] → N satisfy i ∼ j if
and only if ker(i) = ker(j). This ensures that the function introduced next is
well-defined in the context of C-joint exchangeability.

Definition 3.3.9. Let (A, ϕ) be a *-algebraic probability space and let X ≡
{(xc,n)∞n=1 | c ∈ C} ⊂ A be a C-jointly exchangeable family. Then the map

ϕ•,•,• :
∞⊔
n=1

P(n)× {t : [n]→ C} × {ε : [n]→ {∗, 1}} → C,

given by

ϕπ,t,ε := ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
for any ε : [n]→ {1, ∗}, t : [n]→ C, and i : [n]→ N with ker(i) = π, is called the
function on partitions associated to X . If the family X satisfies xc,n = x∗c,n for all
c ∈ C and n ∈ N, then the function on partitions associated to X simplifies to
the map

ϕ•,• :
∞⊔
n=1

P(n)× {t : [n]→ C} → C

that is given by

ϕπ,t := ϕ
(
xt(1),i(1) · · ·xt(n),i(n)

)
.

Note that, canonically identifying the function t : [n] → C and the n-tuple
(t(1), . . . , t(n)) ∈ Cn, the function on partitions associated to X can be also
addressed as

ϕ•,• :
∞⊔
n=1

P(n)× Cn × {ε : [n]→ {∗, 1}} → C.

We are ready to formulate a multivariate CLT for C-jointly exchangeable families
of random variables.

Theorem 3.3.10. Let (A, ϕ) be a *-algebraic probability space and suppose the
family X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A satisfies the following conditions:

(i) X is C-jointly exchangeable;

(ii) X satisfies the C-joint SVP.

Then one has for

Sc,N :=
xc,1 + · · ·+ xc,N√

N

that, for all n ∈ N, ε : [n]→ {1, ∗}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1).N · · ·S

ε(n)
t(n),N) =

∑
π∈P2(n)

ϕπ,t,ε.
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Moreover, if X is C-separately exchangeable or enjoys the C-separate SVP then
for all n ∈ N, ε : [n]→ {1, ∗}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

∑
π∈P2(n)
π≤ker(t)

ϕπ,t,ε.

Remark. In principle, we could define P2(n, t) := {π ∈ P2(n) | π ≤ ker(t)}. This
definition could be further specified to include a direction map: P2(n, t, ε) := {π ∈
P2(n, t) | ε(minV ) 6= ε(maxV ) for all V ∈ π}.

Another version of this theorem will be provided below as Theorem 3.3.13,
specifically to the context of C-separate exchangeability and C-separate SVP,
where ϕ•,•,•, the function of partitions for X , is replaced by ϕ•|,•,•, a certain
function of Cartesian products of restricted partitions of X (see Definition 3.3.12).

Proof. We need to calculate, for some fixed t : [n]→ N and ε : [n]→ {∗, 1},

ϕ
(
S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N

)
=

1

Nn/2

∑
i : [n]→[N ]

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
=

1

Nn/2

∑
π∈P(n)

A
(N)
|π| ϕπ,t,ε

for N → ∞. Here we have used that A
(N)
|π| is the cardinality of the set {i : [n] →

[N ] | ker(i) = π} for a partition π ∈ P(n), or more explicitly:

A
(N)
|π| = N · (N − 1) · · · (N − |π|+ 1) =

(
N

|π|

)
|π|!.

Now the C-joint SVP implies ϕπ,t,ε = 0 for any π ∈ P(n) which contains a
singleton. Moreover, one has

lim
N→∞

1

Nn/2
A

(N)
|π| = 0

for any π ∈ P(n) with |π| < n/2, based on the combinatorial arguments already
deployed in the proof of Theorem 3.1.1. Thus one arrives at

lim
N→∞

ϕ
(
S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N

)
=

∑
π∈P2(n)

ϕπ,t,ε.

We are left to show that the C-separate exchangeability or the C-separate SVP
of X allows us to restrict the summation further to pair partitions π ∈ P2(n)
satisfying π ≤ ker(t). We know from Lemma 3.3.7 that C-separate exchangeabil-
ity implies the equivalence of the C-joint SVP and the C-separate SVP. Thus it
suffices to show that the strengthening of C-joint SVP to C-separate SVP implies
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the vanishing of these further pair partitions. For this purpose, consider some
i : [n]→ [N ] with π = ker(i) ∈ P2(n) and let W ∈ ker(t). Then ker(i|W ) ∈ P(W )
has blocks of size 2 at most. Now the C-separate SVP implies that only sum-
mands of those partitions π = ker(i) contribute where ker(i|W ) ∈ P(W ) is a pair
partition. As this argument is valid for any block W ∈ ker(t), it follows that only
those summands contribute for which π = ker(i) ∈ P2(n) satisfies π ≤ ker(t).

We had introduced for a C-jointly exchangeable family X a function on par-
titions associated to X in Definition 3.3.9. Next we provide a definition of such a
function as appropriate for a C-separately exchangeable family X . Recall for this
purpose the notion of a restricted partition from Definition 2.1.6.

Notation 3.3.11. Let the ‘color’ function t : [n]→ C be fixed. We denote by∏
W∈ker(t)

P(W ) =
{
f : ker(t) 7→

⊔
W∈ker(t)

P(W )
}

the Cartesian product of the partitions of the blocks of ker(t) with coordinate
projections ker(t) 3 W 7→ f(W ) ∈ P(W ). Similarly, let

∏
W∈ker(t)P2(W ) denote

the Cartesian product of the pair partitions of the blocks of ker(t).
For a given partition π ∈ P(n), we denote by

π|• ∈
∏

W∈ker(t)

P(W )

the function which has, for eachW ∈ ker(t), theW -restriction π|W as a coordinate.
Furthermore, we will write

π|• ∈
∏

W∈ker(t)

P2(W )

if π|W ∈ P2(W ) for all W ∈ ker(t).

Similar to the situation of C-joint exchangeability, we infer from Lemma 2.1.9
again that two functions i, j : [n]→ N satisfy i|W ∼ j|W for all W ∈ ker(t) if and
only if ker(i|W ) = ker(j|W ) for all W ∈ ker(t). This ensures that the function
introduced next is well-defined in the context of C-separate exchangeability.

Definition 3.3.12. Let (A, ϕ) be a *-algebraic probability space and let X ≡
{(xc,n)∞n=1 | c ∈ C} ⊂ A be a C-separately exchangeable family. Then the map

ϕ•|,•,• :
∞⊔
n=1

( ∏
W∈ker(t)

P(W )
)
× {t : [n]→ C} × {ε : [n]→ {∗, 1}} → C,

given by

ϕπ|,t,ε := ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
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for any ε : [n] → {∗, 1}, t : [n] → C, i : [n] → N with ker(i) = π and ker(i|W ) =
π|W ∈ P(W ) for any W ∈ ker t, is called the function on reduced partitions
associated to X . If the family X satisfies xc,n = x∗c,n for all c ∈ C and n ∈ N, then
the function on partitions associated to X simplifies to the map

ϕ•|,• :
∞⊔
n=1

( ∏
W∈ker(t)

P(W )
)
× {t : [n]→ C} → C

that is given by

ϕπ|,t := ϕ
(
xt(1),i(1) · · ·xt(n),i(n)

)
.

Theorem 3.3.13. Let (A, ϕ) be a *-algebraic probability space and suppose the
the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A satisfies:

(i) X is C-separately exchangeable;

(ii) X satisfies the C-separate SVP.

Then one has for

Sc,N =
xc,1 + · · ·+ xc,N√

N

that, for all n ∈ N, ε : [n]→ {∗, 1}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

∑
π∈P2(n)
π≤ker(t)

ϕπ,t,ε =
∑

π|•∈
∏
W∈ker(t) P2(W )

ϕπ|,t,ε.

Proof. As Theorem 3.3.10 applies for a family X which is C-separately exchange-
able and satisfies the C-separate SVP, we are left to verify that∑

π∈P2(n)
π≤ker(t)

ϕπ,t,ε =
∑

π|•∈
∏
W∈ker(t) P2(W )

ϕπ|,t,ε.

But this is immediate from the following two observations. First of all, one has
for a C-separately exchangeable family X that

ϕπ,t,ε = ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕπ|,t,ε

for any π ∈ P(n), ε : [n]→ {∗, 1}, and t : [n]→ C. Secondly, the map{
π̃ ∈ P2(n)

∣∣π̃ ≤ ker(t)
}
3 π 7→ π|• ∈

∏
W∈ker(t)

P2(W ) (3.7)

is bijective. Note that this map is well-defined as the condition π̃ ≤ ker(t) implies

that each pair block Ṽ ∈ π̃ satisfies Ṽ ∈ π̃|W for some W ∈ ker(t), and thus
π̃|W ∈ P2(W ) for all W ∈ ker(t).
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We verify next that the map defined by (3.7) is injective. Suppose π, π̃ ∈{
π ∈ P2(n)

∣∣π ≤ ker(t)
}

satisfy π|• = π̃|• . We conclude from π|W = π̃|W for all
‘coordinates’ W ∈ ker(t) that V ∈ π if and only if V ∈ π̃. Thus one has π = π̃
which ensures the injectivity of the map.

Finally, we need to verify the surjectivity of the map defined by (3.7). The
function f ∈

∏
W∈ker(t)P2(W ) has the coordinates f(W ) ∈ P2(W ) such that

f(W ) ∩ f(W̃ ) = ∅ for W 6= W̃ and
⋃
W∈ker(t) f(W ) = P(n). Thus π :=⋃

W∈ker(t) f(W ) defines a partition in P(n) with π ≤ ker(t) which is mapped
to f . This ensures the surjectivity of the map.

We address next how multivariate settings for exchangeable sequences can be
constructed from a single exchangeable sequence. We illustrate such a proce-
dure in the following, in particular to show that this procedure yields separate
exchangeability.

Lemma 3.3.14. Let C be a countable set and let J : C × N → N be an injective
function. Given the exchangeable sequence x ≡ (xn)∞n=1 ⊂ A and putting

xc,n := xJ(c,n),

the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is C-separately exchangeable.

Proof. We need to show that, for any t : [n]→ C, ε : [n]→ {∗, 1},

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · ·x

ε(n)
t(n),j(n)

)
whenever i|W ∼ j|W for every block W ∈ ker(t). Note that i|W ∼ j|W if and only
if there exists some permutation τW such that j|W = τW ◦ (i|W ). So we need to
show for

ϕ
(
x
ε(1)
t(1),i(1) · · · x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
J(t(1),i(1)) · · ·x

ε(n)
J(t(n),i(n))

)
that a factor xJ(c,i(w)) with w ∈ W and t(w) = c can be replaced by a factor
xJ(c,τW ◦i(w)) without altering the value of the joint moment. But this amounts
to showing that i(w) can be replaced by τW ◦ i(w) without changing the joint
moment. This corresponds to replacing J(t(w), i(w)) by J(t(w), τW ◦ i(w)). Since
the function J is injective, we always find a permutation σW such that J(c, τW ◦
i(w)) = σW ◦J(c, i(w)) for all w ∈ W . Now we conclude from the exchangeability
of the underlying sequence x that

ϕ
(
x
ε(1)
J(t(1),i(1)) · · ·x

ε(n)
J(t(n),i(n))

)
= ϕ

(
x
ε(1)

J(t(1),̃j(1))
· · ·xε(n)

J(t(n),̃j(n))

)
where we have j̃|[n]\W = i|[n]\W and j̃|W = τW ◦i|W . A finite iteration on the blocks
of ker(t) yields

ϕ
(
x
ε(1)
J(t(1),i(1)) · · ·x

ε(n)
J(t(n),i(n))

)
= ϕ

(
x
ε(1)
J(t(1),j(1)) · · ·x

ε(n)
J(t(n),j(n))

)
whenever j|W = τW ◦ (i|W ) for some τW ∈ S∞.
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Since C-separate exchangeability implies C-joint exchangeability, the following
result is actually a corollary to the previous result. Nevertheless, we state it here
and give an explicit proof without appealing to C-separate exchangeability.

Lemma 3.3.15. Let C be a countable set and let J : C × N → N be an injective
function. Given the exchangeable sequence x ≡ (xn)∞n=1 ⊂ A and putting

xc,n := xJ(c,n),

the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is C-jointly exchangeable.

Proof. We need to show that

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · ·x

ε(n)
t(n),j(n)

)
whenever i ∼ j, or that, equivalently by Lemma 2.1.9,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),τ◦i(1) · · ·x

ε(n)
t(n),τ◦i(n)

)
for all τ ∈ S∞. Using the definition of the xc,n’s, the latter translates to verify

ϕ
(
x
ε(1)
J(t(1),i(1)) · · ·x

ε(n)
J(t(n),i(n))

)
= ϕ

(
x
ε(1)
J(t(1),τ◦i(1)) · · ·x

ε(n)
J(t(n),τ◦i(n))

)
for all τ ∈ S∞. But this amounts to showing for the index functions J(t, i) : [n]→
N and J(t, τ ◦ i) : [n]→ N (for any fixed τ ∈ S∞) that the two kernel set partitions

ker(J(t, i)) ∈ P(n) and ker(J(t, τ ◦ i)) ∈ P(n)

are the same. For this purpose, consider a block V ∈ ker(J(t, i)). Then i(V ) ⊂ N
and τ ◦ i(V ) ⊂ N have the same cardinality. Thus A := {(t(v), i(v)) | v ∈ V } ⊂
[d] × N and Aτ := {(t(v), τ ◦ i(v)) | v ∈ V } ⊂ [d] × N have the same cardinality.
Consequently, by the injectivity of J , the two sets J(A) ⊂ N and J(Aτ ) ⊂ N have
the same cardinality. Now our assumption on V (being a level set of the function
J(t, i) : [n] → N) ensures that the set J(A) is a singleton set. But the previous
argument forces then that also J(Aτ ) is a singleton set. Consequently, V is also
a level set of the function J(t, τ ◦ i) : [n]→ N. In other words, we have concluded
that V ⊂ Vσ ∈ ker(J(t, τ ◦ i). The converse inclusion Vσ ⊂ V ∈ ker(J(t, i)
follows by the same arguments, reversing now the roles of i and τ ◦ i, such that
τ−1 ◦ (τ ◦ i) = i. Altogether, this ensures ker(J(t, i)) = ker(J(t, τ ◦ i)).

Example 3.3.16. We have provided above a procedure which turns a single
exchangeable sequence into a C-separate exchangeable tuple of sequences. This
was done with the help of an injective function J : C ×N→ N. Choosing for the
‘color’ set C = [d], a particular choice for this function is

J(t, n) = (n− 1)d+ t (3.8)
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which yields for the ansatz of the multivariate CLT:

S1,N =
1√
N

(x1 + xd+1 + . . .+ x(N−1)d+1),

S2,N =
1√
N

(x2 + xd+2 + . . .+ x(N−1)d+2),

...

Sd,N =
1√
N

(xd + x2d + . . .+ xNd).

Remark 3.3.17. Given the single exchangeable sequence x ≡ (xn)∞n=1 ⊂ A,
another possible choice for the ansatz of a multivariate CLT is

S̃t,N =
1√
N

(x(t−1)N+1 + . . .+ x(t−1)N+N).

Here we will have to replace the role of the single injective function J : [d] ×
N→ N in Lemma 3.3.14 (and Lemma 3.3.15) by the family of injective functions
{JM}M : [d]× [M ]→ [dM ], where we have

JM(t, n) = (t− 1)M + n (t ∈ [d], n ∈ [M ]).

Adapting the notions of C-joint exchangeability and C-separate exchangeability
to families of finite sequences, one can show as before that, for each fixed M ∈ N,
the d-tuple of finite sequences (x̃1,n)Mn=1, . . . (x̃d,n)Mn=1, given by

x̃t,n := xJM (t,n),

is [d]-separately exchangeable, i.e. one has

ϕ
(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
= ϕ

(
x̃
ε(1)
t(1),j(1) · · · x̃

ε(n)
t(n),j(n)

)
for any ε : [n] → {∗, 1}, any i, j : [n] → [M ] whenever i|W ∼ j|W for every block
W ∈ ker(t). Similarly, one obtains [d]-joint exchangeability for this d-tuple of
finite sequences.

The multivariate CLT for this choice of [d]-separately exchangeable sequences
is again as before. To be more precise, one obtains for any n ∈ N

lim
N→∞

ϕ
(
S̃
ε(1)
t(1),N · · · S̃

ε(n)
t(n),N

)
=

∑
π∈P2(n)
π≤ker(t)

ϕπ,t,ε,

where
ϕπ,t,ε = ϕ

(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
is well-defined for any ε : [n]→ {∗, 1}, any i : [n]→ [n] with π = ker(i).
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Note that there exists a permutation σ ∈ S∞ such that σ(i) = i for n >
dM and JM(t, i) = σ(J(t, i)) for all t ∈ [d] and all i ∈ [n], where the function
J : [d] × N → N is as in (3.8), and thus xt,i = xJ(t,i). Due to the exchangeability
of the underlying sequence x, this implies

ϕ
(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
for all i : [n]→ [n], t : [n]→ [d], and ε : [n]→ {∗, 1}. We illustrate this for d = 3

and n = 6 by the following example, where we write x
(c)
n for xc,n and x̃

(c)
n for x̃c,n

for notational convenience. Let

x̃
(1)
1 = x1, x̃

(2)
1 =x7, x̃

(3)
1 = x13, x

(1)
1 = x1, x

(2)
1 = x2, x

(3)
1 = x3,

x̃
(1)
2 = x2, x̃

(2)
2 =x8, x̃

(3)
2 = x14, x

(1)
2 = x4, x

(2)
2 = x5, x

(3)
2 = x6,

x̃
(1)
3 = x3, x̃

(2)
3 =x9, x̃

(3)
3 = x15, x

(1)
3 = x7, x

(2)
3 = x8, x

(3)
3 = x9,

x̃
(1)
4 = x4, x̃

(2)
4 =x10, x̃

(3)
4 = x16, x

(1)
4 =x10, x

(2)
4 =x11, x

(3)
4 =x12,

x̃
(1)
5 = x5, x̃

(2)
5 =x11, x̃

(3)
5 = x17, x

(1)
5 =x13, x

(2)
5 =x14, x

(3)
5 =x15,

x̃
(1)
6 = x6, x̃

(2)
6 =x12, x̃

(3)
6 = x18, x

(1)
6 =x16, x

(2)
6 =x17, x

(3)
6 =x18.

One easily verifies

ϕ
(
x̃
(2)
3 x̃

(1)
1 x̃

(2)
3 x̃

(1)
1 x̃

(3)
5 x̃

(3)
3

)
= ϕ(x9x1x9x1x17x15)

= ϕ(x8x1x8x1x15x9) = ϕ
(
x
(2)
3 x

(1)
1 x

(2)
3 x

(1)
1 x

(3)
5 x

(3)
3

)
.

Here we have used exchangeability for the second equality.

3.4 CLTs for Spreadable Sequences

We arrive at the principle objective of this chapter, which is reviewing and deeply
investigating the limit distribution of CLT for spreadable sequences as N→∞ by
adjusting alternative definitions. Similar to distributional invariance principles for
arrays of random variables, there are different notions available for spreadability
when considering families of sequences of random variables. Here we will focus
on two notions of spreadability, called ‘C-joint spreadability’ and ‘C-separate
spreadability’, and provide the corresponding multivariate CLTs. Our approach
in this section is in the framework of *-algebraic probability spaces.

Definition 3.4.1. Let (A, ϕ) be a *-algebraic probability space and let C be a
fixed set. The family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is said to be

(i) C-jointly spreadable if, for any n ∈ N and every ε : [n]→ {∗, 1} and t : [n]→
C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · ·x

ε(n)
t(n),j(n)

)
whenever i ∼O j;
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(ii) C-separately spreadable if, for any n ∈ N and every ε : [n] → {∗, 1} and
t : [n]→ C,

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · · x

ε(n)
t(n),j(n)

)
whenever i|W ∼O j|W for every block W ∈ ker(t).

If C = {c}, a C-jointly ( or C-separately) spreadable sequence X is just said to
be spreadable.

As already done in the context of exchangeability, we will also refer to the
set C as the ‘color’ set, and to its elements as ‘colors’. C-separate spreadability
means that one has spreadability separately for each ‘color’. We will see next that
C-joint spreadability is weaker than C-separate spreadability as it may not allow
us to spread lower indices separately for each color.

Lemma 3.4.2. Let the family X be given as in Definition 3.4.1 and consider the
following two properties:

(a) X is C-jointly spreadable;

(b) X is C-separately spreadable.

Then one has ‘(b) =⇒ (a)’, but the converse implication may fail to be true.

Proof. ‘(b) =⇒ (a)’: Consider the two index functions i, j : [n]→ N and the ‘color’
function t : [n] → C, and let W ∈ Ker(t). By Lemma 2.1.21, C-joint spreadabil-
ity ensures τ ◦ i = σ ◦ j for some permutations σ, τ ∈ S∞ with order preserving
restrictions σ|Ran j and τ |Ran i. We consider next the restrictions i|W and j|W for
W ∈ ker(t). Putting σW := σ and τW := τ for all W ∈ ker(t), we conclude that
τW ◦ i|W = σW ◦ (j|W ). Furthermore, τW |Ran i|W and σW |Ran j|W are order preserv-
ing. Thus C-joint spreadability can be modelled as a special case of C-separate
spreadability.
‘(a) 6=⇒ (b)’: C-joint/separate exchangeability implies C-joint/separate spread-
ability, respectively. Now an inspection of Example 3.3.4 shows that all arguments
transfer immediately from the setting of exchangeability to that of spreadability.
Thus Example 3.3.4 establishes the failure of the converse implication.

We illustrate next these two notions of spreadability.

Example 3.4.3. Let C = {1, 2} and consider the two sequences (x1,n)∞n=1 and

(x2,n)∞n=1. Writing xc,n as x
(c)
n for notational simplicity, C-separate spreadability

implies

ϕ
(
x
(1)
k1
x
(2)
`1
x
(1)
k2
x
(2)
`2

)
= ϕ

(
x
(1)

k′1
x
(2)

`′1
x
(1)

k′2
x
(2)

`′2

)
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whenever (k1, k2) ∼O (k′1, k
′
2) and (`1, `2) ∼O (`′1, `

′
2). C-joint spreadability only

allows us to conclude that

ϕ
(
x
(1)
k1
x
(2)
`1
x
(1)
k2
x
(2)
`2

)
= ϕ

(
x
(1)

k′1
x
(2)

`′1
x
(1)

k′2
x
(2)

`′2

)
whenever (k1, `1, k2, `2) ∼O (k′1, `

′
1, k
′
2, `
′
2). Note that (k1, k2, `1, `2) ∼O (k′1, k

′
2, `
′
1, `
′
2)

implies (k1, k2) ∼O (k′1, k
′
2) and (`1, `2) ∼O (`′1, `

′
2). But the converse may fail as

one has, for example, (1, 3) ∼O (1, 2) and (1, 3) ∼O (1, 4), but (1, 1, 3, 3) 6∼O
(1, 1, 2, 4).

We indicate next how a C-jointly spreadable family of random variables can
be obtained from certain sequences of embeddings of a unital *-algebra into a
larger unital *-algebra.

Example 3.4.4. Let (A, ϕ) and (C, χ) be *-algebraic probability spaces and let

λ ≡ (λn)n∈N : C → A

be injective *-homomorphisms such that ϕ ◦ λn = χ for all n ∈ N. Suppose one
has that, for any n ∈ N and c1, c2, . . . , cn ∈ C,

ϕ
(
λi(1)(c1) · · ·λi(n)(cn)

)
= ϕ

(
λj(1)(c1) · · ·λj(n)(cn)

)
for all i, j : [n] → N with i ∼O j. Upon putting xc,n := λn(c), one obtains the
C-jointly spreadable family X ≡ {(xc,n)∞n=1 | c ∈ C}.

We provide next a simple example of how to obtain a C-separately spreadable
family from spreadable sequences.

Example 3.4.5. Let C = [d] for some d ∈ N. For each c ∈ C, suppose (A(c), ϕ(c))

is a *-algebraic probability space which contains the spreadable sequence (y
(c)
n )∞n=1.

Let x
(c)
n denote the canonical embedding of y

(c)
n into the c-th factor of the tensor

product
⊗

c∈C A(c). Then X ≡ {x(c)n | n ∈ N, c ∈ C} defines a C-separately
spreadable family for the *-algebraic probability space (A, ϕ) :=

⊗
c∈C(A(c), ϕ(c)).

Note that the C-separate spreadability is immediately inferred from the spread-
ability of each underlying sequence and the factorization

ϕ(y1 ⊗ y2 ⊗ · · · ⊗ yd) = ϕ(1)(y1)ϕ
(2)(y2) · · ·ϕ(d)(yd)

for all yc ∈ A(c) and c = 1, 2, . . . , d.

The next result is parallel to Lemma 3.3.7 from the framework of exchange-
ability, and it will be used in Theorem 3.4.9.

Lemma 3.4.6. Suppose X is a C-separately spreadable family of sequences as
stated in Definition 3.4.1(ii). Then the following are equivalent:
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(a) X satisfies the C-joint SVP;

(b) X satisfies the C-separate SVP.

In general, this equivalence is not valid for a C-jointly spreadable family X .

Proof. Consider the function i : [n] → N with π = kerO(i). Suppose π contains

the singleton {k̃}. As t(k̃) ∈ W̃ for some W̃ ∈ ker(t), we conclude that the

restricted partition π|
W̃

also contains the singleton {k̃}. Conversely, suppose π|
W̃

contains the singleton {k̃} for some W̃ ∈ ker(t). Now we use the C-separate
spreadability of X to conclude that there exists for any σW , τW ∈ S∞ a function
j : [n] → N with kerO(j) = kerO(i) such that j|W = i|W for all W ∈ ker(t)\{W̃}
and τW ◦ i|W = σW ◦ (j|W ) and τW |Ran i|W and σW |Ran j|W are order preserving. In
particular, we can choose the permutation σ ∈ S∞ such that ker(j) contains the

singleton {k̃}.
Altogether, these arguments show that, for some W ∈ ker(t), the function

i : [n]→ N has a restricted ordered kernel set partition kerO(i|W ), which contains a
singleton if and only if there exists a function j : [n]→ N with ϕkerO(j),t = ϕkerO(i),t

which has a singleton in its ordered kernel set partition ker(j).
‘(a)⇒ (b)’: Suppose that kerO(i|W ) contains a singleton for some W ∈ ker(t).

By the previous arguments, we find a function j : [n] → N which contains a sin-
gleton and satisfies ϕkerO(j),t = ϕkerO(i),t. Thus the validity of the C-joint SVP
implies ϕkerO(i),t = ϕkerO(j),t = 0.
‘(b) ⇒ (a)’: Suppose kerO(i) contains a singleton. Then kerO(i|W ) contains a
singleton for some W ∈ ker(t). Thus we conclude ϕkerO(i),t = 0 from the validity
of the C-joint SVP.

We are left to show the failure of this equivalence in the setting of a C-jointly
spreadable family X . But this is immediate from Lemma 3.3.7, where it is shown
that this equivalence already fails for a C-jointly exchangeable family X .

We introduce next in the spreadable setting the counterpart of the function
on partitions associated to a C-jointly exchangeable family X . We recall from
Lemma 2.1.21 that the following are equivalent for two functions i, j : [n]→ N:

i ∼O j ⇐⇒ kerO(i) = kerO(j).

This ensures that the function introduced next is well-defined.

Definition 3.4.7. Let (A, ϕ) be a *-algebraic probability space and let X ≡
{(xc,n)∞n=1 | c ∈ C} ⊂ A be a C-jointly spreadable family. Then the map

ϕO•,•,• :
∞⊔
n=1

OP(n)× {t : [n]→ C} × {ε : [n]→ {∗, 1}} → C,

given by

ϕOπ,t,ε := ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
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for any ε : [n] → {∗, 1}, t : [n] → C, and i : [n] → N with kerO(i) = π, is called
the function on ordered partitions associated to X . If the sequence X satisfies
xc,n = x∗c,n for all c ∈ C and n ∈ N, then the function on partitions associated to
X simplifies to

ϕO•,• :
∞⊔
n=1

OP(n)× {t : [n]→ C} → C

that is given by

ϕOπ,t := ϕ
(
xt(1),i(1) · · ·xt(n),i(n)

)
.

Note that, canonically identifying the function t : [n] → C and the n-tuple
(t(1), . . . , t(n)) ∈ Cn, the function on partitions associated to X can be also
addressed as

ϕO•,• :
∞⊔
n=1

OP(n)× Cn × {ε : [n]→ {∗, 1}} → C.

Notation 3.4.8. We use 0! = 1 and, for convenience of notation, 0 6= (n/2)! =
1
2
3
2
· · · n

2

√
π for odd n ∈ N. Furthermore, we use the convention that summation

over the empty set is zero, for example
∑

i∈∅Ai = 0.

Theorem 3.4.9. Let (A, ϕ) be a *-algebraic probability space and suppose the

family of sequences X ≡ {(x(c)n )∞n=1 | c ∈ C} ⊂ A satisfies the following conditions:

(i) X is C-jointly spreadable;

(ii) X satisfies the C-joint SVP.

Then one has for

Sc,N =
xc,1 + · · ·+ xc,N√

N

that, for all n ∈ N, ε : [n]→ {∗, 1}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
π∈OP2(n)

ϕOπ,t,ε.

If X is C-separately spreadable or satisfies the C-separate SVP, then one has that,
for all n ∈ N, ε : [n]→ {∗, 1}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
π∈OP2(n)
π≤ker(t)

ϕOπ,t,ε.

Here π ∈ P(n) denotes the partition canonically assigned to π ∈ OP(n).
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Remark. In principle, we could define OP2(n, t) := {π ∈ OP2(n) | π ≤ ker(t)}.
This definition can be further specified to include a direction map: OP2(n, t, ε) :=
{π ∈ OP2(n, t) | ε(minV ) 6= ε(maxV ) for all V ∈ π}.

Proof. We need to compute, for some fixed n ∈ N and t(1), . . . , t(n), the large
N -limit of

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

Nn/2

∑
i : [n]→[N ]

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
=

1

Nn/2

∑
π∈OP(n)

∑
i : [n]→[N ]
kerO(i)=π

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)

=
1

Nn/2

∑
π∈OP(n)

B
(N)
|π| ϕ

O
π,t,ε,

where

B
(N)
|π| =

N · (N − 1) · · · (N − |π|+ 1)

1 · 2 · · · |π|
=

(
N

|π|

)
is the cardinality of the set {i : [n]→ [N ] | kerO(i) = π}.

Here we have used for the second equality that the summation over all functions
i : [n] → [N ] can be reorganized as summation over the order equivalence classes
of these index functions: ∑

i : [n]→[N ]

=
∑

π∈OP(n)

∑
i : [n]→[N ]
kerO(i)=π

.

Note for the next arguments that one has

B
(N)
|π| = A

(N)
|π| /|π|!,

where A
(N)
|π| = N · (N − 1) · · · (N − |π| + 1) denotes the cardinality of the set

{i : [n] → N | ker(i) = π̄}, as it has been used in the proof of the classical CLT,
Theorem 3.1.1.

Whenever the ordered partition π has a singleton, then the SVP implies that
ϕOπ,t,ε = 0. Therefore, we are left to consider those ordered partitions π for which
each block contains at least two elements. This implies k ≤ n/2. Similar to
the arguments from Step 2 in the proof of Theorem 3.1.1, we deduce in the case
|π| < n/2 that

B
(N)
|π|

Nn/2
=
A

(N)
|π|

Nn/2
· 1

|π|!
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vanishes in the limit N →∞. Hence, we are only left with the case k = n/2. In
other words, only ordered pair partitions contribute to the limit:

lim
N→∞

B
(N)
k /Nn/2 = lim

N→∞

N(N − 1) · · · (N − k + 1)

Nk
· 1

k!

= lim
N→∞

·N
N
· N − 1

N
· · · N − k + 1

N
· 1

k!
=

1

k!
.

Altogether, we have shown that only ordered pair partitions π ∈ OP2(n) can
contribute as summands in the large N -limit such that

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
π∈OP2(n)

ϕOπ,t,ε.

As we argued in Theorem 3.3.10, we are left to show that the C-separate spread-
ability or the C-separate SVP of X allows us to restrict the summation further to
ordered pair partitions π ∈ OP2(n) satisfying π ≤ ker(t). We know from Lemma
3.4.6 that C-separate spreadability implies the equivalence of the C-joint SVP and
the C-separate SVP. Thus it suffices to showing that strengthening of the C-joint
SVP to the C-separate SVP implies the vanishing of further ordered pair parti-
tions. For this purpose, consider some i : [n] → [N ] with π = kerO(i) ∈ OP2(n)
and let W ∈ ker(t). Then kerO(i|W ) ∈ OP(W ) has blocks of size 2 at most. Now
the C-separate SVP implies that only summands of those partitions π = kerO(i)
contribute where kerO(i|W ) ∈ OP(W ) is an ordered pair partition. As this ar-
gument is valid for any block W ∈ ker(t), it follows that only those summands
contribute for which π = kerO(i) ∈ OP2(n) satisfies π ≤ ker(t).

Remark 3.4.10. C-joint spreadability of a family of random variables is a slightly
stronger distributional invariance principle as the one which is stipulated by Spe-
icher and von Waldenfels for their main result in [SW94], a general algebraic CLT.
C-separate spreadability is a stronger distributional invariance principle than C-
joint spreadability, and it has so far not been formulated explicitly in the context
of *-algebraic CLTs.

Next we provide some notation and a definition, as needed for the formulation
of Theorem 3.4.13 below.

Notation 3.4.11. Let the ‘color’ function t : [n]→ C be fixed. We denote by∏
W∈ker(t)

OP(W ) =
{
f : ker(t) 7→

⊔
W∈ker(t)

OP(W )
}

the Cartesian product of the ordered partitions of the blocks of ker(t) with coordi-
nate projections ker(t) 3 W 7→ f(W ) ∈ OP(W ). Similarly, let

∏
W∈ker(t)OP2(W )

denote the Cartesian product of the ordered pair partitions of the blocks of ker(t).
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For a given ordered partition π ∈ OP(n), we denote by

π|• ∈
∏

W∈ker(t)

OP(W )

the function which has, for eachW ∈ ker(t), theW -restriction π|W as a coordinate.
Furthermore, we will write

π|• ∈
∏

W∈ker(t)

OP2(W )

if π|W ∈ OP2(W ) for all W ∈ ker(t).

Clearly the equivalence

i ∼O j ⇐⇒ kerO(i) = kerO(j)

for two functions i, j : [n]→ N (see Lemma 2.1.21) transfers to restrictions of their
domain. More precisely, this equivalence ensures that

i|W ∼O j|W ⇐⇒ kerO(i|W ) = kerO(j|W )

for the restrictions of the functions i and j to any (non-empty) subset W ⊂ [n].
This ensures that the function introduced next is well-defined.

Definition 3.4.12. Let (A, ϕ) be a *-algebraic probability space and let X ≡
{(xc,n)∞n=1 | c ∈ C} ⊂ A be a C-separately spreadable family. Then the map

ϕO•|,•,• :
∞⊔
n=1

( ∏
W∈ker(t)

OP(W )
)
× {t : [n]→ C} × {ε : [n]→ {∗, 1}} → C,

given by

ϕOπ|,t,ε := ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
for any ε : [n] → {∗, 1}, t : [n] → C, and i : [n] → N with kerO(i) = π and
kerO(i|W ) = π|W ∈ OP(W ) for any W ∈ ker(t), is called the function on reduced
ordered partitions associated to X . If the family X satisfies xc,n = x∗c,n for all
c ∈ C and n ∈ N, then the function on partitions associated to X simplifies to

ϕO•|,• :
∞⊔
n=1

( ∏
W∈ker(t)

OP(W )
)
× {t : [n]→ C} → C

that is given by

ϕOπ|,t := ϕ
(
xt(1),i(1) · · ·xt(n),i(n)

)
.
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We are ready to generalize Theorem 3.3.13 from the setting of exchangeability
to that of spreadability.

Theorem 3.4.13. Let (A, ϕ) be a *-algebraic probability space and suppose the
family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A satisfies:

(i) X is C-separately spreadable;

(ii) X satisfies the C-separate SVP.

Then one has for

Sc,N =
xc,1 + · · ·+ xc,N√

N

that, for all n ∈ N, ε : [n]→ {∗, 1}, and t : [n]→ C,

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

∏
W∈ker(t)

1

(|W |/2)!

∑
π|•∈

∏
W∈ker(t)OP2(W )

ϕOπ|,t,ε.

Proof. The assumptions of C-separate spreadability and C-separate SVP ensure
that Theorem 3.4.9 is applicable such that

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
π∈OP2(n)
π≤ker(t)

ϕOπ,t,ε.

The proof is completed if we can establish

1

(n/2)!

∑
π∈OP2(n)
π≤ker(t)

ϕOπ,t,ε =
∏

W∈ker(t)

1

(|W |/2)!

∑
π|•∈

∏
W∈ker(t)OP2(W )

ϕOπ|,t,ε

or, equivalently,∑
π∈OP2(n)
π≤ker(t)

ϕOπ,t,ε =
(n/2)!∏

W∈ker(t)(|W |/2)!

∑
π|•∈

∏
W∈ker(t)OP2(W )

ϕOπ|,t,ε.

We infer from Definition 3.4.7 and Definition 3.4.12 that

ϕOπ,t,ε = ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕOπ|,t,ε

for any π ∈ OP2(n) with π ≤ ker(t), since one has for any π ∈ OP2(n):

π ≤ ker(t) =⇒ π|• ∈
∏

W∈ker(t)

OP2(W ).
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Thus we are left to show that, for any fixed f ∈
∏

W∈ker(t)OP2(W ),

#
{
π ∈ OP2(n)

∣∣π ≤ ker(t), π|• = f
}

=
(n/2)!∏

W∈ker(t)(|W |/2)!
.

But this claim is immediate upon its reformulation as a standard combinatorial
problem. Let n = 2p and |W1| = 2p1, . . . , |Wd| = 2pd for d = | ker(t)| such that
p = p1 + p2 + . . .+ pd. For each c ∈ [d], suppose there are pc ordered pairs of the
color c, given by f(Wc) ∈ OP2(Wc). Then the number of possibilities to distribute
these p ordered pairs to obtain an ordered pair partition π ∈ OP2(2p) such that
π|Wc = f(Wc) for all c ∈ [d] is given by

p!

p1! p2! · · · pd!
.

We illustrate the combinatorial argument used in the proof of Theorem 3.4.13.

Example 3.4.14. Consider the ‘color’ function t : [12]→ [3] with

ker(t) = {{1, 3, 6, 10}, {2, 5}, {4, 7, 8, 9, 11, 12}} =: {W1,W2,W3}

and suppose that f ∈
∏

W∈ker(t)OP2(W ) with

f(W1) = ({1, 6}, {3, 10}), f(W2) = ({3, 5}), f(W3) = ({4, 9}, {7, 8}, {11, 12}).

Let 2pi := |Wi| = for i = 1, 2, 3 and 2p = 12. More explicitly, one has

p1 = 2, p2 = 1, p3 = 3, p = 6.

Upon the (unique) order preserving identification of OP2(Wi) and OP2(2pi) for

each Wi ∈ ker(t), we may instead consider the function f̃ ∈
∏

W∈ker(t)OP2(2pi)
with

f̃(W1) = ({1, 3}, {2, 4}), f̃(W2) = ({1, 2}), f̃(W3) = ({1, 4}, {2, 3}, {5, 6}).

We are interested in finding all ordered pair partitions π = (V1, V2, V3, V4, V5, V6) ∈
OP2(12) such that π = {V1, V2, V3, V4, V5, V6} ≤ ker(t). Note that the condition
π ≤ ker(t) specifies the ‘color’ of each pair of the partition π ∈ P2(12). More
explicitly, there are

p!

p1! p2! p3!
=

6!

2! 1! 3!
= 60

possibilities to distribute 3 ‘colors’ on p = 6 pairs such that p1 = 2 pairs have the
first ‘color’, p2 = 1 pair has the second ‘color’, and p3 = 3 pairs have the third
‘color’. Having specified this distribution of ‘colors’ on pairs, the ordered pair
partition π is completely specified by its W -restricted ordered partitions

π|W1
= f̃(W1), π|W2

= f̃(W2), π|W3
= f̃(W3).
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We discuss next how multivariate settings for spreadable sequences can be
constructed from a single spreadable sequence. Given the ordered set (C,<) and
the natural numbers (N, <) (equipped with the natural order relation), we equip
the Cartesian product C × N with the following two order relations:

(c,m) <j (d, n) :⇐⇒ (m < n) or (c < d if m = n),

(c,m) <s (d, n) :⇐⇒ (c < d) or (m < n if c = d).

We will see that the order relation <j is of relevance for the construction of a
C-joint spreadable family X , and the the order relation <s will be of relevance
for the construction of a C-separate spreadable family X .

Lemma 3.4.15. Let C be a countable set and let J : C × N → N be an injective
function such that, for all c, c̃ ∈ C and n, ñ ∈ N,

(c, n) <j (c̃, ñ) =⇒ J(c, n) < J(c̃, ñ).

Given a spreadable sequence x ≡ (xn)∞n=1 ⊂ A and putting

xc,n := xJ(c,n),

the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is C-jointly spreadable.
Moreover, if the sequence x ⊂ A has the SVP, then X has the C-separate SVP,
and thus also the C-joint SVP.

Proof. We need to show that, for any ε : [n]→ {∗, 1},

ϕ
(
x
ε(1)
t(1),i(1) · · ·x

ε(n)
t(n),i(n)

)
= ϕ

(
x
ε(1)
t(1),j(1) · · ·x

ε(n)
t(n),j(n)

)
whenever i ∼O j. By Lemma 2.1.21, this is equivalent to establishing

ϕ
(
x
ε(1)
t(1),τ◦i(1) · · · x

ε(n)
t(n),τ◦i(n)

)
= ϕ

(
x
ε(1)
t(1),σ◦i(1) · · · x

ε(n)
t(n),σ◦i(n)

)
or, using the definition of the xc,n’s,

ϕ
(
x
ε(1)
J(t(1),τ◦i(1)) · · ·x

ε(n)
J(t(n),τ◦i(n))

)
= ϕ

(
x
ε(1)
J(t(1),σ◦i(1)) · · ·x

ε(n)
J(t(n),σ◦i(n))

)
for σ, τ ∈ S∞ with order preserving restrictions σ|[n] and τ |[n]. For this purpose,
it suffices to consider lower index pairs (k, `) ∈ [n]2 with k 6= ` and to show that
(k, `) ∼O

(
σ(k), σ(`)

)
for σ ∈ S∞ with order preserving restriction σ|[n] if and

only if
(
J(c, k), J(d, `)

)
∼O

(
J(c, σ(k)), J(d, σ(`))

)
for all c, d ∈ C and σ ∈ S∞

with order preserving restriction σ|[n].
Suppose 1 ≤ k < ` ≤ n. Then one has (c, k) <j (d, `) for any c, d ∈ C if and

only if J(c, k) < J(d, `) for any c, d ∈ C. Since the restriction σ ∈ S∞ to [n] is
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assumed to be order preserving and due to the order preserving assumptions on
J , we conclude further that

k < ` ⇐⇒ σ(k) < σ(`) ⇐⇒ J(c, σ(k)) < J(d, σ(`)) (c, d ∈ C).

Exchanging the roles of k and ` establishes to equivalence of the converse inequali-
ties. Altogether, we arrive at the conclusion that the spreadability of the sequence
x implies the C-joint spreadability of X .

Finally, the C-joint SVP of X follows immediately from the SVP of the se-
quence x, since the function J is injective. Suppose now the (ordered) partition
π ∈ (O)P(n) has a W -restricted (ordered) partition π|W , which contains a sin-
gleton {`}. Then this singleton is contained in a block V ∈ π. If V = {`} then
the injectivity of J implies again that C-separate SVP is valid in this case. So we
are left to consider the case that V = {`} ∪ Ṽ for some non-empty set Ṽ . Our

assumption on ` implies Ṽ ∩W = ∅, as otherwise {`} would not be a singleton for
the W -restricted (ordered) partition π|W . Now the injectivity of J implies again
that the SVP of the sequence x ensures the C-separate SVP of the family X .

Example 3.4.16. Consider C = [d] to be equipped with its natural order and let
[d]×N be equipped with the order <j. Then an injective function J : [d]×N→ N
is defined by

J(c, n) = (n− 1)d+ c.

One easily verifies that (c,m) <j (c̃, m̃) implies J(c,m) < J(c̃, m̃). Thus, given
the spreadable sequence x, one obtains that xc,n := xJ(c,n) defines a C-jointly
spreadable family X , as formulated in Lemma 3.4.15.

Example 3.4.17 (‘Color’-Interleaving Pattern). This example is met again when
we will study multivariate CLTs for ω-sequences in Chapter 4. We have produced
in Example 3.4.16 a jointly spreadable tuple of sequences from a single spreadable
sequence with the help of the injective function J : [d]× N→ N, given by

J(c, n) = (n− 1)d+ c. (3.9)

This ‘color’-interleaving choice of J yields for the ansatz of the multivariate CLT:

S1,N =
1√
N

(x1 + xd+1 + . . .+ x(N−1)d+1),

S2,N =
1√
N

(x2 + xd+2 + . . .+ x(N−1)d+2),

...

Sd,N =
1√
N

(xd + x2d + . . .+ xNd).
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If the spreadable sequence x has also the SVP, then one arrives by Theorem 3.4.9
at the following multivariate CLT:

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
π∈OP2(n)
π≤ker(t)

ϕOπ,t,ε,

where

ϕOπ,t,ε = ϕ
(
x
ε(1)
(i(1)−1)d+t(1) · · ·x

ε(n)
(i(n)−1)d+t(n)

)
for t : [n]→ C, ε : [n]→ {∗, 1}, and i : [n]→ N with kerO(i) = π.

Furthermore, we rewrite ϕOπ,t,ε for even n such that an ordered pair partition
π ∈ OP2(n) is addressed through a pair (π, σ) ∈ P2(n)×Sn/2. By Lemma 2.1.26,
there is a bijective correspondence between ordered pair partitions π ∈ OP2(n)
and pairs (π, σ) ∈ P2(n)×Sn

2
such that (Vσ(1), . . . , Vσ(n

2
)) = π 7→ π = {V1, . . . , Vn

2
},

where (V1, . . . , Vn
2
) is the unique standard ordered partition assigned to π. Thus

lim
N→∞

ϕ(S
ε(1)
t(1),N · · ·S

ε(n)
t(n),N) =

1

(n/2)!

∑
σ∈Sn

2

∑
π∈P2(n)
π≤ker(t)

ϕπ,t,ε,σ,

where, for even n ∈ N,

ϕπ,t,ε,σ := ϕ
(
x
ε(1)
σ◦i(1) · · ·x

ε(n)
σ◦i(n)

)
for i : [n]→ [n/2] with ker(i) = π ∈ P2(n), and σ ∈ Sn/2, and ε : [n]→ {∗, 1}.

Remark 3.4.18. There exist C-jointly spreadable families X which are con-
structed as in Lemma 3.4.15 from a single spreadable sequence and which fail
to be C-separately spreadable. We will meet such a phenomenon when studying
certain sequences of quantum coin tosses in Chapter 4.

We turn next our attention to the framework of separate spreadability.

Lemma 3.4.19. Let C be a ordered countable set and let J : C × N → N be an
injective function such that, for all c, c̃ ∈ C and n, ñ ∈ N,

(c, n) <s (c̃, ñ) =⇒ J(c, n) < J(c̃, ñ).

Given a spreadable sequence x ≡ (xn)∞n=1 ⊂ A and putting

xc,n := xJ(c,n),

the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A is C-separately spreadable.
Moreover, if the sequence x ⊂ A has the SVP, then X has the C-separate SVP.
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Proof. We need to establish that, for any n ∈ N, t : [n]→ C, and ε : [n]→ {∗, 1},

ϕ
(
x
ε(1)
J(t(1),i(1)) · · ·x

ε(n)
J(t(n),i(n))

)
= ϕ

(
x
ε(1)
J(t(1),j(1)) · · ·x

ε(n)
J(t(n),j(n))

)
.

whenever i|W ∼O j|W for every block W ∈ ker(t). Let c, d ∈ C with c 6= d. Then
one has the equivalences

c < d ⇐⇒ ∀k, ` ∈ N : (c, k) <s (d, `) ⇐⇒ ∀k, ` ∈ N : J(c, k) < J(d, `)

and

c > d ⇐⇒ ∀k, ` ∈ N : (c, k) >s (d, `) ⇐⇒ ∀k, ` ∈ N : J(c, k) > J(d, `).

Thus the order relation of the indices of a factor xc,k and xd,` is not effected for
c 6= d for any choices of k, ` ∈ N. So it is only possible to violate order relations
between the indices of pairs of factors which are of the same color, i.e. for factor
of the form xc,k and xd,`. But here one has, for all k, ` ∈ N,

k < ` ⇐⇒ ∀c ∈ C : (c, k) <s (c, `) ⇐⇒ ∀c ∈ C : J(c, k) < J(c, `)

and

k > ` ⇐⇒ ∀c ∈ C : (c, k) >s (c, `) ⇐⇒ ∀c ∈ C : J(c, k) > J(c, `).

Thus the spreadability of the underlying sequence x ensures the C-separate spread-
ability of X . Finally, the C-separate SVP of X follows from the SVP of the
sequence x by the same arguments as made in the proof of Lemma 3.4.15.

The following example relates to a multivariate version of a CLT for C-
separately spreadable family of random variables, as we will meet it in Theorem
4.3.10.

Example 3.4.20 (‘Color’-Blockwise Pattern). We recall that we have already
seen in Example 3.4.16 that, for C = [d], the ‘interleaving pattern’ of finitely
many colors allows us to obtain a C-jointly spreadable family X from a single
spreadable sequence. We describe next an approach which is, loosely phrasing,
about a ‘block pattern’ of finitely many colors. More precisely, this ‘block pattern’
allows us to obtain a ‘locally’ C-separately spreadable family X from a single
spreadable sequence. Here the attribute ‘locally’ refers to that spreadability will
only be ‘locally’ available, in a sense which will become more clear in the following.

We replace the role of the single injective function J : [d]× N→ N in Lemma
3.4.19 (and Lemma 3.4.15) by the family of injective functions {JM}M : [d]×[M ]→
[dM ], defined by

JM(t, n) := (t− 1)M + n (t ∈ [d], n ∈ [M ]).
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Consider the finite family of finite sequences XM ≡
{

(x̃c,n)Mn=1

∣∣c ∈ [d]
}

, given by

x̃c,n := xJM (c,n),

where we have suppressed the index M in the definition of each x̃c,n. One can
show that the finite family XM is ‘locally’ C-separately spreadable, i.e. one has

ϕ
(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
= ϕ

(
x̃
ε(1)
t(1),j(1) · · · x̃

ε(n)
t(n),j(n)

)
for any ε : [n] → {∗, 1}, and for any i, j : [n] → [M ] whenever i|W ∼O j|W for
every block W ∈ ker(t). Similarly, the finite family XM can be seen to be ‘locally’
C-jointly spreadable, i.e. one has

ϕ
(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
= ϕ

(
x̃
ε(1)
t(1),j(1) · · · x̃

ε(n)
t(n),j(n)

)
for any ε : [n]→ {∗, 1}, and for any i, j : [n]→ [M ] with i ∼O j.

One can also verify that the finite family XM satisfies the C-separate SVP and
(thus also) the C-jointly SVP if the underlying sequence x enjoys the SVP.

Let C = [d]. An inspection of Theorem 3.4.13 and its proof shows that this
CLT is still valid if one replaces the C-separate spreadability and the C-separate
SVP of the family X by their local versions for the finite families {XM}M∈N. Thus,
for any N ≤M , the ansatz

S̃c,N =
1√
N

(
x̃c,1 + . . .+ x̃c,N

)
=

1√
N

(
x(c−1)N+1 + . . .+ x(c−1)N+N

)
yields again that, for any n ∈ N and any t : [n]→ C,

lim
N→∞

ϕ(S̃
ε(1)
t(1),N · · · S̃

ε(n)
t(n),N) =

∏
W∈ker(t)

1

(|W |/2)!

∑
π|•∈

∏
W∈ker(t)OP2(W )

ϕOπ|,t,ε

with, for even n ∈ N,

ϕOπ|,t,ε = ϕ
(
x̃
ε(1)
t(1),i(1) · · · x̃

ε(n)
t(n),i(n)

)
for any ε : [n] → {∗, 1}, for any i : [n] → [n/2] with π|W = kerO(i|W ) for all
W ∈ ker(t) ∈ P(C).

Remark 3.4.21. In contrast to the situation for exchangeable sequences, one
needs now to consider ordered ‘color’ sets (C,<). We show next that a naive
transfer of the construction for exchangeable sequences is doomed to fail.

Let C be a countable set and let J : C × N → N be an injective function
such that J(c, •) is order preserving for each c ∈ C. Given a spreadable sequence
x ⊂ A and putting

xc,n := xJ(c,n),
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the family of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A may be neither C-separately
spreadable nor C-jointly spreadable. We illustrate this by the following example.

Suppose the function J : C × N → N satisfies that J(c, •) is order preserving
for each c ∈ {1, 2} such that

J(1, 1) = 1, J(1, 2)= 5, J(1, 3) = 6,

J(2, 1) = 2, J(2, 2)= 3, J(2, 3) = 4.

Furthermore, let x ⊂ A be a spreadable sequence such that ϕ
(
x1x3

)
6= ϕ

(
x5x4

)
.

Then xc,n := xJ(c,n) defines a pair of sequences X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A
which fails to be C-jointly spreadable:

ϕ
(
x1,1x2,2

)
= ϕ

(
xJ(1,1)xJ(2,2)

)
= ϕ

(
x1x3

)
6= ϕ

(
x5x4

)
= ϕ

(
xJ(1,2)xJ(2,3)

)
= ϕ

(
x1,2x2,3

)
.

This calculation also shows that X fails to be C-separately spreadable.

3.5 Factorization properties in the context of

distributional invariance principles

The singleton vanishing property (SVP), as introduced in Definition 3.2.3, has
been a crucial assumption for the *-algebraic CLTs formulated in Section 3.3 and
Section 3.4. We provide next some results which allow us to verify the validity of
the SVP in concrete models within the framework of tracial *-algebraic probabil-
ity spaces. Furthermore, any concrete identification of multivariate central limit
laws depends on the availability of factorization properties for distributional in-
variance principles. These factorization properties take over the role of stochastic
independence for the classical CLT in the noncommutative context. We provide
results on such factorization properties, again for tracial *-algebraic probability
spaces, at the end of this section. Here the emphasis is on providing criteria for the
validity of such factorization properties, which can be verified in concrete models.

Proposition 3.5.1. Let (A, ϕ) be a tracial *-algebraic probability space. The
following are equivalent for a spreadable sequence x ≡ (xn)∞n=1 ⊂ A:

(a) x satisfies the SVP;

(b) ϕ(x∗1x2) = 0.

Proof. Clearly, (a) implies (b) since ϕ(x∗1x2) has underlying the ordered partition
π = ({1}, {2}) which contains two singletons. So we are left to prove the converse.
Let y, z ∈ *-alg{xk | k ∈ N, k 6= `} for some ` ∈ N. We want to show that (b)
implies ϕ(yx`z) = 0 and ϕ(yx∗`z) = 0. Clearly, the second equation is immediate
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from the first, equation, as ϕ(yx∗`z) = ϕ(z∗x`y∗) is valid for all y, z ∈ *-alg{xk |
k ∈ N, k 6= `}. Thus it suffices to establish the first equation. Recall from
Definition 2.3.7 that the partial shift θ`+1 acts on N as

θ`+1(n) =

{
n if n > `+ 1,

n+ 1 if n ≤ `+ 1.

Let α`+1 denote the unital *-algebra homomorphism on *-alg{xn | n ∈ N}, which
is given by the C-linear multiplicative extension of the maps xn 7→ xθ`+1(n) (with
n ∈ N). We conclude from spreadability that

ϕ(yx`z) = ϕ
(
αN`+1(y)x`α

N
`+1(z)

)
= ϕ

(
αN`+1(y)x`+pα

N
`+1(z)

)
for any 1 ≤ p ≤ N < ∞. Thus, writing yN := αN`+1(y) and zN := αN`+1(z) for
brevity, one has

ϕ(yx`z) = ϕ
(
yN
( 1

N

N∑
p=1

x`+p
)
zN

)
for all N ∈ N. Using first the traciality of ϕ, this can be also written as

ϕ(yx`z) = ϕ
(
zNyN

( 1

N

N∑
p=1

x`+p
))
.

By the Cauchy-Schwarz inequality for *-algebraic probability spaces and station-
arity, we obtain the estimate∣∣∣∣∣ϕ(zNyN( 1

N

N∑
p=1

x`
))∣∣∣∣∣

2

≤ ϕ
(
|y∗Nz∗N |2

)
ϕ
(∣∣∣ 1

N

N∑
p=1

x`+p

∣∣∣2)
= ϕ

(
|y∗z∗|2

)
ϕ
(∣∣∣ 1

N

N∑
p=1

xp

∣∣∣2).
Now the second factor can be further reduced with the help of spreadability such
that we obtain, for all N ≥ 1,

ϕ
(∣∣∣ 1

N

N∑
p=1

xp

∣∣∣2) =
1

N2

N∑
p=1

ϕ
(
x∗pxp

)
+

1

N2

∑
1≤p<q≤N

ϕ
(
x∗pxq

)
+

1

N2

∑
N≥p>q≥1

ϕ
(
x∗pxq

)
=

1

N2

N∑
p=1

ϕ
(
x∗1x1

)
+

1

N2

∑
1≤p<q≤N

ϕ
(
x∗1x2

)
+

1

N2

∑
N≥p>q≥1

ϕ
(
x∗2x1

)
=

N

N2
ϕ
(
x∗1x1

)
+
N(N − 1)

N2
<ϕ
(
x∗1x2

)
≥ 0.
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Altogether, we conclude in the large N -limit that

|ϕ(yx`z)| ≤ ϕ
(
|y∗z∗|2

)
<ϕ(x∗1x2).

Thus ϕ(x∗1x2) = 0 implies ϕ(yx`z) and consequently the SVP.

Corollary 3.5.2. Let (A, ϕ) be a tracial *-algebraic probability space. The follow-
ing are equivalent for a C-jointly spreadable family X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A:

(a) X satisfies the C-joint SVP;

(b) ϕ(x∗c,1,xc,2) = 0 for all c ∈ C.

Proof. ‘(a) =⇒ (b)’ is concluded as done in the proof of Proposition 3.5.1. The
converse implication follows from the same arguments used in the proof of Propo-
sition 3.5.1, now choosing xc,` ∈ A for some c ∈ C and y, z ∈ *-alg{xc,k | c ∈
C, k ∈ N, k 6= `} for some ` ∈ N, to find the estimate

|ϕ(yxc,`z)| ≤ ϕ
(
|y∗Nz∗N |2

)
<ϕ(x∗c,1xc,2).

Thus ϕ(x∗c,1xc,2) = 0 for any c ∈ C ensures the C-joint SVP.

Corollary 3.5.3. Let (A, ϕ) be a tracial *-algebraic probability space. The fol-
lowing are equivalent for a C-separately spreadable family X ≡ {(xc,n)∞n=1 | c ∈
C} ⊂ A:

(a) X satisfies the C-separate SVP;

(b) ϕ(x∗c,1xc,2) = 0 for all c ∈ C.

Proof. By Lemma 3.4.6, one has the equivalence of the C-joint SVP and C-
separate SVP for a C-separately spreadable family X . Since C-separately spread-
ability implies C-joint spreadability, Corollary 3.5.2 applies.

Let C〈X, Y 〉 denote the unital *-algebra generated by the polynomials in the
non-commuting variables X and Y .

Proposition 3.5.4. Let (A, ϕ) be a tracial *-algebraic probability space. The
following are equivalent for a spreadable sequence x ≡ (xn)∞n=1 ⊂ A and some
polynomial P (X, Y ) ∈ C〈X, Y 〉:

(a) x has the vanishing property

ϕ
(
yP (x`, x

∗
`)z
)

= 0

for y, z ∈ *-alg{xk | k ∈ N, k 6= `} and ` ∈ N;
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(b) x has the vanishing property

ϕ
(
P (x1, x

∗
1)
∗P (x2, x

∗
2)
)

= 0.

Proof. ‘(a) =⇒ (b)’: Choose ` = 1, y = 1A and z = P (x2, x
∗
2).

‘(b) =⇒ (a)’: Let y, z ∈ *-alg{xk | k ∈ N, k 6= `} and put x̃` := P (x`, x`). We
repeat the arguments in the proof of Proposition 3.5.1 to arrive at the estimate

|ϕ(yx̃`z)| ≤ ϕ
(
|y∗z∗|2

)
<ϕ(x̃∗1x̃2).

Thus ϕ(x̃∗1x̃2) = 0 implies the factorization property as stated in (a).

Corollary 3.5.5. Let (A, ϕ) be a tracial *-algebraic probability space. The follow-
ing are equivalent for a spreadable sequence x ≡ (xn)∞n=1 ⊂ A and some polynomial
P (X, Y ) ∈ C〈X, Y 〉:

(a) x has the factorization property

ϕ
(
yP (x`, x

∗
`)z
)

= ϕ
(
P (x`, x

∗
`)
)
ϕ
(
yz
)

for y, z ∈ *-alg{xk | k ∈ N, k 6= `} and ` ∈ N;

(b) x has the factorization property

ϕ
(
P (x1, x

∗
1)
∗P (x2, x

∗
2)
)

= ϕ
(
P (x1, x

∗
1)
∗
)
ϕ
(
P (x2, x

∗
2)
)
.

Proof. Let P̃ (x`, x
∗
`) :=

(
P (x`, x

∗
`) − ϕ

(
P (x`, x

∗
`)
)
1A
)
∈ C〈x`, x∗`〉. Now the fac-

torization property in (a) can be reformulated as the vanishing property

ϕ
(
yP̃ (x`, x

∗
`)z
)

= 0,

and the factorization property in (b) as the vanishing property

ϕ
(
P̃ (x1, x

∗
1)
∗P̃ (x2, x

∗
2)
)

= 0.

Consequently, Proposition 3.5.4 applies. This ensures the claimed equivalence of
condition (a) and condition (b).

Corollary 3.5.6. Let (A, ϕ) be a tracial *-algebraic probability space. The follow-
ing are equivalent for a C-jointly spreadable family X ≡ {(xc,n)∞n=1 | c ∈ C} ⊂ A
and some polynomial P (X•, Y•) ∈ C〈Xc, Yc | c ∈ C〉:

(a) X has the factorization property

ϕ
(
yP (x•,`, x

∗
•,`)z

)
= ϕ

(
P (x•,`, x

∗
•,`)
)
ϕ
(
yz
)

for y, z ∈ *-alg{xc,k | c ∈ C, k ∈ N, k 6= `} and ` ∈ N;
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(b) X has the factorization property

ϕ
(
P (x•,1, x

∗
•,1)
∗P (x•,2, x

∗
•,2)
)

= ϕ
(
P (x•,1, x

∗
•,1)
∗
)
ϕ
(
P (x•,2, x

∗
•,2)
)
.

Proof. All arguments in the proof of Proposition 3.5.4 and Corollary 3.5.5 directly
transfer from the spreadable sequence x to the C-jointly spreadable family X , after
some minor modifications of notation.

Corollary 3.5.7. Let (A, ϕ) be a tracial *-algebraic probability space. The fol-
lowing are equivalent for a C-separately spreadable family X ≡ {(xc,n)∞n=1 | c ∈
C} ⊂ A and some polynomial P (Xc, Yc) ∈ C〈Xc, Yc〉 for some c ∈ C:

(a) X has the factorization property

ϕ
(
yP (xc,`, x

∗
c,`)z

)
= ϕ

(
P (xc,`, x

∗
c,`)
)
ϕ
(
yz
)

for y, z ∈ *-alg{xt,k | t ∈ C, k ∈ N, (t, k) 6= (c, `)} and ` ∈ N, c ∈ C;

(b) X has the factorization property

ϕ
(
P (xc,1, x

∗
c,1)
∗P (xc,2, x

∗
c,2)
)

= ϕ
(
P (xc,1, x

∗
c,1)
∗
)
ϕ
(
P (xc,2, x

∗
c,2)
)
.

Proof. The condition formulated in (b) is a special case of the more general con-
dition (a). The converse is proven using the arguments in the proof of Proposition
3.5.4, after rewriting the factorization condition of (b) as the vanishing condition,
as done in the proof of Corollary 3.5.5.

Remark 3.5.8. Corollary 3.5.6 and Corollary 3.5.7 are about factorization prop-
erties. Corresponding results on vanishing properties are of course also available.
We omit to writing them down explicitly because above factorization properties
are more useful within the concrete identification of joint distributions for a con-
crete spreadable family of random variables.

3.6 Large N-Limit Models

The next abstract result shows that the joint distributions, as they emerge in
the large N -limit of multivariate algebraic CLTs, can be modelled on *-algebraic
probability spaces by the joint distribution of operators. This folklore result in
*-algebraic probability theory can be also found in [Sp93], for example.

Theorem 3.6.1. Suppose (A, ϕ) is a *-algebraic probability space and the non-
empty set C is (at most) countable. Let X ≡ {xc,n | n ∈ N, c ∈ C} ⊂ A be a
C-jointly spreadable family satisfying the C-joint SVP and put

Sc,N :=
1√
N

(
xc,1 + xc,2 + . . .+ xc,N

)
.
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Furthermore, let M = C〈yc, y∗c | c ∈ C〉 denote the unital free *-algebra over C
generated by the indeterminates {yc, y∗c | c ∈ C}. A state ψ on M is defined by
ψ(1M) := 1 and the C-linear extension of

ψ
(
y
ε(1)
c(1)y

ε(2)
c(2) · · · y

ε(n)
c(n)

)
:= lim

N→∞
ϕ
(
S
ε(1)
c(1),NS

ε(2)
c(2),N · · ·S

ε(n)
c(n),N

)
for any c : [n]→ C, any ε : [n]→ {1, ∗}, and n ∈ N.

Proof. The C-linearity and unitality of the map M 3 y 7→ ψ(y) ∈ C are evident
from the definition of ψ. Since positivity is preserved under pointwise limits, the
unital C-linear functional ψ : M→ C is also positive.

We discuss further this theorem in the special case where the set C is the
singleton set {c} such that we can write xc,n just as xn and S1,N as SN in Theorem
3.6.1. Furthermore, suppose xn = x∗n for all n. Then a tracial state ψ is defined
on the commutative unital *-algebra C[y] (generated by the indeterminate y with
y∗ := y) by ψ(1) = 1 and the C-linear extension of

ψ(yn) := lim
N→∞

ϕ(SnN) (n ∈ N).

We are interested in conditions under which the moment sequence (an)∞n=0 ⊂ R,
with

an := ψ(yn),

can be obtained as the the moment sequence of a probability measure µ on R.
We recall the following version of the Hamburger Moment Problem (see [RS75,
Theorem X.4] for example).

Theorem 3.6.2. A sequence (an)∞n=0 ⊂ R with a0 = 1 is the moment sequence of
the probability measure µ on R, i.e.

an =

∫
R
tnµ(dt) (n = 0, 1, 2, . . .),

if and only if, for all ` ∈ N and β0, . . . β` ∈ C,

∑̀
m,n=0

βnβman+m ≥ 0.

In the following we provide an affirmative answer to this question in the con-
text of algebraic CLTs, by ensuring that the spectral measure is defined for each
operator SN .

Suppose that (AN , ϕN), for N ∈ N, are *-algebraic probability spaces and
fN : AN → AN+1 be injective *-homomorphisms such that fN(1AN ) = 1AN+1

and
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ϕN+1 ◦ fN = ϕN for all N ∈ N. Then (AN , fN)N∈N is a directed system of unital
*-algebras with direct limit

A := lim
−→N

AN

and ϕ = lim
−→N

ϕN defines a state on A such that (AN , ϕN) is again a *-algebraic

probability space. Suppose now that each AN is a unital C*-algebra.
We will make use of the following general result when establishing the univari-

ate CLT for ω-sequences in Subsection 4.3.1.

Theorem 3.6.3. Let (AN , ϕN) be unital *-algebras with the *-algebraic probability
space (A, ϕ) as inductive limit, and with AN being a unital C*-algebra for each
N , as described above. Suppose that the spreadable sequence x = (xn)∞n=1 ⊂ A
satisfies the SVP, and x∗n = xn for all n ∈ N. Furthermore, suppose

SN :=
1√
N

(x1 + . . .+ xN) ∈ AN

for all N ∈ N. Then there exists a probability measure µ on R such that

lim
N→∞

ϕ(SnN) =

∫
R
tnµ(dt) (n ∈ N).

Proof. Let N ∈ N be fixed. As the spectral theorem applies to self-adjoint oper-
ators in a C*-algebra, there exists a probability measure (also known as spectral
measure) µN on R such that

aN,n := ϕ(SnN) =

∫
R
tnµN(dt) (n = 0, 1, 2, . . .).

Consequently, by the Hamburger Moment Problem, for all ` ∈ N and β0, . . . β` ∈
C, ∑̀

m,n=0

βnβmaN,n+m ≥ 0.

We know from the univariate algebraic CLT that limN→∞ aN,n = an for all n.
Thus ∑̀

m,n=0

βnβman+m = lim
N→∞

∑̀
m,n=0

βnβmaN,n+m ≥ 0.

Consequently, by Theorem 3.6.2, (an)n∈N is the moment sequence of some proba-
bility measure µ on R.





Chapter 4

Central Limit Theorems for a
Class of Quantum Coin Tossings

This chapter is the main objective of this thesis. We construct a braidable se-
quence x ≡ (xn)∞n=1 in the infinite algebraic tensor product of complex 2× 2 ma-
trices A =

⊗∞
n=1 M2(C). Also, we extract algebraic properties of the constructed

braidable sequence. In turn we use these algebraic properties to abstractly in-
troduce ω-sequences of partial isometries. We investigate some properties of ω-
sequences, as we will need them when establishing CLTs associated to ω-sequences
of partial isometries for a (tracial) *-algebraic probability space. In particular, we
prove explicit combinatorial formulas for moments as they appear in the large
N -limit of algebraic CLTs, including their multivariate versions, for ω-sequences.
These combinatorial formulas reveal that the moment formulas count oriented
crossings of directed ordered pair partitions in the large N -limit and differ from
those of q-Gaussian random variables starting the 8-th moment.

4.1 A Concrete Model

The *-algebraic probability space of the model. Let Bn = B⊗B⊗· · ·⊗B
denote the n-fold algebraic tensor product of a unital *-algebra B with itself.
Furthermore, for n ∈ N, let the injective *-homomorphism fn : Bn → Bn+1 be
given by

fn(x) = x⊗ 1B.

Then (Bn, fn)n∈N forms a direct system of unital *-algebras with the direct limit

B∞ := lim
−→n

Bn

which is again a unital *-algebra. We identify Bn with its canonical embedding
into B∞ whenever it is convenient. Therefore, B∞ =

⋃
n∈N Bn with

Bn = B ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
n−fold

⊗1⊗N
B ⊂ B∞.

87
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We define next a state ψ∞ on the unital *-algebra B∞ as follows. Let ψ be a state
on B. Then

ψn := ψ ⊗ ψ ⊗ · · · ⊗ ψ

defines a tensor product state on Bn with

ψn(x1 ⊗ · · · ⊗ xn) = ψ(x1) · ψ(x2) · . . . · ψ(xn).

Since ψn = ψn+1 ◦ fn, the limit

ψ∞ := lim
n→∞

ψn

exists and defines a state on B∞. Indeed, let x ∈ B∞, then there exist some m ∈ N
such that x ∈ Bm. Thus

lim
n→∞

ψn(x) = ψm(x)

exists for all x ∈ B∞. Clearly, the map B∞ 3 x 7→ ψ∞(x) ∈ C is C-linear and
ψ∞(1A) = 1. The positivity of ψ∞ is also immediate from

ψ∞(x∗x) = lim
n→∞

ψn(x∗x) ≥ 0.

Thus the pair (B∞, ψ∞) is a *-algebraic probability space which we will also ad-
dress as ⊗N(B, ψ) in the sequel.

A representation of the infinite braid group B∞. Next we want to intro-
duce a ϕ-preserving representation of the infinite braid group B∞ in Aut(B∞),
the *-automorphisms of B∞. Let T ∈ Aut(B ⊗B) such that (ψ ⊗ ψ) ◦ T = ψ ⊗ ψ
and

(T ⊗ 1B)(1B ⊗ T )(T ⊗ 1B) = (1B ⊗ T )(T ⊗ 1B)(1B ⊗ T ).

Furthermore, for n ∈ N, let Tn denote the amplification of T to a *-automorphism
of B∞ such that

Tn = 1
⊗n−1

B ⊗ T ⊗ 1⊗NB .

Thus

TiTjTi = TjTiTj if |i− j| = 1, (4.1)

TiTj = TjTi if |i− j| > 1. (4.2)

It is easy to verify that ρ(σk) := Tk extends multiplicatively to a representation
ρ of the braid group B∞ in the ψ∞-preserving *-automorphism of B∞, which we
will also address as

ρ : B∞ → Aut(B∞, ψ∞).
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In the following, we consider the special case B = M2(C) and we take ψ to be the
normalized trace tr2 on M2(C). Thus we have

Bn = M2(C)⊗M2(C)⊗ · · · ⊗M2(C)︸ ︷︷ ︸
n-fold

,

ψn = tr2 ⊗ tr2 ⊗ · · · ⊗ tr2︸ ︷︷ ︸
n-fold

.

Let ω ∈ C with |ω| = 1. Then

U = E11 ⊗ E11 + E12 ⊗ E21 + E21 ⊗ E12 + ωE22 ⊗ E22 ∈M2 ⊗M2

is a unitary matrix in M2(C) ⊗M2(C), which we will identify with the complex
4× 4 matrix

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ω


Lemma 4.1.1. The unitary U satisfies the braid relations

(U ⊗ 1B)(1B ⊗ U)(U ⊗ 1B) = (1B ⊗ U)(U ⊗ 1B)(1B ⊗ U).

Proof. This is verified by an elementary computation.

Now put

u1 = U ⊗ 12 ⊗ 12 ⊗ · · ·
u2 = 12 ⊗ U ⊗ 12 ⊗ 12 ⊗ · · ·

...

un = 12 ⊗ · · · ⊗ 12︸ ︷︷ ︸
(n− 1)-fold

⊗ U ⊗ 12 ⊗ · · ·

such that u1, u2, . . . ∈ B∞. Recall from Subsection 2.3.3 that σ̃i denotes the i-th
Artin generator of the braid group B∞.

Corollary 4.1.2. The multiplicative extension of the map B∞ 3 σ̃i 7→ ui ∈ B∞
defines a unitary representation of the infinite braid group B∞.

Proof. Clearly, uiuj = ujui for |i − j| > 1. The braid relations uiujui = ujuiuj
for |i− j| = 1 are immediate from the braid relations in Lemma 4.1.1.

Let Adv(x) := vxv∗ for any x, v ∈ B∞.
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Corollary 4.1.3. The multiplicative extension of the map

B∞ 3 σ̃i 7→ ρ(σ̃i) := Adui ∈ Aut(B∞)

defines a ψ∞-preserving representation ρ of the infinite braid group B∞ in the *-
automorphisms of B∞. Furthermore, this representation ρ : B∞ → Aut(B∞, ψ∞)
has the generating property.

Proof. Let x ∈ B∞. Clearly,

ρ(σ̃iσ̃j)(x) = uiujxu
∗
ju
∗
i = ujuixu

∗
iu
∗
j = ρ(σ̃jσ̃i)(x)

for |i− j| > 1, and

ρ(σ̃iσ̃jσ̃i)(x) = uiujuixu
∗
iu
∗
ju
∗
i = ujuiujxu

∗
ju
∗
iu
∗
j = ρ(σ̃jσ̃iσ̃j)(x)

for |i − j| = 1. We are left to verify the generating property. It is elementary to
check that

M2(C)⊗n ⊗ 1⊗N
2 = Bn ⊂ Bρ(σ̃k+1)

∞ = {x ∈ B∞ | ρ(σ̃k+1)(x) = x}

for any k ≥ n and thus

Bn ⊂
⋂
k≥n

Bρ(σ̃k+1)
∞ .

Now

B∞ =
⋃
n∈N

Bn ⊂
⋃
n∈N

⋂
k≥n

Bρ(σ̃k+1)
∞ ⊂ B∞

ensures the generating property.

Construction of braidable sequences.

Proposition 4.1.4. Suppose the *-algebraic probability space

(B∞, ψ∞) =
⊗
N

(
M2(C), tr2

)
is equipped with the representation ρ : B∞ → Aut(B∞, ψ∞) as given in Corollary
4.1.3 by

ρ(σ̃k)x = ukxu
∗
k (k ∈ N, x ∈ B∞).

Let y ∈M2(C). Then

x1 := y ⊗ 1⊗N
2 , x2 := u1x1u

∗
1, xn+1 := unxnu

∗
n,

defines a braidable sequence x ≡ (xn)∞n=1 ⊂ B∞.
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Proof. Clearly (B∞, ψ∞) is equipped with a representation ρ of the infinite braid
group as required in Definition 2.3.14 such that xn+1 = ρ(σ̃n · · · σ̃1)x1 for all n ≥ 0.
Thus we are left to verify the localization property ρ(σ̃k)x1 = x1 for all k ≥ 2.
But this property is immediate from

ρ(σ̃k)x1 = ukx1u
∗
k = (1

⊗k−1

2 ⊗ u⊗ 1⊗N
2 )(y ⊗ 1⊗N

2 )(1
⊗k−1

2 ⊗ u⊗ 1⊗N
2 )∗ = y ⊗ 1⊗N

2

for k ≥ 2.

Proposition 4.1.5. The braidable sequence x from Proposition 4.1.4 is spread-
able. Moreover, x satisfies the SVP if ψ∞(x1) = 0.

Proof. A braidable sequence is spreadable by Theorem 2.3.16. Thus we are left
to show that x has the SVP whenever ψ∞(x1) = 0. Note that the centredness of
the first random variable x1 implies ψ∞(xn) = 0 for all n ∈ N, as a spreadable
sequence is stationary. Due to Proposition 3.5.4, it suffices to check that the
vanishing condition

ψ∞(x∗1x2) = 0

is valid. But this equation can be verified by a direct computation.

Let the braidable sequence x from Proposition 4.1.4 be implemented by the
operator y ∈M2(C) such that

x1 = y ⊗ 1⊗N
2 .

We discuss next various choices of y ∈ M2(C). Consider the three Pauli spin
matrices, and the identity matrix,

σx :=

[
0 1
1 0

]
, σy :=

[
0 − i
i 0

]
, σz :=

[
1 0
0 −1

]
, 12 =

[
1 0
0 1

]
,

which form a basis of M2(C). We omit the proof of the following elementary
result.

Lemma 4.1.6. The following are equivalent for the sequence x from Proposition
4.1.4:

(a) x satisfies the SVP;

(b) tr2(y) = 0;

(c) y = axσx + ayσy + azσz for some ax, ay, az ∈ C.

Thus we can restrict our attention to the C-linear span of the Pauli spin
matrices when choosing y ∈M2(C) for the study of corresponding CLTs. We will
not investigate further the choice y = σz, as the following lemma implies that the
corresponding CLT is the classical one, as all random variables are self-adjoint
and commute.
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Lemma 4.1.7. Let x1 := σz ⊗ 1⊗N
2 and let ω ∈ C with |ω| = 1. The braid-

able sequence x (as constructed in Proposition 4.1.4) is exchangeable and satisfies
xixj = xjxi for i 6= j.

Proof. This follows from the fact that U(A⊗B)U∗ = B⊗A for any two diagonal
matrices A,B ∈M2(C).

In the following, we will focus our investigations onto the choice y = σx,
as it will provide us with a rich source of spreadable sequences which are not
exchangeable. We could have considered equally well the Paul-spin matrix σy for
this purpose, or more generally, a linear combination of both. For the sake of
clarity of our results, we refrain from this slight generalization, see also Remark
4.1.10.

Lemma 4.1.8. Let x1 := σx ⊗ 1⊗N
2 and ω ∈ C with |ω| = 1. Then the braidable

sequence x (as constructed in Proposition 4.1.4) is spreadable but not exchangeable
if and only if ω 6= ±1.

Proof. Consider the following two mixed moments:

ψ∞(x1x2x3x1x2x3) =
1

8
(2ω3 + 6ω)

and

ψ∞(x1x3x2x1x3x2) =
1

8
(2ω3 + 6ω).

Since ω3+3ω = ω3+3ω if and only if ω = ±1, it follows that x is not exchangeable
for ω 6= ±1. Conversely, ω = ±1 implies that

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ω


satisfies U2 = 12⊗ 12. Consequently, the unitaries un implement a representation
of the infinite symmetric group S∞, such that the sequence x is exchangeable.

A quantum decomposition. We are interested in studying the joint distri-
bution of the braidable sequence x for the choice x1 = σx ⊗ 1⊗N

2 , as required for
computing the moments as they appear within *-algebraic CLTs. For example,
we will need to understand how a joint moment of the form

ψ∞(x1x2x3x1x2x3)

can be computed systematically. As the random variables xn do not commute for
|ω| 6= 1, brute force computations are only suitable for obtaining explicit formulas
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for moments of lower order in the considered *-algebraic CLTs. Key to the study
of the distribution of the braidable sequence x with

x1 = σx ⊗ 12 ⊗ 12 ⊗ · · · ,
x2 = u1x1u

∗
1,

x3 = u2x2u
∗
2, (4.3)

...

xn+1 = unxnu
∗
n

is the elementary ‘quantum decomposition’

σx = a+ a∗ with a :=

[
0 1
0 0

]
.

This ‘quantum decomposition’ can be done of course for each xn such that one
has

xn = an + a∗n,

where the operators an are as specified in the next proposition.

Proposition 4.1.9. Let ω ∈ C with |ω| = 1 be fixed and consider the sequence
a ≡ (an)∞n=1 ⊂ B∞ defined inductively by

a1 := a⊗ 1⊗N
2 and an+1 := unanu

∗
n.

Then one has, for any 1 ≤ i < j <∞,

aiaj = ωajai, aiai = 0

aia
∗
j = ω̄a∗jai, aia

∗
i + a∗i ai = 1.

Moreover, the sequence a has the following properties:

(i) a is spreadable;

(ii) a has the SVP

{`} ∈ ker(i) =⇒ ψ∞
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= 0

for any i : [n]→ N and ε : [n]→ {∗, 1}, and n ∈ N;

(iii) a has the factorization properties

ψ∞
(
xa`a

∗
`z
)

= ψ∞
(
xa∗`a`z

)
=

1

2
ψ∞(xz)

for any x, z ∈ *-alg
{
ai | i ∈ N\{`}

}
and ` ∈ N.



94 CHAPTER 4. CLTS FOR QUANTUM COIN TOSSING

Proof. The relations aiai = 0 and aia
∗
i + a∗i ai = 1 are clear from a2 = 0 and

aa∗ + a∗a = 12. Furthermore, the two relations

a1a2 = ωa2a1, a1a
∗
2 = ω̄a∗2a1

are checked by an elementary computation in the 4 × 4 matrices. All remaining
relations are inferred from these relations for a1 and a2 by spreadability as follows.
Clearly, the sequence (an)∞n=1 is spreadable by construction and it is immediate
from Theorem 2.3.22 and Corollary 4.1.3 that the unitaries un implement partial
shifts αn ∈ End(B∞, ψ∞) such that

αn(am) =

{
am if n > m,

am+1 if n ≤ m.

Thus acting on the equation a1a2 = ωa2a1 with the partial shift α1 gives

α1(a1a2) = α1(ωa2a1) ⇐⇒ α1(a1)α1(a2) = ωα1(a2)α1(a1)

⇐⇒ a2a3 = ωa3a2.

Repeatedly doing so, we arrive at

αi−11 (a1a2) = αi−11 (ωa2a1) ⇐⇒ aiai+1 = ωai+1ai.

Next we continue with hitting the last equation by αi+1, to obtain

αi+1(aiai+1) = αi+1(ωai+1ai) ⇐⇒ aiai+2 = ωai+2ai.

Again repeatedly doing so, we arrive at

α
j−(i+1)
i+1 (aiai+1) = α

j−(i+1)
i+1 (ωai+1ai) ⇐⇒ aiaj = ωajai.

The same procedure yields aia
∗
j = ω̄a∗jai. We are left to verify the claimed three

properties. (i) is clear by construction. (ii) The SVP is immediate from Proposi-
tion 3.5.1 and the elementary computation

ψ∞(a∗1a2) = tr2 ⊗ tr2

(
(a∗ ⊗ 12)U(a⊗ 12)U

∗
)

= 0,

with

U =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ω

 .

(iii) A direct computation in the 4× 4 matrices shows that

ψ∞(a1a
∗
1a2a

∗
2) = ψ∞(a1a

∗
1)ψ∞(a2a

∗
2) =

1

2
· 1

2
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and

ψ∞(a∗1a1a
∗
2a2) = ψ∞(a∗1a1)ψ∞(a∗2a2) =

1

2
· 1

2
.

Using stationarity of the sequence a, another simple calculation in the 2 × 2
matrices shows ψ∞(a`a

∗
`) = ψ∞(a∗`a`) = 1

2
for all ` ∈ N. Now we infer the

claimed factorization properties from an application of Corollary 3.5.5 for the
noncommutative polynomial P (X, Y ) = XY in the indeterminants X and Y .

Remark 4.1.10. Suppose we would have taken the Pauli spin matrix σy instead
of σx for the construction of the braidable sequence x in Lemma 4.1.8. This
would have resulted in the quantum decomposition σy = − i a + i a∗ instead of
σx = a+ a∗. Defining b = − i a results in operators bn := − i an, which satisfy the
same set of relations as the an’s do for 1 ≤ i < j <∞ (see Proposition 4.1.9):

bibj = ωbjbi, bib
∗
j = ω̄b∗jbi, bibi = 0, bib

∗
i + b∗i bi = 1.

More generally, considering self-adjoint linear combinations of a and a∗ such that

y = κa+ κa∗ (κ ∈ C∗),

and, more general as before, now defining bn := κan for all n ≥ 1, one obtains the
relations:

bibj = ωbjbi, bib
∗
j = ω̄b∗jbi, bibi = 0, bib

∗
i + b∗i bi = |κ|2.

Note also that all bn’s are centered, i.e. ψ∞(bn) = 0, and have the variance

ψ∞(b∗nbn) = ψ∞(bnb
∗
n) =

|κ|2

2
.

As a review of our main results shows, this generalization from κ = 1 to some
κ ∈ C causes mainly a rescaling of mixed moments in the CLTs, according to the
covariance of the underlying operator b1.

4.2 Combinatorics of the Model

We introduce ω-sequences of partial isometries, to provide an abstract algebraic
model for the concrete matrix model studied in Section 4.1. The main result of this
section is Theorem 4.2.9, which is about the distributional invariance properties,
vanishing and factorization properties, as well as some combinatorial properties
of such sequences.

Definition 4.2.1. Let (A, ϕ) be a tracial *-algebraic probability space and ω ∈ C
with |ω| = 1. A sequence a ≡ (an)∞n=1 ⊂ A satisfying the relations

aiaj = ωajai, aia
∗
j = ω̄a∗jai for 1 ≤ i < j <∞, (4.4)

aiai = 0, aia
∗
i + a∗i ai = 1 for 1 ≤ i <∞. (4.5)

is called an ω-sequence of partial isometries.
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We have already provided a concrete realization for an interesting class of such
sequences.

Remark 4.2.2. An element a ∈ A is called a partial isometry if p := a∗a and
q := aa∗ are (orthogonal) projections. This is ensured by the relations (4.5) in
Definition 4.2.1, as

p2 = a∗aa∗a = a∗(1− a∗a)a = a∗a = p,

q2 = aa∗aa∗ = a(1− aa∗)a∗ = aa∗ = q.

(The ‘orthogonality’ p∗ = p and q∗ = q is automatic.)

Remark 4.2.3. The defining relations of an ω-sequence can be also written as

aiaj − ωi,jajai = 0, aia
∗
j − ωi,ja∗jai = δi,j (1 ≤ i, j <∞),

where ωi,j = ω for i < j and ωi,j = −1 for i = j and ωi,j = ωj,i for i > j.

Proposition 4.2.4. Let (A, ϕ) =
⊗

N
(
M2(C), tr2

)
. The sequence a ⊂ A, as

introduced in Proposition 4.1.9 for some ω ∈ C with |ω| = 1, is an ω-sequence of
partial isometries.

Proof. All defining properties of an ω-sequence of partial isometries are verified
in Proposition 4.1.9.

We have already shown that such concrete ω-sequences of partial isometries
(as considered in Proposition 4.1.9) are spreadable and have the SVP, as well
as certain factorization properties. Here we will show that this distributional
invariance property, as well as the related SVP and factorization property are
enjoyed by any ω-sequences of partial isometries. Next we illustrate some of these
properties by elementary examples before studying them in full generality. We
will constrain ourselves in these examples to apply mainly algebraic and geometric
arguments, which can be later deployed in full generality during the proof of our
main result, Theorem 4.2.9.

Example 4.2.5. We compute the moment ϕ(a3a
∗
1a
∗
3a2a1). The relations (4.5)

imply a2 = a2(a2a
∗
2 + a∗2a2) = a2a

∗
2a2. Since a∗2a2ai = aia

∗
2a2 for i 6= 2 and ϕ is

a trace, the factor (a∗2a2) can be moved cyclically around until it appears on the
left side of a2 such that

ϕ
(
a3a

∗
1a
∗
3a2a1

)
= ϕ

(
a3a

∗
1a
∗
3a2(a

∗
2a2)a1

)
= ϕ

(
a3a

∗
1a
∗
3(a
∗
2a2)a2a1

)
= 0.

Here the last equality is immediate from a2a2 = 0. Thus we have verified the SVP
for this particular moment.
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42

1

Figure 4.1: ε-restricted ordered partition
(
Vσ(1), Vσ(2)

)
= ({2, 4}, {1, 3}) ∈

OP2(4, ε) with blocks V1 = {1, 3} and V2 = {2, 4}, direction data ε(1) = ε(4) = 1
and ε(2) = ε(3) = ∗, and permutation σ = (1, 2) (left), and ε̃-restricted ordered

partition
(
Ṽσ̃(1), Ṽσ̃(2)

)
= ({1, 4}, {2, 3}) ∈ OP2(4, ε̃) with blocks Ṽ1 = {1, 4} and

Ṽ2 = {2, 3}, direction data ε̃(1) = ε̃(2) = ∗ and ε̃(3) = ε̃(4) = 1, and permutation
σ̃ = e (right).

Example 4.2.6. Consider the moment ϕ(a3a
∗
1a
∗
3a2a

∗
2a1). We use the relations

(4.4) and the trace property of ϕ to move the factor a∗2 cyclically around until it
appears on the left side of the factor a2. This will of course cause that factors
of ω or ω are picked up while applying the relevant relations. But as we observe
from the particular structure of this moment, whenever we use relations for a∗2ai
to obtain ω±1aia

∗
2 for i 6= 2, we will also have to apply them to a∗2a

∗
i , to obtain

ω∓1a∗i a
∗
2. Since ω±1ω∓1 = 1, we arrive at

ϕ(a3a
∗
1a
∗
3(a2a

∗
2)a1) = ϕ(a3a

∗
1a
∗
3a
∗
2a2a1) =

1

2
ϕ(a3a

∗
1a
∗
3a1).

Here the last equality is immediate from a2a
∗
2 + a2a

∗
2 = 1. Thus we have verified

the following factorization property for this particular moment:

ϕ(a3a
∗
1a
∗
3(a2a

∗
2)a1) = ϕ

(
a2a

∗
2

)
ϕ
(
a3a

∗
1a
∗
3a1
)
.

Example 4.2.7. Consider the moment ϕ(a2a
∗
1a
∗
2a1). We find by algebraic ma-

nipulations that

ϕ(a2a
∗
1a
∗
2a1) = ωϕ(a∗1a2a

∗
2a1) (moving a2 to the left of a∗2 with (4.4))

= ωϕ(a∗1a
∗
2a2a1) (moving a2 to the right with relations,

using traciality and again relations)

=
ω

2
ϕ
(
a∗1(a2a

∗
2 + a∗2a2)a1

)
=
ω

2
ϕ
(
a∗1a1

)
=

1

22
ω (by relations (4.5) and traciality).

On the other hand, the geometric realization of directed ordered pair partitions
provides us with the notion of oriented crossings (see Subsection 2.1.4) such that

ϕ(a2a
∗
1a
∗
2a1) =

1

22
ωcr+(π,ε,σ).
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Figure 4.2: Graphical computation of ϕ(a3a2a
∗
3a
∗
1a
∗
2a1). The middle diagram is

obtained from the left by moving the target of the 3-labelled directed arc from 1
to 2, and the target of the 2-labelled directed arc from 2 to 1. As this removes a
crossing with negative orientation, the middle diagram is multiplied by the factor
ω. The right diagram is obtained from the middle diagram by moving the source
of the 2-labelled directed arc from 1 to 4 and the target of the 1-labelled directed
arc from 4* to 1*. As this removes a crossing with positive orientation, the right
diagram is multiplied with the factor ω. Finally, removing a non-crossing arc from
the diagram produces a factor 1

2
. Removing all three non-crossing arcs we arrive

at the empty circle multiplied by the factor 1
23
ωω.

Here cr+(π, ε, σ) denotes the number of crossings with positive orientation, given
the standard ordered pair partition π = {{1, 3}, {2, 4}} ∈ P(4, ε), the direction
map ε : [4]→ {∗, 1} with ε(2) = ε(3) = ∗ and ε(1) = ε(4) = 1, and permutation
σ = (1, 2) ∈ S2. We have illustrated the directed ordered pair partitions under-
lying the equation ϕ(a2a

∗
1a
∗
2a1) = ωϕ(a∗1a2a

∗
2a1) in Figure 4.1. Note that one has

also

ϕ
(
a2a

∗
1a
∗
2a1
)

= ϕ
(
ai(1)a

∗
i(2)a

∗
i(3)ai(4)

)
for any index map i : [4]→ N with i(1) = i(3) > i(2) = i(4), as the same algebraic
manipulations and geometric realization can be carried out.

Example 4.2.8. We compute the moment ϕ(a3a2a
∗
3a
∗
1a
∗
2a1) using the algebraic

method. First we move the factor a3 to the right of a∗3 with the help of the
relations (4.4). Next we apply a factorization result similar to Example 4.2.6, to
obtain

ϕ(a3a2a
∗
3a
∗
1a
∗
2a1) = ωϕ(a2a3a

∗
3a
∗
1a
∗
2a1) =

1

2
ωϕ(a2a

∗
1a
∗
2a1).

Now we can use the result from Example 4.2.7 to fully compute this moment as

ϕ(a3a2a
∗
3a
∗
1a
∗
2a1) =

1

23
ωω.

The right-hand side simplifies of course further to 1
23

, due to the unimodularity of
ω. But we resist this final algebraic simplification as it obscures the counting of
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oriented crossings in the evaluation of such moments. Using the geometric method
of counting oriented crossings, above formula reads as

ϕ(a3a2a
∗
3a
∗
1a
∗
2a1) =

1

23
ωcr+(π,ε,σ)ωcr−(π,ε,σ),

where the balanced standard ordered pair partition π = {V1, V2, V3} ∈ P2(6, ε) is
given by V1 = {1, 3}, V2 = {2, 5} and V3 = {4, 6}. The balanced direction map
ε : [6] → {∗, 1} is given by ε(1) = ε(2) = ε(6) = 1 and ε(3) = ε(4) = ε(5) = ∗,
and finally the permutation σ ∈ S3 is given by σ(1) = 3, σ(2) = 2 and σ(3) = 1.
One verifies cr+(π, ε, σ) = 1 and cr−(π, ε, σ) = 1 with the help of the right-hand
rule for oriented crossings. We have also provided a graphical computation of
the value of ϕ(a3a2a

∗
3a
∗
1a
∗
2a1) in Figure 4.2. Note that the steps of this graphical

computation corresponds to algebraic manipulations, which are slightly different
than those done above.

Theorem 4.2.9. Let (A, ϕ) be a tracial *-algebraic probability space and ω ∈ C
with |ω| = 1. An ω-sequence of partial isometries a ≡ (an)∞n=1 ⊂ A has the
following properties:

(i) a is spreadable;

(ii) a has the SVP

{`} ∈ ker(i) =⇒ ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= 0

for any n ∈ N, i : [n]→ N, and ε : [n]→ {∗, 1};

(iii) a has the factorization property

ϕ
(
ya`a

∗
`z
)

= ϕ
(
ya∗`a`z

)
=

1

2
ϕ(yz)

for any y, z ∈ *-alg
{
ai | i ∈ N\{`}

}
and ` ∈ N;

(iv) a has the balanced pair distribution

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
=

1

2k
ωcr+(π,ε,σ) ωcr−(π,ε,σ)

for any n ∈ N, i : [n] → N with ker(i) ∈ P2(n, ε), and ε : [n] → {∗, 1}.
Here the pair partition π = {V1, V2, . . . , Vk} ∈ P2(n, ε), the permutation
σ ∈ Sk and k ∈ N are uniquely determined by ker(i) = π and kerO(i) =
(Vσ(1), . . . , Vσ(k)) ∈ OP2(n, ε) with n = 2k.

Proof. As known for partial isometries, we conclude from the relations (4.5) that,
for all p > 1,

(aia
∗
i )
p+1 = (aia

∗
i )
p(1− a∗i ai) = (aia

∗
i )
p
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and, similarly,
(a∗i ai)

p+1 = (a∗i ai)
p(1− aia∗i ) = (a∗i ai)

p.

Thus one has that, for all i, p ∈ N,

(aia
∗
i )
p = aia

∗
i , (a∗i ai)

p = a∗i ai (4.6)

(aia
∗
i )
pai = ai, (a∗i ai)

pa∗i = a∗i . (4.7)

Furthermore, the relations (4.4) imply the commutation relations

(aia
∗
i )aj = aj(aia

∗
i ), (a∗i ai)aj = aj(a

∗
i ai) (i 6= j). (4.8)

We start with proving the SVP as claimed in (ii). Let y, z ∈ *-alg{ai | i ∈ N\{k}}
for some k ∈ N. We compute

ϕ(yakz) = ϕ(yaka
∗
kakz) = ϕ(yakza

∗
kak) = ϕ(a∗kakyakz) = ϕ(ya∗kakakz) = 0,

where each equality is valid due to (4.7), the commutation relations from (4.8),
traciality, again the commutation relations from (4.8), and finally (4.5). A similar
computation establishes ϕ(ya∗kz) = 0. Thus we have shown the SVP.
We show next the factorization property stated in (iii). The equation

ϕ
(
ya`a

∗
`z
)

= ϕ
(
ya∗`a`z

)
=

1

2
ϕ(yz)

is valid if we can show the first equality, as the second equality is immediate from
a`a
∗
` + a∗`a` = 1. Thus, using traciality, it suffices to verify

ϕ(xa`a
∗
`) = ϕ(a∗`xa`) = ϕ(xa∗`a`)

for elements x ∈ *-alg
{
ai | i ∈ N\{`}

}
. Furthermore, using the relations (4.4),

(4.5) and the equations (4.6) and (4.7), it is sufficient to consider elements x which
are of the normal form

x = xi1xi2 · · ·xin (NF)

with xi ∈ {ai, a∗i , aia∗i , a∗i ai} for i ∈ N and 1 ≤ i1 < i2 < · · · < in for some
n ∈ N and ik 6= ` for all k = 1, 2, . . . , n. Using the SVP from (ii), one has
ϕ(xa`a

∗
`) = 0 = ϕ(x) if x contains a factor of the form xik = aik or xik = a∗ik for

some k ∈ [n]. Thus we are left to consider elements x where all factors are of the
balanced form xj = aja

∗
j or xj = a∗jaj. Using the commutation relations (4.8), we

calculate
ϕ(xa`a

∗
`) = ϕ(a∗`xa`) = ϕ(xa∗`a`)

for elements x which are of this balanced form. This ensures the validity of the
factorization property stated in (iii).
We show next (i), the spreadability of the sequence. Let n ∈ N and ε : [n]→ {∗, 1}
be given. Suppose i, j : [n]→ N satisfy i ∼O j. We need to show

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= ϕ

(
a
ε(1)
j(1) · · · a

ε(n)
j(n)

)
.



4.2. COMBINATORICS OF THE MODEL 101

We infer from the order equivalence of the two functions i and j that, for any
k, ` ∈ [n].

a
ε(k)
i(k) a

ε(`)
i(`) = ωa

ε(`)
i(`) a

ε(k)
i(k) ⇐⇒ a

ε(k)
j(k) a

ε(`)
j(`) = ωa

ε(`)
j(`) a

ε(k)
j(k)

and
a
ε(k)
i(k) a

ε(`)
i(`) = ωa

ε(`)
i(`) a

ε(k)
i(k) ⇐⇒ a

ε(k)
j(k) a

ε(`)
j(`) = ωa

ε(`)
j(`) a

ε(k)
j(k) .

We can apply these relations to bring a
ε(1)
i(1) · · · a

ε(n)
i(n) and a

ε(1)
j(1) · · · a

ε(n)
j(n) simulta-

neously into a normal form (NF) (as we have already used it for the proof of

(iii)). Thus we may assume without loss of generality that both a
ε(1)
i(1) · · · a

ε(n)
i(n) and

a
ε(1)
j(1) · · · a

ε(n)
j(n) are in normal form with i ∼O j. More explicitly,

a
ε(1)
i(1) · · · a

ε(n)
i(n) = xi1xi2 · · ·xik for 1 ≤ i1 < i2 < · · · < ik,

and
a
ε(1)
j(1) · · · a

ε(n)
j(n) = xj1xj2 · · ·xjk for 1 ≤ j1 < j2 < · · · < jk,

where (i1, i2, . . . , ik) ∼O (j1, j2, . . . , jk) and, for all 1 ≤ r ≤ k,

xir = air ⇐⇒ xjr = ajr ,

xir = a∗ir ⇐⇒ xjr = a∗jr ,

xir = aira
∗
ir ⇐⇒ xjr = ajra

∗
jr ,

xir = a∗irair ⇐⇒ xjr = a∗jrajr .

Now we infer from the SVP (see (ii)) or repeatedly applying the factorization
property (iii) that either

ϕ(xi1xi2 · · ·xik) = 0 = ϕ(xj1xj2 · · ·xjk)

or

ϕ(xi1xi2 · · ·xik) =
1

2k
= ϕ(xj1xj2 · · ·xjk).

Consequently, the sequence a is spreadable.
(iv) We are left to prove the concrete formula for balanced pair distributions
in terms of oriented crossings. As the sequence a is spreadable (see (i)) and
ker(i) ⊂ P2(n, ε), we may assume i : [n] → [k] with n = 2k without loss of
generality. We will show the validity of the formula

ϕ
(
a
ε(1)
i(1) · · · a

ε(2k)
i(2k)

)
=

1

2k
ωcr+(π,ε,σ) ωcr−(π,ε,σ) (Mk)

by finite induction on k. Note that (Mk) is valid if and only if (Mk) is valid for a
particular (and thus every) cyclic permutation

ϕ
(
a
ε(1)
i(1) · · · a

ε(2k)
i(2k)

)
= ϕ

(
a
ε(`)
i(`) · · · a

ε(2k)
i(2k) a

ε(1)
i(1) · · · a

ε(`−1)
i(`−1)

)
(1 ≤ ` ≤ 2k).
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Clearly, (Mk) is true for k = 1 since

ϕ(a
ε(1)
i(1) a

ε(2)
i(2) ) =

1

2

for i : [2] → [1] with ker(i) ∈ P2(2, ε) and ε : [2] → {∗, 1} balanced. Assume now
that (Mk−1) is true for k ≥ 2. By traciality, it suffices to consider moments of the
form

ϕ
(
aka

∗
ka

ε(3)
i(3) · · · a

ε(2k)
i(2k)

)
with i(1) = i(2) = k (A)

or

ϕ
(
aka

ε(2)
i(2) · · · a

ε(2k−1)
i(2k−1) a

∗
k

)
with i(1) = i(2k) = k. (B)

or

ϕ
(
aka

ε(2)
i(2) · · · a

ε(r−1)
i(r−1) a

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

) with i(1) = i(r) = k
and 3 ≤ r < 2k,

(C)

Case (A). The factorization property (iii) applies such that

ϕ
(
aka

∗
ka

ε(3)
i(3) · · · a

ε(2k)
i(2k)

)
=

1

2
ϕ
(
a
ε(3)
i(3) · · · a

ε(2k)
i(2k)

)
.

Clearly, the number of crossings with positive or negative orientation is unchanged
upon removing the factor aka

∗
k under the trace. Consequently, (Mk−1) implies

(Mk) in this case.

Case (B). This case is reduced to Case (A) by traciality and interchanging the
roles of ak and a∗k. Thus we have also concluded in this case that (Mk−1) implies
(Mk).

Case (C). One has

akai(s) = ωakai(s) and aka
∗
i(s) = ωaka

∗
i(s)

since k > i(s) for all 3 ≤ s < r. Using these algebraic relations we obtain

ϕ
(
aka

ε(2)
i(2) · · · a

ε(r−1)
i(r−1) a

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
= ωr+ωr−ϕ

(
a
ε(2)
i(2) · · · a

ε(r−1)
i(r−1) aka

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
with r+ := card ε−1|{2,...,r−1}

({∗}) and r− := card ε−1|{2,...,r−1}
({1}).

Let (π, ε, σ) ∈ P2(2k, ε) ×
{
f : [2k] → {∗, 1}

}
× Sk be the triple uniquely as-

sociated to π = kerO(i) ∈ OP2(2k, ε) (see Corollary 2.1.34 and Definition 2.1.35).
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Now let the index map ĩ : [2k] → [k] and the direction map ε̃ : [2k] → {∗, 1} be
given by

(̃
i(`), ε̃(`)

)
:=


(
i(`+ 1), ε(`+ 1)

)
for 1 ≤ ` ≤ r − 2,(

i(1), 1
)

for ` = r − 1,(
i(r), ∗

)
for ` = r,(

i(`), ε(`)
)

for r < ` ≤ 2k,

such that

ϕ
(
a
ε̃(1)

ĩ(1)
· · · aε̃(2k)

ĩ(2k)

)
= ϕ

(
a
ε(2)
i(2) · · · a

ε(r−1)
i(r−1) aka

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
.

As before, let (π̃, ε̃, σ̃) ∈ P2(2k, ε) ×
{
f : [2k] → {∗, 1}

}
× Sk be triple uniquely

associated to π̃ = kerO (̃i) ∈ OP2(2k, ε). We claim that

cr±(π, ε, σ)− cr±(π̃, ε̃, σ̃) = r± − r0

where

r0 := card{V ∈ ker(i) | V ⊂ [r]} − 1 = card{V ∈ ker(̃i) | V ⊂ [r]} − 1

is the number of pairs of π in the set [2, r − 1]. (This number equals of course
the number of pairs of π̃ in the set [1, r − 2].) Clearly, a pair {a, b} (with a < b)
and the pair {1, r} are crossing if and only if 1 < a < r < b. Turning the ordered
partition π into π̃ (through algebraic relations) causes that this pair {a − 1, b}
and {r − 1, r} are non-crossing. Thus a crossing with positive orientation or
negative orientation is removed in the geometric picture while a factor ω or ω
is created by the corresponding algebraic relations, respectively. Now suppose
that the pair {a, b} is sitting ‘inside’ of the pair {1, r}, i.e. 1 < a < b < r. Thus
{a, b} and {1, r} are non-crossing. Moving the factor ak algebraically from the 1-st
position to the (r − 1)-th position in the considered monomial, one arrives again
at that the pair {a− 1, b− 1} and {r − 1, r} are non-crossing. So the number of
crossings with positive and negative orientation is unchanged by such a pair {a, b}
when algebraically turning π into π̃. But these algebraic operations produce an
additional factor ω and a factor ω which are counted by r+ and r−, respectively.
Thus the number r± is larger or equal to cr±(π, ε, σ) − cr±(π̃, ε̃, σ̃), the number
of removed crossings with positive/negative orientation, and the difference of this
two numbers equals r0, the number of pairs between 1 and r. Altogether, we
obtain

ωr+ωr− = ωr+−r0ωr−−r0 = ωcr+(π,ε,σ)−cr+(π̃,ε̃,σ̃)ωcr−(π,ε,σ)−cr−(π̃,ε̃,σ̃)
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and, using again the factorization property (iii),

ϕ
(
aka

ε(2)
i(2) · · · a

ε(r−1)
i(r−1) a

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
= ωcr+(π,ε,σ)−cr+(π̃,ε̃,σ̃)ωcr−(π,ε,σ)−cr−(π̃,ε̃,σ̃)ϕ

(
a
ε(2)
i(2) · · · a

ε(r−1)
i(r−1) aka

∗
ka

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
=

1

2
ωcr+(π,ε,σ)−cr+(π̃,ε̃,σ̃)ωcr−(π,ε,σ)−cr−(π̃,ε̃,σ̃)ϕ

(
a
ε(2)
i(2) · · · a

ε(r−1)
i(r−1) a

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
=

1

2
ωcr+(π,ε,σ)−cr+(π̂,ε̂,σ̂)ωcr−(π,ε,σ)−cr−(π̂,ε̂,σ̂)ϕ

(
a
ε̂(1)

î(1)
· · · aε̂(2k−2)

î(2k−2)

)
.

Here the index map î : [2k−2]→ [k−1] and the direction map ε̂ : [2k−2]→ {∗, 1}
are defined as

(̂
i(`), ε̂(`)

)
:=

{(
i(`+ 1), ε(`+ 1)

)
for 1 ≤ ` ≤ r − 2,(

i(`− 2), ε(`− 2)
)

for r < ` ≤ 2k,

such that

ϕ
(
a
ε̂(1)

î(1)
· · · aε̂(2k−2)

î(2k−2)

)
= ϕ

(
a
ε(2)
i(2) · · · a

ε(r−1)
i(r−1) a

ε(r+1)
i(r+1) · · · a

ε(2k)
i(2k)

)
.

Moreover, (π̂, ε̂, σ̂) ∈ P2(2k− 2, ε̂)×
{
f : [2k− 2]→ {∗, 1}

}
×Sk−1 denotes again

the triple uniquely associated to π̂ = kerO (̂i) ∈ OP2(2k − 2, ε̂). Clearly,

cr±(π̂, ε̂, σ̂) = cr±(π̃, ε̃, σ̃).

Altogether, we shown for the case (C) that (Mk−1) implies (Mk).

Now a finite induction argument on k establishes the formula

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
=

1

2k
ωcr+(π,ε,σ) ωcr−(π,ε,σ)

and thus completes the proof of (iv).

We provide next a result which is underlying CLTs for ω-sequences of partial
isometries. We recall from Definition 2.1.33 that, given some π ∈ P2(n), the
direction map ε : [n] → {∗, 1} is said to be π-balanced if ε(V ) = {∗, 1} for every
V ∈ π.

Corollary 4.2.10. Let (A, ϕ) be a tracial *-algebraic probability space and ω ∈ C
with |ω| = 1. Furthermore let a ⊂ A be an ω-sequence of partial isometries and
let x ⊂ A be the sequence defined by xn := an + a∗n. Then we have:

(i) x is spreadable;
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(ii) x has the SVP

{`} ∈ ker(i) =⇒ ϕ
(
x
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= 0

for any n ∈ N, i : [n]→ N, and ε : [n]→ {∗, 1};

(iii) x has the factorization property

ϕ
(
yx`x`z

)
= ϕ(x2`)ϕ(yz) = ϕ(yz)

for any y, z ∈ *-alg
{
xi | i ∈ N\{`}

}
and ` ∈ N;

(iv) x has the pair distribution

ϕ
(
xi(1) · · ·xi(n)

)
=

1

2k

∑
ε : [n]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ) ωcr−(π,ε,σ)

for n ∈ N and i : [n] → N with ker(i) ∈ P2(n). Here the standard ordered
pair partition π = {V1, V2, . . . , Vk} ∈ P2(n), the permutation σ ∈ Sk and k ∈
N are uniquely determined by ker(i) = π and kerO(i) = (Vσ(1), . . . , Vσ(k)) ∈
OP2(n) with n = 2k.

Proof. (i) Suppose i, j : [n] → N are order equivalent. By Theorem 4.2.9 (i), one
has

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
= ϕ

(
a
ε(1)
j(1) · · · a

ε(n)
j(n)

)
for any ε : [n]→ {∗, 1}. But this implies∑

ε(1),...,ε(n)∈{∗,1}

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
=

∑
ε(1),...,ε(n)∈{∗,1}

ϕ
(
a
ε(1)
j(1) · · · a

ε(n)
j(n)

)
,

which is just the expansion on both sides of the equation

ϕ
(
xi(1) · · ·xi(n)

)
= ϕ

(
xj(1) · · ·xj(n)

)
.

Thus x is spreadable.
(ii) Let y, z ∈ *-alg{xi | i ∈ N\{`}} ⊂ *-alg{ai | i ∈ N\{`}} for some ` ∈ N. Thus

ϕ(yx`z) = ϕ(ya`z) + ϕ(ya∗`z) = 0

by the SVP of the sequence a from Theorem 4.2.9(ii). Consequently x has the
SVP.
(iii) Let y, z be as stated in (ii). We compute, using the factorization property of
a from Theorem 4.2.9(iii),

ϕ
(
yx`x`z

)
= ϕ

(
y(a` + a∗`)

2z
)

= ϕ
(
ya`a

∗
`z
)

+ ϕ
(
ya∗`a`z

)
= ϕ(yz)
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and ϕ(x`x`) = 1.
(iv) Let i : [n]→ N be given with π := ker(i) ∈ P2(n). We compute

ϕ
(
xi(1) · · ·xi(n)

)
=

∑
ε : [n]→{∗,1}

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
=

∑
ε : [n]→{∗,1}

ε is π-balanced

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
,

since a
ε(1)
i(1) · · · a

ε(n)
i(n) = 0 if ε is not π-balanced, by the defining relations (4.4) and

(4.5) of an ω-sequence of partial isometries. We infer from the π-balancedness of
ε that ker(i) ∈ P2(n, ε). Thus Theorem 4.2.9(iv) applies to each summand of the
last equation such that

ϕ
(
a
ε(1)
i(1) · · · a

ε(n)
i(n)

)
=

1

2k
ωcr+(π,ε,σ) ωcr−(π,ε,σ),

where the pair partition π = {V1, V2, . . . , Vk} ∈ P2(n, ε), the permutation σ ∈ Sk
and k ∈ N are uniquely given by ker(i) = π and kerO(i) = (Vσ(1), . . . , Vσ(k)) ∈
OP2(n, ε) with n = 2k.

Remark 4.2.11. We have provided in Theorem 4.2.9(iv) an explicit formula for
balanced pair distributions of an ω-sequence a of partial isometries. Furthermore,
an explicit formula is available for the general distribution of a. For example, this
explicit formula allows us also to determine moments of the form ϕ(x1x

∗
1x1x

∗
1) or

ϕ(x1x
∗
1x2x1x

∗
2x
∗
1) which are not supported by pair partitions. Here we are omitting

this result, as knowing the balanced pair distribution suffices for establishing
CLTs.

4.3 CLTs for ω-Sequences of Partial Isometries

We have introduced ω-sequences in Subsection 4.2 and shown that such sequences
enjoy all properties as they are required for establishing CLTs. Here we focus
first on proving a univariate CLT for ω-sequences, before we turn our attention
to certain multivariate versions of this CLT. In contrast to multivariate CLTs
for exchangeable sequences, we will see that the mixed moments of a multivariate
CLT for non-exchangeable sequences depend on the details of how one passes from
a given single ω-sequence to a tuple of jointly or separately spreadable sequences.
Interesting on its own, this difference occurs starting a mixed moment of order 8
(see Example 4.3.13).

4.3.1 Univariate Version of the CLT

We have already established in Theorem 4.2.9 that an ω-sequence of partial isome-
tries a is spreadable and satisfies a SVP. These properties are inherited by the
sequence x = a+a∗, considered in Corollary 4.2.10, and thus ensure the existence
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of a *-algebraic CLT for the sequence x. Consequently, the CLT, Theorem 3.4.9,
applies to the sequence x when the considered ‘color’ set C is a singleton. Thus
all ‘color’-related labels can be dropped in the formulas of Theorem 3.4.9 such
that we obtain for

SN =
x1 + · · ·+ xN√

N

the n-moment formula

lim
N→∞

ϕ(SnN) =
1

(n/2)!

∑
π∈OP2(n)

ϕOπ , (4.9)

where ϕO• : OP2(n)→ C, the moment function on ordered pair partitions associ-
ated to x, is given by

ϕOπ = ϕ
(
xi(1) · · ·xi(n)

)
for any i : [n]→ N with kerO(i) = π (see also Definition 3.4.7). In the following, as
OP(n) = ∅ for odd n ∈ N, we focus on the case n = 2k. We recall from Lemma
2.1.26 that there is a bijective correspondence between ordered pair partitions
π ∈ OP2(2k) and pairs (π, σ) ∈ P2(2k) × Sk such that (Vσ(1), . . . , Vσ(k)) = π 7→
π = {V1, . . . , Vk}, where (V1, . . . , Vk) is the unique standard ordered partition
assigned to π. Consequently, we can rewrite (4.9) as

lim
N→∞

ϕ(S2k
N ) =

1

k!

∑
σ∈Sk

∑
π∈P2(2k)

ϕπ,σ, (4.10)

where
ϕπ,σ := ϕ

(
xσ(i(1)) · · ·xσ(i(2k))

)
for any σ ∈ Sk and i : [2k] → [k] with ker(i) = π = {V1, . . . , Vk} ∈ P2(2k). Here
{V1, . . . , Vk} is in standard order, i.e. one has minVi < minVj for 1 ≤ i < j ≤ k.

We are ready to formulate a concrete version of the CLT associated to an
ω-sequence of partial isometries. Recall that T = {z ∈ C | |z| = 1}.

Theorem 4.3.1. Let (A, ϕ) be a tracial *-algebraic probability space and ω ∈ T.
Furthermore, let a ≡ (an)∞n=1 ⊂ A be an ω-sequence of partial isometries and let
the sequence x ≡ (xn)∞n=1 ⊂ A be the sequence defined by xn := an + a∗n. Then
one has for

SN =
1√
N

(x1 + . . .+ xN)

that, for all k ∈ N,
lim
N→∞

ϕ(S2k−1
N ) = 0

and

lim
N→∞

ϕ(S2k
N ) =

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ).
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As ω ∈ T ⊂ C is unimodular, one has ω = ω−1 and thus

ωcr+(π,ε,σ)ωcr−(π,ε,σ) = ωcr+(π,ε,σ)−cr−(π,ε,σ).

Proof. The sequence x is spreadable and satisfies the SVP by Corollary 4.2.10.
Thus the CLT, as formulated in Theorem 3.4.9, applies for the ‘color’ set C = {c}.
We will drop the reference to this ‘color’ set in the notation of Theorem 3.4.9.
Clearly, all odd moments of order 2k − 1 vanish in the large N -limit. We are left
to further specify in terms of oriented crossings the following formula for even
moments:

lim
N→∞

ϕ(S2k
N ) =

1

k!

∑
π̃∈OP2(2k)

ϕOπ̃ , (4.11)

where ϕπ̃ = ϕ(xi(1) · · · xi(n)) with π̃ = kerO(i) ∈ OP2(2k). We recall from Lemma
2.1.26 that there is a bijective correspondence between ordered pair partitions
π̃ ∈ OP2(2k) and pairs (π̃, σ) ∈ P2(2k) × Sk such that (Vσ(1), . . . , Vσ(k)) = π̃ 7→
π := π̃ = {V1, . . . , Vk}, where (V1, . . . , Vk) is the unique standard ordered partition
assigned to π̃. Thus the sum over ordered pair partitions can also be written as

lim
N→∞

ϕ(S2k
N ) =

1

k!

∑
σ∈Sk

∑
π∈P2(2k)

ϕ
(
xσ(i(1)) · · ·xσ(i(2k))

)
,

where the pair partition π = ker(i) is in standard order (see Definition 2.1.24).
Thus we can apply Corollary 4.2.10(iv) such that

ϕ
(
xσ(i(1)) · · ·xσ(i(2k))

)
=

1

2k

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ) ωcr−(π,ε,σ).

Consequently, we arrive at the formula

lim
N→∞

ϕ(S2k
N ) =

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ) ωcr−(π,ε,σ).

Remark 4.3.2. (i) If ω = ω (and thus ω = ±1) in Theorem 4.3.1 then one has

ωcr+(π,ε,σ) ωcr−(π,ε,σ) = ωcr+(π,ε,σ)+cr−(π,ε,σ) = ωcr(π)

such that the formula of the large N -limit for even moments simplifies to

lim
N→∞

ϕ(S2k
N ) =

∑
π∈P2(2k)

ωcr(π) =

{
(2k − 1)!! if ω = 1,∑

π∈P2(2k)
(−1)cr(π) if ω = −1.
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These are the formulas for the 2k-th moment of a centred Gaussian random vari-
able with variance 1 in the case ω = 1, and that of a centred Bernoulli random
variable with variance 1 in the case ω = −1.
(ii) The CLT associated to an ω-sequence of partial isometries in the cases ω = ±1
coincides with the CLT of a q-semicircular system (see Section 5.2) in the cases
q = ±1, respectively.
(iii) Let z ∈ C and put

MSCS
2k (z) :=

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ).

This formula generalizes the formula for the even moments of the CLT for ω ∈
T ⊂ C. We will see in Section 5.4 that MSCS

2k (z) are the even moments of a
z-semicircular operator. In the special case z = r for some r ∈ R, one has
rcr+(π,ε,σ)rcr−(π,ε,σ) = rcr+(π,ε,σ)+cr−(π,ε,σ) = rcr(π) and thus the moment formula
simplifies to

MSCS
2k (r) =

∑
π∈P2(2k)

rcr(π).

This is the even moment formula of a q-Gaussian random variable, also called a
q-semicircular operator, as we will meet it again in Section 5.2.

In the following, we denote by Mn(ω) the n-th moment of the central limit
law associated to the ω-sequence of partial isometries as given in Theorem 4.3.1.
More explicitly, for k = 0, 1, 2, . . ., we have M2k+1 = 0 and

M2k(ω) := lim
N→∞

ϕ(S2k
N ) =

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ).

Corollary 4.3.3. For each k = 0, 1, 2, . . ., there exists a polynomial P2k ∈ Q[q]
such that

P2k(<ω) = M2k(ω)

for all ω ∈ T. Here <ω denotes the real part of ω.

Proof. Since the operator SN (as stated in Theorem 4.3.1) is self-adjoint, we know
that

ϕ
(
S2k
N

)
= ϕ

(
(S2k

N

)∗
) = ϕ(S2k

N )

for all k,N ∈ N. We conclude from this in the large N -limit that M2k(ω) ∈ R for
any ω ∈ T. We know from the moment formula in Theorem 4.3.1 that M2k(ω) is
a polynomial in ω and ω of the form

M2k(ω) =
L∑

`=−L

c`ω
`
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where L := 1
2
(k − 1)k is the maximal number of crossings of a pair partition in

P2(2k) and c` ∈ Q for all ` = 0,±1, . . . ,±Lk. Thus we know that

L∑
`=−L

c`ω
−` = M2k(ω) = M2k(ω) =

L∑
`=−L

c`ω
`

for all ω ∈ T. But this implies c` = c−` for all ` = 0, 1, . . . , L by the fundamental
theorem of algebra. Consequently, we can write

M2k(ω) = c0 +
L∑
`=1

c`(ω
` + ω`).

Now consider the symmetric polynomial Q ∈ Q[ω, ω] with Q(ω, ω) =
∑n

`=0 a`(ω
`+

ω`) of degree n. We claim that there exists a symmetric polynomial Q̃ ∈ Q[ω, ω]

of the form Q̃(ω, ω) =
∑n−1

`=0 ã`(ω
` + ω`) with degree n− 1 such that

Q(ω, ω) = Q̃(ω, ω) + an(ω + ω)n. (4.12)

Indeed, both T2 3 (ω, ω) 7→ ωn + ωn ∈ C and T2 3 (ω, ω) 7→ (ω + ω)n ∈ C
are symmetric polynomials. Thus their difference is a symmetric polynomial.
More explicitly, by the binomial expansion and reducing products of the form
ωω = 1 = ωω, one has

ωn + ωn = (ω + ω)n −
n−1∑
`=1

(
n

`

)
ω`ωL−`

= (ω + ω)n −
n−1∑
`=1

(
n

`

)
ω2`−n

= (ω + ω)n −
n−1∑
`=1

d`(ω
` + ω`)

for some coefficients d1, d2, . . . , dL−1 ∈ Q. This establishes the existence of a
symmetric polynomial Q̃ of order n−1 satisfying (4.12) (as claimed above). Now a
finite induction argument on the order n establishes that there exists a polynomial
P ∈ Q[q] of order n such that P

(
1
2
(ω+ω)

)
= Q(ω, ω). Of course, these arguments

apply to the symmetric polynomial T2 3 (ω, ω) 7→M2k(ω) ∈ C. Thus there exists
a polynomial P2k ∈ Q[q] of order 2k such that P2k

(
1
2
(ω + ω)

)
= Q(ω, ω).

Next we explicitly compute the even momentsM2k(ω) for k = 1, 2, 3, 4. Through-
out these computations, we put

q := <ω =
1

2
(ω + ω).
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Originally, these moments were computed by brute force, manually or with com-
puter support, as the n-th moment can be realized as the normalized trace of
a self-adjoint 2n × 2n matrix. Here we present calculations of these moments,
which are based on factorization rules and algebraic relations. Actually, these
more structured computations revealed that the CLTs associated to ω-sequences
of partial isometries are counting oriented crossings.

Computation of the 2-th moment:

M2(ω) = 1.

This is immediate from the moment formula (4.9), using the relations (4.5):

M2(ω) =
1

1!

∑
π∈OP2(2)

ϕOπ = ϕ(x1x1) = ϕ(a∗1a1) + ϕ(a∗1a1) = 1.

Computation of the 4-th moment:

M4(ω) =
1

2!
(4 + ω + ω) = 2 + q.

Similar as done for the 2-nd moment, we compute for the moment formula (4.9)
that

M4(ω) =
1

2!

∑
π∈OP2(4)

ϕOπ

=
1

2

∑
σ∈S2

(
ϕ(xσ(1)xσ(1)xσ(2)xσ(2)) + ϕ(xσ(1)xσ(2)xσ(2)xσ(1))

+ ϕ(xσ(1)xσ(2)xσ(1)xσ(2))
)

=
1

2

(
4 + ϕ(x1x2x1x2) + ϕ(x2x1x2x1)

)
.

Here we used for the terms corresponding to non-crossing pair partitions the
factorization rule from Corollary 4.2.10(iii), to obtain

ϕ(xσ(1)xσ(1)xσ(2)xσ(2)) = ϕ(xσ(1)xσ(1)) ϕ(xσ(2)xσ(2)) = 1

and
ϕ(xσ(1)xσ(2)xσ(2)xσ(1)) = ϕ(xσ(1)xσ(1)) ϕ(xσ(2)xσ(2)) = 1,

as ϕ(xixi) = ϕ(x1x1) for any i ≥ 1 by spreadability. We are left with the com-
putation of two terms corresponding to the crossing pair partitions. Using the
quantum decomposition xi = ai + a∗i , the relations (4.4) and (4.5), we find

ϕ(x1x2x1x2) = ϕ(a∗1a
∗
2a1a2) + ϕ(a∗1a2a1a

∗
2) + ϕ(a1a

∗
2a
∗
1a2) + ϕ(a1a2a

∗
1a
∗
2)

=
1

4
(ω + ω + ω + ω) =

1

2
(ω + ω) = q.
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Here we have used again that terms corresponding to non-crossing pair partitions
are evaluated to 1. A similar calculation (or traciality of the state ϕ) yields

ϕ(x2x1x2x1) =
1

2
(ω + ω) = q.

Altogether, we obtain

M4(ω) =
1

2
(4 + 2q) = 2 + q.

It is instructive to alternatively compute the 4-th moment based on the formula
with counting oriented crossings from Theorem 4.3.1:

M4(ω) =
1

2!

1

22

∑
σ∈S2

∑
π∈P2(4)

∑
ε : [4]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ).

There are 2 non-crossing pair partitions and 1 crossing pair partition in P2(4).
Each one of these two non-crossing pair partition contributes with

1

2!

1

22

∑
σ∈S2

∑
ε : [4]→{∗,1}
ε is π-balanced

ω0ω0 =
1

2!

1

22
222! = 1.

We are left to determine the contribution of the single crossing pair partition
π = {{1, 3}, {2, 4}} ∈ P2(4) coming from

1

2!

1

22

∑
σ∈S2

∑
ε : [4]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ),

using the following arguments. Clearly, each of the 2!22 = 8 summands is a scalar
multiple of either ω or ω. Denote by σ0 the neutral element of S2. We note that
cr+(π, ε, σ0) = 0 if and only if cr+(π, ε, σ1) = 1. Thus it holds∑

σ∈S2

ωcr+(π,ε,σ)ωcr−(π,ε,σ) = ω + ω,

as π has a single crossing. This symmetry argument yields

1

2!

1

22

∑
σ∈S2

∑
ε : [4]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ) =
1

2!

1

22

∑
ε : [4]→{∗,1}
ε is π-balanced

(ω + ω)

=
1

2
(ω + ω) = q.

Note that the orientation of a crossing is best determined by using a graphical
representation of the directed ordered pair partition (see Figure 4.1 for σ = σ1
and ε(1) = ε(4) = 1, ε(2) = ε(3) = ∗).
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Computation of the 6-th moment: Counting oriented crossings according to
the moment formula from Theorem 4.3.1, one finds

M6(ω) =
1

3!23

(
312 + 162(ω1 + ω1) + 36(ω2 + ω2) + 6(ω3 + ω3)

)
=

1

23

(
52 + 27(ω1 + ω1) + 6(ω2 + ω2) + 1(ω3 + ω3)

)
= 5 + 6q + 3q2 + q3.

The coefficients inside of the parenthesis of this polynomial have the following
combinatorial interpretation. There are total of 3! · 5!! = 6 · 15 = 90 ordered pair
partitions. Each block of a pair partition is equipped with a direction which gives
23 = 8 additional choices. Consequently, there are a total of 720 summands which
are grouped as follows:

312 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = 0,

162 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = 1,

162 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = −1,

36 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = 2,

36 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = −2,

6 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = 3,

6 summands with cr+(π, ε, σ)− cr−(π, ε, σ) = −3.

The moment formula M6(ω) can be expressed in terms of q = <ω along the
following computations which also underlie the inductive proof of Corollary 4.3.3.

ω3 + ω3 = (ω + ω)3 −
2∑
`=1

(
3

`

)
ω`ω3−` = (ω + ω)3 − 3(ω1 + ω1).

Thus we obtain

312 + 162(ω1 + ω1) + 36(ω2 + ω2) + 6(ω3 + ω3)

= 312 + 144(ω1 + ω1) + 36(ω2 + ω2) + 6(ω + ω)3

= 240 + 144(ω1 + ω1) + 36(ω + ω)2 + 6(ω + ω)3.

Here we have used ω2 + ω2 = (ω+ ω)2− 2 for the last equality. Consequently, we
obtain

M6(ω) =
1

3!23

(
240 + 144(ω1 + ω1) + 36(ω + ω)2 + 6(ω + ω)3

)
=

1

3!23

(
240 + 288q + 144q2 + 48q3

)
= 5 + 6q + 3q2 + q3.
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An alternative, more algebraic way to compute the 6-th moment starts with that
there is a bijective correspondence between ordered pair partitions in OP2(6) and
pairs in P2(6)× S3. Thus we can expand the 6-th moment M6(ω) as

1

3!

∑
σ∈S3

(
ϕ(xσ(1)xσ(1)xσ(2)xσ(2)xσ(3)xσ(3))︸ ︷︷ ︸

non-crossing

+ϕ(xσ(1)xσ(1)xσ(2)xσ(3)xσ(3)xσ(2))︸ ︷︷ ︸
non-crossing

+ϕ(xσ(1)xσ(2)xσ(2)xσ(1)xσ(3)xσ(3))︸ ︷︷ ︸
non-crossing

+ϕ(xσ(1)xσ(2)xσ(2)xσ(3)xσ(3)xσ(1))︸ ︷︷ ︸
non-crossing

+ϕ(xσ(1)xσ(2)xσ(3)xσ(3)xσ(2)xσ(1))︸ ︷︷ ︸
non-crossing

+ϕ(xσ(1)xσ(1)xσ(2)xσ(3)xσ(2)xσ(3))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(1)xσ(2)xσ(3)xσ(3))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(1)xσ(3)xσ(3)xσ(2))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(2)xσ(3)xσ(1)xσ(3))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(3)xσ(3)xσ(1)xσ(2))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(3)xσ(2)xσ(3)xσ(1))︸ ︷︷ ︸
1 crossing

+ϕ(xσ(1)xσ(2)xσ(1)xσ(3)xσ(2)xσ(3))︸ ︷︷ ︸
2 crossings

+ϕ(xσ(1)xσ(2)xσ(3)xσ(1)xσ(3)xσ(2))︸ ︷︷ ︸
2 crossings

+ϕ(xσ(1)xσ(2)xσ(3)xσ(2)xσ(1)xσ(3))︸ ︷︷ ︸
2 crossings

+ϕ(xσ(1)xσ(2)xσ(3)xσ(1)xσ(2)xσ(3))︸ ︷︷ ︸
3 crossings

)
.

Each of these 15 terms can be evaluated with the help of the relations (4.4) and
(4.5). Before taking into account the summation over permutations from S3, each
of the 5 terms corresponding to a non-crossing partition gives 1. And each of the
6 terms corresponding to partition with one crossing contributes with 1

2
(ω + ω),

for example

ϕ(xσ(1)xσ(1)xσ(2)xσ(3)xσ(2)xσ(3)) =
1

2
(ω + ω) = q.

There are 3 terms corresponding to pair partitions with two crossings and each of
them contributes with 1

4
(ω + ω)2, for example

ϕ(xσ(1)xσ(2)xσ(1)xσ(3)xσ(2)xσ(3)) =
1

4
(ω + ω)2 = q2.

Finally, there is the single term

ϕ(xσ(1)xσ(2)xσ(3)xσ(1)xσ(2)xσ(3))

corresponding to a pair partition with 3 crossings which needs to be computed
separately for each permutation σ ∈ S3. Using the cyclicity of the trace, it suffices
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to consider the two permutations σ = e and σ = σ1σ2σ1. One computes for these
two permutations that

ϕ(x1x2x3x1x2x3) =
1

8
(2ω3 + 6ω)

and

ϕ(x3x2x1x3x2x1) =
1

8
(2ω3 + 6ω).

Furthermore, the sum of these two terms can be rewritten in terms of the real
part of ω as

ϕ(x1x2x3x1x2x3) + ϕ(x3x2x1x3x2x1) =
2

8
(ω3 + 3ω + ω3 + 3ω) = 2q3.

Altogether, we arrive at

M6(ω) =
1

3!

∑
σ∈S3

(
5 + 6q + 3q2

)
+

3

3!
2q3 = 5 + 6q + 3q2 + q3.

Computation of the 8-th moment: Counting oriented crossings yields along
the formula in Theorem 4.3.1 that

M8(ω) =
1

4!24

(
12416 + 8768(ω1 + ω1) + 3672(ω2 + ω2) + 1152(ω3 + ω3)

+ 288(ω4 + ω4) + 64(ω5 + ω5) + 8(ω6 + ω6)
)

=
1

3
(44 + 88q + 81q2 + 52q3 + 30q4 + 16q5 + 4q6).

Similar to the 6-th moment, we observe that there are a total of 4! · 7!! · 24 =
40 320 summands which can again be grouped according to the value of the dif-
ference cr+(π, ε, σ) − cr−(π, ε, σ). For example, there are 288 summands with
cr+(π, ε, σ)−cr−(π, ε, σ) = 4 and 288 summands with cr+(π, ε, σ)−cr−(π, ε, σ) =
−4. One has again that the 8-th moment only depends on q, the real part of ω,
as it is shown in above formula.

Similar to the 6-th moment, this 8-th moment can be calculated by averaging
over all permutations σ ∈ S4 and now summing over 105 pair partitions. As
related calculations are quite lengthy but straightforward, we omit presenting
them here.

Notably, the 8-th moment is the first moment which differs from the 8-th
moment of a q-Gaussian random variable, see also Remark 4.3.5 below.

Remark 4.3.4. Recall from Corollary 4.3.3 that Pn(q) is the n-th moment in
the CLT associated to an ω-sequence of partial isometries with q = <ω, and
that MSCS

n (q) denotes the n-th moment of a q-Gaussian random variable (or a
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q-semicircular operator). Directly comparing the computed moments, one verifies
for −1 < q < 1 that

P2k(q) = MSCS
2k (q) (k = 0, 1, 2, 3),

but
P8(q) 6= MSCS

8 (q).

It is an interesting question to ask why the equality of even moments breaks down
starting the 8-th moment, and not earlier. We speculate that this phenomenon is
connected to the fact that, for k = 3, any permutation in S3 can be written as a
power of the cycle (1, 2, 3) or the ‘reversed’ cycle (3, 2, 1). This is no longer true
for k = 4, as there exist permutations in S4 which can not be written as power of
the cycle (1, 2, 3, 4) or the ‘reversed’ cycle (4, 3, 2, 1).

Remark 4.3.5. We obtain the following moments from the CLT associated to
an ω-sequence of partial isometries in the special case q = <ω = 0:

M2(± i) = 1, M4(± i) = 2, M6(± i) = 5, M8(± i) = 44/3.

It is known that the 2k-moment of a centred q-Gaussian random variable with
variance 1 is described in the special case q = 0 by the Catalan numbers Ck =
1

k+1

(
2k
k

)
:

C1 = 1, C2 = 2, C3 = 5, C4 = 14.

We observe that M2k(± i) = Ck for k = 1, 2, 3 but M8(± i) = 14.6 6= 14 = C4.

We close this subsection by providing explicit formulas for the moments of
order 10, 12, 14 and 16. We are grateful to Andreas Amann who carried out these
calculations with PYTHON and made his results available to us [Am19].

Computation of the 10-th moment: There are a total of 9!! · 5! = 945 ·
120 = 113 400 ordered pair partitions and 25 direction maps. Thus a brute force
computation of the 10-th moment amounts to sum 9!! · 5! · 25 = 3 628 800 terms.

The polynomials M10(ω) and P10(q) are displayed in the following with reduced
fractions of the coefficients, somewhat hiding the combinatorial interpretation of
all coefficients. For example, it can be seen that the integer coefficients of the
polynomial 5! · 25 ·M10(ω) = 3840 ·M10(ω) actually count the number of directed
ordered pair partitions with a fixed difference of the number of positively and
negatively oriented crossings.

M10(ω) =
1

384
(ω10 + ω10) +

5

192
(ω9 + ω9) +

55

384
(ω8 + ω8) +

55

96
(ω7 + ω7)

+
255

128
(ω6 + ω6) +

1207

192
(ω5 + ω5) +

575

32
(ω4 + ω4) +

8965

192
(ω3 + ω3)

+
19985

192
(ω2 + ω2) +

11675

64
(ω1 + ω1) +

14375

64
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or, with q = <ω,

P10(q) =
8

3
q10 +

40

3
q9 + 30q8 +

130

3
q7 + 60q6 +

286

3
q5 + 140q4 + 180q3

+
575

3
q2 + 140q1 +

146

3
.

The highest order coefficient of the polynomials M10(ω) and P10(q) are obtained by
the following combinatorial arguments. There is a single pair partition in P2(10)
with 1

2
· 10

2
· (10

2
− 1) = 10 crossings, the maximal possible number of crossings.

Due to the cyclicity of the trace, there are 10 directed ordered pair partitions in
OP2(10) with 10 positive crossings, and another 10 directed ordered pair partitions
with 10 negative crossings. Thus the coefficient of the term (ω10 +ω10) in M10(ω)
is 1

5!
· 1
25
· 10 = 1

384
. Since q = <ω, one has to further re-scale by the factor 210 to

obtain the leading coefficient of P10(q), such that 10 · 1
5!

1
25
· 210 = 8

3
.

Computation of the 12-th moment: There are a total of 11!! · 6! = 10 395 ·
720 = 7 484 400 ordered pair partitions and 26 direction maps. Thus a brute force
computation of the 12-th moment amounts to sum 11!! ·6! ·26 = 479 001 600 terms.

M12(ω) =
1

3840
(ω15 + ω15) +

1

320
(ω14 + ω14) +

13

640
(ω13 + ω13) +

91

960
(ω12 + ω12)

+
91

256
(ω11 + ω11) +

371

320
(ω10 + ω10) +

3313

960
(ω9 + ω9) +

3067

320
(ω8 + ω8)

+
3207

128
(ω7 + ω7) +

3985

64
(ω6 + ω6) +

188483

1280
(ω5 + ω5)

+
104779

320
(ω4 + ω4) +

640813

960
(ω3 + ω3) +

381271

320
(ω2 + ω2)

+
2246211

1280
(ω1 + ω1) +

966707

480

or, with q = <ω,

P12(q) =
128

15
q15 +

256

5
q14 +

672

5
q13 +

3136

15
q12 +

1176

5
q11 +

1344

5
q10 +

6064

15
q9

+ 628q8 +
4214

5
q7 +

15812

15
q6 +

6604

5
q5 +

7752

5
q4 +

7849

5
q3 + 1258q2

+
3406

5
q1 +

892

5
.

We note that the highest order coefficient of P12(q) is again obtained as

1

6!
· 1

26
· 12 · 215 =

128

15
.

Here 12 is the number of cyclic permutations and 15 = 1
2
· 12

2
· (12

2
− 1) is the

maximal number of crossings which a pair partition in P2(12) can have.
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Computation of the 14-th moment: There are a total of 13!! · 7! = 135 135 ·
5 040 = 681 080 400 ordered pair partitions and 27 direction maps. Thus a brute
force computation of the 14-th moment amounts to sum 13!!·7!·27 = 87 178 291 200
terms.

M14(ω) =
1

46080
(ω21 + ω21) +

7

23040
(ω20 + ω20) +

7

3072
(ω19 + ω19)

+
7

576
(ω18 + ω18) +

119

2304
(ω17 + ω17) +

119

640
(ω16 + ω16)

+
4543

7680
(ω15 + ω15) +

39551

23040
(ω14 + ω14) +

53543

11520
(ω13 + ω13)

+
91483

7680
(ω12 + ω12) +

149219

5120
(ω11 + ω11) +

197323

2880
(ω10 + ω10)

+
796817

5120
(ω9 + ω9) +

3948623

11520
(ω8 + ω8) +

11251147

15360
(ω7 + ω7)

+
5819093

3840
(ω6 + ω6) +

69380591

23040
(ω5 + ω5) +

2036713

360
(ω4 + ω4)

+
451584497

46080
(ω3 + ω3) +

69712951

4608
(ω2 + ω2) +

11548579

576
(ω1 + ω1)

+
127380007

5760

or, with q = <ω,

P14(q) =
2048

45
q21 +

14336

45
q20 +

14336

15
q19 +

14336

9
q18 +

73472

45
q17 +

55552

45
q16

+
19264

15
q15 +

34208

15
q14 +

173096

45
q13 +

78176

15
q12 +

90538

15
q11

+
309974

45
q10 +

385462

45
q9 +

492226

45
q8 +

65904

5
q7 +

670936

45
q6

+
717199

45
q5 +

231637

15
q4 +

189896

15
q3 +

40201

5
q2 +

30800

9
q1 +

31984

45
.

Computation of the 16-th moment: There are a total of 15!! ·8! = 2 027 025 ·
40 320 = 81 729 648 000 ordered pair partitions and 28 direction maps. Thus a
brute force computation of the 16-th moment amounts to sum 15!! · 8! · 28 =
20 922 789 888 000 terms.

M16(ω) =
1

645120
(ω28 + ω28) +

1

40320
(ω27 + ω27) +

17

80640
(ω26 + ω26)

+
17

13440
(ω25 + ω25) +

323

53760
(ω24 + ω24) +

323

13440
(ω23 + ω23)

+
323

3840
(ω22 + ω22) +

1067

4032
(ω21 + ω21) +

49289

64512
(ω20 + ω20)

+
16595

8064
(ω19 + ω19) +

422467

80640
(ω18 + ω18) +

128321

10080
(ω17 + ω17)

+
4796041

161280
(ω16 + ω16) +

60145

896
(ω15 + ω15) +

790403

5376
(ω14 + ω14)
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+
6271

20
(ω13 + ω13) +

15044311

23040
(ω12 + ω12) +

53653127

40320
(ω11 + ω11)

+
214318043

80640
(ω10 + ω10) +

14993087

2880
(ω9 + ω9) +

1612001207

161280
(ω8 + ω8)

+
75633779

4032
(ω7 + ω7) +

2759152349

80640
(ω6 + ω6) +

172938161

2880
(ω5 + ω5)

+
64416303137

645120
(ω4 + ω4) +

177554335

1152
(ω3 + ω3)

+
2173169297

10080
(ω2 + ω2) +

2152202999

8064
(ω1 + ω1) +

23161160759

80640

or, with q = <ω,

P16(q) =
131072

315
q28 +

1048576

315
q27 +

393216

35
q26 +

2097152

105
q25 +

376832

21
q24

+
131072

35
q23 − 65536

15
q22 +

2146304

315
q21 +

8171008

315
q20 +

2392064

63
q19

+
13612544

315
q18 +

14424064

315
q17 +

2941760

63
q16 +

2303744

45
q15

+
2935424

45
q14 +

27143552

315
q13 +

33394288

315
q12 +

38228608

315
q11

+
1226912

9
q10 +

5437136

35
q9 +

55306868

315
q8 +

19875376

105
q7

+
60087476

315
q6 +

55595608

315
q5 +

45453083

315
q4

+
30939616

315
q3 +

3225680

63
q2 +

623552

35
q1 +

191600

63
.

We note that P16(q) is the first polynomial where a new feature emerges: the
coefficient of the power q22 is negative.

We finally compare the even moments of q-Gaussian random variables and the
even moments M2k(ω) = P2k(q) in the special case q = <ω = 0. Recall that the
2k-th moment of a centred 0-Gaussian random variable with variance 1 is given
by the Catalan number Ck = 1

k+1

(
2k
k

)
.

2k Ck P2k(0) P2k(0)/Ck (P2k(0)/Ck)
1/2k

2 1 1 1 1
4 2 2 1 1
6 5 5 1 1
8 14 44/3 1.047619 . . . 1.005831 . . .
10 42 146/3 1.158730 . . . 1.014841 . . .
12 132 892/5 1.351515 . . . 1.025419 . . .
14 429 31984/45 1.656772 . . . 1.036720 . . .
16 1430 191600/63 2.126762 . . . 1.048292 . . .

At the time of writing we could not resolve if the ratio (P2k(0)/Ck)
1/2k is bounded

for k →∞.
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We close this section with a strengthened version of the univariate CLT for
ω-sequences.

Theorem 4.3.6. Suppose (A, ϕ) is a tracial *-algebraic probability space, a ≡
(an)∞n=1 ⊂ A is an ω-sequence for some fixed ω ∈ T, and let

SN =
1√
N

(
a1 + a∗1 + . . .+ aN + a∗N

)
.

Then there exists a unique probability measure µω on R such that, for any n ∈ N,

Mn(ω) = lim
N→∞

ϕ(SnN) =

∫
R
tnµω(dt).

Proof. The ω-sequence a ⊂ A has the same distribution as the concrete ω-
sequence b ⊂ B∞, as considered in Remark 4.1.10 for κ = 1. Thus, letting

S̃N =
1√
N

(
b1 + b∗1 + . . .+ bN + b∗N

)
,

we have
ϕ(SnN) = ψ∞(S̃nN) (N, n ∈ N).

By the construction of the concrete sequence b ⊂ B∞, one has S̃N ∈ BN , where
BN is an amplification of the matrix algebra M2(C)⊗N . Since the latter, and thus
its amplification, is a finite dimensional unital C*-algebra, Theorem 3.6.3 applies.
This ensures the existence of a probability measure µω on R such that

lim
N→∞

ϕ(SnN) = lim
N→∞

ϕ(S̃nN) =

∫
R
tnµω(dt)

for all n ∈ N. It is known for the Hamburger Moment Problem that the probability
measure µω is unique if there exist positive constants C,D such that

|Mn(ω)| ≤ CDnn!

for all n ∈ N (see [RS75, Example 4 on p205]). This inequality is clearly satisfied
for odd n. Let n = 2k for k ∈ N. Then the explicit moment formula from Theorem
4.3.1 has the estimate

|M2k(ω)| =

∣∣∣∣∣∣∣
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ)

∣∣∣∣∣∣∣
≤ 1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

∣∣ωcr+(π,ε,σ)
∣∣ · ∣∣ωcr−(π,ε,σ)

∣∣
=

1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

1

= (2k − 1)!! = M2k(1).

Altogether, this estimate ensures that |Mn(ω)| ≤ CDnn! with C = D = 1.
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4.3.2 Multivariate Versions of the CLT

We will generalize the CLT from Theorem 4.3.1 to multivariate settings. Recall
the two versions of the singleton vanishing property (SVP) from Definition 3.2.3.

Proposition 4.3.7. Let (A, ϕ) be a tracial *-algebraic probability space and a ≡
(an)∞n=1 ⊂ A an ω-sequence of partial isometries. Furthermore, suppose that the
injective function J : [d]× N→ N is given by

J(c, n) := (n− 1)d+ c.

Then the family {(ac,n)∞n=1 | c ∈ [d]}, defined by

ac,n := aJ(c,n),

is [d]-jointly spreadable and has the [d]-separate SVP (and thus also the [d]-joint
SVP). Furthermore, {(ac,n)∞n=1 | c ∈ [d]} has the factorization property

ϕ
(
yP (a`,•, a

∗
`,•)z

)
= ϕ

(
P (a`,•, a

∗
`,•)
)
ϕ
(
yz
)

for y, z ∈ *-alg{ak,c | c ∈ [d], k ∈ N, k 6= `} and ` ∈ N, and P (X•, Y•) ∈ C〈Xc, Yc |
c ∈ [d]〉.

Proof. The [d]-joint spreadability and [d]-separate (and thus [d]-joint) SVP is
immediate from Lemma 3.4.15 and Example 3.4.16. We are left to show the
claimed factorization property which is equivalent to the following factorization
property by Corollary 3.5.6:

ϕ
(
P (a1,•, a

∗
1,•)
∗P (a2,•, a

∗
2,•)
)

= ϕ
(
P (a1,•, a

∗
1,•)
∗
)
ϕ
(
P (a2,•, a

∗
2,•)
)

for P (X•, Y•) ∈ C〈Xc, Yc | c ∈ [d]〉. Using the relations of an ω-sequence of partial
isometries, in particular (4.6) and (4.7), a term of the polynomial P (a1,•, a

∗
1,•) is

of the general form
M1M2 · · ·Md,

where each factor Mi equals aεii or aia
∗
i or a∗i ai for some εi ∈ {∗, 1, 0} and i =

1, 2, . . . , d. Similarly, a term of the polynomial P (a2,•, a
∗
2,•) is of the general form

N1N2 · · ·Nd

where each factor Ni equals aεii+d or ai+da
∗
i+d or a∗i+dai+d, corresponding to the

form of P (a1,•, a
∗
1,•). We are left to prove the factorization

ϕ((M1M2 · · ·Md)
∗N1N2 · · ·Nd) = ϕ((M1M2 · · ·Md)

∗)ϕ(N1N2 · · ·Nd).

But this factorization is established by a repeated application of the SVP and
factorization property as stated in Theorem 4.2.9 (ii) and (iii).
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We state next the multivariate version of a CLT as it is valid for jointly spread-
able families obtained from a single ω-sequence of partial isometries.

Theorem 4.3.8. Let (A, ϕ) be a tracial *-algebraic probability space which is
equipped with the ω-sequence of partial isometries a ≡ (an)∞n=1 ⊂ A. Furthermore,
for fixed d ∈ N and xn := an + a∗n, put

S1,N :=
1√
N

(
x1 + xd+1 + . . .+ x(N−1)d+1

)
,

S2,N :=
1√
N

(
x2 + xd+2 + . . .+ x(N−1)d+2

)
,

...

Sd,N :=
1√
N

(
xd + x2d + . . .+ xNd

)
.

Then one has that, for all k ∈ N,

lim
N→∞

ϕ(St(1),N · · ·St(2k−1),N) = 0

for all t : [2k − 1]→ [d] and

lim
N→∞

ϕ(St(1),N · · ·St(2k),N) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π6ker(t)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ)

for all t : [2k]→ [d].

We will see in Section 5.4 that the distribution of this multivariate CLT re-
sembles that of an ω-semicircular system, as introduced in Definition 5.4.1.

Proof. We have from Theorem 3.4.9 that

lim
N→∞

ϕ(St(1),N · · ·St(2k),N) =
1

k!

∑
π∈OP2(2k)
π6ker(t)

ϕOπ,t,

where ϕOπ,t = ϕ(xt(1),i(1) · · ·xt(2k),i(2k)) for i : [2k]→ [k] with kerO(i) = π and

xc,` = x(`−1)d+c.

Using the bijection from Lemma 2.1.26, we address an ordered pair partition
π ∈ OP2(2k) through the pair (π, σ) ∈ P2(2k) × Sk. This allows us to rewrite
ϕOπ,t such that

1

k!

∑
π∈OP2(2k)
π6ker(t)

ϕOπ,t =
1

k!

∑
σ∈Sk

∑
π∈P2(2k)
π6ker(t)

ϕπ,t,σ,
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where
ϕπ,t,σ = ϕ(xt(1),σ(i(1)) · · ·xt(2k),σ(i(2k)))

with π = ker(i) in standard order for i : [2k] → [k]. We infer from spreadability
that

ϕ(xt(1),σ(i(1)) · · ·xt(2k),σ(i(2k))) = ϕ(x(σ(i(1))−1)d+t(1) · · ·x(σ(i(2k))−1)d+t(2k))

= ϕ(x(σ(i(1))−1)d · · ·x(σ(i(2k))−1)d)
= ϕ(xσ(i(1)) · · ·xσ(i(2k))).

This last expression is determined by Corollary 4.2.10 (iv), and as we have already
shown in the proof of Theorem 4.3.1, to be of the form

ϕ(xσ(i(1)) · · ·xσ(i(2k))) =
1

2k

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ) ωcr−(π,ε,σ).

Altogether, we arrive at

1

k!

∑
π∈OP2(2k)
π6ker(t)

ϕOπ,t =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π6ker(t)

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ) ωcr−(π,ε,σ).

As the right-hand side of this equations involves the summation over all pair
partitions instead of ordered pair partitions, we can finally replace π ∈ P2(2k) by
π ∈ P2(2k) in the final formula.

We turn now our attention to a multivariate setting with separate spreadability
of sequences. Note that we are using local versions of separate spreadability and
separate SVPs in the next result, as the ‘block coloring’ of a single spreadable
sequence can be done only for finite parts of the sequence, in contrast to the
situation of ‘interleaving colorings’.

Proposition 4.3.9. Let (A, ϕ) be a tracial *-algebraic probability space and a ≡
(an)∞n=1 ⊂ A an ω-sequence of partial isometries. Furthermore, suppose that the
injective function {JM}M : [d]× [M ]→ [dM ] is given by

JM(t, n) := (t− 1)M + n (t ∈ [d], n ∈ [M ]).

Then the family {(ac,n)Mn=1 | c ∈ [d]}, defined by

ac,n := aJM (c,n),

is locally [d]-separately spreadable, i.e., for any n ∈ N, for every ε : [n] → {∗, 1},
i, j : [n]→ [M ], and t : [n]→ [d],

ϕ
(
a
ε(1)
t(1),i(1) · · · a

ε(n)
t(n),i(n)

)
= ϕ

(
a
ε(1)
t(1),j(1) · · · a

ε(n)
t(n),j(n)

)
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whenever i|W ∼O j|W for every block W ∈ ker(t). Moreover, one has the local
[d]-separate SVP, i.e., for any n ∈ N, for every ε : [n]→ {∗, 1}, i : [n]→ [M ] and
t : [n]→ [d],

ϕ
(
a
ε(1)
t(1),i(1) · · · a

ε(n)
t(n),i(n)

)
= 0,

whenever there exists a singleton {`} ∈ ker(i|W ) for some ` ∈ W and some block
W ∈ ker(t). Furthermore, {(ac,n)Mn=1 | c ∈ [d]} has the factorization property

ϕ
(
yP (a`,c, a

∗
`,c)z

)
= ϕ

(
P (a`,c, a

∗
`,c)
)
ϕ
(
yz
)

(4.13)

for y, z ∈ *-alg{xk,t | t ∈ [d], k ∈ [M ], (k, t) 6= (`, c)}, ` ∈ [M ], and P (Xc, Yc) ∈
C〈Xc, Yc | c ∈ [d]〉.

Proof. The [d]-separate spreadability and [d]-separate SVP is immediate from
Lemma 3.4.19 and Example 3.4.20, after adapting therein results from the infinite
set N to the finite set M . Thus we are left to prove the factorization property
(4.13), which is again immediate upon adapting Corollary 3.5.7 from n-tuples
i : [n] → N to n-tuples i : [n] → [M ]. Indeed, as we have already established the
(local) [d]-separate spreadability of {(ac,n)Mn=1 | c ∈ [d]}, it suffices to check for
P (Xc, Yc) ∈ C〈Xc, Yc〉 with c ∈ [d] that

ϕ
(
P (xc,1, x

∗
c,1)
∗P (xc,2, x

∗
c,2)
)

= ϕ
(
P (xc,1, x

∗
c,1)
∗
)
ϕ
(
P (xc,2, x

∗
c,2)
)
.

But this is immediate from the definition of the finite sequences {(ac,n)Mn=1 | c ∈
[d]}, the spreadability, and factorization property of the underlying ω-sequence of
partial isometries a (see Theorem 4.2.9(iii) for example).

Theorem 4.3.10. Let (A, ϕ) be a tracial *-algebraic probability space which is
equipped with the ω-sequence of partial isometries a ≡ (an)∞n=1 ⊂ A. Furthermore,
for fixed d ∈ N and xn := an + a∗n, put

S̃1,N :=
1√
N

(
x1 + . . .+ xN

)
,

S̃2,N :=
1√
N

(
xN+1 + . . .+ x2N

)
,

...

S̃d,N :=
1√
N

(
x(d−1)N+1 + . . .+ x2dN

)
.

Then

lim
N→∞

ϕ(S̃t(1),N · · · S̃t(2k−1),N) = 0
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for all k ∈ N and t : [2k − 1]→ [d]. Furthermore, for all k ∈ N,

lim
N→∞

ϕ(S̃t(1),N · · · S̃t(2k),N)

=
1

k1!
· · · 1

kd!

1

2k1
· · · 1

2kd

∑
σ∈Sk

with σ(W ) =W
for all W ∈ ker(t)

∑
π∈P2(2k)
π6ker(t)

∑
ε : [2k]→{∗,1}

ε|W is π|W -balanced
for all W ∈ ker(t)

ωcr+(π,ε,σ)ωcr−(π,ε,σ).

for all t : [2k] → [d]. Here one has k = k1 + k2 + . . . + kd, where kc = |t−1{c}|/2
for c ∈ [d].

Proof. We restrict our considerations to moments of even order n = 2k with
k ∈ N, as moments of odd order are easily seen to vanish. There are essentially
two ways to prove the large N -limit moment formula stated in the theorem. One
way is to immediately use

xc,n = x(c−1)M+n, (c ∈ [d], n ∈ [M ]),

with the goal to directly verify the claimed formula for an ω-sequence of partial
isometries. Here we take an alternative way and use the CLT already provided
earlier for [d]-separately spreadable sequences. We know from Theorem 3.4.13
that, for all k ∈ N and t : [2k]→ [d],

lim
N→∞

ϕ(S̃t(1),N · · · S̃t(2k),N) =
∏

W∈ker(t)

1

(|W |/2)!

∑
π|•∈

∏
W∈ker(t)OP2(W )

ϕOπ|,t,

where
ϕOπ|,t = ϕ(xt(1),i(1) · · ·xt(2k),i(2k))

for any i : [2k]→ [M ] with π|W = kerO(i|W ) for all W ∈ ker(t) and

xc,n := x(c−1)M+n, (c ∈ [d], n ∈ [M ]).

Since π|• ∈
∏

W∈ker(t)OP2(W ), we can assume that every block W ∈ ker(t) has
an even cardinality such that

card{σ ∈ Sk | σ(W ) = W for all W ∈ ker(t)} =
∏

W∈ker(t)

(|W |/2)!.

Putting Wc := t−1({c}) and kc := |Wc|/2 for c = 1, 2, . . . , d, one has

∏
W∈ker(t)

(|W |/2)! =
d∏
c=1

kc!.

Furthermore, the ordered pair partition π|• ∈
∏

W∈ker(t)OP2(W ) can be uniquely
addressed by the pair

(π, σ) ∈ P2(2k)× Sk
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which satisfies π ≤ ker(t) and σ(W ) = W for all W ∈ ker(t). Thus we have
arrived at

lim
N→∞

ϕ(S̃t(1),N · · · S̃t(2k),N) =
1

k1!
· · · 1

kd!

∑
σ∈Sk

with σ(W ) =W
for all W ∈ ker(t)

∑
π∈P2(2k)
π6ker(t)

ϕπ,t,σ, (4.14)

where
ϕπ,t,σ := ϕ(xt(1),σ(i(1)) · · ·xt(2k),σ(i(2k)))

for i : [2k]→ [k] with π = ker(i). We apply next Corollary 4.2.10(iv) such that

ϕπ,t,σ = ϕ(xt(1),σ(i(1)) · · ·xt(2k),σ(i(2k)))
= ϕ

(
x(t(1)−1)M+σ(i(1)) · · ·x(t(2k)−1)M+σ(i(2k))

)
=

1

2k

∑
ε : [2k]→{∗,1}
ε is π-balanced

ωcr+(π,ε,σ)ωcr−(π,ε,σ).

Since π ∈ P2(2k) satisfies π ≤ ker(t), the two sets

{ε : [2k]→ {∗, 1} | ε|W is π|W -balanced for all W ∈ ker(t)}

and
{ε : [2k]→ {∗, 1} | ε is π-balanced}

are the same. Moreover, we note that 2k = 2k1 · 2k2 · · · 2kd . Altogether, this shows
that (4.14) can be rewritten as claimed by the theorem.

There are many possible choices of how one can construct multivariate spread-
able sequences from a single spreadable sequence. These choices may yield dif-
ferent multivariate CLTs, as we have seen in Theorem 4.3.8 and Theorem 4.3.10.
This difference of mixed moments occurs starting the 8-th order, but it is absent
for the 2-nd, 4-th and 6-th order. We illustrate this in the following examples.

Example 4.3.11 (4-th mixed moments). Let d = 2 and consider S1,N and S2,N

as introduced in Theorem 4.3.8 for jointly spreadable sequences. Using the result
of Theorem 4.3.8 for k = 2 and t(1) = t(2) = 1 and t(3) = t(4) = 2 , one has

lim
N→∞

ϕ(S1,NS1,NS2,NS2,N) =
1

2!

1

22

∑
σ∈S2

∑
π∈P2(4)
π6ker(t)

∑
ε : [4]→{∗,1}
ε is π-balanced

ω0ω0 = 1.

Taking instead t(1) = t(3) = 1 and t(2) = t(4) = 2, one obtains

lim
N→∞

ϕ(S1,NS2,NS1,NS2,N) =
1

2!

1

22

∑
ε : [4]→{∗,1}
ε is π-balanced

(ω + ω) = <ω,
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due to the following arguments. One has only one pair partition π satisfying
π ≤ ker(t). Moreover, one has either a single positive crossing or a single negative
crossing for each triple (π, ε, σ). Since the permutation σ 6= e changes the order,
the summation over the symmetric group S2 yields the factor ω + ω.

Alternatively, consider S̃1,N and S̃2,N as introduced in Theorem 4.3.10. Then
one has

lim
N→∞

ϕ(S̃1,N S̃1,N S̃2,N S̃2,N) =
1

1!

1

1!

1

21

1

21

∑
σ∈S2

with σ(W ) =W
for all W ∈ ker(t)

∑
π∈P2(4)
π6ker(t)

∑
ε : [4]→{∗,1}

ε|W is π|W -balanced
for all W ∈ ker(t)

ω0ω0 = 1

and
lim
N→∞

ϕ(S̃1,N S̃2,N S̃1,N S̃2,N) = <ω.

Example 4.3.12 (6-th mixed moments). Explicit computations for d = 2 show
that all mixed moments of 6-th order are the same for the joint spreadable se-
quences and the locally separately spreadable sequences considered in Theorem
4.3.8 and Theorem 4.3.10. For example, one has

lim
N→∞

ϕ(S1,NS1,NS1,NS1,NS2,NS2,N) = <ω + 2

and
lim
N→∞

ϕ(S̃1,N S̃1,N S̃1,N S̃1,N S̃2,N S̃2,N) = <ω + 2.

Example 4.3.13 (8-th mixed moments). In contrast to the situation for mixed
moments of 6-th order, differences occur for some mixed moments of 8-th order.
For example, one obtains

lim
N→∞

ϕ(S1,NS1,NS2,NS2,NS1,NS1,NS2,NS2,N) =
1

48
(ω6 + ω6) + P (ω, ω)

in the jointly spreadable setting, but

lim
N→∞

ϕ(S̃1,N S̃1,N S̃2,N S̃2,N S̃1,N S̃1,N S̃2,N S̃2,N) =
1

32
(ω6 + ω6) + P̃ (ω, ω)

in the locally separately spreadable setting. Here P and P̃ are polynomials in the
commuting variables of ω and ω of degree 5 at most.





Chapter 5

Circular and Semicircular
Systems

This chapter starts with reviewing multivariate versions of CLTs for q-circular and
q-semicircular systems. We show that such systems are exchangeable and thus
yield CLTs. In particular, we show that certain multivariate CLTs associated
to q-circular systems and q-semicircular systems have moment formulas which
reproduce those of q-circular systems and q-semicircular systems, respectively.

Inspired by the notion of a ‘z-circular system’, defined and studied by Mingo
and Nica in [MN01], we introduce the notion of a ‘z-semicircular system’. These
generalize the corresponding notions of q-circular and q-semicircular systems from
the parameter q ∈ [−1, 1] to the parameter z ∈ C with |z| ≤ 1. We show that
such systems are spreadable and satisfy SVPs, as we have met them earlier in the
context of ω-sequences. Thus z-circular systems and z-semicircular systems yield
CLTs such that their moment formulas generalize those moment formulas obtained
from CLTs associated to ω-sequences of partial isometries. In particular, we show
that certain multivariate CLTs for z-(semi)circular systems yield z-(semi)circular
systems in the large N -limit.

5.1 q-Circular Systems

In this section we review the notion of so-called q-circular systems. Such systems
are defined in [MN01] for the open interval q ∈ (−1, 1) in the framework of
C*-algebraic probability spaces. Our approach adapts that of [MN01] to the
framework of *-algebraic probability spaces for q ∈ [−1, 1].

Definition 5.1.1. ([MN01]) Let (A, ψ) be a *-algebraic probability space and let
q ∈ [−1, 1]. The family {cr}sr=1 ⊆ A (s ≥ 1) is said to form a q-circular system in
(A, ψ) if, for every n ≥ 1, r : [n]→ [s], and ε : [n]→ {∗, 1},

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) =

∑
π∈P2(r,ε)

qcr(π). (5.1)

129
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Here P2(r, ε) denotes the set of all pair partitions

π = {{a1, b1}, . . . , {ak, bk}}

of {1, . . . , n} which have the property ai < bi, r(ai) = r(bi), and ε(ai) 6= ε(bi) for
all i ∈ [k].

Notation 5.1.2. Given r : [n] → [s] and ε : [n] → {∗, 1}, the set P2(r, ε) will
occasionally be written as P2(r(1), . . . , r(n); ε(1), . . . , ε(n)).

Remark 5.1.3. (i) If n odd, then P2(r, ε) ⊂ P2(n) = ∅. Thus

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = 0.

(ii) More generally, suppose r : [n] → [s] is such that its kernel set partition
π = ker(r) ∈ P(n) contains a block V ∈ π with odd cardinality |V |. Then
one obtains P2(r; ε) = ∅ and thus

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = 0. (5.2)

(iii) If n even and |ε−1({1})| 6= |ε−1({∗})|, then P2(r, ε) = ∅ and thus

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = 0.

(iv) If n even and |ε−1({1})| = |ε−1({∗})|, then P2(r, ε) may still be the empty
set. One has P2(r, ε) 6= ∅ if and only if n is even and r(a) = r(b) implies
ε(a) 6= ε(b) for any a < b. For example, if r(1) = r(2) = . . . = r(n) and
n = 2k, then we arrive at

|P2(r, ε)| = k!.

To further specify this example, consider n = 4 and assume r(1) = r(2) =
r(3) = r(4) = 1, as well as ε(1) = ε(2) = ∗, ε(3) = ε(4) = 1. Then one has

P2(1, 1, 1, 1; ∗, ∗, 1, 1) =
{
{{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}

}
.

These two pair partitions are visualized in the following diagrams, respec-
tively.

c∗1 c∗1 c1 c1 c∗1 c∗1 c1 c1

Then, by Definition 5.1.1, one has

ψ(c∗1c
∗
1c1c1) =

∑
π∈P2(1,1,1,1;∗,∗,1,1)

qcr(π) = q + 1.
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Note also that, if the tuple (r(1), r(2), . . . , r(n)) defines a pair partition of
the set [n], then one has that either P2(r, ε) = ∅ or

|P2(r, ε)| = 1,

depending on the choice of the direction map ε : [n] → {∗, 1}. Let us say,
for example, n = 4, r(1) = r(3), r(2) = r(4), and ε(1) = ε(4) = ∗, ε(2) =
ε(3) = 1. Then the right-hand side of the moment formula (5.1) is∑

π∈P2(r1,r2,r3,r4;∗,1,1,∗)

qcr(π) = q.

Remark 5.1.4. We further discuss some properties of this set of pair partitions
P2(r, ε).

(i) Consider the case s = {1} and suppose that the direction map ε : [n] →
{∗, 1} satisfies |ε−1({∗})| = |ε−1({1})| for n = 2k even. Then the set P2(r, ε)
contains k! pair partitions.

(ii) We consider next the case s > 1. Given the ‘color’ map r : [n] → [s] and
the direction map ε : [n] → {∗, 1} for some n ∈ N, we formulate conditions
which ensure that P2(r, ε) is not the empty set. Clearly, the cardinality of
each pre-image 2km := |r−1({m})| needs to be an even number, for some
km ∈ N and m = 1, . . . , s. Thus, putting k := k1 + k2 + . . . + ks, one has
n = 2k. Furthermore, one needs

|{i ∈ [n] | r(i) = m, ε(i) = ∗}| = |{i ∈ [n] | r(i) = m, ε(i) = 1}|

for all m = 1, 2, . . . , s. Then the set P2(r, ε) contains k1! · · · ks! pair parti-
tions.

Note also that, having chosen the color map r : [n] → [s] such that all its
level sets contain an even number of elements, there are(

2k1
k1

)
·
(

2k2
k2

)
· · ·
(

2ks
ks

)
choices of ε : [n]→ {∗, 1} such that the set P2(r, ε) is non-empty.

We show next that q-circular systems provide an interesting class of (finite)
exchangeable sequences. As we have introduced exchangeability and various other
properties only for infinite sequences, we will concentrate in the following on
dealing with q-circular systems containing infinitely many elements, corresponding
to the case s =∞. Note that most of our results easily transfer to the finite case
1 ≤ s <∞.
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Proposition 5.1.5. Let (A, ψ) be a *-algebraic probability space and suppose
Y ≡ {cr}∞r=1 ⊆ A is a q-circular system in (A, ψ). Then Y is exchangeable and
satisfies the SVP.

Proof. Let r, r̂ : [n] → N for n ∈ N such that r̂ = σ ◦ r for some permutation
σ ∈ S∞. We need to show that

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = ψ(c

ε(1)
r̂(1) · · · c

ε(n)
r̂(n)).

For this purpose, it is sufficient to show that P2(r, ε) = P2(r̂, ε). Indeed, it follows
from the assumptions on the two maps r and r̂ that

π ∈ P2(r, ε)⇔ π ∈ P2(r̂, ε).

Since we are summing over the same set of pair partitions, we deduce from the
mixed moment formula (5.1) that

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) =

∑
π∈P2(r,ε)

qcr(π) =
∑

π∈P2(r̂,ε)

qcr(π) = ψ(c
ε(1)
r̂(1) . . . c

ε(n)
r̂(n)).

We are left to show that Y satisfies the SVP. Suppose the partition π := ker(r) ∈
P(n) has the singleton {`} for 1 ≤ ` ≤ n. This implies P2(r, ε) = ∅ and thus

ψ(c
ε(1)
r(1) · · · c

ε(`)
r(`) · · · c

ε(n)
r(n)) = 0 by (5.2).

Theorem 5.1.6. Suppose the family Y ≡ {cr}∞r=1 ⊆ A forms a q-circular system
in (A, ψ). Let

S1,N :=
1√
N

(
c1 + cs+1 + . . .+ c(N−1)s+1

)
,

S2,N :=
1√
N

(
c2 + cs+2 + . . .+ c(N−1)s+2

)
,

...

Ss,N :=
1√
N

(
cs + c2s + . . .+ cNs

)
.

Then one has, for all k ∈ N, r : [2k]→ N, and ε : [2k]→ {∗, 1},

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k)
r(2k),N) =

∑
π∈P2(r,ε)

qcr(π).

Proof. We conclude from Proposition 5.1.5 that Y is exchangeable and satisfies the
SVP. Therefore, the CLT applies as formulated in Theorem 3.3.10 (or Theorem
3.3.13). Clearly, all odd moments of order 2k − 1 vanish in the large N -limit.
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We are left to verify that the even moment formulas of a q-circular system are
reproduced in the large N -limit of the considered multivariate CLT.

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k)
r(2k),N) =

∑
π∈P2(2k)
π≤ker(r)

ψπ,r,ε

where ψπ,r,ε := ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) for r : [2k]→ N with π = ker(r). One obtains∑

π∈P2(2k)
π≤ker(r)

ψπ,r,ε =
∑

π∈P2(r,ε)

ψ(c
ε(1)
r(1) · · · c

ε(2k)
r(2k))

=
∑

π∈P2(r,ε)

qcr(π).

Here we have used for the first equality that a summand ψπ,r,ε may be non-zero
for a pair partition π ∈ P2(2k) with π ≤ ker(r) only if ε(i) 6= ε(j) for all blocks
{i, j} ∈ π. Thus we can restrict the summation from the set of pair partitions
{π ∈ P2(2k) | π ≤ ker(r)} to its subset P2(r, ε).

A limit model (as it is the subject of Theorem 3.6.1) for this multivariate CLT
can be identified again in terms of q-circular systems.

Corollary 5.1.7. Let the q-circular system Y in (A, ψ) and S1,N , . . . , Ss,N be given

as in Theorem 5.1.6. Then there exists a *-algebraic probability space (Â, ψ̂) and

a q-circular system Ŷ ≡ {ĉr}sr=1 in (Â, ψ̂) such that

lim
N→∞

ψ
(
Sr(1),N · · ·Sr(n),N

)
= ψ̃

(
c̃
ε(1)
r(1) · · · c̃

ε(n)
r(n)

)
for all n ∈ N, r : [n]→ [s], and ε : [n]→ {∗, 1}.

Proof. This is immediate from the mixed moment formula of the CLT in Theorem
5.1.6, as its right-hand side is the defining moment formula for the q-circular
system {cr}sr=1 in (A, ψ).

5.2 q-Semicircular Systems

In this section we discuss q-semicircular systems which are also known in the
published literature under the name of (systems of) q-Gaussian random variables
(see also [BS92]). Here we introduce q-semicircular systems in the framework
of *-algebraic probability spaces through their moments in a combinatorial way.
Afterwards we discuss how one can obtain a q-semicircular system from a q-circular
system. Furthermore, we show that a q-semicircular system is exchangeable and
satisfies the SVP. We close this section with a CLT for a q-semicircular system,
Theorem 5.2.7, and Corollary 5.2.8, where the latter shows that multivariate CLTs
of q-semicircular systems yield in the large N -limit again q-semicircular systems.
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Definition 5.2.1. Let (A, ψ) be a *-algebraic probability space and let q ∈
[−1, 1]. The family {ŝr}sr=1 ⊆ A (s ≥ 1) is said to form a q-semicircular sys-
tem in (A, ψ) if

- ŝr = ŝ∗r for r = 1, 2, . . . , s;

- for every n ≥ 1 and r : [n]→ [s],

ψ(ŝr(1) · · · ŝr(n)) =
∑

π∈P2(n)
π≤ker(r)

qcr(π).

Example 5.2.2. The even moments of a single q-semicircular operator ŝ (for
example obtained for s = 1 and writing ŝ1 just as ŝ) are given by

ψ(ŝ2k) =
∑

π∈P2(2k)

qcr(π).

Thus the first few even moments are given by

ψ(ŝ2) = 1

ψ(ŝ4) = 1 + q

ψ(ŝ6) = 5 + 6q + 3q2 + q3

ψ(ŝ8) = 14 + 28q + 28q2 + 20q3 + 10q4 + 4q5 + q6

In the following, we prove that one can obtain a q-semicircular system from a
q-circular system. We will make use of the following lemma.

Lemma 5.2.3. The two sets{
(π, ε) ∈ P2(2k)×

{
f : [2k]→ {∗, 1}

}∣∣∣π ∈ P2(r, ε)
}

and {
(π, ε) ∈ P2(2k)×

{
f : [2k]→ {∗, 1}

}∣∣∣ π ≤ ker(r), ε is π-balanced
}

are the same.

Proof. This is immediate from Definition 2.1.33 where both P2(r, ε) and the π-
balancedness of a direction map ε are introduced.

Proposition 5.2.4. Let (A, ψ) be a *-algebraic probability space. Given the q-

circular system {cr}sr=1 ⊆ A (s ≥ 1), let ŝm :=
1√
2

(cm + c∗m) for m ∈ [s]. Then

{ŝ1, . . . , ŝs} is a q-semicircular system.
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Proof. Let n ∈ N and r : [n]→ [s] be fixed. We compute that

ψ(ŝr(1) · · · ŝr(n)) =
1

2n/2

∑
ε : [n]→{∗,1}

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n))

=
1

2n/2

∑
ε : [n]→{∗,1}

∑
π∈P2(r,ε)

qcr(π) (by Definition 5.1.1)

=
1

2n/2

∑
π∈P2(n)
π≤ker(r)

∑
ε : [n]→{∗,1}

ε is π-balanced

qcr(π)

=
∑

π∈P2(n)
π≤ker(r)

qcr(π).

Here we have used Lemma 5.2.3 for the third equality.

Conjecture 5.2.5. Let (A, ψ) be a *-algebraic probability space. Given the q-

semicircular system {ŝr}2sr=1 ⊆ A (s ≥ 1), let cm :=
1√
2

(ŝ2m−1+i ŝ2m) for m ∈ [s].

Then {c1, . . . , cs} is a q-circular system.

We expect that this conjecture can be verified using a concrete realization of q-
circular systems and q-semicircular systems in terms of creation and annihilation
operators on the q-Fock space, similar to the approach of Mingo and Nica in
[MN01].

We prove next that q-semicircular systems provide interesting classes of ex-
changeable sequences in the case s = ∞, similar to our results for q-circular
systems (see Proposition 5.1.5).

Proposition 5.2.6. Let (A, ψ) be *-algebraic probability space and suppose that

the family Ỹ ≡ {ŝr}∞r=1 ⊆ A is a q-semicircular system in (A, ψ). Then Ỹ is
exchangeable and satisfies the SVP.

Proof. All arguments used in Proposition 5.1.5 transfer from q-circular systems
to q-semicircular systems.

Theorem 5.2.7. Suppose the family Ỹ ≡ (ŝr)
∞
r=1 ⊆ A forms a q-semicircular

system in (A, ψ). Let

S̃1,N :=
1√
N

(
ŝ1 + ŝs+1 + . . .+ ŝ(N−1)s+1

)
,

S̃2,N :=
1√
N

(
ŝ2 + ŝs+2 + . . .+ ŝ(N−1)s+2

)
,

...

S̃s,N :=
1√
N

(
ŝs + ŝ2s + . . .+ ŝNs

)
.
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Then one has for all n ∈ N and r : [n]→ N,

lim
N→∞

ψ(S̃r(1),N . . . S̃r(n),N) =
∑

π∈P2(n)
π≤ker(r)

qcr(π).

Proof. We know from Proposition 5.2.6 that Ỹ is exchangeable and satisfies the
SVP. Thus the CLT, as formulated in Theorem 3.3.10 (or Theorem 3.3.13) applies.
Clearly, all odd moments of order 2k − 1 vanish in the large N -limit. We are left
to verify the formulas for even moments of q-semicircular systems in the large
N -limit. We know from Theorem 3.3.10 that

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k),N) =
∑

π∈P2(2k)
π≤ker(r)

ψπ,r

where ψπ,r = ψ(ŝr(1),i(1) · · · ŝr(2k),i(2k)) for i : [2k]→ N with ker(i) = π and

ŝm,` = ŝ(`−1)s+m for m ∈ [s].

It is elementary to see that

(i(j)− 1))s+ r(j) = (i(j′)− 1)s+ r(j′) ⇐⇒ i(j) = i(j′)

for i : [2k]→ N and r : [2k]→ [s] with ker(i) ∈ P2(2k) and ker(i) ≤ ker(r). Thus
we can infer from exchangeability that

ψπ,r = ψ(ŝr(1),i(1) · · · ŝr(2k),i(2k)) = ψ(ŝ(i(1)−1)s+r(1) . . . ŝ(i(2k)−1)s+r(2k))

= ψ(ŝi(1) . . . ŝi(2k)).

As we count the q-crossings of the pair partitions, we have that

ψ(ŝi(1) . . . ŝi(2k)) = qcr(π)

Altogether, we arrive at ∑
π∈P2(2k)
π≤ker(r)

ψπ,r =
∑

π∈P2(2k)
π≤ker(r)

qcr(π).

Corollary 5.2.8. Let the q-semicircular system Ỹ in (A, ψ) and S̃1,N , . . . , S̃s,N
be given as in Theorem 5.2.7. Then there exists a *-algebraic probability space
(Â, ψ̂) and a q-semicircular system Ŷ ≡ {s̃r}sr=1 in (Â, ψ̂) such that

lim
N→∞

ψ
(
S̃r(1),N · · · S̃r(n),N

)
= ψ̃

(
s̃r(1) · · · s̃r(n)

)
for all n ∈ N and r : [n]→ [s].

Proof. This is immediate from the mixed moment formula of the CLT in Theorem
5.2.7, as its right-hand side is defining moment formula for the q-semicircular
system {ŝr}sr=1 in (A, ψ).
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5.3 z-Circular Systems

In this section we study the notion of z-circular systems which generalizes the
notion of q-circular systems. Our approach again adapts that of [MN01] to the
framework of *-algebraic probability spaces. We show that a z-circular system
is spreadable and satisfies the SVP. Therefore, the central limit distribution of
Theorem 5.1.6 for q-circular systems can be generalized to z-circular systems.

Definition 5.3.1. Let (A, ψ) be a *-algebraic probability space and fix z ∈ C
with |z| ≤ 1. The family (cr)

s
r=1 ⊆ A (s ≥ 1) is said to form a z-circular system

in (A, ψ) if

- for every odd n > 1, r : [n]→ [s], and ε : [n]→ {∗, 1},

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = 0;

- for every even n > 1 with n = 2k, r : [n]→ [s], and ε : [n]→ {∗, 1},

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) =

1

k!

∑
σ∈Sk

∑
π∈P2(r,ε)

zcr+(π,ε,σ)zcr−(π,ε,σ). (5.3)

Here Sk is the group of all permutations on the set [k], and P2(r, ε) is as
introduced in Definition 5.1.1.

Remark 5.3.2. This conditional set of pair partitions P2(r, ε) is denoted by
P(r(1), . . . , r(n); ε(1), . . . , ε(n)) in [MN01]. See also Remark 5.1.4 for a discussion
of some properties of P2(r, ε).

Next we show that a z-circular system provides a spreadable sequence in the
case s =∞.

Proposition 5.3.3. Let (A, ψ) be a *-algebraic probability space and suppose the
family Y ≡ (cr)

∞
r=1 ⊆ A is a z-circular system in (A, ψ). Then Y is spreadable

and satisfies the SVP.

Proof. Let n ∈ N and r, r̂ : [n]→ N such that r ∼O r̂. We need to show that

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) = ψ(c

ε(1)
r̂(1) · · · c

ε(n)
r̂(n)). (5.4)

Due to the moment formula (5.3), it suffices to show that P2(r, ε) = P2(r̂, ε). It
follows from the assumptions on the two maps r and r̂ that

π ∈ P2(r, ε)⇔ π ∈ P2(r̂, ε).
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Since we are summing over the same set of ordered pair partitions, we conclude
from the mixed moment formula (5.3) that

ψ(c
ε(1)
r(1) · · · c

ε(n)
r(n)) =

1

k!

∑
σ∈Sk

∑
π∈P2(r,ε)

zcr+(π,ε,σ)zcr−(π,ε,ε)

=
1

k!

∑
σ∈Sk

∑
π∈P2(r̂,ε)

zcr+(π,ε,σ)zcr−(π,ε,σ)

= ψ(c
ε(1)
r̂(1) · · · c

ε(n)
r̂(n)).

The SVP of Y is immediate from the moment formula (5.3), as P2(r, ε) = ∅ if
ker(r) contains a singleton.

Theorem 5.3.4. Suppose the family Y ≡ (cr)
∞
r=1 ⊆ A forms a z-circular system

in (A, ψ). Let

S1,N :=
1√
N

(
c1 + cs+1 + . . .+ c(N−1)s+1

)
,

S2,N :=
1√
N

(
c2 + cs+2 + . . .+ c(N−1)s+2

)
,

...

Ss,N :=
1√
N

(
cs + c2s + . . .+ cNs

)
.

Then one has for all k ∈ N, r : [2k]→ N, and ε : [2k]→ {∗, 1},

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k)
r(2k),N) =

1

k!

∑
σ∈Sk

∑
π∈P2(r,ε)

zcr+(π,ε,σ)zcr−(π,ε,σ)

and, for all k ∈ N, r : [2k − 1]→ N, and ε : [2k − 1]→ {∗, 1},

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k−1)
r(2k−1),N) = 0.

Proof. Clearly, all odd moments of order 2k − 1 vanish in the large N -limit.
Moreover, one can conclude from Theorem 3.4.9 that

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k)
r(2k),N) =

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r,ε,

where ψOπ,r,ε = ψ(c
ε(1)
r(1),i(1) · · · c

ε(2k)
r(2k),i(2k)) for i : [2k]→ [k] with kerO(i) = π and

cm,` = c(`−1)s+m.
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Using the bijection from Lemma 2.1.26, we address an ordered pair partition
π ∈ OP2(2k) through the pair (π, σ) ∈ P2(2k) × Sk. This allows us to rewrite
ψOπ,r,ε such that we arrive at

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r,ε =
1

k!

∑
σ∈Sk

∑
π∈P2(2k)
π6ker(r)

ψπ,r,ε,σ, (5.5)

where

ψπ,r,ε,σ = ψ(c
ε(1)
r(1),σ(i(1)) · · ·x

ε(2k)
r(2k),σ(i(2k)))

= ψ(c
ε(1)
(σ(i(1))−1)s+r(1) · · · c

ε(2k)
(σ(i(2k))−1)s+r(2k))

= ψ(c
ε(1)
σ(i(1)) · · · c

ε(2k)
σ(i(2k))),

with π = ker(i) in standard order for i : [2k]→ [k]. Here we have used for the last
equality that((

σ(i(1))− 1
)
s+ r(1), . . . ,

(
σ(i(2k))− 1

)
s+ r(2k)

)
∼O

((
σ(i(1))− 1

)
s, . . . ,

(
σ(i(2k))− 1

)
s
)

∼O
(
σ(i(1)), . . . , σ(i(2k))

)
.

Altogether, we can write (5.5) as

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r,ε =
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

ψ(c
ε(1)
σ(i(1)) · · · c

ε(2k)
σ(i(2k)))

We note that ker(σ ◦ i) = ker(i). By the definition of a z-circular system,

ψ(c
ε(1)
σ(i(1)) · · · c

ε(2k)
σ(i(2k))) =

1

k!

∑
τ∈Sk

∑
π∈P2(i,ε)

zcr+(π,ε,τ)zcr−(π,ε,τ).

Thus we arrive at
1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r,ε =
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

ψ(c
ε(1)
σ(i(1)) · · · c

ε(2k)
σ(i(2k)))

=
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

 1

k!

∑
τ∈Sk

∑
π∈P2(i,ε)

zcr+(π,ε,τ)zcr−(π,ε,τ)



=
1

k!

∑
τ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(i,ε)

zcr+(π,ε,τ)zcr−(π,ε,τ).
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We are left to show that, in the last formula,

· · ·
∑

i : [2k]→[k]
ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(i,ε)

· · · = · · ·
∑

π∈P2(r,ε)

· · · . (5.6)

Since card{i : [2k] → [k] | ker(i) ∈ P2(2k)} = card{P2(2k)}, we can rewrite the
outer summation over the functions i such that

· · ·
∑

i : [2k]→[k]
ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(i,ε)

· · · = · · ·
∑

π̃∈P2(2k)
π̃6ker(r)

∑
π∈P2(i,ε)

· · · .

Note that both summations are the same due to that the summation over the
set of pair partitions {π̃ ∈ P2(2k) | π̃ ≤ ker(r)} can be restricted to the subset
P2(i, ε), since a summand ψπ,r,ε may be non-zero for a pair partition π̃ ∈ P2(2k)
with π̃ ≤ ker(r) only if ε(i) 6= ε(j) for all blocks {i, j} ∈ π̃. This ensures the
claimed equality in (5.6). Altogether we have verified that

lim
N→∞

ψ(S
ε(1)
r(1),N · · ·S

ε(2k)
r(2k),N) =

1

k!

∑
τ∈Sk

∑
π∈P2(r,ε)

zcr+(π,ε,τ)zcr−(π,ε,τ).

Corollary 5.3.5. Let the z-circular system Y in (A, ψ) and S1,N , . . . , Ss,N be

given as in Theorem 5.3.4. Then there exists a *-algebraic probability space (Â, ψ̂)

and a z-circular system Ŷ ≡ (ĉr)
s
r=1 in (Â, ψ̂) such that

lim
N→∞

ψ
(
S
ε(1)
r(1),N · · ·S

ε(n)
r(n),N

)
= ψ̃

(
c̃
ε(1)
r(1) · · · c̃

ε(n)
r(n)

)
(5.7)

for all n ∈ N, r : [n]→ [s], and ε : [n]→ {∗, 1}.
Proof. This is immediate from the mixed moment formula of the CLT in Theorem
5.3.4, the existence of the large N -limit system Ŷ by Theorem 3.6.1, and the
defining moment formula for a z-circular system with s elements.

5.4 z-Semicircular Systems

We introduce z-semicircular systems which relate to z-circular systems ([MN01])
as q-semicircular systems relate to q-circular systems. In particular, z-semicircular
systems provide a generalization of q-semicircular systems from q ∈ [−1, 1] to z ∈
C with |z| ≤ 1. Moreover, we discuss how one can obtain a z-semicircular system
form a z-circular system. Also, we show that a z-semicircular system is spreadable
and satisfies the SVP. We close this section with CLTs for z-semicircular systems,
Theorem 5.4.6 and Corollary 5.4.7. Here the latter shows that a certain multi-
variate CLT of a z-semicircular system provides again a z-semicircular system in
the large N -limit.
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Definition 5.4.1. Let (A, ψ) be a *-algebraic probability space and fix z ∈ C
with |z| ≤ 1. The family Ỹ ≡ (ŝr)

s
r=1 ⊆ A with (s ≥ 1) is said to form a

z-semicircular system in (A, ψ) if

- ŝr = ŝ∗r for all r = 1, 2, . . . , s;

- for every odd n > 1, r : [n]→ [s],

ψ(ŝr(1) · · · ŝr(n)) = 0;

- for every even n > 1 with n = 2k, r : [n]→ [s],

ψ(ŝr(1) · · · ŝr(2k)) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ). (5.8)

Here Sk denotes the group of all permutations on [k].

Example 5.4.2. The even moments of a single z-semicircular operator ŝ (ob-
tained from a z-semicircular system for s = 1, and writing ŝ1 just as ŝ) are given
by

ψ(ŝ2k) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ).

Using the polar form of complex numbers, one can write z = rω with 0 ≤ r ≤ 1
and ω ∈ T such that

ψ(ŝ2k) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)

∑
ε : [2k]→{∗,1}
ε is π-balanced

rcr+(π,ε,σ)+cr−(π,ε,σ)ωcr+(π,ε,σ)−cr−(π,ε,σ).

So the even moments of a z-semicircular operator are not only counting the
difference of oriented crossings (as it is the case for ω-semicircular systems),
they also count the number of crossings, which is the sum of oriented crossings
cr+(π, ε, σ) + cr−(π, ε, σ).

Putting q = <ω and using <z = rq in the polar form, the first few even
moments are given by

ψ(ŝ2) = 1,

ψ(ŝ4) = rq + 2,

ψ(ŝ6) = 5 + 6rq + 3r2q2 + r3q3.

These moments of an rω-semicircular operator coincide with those of an rq-
Gaussian random variable. This coincidence of moments fails for even moments
of 8-th order and higher.
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In the following, we show that one can obtain z-semicircular systems from z-
circular systems. We recall that P2(r, ε) denotes the set of all pair partitions π ∈
P(2k) such that π ≤ ker(r) and ε(minV ) 6= ε(maxV ) for all V ∈ π. Furthermore,
we recall from Lemma 5.2.3 that the two sets{

(π, ε) ∈ P2(2k)×
{
f : [2k]→ {∗, 1}

}∣∣∣π ∈ P2(r, ε)
}

and {
(π, ε) ∈ P2(2k)×

{
f : [2k]→ {∗, 1}

}∣∣∣ π ≤ ker(r), ε is π-balanced
}

are the same.

Proposition 5.4.3. Let (A, ψ) be a *-algebraic probability space. Given the z-

circular systems Ỹ ≡ (cr)
s
r=1 ⊆ A with s ≥ 1, let ŝm = 1√

2
(cm + c∗m) for m ∈ [s].

Then ŝ1, . . . , ŝs is a z-semicircular system.

Proof. Clearly each operator ŝm is self-adjoint. Let k ∈ N, r : [2k] → [s], and
σ ∈ S∞. We compute that

ψ(ŝr(1) · · · ŝr(2k)) =
1

2k

∑
ε : [2k]→{∗,1}

ψ(c
ε(1)
r(1) · · · c

ε(2k)
r(2k))

=
1

k!

1

2k

∑
ε : [2k]→{∗,1}

∑
σ∈Sk

∑
π∈P2(r,ε)

zcr+(π,ε,σ)zcr−(π,ε,σ)

=
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ).

We have used Definition 5.3.1 for the second equality and Lemma 5.2.3 for the
last equality.

Conjecture 5.4.4. Let (A, ψ) be a *-algebraic probability space. Given the z-
semicircular system (ŝr)

2s
r=1 ⊆ A with (s ≥ 1), let cm = 1√

2
(ŝ2m−1 + i ŝ2m) for

m ∈ [s]. Then (c1, . . . , cs) is a z-circular system.

We investigate next the limit distribution of multivariate CLTs emerging from
a z-semicircular system. To do so, we need first to verify that a z-semicircular
system is spreadable and satisfies the SVP.

Proposition 5.4.5. Let (A, ψ) be a *-algebraic probability space and suppose the

family Ỹ ≡ (ŝr)
∞
r=1 ⊆ A is a z-semicircular system in (A, ψ). Then Ỹ is spreadable

and satisfies the SVP.

Proof. All arguments in the proof of Proposition 5.3.3 transfer from z-circular
systems to z-semicircular systems.
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Theorem 5.4.6. Suppose the family Ỹ ≡ (ŝr)
∞
r=1 ⊆ A forms a z-semicircular

system in (A, ψ). Let

S̃1,N :=
1√
N

(
ŝ1 + ŝs+1 + . . .+ ŝ(N−1)s+1

)
,

S̃2,N :=
1√
N

(
ŝ2 + ŝs+2 + . . .+ ŝ(N−1)s+2

)
,

...

S̃s,N :=
1√
N

(
ŝs + ŝ2s + . . .+ ŝNs

)
.

Then one has for all k ∈ N and r : [2k]→ N,

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k),N) =
1

k!

1

2k

∑
σ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,σ)zcr−(π,ε,σ)

and, for all k ∈ N and r : [2k − 1]→ N,

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k−1),N) = 0.

Proof. One concludes from Theorem 3.4.9 that

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k),N) =
1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r,

where ψOπ,r = ψ(ŝr(1),i(1) · · · ŝr(2k),i(2k)) for i : [2k]→ [k] with kerO(i) = π and

ŝm,` = ŝ(`−1)s+m for m ∈ [s]

or, more explicitly,

ψOπ,r = ψ(ŝ(i(1)−1)s+r(1) · · · ŝ(i(2k)−1)s+r(2k)).

By using the bijection from Lemma 2.1.26, we address an ordered pair parti-
tion π ∈ OP2(2k) through the pair (π, σ) ∈ P2(2k) × Sk. Thus, similar to the
arguments in the proof of Theorem 4.3.8,

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r =
1

k!

∑
σ∈Sk

∑
π∈P2(2k)
π6ker(r)

ψπ,r,σ, (5.9)

where

ψπ,r,σ = ψ(ŝr(1),σ(i(1)) · · · ŝr(2k),σ(i(2k)))
= ψ(ŝ(σ(i(1))−1)s+r(1) · · · ŝ(σ(i(2k))−1)s+r(2k))

= ψ(ŝσ(i(1)) · · · ŝσ(i(2k))),
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with π = ker(i) in standard order for i : [2k]→ [k]. Here we have used for the last
equality that((

σ(i(1))− 1
)
s+ r(1), . . . ,

(
σ(i(2k))− 1

)
s+ r(2k)

)
∼O

((
σ(i(1))− 1

)
s, . . . ,

(
σ(i(2k))− 1

)
s
)

∼O
(
σ(i(1)), . . . , σ(i(2k))

)
.

Altogether, we can write (5.9) as

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r =
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

ψ(ŝσ(i(1)) · · · ŝσ(i(2k)))

We note that ker(σ ◦ i) = ker(i). By the definition of a z-semicircular system,

ψ(ŝσ(i(1)) · · · ŝσ(i(2k))) =
1

k!

1

2k

∑
τ∈Sk

∑
π∈P2(2k)
π≤ker(i)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,τ)zcr−(π,ε,τ).

Thus we arrive at

1

k!

∑
π∈OP2(2k)
π6ker(r)

ψOπ,r =
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

ψ(ŝσ(i(1)) · · · ŝσ(i(2k)))

=
1

k!

∑
σ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

 1

k!

1

2k

∑
τ∈Sk

∑
π∈P2(2k)
π≤ker(i)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,τ)zcr−(π,ε,τ)


=

1

k!

1

2k

∑
τ∈Sk

∑
i : [2k]→[k]

ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(2k)
π≤ker(i)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,τ)zcr−(π,ε,τ).

Here we have used that all summands are independent from the permutation
σ ∈ Sk and thus the corresponding average can be carried out. Otherwise, we had
only rearranged the order of some factors and the order of summation. We are
left to show that, in the last formula,

· · ·
∑

i : [2k]→[k]
ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(2k)
π≤ker(i)

· · · = · · ·
∑

π∈P2(2k)
π≤ker(r)

· · · . (5.10)
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Since card{i : [2k] → [k] | ker(i) ∈ P2(2k)} = card{P2(2k)}, we can rewrite the
outer summation over the functions i such that

· · ·
∑

i : [2k]→[k]
ker(i)∈P2(2k)
ker(i)6ker(r)

∑
π∈P2(2k)
π≤ker(i)

· · · = · · ·
∑

π̃∈P2(2k)
π̃6ker(r)

∑
π∈P2(2k)
π≤π̃

· · · .

Note that the condition π ≤ π̃ forces π = π̃ since both π and π̃ are pair partitions.
This ensures the claimed equality in (5.10). Altogether, we have verified that

lim
N→∞

ψ(S̃r(1),N · · · S̃r(2k),N) =
1

k!

1

2k

∑
τ∈Sk

∑
π∈P2(2k)
π≤ker(r)

∑
ε : [2k]→{∗,1}
ε is π-balanced

zcr+(π,ε,τ)zcr−(π,ε,τ).

Corollary 5.4.7. Let the z-semicircular system Ỹ in (A, ψ) and the operators

S̃1,N , . . . , S̃s,N be given as in Theorem 5.4.6. Then there exist a *-algebraic prob-

ability space (Â, ψ̂) and a z-semicircular system Ŷ ≡ (s̃r)
s
r=1 in (Â, ψ̂) such that

lim
N→∞

ψ
(
S̃r(1),N · · · S̃r(n),N

)
= ψ̃

(
s̃r(1) · · · s̃r(n)

)
(5.11)

for all n ∈ N and r : [n]→ [s].

Proof. This is immediate from the mixed moment formula of the CLT in The-
orem 5.4.6, as the right-hand side of (5.11) defines the moment formula for a
z-semicircular system (ŝr)

s
r=1 in (A, ψ).





Chapter 6

Future Work

It is well-known that q-Gaussian random variables (−1 ≤ q ≤ 1) interpolate
between the normal distribution (q = 1) and the symmetric Bernoulli distribu-
tion (q = −1). A breakthrough result of Bożejko and Speicher was that these
q-Gaussian random variables can be realized as operators on so-called q-Fock
spaces [BS91, BS92, BKS97]. We note that q-Gaussian random variables are
also addressed as q-semicircular systems in a multivariate setting, see [MN01] for
example.

Our investigations reveal that CLTs associated to ω-sequences of partial isome-
tries give rise to ω-semicircular systems (for ω ∈ T). These ω-semicircular systems
provide another interpolation between 1-semicircular systems and −1-semicircular
systems, where the latter can be realized on a q-Fock space for q = 1 and q = −1,
respectively. Furthermore, inspired by the notion of z-circular systems in [MN01],
the notion of ω-semicircular systems can be further generalized to that of z-
semicircular systems such that the latter also comprise q-semicircular systems.

The well-developed theory for q-Gaussian random variables (or q-semicircular
systems) may serve as a blueprint for future investigations on ω-(semi)circular
systems. An affirmative answer to the following question would probably be
pivotal for a future theory of ω-semicircular systems:

Can ω-semicircular systems be realized as the sum of creation and
annihilation operators on an “ω-Fock space”?

In particular, the construction of such an “ω-Fock space” would shed also new
light on how to realize z-(semi)circular systems.
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objects and spreadability. Rocky Mountain J. Math. 47 (6), 1839–1873.

[GHJ89] Goodman, F. M.; de la Harpe, P.; and Jones, V. F. R. (1989). Coxeter
Graphs and Towers of Algebras. Springer-Verlag.

149



150 BIBLIOGRAPHY
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