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Summary 

 

Antagonistic coevolution between hosts and parasites can lead to local adaptation (LA), such 

that parasite fitness is greatest in sympatric hosts (or vice versa).  The magnitude of LA typically 

increases with geographic distance, which is assumed to be because genetic (and hence 

phenotypic) distance increases with geographic distance. Here we explicitly test the 

relationships between parasite genetic and phenotypic distance and LA using isolates of 

coevolved viral parasites (lytic bacteriophage ϕ2) and the host bacterium Pseudomonas 

fluorescens SBW25. We find positive relationships between parasite genotype and infectivity 

phenotype, but the strength of the relationship was greater when infectivity was defined by the 

identity of hosts that could be infected rather than the actual number of hosts infected (host 

range), and when measurements were compared within rather than among populations.  

Crucially, we find a monotonic relationship between LA and genetic distance across phage 

isolates from different populations, although in contrast to many geographic studies, parasite 

LA decreased with genetic distance. These results can be explained by the fact that bacteria can 

rapidly adapt to phage infectivity mutations, but that evolved resistance has a degree of 

specificity to the local phage population.  Our results show that antagonistic coevolution alone 

can result in predictable links between genetic distance and host-parasite local adaptation.  

 

Introduction 

Host-parasite antagonistic coevolution, the reciprocal evolution of defence and counter-defence, 

can result in local adaptation (LA) of either parasites or hosts, such that fitness is greater in the 

presence of sympatric versus allopatric host or parasite populations, respectively (Kawecki & 

Ebert 2004).  Such LA has important implications for both the maintenance of diversity and 

epidemiology.  The magnitude and sign of LA can be driven by a complex interplay of genetic 

and ecological variables (Gandon et al. 1996; Gandon & Nuismer 2009; Gomez et al. 2015; 

Greischar & Koskella 2007; Laine 2008; Morand et al. 1996) but a common predictor of LA in 

natural populations is the geographical distance between populations: LA typically, although 

not always (McCoy et al. 2002), increases with distance (e.g. (Ebert 1994; Imhoof & Schmid-

Hempel 1998; Koskella et al. 2011). The general explanation for this pattern is that genetic 

distance, and hence dissimilarity of infectivity/ resistance phenotypes, increases with 

geographic distance (Kaltz & Shykoff 1998).   
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While it is commonly observed that parasite infectivity decreases as a function of genetic 

distance from the primary host (e.g. (Antonovics et al. 2013; Longdon et al. 2011; Perlman & 

Jaenike 2003), evidence for this relationship being driven by coevolution is limited (Antonovics 

et al. 2013). Specifically, the above studies investigate genetic distance at interspecific scales, 

and the inability of parasites to infect genetically distinct hosts probably represents an ancestral 

state rather than derived state of hosts and parasites (Antonovics et al. 2013) -  so called “ o -

ho t r    t    ” (Heath 1981). In one recent study where infectivity and resistance traits are 

likely to be driven by coevolution (Lange et al. 2015), the infectivity of a microsporidian parasite 

population to populations of Daphnia magna was minimised when hosts were at intermediate 

genetic distance from the actual host populations (Lange et al. 2015), in contrast to the expected 

linear relationship.  A possible explanation for this may be that the importance of genetic 

distance was masked by strong effects of other ecological selection pressures that correlate with 

susceptibility, or that genetic distance was determined from a mitochondrial gene not linked to 

resistance.  Direct tests of the hypothesis that coevolution can drive monotonic relationships 

between genetic distances and LA are therefore lacking, and we carry out such a test here using 

coevolving populations of bacteria and viruses (bacteriophages; phages). 

 

Critical to the importance of genetic distance increasing the magnitude of LA is that genetic 

distance correlates with phenotypic distance. If, for example, the same infectivity or resistance 

phenotype can be encoded by multiple alternative sequences, the impact of genetic distance on 

LA will be much weaker than if there is a perfect correlation between genotype and phenotype. 

While there is unsurprisingly clear evidence for a tight link between genotype and phenotype in 

some well characterised host-parasite systems (e.g. (Bull & Molineux 2008; Perry et al. 2015), 

this is not always the case (Scanlan et al. 2015).  Moreover, the correlation between genotype 

and phenotype may differ across spatial scales: alternative genotypes encoding the same 

phenotype may be less likely to co-exist within than between populations as a result of diversity 

being lost through drift or selection. 

 

We investigated the correlations between parasite genetic and phenotypic distance and LA in 

replicate populations of a lytic bacteriophage (SBW25 ϕ2) that had been coevolved with the soil 

bacterium Pseudomonas fluorescens SBW25 for approximately 400 generations as part of a 

previous study (Hall et al. 2011). These phage and bacterial populations were evolved under 

identical physical and chemical conditions, to minimise any effect of adaptation to other 

selection pressures in determining genetic and phenotypic relationships. P. fluorescens SBW25 
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and SBW25 ϕ2 undergo extensive coevolution (reciprocal  evolution of bacterial resistance and 

phage infectivity) both in nutrient media and in soil microcosms (Buckling & Rainey 2002; 

Gomez & Buckling 2011), and show evidence of no LA, host LA and parasite LA depending on 

the ecological context and time spent (co)evolving (Gomez et al. 2015; Gomez & Buckling 2011; 

Gorter et al. 2016; Lopez Pascua et al. 2012; Morgan et al. 2005).  For example, in soil 

communities phages are significantly locally adapted to bacterial hosts with this trend 

increasing when measured through time (24 versus 48 days) (Gomez & Buckling 2011). 

Conversely, bacteria are more resistant to sympatric rather than allopatric phages when 

coevolved in nutrient rich laboratory microcosms, again with LA increasing through time 

(Morgan et al. 2005). Moreover, phage LA is increased when measured between populations 

coevolved in different resource environments (Lopez Pascua et al 2012), while a match between 

the temperature in which populations coevolved and are subsequently assayed increases LA in 

both bacteria and phages (Gorter et al. 2016). 

 

Here, we focus on parasite, rather than host genetic and phenotypic distances because previous 

studies suggest a strong link between mutations in the phage gene that encodes the tail fibres 

and changes in the infectivity phenotype (Paterson et al. 2010; Scanlan et al. 2011). In contrast, 

resistance phenotypes have a more complex genetic basis (Scanlan et al. 2015). Our current 

study combines a re-analysis of a previous data set which investigated within- population 

(sympatric) interactions (Hall et al. 2011), but with the additional inclusion of an unpublished 

data set reporting among population (allopatric) interactions of bacteria and phage isolates 

collected at the same time-points.   

 

Materials and Methods 

 

Coevolution experiment  

Bacteria and phages used in this study were isolated from a previously published long-term 

coevolution experiment (Hall et al. 2011). In brief bacteria and phages were coevolved in static 

microcosms; 25 ml glass vial containing 6 ml of M9 salt solution supplemented with 10 g/L 

glycerol and 20 g/L of proteose peptone no. 3 (Kassen et al. 2000). Six replicate coevolving 

populations were established by inoculating each microcosm with 108 bacterial cells (from an 

overnight culture) and 105 clonal phage particles, obtained from a single plaque of SBW25 ϕ2 
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(Buckling & Rainey 2002).  Bacteria and phages were coevolved in a static incubator at 28 ºC for 

48 hours before 1% (60 µl) of the total population was transferred to a fresh microcosm. Every 

tenth transfer, a sample (600µl) of the total population was frozen at -80 ºC in 20% (v/v) 

glycerol solution and a sample of phage was isolated by adding 100 µl of chloroform to 900 µl of 

culture, followed by centrifugation at 13,000 rpm for 3 minutes and storage at 4ºC. This process 

was repeated for a total of 60 transfers (approx. 400 bacterial generations). Individual bacterial 

colonies and phage plaques were isolated as previously described (Hall et al. 2011). 

Phenotype distance matrix 

We assayed ten phage plaque isolates from each of the six different populations (A to F) 

at three different time-points (T10, T30 and T60, 10×6×3 = 180) for infectivity against 

73 different bacterial hosts - two hosts were randomly selected from each of the six 

populations at every tenth transfer from T10 to T60, and the wild type (WT). Phages  

were applied to soft agar plate lawns of single host bacteria using a pin replicator as 

previously described (Hall et al. 2011) and plates were scored after 24 hours incubation 

in a binary fashion for phage infectivity (1) or host resistance (0). For a given pair of 

phage isolates, we calculated the phenotypic distance between them as the Manhattan 

distance between their infectivity profiles, which equals the number of hosts against 

which one phage is infectious and the other is not. These Manhattan distances can be 

considered as a multivariate measure of phage phenotypes, in that they account for both 

how many and which hosts each phage can infect. For some analyses we compared this 

to a univariate measure of phenotypic distance: the difference in the number of hosts 

each phage can infect (host range). A pair of phages that infect different but equally 

large sets of hosts will have a positive Manhattan distance, but no difference in host 

range. Thus, across the two measures we can compare differences among phages in 

terms of specificity (who can infect whom) and their degree of generalism, as 

emphasized by previous work (Betts et al. 2014; Poullain et al. 2008).  

Sequencing of tail fibre gene and genotype distance matrix 

Based on a priori sequence analysis (Paterson et al. 2010; Scanlan et al. 2011) we used the tail 

fibre gene as a biomarker for genotypic distances among phage isolates and from the ancestral 

sequence. The tail fibre gene of the ancestral phage is 1818 nucleotides in length and was fully 

sequenced using multiple PCR reactions to cover the entire length of the gene. A modified PCR 
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protocol was optimised to amplify the phage tail fibre gene directly from phage stocks and PCRs 

were conducted on all isolates (n = 180). Products were assayed by gel electrophoresis prior to 

commercial sequencing. Sequence data could only be generated for 130 of the 180 phage 

isolates and as such only successfully sequenced genotypes/phenotypes were included in any 

further analyses. We then translated each tail fibre sequence, aligned it against the ancestral 

sequence using MEGA (Tamura et al. 2007), and scored each phage isolate for the presence of 

nonsynonymous mutations at each codon. To calculate the genetic distance between each pair 

of phages, we took the Euclidean distance between their states (mutated or not) at every amino 

acid residue on the sequence. Sequence data from a subset of unique genotypes was then used 

to construct a simple Neighbour-Joining phylogenetic tree based on the number of differences 

method in MEGA (Tamura et al. 2007) to illustrate the degree of genetic relatedness within and 

between populations through time together with their phenotypic distance (calculated as the 

average Manhattan distance to all other allopatric phages from the same time-point) and LA 

score. 

 

Comparing genetic and phenotypic distances 

We quantified the strength of the genotype-phenotype association across phages from different 

populations and time points by testing whether pairwise genetic distances (the lower triangle of 

the 130 x 130 genetic distance matrix) were correlated with corresponding phenotypic 

distances using mantel tests. This is a non-parametric test for correlation between two distance 

matrices that tests for significance by randomly permuting one matrix and testing for better-

than-observed correlations arising by chance. 

 

To determine whether the genotype-phenotype association was different within single 

populations compared to across multiple populations, we tested it both (i) separately for each 

population (A-F), including all three time points, and (ii) across all populations and time points. 

Our rationale here is that if different populations reach similar phenotypes through different 

genetic changes, or vice versa, this will result in a stronger genotype-phenotype association in 

(i) compared to (ii). Because the distance matrix in (ii) is larger than in (i), this could generate a 

relatively strong association because of larger sample size. To account for this, we randomly re-

sampled the data 999 times, each time taking a sample of 8, 7 and 7 isolates from time points 10, 

30 and 60 respectively (the same as the average sample sizes in (i)), and testing the strength of 

the association for each sample. Finally, we (iii) tested the phenotype-genotype association by 
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the same method but separately for each time point (10, 30, 60 transfers), to determine whether 

genotype-phenotype mapping was stronger within time points than across the whole dataset. 

We visualized the phenotypic and genetic distances among pairs of phages using heatmaps and 

multidimensional scaling as described below. 

 

Local adaptation 

We calculated local adaptation based on the home versus away definition of LA as outlined in 

(Kawecki & Ebert 2004). For every phage isolate we took its average infectivity against 

sympatric hosts from the same time point (home) minus its average infectivity against allopatric 

hosts from the same time point (away) (Kawecki & Ebert 2004). We then tested whether phage 

isolates with high LA values also tended to have relatively large genetic or phenotypic distances 

from allopatric isolates at the same time point. We did this using linear mixed effects models, 

with phage population as a random effect, time point as a fixed effect, the average phenotypic 

(Manhattan) or genetic (Euclidean) distance to allopatric isolates at the same time point for 

each phage as a covariate, and local adaptation as the response variable. We also tested whether 

the slope of LA against distance varied among populations and time points by their fixed 

interaction terms. We fitted models by maximum likelihood, and tested effects by the change in 

log-likelihood between full and reduced models. 

There is an alternative approach to calculating LA, local versus foreign, which is based on the 

fitness (in this case phage infectivity) of local parasites at home (against sympatric hosts) 

compared to that of parasites from other (foreign) populations tested against the same hosts. 

We also calculated this measure of LA for our phage isolates although, as we described in the 

supplementary information in more detail, variation of local adaptation among phages was less 

pronounced by this measure due to many of the hosts used in the analysis being resistant to all 

or none of the relevant phages, meaning that in many cases local adaptation is zero by this 

measure. 

 

Results 

Genetic variation of sequenced isolates 

We detected considerable genetic variation in our sequenced genotypes both within and 

between populations and through time. We detected 80 different mutations that altered the 

protein sequence of the tail fibre gene. For all unique genotypes, the mean±s.d number of 
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mutations per genotype was 12.6±5.4. The mean±s.d and range of mutations for unique 

genotypes isolated from T10, T30 and T60 were 8.7±3.1, 5-18; 16.2±5.5, 10-28 and 14.5±4.3; 8-

23, respectively.   

 

Only two insertions events were detected and were very rare (confined to a single genotype in 

one instance and restricted to a single population for a number of sequenced genotypes at T30 

and T60). Three small-scale deletion events (removal of 1-4 Amino Acid (AA) residues) were 

detected, two of which were common and were observed in three of the six populations (and in 

54 and 64% of all unique genotypes sequenced, respectively). The remaining mutations were 

nucleotide changes resulting in amino acid substitutions. Seventy-five different AA changes 

were detected, however, a limited number (eight) of these were different AA changes at the 

same site for different genotypes. The AA-changing mutations observed varied from very rare to 

common. For example, 16 out of 75 were only observed in a single genotype whereas one was 

present in all genotypes sequenced. Some mutations were confined to single populations, and 

consequently a phylogenetic tree made with this data shows clear clustering by population for 

the vast majority of genotypes (Fig. S1).  

 

Genetic distance predicts phenotypic distance, particularly within populations 

Genetic distances between pairs of phage isolates were correlated with their phenotypic 

distances measured as the number of hosts against which they have different infectivities (Table 

1; Fig. 1). This association was stronger within populations than across the whole dataset 

(P=0.002 in one-sample t-test of within-population correlations against the average value from 

999 samples of equal size from the full dataset). In other words, sympatric row-column 

combinations in Fig. 1 (e.g. Population A vs. Population A) are more likely to have similar values 

in both panels than allopatric combinations (e.g. Population A vs. Population B). This indicates 

that allopatric pairs of phages are more likely to be genetically similar but have different 

phenotypes, or vice versa. 

 

Allopatric phages can be genetically different but phenotypically similar 

To determine whether the results of analyses above arise from allopatric phages being 

genetically similar but phenotypically different, or vice versa, we used multidimensional scaling 

to plot the distances among all phages in two dimensions (Fig. 2). In cases where allopatric 
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phages are genetically or phenotypically similar, this would lead to points (colours) from 

different populations being mixed together in these plots. We found that phages clustered 

genetically by population very closely (Fig. 2A), but there were several instances of phages from 

different populations being relatively close in phenotypic space (Fig. 2B). This is equivalent to 

the relatively large number of red squares in allopatric combinations in Fig. 1B compared to Fig. 

1A, and is consistent with phages in different populations attaining similar phenotypes through 

different genetic pathways. We note that within some populations there were some cases of 

phages being genetically similar but phenotypically different, suggesting that mutations at other 

un-sequenced loci may also play a role in infectivity evolution. 

 

Genetic differences determine which hosts, not just how many, each phage infects 

If we consider only host range (total number of hosts infected), and not the multivariate 

infectivity phenotype, the genotype-phenotype association is no stronger within than between 

populations (P=0.91). That is, the stronger link between genetic and phenotypic distance among 

sympatric pairs of phages is only detectable if we look at which hosts each phage can infect, not 

just how many. The discrepancy between the two measures of phenotypic distance was also 

evident within populations: for three populations (A, C, F), genetic distance was not correlated 

with differences in host range (Table 1), despite being a good predictor of Manhattan distances 

(Table 1). These populations showed relatively large differences between pairwise Manhattan 

distances and the corresponding differences in host range (Fig. S2; note that this difference 

increases with the extent to which a pair of phages infect different but similarly sized sets of 

hosts). This resulted in a negative correlation between the strength of the genetic distance-host 

range association and the difference between Manhattan distance and host range (correlation 

across population averages: r2=0.76, F1,5=12.42, P=0.02). In other words, in populations where it 

was common for phages to infect different but similarly sized sets of hosts, genetic distance was 

a poor predictor of host range. 

 

Parasite local adaptation decreases with genetic distance 

The extent of local adaptation (measured as average infectivity against sympatric versus 

allopatric bacteria from the same time point) was negatively correlated with both genetic and 

phenotypic distances from allopatric phages at the same time point (effects of genetic and 

phenotypic distances as covariates in separate mixed models: Chisq=18.05, P<0.0001; 

Chisq=5.93, P=0.015; Fig. 3). Note that these genetic and phenotypic distances are correlated 
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with each other (P=0.01 for average genetic allopatric distance as a predictor of average 

phenotypic allopatric distance in a mixed model), consistent with our analysis above. Moreover, 

phages with large phenotypic distances from allopatric phages at the same time point tended to 

have larger host ranges (host range as a predictor of allopatric phenotypic distance: P<0.0001). 

Thus, phages with a relatively large number of phenotypic differences from contemporary 

phages in other populations tended to have relatively broad host ranges, be relatively 

genetically diverged and be less locally adapted. 

 

Despite the overall correlation of LA with phenotypic and genetic distance, the slope of this 

association varied among populations in both cases (population × distance fixed interaction: 

Chisq=129.07, P<0.0001 and Chisq=59.20, P<0.0001 respectively). In fact within most 

populations the association was weak, with a significant negative relationship only for 

phenotypic distance in population A (P<0.001 in a t-test for the slope of LA against distance in 

ANCOVA including time as a factor and distance as a covariate). By contrast, the slope of LA 

against distance did not vary among time points for either genetic (Chisq=2.18, P=0.33) or 

phenotypic (Chisq=1.60, P=0.45) distance. That the LA-distance relationships are relatively 

weak within populations is perhaps unsurprising given that both phenotypes and genotypes 

vary among populations more than within populations (Fig. 1; Fig. S1). Consistent with this, the 

negative association of LA with genetic distance remains significant if we take the average for 

each population at each time point (Chisq=8.42, P=0.004). However, phenotypic distance is a 

weaker predictor of LA when averaged across populations/time points (Chisq=1.69, P=0.19), 

suggesting that this association arises from a combination of within- and among-population 

variation. 

When LA is calculated as 'local versus foreign' parasites, as opposed to 'home versus away' 

above, it is not negatively associated with either genetic or phenotypic distance (Fig. S3). 

However, this is likely because the variation among phage isolates was much smaller for this 

measure of LA (variance of LA among phage isolates: 0.18 for home versus away, 0.07 for local 

versus foreign), with many phages having LA (local versus foreign) equal to or close to zero (Fig. 

S3). The high incidence of such cases is due to many of the hosts used in this analysis (21 out of 

36) being resistant to all or none of the phages included in the analysis. Consequently, in this 

dataset there were multiple (52 out of 130) cases where phage isolates were equally infective 

compared to foreign parasites (local versus foreign = 0), but performed better or worse on 

 ym  tr    om  r d to    o  tr   ho t  (hom  v r     w y ≠ 0)  More generally, the standard 

deviation of phage infectivity across different hosts was relatively high (average across all 
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phage isolates=0.40, s.d.=0.07) compared to the standard deviation of infectivity across 

different phages for individual bacterial hosts (average across bacteria=0.27, s.d.=0.19). 

 

Discussion 

The primary aim of this study was to determine if the magnitude of host-parasite local 

adaptation was correlated with genetic distance among parasite populations using coevolved 

populations of bacteria and bacteriophages. We found a monotonic relationship between LA and 

genetic distance, but in apparent contrast to previous geographical studies of LA (Ebert 1994; 

Imhoof & Schmid-Hempel 1998; Koskella et al. 2011), we found that parasite LA decreased, 

rather than increased, with genetic distance to allopatric parasites. We also established that the 

genetic distance between a pair of parasite isolates was a good predictor of their phenotypic 

differences, but that this relationship was strongest when we looked at the identity of hosts they 

could infect, rather than the total number (host range), and when measured within compared to 

among populations. 

The key result from our analysis showing parasite LA decreases with genetic distance can be 

readily explained. It is typically assumed that parasites have an evolutionary advantage when 

coevolving with their hosts, due to their larger population sizes, shorter generation times and 

stronger selection pressures, and hence on average  parasites are locally adapted (Kaltz & 

Shykoff 1998). However, this is frequently not the case (Greischar & Koskella 2007), and 

typically not so in this and other bacteria-phage coevolutionary systems (reviewed in 

(Bohannan & Lenski 2000; Buckling & Brockhurst 2012; Dennehy 2012). Here hosts often have 

an evolutionary advantage, presumably due to comparable generation times and population 

sizes with viruses, but also a greater potential to adapt due to genomic complexity (Gilman et al. 

2012; Zaman et al. 2014), and hence show greater local adaptation than viruses in this 

particular experimental setting. In this context we would expect that the more different 

parasites are to the local parasite population experienced by a host, the less likely it is that the 

host will have correlated adaptations required to resist them. Consequently, parasites are more 

likely to be locally maladapted when they are genetically distant from parasites in other 

populations, because such parasites are likely to be more infectious against foreign hosts that 

are themselves adapted to their local parasites, than their local hosts. This is precisely what we 

see: parasites becoming increasingly maladapted by the home versus away measure we used 

above with genetic distance, consistent with past observations that hosts becoming increasingly 

locally adapted (Morgan et al. 2005). 
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While our data are consistent with LA (of host or parasite) increasing with genetic distance, 

there are a number of reasons why this pattern may breakdown. First, ecological factors such as 

migration and environmental heterogeneity can shift LA in favour of host or parasites and these 

may vary in time and space (Forde et al. 2004; Gorter et al. 2016). Second, our finding that 

genotype-phenotype correlations are stronger when measured within compared to between 

populations (which can simply be explained by competition and drift resulting in the loss of 

phenotypically equivalent but genetically diverse parasites in mixed populations), suggests that 

this genotype-phenotype relationship is likely to decrease with spatial scale.  If this is the case, 

then LA for a given genetic distance is in turn likely to become weaker with spatial scale.  Third, 

the LA-genetic distance association could be modified by variation among populations in their 

degree of generalism (Thrall & Burdon 2003), such that that some populations are universally 

more infective/resistant than others. Such generalist populations would have LA close to zero 

because they are similarly infective/resistant against all hosts/parasites, even though generalist 

phenotypes may require multiple genetic changes and therefore relatively large genetic distance 

(Scanlan et al. 2011).  

 

One possible alternative explanation for our finding that genetically different parasites could 

have similar phenotypes is the finite number of phenotypic traits (hosts) measured. By taking a 

random sample of host bacteria from the same coevolving communities as the viruses we 

analyzed, this should on average include relatively common host phenotypes, and therefore 

capture traits that were under direct selection. Additional hosts that were not sampled here are 

therefore less likely to reveal phenotypic differences that were important during coevolution. 

Consistent with this, our sample of host phenotypes was large and diverse enough to capture 

some of the specificity of the host-parasite interaction: some phages infected equally sized but 

different sets of hosts (Fig. S2). Consequently, the multivariate phenotype estimated here 

mapped to genetic distances more strongly within populations than a univariate equivalent 

(Table 1). Although we do not exclude the possibility that this could be further strengthened by 

sampling additional hosts, it was sufficient for us to detect the difference in genotype-phenotype 

mapping within- compared to among- populations.  

 

In summary, we show that the genetic distance between parasites is a good predictor of the 

extent to which they are locally adapted, albeit in this case the greater the distances the lower 

the likelihood of parasite LA.  This confirms a key assumption of host-parasite coevolution. 

Finally, our data also emphasises the importance of measuring host phenotypes appropriately 
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and accounting for the identity of hosts that can be infected compared as opposed to the 

number of host genotypes that can be infected when investigating links between genotype and 

phenotype. Indeed, this finding may account for the poor explanatory power of genotype-

phenotype maps in a range of organisms (Lehner 2013).  
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Table 1. Correlation between genetic and phenotypic distance at different scales and with 

different measures of phenotypic distance (Manhattan distance or host range difference). 

 

Population Time point Correlation 

coefficient 

(Manhattan distance) 

Correlation 

coefficient (Host 

range difference) 

All All 0.33 (s.d.=0.09) 0.23 (s.d.=0.09) 

A All 0.45 (P=0.002) 0.11 (P=0.11) 

B All 0.61 (P=0.002) 0.52 (P=0.002) 

C All 0.67 (P=0.002) -0.1 (P=0.29) 

D All 0.67 (P=0.002) 0.52 (P=0.002) 

E All 0.78 (P=0.002) 0.27 (P=0.007) 

F All 0.52 (P=0.002) -0.02 (P=0.49) 

All 10 0.37 (P=0.002) 0.41 (P=0.002) 

All 30 0.51 (P=0.002) 0.38 (P=0.002) 

All 60 0.54 (P=0.002) 0.43 (P=0.002) 

 

 

Figure Legends: 

 

Figure 1. Genetic distances and phenotypic distances across all pairs of phages, shaded red to 

light yellow from high to low similarity. On each axis letters denote allopatrically separated 

populations and numbers give time points. 

 

Figure. 2. Genetic (A) and phenotypic distances (B) among phage isolates (points) plotted using 

multidimensional scaling. Each population has a different colour; labels give the population and 

time-point from which each phage was isolated. Coordinates were obtained by classical 

multidimensional scaling of the genetic and phenotypic distance matrices using the cmdscale 

function of the stats package in R v3.2.3. 
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Figure. 3. Local adaptation for phage isolates from different populations (shown by colour) and 

time points (given as transfer number for each point). Each point is a single phage isolate, with 

local adaptation calculated as average infectivity against sympatric hosts from the same time 

point minus average infectivity against allopatric hosts from the same time point (home versus 

away), and genetic and phenotypic as the average distance for each phage to contemporary 

allopatric phages. 
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