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ABSTRACT 
 

Grass is the most common landcover in Ireland and covers a bigger percentage 

(52%) of the country than any other in Europe. Grass as fodder is Ireland’s most 

important crop and is the foundation of its most important indigenous industry, 

agriculture. Yet knowledge of its distribution, performance and yield is scant. How 

grass is nationally, on a farm by farm, year by year basis managed is not known. 

 

In this thesis the gaps in knowledge about grassland performance across Ireland are 

presented along with arguments on why these knowledge gaps should be closed. As 

an example the need for high spatial resolution animal stocking rate data in 

European temperate grassland systems is shown. The effect of high stocking density 

on grass management is most apparent early in the growing season, and a 250m 

scale characterization of early spring vegetation growth  from 2003-2012, based on 

MODIS NDVI time series products, is constructed. The average rate of growth is 

determined as a simple linear model for each pixel, using only the highest quality 

data for the period. These decadal spring growth model coefficients, start of season 

cover and growth rate, are regressed against log of stocking rate (r2 = 0.75, 

p<0.001).  

 

This model stocking rate is used to create a map of grassland use intensity in 

Ireland, which, when tested against an independent set of stocking data, is shown 

to be successful with an RMSE of 0.13 Livestock Unit/ha for a range of stocking 

densities from 0.1 to 3.3 Livestock Unit/ha. This model provides the first validated 

high resolution approach to mapping stocking rates in intensively managed 

European grassland systems. 

 

There is a demonstrated a need for a system to estimate current growing 

conditions. Using the spring growth model constructed for estimating stocking 

density a new style of grass growth progress anomaly map in the time-domain was 
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developed. Using the developed satellite dataset and 12 years of ground climate 

station data in Ireland, NDVI was modelled against time as a proxy for grass growth. 

This model is the reference for estimating current seasonal progress of grass 

growth against a ten year average. The model is developed to estimate Seasonal 

Progress Anomalies in the Time domain (SPAT), giving a result in terms of “days 

behind” and “days ahead” of the norm. SPAT estimates for 2012 and 2013 are 

compared to ground based estimates from 30 climate stations and have a 

correlation coefficient of 0.897 and RMSE of 15days. The method can successfully 

map current grass growth trends compared to the average and present this 

information to the farmer in simple everyday language. This is understood by the 

author to be the first validated growth anomaly service, and the first for intensive 

European grasslands. 

 

The decisions on when to turn out cattle (the turn out date (TOD)) from winter 

housing to spring grazing is an important one on Irish dairy farms which has 

significant impacts on operating costs on the farm. To examine the relationship of 

TOD to conditions, the National Farm Survey (NFS) of Ireland database was 

geocoded and the data on turn out dates from 199 farms across Ireland over five 

years was used.  

 

A fixed effects linear panel data model was employed to explore the association 

between TOD and conditions, as it allows for unobserved variation between 

farmers to be ignored in favour of modelling the variance year on year. The 

environmental variables used in the analysis account for 38% of the variance in the 

turn out dates on farms nationwide. National seasonal conditions dominate over 

local variation, and for every week earlier grass grows in spring, farmers gain 3.7 

days in grazing season but ignore 3.3 days of growth that could have been used. 

Every 100mm extra rain in spring means TOD is a day later and every dry day leads 

to turn out being half a day earlier. A well-drained soil makes TOD 2.5 days earlier 

compared to a poorly drained soil and TOD gets a day later for every 16km north 

form the south coast. 
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This work demonstrates that precision agriculture driven by optical and radar 

satellite data is closer to being a reality in Europe driven by enormous amounts of 

free imagery from NASA and the ESA Sentinel programs coupled with open source 

meteorological data and models and new developments in data analytics. 
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1. Introduction and overview 
 

1.1 Why Grass? 

Grass is fundamental to Ireland. The growing and exploitation of grass has been the 

bedrock of Irish society and culture since the early Celtic period, when the rearing 

of cattle was raised to mythological status1. This is largely attributed to the fact that 

Ireland is so favoured for growing grass with a cool temperate western maritime 

climate with mild, wet winters and warm, moist summers.  

 

Pasture based farming dominates Irish agriculture and its landscape, with 52% of 

the land mass dedicated to grass growing, comprising 90% of the non-forest 

agricultural area (O'Mara 2008). Beef and dairy production dominate, with a 

national herd of approximately 6.5 million cattle. Dairy production is primarily in 

the south of the country, while beef cattle are concentrated in the west and the 

north. 

 

Data from the Central Statistics Office of Ireland (CSO) in Table 1.1 show the 

relative importance of livestock production in the Irish agricultural economy, based 

on grass as the most important element of the livestock systems (CSO 2015). 

 

Table 1.1: Value at current prices for Irish agriculture, by system and year, CSO 2014 

Output (M€) 2007 2008 2009 2010 2011 2012 2013 

All Livestock  2378.7 2541.6 2222.8 2282.4 2654.7 3118.6 3169.9 

All Livestock Products 1716.1 1681.5 1153.9 1590.9 1894.0 1701.9 2111.8 

All Crops  1632.7 1657.1 1377.9 1506.5 1759.5 1896.3 1820.2 

Total 5727.5 5880.3 4754.6 5379.8 6308.2 6716.7 7101.9 

 

                                                      
1 Táin Bó Cúailnge or The Cattle Raid of Cooley is a pre-Christian legend concerning the attempt by 
Queen Medb of Connaught to steal the stud bull of ulster protected by the hero Cu Chulainn. 
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However knowledge, current and historical, of this resource in Ireland, and globally, 

is fragmentary. There is no detailed nationally complete map of the distribution of 

grass types (Table 1.2 lists basic grassland communities in Ireland based on 

Sheridan et al (2011)). These types of grassland are all the result of interplay 

between agriculture, management and the environment in Ireland and in Section 2 

the present lack understanding of the distribution and extent of these communities 

is explored.  

 

Table 1.2 Dominant grassland types in Ireland from Sheridan et al 2011. 

Grass Type Notes 

Intensive Dominated by lolilum perenne (rye grass) & regularly re-

seeded 

Improved Dominated by lolium but other species found, reseeded 

perhaps drained 

Semi-improved Lolilum and other species, not recently re-seeded 

Wet Grassland  Junctus (rush) dominated 

Species Rich Wet Grassland Rushes present but with high incidence of herbs/sedges 

Transitional Wholly or partially reverting with scrub 

Rough Grazing Upland natural grasslands kept open/free from scrub 

through grazing 

Meadow Species rich dry grassland (traditionally used for hay 

making) 

Fen Ground water fed peat soils, grass/sedge dominant. 

 

There is even less knowledge in Ireland on how these grasslands change and 

transition on a year on year basis, and there is no map of grass usage or 

management. How grasslands change and how the dynamics of management 

influence biodiversity or carbon storage is only now being investigated; for example 

the CSO provides data on the total amount of land entering and exiting selected 

categories of grassland use nationally (grazing, rough grazing, silage production and 

hay making), but the trajectory of land-use change has to be estimated (O'Brien 
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2007a) and at a parcel2 level is unknown. Thus the majority of land in Ireland is 

classed as generic “grass” or “pasture”, and the wide variety or landcover, land use 

and habitat within this class is ignored or not captured. Some information is known 

on the distribution of farm systems at electoral district (ED) level, and the principal 

grass based enterprises are shown in Figure 1.1 and Table 1.3, illustrating how areas 

have changed between 1996 and 2011 (taken from (O’Donoghue et al 2015)). 

 

The values in Table 1.3 are derived from ED level estimates from the CSO national 

farm census. It appears that there is little change in land use over the period, but 

these data are designed to record the current conditions in the year of survey so 

they fail to capture the alternation between pasture and tillage that occurs on some 

Irish farms. A recent study (in which this author participated) by Zimmermann et al 

(2016b) demonstrated that areas of cropped land are underestimated by 42% in 

annual change reports when compared to tracking the entire cropping history of a 

parcel between the two reporting years. 

 

Table: 1.3: Changes in area covered by major farm land use types between 1996 and 2011 

(percentage of area farmed). (Taken from O’Donoghue et al., 2015). 

Land 

Use 

Dairy Forage Cattle Forage Sheep Forage Tillage Forestry 

Year  1996 2011  1996 2011  1996 2011  1996 2011  1996 2011 

Soil      

Good 18.5% 17.1% 50.5% 54.5% 10.8% 8.9% 13.2% 14.8% N/A 1.4% 

Medium 16.6% 14.6% 61.7% 64.1% 12.8% 10.8% 2.5% 2.0% N/A 2.6% 

Poor 7.3% 5.4% 44.0% 46.8% 45.8% 32.4% 0.1% 0.0% N/A 3.8% 

       

Total 16.3% 14.9% 54.2% 57.0% 16.2% 12.3% 7.1% 8.6% N/A 2.1% 

 

The maps in Figure 1.1 show that dairy production dominates in the south/south-

west, beef production in the border, north and north-west, sheep on the coastal 

uplands and mixed grazing in the midlands. This regionalisation of production 

                                                      
2 “Parcel” in Ireland is a contiguous area of land under the same management regime, owned by the 
same farmer; it is not the same as a field or a paddock. 
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systems is driven mainly by grass season length and soil conditions. Dairy, the most 

profitable enterprise, dominates in well drained soils (see Table 1.3) in areas with 

long growing seasons for grass. 

 

a)Specialist Dairy Farms b)Specialist Beef Farms 

  
C)Specialist Sheep Farms d)Mixed Grazing 

 
 

Figure 1.1: Distribution of major grass based farm enterprise types in Ireland. 
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In more marginal soils where the growing season is shorter, dairy production in 

these areas cannot compete (milk production is reduced and costs rise as farmers 

have to provide supplement feed for their animals through a longer winter), and 

farmers switch to less costly beef production (which is also less risky, if less 

profitable). It should be noted that Irish dairy production is focused around 

creamery supplies during the grass growing season with animals dried off (no 

longer milked) for winter. The production of year round liquid milk for the domestic 

market is a small percentage (8.5% of total dairy volume annually (National Milk 

Agency 2014)) of the national dairy output. 

 

In very marginal areas such as uplands, where soils cannot support the traffic of 

cattle, sheep production dominates. Whereas crop production dominates in the 

warmer, dryer south-east, with productive well drained soils and a longer autumn 

than the wetter western region reducing risk around harvest time. 

 

This absence of detailed information on grasslands reflects a general paucity of land 

cover/use data for Ireland, and as a result it is not possible to state with a high 

degree of accuracy the detailed spatial distribution of current land use in Ireland. 

Ireland does not have a national land use database which causes difficulty in 

correctly estimating areas of crops, monitoring habitats and estimating Greenhouse 

gas (GHG) emissions. There are a number of projects underway or just completed 

that attempt to fill in some of the gaps3. 

 

• Irish Land Mapping Observatory- ILMO: This project used optical and radar 

EO data to produce a hierarchical land-cover classification for grasslands at 

the field scale driven by a need for better estimates of terrestrial carbon 

flux. The outputs were land cover maps of grassland within counties Sligo 

and Longford. 

 

                                                      
3 https:\\landmapping.wordpress.com 
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• Toward Landcover Accounting and Monitoring-TALAM: This project used 

object orientated classification methods to map areas of unenclosed land in 

Ireland for better land use and change (LULUC) accounting. 

 

These two projects are part of a wider pan-governmental initiative to create a 

national land cover mapping system, but this aim remains to be formally adopted at 

a cabinet level. The paucity of detailed knowledge is explored in detail in Sections 2 

and 3, but is the compelling reason for this thesis to use remote sensing in the 

context of managed grasslands to try and fill these knowledge gaps. 

 

Until very recently, knowledge of current conditions of grass growth around the 

country was very sparse. Weekly records of grass growth, from 6 or 7 sites, are 

published in the national farming press4, and the weekly farm weather forecast 

broadcast on the national broadcaster, RTE, on Sundays would give a “good” or 

“bad” forecast for grass growth in the coming week. 

 

In 2014 Teagasc, the Irish national agency for agriculture and food research 

launched PastureBase5 an online service for recording grass measurements from 

farms. By recording grass growth covers (as measured by the farmers), feed 

budgets and other variables (see Section 2.2) can be calculated. Whilst this has the 

potential to be very useful in understanding grass growth nationally, the figures are 

self-reported and by 2015 only 150 farmers were using it form a population of 

105,000 farmers. Originally the data were captured without a geospatial tag but 

this is due to change and the farm location will be recorded in the future (the 

absence of geocoding precludes these data from being used in this research). 

 

However, even if PastureBase becomes a step change in the detail of the 

understanding of current growing conditions in Ireland, there will always be only a 

small percentage of Irish farmers contributing their data. As Section 2.2.3 shows, 

                                                      
4 “Grass Watch”, the Irish Farmers Journal 

5 https://pasturebase.teagasc.ie/ 
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the majority of Irish farmers do not measure grass growth or use computer based 

farm management tools. How to fill the geospatial and temporal gaps and how to 

find out how grass is growing and being managed is the principal goal of this thesis. 

The problem can best be addressed by the use of Earth Observation technologies. 

 

1.2 Earth Observation  

  

Remote sensing is the art and science of monitoring targets from a distance, and 

Earth Observation is the particular branch of remote sensing that attempts to use 

satellites and airborne sensors to map and monitor earth system processes. It has a 

long history of over 40 years as a tool for monitoring land use, land cover and 

agricultural systems. 

 

EO is employed because it provides a holistic, unbiased and repeatable set of 

observations. Importantly satellites can observe a wide area regardless of access 

issues making the production of mapped data simple in a county such as Ireland 

with its very fragmented, diverse land ownership structure, strong rights to 

property and no right of access.  

 

Section 2 will explore the history of EO of grasslands and Sections 3 and 4 will 

explain why the system used in this research (the NASA MODIS sensor carried on 

the Terra and Aqua satellites) was selected. 

 

1.3 Agriculture Context 

 

Applied agricultural research operates within a broad policy framework, 

encompassing national research agendas but also national policies on the farming 

industry and food security. Within Ireland, Food Harvest 2020 (FH2020) (DAFF 

2011) was an important policy statement from the Department of Agriculture for 

the 2010-2020 period of Irish Agri-Business. It identifies specific targets, actions 

needed to achieve these targets, and benchmarks by which success can be 
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measured. Many of the actions identified and the goals set are dependent on 

sensor technologies, such as those provided by satellite EO. The broad goals for 

“Smart, Green, Growth” are shown here, with those relevant to this work 

highlighted in bold: 

 

• Prioritise R&D 

• Improve skill levels 

• Maximise adoption of best practice 

• Foster creativity and entrepreneurship 

• Rationalise and collaborate at industry level 

• Improve focus on consumer preferences 

• Review institutional support and regulatory burden 

• Prioritise environmental protection 

• Capitalise on natural advantages and resources 

• Build environmental credibility through research and actions 

• Develop an umbrella ‘Brand Ireland’ 

• Satisfy consumer requirements and preferences 

• Conserve biodiversity 

• Align sustainability across the supply chain 

 

The report is presented in the context of the abolition of dairy quotas across the 

European Union (EU). Dairy quotas were introduced as part of the Common 

Agricultural Policy (CAP) in 1984 to manage excessive production under the old 

payment system leading to costly price subvention measurements and creation of 

“food mountains”. Under the quota, each Member State was given a reference 

quantity, with each farmer in turn having an individual reference quantity (set at 

1983 levels for Ireland). Under the quota, dairy prices were maintained above world 

dairy market prices (Donnellan et al 2015). 

 

However, since April 1st 2015 the quota has been abolished and FH2020 projects 

milk production in 2020 to be 50% higher than in 2010. This is likely to put stress on 
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farm systems and sustainability as the static land market in Ireland means more 

milk is to be produced from a fixed reservoir of land (not with-standing the 

likelihood of some beef producers converting to dairy). This in turn leads to the 

question of how food production can be sustainably increased globally to meet the 

needs and demands of a growing population. 

 

A recent international commission (Beddington et al 2012) looking at global 

sustainable food production, had, as one of its 7 recommendations :  

  

“Create comprehensive, shared, integrated information systems that 

encompass human and ecological dimensions.” 

 

And it concludes that this should be driven by smart earth observation and 

geospatial technologies. 

1.3.1 The “Fodder Crisis” 
 

Soon after the research on this PhD started, a dramatic agri-climatic event put the 

aims of the work in focus. 

 

The normal routine in Irish pastoralism (see section 2.2) of animals grazing in open 

fields from early spring to late autumn, before being brought into cattle sheds to 

spend a short winter (2-4 months) being fed silage or hay, and then being released 

the following spring was disrupted. 

 

The summer of 2012 was warm and very wet (Met Eireann 2012b), see Figure 1.2, 

and there were indications in July that the national fodder harvest (grass cut and 

put into storage from May as silage to feed cattle over winter) was low. A cold 

autumn saw grass growth halt and cattle housed early. The spring of 2013 was the 

wettest and coldest for 70 years meaning that cattle could not be turned out to 

graze as no grass had grown since the autumn. 
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Figure 1.2: Variation in rainfall amounts 2012 compared to 2011. 15 Climate station rainfall 

records were compared and the results krigged across a simple 2D surface. 

 

What became known as the fodder crisis became public from March 2013 as it 

became clear many farmers were running out of fodder and animal welfare was an 

issue. Headlines such as “Fodder crisis sees cows starve to death” began to appear 

in April (Dermody 2013). Government supported schemes to import fodder were 
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set up and continued into June, with a national effort seeing all available fodder (for 

example, road side verges, parks, airports) being harvested. An inter-agency task 

force was established including representatives from Teagasc, the Department of 

Agriculture, Food and the Marine and other public and private stakeholder bodies. 

 

It became clear that there was no national monitoring of fodder stocks on an 

official basis and no way of knowing how much fodder had been stored the 

previous winter. A fodder census was put in place (1000 respondents) in July 2013 

to try and develop a national picture for the following winter, revealing that two 

thirds of farmers at that point had not made up the feed deficit (Kavanagh 2013). 

Unfortunately, as is often the case once a crisis passes, the fodder census has not 

continued so there is again no formal measure of the amount of grass in storage 

each autumn. The full financial and societal impact has yet to be measured 

(Hanrahan et al 2014b). 

 

The fodder crisis highlighted that, from a national perspective, up to date 

information on actual grass growing conditions is needed and, as a number of 

commentators highlighted, increasing weather volatility coupled with increasing 

stocking density in response to policy changes (the drive to expand milk production 

in response to the lifting of milk quota) and global food demands make future 

fodder crises more likely (Flood 2013). 

 

1.4 Research Questions 

In north-western Europe there are specific challenges in how best to manage 

grasslands for supporting likely increases in European production of dairy, beef and 

food-products to sustainably feed a growing world population. Grassland farmers 

face daily challenges in trying to manage best practice in measurement of grass, 

calculating feed demand, grass-budgeting and forward planning. In part to address 

this, the three questions to be answered in the research are: 
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 Can the effects of grass management be observed using medium resolution 

(250m) optical satellite imagery, for example can intra-class variation in the 

“grassland” category be refined? 

 Can current intensive grass growing conditions be assessed by satellite, for 

example how well is the grass growing now compared to previous years? 

 Can management decisions be predicted from observed conditions, for 

example how efficiently are farmers using the grass that’s growing? 

 

1.5 Thesis structure 

 

The answers to the questions in section 1.4 form a set of solutions that begin to 

explain how Irish pasture management can be integrated into the Precision 

Agriculture (PA) paradigm to provide useful information directly to the farmers on 

the ground, enabling them to make better decisions in a more timely manner for 

managing their grassland based enterprise.  

 

In Chapter 2 the literature is reviewed in order to place the remote sensing of 

managed grasslands in the context of the much wider literature of environmental 

Earth Observation. The section aims to show that enclosed grasslands6 as a 

managed agronomic resource has been relatively ignored by the EO and PA 

communities. The section goes on to highlight global information gaps on managed 

grasslands and the consequences for understanding of biodiversity loss and carbon 

dynamics that this has entailed. The section shows that temperate managed grass 

landscapes are an extremely complex system to observe. Finally it suggests that 

grassland being outside of the existing PA paradigm has put the continuation of 

open grazing systems for the production of dairy and meat at risk and this should 

be addressed. 

 

                                                      
6 Simply grass lands that are divided and managed as fields or paddocks, enclosed within fences or 
hedgerows, as opposed to open rangeland grasses where animals are free to graze 
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Chapter 3 looks at the satellite data used and explains the extensive data 

processing needed to produce a 10 year data set that can be used for EO of 

grassland in spring in Ireland given the prevailing cloudy conditions. This data set is 

used to produce a national spring growth model for Irish grasslands. It is 

hypothesised that highly stocked farms (with lots of animals per hectare) will be 

managed to produce good spring grass covers. This hypothesis is successfully tested 

to produce a national map of stocking density, validated against farm level stocking 

data. This is the first time such a map has been produced in Europe and goes some 

way to answer data gaps identified internationally in Section 2. 

 

In Chapter 4 the spring grass growth model is further exploited to answer issues 

raised by the fodder crisis. The spring growth model allows for a growth anomaly 

map to be produced comparing current conditions to the 10 year average. This 

form of anomaly mapping is common in crop growth models but is usually 

presented as a percentage difference from the norm and is not validated. Here, for 

the first time, a growth anomaly map is validated (against temperature data from 

meteorological stations in Ireland) and the data are presented in a farmer friendly 

manner. A beta level public online service was trialled in 2015 and is presented 

here. 

 

In Chapter 5 the extent to which current growing conditions inform farmer 

behaviour is examined to understand the implications of a service such as that 

developed in Section 4. The key factors determining the date when cattle should be 

“turned out” (released from their winter housing to graze for the first time in 

spring) are examined. Five years of turned out dates from 199 geocoded farms 

along with satellite data on grass growth and rainfall data from the national rain-

gauge network are used within an econometric panel data model to see how 

responsive farmers currently are to changing conditions (both changes between 

years and current condition in each spring). 

 

Finally Chapter 6 brings these separate analyses together, examines the 

implications of the results, and suggests a research plan to develop national scale 
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PA tools for the Irish dairy industry that can be scaled across temperate Atlantic 

Europe. 

 

1.5.1 Publications 
 

Chapter 3 is an expanded version of a paper published as: Green, Stuart, Fiona 

Cawkwell, and Edward Dwyer. "Cattle stocking rates estimated in temperate 

intensive grasslands with a spring growth model derived from MODIS NDVI time-

series." International Journal of Applied Earth Observation and Geoinformation 52 

(2016): 166-174. (Green et al 2016) 

 

Chapter 4 is an expanded version of a paper published as: Green, Stuart, Fiona 

Cawkwell, and Edward Dwyer. "A time-domain NDVI anomaly service for intensively 

managed grassland agriculture." Remote Sensing Applications: Society and 

Environment 11 (2018): 282-290. 

 

Chapter 5 is and expanded version of a paper published  as: Green, Stuart, Fiona 

Cawkwell, and Edward Dwyer. "How current environmental and weather conditions 

affect time critical decision making on Irish dairy farms." International Journal of 

Agricultural Management 7.1 (2018): 1-9. 

 

These three outputs where authored by Green S., Cawkwell F. and E Dwyer. All 

design, analysis and writing was done by S. Green, and the papers were all initiated 

and conceived by S. Green. F Cawkwell and E Dwyer provided oversight and copy 

editing. 
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2. Literature Review 

This review examines the actual and potential role of earth observation (EO) 

technologies in the management of enclosed improved grasslands; fenced fields or 

paddocks. The review first places EO of grass management in the wider context of 

EO of grassland ecosystems and rangelands. It then brings the focus down to 

paddock grassland management by defining terms and looking at what it means to 

manage paddocks on the ground. Subsequent sections examine research in EO for 

each management issue in turn: Herd management and grazing, fodder production 

and quality monitoring, and sustainability. Finally current operational systems are 

reviewed and future operational systems identified. The aim of the review is to 

place the research presented here into context by identifying a need for better 

remotely sensed information regarding improved grasslands, and demonstrate a 

gap in the literature regarding mapping in improved enclosed temperate 

agricultural grassland landscapes as found in Northern Atlantic Europe, Ireland and 

the UK in particular. 

 

2.1 Earth Observation and Grasslands 

2.1.1 Introduction to Earth Observation 
 

Remote sensing is the art and science of monitoring targets from a distance and the 

work presented here exploits optical based systems. 

 

Light is a form of electromagnetic (EM) energy that radiates from the sun. The 

energy propagates as electromagnetic waves and these waves are made up of 

magnetic and electric components. They have a wavelength (λ) and a frequency (ν) 

that are inversely related and measured in Hertz (Hz):  

 

    c = λ.ν    eq. 2.1 
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Where c is the speed of light (which is constant in any given medium). The energy 

contained in EM is proportional to the inverse of wavelength. At 400nm, blue light 

has the shortest wavelength of visible light and thus has the highest energy, and at 

700nm red light has the longest wavelength and the lowest energy. Just beyond red 

light lies the Near Infra-Red (NIR) region which is important in the detection of 

vegetation from EO (Figure 2.1) and beyond that the Shortwave Infra-Red (SWIR), 

Medium Wave Infra-Red (MWIR) and the Long wave Infra-Red (LWIR). 

 
Figure 2.1: The optical Earth Observation electromagnetic spectrum (beyond 1000nm, not to scale) 

 

The light used in EO is, in the main, sunlight, which passes through the atmosphere 

and reflects off the surface back to the sensor (mounted on aerial or space 

platforms). In passing through the atmosphere the transmission, absorption and 

scattering of the light introduces distortion that is countered by atmospheric 

correction algorithms. In the case of the MODIS sensor data, as shown in Section 3, 

this is performed automatically by the data providers. These processes are 

wavelength dependent, with some wavelengths absorbed more than others, some 

transmitted better than others, and some scattered more than others due to the 

quantised nature of the processes crudely sketched here. 

 

At the ground the light is either absorbed or reflected (the total amount of 

reflection is the object’s brightness or albedo, and the selective reflection of 

different wavelengths is the object’s colour). Instruments on orbiting satellites are 

able to record this reflected light as images across several bands, or ranges of 

wavelength, capturing the spectral absorption characteristics of the target. The 

image is recorded and stored as pixels, each pixel recording the amount of energy 

reflected back to the satellite from the area of ground imaged by that pixel, across 

the wavelength range of the system. 
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Figure 2.2 shows the reflectance spectra of grass, soil and forest in the visible to NIR 

spectrum, with the reflectance (the percentage of downwelling energy reflected in 

a given wavelength) in the NIR much higher than the visible, meaning vegetation is 

bright in this part of the spectrum. Data from high resolution satellites such as 

QuickBird are able to capture detail at 2.4m resolution allowing for a greater degree 

of refinement when looking at vegetation reflection variation across or between 

images (see Figure 2.3). 

 

As well as spatial resolution (the smallest resolvable separation between objects) 

and spectral resolution (the number and width of bands in the sensor recording 

ranges of wavelengths), temporal resolution, how frequently the system revisits a 

given location, needs to be considered, as well as the image size or swath width, 

which determine how many images will be needed to cover the area of interest. 

 

 

Figure 2.2:The wavelength regions recorded by the MODIS instrument (in Green) across the visible 

and NIR spectra (from (Miura et al 2008). Also shown are idealised reflectance curves for forest, 

grass and bare soil targets. 
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Figure 2.3: A QuickBird Image from County Roscommon (NW Ireland) shown in natural colour 

(blue, green and red wavelengths) and false colour infra-red (green, red and NIR wavelengths). 

2.1.2 Vegetation Indices 
 

One of the products generated using EO data are vegetation indices (VI), the ratio 

of the reflected red and near infra-red energy. Healthy vegetation strongly absorbs 

red light, and thus only weakly reflects it, but NIR light is reflected strongly by 

vegetation. The absorption of red light is due to chlorophyll pigments in the leaf 

which play an important role in photosynthesis therefore strong red absorption 

indicates active plant growth. The strong NIR reflection is a function of the structure 

of the leaf surface, thus a high degree of NIR reflectance indicates a lot of leaves 

and is also influenced by leaf and canopy structure and the process of 

evapotranspiration. Thus the simple ratio of red and NIR radiation is closely linked 

to most of the fundamental biophysical processes in living vegetation. 

The normalised difference vegetation index (NDVI) is an adapted version of the 

simple ratio, with spectral reflectance in the red (around 650nm) and NIR (around 

900nm) radiation normalising the output from -1 to 1.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅

  eq. 2.2 

No vegetation (e.g. bare rock, soil, man-made surfaces) has an NDVI value typically 

around 0 or less, but lush, well growing vegetation (Figure 2.4), like grass in Ireland 

in May, has a high value approaching 1 (values approaching -1 are typically open 

water). NDVI is just one of scores of indices developed over the last 30 years for 

analysis of environmental conditions from satellite sensors, and nearly all the 
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papers in this review rely on measuring reflected light from plants and most will use 

some form of vegetation index (see Viña et al (2011) for a current overview). 

However it should be noted that each satellite sensor or hand held device records 

over different wavelength ranges, even if they might be labelled as the same 

radiation type, so NDVI values are not strictly comparable across systems (see 

Glenn et al (2008) for a more critical overview of VI and their application). 

VI have long been exploited operationally from a variety of sources, for example the 

Climate Change Initiative (CCI) service from ESA7, provides global VI profiles 

representing typical growth from 2003-2012 (the operational period of the Medium 

Resolution Imaging System, MERIS system providing the data) for every 300m pixel 

indicating the likely land cover. 

2.1.3 Introduction to grasslands 

Grasslands, defined broadly as “ground covered by vegetation dominated by 

grasses, with little or no tree cover” cover up to 40% of the terrestrial area of the 

planet (excluding areas of permanent snow/ice cover) (Suttie et al 2005).  

This study is primarily concerned with managed, enclosed agricultural grasslands 

(c.f. “cultural grassland” (Dixon et al 2014)), but this review will begin with a more 

expansive definition focusing on land-use: namely grasslands as grazing lands for 

managed herds of animals. Grassland use typologies can be split into different, 

often overlapping, categories (this discussion on typologies is a distillation from 

Suttie (2005) and (Semple 1956)). On extensive, largely natural, systems the level of 

management can be minimal with nomadic herders following the seasonal 

progression of natural vegetation. The herds are composed of animals best suited 

to the climatic conditions; from reindeer in the extreme north to camels near the 

equator. This can be thought of as a managed exploitation of a natural resource, a 

land use. Much of the literature on EO of grasslands is related to monitoring this 

land use, its impact on the grassland ecosystem, and land use change as more 

                                                      
7 http://maps.elie.ucl.ac.be/CCI/viewer/ 
 

http://maps.elie.ucl.ac.be/CCI/viewer/
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intensive grassland management is introduced or land is converted to arable 

production. 

 
 

 

Transhumance, the movement of animals between winter and summer pasture, 

can be thought of as a hybrid of extensive natural grazing and more intensive 

pasture management. Once common throughout the world, it remains now 

principally in alpine regions8. In the summer animals would be moved from lowland 

farms to take advantage of fresh mountain grass, whilst the smaller lowland/valley 

homestead would produce hay and fodder for the winter. This allowed small farms 

to support a much larger herd than their size would suggest. 

As herders attempt to control more of the grassland environment, grassland 

management becomes an issue of agronomy. In extensive systems, the level of 

management principally revolves around controlling of grazing pressure on the 

natural system, and even large ranch type operations in rangelands would fall at 

this end of the spectrum. Once attempts are made to control more than this, then 

the herder increasingly becomes the farmer, until intensive grassland dairy 

production systems are reached, with tightly controlled paddocks of highly 

improved mono-cultural planted swards. Table 2.1 , adapted from Pearson and Ison 

                                                      
8 In Ireland the seasonal movement of cattle was known as booleying: common before WWII it is 
now no longer practiced (Mitchell F, Ryan M. 2001. Reading the Irish Landscape. Ranelagh, Dublin: 
TownHouse) 

Figure 2.4: MODIS data for the same acquisitions (May, 2007) presented as natural colour 

(left), false colour and vegetation index.(higher VI represented as darker green). 
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(1997), shows the environmental factors, from the grass perspective (not the herd), 

to be considered in an agronomic approach to grasslands. EO technologies can play 

a role in the management of all the factors identified, including climate where EO is 

an essential tool in weather forecasting, allowing the farmer to manage risk 

associated with weather events.  

Large scale studies of grassland ecosystems form the entry point into the literature 

on EO of grasslands. Extensive grazing systems exploiting large areas of natural 

grasslands such as the South American pampas, North American prairie and the 

Eurasian steppes have been the focus of many of the studies in EO of grasslands. 

The principal drivers of monitoring have been to measure land use change 

(grassland to cropland or forestry), to measure ecosystem impacts (erosion, habitat 

loss, desertification) and to examine grasslands’ role in global carbon budgets. 

Table 2.1: Levels of control of different environmental factors in extensive and intensive grassland 

systems, adapted from Pearson and Ison (1997). 

Environmental Factor Control in 

Extensive system 

Control in 

Intensive system 

Method 

Grazing Pressure Good Good Restrict Stocking 

Sward Composition Poor Good Reseeding in intensive 

systems, some over 

seeding in extensive 

Erosion Good Good Stock management 

Pests/Diseases of the 

sward 

Poor Variable Re-seeding, pesticides 

Drainage None Good Artificial drainage-surface 

and subsurface 

Soil None Variable Liming, fertilization 

Climate None Poor Agri-climatically suitable 

in-sward species selection 
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2.1.4 Grassland Use and Global Landcover Monitoring 

In land cover mapping the themes are often presented as a set of nested levels with 

increasing complexity, for example level 0 is vegetation, level 1 croplands, level 2 

wheat (Ben-Asher 2013). Grassland is identified as a basic level 1 land cover in most 

global land cover monitoring systems (Figure 2.5 gives an example). However the 

definitions and the mapped extents differ as shown in Table 2.2. The European 

Union, through Copernicus ( the European Programme for EO exploitation) produce 

maps of land use in Europe every 6 years, CORINE, and within this programme there 

was an non-validated high resolution map of “permanent” grassland produced 9 

(the author validated an a draft version of this map of Ireland for the Irish 

Environmental Protection Agency, producing the official verification report as the 

national contact point10; the validation results were poor with an omission error of 

61% and the concluding observation “A poor product, with little utility as it stands”. 

There have been no re-issues). 

The variation in global estimates of percentage grassland cover, as illustrated in 

Table 2.2,  is supported  by regional validation and comparison exercises (such as in 

China (Ran et al 2010)) where the difference in estimates between the global and 

local product is attributed to remote sensing error, temporal mismatch and 

differing classification schema. 

Grasslands for land cover and land use are monitored globally, principally to explore 

their roles in global carbon sequestration and to protect their distribution as a 

global ecosystem. Grasslands have come under increasing pressure from other land 

uses, principally crops and urbanization and their exploitation has played a role in 

the global growth of desertification and soil erosion. 

 

 

                                                      
9 http://land.copernicus.eu/pan-european/high-resolution-layers/grassland 
10 Unpublished report 
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Table 2.2: List of some global land cover mapping services and their estimates of global grass cover 

(sorted by spatial resolution) 

Product11 Year Grass 

 cover  

Definition of 

grassland used 

Method Resoluti

on 

GLC2000 2000 9.3% Unknown Unsupervised 

classification on 

multiple sources 

1km 

Global 

Land 

cover-SARE 

2014 13% Area dominated by 

natural herbaceous 

plants, >10% cover 

regardless of use 

Integration of existing 

datasets 

1km 

IGBPDiscov

er 

1992-

93 

8.3% Herbaceous grasses, 

>10% ground cover 

Unsupervised 

classification of 

AVHRR 

1km 

UMD 1992-

93 

8.7% Herbaceous grasses, 

>10% ground cover 

Supervised-Decision 

tree AVHRR 

1km 

MOD12 2003- 6.8% Herbaceous grasses, 

>10% ground cover 

MODIS classification 500m 

GlobCover 

(see Figure 

2.4) 

2005-

09 

5.4% Herbaceous 

vegetation, sparse 

(<10% grass cover), 

Open (10-40%), 

Closed (>40%) 

 300m 

CCI 

Landcover 

2010 3.2% Grassland >70% Reclassification of 

MERIS 

300m 

FROM-GLC 2006 13.7% Pasture and natural 

grassland 

Landsat TM 30m 

 

                                                      
11 A list of web addresses for online resources and services is given in the appendix 
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2.1.5 Grassland ecosystem monitoring 

The over-exploitation of grasslands by animal herds leads to loss of habitat, soil 

erosion and desertification, and is a principal concern driving EO of grassland 

ecosystems.  The idea of monitoring grasslands (and other globally important 

ecosystems) by EO was stimulated with the paper by Justice et al (1985), building 

on earlier work on vegetation indices to present a well-developed methodology for 

the global monitoring of vegetation change using Advanced Very High Resolution 

Radiometer (AVHRR) data. From an ecological perspective, remote sensing for 

rangeland monitoring was promoted by Tueller (1989). This influential paper saw 

Tueller predicting a, as yet only partially realised, future of remote sensing specialist 

rangeland managers. 

Geographically much of the research covers the North American prairies, South 

American pampas and China (in a review of grassland degradation in China, 

Akiyama and Kawamura (2007) concluded, in explicit agreement with Tueller that 

EO technologies are ideally suited and well developed for grassland monitoring in 

China). In semi-arid grasslands satellites are used to look at land degradation, in 

other grasslands habitat loss and carrying capacity seem to be the principal 

concerns. 

The techniques for mapping land use change typically use conventional 

classification techniques or more up-to-date machine learning methods, or the local 

correlation of biomass levels with medium scale resolution NDVI time series. In 

Nepal, Paudel and Andersen (2010) used multi-sensor long term time series of NDVI 

data, local stocking data and weather data to assess the causes of land degradation, 

to conclude that grazing pressure and drought were the main drivers. 

In the Brazilian state of Rondônia, complex land covers were interpreted as within 

pixel fractions of green vegetation, non-photosynthetic vegetation and soil to 

estimate the effect of grazing on the changing of these fractions, the NDII5 index 

(the Normalised Difference Infrared Index, where bands 4 and 5, replace bands 3 

and 4 respectively in a conventional NDVI using Landsat TM data) was found to be 
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more closely correlated with ground conditions than the conventional NDVI and 

that this, in turn, correlated with cattle density to explain a significant proportion of  

degradation (Numata et al 2007). Fraction based, or end-member approaches to 

un-mixing complex covers, especially in semi-arid grasslands, are an increasingly 

utilised tool to attempt to overcome the relatively coarse spatial resolution of 

sensors like MODIS, in order to explain the important sub-pixel changes in the 

proportion of different vegetation components. Thorp et al (2013) use this 

approach when looking at scrub encroachment in rangelands, a subtly different 

approach to the monitoring of grasslands with an emphasis on loss of grazing 

grounds. 

Recent studies on grazing pressure have looked at local effects using very high 

resolution data. Carmona et al (2013) study on rangeland recovery post grazing 

used time series of high resolution QuickBird satellite data to estimate both 

rangeland habitats and grazing impacts in central Spain. Using regression trees to 

examine persistent vegetation loss as a function of grazing pressure and 

environment, tested against vegetation mapped from the imagery, they found that 

habitat was the key determinant in predicting changes in vegetation. 

Hunt and Miyake (2006) attempted to estimate the impact of stocking rate on 

grazing pressure on American rangelands.  In this study, NDVI images from 12 years 

of AVHRR data were used to calculate a monthly productivity, and thus the carrying 

capacity, and from this a stocking rate. This modelled stocking rate had only a weak 

correlation with stocking rates inferred from official statistics.  However this study 

relies upon herds utilising all available fodder for the estimate to be correct. Much 

of the work on relating stock density to NDVI has effectively correlated herds with 

biomass removal through grazing (Zongyao et al 2012). 

Using Geographically Weighted Regression (GWR) to model known grazing 

intensities and regional growing season trends derived from MODIS time-series 

data Li et al. (Li et al 2013) found that stocking density was not significant in 

accounting for variability in  NDVI trends in Canadian rangelands. In contrast, 

Oesterheld et al (1998) used accumulated monthly averages of 1km AVHRR data 
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over 7 years (1982-88) to build a relationship at county level between NDVI and 

stocking density. Using 66 counties in Argentina they found a strong relationship 

(log-log) between NDVI and stocking density (r2 = 0.9). This is best interpreted as a 

regional scale model of carrying capacity of a semi-natural habitat.  

Closer to home, concern about over-grazing in upland areas of Ireland have some 

common themes with the types of study discussed in this section. The application 

of remote sensing to these issues has been limited largely to visual inspection of 

aerial photography (Cooper & Loftus 1998) with some attempts at mapping habitat 

change using Landsat TM time series (Loftus et al 2002), although the threat of 

over-grazing has receded as a result of a shift away from farm income supports 

based on the number of animals grazed. More recent approaches using high 

resolution imagery and object orientated classification schema have attempted to 

detect change in upland areas (O’Connell et al 2014).  

2.1.6 Loss of Rangelands 

Most of the research in this area is concerned with detecting, delimiting and 

measuring biomass on rangelands, defined as12: 

“…. predominantly grasses, grass-like plants, forbs13 or shrubs that are grazed or 

have the potential to be grazed, and which is used as a natural ecosystem for the 

production of grazing livestock and wildlife” 

As noted in 2.1.5, in Ireland, there is concern now about under grazing in some 

upland areas (due to EU policy shifts) and the effects this may have on landscape.  

Globally, a loss of rangelands is becoming an increasing concern, associated in some 

cases with previous over-grazing, but also with increasing land use change to crops 

and urbanization (rising commodity prices have led to an increased conversion rate 

to crop lands (Rashford et al 2011)).  Whilst in most parts of the world the loss of 

                                                      
12  For the purposes of this review the recently agreed definitions of grassland nomenclature are 
used (Allen VG, Batello C, Berretta EJ, Hodgson J, Kothmann M, et al. 2011. An international 
terminology for grazing lands and grazing animals. Grass and Forage Science 66: 2-28) 
13 “Forbs” are non-grass herbaceous flowering plants 
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grasslands is associated with ecological change, in Europe losses are associated with 

urbanization, policy changes and demographic shifts in farming (Wittig et al 2010). 

As an example Stefanski et al (2014) used Synthetic Aperture Radar (SAR) data and 

Landsat data in a random forest classifier to map a complex series of changes over 

20 years in the Ukraine involving first retreat from agriculture (“land 

abandonment”) and then conversion of grasslands to croplands in response to 

global food prices.  The loss of rangelands due to degradation is a principal concern 

in Australia (Pickup et al 1998).  Early work by Pickup and colleagues (Pickup et al 

1994), using measures of vegetation cover from satellite, has led in turn to more 

complex paddock management systems being monitored via satellite which will be 

discussed in Section 4.  Monitoring ecological impact and rangeland loss naturally 

leads to the concept of rangeland management. 

2.1.7 Rangeland Management 

Tueller (1989) identified the potential of remote sensing for rangeland 

management, and its use has been reinforced since then (Hunt et al 2003).  

Rangeland management by satellite image analysis principally involves estimating 

fodder quality, fodder availability and protecting against invasive species. Estimates 

of biomass for extensive grazing lands, for assessment of fodder availability and 

quality with the aim of incorporating them into management tools, have until 

relatively recently concentrated on management at the scale of the rangeland as a 

common resource, rather than at the scale of the farmer or herd, with available 

biomass estimated, for example, with Landsat Thematic Mapper data in South 

African rangelands (Bastin et al 1998) and Argentina (Blanco et al 2009); AVHRR 

data in the USA (Thoma et al 2002)and Australia (Hill et al 2004) and, MODIS data in 

China (Cui et al 2012). These studies effectively measured the impact of cattle on 

the biomass of extensive, relatively homogeneous landscapes, quite different to the 

paddock systems that are the focus of this study.   

At a larger scale Bastin et al (2012) successfully disentangled seasonal effects in 

long term satellite data series to distinguish the effects of management changes 

(changes in stocking density) in Australian rangelands. The method establishes a 
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baseline of minimally changing pixels and then references changing pixels to these 

references year on year, thus separating seasonal change and inter-annual change 

from management effects, however although this method identifies areas of 

change it does not classify them by the nature of the change.  

2.1.8 Grasslands and carbon 

Another driver for understanding grassland management and intensification is the 

aim to decouple human activity from longer term climate driven trends in grassland 

cover and productivity. Two early, heavily cited papers, by Tucker et al (1985) and 

Prince (1991)  both used AVHRR data to estimate productivity in semi-arid Sahel 

region savannah. They demonstrated how regional biomass production in such 

environments could be estimated with satellite derived VI using a relatively small 

number of ground control sites. This had important implications for global climate 

modelling and the understanding of the sink/source role of grasslands globally 

through Net Primary Production (NPP) and Gross Primary Production (GPP). Whilst 

the necessity for caution on application of global algorithms relating accumulation 

of NDVI with GPP and NPP across different biomes was understood (Schloss et al 

1999), routine estimates of global NPP were provided from low spatial resolution 

satellites like AVHRR (Sala et al 2000). 

The production of global NPP and GPP estimates were built into the MODIS 

processing chain from the beginning. GPP is a function of atmospheric/terrestrial 

carbon exchange, and the MODIS GPP product is intended to provide a global 

estimate to complement the international flux tower network (FLUXNET) of site 

specific measurements. The algorithms have developed from simple sums of NDVI 

to complex, land cover specific, calculations involving estimates of fraction of 

Photosynthetically Absorbed Radiation (fPAR), Photosynthetically Available 

Radiation (PAR), Light Use Efficiency (LUE), temperature (T) and vapour pressure 

(VP). The parameters PAR, T and VP are supplied by the NASA Global Monitoring 

and Assessment Office (GMAO), whereas fPAR is generated from MODIS based on 

Bi-Directional Reflectance Factor (BDRF) estimates and a land cover look up table 

(LUT) from the MODIS annual land cover product (MOD12Q1). Sources of error in 
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the MODIS GPP include uncertainties in meteorological data provided by the global 

GMAO data, and quoted errors in the MODIS land cover of up to 30% (Zhao et al 

2011). 

Specific issues in GPP over grassland have been investigated by a number of 

authors, with the principal findings being that GPP is underestimated in croplands 

and grasslands. Zhang et al (2008) found that GPP was underestimated on a daily, 

seasonal and annual basis in croplands and alpine grasslands in China, with the 

source of error primarily in estimation of LUE due to errors in allocating the correct 

land cover labels to the pixels, with the recommendation that GPP estimates could 

be improved using local higher resolution land cover data sets. Turner et al (2006), 

report no bias on estimates of GPP over 9 biomes, including prairie grasses, with 

under-estimation of GPP for low production sites and over-estimation at highly 

productive sites, however the work was carried out over large (25Km2), relatively 

homogenous semi-natural areas.Quaife et al (2008) found variation of up to 25% in 

calculated GPP depending on the resolution of the land cover dataset used 

(LCM2000, GLC2000, MODIS products) because of spatial and thematic uncertainty 

in the United Kingdom (UK). There are no International Geosphere-Biosphere 

Programme (IGBP) control points in the British Isles and no attempt has been made 

to validate the MODIS land cover product in Ireland (Kanniah et al 2009) however 

as parts of the UK have a similar fragmented landscape to Ireland it is likely that 

Quaife et al.’s UK results are equally valid in Ireland. 

The use of EO in studying global carbon budgets is largely constrained to Above 

Ground Biomass (AGB) and land use change, and whilst the role of AGB and carbon 

is largely understood on rangelands , the issue of soil organic carbon is less well 

known, with studies suggesting that typically management decreases storage over 

time but that some types of management can cause an increase in soil carbon 

compared to others (Schuman et al 2002). 

2.1.9 Rangeland biomass 

Many studies have looked at biomass on rangelands using satellites, but this section 

will be limited to studies that have attempted to build empirical models to estimate 
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standing biomass in DM/kg/ha. The early work of Tucker et al. (1985) (see Section 

2.1.8), cited more than 700 times, has given rise to hundreds of papers estimating 

biomass from optical sensors, mostly using one or more vegetation indices. It is 

necessary here only to give a few examples. 

Early work in China by Jianlong et al (1998) found that NOAA/AVHRR NDVI time 

series images could be correlated with total seasonal biomass yield (simple green 

yield in kg) field measurements across different grassland types (from “mountain 

meadow” to “desert steppe”). Log-Lin models proved most successful with p<0.01. 

Although the result was based on only 20 sites of 1m2 quadrats measured over a 

season, related to accumulated NDVI score at the 1.1km scale, it did indicate yield 

measurements for different grassland systems were achievable.Xu et al (2008) 

tested linear, power and exponential regression models between NDVI and ground 

measurements of grass yield in China’s rangelands, finding an exponential model 

the most successful (r2=0.802). Grant et al (2013) found a relationship between a 

number of VI and field measurements of green above ground biomass (r2=0.68, 

using the Transformed Vegetation Index, TVI) in Canadian rangelands. NDVI 

performed as well as the other indices tested, and the degree of success of 

different VI was a function of eco-region. A much earlier study came to an identical 

conclusion; Todd et al (1998) found that there was a significant relationship (r2=0.7) 

between NDVI (and other VI) and biomass in rangelands in Colorado, USA (using 6 

trial plots) for grazed plots, but no significant relationship with un-grazed plots. 

Yu et al (2010) related NDVI from MODIS to grass biomass in Chinese rangelands 

(modelling against log of biomass which is common in the literature) and linked 

these observations to potential and actual carrying capacity. In Europe, studies of 

natural grasslands and estimation of biomass from optical satellites have reached 

the same conclusion, e.g. Schino et al (2003) in the Italian Alps. A recent study in 

the French Alps (Barrachina et al 2015) achieved an r2=0.76 relating pasture 

biomass field measurements with Landsat derived NDVI values. 

The difficulties of accurately measuring biomass in rangelands by optical systems, 

arising due to the complexity of vegetative cover, has led to an increase in studies 
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using active systems such as LIDAR, commonly through the estimation of AGB 

based on canopy height (Radtke et al 2010, Streutker & Glenn 2006) although LIDAR 

is more commonly used for estimating the AGB of the woody component of 

rangeland vegetation (Ku et al 2012).  

There are few examples to date of using radar to measure rangeland grass biomass 

(Kumar et al 2015). This may be because grassland biomass was considered below 

the detection threshold of earlier systems, or the canopy height was typically less 

than the radar band wavelength which presented difficulties in untangling sward 

effects from soil moisture conditions.  

Early work by Hill et al (1999) showed that site specific relationships could be 

established between backscatter (dB) and sward height from airborne SAR data, but 

that soil moisture was a considerable source of error. Hill et al (2005) went on to 

develop the idea of combining radar and optical data, and improved classification of 

vegetation types in Australian pastures, however these classifications had to be 

validated against biophysical properties (canopy and surface measurements) rather 

than the conventional, larger scale, observational habitat type data, and thus 

ground truth collection was considerably more complex.Wang et al (2013) also 

combined PALSAR, ENVISAT and COSMO-SkyMED radar data to estimate Australian 

grassland biomass, but they calibrated only against optical VI, not against ground 

measurements, which demonstrated that the correlation between the radar 

backscatter and VI was heavily influenced by rainfall. One element holding back the 

development of radar based analysis of grassland has been the cost of imagery. Hill 

et al (2000) stated that the cost of imagery at the time could not be justified on the 

basis of the results of an experiment classifying Canadian and Australian grassland 

types with multi-date radarSAT data. 

Higher spatial resolution radar data better matches the scale of the pasture target, 

and a number of studies linking pasture biomass to polarised backscatter of 

TerraSAR-X imagery (with its’ sub-meter scale resolution) have been completed 

with varying results. McNeill et al (2008) in New Zealand found HH/VV pairs could 

model grass biomass, but Voormansik et al (2013) in Estonia could not detect even 



34 
 

gross changes in sward height with the same combination. Schuster et al (2015) 

found that a TerraSAR-X time series in conjunction with Rapid Eye high resolution 

optical data could classify, with accuracies greater than 90%, small scale grassland 

habitats. 

Early work using airborne SAR (Smith et al 1994) showed promise in detecting 

habitat variation across rangelands. But radar does not seem to have been adopted 

widely as a tool for rangeland vegetation monitoring (although rangeland soil 

properties have been a target of interest). Some work has looked at fusing radar 

with optical data; for example Huang et al (2010) used airborne SAR data to correct 

for soil brightness in a Landsat classification of USA rangeland, achieving accuracies 

of 75%. 

Whilst the advent of high resolution radar data and free data from the European 

SENTINEL programme will drive further research, radar data currently seems to 

occupy a supporting role in grassland biomass estimation, although as discussed in 

section 2.8, there is some potential offered by this technique given newer sensor 

developments. 

2.1.10 Commonages:  Ireland´s Rangelands? 
 

Whilst Ireland has no real rangelands, the upland commonages (Figure 2.614) 

present similar issues for remote sensing. These extensive grazed systems in upland 

hill country, held in common ownership by a cooperative of farmers, present as a 

complex of shrubs (mostly heather), woody scrub and natural grasslands. These 

have been mapped as habitats (Cawkwell et al 2010, Fealy & Green 2009) and work 

is currently underway in designing remote sensing systems for monitoring change in 

these areas (Raab et al 2015), as was previously done for peatlands, another grazed 

resource in Ireland (Connell et al 2012). 

 

                                                      
14 Figures 2.6, 2.7 and 2.8 from www.high-nature-value-farmland.ie by agreement. 

http://www.high-nature-value-farmland.ie/
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Figure 2.6: Commonages are large unenclosed typically upland areas, characterised by semi-

natural and natural habitats used for common grazing.  

 

No work has been done on estimating carrying capacity or grazing pressures in Irish 

uplands and commonages using remote sensing, though field evidence suggests 

there are issues to be addressed (O'Rourke & Kramm 2009). 

2.1.11 EO and Extensive Grassland summary 
 

The key points from the overview of the EO and rangeland literature presented 

here are: 

• Grasslands are a globally important biome. 

• There are widely divergent estimates of their extent, principally due to 

differing definitions. 

• Vegetation indices derived from low resolution optical satellite observations 

have successfully been interpreted to monitor grassland health and 

exploitation, with NDVI the most commonly used VI. 
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• On a large scale, biomass for primary production and fodder are estimated 

with varying levels of precision (typical r2 values of 0.65-0.75). 

• Estimates of stocking density on rangeland have been made with varying 

degrees of success. 

The challenges of using some of the techniques developed for natural rangelands 

on intensively managed enclosed grasslands can be best appreciated with an 

understanding of paddock management on the ground, and here Ireland is used as 

an example.  

 

2.2 Conventional paddock management on the farm 

2.2.1 Introduction to Irish pastoralism 

Ireland, with its temperate maritime climate possesses some of the best grass 

growing conditions in the world, with a long, almost year round growing season in 

some parts of the south of the island (Fischer et al 2000). Agriculture occupies 

approximately 62% of the terrestrial area of the Republic of Ireland (ROI), with grass 

as the foundation of Irish agriculture occupying 90% of that agricultural area 

(O'Mara 2008). Grass as a resource is typically broken down into four main uses: 

• Pasture - Land (and the vegetation growing on it) devoted to the production 

of forage for harvest by grazing, cutting, or both. Usually managed to arrest 

successional processes (the natural cycle of flowering and seeding). 

• Silage production – Grass forage harvested and preserved at high moisture 

contents by organic acids produced during partial anaerobic fermentation.  

• Grazing - Any vegetated land that is grazed or has the potential to be grazed 

by animals (domestic and wild). This term is all-inclusive and covers all kinds 

and types of land that can be grazed. 

• Hay Making - Harvested grass forage preserved by drying. 
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Grass supports principally three enterprises (in order of economic value) 

• Dairy 

• Beef 

• Sheep 

Some farms employ a mixed system of livestock and tillage, and hybrid dairy/beef 

systems do occur. There are strong geographic trends in farming systems (see figure 

1.1), with dairy concentrated in the south/south-west, sheep on the coastal upland 

fringes, and beef predominating in the north and west. In 2010 there were 139,829 

farms in Ireland with a total utilisable agricultural area (UAA) of 4.75MHa, and an 

average farm size of 32.7Ha. In 2011 there were 6.5 million cattle in Ireland (DAFM 

2012). 

Finneran et al (2010) showed that grazed perennial rye grass is the most cost 

effective feed in Irish systems, and this has been supported by other studies in 

Ireland (Dillon et al 2005). Increasingly, as compound feed (cereals processed for 

animal feed) costs increase due to increasing human demand for grain, countries 

such as USA where feedlot dairy systems are the norm (systems where animals are 

housed or corralled and the food, in the form of grain, is brought to the animals) 

are identifying a return to grazed pasture as a path to increased sustainability and 

profit (Hanson et al 2013). 

Grassland in Ireland is managed in a variety of ways determined by farm system, 

environment and farmer choice (O'Rourke & Kramm 2009). At its most basic, 

upland grazing on semi-natural or natural grasslands by sheep (and, to a lesser 

extent, goats and cattle) is managed as an exploited ecosystem (Figure 2.6 & 2.7). 

Management revolves mainly around the control of animal numbers (low stocking 

density), although clearing and, more so in the past, burning of encroaching plants 

also occurs. These upland areas are typically held in common ownership amongst a 

group of farmers as commonage; they are never reseeded or limed (to adjust soil 

pH to optimal value of 6.3 for grassland production) and they receive no chemical 
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fertilizer or mechanically applied organic fertilizer, with their utilisation controlled 

through a formal commonage framework plan (Van Rensburg et al 2009). 

 

Figure 2.7: A species rich semi natural grassland. 

Over-grazing is a declining threat to commonages as a grassland resource, whilst 

under-grazing or dormancy is a growing problem, up to 34% of the 410KHa of 

commonage is unclaimed and may be at threat of scrub encroachment through 

under-grazing (Bleasdale 2013). In contrast to the upland areas, in enclosed lowland 

areas grass based farms are managed to provide grazing and fodder.  

2.2.2 Grass as a crop 

Intensive grassland farmers will try to maximise growth of grass on their farm and 

its exploitation by their herds (Figure 2.8). Grass growth can be optimised by 

promoting early growth, maximising peak growth and extending the period of 

maximum growth. Exploitation can be maximised by ensuring grown grass is not 
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wasted and that sward conditions are such that cattle can graze for an extended 

season15. Grass growth is influenced by: 

• Cover density (very low and very high covers can slow growth) 

• Temperature 

• Moisture 

• Soil type 

• Nutrients 

• Plant damage 

• Radiation 

In Ireland grass growth rates typically increase sharply in March with a peak around 

May. A sudden drop in June is followed by a slight recovery in July and then a 

gradual decline to October (see Figure 2.9). It must be noted that, strictly speaking, 

this is the sward growth performance, not that of individual grass plants. In grasses 

new leaves are growing as old leaves die, and the cumulative effect is measured as 

sward growth rate. 

 

Figure 2.8: An improved grassland. 

                                                      
15 This section owes much to Turley T, Aylmer M, Fitzgerald L, Heneghan B. 2008. Forage prodcution. 
Kildalton, Kilkenny, Ireland: Teagasc 
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Figure 2.9: Mean grass biomass measurements across a 6 year period, 2003-8, derived from field 

observations at an experimental farm in the north-east of Ireland (Grange, Co. Meath). 

Rye grass plants (lolilum perenes is the dominant grass species in improved pastures 

in Ireland) consist of up to 25 small growing units called tillers. Each tiller is 

constantly growing but only ever has 3 formed leaves (which the animal eats); as 

new leaves appear at the growing point at the base of the tiller the mature leaves 

at the top of the plant begin to die off.  At the height of the growing season this 

cycle can take only 21 days, so if plants are not utilized within three weeks, as 

grazed grass or fodder, then the grown biomass is lost.  To maximise the use of this 

biomass a system of rotational grazing is employed.  The farm is divided up into 

small paddocks and each is grazed to a residual 3 cm height, or cut for silage, in 

rotation.  To ensure that there is enough fodder ahead of the grazing herds a grass 

management system known as the grass wedge is employed. The grass wedge 

involves matching animal needs with current cover and likely growth, and involves 

calculations of demand and cover with weekly farm walks and sward measurement. 
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2.2.3 Grass measurement 

Grass in the field can be measured in a number of ways. The “gold standard” is a 

hand clipped sample from each paddock. A 0.5m x 0.5m quadrat, representative of 

the amount of grass in the paddock, is used and grass within is clipped down to a 

height of 3.5cm above the ground, the clipped sample is shaken to get rid of excess 

water and dry matter can be calculated as: 

DM= w x 0.16 x 40000  eq.2.3 

Where w, weight in kg is multiplied by 0.16 (representing the average value of 16% 

Dry Matter (DM) in an un-dried grass sample) and 40,000 (the number of quadrats 

in 1 ha) to generate an answer in terms of kg DM/ha in the paddock. 

Mechanical methods include the rising plate meter, the sward stick and the pasture 

ruler, all of which essentially measure the height of the sward and then estimate 

DM from equations, and although they do not perform as well as the cutting 

technique outlined above they are much faster. Sanderson et al (2001) showed that 

these mechanical systems had an average error of 30% compared to hand clipped 

samples, and that this error in measurements reduced the effectiveness of grass 

budgeting on the farm and lowered the returns per ha compared to correctly 

budgeted farms. They recommended that errors of no more than 10% in grass 

cover measurements when compared to hand clipped samples are acceptable.  

It is clearly a very time consuming practice to do this sampling in every paddock 

every week, so the majority of farmers who are recording grass growth (which is a 

minority of all Irish farmers) will generally “eyeball” the paddock and studies in 

Teagasc have shown this compares well with mechanical methods. O’Donovan and 

Dillon (1999) found: 

• The most reliable efficient method of measuring grass supply was by visual 

observation.  

• Farmers improved grassland management when they frequently measured 

grass covers.  
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• Frequent measurement helped them to promptly identify surpluses and 

deficits throughout the grazing season.  

• The critical grass measurements identified were pre-grazing yield, post-

grazing grass height, farm grass cover and the percentage live leaf in the 

sward. 

• The last rotation before closing off the farm is the most critical as it affects 

spring turnout date.  

• When good grassland management techniques were employed through the 

use of grassland measurement, spring calving herds produced up to 80% of 

milk from grass.  

As with  O’Donovan and Dillon’s finding of the accuracy of visual assessment of 

biomass, a trial of visual cover estimates of sward composition with other botanical 

survey methods in grasslands also found visual estimates were well correlated with 

other more time consuming survey methods across a wide range of grassland use 

intensities (Pavl et al 2009). 

A meta-analysis of measurement technique studies reported in the literature by  

López Díaz and González-Rodríguez (2003) found a wide range of accuracies and 

correlations reported for each techniques compared to a cut and measure 

standard. Table 2.3 presents a distillation of the results presented and they all 

present a degree of difference from the standard. 

More technologically complex systems have been examined, such as field 

spectroscopy (Flynn et al 2008)where sensors are used to measure NDVI and 

correlated with field measurements of  biomass (r2=0.68). Sensors developed for 

use in crops and mounted on quad bikes have been successfully employed to 

measure grass DM variability across paddocks (Trotter et al 2010). This case study in 

New Zealand found the use of an on farm grass measuring technology (C-DAX 

Pasturemeter, a small instrument towed behind a quad-bike) increased fodder 

production from 12.9 t DM/ha to 18.6 t DM/ha at the cost of spending more time 

budgeting feed requirements and paddock rotation. 
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Table 2.3: Data taken from López Díaz and González-Rodríguez’s (2003) meta analysis of non-

destructive grass measurement methods and their comparison to cut and dried measurement of 

dry matter. 

Method No. of Studies Mean significant r2 reported 

Canopy analyser 2 0.50 

Capacitance meter 18 0.68 

Pasture ruler 8 0.72 

Plate meter 37 0.74 

Sward stick 11 0.68 

Visual obstruction 4 0.78 

Measuring grass is a complex but worthwhile task but is in fact employed by only a 

small percentage of the most progressive farmers (see section 5.1), with the 

majority employing “rules of thumb” and simplified calculations. In spring the 

management is somewhat simplified as the first rotation involves ensuring that 

100% of the grass is grazed before the second rotation begins, this is achieved 

through paddock management.  

An issue of concern in paddock management in spring is soil trafficability. As the soil 

can be wet in the spring and compaction from animal traffic is to be avoided to 

reduce soil compaction and thus limit future grass growth (Herbin et al 2011), 

paddocks are managed so that they are not trafficked once grazed.  In the second 

rotation, when growth rates are higher and silage production begins, the grass 

wedge is constructed: 

1.  Cover estimates of each paddock are made. 

2. Cover estimates are converted to dry matter using simple percentage rules 

of thumb. 

3. Daily grass demand is calculated as kg/DM/cow as a function of cow breed 

and size. 

4. Target yield and target residual (the amount of grass left after grazing) are 

calculated. 
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5. The farmer must also calculate average growth rates based on the previous 

weeks´ measurements 

These measurements and observations are then plotted on a “grass wedge” graph 

sheet (Figure 2.10) with the paddocks with highest cover (those next to be grazed) 

on the left and then in order down to the lowest cover. The diagonal line is the 

demand line for the herd; if the columns are below the line it means too little grass 

is being produced and if above then too much is being produced. This complex set 

of calculations is to be repeated weekly. 

Studies show that uptake of management technologies like the grass wedge is 

small, often due to complexity and time constraints in carrying them out (Creighton 

et al 2011).  Gray et al (2003) in New Zealand observed that data on actual farm 

planning on the ground was sparse, but in their study they found that even high 

performance expert dairy farmers only produced formal feed budgets at critical 

periods in the year, relying for the rest of the season on memory of past 

performance and planning. 

These complex sets of interacting factors are further complicated with issues of 

fodder quality and the fast response of grass growth to weather changes. These 

make grassland management the most highly dynamic farming system in which to 

operate, and are the reasons why most farms do not reach the maximum grazing 

season length potential.  

In the winter animals are housed when grass growth is no longer sufficient to 

support the herd, and soil conditions are such that animals would damage the soil 

(through poaching and compaction) and so reduce grass growth the following 

spring. The decision on when to house in the autumn is driven by weather and 

planning for the spring. Paddocks that will be the first to be grazed in the spring 

need to be closed to grazing earlier in the autumn to allow for adequate recovery 

and to ensure sufficient grass cover in the spring. 
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Figure 2.10: Example grass wedge (taken from the Teagasc and IFJ (2009) pg. 33) 

As shown in section 5.1 the decision on when to turn out cattle the following spring 

(first for day time only grazing and then day and night) is a function of the farm 

management plan, available grass, soil conditions and available alternative feeds 

(silage and made up rations) available to the farmer. 

All these planning decisions are ultimately mediated by the local grass growing 

season. Grazing season length in Ireland is a multifaceted issue, but an initial 

attempt to create a map of grazing season start date for the country based 

primarily on annual temperature data was made by Brereton (1995). Whilst the 

broad geographic features of Brereton’s work remain true, the reality of farm 

practice means that most of the dates have moved forward by up to a month (see 

section 3.1). A map of potential grazing season length (not just start of season date) 

using temperature thresholds and meteorological data was created by Barry (1986) 

and updated by Fealy and Creamer (Figure 2.11) with up-to-date climate data (Fealy 

& Creamer 2015). 
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Figure 2.11: Grass growing season length in days (purple isoclines), from Fealy and Creamer (2015, 

pg. 23). 
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2.3 EO and herd monitoring  

2.3.1 Precision Livestock Farming 
 

A recent report (Zarco-Tejada et al 2014) on support for precision agriculture (PA) 

from the EU and the CAP, defines precision livestock farming (PLF) as: 

 

 “ the automatic monitoring of each individual animal, recording data for the 

growth, detailed milk and egg production, early detection of diseases, and to 

understand the animal behaviour and monitor its environment.” 

 

Summarising from Laca (2009) it can be broken down into: 

• Controlling - training animals through aversion and preference to behave in 

a certain way (such as preferentially grazing one plant over another), or 

operant conditioning, training cows to respond to set commands and stimuli 

(possibly within an integrated robotic milking scenario). 

• Sensing - remote devices to monitor animal health and reproductive status. 

• Managing - virtual fencing, robotic milking etc. 

PLF, virtual fencing, and GNSS tracking for herd management is now so 

commonplace there are demands for standardization to take place (Anderson et al 

2013). In intensive systems, PLF is centred around in-situ sensing systems on the 

cow, detailed record keeping and data analysis in the milking parlour and computer 

aided feed budgeting. There are some EO approaches to PLF from rangeland 

farming that can be applied and these are discussed more fully in section 2.4. 

2.3.2 Use of EO at herd level 
 

Space borne EO data are used indirectly in herd management, principally in 

rangelands to ensure adequate feed is available to grazing animals. Estimating 

carrying capacity in rangeland paddocks has been examined by a number of 

researchers. Phillips et al (2009) exploited satellite based estimates of vegetation 

cover and fodder quality to predict grazing capacity of prairie paddocks. This built 

on earlier work relating photosynthetically-active vegetation (PAV) with a soil 
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adjusted VI (MSAVI) using a model locally calibrated from field samples (Phillips et 

al 2006). The model estimated carrying capacity on an 11ha paddock as 24 days in a 

28 day cycle (4 day under-estimate). This thoroughly ground-truthed field 

experiment points toward estimating both carrying capacity and feed quality, but 

the demand for local calibration limits its potential operationally. It is worth noting 

that the carrying capacity is only estimated at the start of the 28 days and not 

updated through-out, an approach that would not be successful in Ireland as 

grassland production can vary enormously during any 28 day period in the peak 

growing season. This work is important in the context of demonstrating that 

biomass estimates are possible, that integrating these estimates into animal 

management is desirable, and it is applicable at a midway scale between rangeland 

studies and Irish intensive grassland paddocks. Other examples of EO to estimate 

carrying capacity include mapping fodder availability in extensive Mediterranean 

grazing lands (Smith et al 2011). Work by Shakhane et al (2013), linking animal 

weight gain with forage amounts and grazing, bridges the gap between 

conventional models of animal feed demands and the use of satellites to estimate 

the feed available and the biomass consumed at paddock scale. Handcock et al 

(2009b) successfully combine a number of technologies by relating rangeland use, 

as revealed through a SPOT 5 image, with movement patterns of GPS tagged cattle. 

 

Furthermore, remote sensing in its strict definition is used in herd management 

through automatic processing of video imagery and the use of Unmanned Aerial 

Vehicles (UAV). UAVs are being used as a research tool in rangeland studies (José A. 

Barasona  et al 2014, Rango et al 2006) and their use on the farm, especially in 

animal husbandry is increasing (Hofmeyr 2015). Image processing and video 

imaging on the farm with CCTV or from a UAV platform has been investigated to 

automatically monitor animal health (Song et al 2008) and the use of  thermal 

imaging for monitoring lactation and fertility is being investigated (Kunc & Knizkova 

2012). Finally remote sensing is used to track cattle/herd movements through GPS 

and wireless sensor networks (Mukhopadhyay et al 2013). 
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2.4 EO and monitoring fodder production and quality at paddock scale 

Paddock systems differ across the globe in terms of grass management within the 

paddock. In Irish and continental European systems, reseeding, fertilizing and 

managing is common. In paddock systems on rangelands and prairie grasses the 

level of grass management is reduced and paddocks are used as a herd/grazing 

control system, allowing grasses to naturally recover in a rotational grazing system. 

Globally it is a common concern to ensure that there is enough grass available to 

feed the cattle. 

New Zealand is a location for world leading research in the application of EO to 

managed grasslands and paddocks. Gao (2006) published a review of EO 

applications for grasslands and many of the conclusions reached still hold true in 

2016. Collection of quantifiable ground truth data for remote sensing of grasslands 

(both bio-physical and spectral) is still an issue, with few campaigns carried out 

solely for the use of EO calibration and the majority of studies relying on sub-

optimum ground truth collected for other agronomic goals. Regression models 

dominate over biophysical models with non-linear models identified as more 

successful in measuring biomass. The review identified cover, biomass and 

degradation as dominant themes in the literature and it looked forward to an 

increasing use of time series data, all relying on VI. 

Some countries, New Zealand included, produce regional estimates of grass growth 

predictions from simple climate models, driven by meteorological data, instead of 

from EO models and observations. The Agrifax bulletin is one example giving a 

regional scale two-week forecast of grass growth16 

2.4.1 Fodder production monitoring 

The relative success of EO in observing grazing pressure in managed rangelands has 

led to an increased interest in grassland management at paddock scale from 

satellite observations. An example is the estimation of grass biomass from high 

                                                      
16 https://agrihq.co.nz/shop/product/18 

https://agrihq.co.nz/shop/product/18
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resolution systems such as SPOT in Australian paddocks (Edirisinghe et al 2012). 

Field trials have demonstrated that NDVI can successfully estimate paddock 

biomass in a variety of settings such as alpine meadows (Boschetti et al 2007) and 

intensive New Zealand paddocks (Edirisinghe et al 2011), with degrees of success. 

Edirrisinghe et al. (ibid) quote a standard error in estimating biomass of 315kg/Ha 

across a range from 500-4000kg/Ha using high resolution satellite imagery, whilst 

field spectroscopy experiments quoted in Boschetti et al., (2007) produced 

somewhat poorer results. 

Time series of high resolution data such as IKONOS imagery have demonstrated 

that NDVI data can be used to detect post-grazing regrowth within a paddock 

(Handcock et al 2009a), and that integrating NDVI derived data on stocking levels 

and grazing pressure into conventional agricultural system models can bring 

benefits (Donald et al 2010, Phillips et al 2009) in developing decision support 

systems for herd management. Lower resolution MODIS data have also been 

incorporated into paddock level management regimes, all be it in large Australian 

paddock systems. Donald et al. (2012) linked daily MODIS acquisitions with field 

level sensors in an attempt to create automatic feed budgets for cattle, with 

success. The use of these time series of satellite data to provide long term 

benchmarks of vegetation performance for climate studies and agricultural 

monitoring is well established. AVHRR and MODIS data have been used for long 

term studies of agricultural land use change at country level (de Beurs & Henebry 

2004, Propastin et al 2007, Wardlow et al 2007) and globally (Friedl et al 2002, 

Ganguly et al 2010). 

Local long term averages of NDVI values have been used to characterize agricultural 

land use (Baldi et al 2008) and deviations from means (NDVI anomaly, see Section 

4) are used to alert authorities to potential drought or food shortage, such as the  

GLAM project (Becker-Reshef et al 2010) and to monitor land use change (Rigge et 

al 2013). The only Irish studies, relating grassland production yield to EO, used time 

series of MODIS data over two Irish test sites with longitudinal dry matter yield 
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records. In Ireland machine learning algorithms accurately modelled standing AGB 

with an r2 of 0.86 (Ali et al 2014). 

Commercial handheld optical sensors used in crops have been evaluated for 

estimating biomass in pasture and were found to be successful, with Lim et al 

(2015) relating AGB to NDVI from the sensor with r2=0.76.Hyperspectral studies 

have shown that an analysis of the whole spectrum can successfully estimate 

parameters beyond biomass such as protein and digestibility (Pullanagari et al 

2012a). These sensors are significantly more sophisticated than the simple one or 

two channel handheld or tractor mounted commercial devices currently deployed 

in crop evaluation, but show the potential of space-borne hyperspectral systems 

(such as Hyperion on the NASA EO-1 satellite) and tractor mounted sensors should 

they become available.  

2.4.2 Fodder quality monitoring  

Spectral analysis of foliage to estimate nutrient composition (especially Nitrogen, N) 

is becoming more common. In fresh grasses, Ullah et al (2012) suggested that band 

depth analysis was better than an array of  VIs to estimate biomass of grasslands 

using MERIS data, but neither band depth or VI could successfully estimate 

Nitrogen content. Ramoelo et al (2013) successfully linked field spectroscopy 

measurements with in-situ vegetative Nitrogen and Phosphorus concentration, and 

a least square regression of spectra proved more successful than individual bands 

or ratios. This technique was also deployed by Biewer et al (2009) in hyperspectral 

field studies for estimating biomass in a grass legume sward. Results with a least 

squares model across the spectra were successful (r2 = 0.7-0.92), but unsuccessful 

results with VI were reported. 

Adjorlolo et al (2014) recently exploited the coastal blue and yellow bands of the 

Worldview-2 satellite to create a VI correlated with canopy Nitrogen concentration 

in grasslands, and through Random Forest (RF) modelling were able to account for 

71% of the variation in N. 
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In a review of non-destructive N testing methods Muñoz-Huerta et al (2013) give 

some examples of satellite based NDVI studies linked to canopy N concentrations. 

However, although they question the practical use of systems like this due to issues 

of timeliness, spatial resolution, data acquisition and accuracy, they suggest that 

planned hyperspectral satellites such as HISUI (formerly Hyper-X) hold promise of 

more accurate estimates (see Matsunaga et al (2013) for an overview of HISUI). 

Si et al (2012) attempted to model canopy and leaf chlorophyll content using MERIS 

data and the PROSAIL canopy reflectance model in the Netherlands over a range of 

biomes. They could not model leaf chlorophyll content due to frequent saturation 

issues, but canopy chlorophyll content was correlated with leaf area index (LAI). 

When calibrated against single biome types, canopy chlorophyll content could be 

better estimated (r2= 0.61) than for complex biomes (r2 =0.36). 

Proximal multispectral sensing has been deployed to measure pasture quality. 

Pullanagari et al (2012b) used a 16 band crop scan instrument to link reflectance to 

quality criteria such as crude protein levels in New Zealand pasture with moderate 

results (using a least squares model on the 1st principal components of the collected 

spectra). 

 

2.5 EO and grass farm management 

 

Grass production varies widely within paddocks, between paddocks on the same 

farm, between farms in the same agro-climatic zone and between years. A study in 

New Zealand by Clark et al (2010) found within farm variation of 12 tonnes/ha in 

grass dry matter yields between the highest and lowest yielding paddock, a 

between farm variation of  17 tonnes/ha, and no correlation between average yield 

in consecutive years across 9 years. 

2.5.1 Detecting management 

Dusseux and colleagues have published a number of recent papers on EO and 

management of paddocks in France. Dusseux et al (2014a) compared the use of 
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optical and radar satellite image time series to distinguish between grass and crops 

over 200+ sites in France. Radar derived products performed better than SPOT 

derived optical parameters in distinguishing between the two types of cover, with 

100% success reported for one suite of combined SAR/Optical derived indices. 

Although an impressive success, the spectral difference of maize and grass across a 

growing season is expected to be very high and the experiment was very well 

ground truthed against 256 field observations (64 of which were kept for validation) 

with biophysical and spectral data collected. 

This fusion approach has also been used by (Barrett et al 2014) to map grassland 

types in Ireland, although here the approach also used ancillary data to provide a 

more refined classification of grassland (improved, semi-improved and wet 

grasslands) as well as distinguishing it from crops, with accuracies reported of up to 

94%. 

Dusseux et al (2014b) used time series of LAI derived indices to highlight the 

importance of monitoring grasslands across a season to capture the very dynamic 

nature of these targets. Management (grazing and cutting) is successfully mapped 

though the use of kernel functions tailored to rapidly changing systems, as opposed 

to conventional time series analysis of crops with a single phenological profile. The 

field investigations linking management practice to spectral response are detailed 

in another paper (Dusseux et al 2014c) ably demonstrating that management is 

primarily observed in the temporal domain and not the spectral. 

North et al (2014) in New Zealand have had some success in delineating paddocks 

by segmentation of high resolution satellite time series. This is an important 

development as the extent and location of paddocks are rarely captured in any 

official database. In the case of Ireland, grazing methods such as strip grazing or cell 

grazing mean that the management unit is no longer the field; the smallest mapped 

entity in official agriculture databases. This has particular implications in the 

management of field margins and biodiversity on the farm. It also complicates 

estimates of total biomass growth and removal if the observation unit (the field 

visible on the image or in cadastral data) is not the same as the management unit. 
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Donald et al (2013), building on earlier work (see section 2.4.1), examined the 

response of paddocks to management regimes as recorded by the Landsat satellite. 

This work illustrates how different farm structure and farm size are in Australia 

compared to Ireland. Three farmlets17 observed were of approximately 54Ha, in 

size compared with an average farm size in Ireland of 37Ha (likewise, the average 

dairy herd in Australia is three times the average Irish herd of 50 cows (Donnellan 

et al 2011)). Thus data sources and scales applicable in Australia may not work in 

Ireland. 

Though not an issue in Ireland, pastures in Australia and New Zealand are often 

irrigated, either though surface water supplies or ground water extraction with 

efforts made to map irrigated paddocks from space to help quantify extraction 

rates from groundwater. Pairman et al (2011) successfully used NDVI anomaly 

mapping and rainfall data to identify irrigated pastures with an 89% accuracy in 

New Zealand, and McAllister et al (2015) used Landsat and ASTER data to find 

irrigated paddocks in Australia with similar success (88% correct). 

 

2.6 EO and Environmental Sustainability - intensive grassland systems 

2. 6. 1 EO and intensification 

Herd and grassland management are closely interlinked, with grass supplying the 

main nutrient inputs for the herd through fresh grazed grass in summer, and silage 

during winter housing (supplemented by feed in the form of grain). The 

environment effectively places limits on grass growth in a given locality, through 

climatic constraints on the length of growing season (temperature) and maximum 

growth rate (sunshine and moisture), and soil constrains grass performance as a 

result of different moisture regimes and nutrient contents. The combination of soil 

and climate obviously affect herd management with respect to turn-out date, but 

the availability of spring grass can also alter planned breeding cycles. The maximum 

size of the herd, expressed as stocking density, is controlled through the Water 

                                                      
17 An Australian colloquial term for a small farm usually run as a part-time or hobby enterprise 
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Framework Directive (WFD) legislation but also local soil conditions (Bellamy et al 

1996). 

Franke et al (2012) examined grassland use intensity from high resolution multi-

temporal Rapid Eye imagery for the purposes of grassland biodiversity conservation 

at a plot level. This work was carried out under the wider umbrella of the German 

land use mapping programme D-COVER, and the focus on intensity came as a result 

of meetings with conservation stakeholders. They note that monitoring managed 

grassland cover requires daily image acquisition during the peak production period 

which is unlikely to be achieved in northern Europe due to cloud cover. As well as 

looking at time-series change of NDVI to classify plots into grass use categories, a 

parameter that describes the amount of variation over time was created. The 

results allowed the characterisation of plots into use classes with up to 85% 

accuracy using 5 observation dates over a season. As such the work classifies 

grassland into types of use (intensive, mixed, extensive, semi-natural) and not the 

amount of intensification.  

2.6.2 EO, managed grasslands & carbon 

Section 2.1.6 showed how monitoring of rangelands by EO has played an important 

role in understanding global carbon dynamics; however its use in managed 

enclosed grasslands has been less well investigated. The emerging results are still a 

little confused on the overall carbon budget in farm systems, but studies on 

rangelands (which have 10-30% of global soil organic carbon) show that the amount 

of soil carbon they store can increase under certain management systems (Dean et 

al 2012). 

Scenario models of Irish dairy farms show that higher stocking rates are linked to 

higher GHG emissions, and that grazing dairy systems have 10% higher emissions 

per Ha land area than housed systems (when the off-farm area of land used to grow 

fodder for the closed system is included) (O’Brien et al 2012).  Beef farms have 

been shown to have higher GHG emissions due to their higher stocking densities 

(Foley et al 2011). However, actual field flux measurements of grazing systems 

show that typically the whole farm is a net sink of carbon (~2 t C Ha-1)(Byrne et al 
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2007). This apparent contradiction shows the difficulty in applying theoretical 

factors to real world situations. A similar complexity emerges in New Zealand with 

dairy grazing on flat lands associated with soil C loss, but upland grazing associated 

with soil C gain, depending on soil type, with the authors speculating that past 

drainage of poorly drained soils may be a significant factor in soil C loss (Schipper et 

al 2014). 

Work has shown that grass re-seeding (a management practice on improved 

grasslands) is associated with increased GHG emissions (due to ploughing and 

temporary post re-seeding drop in biomass) (Willems et al 2011). This shows that 

being able to monitor grassland intensification (of which re-seeding is a necessary 

function) is important for correctly allocating GHG emissions to land use. 

EO plays a role in detecting land use change and particularly soil sealing, drainage 

and wetland/peat impacts (Houghton et al 2012). Peats represent 20% of Irish soils, 

but 35% of soil organic carbon stocks (Eaton et al 2008), and are a considerable 

source of carbon loss when exploited, either mined as fuel or drained for pasture 

production (O'Brien 2007b). In Ireland land use change is monitored though the 

European 6 yearly CORINE programme (Kevin Lydon & Smith 2014), an EO derived 

product based on hybrid classification of SPOT imagery, but this is considered 

inadequate to properly capture Irish land use change dynamics (Black et al 2008). 

There is no national programme dedicated to monitoring land use by EO or other 

means, and Ireland currently amalgamates statistics from a number of national 

bodies for LULUC reporting. The only national land cover map developed explicitly 

for Ireland was created by Teagasc as part of the soils and sub-soils programme 

(Fealy & Green 2009), with some land cover maps for dedicated purposes, for 

example for peatlands  (Cawkwell et al 2010). 

When addressing GHG and carbon storage on Irish pasture, the wider agricultural 

landscape, supported by grass based enterprises, needs to be assessed. Ireland has 

the lowest cover of forestry in the EU at 13% of the land area (O’Brien, 2012), but 

hedgerows, planted and maintained by farmers, represent a significant reservoir of 

woody biomass. Classification of colour aerial photography was used to produce a 
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national map of hedgerow and scrub, showing the Republic of Ireland has 6% of the 

land area under hedgerow/scrub cover (Green 2011). Lidar scans were then used to 

estimate aboveground biomass in hedgerows and the results combined to give a 

national estimate of carbon stored in AGB of hedges (Black et al 2014).   

2.6.3 Nutrient management  
 

Nutrients in the form of organic and inorganic fertilizers have to be managed to 

ensure the grass grows as well as possible whilst at the same time ensuring no 

excess nutrients are lost primarily to water(Peukert et al 2014). Nutrient runoff is 

seen as the biggest environmental externality (next to GHG emissions) of intensive 

grassland management. The use of EO in managing the application of nutrients is 

only developing, and is very much a PA issue focused around in-situ sensors (Hedley 

2015). There are no examples of the use EO in, for example, developing decision 

support systems, (DSS) on the ideal time for farmers to apply nutrients (especially 

slurry), so as to minimise losses and leaching (though weather data are used), 

although work has begun on the use of EO to monitor application of slurry within 

closed calendar periods (Donnelly-Swift & Holden 2014). EO has been used 

however to map and monitor the negative consequences of nutrient runoff. The 

principal concern is eutrophication, excess algal growth (algal bloom) responding to 

nutrient increases in the water and impacting negatively on the aquatic biome. The 

literature on the use of EO to quantify chlorophyll concentration in inland waters is 

extensive (Matthews (2011)), but in an Irish context eutrophication status in 200 

lakes was successfully measured through the use of airborne spectrometry 

(O’Mongain et al 1999), generally however water quality in Ireland is monitored 

through in-situ networks. 

2.6.4 EO and grassland biodiversity  

Grassland habitat monitoring in farmed landscapes is most developed in Europe as 

a result of significant policy drivers. The concept of High Nature Value farming 

(HNV) is well developed (Lomba et al 2014), and it is within the framework of HNV 

that farmed grassland habitats, associated with different systems, geographies and 

levels of intensification are explored. HNV farmland has been defined as “those 
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areas in Europe where agriculture is a major (usually the dominant) land use and 

where agriculture sustains or is associated with either a high species and habitat 

diversity, or the presence of species of European conservation concern, or both” 

(EEA 2004).The methodology and processes for monitoring routinely are still under 

development and largely in control of member states. Most studies accept that EO 

systems cannot recreate the process of field acquisition at the species level that an 

ecologist would map (Pettorelli et al 2014) and instead they focus on the ability of 

EO to map large areas repeatedly and reliably. In designing a system for Canada to 

map biodiversity, Duro et al (2007) emphasise the ability of EO to map productivity, 

disturbance, topography, and land cover and thus infer biodiversity. 

Most attention in Europe is focused on grassland habitats within protected sites 

such as Natura2000, and there is a growing understanding of the use of EO for 

monitoring these sites (Vanden Borre et al 2011). However a recent review of EO 

and conservation site monitoring highlights that methods are far from standardised 

and these sites are often complex, and this complexity confounds monitoring when 

different sensors and scales are used (Nagendra et al 2013). As an example Hazeu 

et al (2014) used SPOT imagery with other spatial data sets to propose an indicative 

map of HNV farmland in Holland. This approach is used within the Irish IdealHNV 

project18, to create an indicative map of HNV presence at a 1km tetrad scale (Matin 

et al 2016) 

In Germany Buck et al (2015) used high-resolution RapidEYE imagery and an expert 

rule base on landscape scale habitats associated with grassland types to 

successfully map high value grasslands outside of Natura 2000 sites. The 

biodiversity status of grasslands is closely linked to intensification and management 

and these are more directly detectable by EO than species mix. In Ireland the 

detection of farmland habitats outside of protected areas has relied on field work 

or simple GIS based generalised additive models of indicative information such as 

soil maps and stocking density (Sullivan et al 2011). As part of the Teagasc/EPA soils 

                                                      
18 https://idealhnv.wordpress.com/ 
 

https://idealhnv.wordpress.com/
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project habitat map, referenced in section 2.10, grasslands were mapped at 1Ha 

resolution in a classification of Landsat-5 imagery, identifying wet and dry 

grasslands and karst grasslands. Farmland habitats, including grassland types, were 

also successfully mapped in the Burren Special Area of Conservation (SAC) using 

field data and Landsat imagery (Parr et al 2006). 

 

2.7 Currently Operational Services 

2.7.1 Grassland precision agriculture services 
 

An early review of precision agriculture, PA, in grassland (Schellberg et al 2008) 

identified a number of issues to be addressed with reference to heterogeneity in 

grassland management, with species and utilization being the principal concerns. 

The review outlined a number of broad areas of current PA including robotic 

machine vision systems for weed detection and species recognition and EO for 

pasture and livestock management, concluding that heterogeneity and issues with 

spectral and temporal resolution limit the use of EO in PA for grasses, even if it is 

tailored to specific localities and production methods. The implications of the 

review are that decision support systems (DSS) that convert data on grasslands to 

information to action are under-developed and the economic argument still needs 

to be made in a convincing manner at the individual farm scale. These issues remain 

largely true in 2016, as recognised by the UK Office of Science and Technology 

which also identified PA in grasslands (which, as in Ireland, constitute the largest 

component of UK agriculture) to be under developed (POST 2015), and suggest 

central government support, with industry partners, for grassland PA development 

and adoption. 

 

Table 2.4 gives a list of the EO driven grassland PA services commercially available 

that the author could discover. The services generally provide up-to date estimates 

of grassland biomass yield at hectare scale at best. 
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Table 2.4: Currently available EO driven PA services in grassland (not including crop focused 

services, imagery suppliers, and local resellers). 

Name Scale Company Service Type Notes 

AgImage Paddock Land gate (AUS) Grass yield 

Estimates 

Beta service not fully 

operational 

Pasture 

From Space 

1km Land gate (AUS) Pasture 

Growth Rate 

 

NRMHub Unknown Rangeland 

Natural Resource 

Management 

Alliance (AUS) 

Grass cover Beta service not fully 

operational 

VegMachine Rangeland CSIRO (AUS) Resource 

change 

detection 

Designed to help rangeland 

manager observe landscape 

scale changes of grazing 

resources in response to 

management regime change 

PiMap 250m eLeaf, (NL) Biomass 

(kgDM /ha) 

Claims to estimate biomass 

and other parameters (c3 

plants only) from satellite 

driven energy balance model. 

 

2.7.2 Farmer Acceptance of PA in pasture management 

A pasture growth rate model, PGSUS, was incorporated into pasture management 

software which estimates paddock scale biomass from local weather conditions, 

provided some regular local measurements are entered by the farmer, and its use 

and acceptance to Australian farmers evaluated. Romera et al (2013) found farmers 

were happy with the idea of PA in dairy farms, but found repeated data entry to be 

undesirable and stated that any new software had to fit with existing management 

strategies.  The authors conclude that data entry needs to be simplified and made 

quicker to increase acceptance and results should be made available to farmers 

instantly. Similarly, a study by Eastwood (2008) in Australia concluded that PA 
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adoption is slow because of a focus on technology, and not on the farmer and the 

farm system. A detailed formation of the learning and adoption strategies of the 6 

farm case studies showed that engagement is only partial because at some point 

farmer needs and expectation of the technology deviate from the design principles 

embedded by the manufacturer. 

A recent EU report (Zarco-Tejada et al 2014) on PA adoption concentrates almost 

exclusively on crops and horticulture (with a small mention of PLF but nothing on 

grazing or grass), but its general points regarding adoption hold true: 

 

• PA profitability is critical 

• Current PA adoption is machinery led 

• PA profitability is farm size dependent 

 

Grazed grass is the cheapest feed available, therefore any technologies that 

increase the amount of grazed grass in a herd diet reduce costs and is a clue to 

where adoption may evolve in pasture based enterprises is the observation (ibid, 

pg.12): 

 

“In an agriculture market where gross margin and profitability are getting tighter, 

farmers are looking for technologies that reduce costs without decreasing 

production.” 

 

In a review of PA by  Zhang et al. (2002)  the following barriers to acceptance were 

identified: 

• Data overflow for farm management has to be overcome by developing data 

integration tools, expert systems, and DSS. 

• Lack of rational procedures and strategies for determining application 

requirements on a localized basis and a parallel lack of scientifically 

validated evidence for the benefits claimed for the PA concept. 

• Labour-intensive and costly data collection with the development of rapid 

sensing systems needed before PA can be widely practiced. 
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• Lack of technology-transfer channels and personnel with educational 

programmes involving researchers, industry, extension specialists, and 

consultants urgently needed. 

 

Finally a review of the literature (Pierpaoli et al 2013) on the drivers of adoption 

found that education and age were frequently cited as important factors in farmer 

adoption of this technology. As demographic shifts in farm population lead to more 

formally educated farmers in Ireland (McDonald et al 2013) PA adoption is likely to 

increase. 

 

2.8 Future Developments 

 

In a detailed and considered review of new technologies in grassland management 

and research Schellberg and Verbruggen (2014) cover EO in grassland management 

with their conclusions regarding its use in observing management, cover, 

composition and biomass echo the literature outlined here. Their observations on 

the spatial and temporal limitations of EO for grasslands, especially in small scale 

enclosed intensive systems like Ireland, are clear and the authors conclude that 

more research on in situ sensors will be the focus of future research (especially with 

the dramatic increase in drone deployment on farms). In their conclusions they 

rightly highlight the need for more cross-disciplinary research between agronomists 

and EO experts, but their conclusions on technology in grasslands in comparison to 

arable needs a more critical response. 

The authors conclude that technology is less critical on grass farms than arable 

because: 

I) there is a limitation of management options in cutting, grazing etc. 

II) there is less need for technologies used in arable systems such as weed 

and pest control 

III) only one crop, grass, is grown 
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This conclusion reflects a common idea in PA for grassland, that grass is a crop and 

can be treated as such within the PA paradigm. Instead, in dairy and beef systems it 

is more beneficial to think of grass as a means to an end and management of it as 

only one part of a multi-functional decision space. The number of management 

options in grassland systems may be limited, but their potential application and 

interaction is manifold (refer back to Table 2.1). A tillage field is treated as one 

management unit with a single goal, maximising yield of the crop, whereas a grass 

paddock has multiple uses throughout the season (grazing, silage, hay). Tillage 

fields can be treated as independent objects in a farm management system, where 

paddocks are part of more complex inter-locking farm systems, attempting to feed 

animals now and in the future, where decisions on one paddock can have impacts 

on other paddocks. 

PA literature often has a bias toward yield maximisation and reduction in spatial 

heterogeneity, but formal definitions of PA do emphasise the importance of timing 

of events, and in grass management in intensive farms it is timing and interaction of 

events i.e. dealing with temporal heterogeneity where PA can have the biggest 

impact. Within the PA paradigm of crops and horticulture the drivers have been 

agronomic (yield maximisation, crop protection, etc.), but with paddock 

management the drivers are economic and are principally concerned with reducing 

costs for the whole farm system. As a result it is evident that the application of PA 

techniques has only begun for paddock management, but that it needs to be 

considered independently from PA for croplands. 

As grass is the cheapest feed available, poor paddock management is money lost, 

but paddock management is time consuming and thus increases labour costs on the 

farm. Much of the current PA development is concentrated on automation and 

reducing labour costs, for example in sensor deployment, robotics and data 

management. Gobbett et al (2013) are developing proximal sensor systems for 

deployment in paddock management, but their work highlights the many 

operational hurdles to be overcome in integrating an automated system reliably 

into a farm workflow. Reddersen et al (2014) shows how ultrasonic measurements 
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of sward height is a successful method and compares as well as, or better than, 

proximal optical sensors, and Fricke and Wachendorf (2013) combined ultrasonic 

with multispectral sensors to measure biomass in grass-legume swards19. 

As discussed in section 2.1.9, a number of studies have begun to look at SAR as a 

tool for observing grasslands and pasture, driven by its all-weather capabilities, 

ability to detect some soil properties and availability of new higher resolution data. 

Dusseux et al (2012) suggest that there is no increased accuracy in distinguishing 

grassland management between optical and optical plus radar, therefore in cloudy 

countries such as Ireland where a time series of optical data may be limited the 

combination of sources is appealing. 

Spatial resolution will further improve for EO platforms, and combining local 

sensors with satellite models will enhance performance of pasture monitoring 

systems (Rahman et al 2014). The use of UAV mounted sensors is likely to be a 

significant factor in grassland management at a local scale in the near future (von 

Bueren et al 2015) in light of very rapid developments in technology (currently 

hampered somewhat by flight regulations that have failed to keep up with the 

technology), however this will not be feasible at a large scale. 

2.9 Conclusion 

Grasslands have long been a target of interest in the remote sensing literature. 

Within this literature they are principally understood as a land cover but in the 

absence of an accepted definition of grasslands within the EO community there are 

widely divergent estimates of what seem to be the same cover. 

Beyond land cover, extensive grasslands, or rangelands, are largely treated as an 

exploited natural resource, more akin to an exploited natural forest than a crop. 

Satellites have been used to map and monitor degradation of rangelands associated 

with overgrazing, climate change and land use change. When addressed as a more 

                                                      
19 Ultra-sonics have been developed into a field sensor for farmers to measure grass biomass by an 
Irish company http://www.grassometer.com/ 
 

http://www.grassometer.com/
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sustainable resource, managed rangelands have been studied to estimate carrying 

capacity and the response of the grassland biome to weather shocks. The role of 

rangelands in global carbon stocks and sequestration has grown but there is work 

needed to refine our understanding of carbon sequestration of grasslands in 

response to different management methods and the net carbon sequestration of 

the rangeland farm systems. 

All of these approaches exploit the same fundamental relation of vegetation cover 

to Vegetation Index, and the multi-collinearity of different vegetation parameters 

(LAI, NPP, LUE etc.) is largely unaddressed. By far the most common VI used is NDVI 

and more recent studies, whilst exploiting newer indices, generally report NDVI as 

performing adequately in comparison.  

As the studies change in focus and scale to look at more intensive pasture 

production the geographic interest moves from China and the Americas to 

Australia, New Zealand and North Atlantic Europe, home to large-scale, rain fed, 

grazing based dairy industries. Australia has the most developed EO for pasture 

production research, with large dry-land paddocks on ranges providing good targets 

for estimating feed on offer, grass ecotypes, growth rate estimates and drought 

effects. As with the studies with less managed rangelands, these services largely 

rely on NDVI relationships being established with the vegetation parameter under 

investigation, but models combining satellite data (mostly AVHRR and Landsat) and 

meteorological data have begun to reach operational standards. By contrast, in 

enclosed highly managed temperate grassland landscapes such as New Zealand, 

Ireland and the UK, EO is only beginning to be employed. The early studies (in the 

last five years) have successfully linked VI with biomass, biomass removal and 

management on experimental sites but it is clear that the dynamic multifunctional 

nature of grassland management, with farmers managing multiple paddocks under 

multiple regimes in ways that adapt to demand on a weekly basis, is a major 

confounding factor in operationalizing EO in the farm landscapes (made more 

difficult, as many authors acknowledge, by frequent cloud cover). To be successful, 

EO applications on these farms need to be able to observe farm structure (e.g. farm 
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heterogeneity and stocking density), farm management (especially rotation cycle 

and herd management), feed on offer/feed demand (standing biomass Kg/DM/ha) 

and yield (silage and hay harvest totals). Stocking density is estimated on 

rangelands but not in intensive temperate enclosed grasslands, small scale 

estimates of silage and hay making have been made, as have standing biomass 

estimates, but there is little literature on herd management decisions in these 

landscapes. 

The use of PA on grassland farms is expanding, especially with the growth of 

precision dairy farming. The range in performance of grassland farms compared to 

the range in tillage farms suggests there is a large reservoir of untapped potential. 

However barriers still exist with a lack of understanding in the PA industry of what 

grassland farmers need (grass is not just another crop) and existing barriers to PA 

adoption generally related to cost, relevance and applicability. The growing 

literature on knowledge transfer (KT) and PA suggests that systems need to fit into 

existing management paradigms on farms, be easily understood or taught, use a 

common language and, especially for grassland farmers, concentrate on systems 

that reduce cost rather than increase yield. 

In short, most of the issues raised in this literature review could be resolved with 

field-scale estimates of biomass, weekly estimates of grass management and 

performance, and long term monitoring of grassland intensification. 
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3 Cattle stocking rates estimated in temperate 

intensive grasslands with a spring growth model 

derived from MODIS NDVI time-series. 
 

3.1. Introduction 

Globally, grasslands are exploited as a feed resource for livestock and broadly can 

be divided into natural rangelands, which are common in the Americas, China and 

Australia, and highly managed enclosed paddock/field systems that are common in 

Atlantic Europe. Managed grasslands for the production of meat and dairy produce 

are a significant agricultural land use globally (Bouwman et al 2005), and an 

important factor in global greenhouse gas (GHG) emissions (Suttie et al 2005). 

 

The level of exploitation is largely dependent on the number of animals an area is 

to support, in rangelands this is the carrying capacity and in pastures it is the 

stocking density. Open natural grasslands used for grazing, otherwise known as 

rangelands, have attracted considerable interest from the EO community with 

studies at global and regional scales as highlighted in Section 2. An example of a 

global scale study is the work of Zhang et al (2009) in estimating NPP/GPP of 

grassland biomass using MODIS data (this follows from earlier 2008 work by Zhang 

discussed in 2.1.8. Regional studies include evaluation of grassland production with  

Landsat Thematic Mapper data in the South African Rangelands (Bastin et al 1998), 

use of AVHRR data in Australia (Hill et al 2004), and MODIS data in China (Cui et al 

2012) as discussed in section 2.1.7. The literature on EO of rangelands is extensive 

with Tueller (1989) providing an early review of its potential. Booth and Tueller 

(2003) assessed EO utility from the perspective of the rangeland manager, and 

Svoray et al (2013) highlighted developments in methods and technologies during 

the early years of the 21st century. In contrast, the EO literature on intensively 

managed paddocks (highly managed enclosed systems, wherein grass is grown as a 

crop for grazing and fodder) is much smaller and there is no published review  
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concentrating just on the use of imagery for paddock management (although 

Schellberg et al (2008) include EO in a review of precision agricultural techniques 

for grassland management). Recently Ali et al (2016) published a review of grass 

biomass estimation by RS technologies. Studies that have been done looking at the 

use of EO for paddocks have focused around decision support systems for farmers 

and as a precision agriculture tool to maximize grassland production through 

efficient use of inputs. 

 

As shown in section 2.4 many of the EO studies on monitoring the effect of grazing 

on grasslands use measurements of a vegetation index (VI). Time series of high 

resolution data such as IKONOS have demonstrated that NDVI data can detect post-

grazing regrowth within a paddock (Handcock et al 2009a), and also that NDVI can 

be used to measure pasture growth (Donald et al 2010, Phillips et al 2009). Lower 

resolution MODIS data have been incorporated into paddock level management 

regimes, all be it in large Australian paddock systems where the average paddock is 

25ha compared to the average Irish field size of 4ha, with daily MODIS acquisitions 

combined with field level sensors in an attempt to create automatic feed budgets 

for cattle with some success (Donald et al 2012).  

 

In the land cover mapping literature “grassland” is often a default class, ignoring 

the different land uses that grassland can be put to and the very great variance in 

habitat value of grassland. In the last few years a number of researchers have 

highlighted the need for better discrimination in grassland mapping, most especially 

around grassland habitats and grassland exploitation/management, and most of 

the reviews identify remote sensing as the mechanism by which this can be 

achieved. For example a recent overview of the sector by many of the leading 

researchers in European and agricultural land use modelling (Kuemmerle et al 2013) 

noted that: 

 

 “Global data on grazing systems are particularly scarce…Likewise information on 

other [Grazing] input indicators are missing” (pg. 488). 
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The key recommendation from this paper is that: 

 

“Future research should focus on improving existing land use intensity 

metrics…”(pg.490) 

 

A recent study on Irish grassland/cropland dynamics by Zimmermann et al (2016b) 

showed an absence of detailed data on permanent grassland, and using grassland 

as a default “other” class can lead to underestimating emissions in LULUCF 

reporting under the Kyoto protocol. 

 

Another shortfall in information around grassland exploitation is stocking rate (SR), 

the number of livestock units per unit area (LSU/ha) which is a basic measure of 

grassland use. European habitat projects such as ENVIEVAL (Schwarz et al 2014) and 

others (Elbersen et al 2014) identify the absence of high resolution SR data as a 

significant barrier to identifying and protecting species rich grasslands. Mapping 

grassland utilization at high spatial resolution is a necessary pre-requisite to 

effective agri-environmental planning, with Vinther et al (2011) identifying livestock 

patterns, SR, intensification, and farmland abandonment as key agri-environment 

indicators that need to be recorded at scales better than the NUTS-2 level (a 

regional scale defined under the Nomenclature of Units for Territorial Statistics 

(Eurostat 2003) ) to adequately capture trends.  

 

There have been attempts to model stocking rate as Chang et al (2015) did for 

Europe, but generally at a coarse scale (e.g. 25km) and with very broad assumptions 

regarding farmer behaviour and stocking rate. Chang et al.’s adaptation of the 

ORCHIDEE ecosystem model assumes that farmers in Europe maximise stocking 

density to the limit imposed by soil and climate conditions, however there is no 

evidence presented that this is so, and the management options for addressing 

environmental, especially soil, constraints are not addressed. The global model of 

animal stocking density produced for the Food and Agricultural Organisation (FAO) 

for 2010 (Robinson et al 2014) is discussed in detail in section 3.5.1. 

 



70 
 

 3.1.1 Remote sensing and stocking rate. 
 

In rangelands it is common for a priori knowledge of stocking rate to be used in 

spatial ecological models that examine the effect of grazing on grasslands. These 

mechanistic models can be combined with remote sensing to monitor rangeland 

degradation, as demonstrated by Paudel and Anderson (2010) with a study on 

grazing pressure in Nepalese rangelands. Oesterheld et al. (1998) used accumulated 

monthly averages of 1km AVHRR data over 7 years (1982-88) to build a relationship 

between NDVI and stocking rate at county level in Argentina.  Using MODIS data, 

Numata et al. (2007) analysed the complex interactions of stocking rate, bio-

physical parameters and satellite derived vegetation indices in Amazonian pastures, 

linking NDVI to grazing intensity via the bio-physical parameters observed. Much of 

the work on estimating stock rate in rangelands from NDVI has effectively 

correlated herd numbers with biomass removal through grazing (Zongyao et al 

2012). Hunt and Miyake (2006) compared SR derived from 12 years of AVHRR data 

on Wyoming rangelands with official USDA stocking figures, but found only a weak 

correlation. In this case the NDVI stocking rate was derived as a function of 

available forage calculated from accumulated NPP estimates, with the assumption 

that the animals follow available fodder. 

 

The use of time series of satellite data to provide benchmarks of vegetation 

performance for climate studies and agricultural monitoring is well established. 

AVHRR and MODIS data have been used for long term studies of agricultural land 

use change at country level (de Beurs & Henebry 2004, Propastin et al 2007, 

Wardlow et al 2007) and globally (Friedl et al 2002, Ganguly et al 2010). Local long 

term averages of NDVI values have been used to characterize agricultural land use 

(Baldi et al 2008), and deviations from means (NDVI anomaly) are used to alert 

authorities to potential drought or food shortages. 

 

In intensively managed temperate grasslands there is less concern in the EO 

literature with estimating SR as it is often assumed the data are available as a 

national statistic. However the absence of adequate statistics, even in the European 
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Union (EU), for validating stocking rate estimates has been identified in a number of 

studies. Temme and Verburg (2011), in a well cited paper, used statistical 

downscaling methods to produce maps of agricultural land use intensity across 

Europe at a 1km2 scale, however for grasslands they were unable to fully validate 

the outcome because of a lack of official stocking rate data. The unwillingness of 

agencies to release detailed stock statistics is identified by the authors as a 

significant hindrance to development of grassland intensification maps in Europe. 

3.1.2 Aim of the section. 
 

An important gap in the generation of agricultural information, namely validated 

high resolution SR maps for intensively managed enclosed grassland systems has 

been identified by researchers. Intensive pasture-based farming naturally occurs in 

climatically favourable areas, but with a high degree of spatial and temporal 

variability due to farm management practices. The amount of grass in the field in 

spring can be controlled to some extent by farmers, but it is also influenced by 

seasonal weather effects with this variability between farms and across seasons 

evident in a time series of satellite observations.  

 

This section evaluates an approach to estimating stocking rate (SR) of cattle in 

Ireland through modelling spring grass growth using a MODIS NDVI time series 

averaged over a decade to produce validated maps of SR. The section first describes 

the various datasets used to construct the spring growth map, and then goes on to 

outline the decisions behind the choice of stocking rate model, its construction and 

testing. The successful NDVI model is used to build a national stocking rate map for 

Ireland which is tested against independent ground truth data and compared to a 

simple agri-climatic driven model of SR. The output is compared to a recently 

released global animal numbers database. 
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3.2 Materials  

3.2.1 Satellite data 
 

The use of a time series of data with a high temporal resolution and a deep 

historical archive that is freely available limited the choice to MODIS, AVHRR, SPOT-

Veg or MERIS data.  NDVI imagery (Huete et al 2002) were selected as these have a 

higher spatial resolution than AVHRR and SPOT-Veg (1km), and are available from 

2000 to the present day, unlike ENVISAT-MERIS which has been non-operational 

since 2012. The principal concerns in this study were frequent observations (both to 

overcome cloud contamination and to capture grassland dynamics), a long time 

series and observations in the red and Near Infra-Red, NIR in order to exploit VI, 

techniques. NDVI is, as outlined in sections 1.1.2, 2.1.2 and3.1.1, the most 

commonly used VI for grassland studies, and although it exhibits well documented 

saturation at high biomass levels (Fontana et al 2008) this does not present a 

significant issue for this study which focuses on spring growth, prior to the peak 

summer biomass levels. 

 

MODIS is flown on the NASA Terra and Aqua satellites (Figure 3.1 shows an atypical 

cloud free MODIS image of Ireland). This is a low spatial resolution (1km to 250m), 

medium spectral resolution (up to 36 bands), and high temporal resolution system 

(1-2 days between images). The outputs are pre-processed to a high degree with 

derived products as well as spectral bands readily available. 

 

The Terra and Aqua satellites, like most EO platforms, are polar orbiting at an 

altitude of 650km above the surface completing an orbit every 87 minutes, passing 

over each pole in doing so. The satellite is in a sun synchronous orbit, therefore the 

angular relationship between satellite and sun is constant. The MODIS sensor 

continuously records observations across its 36 bands, relaying the data in its 

memory to a network of base stations around the world. The particular 

combination of orbit and large swath width of 2330km is such that Ireland is 

observed nearly every day, always at 11.50 am local time.  
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Many data products derived from MODIS are available; the three products 

considered are composite products that guarantee an observation at some level of 

confidence. Compositing is a process to gap fill cloudy or contaminated pixels to 

ensure a seamless time series. The process is complex but in essence each pixel 

across the compositing period (8 or 16 days) is the best quality pixel with the 

maximum value, either band by band or for computed vegetation index (this is 

done using daily pixel values for 8 and 16 day composites in the collection 5 data 

used here but from 2016 onward the 16 day composite is itself derived from pre-

composited 8-day data (Solano et al, 2010)). However, importantly, if no cloud free 

pixel value of sufficient quality is available the pixel is filled with a lower quality 

composite estimate based on historical averages. Earlier work in Ireland (O'Connor 

et al., 2013) has shown that the frequency of cloud contamination is such that in 

spring that the composite product represents the only cloud free daily product (i.e. 

no information is lost in using the composite product over the daily data in 

composting period). 

 

The MOD09A1 product has surface reflectance in 7 bands with resolution of 500-m. 

MOD09Q1 provides reflectance values for bands 1 and 2 (band 1 = 620–670 nm; 

band 2 = 841–876 nm). MOD13Q1 has data for NDVI and EVI, and surface 

reflectance from bands 1, 2, 3, and 7 with 250-m along with quality flag bands 

(Table 3.1). The day of year during the composite period when the best observation 

is recorded is called the day of pixel composite which is included in the MOD09A1 

and MOD13Q1 products but not in the MOD09Q1 product. 

Table 3.1: Pixel reliability codes for the MODIS products. Only Code, 0 were used in this analysis 

Product Resolution 
(m) 

Composition 
Day 

Composition 
Period 

Band 
1 

Band 
2 

NDVI EVI QI Usability 
Index 

MOD13
Q1 

250 Yes 16 days Y Y Y Y Y Y 

MOD09
Q1 

250 N 8days Y Y N N Y N 

MOD09
A1 

500 Yes 8days Y Y N N Y Y 
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Figure 3.1: A MODIS image of Ireland (acquired October 11th, 2010) 

 

The selection of MODIS product is a compromise therefor between spatial and 

temporal resolution and pre-processing requirements. The compositing process 

guarantee’s a pixel value but use of “historical averages” would be in appropriate 

when attempting to characterise real current conditions, so only pixels using the 

highest quality real data can be used. In order to build a model representing actual 
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events the real date of the composite pixel value represents has to be known. As 

the MOD09A1 8 day product has no day of composition data this could be 

eliminated. 

 

Previous studies have shown that the highly fragmented heterogeneous Irish 

landscape presents a considerable challenge at courser scales when studying 

change over time, the highest possible resolution is preferable (Cawkwell et al, 

2018). Therefore the product MOD13Q1,  16day 250m resolution, was selected.  

 

The selected MOD13Q1 16 day composite product provides detailed pixel reliability 

and quality codes (listed in Table 3.2), and Day of Year (DOY) acquisition code for 

each 250m pixel (García-Mora et al 2011). In this analysis only those pixels coded 0, 

use with confidence, were used.  

 

Table 3.2: Pixel reliability codes for the MODIS products. Only Code, 0 were used in this analysis 

Code Pixel Reliability Description 
-1 Fill/No Data Not Processed 
0 Good Data Use with confidence 
1 Marginal data Useful, but look at other QA information 
2 Snow/Ice Target covered with snow/ice 
3 Cloudy Target not visible, covered with cloud 

 

The use of time composited imagery is essential in Ireland where cloud cover 

frequently precludes use of daily data, with all 16-day composites for the period 

February 1- April 30 2003-2012 downloaded from the NASA ftp service. As an 

example, Figure 3.2 shows how few days are cloud free in March and April over this 

10 year period. If data were acquired every day by MODIS over Ireland and every 

day were cloud free then the number of high quality days, in this period, would be 

60, however the average is 8.  Figure 3.3 shows the total number of high quality 

pixels on February 1st, March 1st and April 1st across the ten years. This low number 

of day/pixels with high quality data is a significant driver in the choice of a simple 

linear model (needing only a few points to define) over a more complex sigmoidal 

function, see section 3.3.2.  
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Figure 3.2: Average number of good quality MODIS pixels (QF 0 or 1) in March and April 

(theoretical maximum 60). 
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Figure 3.3: For three days of the year, high quality pixels from 10 years of data are shown in 

purple. 

3.2.2 Stocking Data 
 

Data on stocking levels are contained in the confidential Land Parcel Identification 

Scheme (LPIS), the national inventory of agricultural parcels, used in the payment of 

EU subsidies (Zimmermann et al 2016a). Stocking rate was calculated as the 

number of animals (Livestock Units, LSU) per hectare, with animals given a 

weighting (e.g. a dairy cow=1, a calf=0.4) as per the standard LSU calculation under 

EU  accounting  rules (see (FADN 2010) for all definitions).The livestock data were 

supplied as average stocking rate per townland, the smallest scale address locator 

in rural Ireland, each being typically 2 or 3 km2 in size and containing on average 5 

or 6 farms (Green & Donoghue 2013) as shown in Figure 3.4. The set of townlands 

used in this study had a range of stocking densities of between 0.1 LSU/Ha to 3.3 

LSU/Ha. 
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Figure 3.4: Typical agricultural landscape (Co. Kerry in the Southwest of Ireland) with townlands in 

blue and the MODIS 250m pixels outlined in grey. 

 

The stocking data were only available for 2007 (see Figure 3.5 for distribution map), 

however policy implementation and the imposition of milk production quotas have 

kept the Irish cattle population stable through the period 2003-2012, as shown by 

the CSO data in Table 3.2 (Figure 3.6 shows the regions used in Table 3.3).  
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Figure 3.5: Distribution map of LSU data for 2007, with no data for urban areas and Northern 

Ireland. 
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Figure 3.6: Regions of Ireland (including Northern Ireland) 

 

There are 46,702 townlands in rural Ireland, but only those larger than 1km2 were 

used to allow for a sufficiently large sample size of MODIS pixels. Within that subset 

only townlands that were, in terms of area, at least 95% grazing and at least 95% 

grass (grazing can also occur on upland moorlands and peat bogs) were selected. 

This remaining set of 2180 townlands acted as ground truth in the subsequent 

analysis (Figure 3.7). 

 

Table 3.3: Regional and national herd figures in thousands for Ireland broken down regionally, 

taken from the CSO. The average regional and total figures over this period are very similar to the 

2007 values. 

Cattle(LSU) 

‘000 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Mean 2007 % diff 

from mean 

Border 962 955 934 925 921 918 909 876 856 884 914 0.8 

Midland 793 782 802 814 801 799 799 768 748 783 789 1.5 

West 995 990 979 979 981 985 968 908 886 915 959 2.4 

Mid-West 1049 1061 1049 1042 1017 1025 1017 959 942 989 1015 0.2 

South-East 1202 1241 1243 1253 1243 1242 1257 1218 1207 1265 1237 0.5 

South-West 1411 1404 1390 1372 1346 1359 1365 1315 1308 1358 1363 -1.2 

Dublin/Mid 

East 

588 583 597 593 582 575 576 563 547 561 576 1.0 

Total (LSU) 7000 7016 6992 6978 6891 6902 6891 6607 6493 6754 6852 0.6 
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Figure 3.7: Distribution of townlands used in study. 

3.2.3 Agri-climatic data 
 

In order to demonstrate that the NDVI time-series data do contain information 

regarding farm management, and are not merely reflective of general agri-climatic 

growing conditions, the NDVI model is compared to a simple agri-climatic model of 

growing conditions against stocking rate. The components of this model are: 

 

• x,y, and z coordinates of the 2180 townlands ground truth set  
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• Majority soil type in the townland, taken from the General Soil Map of 

Ireland (Gardiner & Ryan 1969) 

• 30 year mean temperatures for February, March and April (rainfall is not a 

limiting factor in spring grass growth in Ireland) (Met Éireann 2012b). 

3.2.4 Grassland in Ireland 
 

 In both beef and dairy systems, the animals are grazed throughout most of 

the year in open fields and are housed over winter for between 2 and 6 months 

depending on location. A wide variety of herd sizes and levels of intensification exist 

across Ireland. The SR on the farm is a simple expression of intensification and is a 

consequence of a number of factors, including location, farm system, farmer age, 

soil type and grassland production potential (Läpple et al 2012, O'Donnell et al 

2008). Irish managed grasslands are complex land functions incorporating multiple 

land uses in a season in a highly heterogeneous landscape. 

 

High SR can only be supported by the provision of grass fodder, higher stocked 

farms will put considerable resources into ensuring high growth rates and early 

spring covers.  

  

3.3 Methodology 

3.3.1 Processing satellite data 
 

Phenological analysis has been utilized to find both spatial and temporal trends in 

important climate indices such as start of season (Jonsson & Eklundh 2002). 

Phenological approaches often involve statistical smoothing techniques (Chen J et 

al 2004) to fill in data gaps, and assumptions have to be made about signal to noise 

ratio in eliminating errant data (Bradley et al 2007). Work in Ireland by (O’Connor et 

al 2012) used smoothed time series MERIS data to link start of season events with 

land cover, and highlighted the difficulties posed by Ireland’s highly fragmented 

landscape when attempting to extract a spatio-temporal signal. Much of the 

literature for crops makes assumptions about the idealized nature of the growth 
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curve in order to fit a smooth curve, i.e. that there is a single crop in a season, that 

grows to maturity and is then harvested with a single cropping. It has been shown 

that these assumptions begin to break down in areas of complex multi-cropping (as 

discussed by Atzberger (2013)), and in grasslands that experience 2 or 3 silage cuts 

per year. 

 

These problems can be partly overcome by examining only a short part of the 

growth cycle where assumptions of seasonal growth curves and single/multiple 

cropping do not have to be made.  Whilst linear and log-linear models are 

simplistic, a recent review of plant growth modelling by Paine et al (2012) states 

that linear models are appropriate over small sections of the growing cycle. Growth 

rates in the early part of the season in Ireland can be represented as a simple linear 

function with time (Han et al 2003), as can be seen from the rising limb of Figure 

3.8, with field data from an experimental farm in the north-east of Ireland 

illustrating typical grass growth in the country. 

 

The advantage of this approach is that modelling growth over the early spring 

period as linear functions of time means that only a few good quality observations 

across the period are needed to define the relationship and characterize the 

vegetation growth at a locality. This allows for very rigorous quality assessment to 

be carried out, using only the data that have the highest quality flag in the MODIS 

product, which is important under conditions of extensive cloud cover. The data 

were processed to extract only high quality pixels, and for each DOY across the 90 

days of the 10 year period, the average NDVI value of just these high quality pixels 

was found. If the pixel was represented by low quality values in the quality flag (QF) 

layer the output was set to “No Data”. This process is illustrated in Table 3.4 and 

the results for a single pixel are shown in Figure 3.9. 

 

Using the 16 day composite product simplifies the process as the production 

process identifies the high quality pixels in the construction. An analysis of the 

period in question showed the number good quality days lost were insignificant  

using the 16 day product over the 8 day or individual daily acquisitions. 
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Figure 3.8: Mean grass biomass measurements across a 6 year period, 2003-8, derived from field 

observations at an experimental farm in the NE of Ireland (Grange, Co. Meath). 

 

 
Figure 3.9: Data for a single ‘typical’ pixel. For the 90 days in the period February 1st to April 30, 66 

days had no observations or poor quality pixels across the 10 years, leaving 24 days for which an 

average value could be calculated on which to fit a trend. 
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Table 3.4:  Quality processing for a single pixel: For each DOY there are 10 potential NDVI scores 

for years 2003-2012, ND indicates no data available due to cloud. Instead of just taking an average 

of all available values, only those values with the highest quality flag (shown as bold) are used. 

This is done for all DOY between 1st February and 30th April, thus each pixel is represented by up 

to 90 values, representing each average daily NDVI score across the decade 

Pixel X DOY 31 32 33 ….. 118 119 120 

Year YearVX
DOY               

2003   2003VX
31 ND 2003VX

33 ….. ND 2003VX
119 2003VX

120 

2004   ND ND ND ….. 2004VX
118 ND 2004VX

120 

2005   2005VX
31 2005VX

32 ND ….. 2005VX
118 2005VX

119 2005VX
120 

2006   ND 2006VX
32 2006VX

33 ….. 2006VX
118 2006VX

119 ND 

2007   2007VX
31 ND 2007VX

33 ….. 2007VX
118 2007VX

119 2007VX
120 

2008   2008VX
31 ND 2008VX

33 ….. ND 2008VX
119 2008VX

120 

2009   2009VX
31 ND ND ….. 2009VX

118 2009VX
119 2009VX

120 

2010   ND 2010VX
32 2010VX

33 ….. 2010VX
118 ND 2010VX

120 

2011   2011VX
31 2011VX

32 ND ….. 2011VX
118 2011VX

119 2011VX
120 

2012   2012VX
31 ND 2012VX

33 ….. ND 2012VX
119 2012VX

120 

Mean  VX
31 VX

32 ND ….. VX
118 VX

119 VX
120 

 

3.3.2 Spatial Model Development of Early Spring Growth 
 

Taking this stack of high quality NDVI observations and assuming that NDVIDOY is a 

proxy for biomass, a linear model of mean NDVI against DOY for each pixel was 

generated using a least squares approach implemented in ArcGIS: 

 

cDOYgrNDVI DOY += .  Eq3.1 

 

where gr, is the gradient representing rate of growth and c, the intercept, being the 

theoretical amount of cover at the start of year. The resultant coefficients, gr and c 

are plotted in Figures 3.10a and 3.10b at pixel level. For the construction of the 

stocking rate, SR, model, the average value within the townlands was used. 
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3.3.3 Simple agri-climatic model 
 

In order to demonstrate that the spring model is responding to more than agri-

climatic growing conditions, a simple agri-climatic model with respect to stocking 

rate was created. Location was described with x, y, z coordinates for the townland 

centroid, and the mean temperatures in February, March and April were ascribed 

to each townland from the national gridded climate sets available from the national 

meteorological agency for the 1981-2010 period. 

  

Soil type in the townland from the General Soil Map of Ireland (Gardiner & Radford 

1980) was interpreted as a dummy variable by classifying soils as Poorly or Well 

Drained. Soils in Ireland are extremely complex and very variable even over small 

scales, so townlands that didn’t have a majority soil type greater than 50% of the 

area of the townland were excluded. This left 1943 townlands, from the original 

2180, for analysis. The model technique applied was a simple stepwise multiple log-

linear regression against SR. 

 

3.3.4 Relationship between spring growth model and SR 
 

To create and test a relationship that links the NDVI decadal spring growth model 

with SR, the 2180 townlands with stock data were randomly split into two samples, 

70% of townlands were used to build a model (1700 townlands) and 30% (480 

townlands) to validate it. Generalized linear models, including interactions, were 

created in R and constructed and tested for gr, c and gr*c (averaged at townland 

scale) with respect to the SR and log of SR. The created model was implemented at 

a pixel level within ArcGIS 
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Figure 3.10a: A map of the grass growth rate term. Uplands, croplands, water and settlement have 

been masked out using the CORINE 2012 land cover map for Ireland. As no training or validation 

data were available for Northern Ireland, only the results for the Republic of Ireland are shown. 
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Figure 3.10b: A map of the Start of Season cover term from the national spring grass growth 

model. Uplands, croplands, water and settlement have been masked out using the CORINE 2012 

land cover map for Ireland. As no training or validation data were available for Northern Ireland, 

only the results for the Republic of Ireland are shown. 
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3.3.5 Relationship between spring growth model and stocking rate. 
 

A stepwise linear regression of the agri-climatic variables against SR, using all 1943 

townlands in the agri-climatic data set was conducted with significance for the 

variables set at <0.001. 

 

3.4. Results. 

 

The generalized linear model created for SR with respect to the spring model 

coefficients is shown in Eq. 3.2, with x denoting any given pixel. Each term had a 

significance greater than 0.0001, and the resultant model had an RMSE = 0.128 with 

an r2 value of 0.75.  

 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆𝑆𝑆𝑥𝑥 ) = c𝑥𝑥. (0.041) + 𝑔𝑔𝑔𝑔𝑥𝑥 . (0.00032) − (𝑐𝑐.𝑔𝑔𝑔𝑔)𝑥𝑥. (0.0000027) − 2.22 Eq. 3.2 

 

When this model is applied at townland scale to the validation set of observations 

(n=480), and compared to the actual SR, we obtain an RMSE of 0.13 with an r2 value 

of 0.75 for observed values against predicted as shown in Figure 3.11. 

  

This is a large sample set for both training and testing, so to test for sensitivity to 

sample selection a bagging approach was implemented in R. Bagging, or Bootstrap 

Aggregation, is a simple method for testing model ensembles. To test this model 

multiple random sets of testing observations and training observations (2/3 

training, 1/3 testing) were iteratively selected, with the RMSE determined for the 

resultant model. Over a number of iterations it was found that sample selection 

had very little effect; with 10 iterations giving an RMSE error of 0.1344 and 1000 

giving 0.1340. Changing test/training ratios from 1/8, 1/4 to 1/2 similarly had little 

effect on the RMSE of the estimated SR values. Therefore it can be concluded that 

the sample selection upon which the model was initially developed is robust. 
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The model described in Equation 3.2 was applied with the NDVI-based coefficients 

shown in figures 3.9a and 3.9b to create a national stocking rate map for Ireland, 

illustrated in figure 3.12. 

 
Figure 3.11: The relationship of actual stocking rate to predicted stocking rate (LSU/Ha) at 

townland scale for the test set (n=480), for the NDVI model.  A “best fit” line is shown as solid and 

a 1:1 fit line is shown as dotted for comparison. 

3.4.1 Comparison to agri-climatic model 
 

The results of the linear regression between SR and agri-climatic variables are 

shown in Table 3.5a), using agri-climatic variables alone has an r2 value of 0.47 with 

an RMSE of 0.64, making it far less reliable than the SR-NDVI model outlined and 

with a much higher error, although the location, elevation, mean February 

temperature and soil drainage dummy terms are all significant at the 0.001 level.  

 

If the terms from the SR-NDVI model (c, gr, c*gr) are included with the agri-climatic 

variables the r2 value increases to 0.78 and the RMSE is 0.13 (Table 3.5b). The 

performance of the three models is compared in Table 3.6. 

. 
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Figure 3.12: Modelled national grassland cattle stocking rate map for the Republic of Ireland, 

250m resolution. 
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Table 3.5: Model coefficients for a) agri-climatic model and b) agri-climatic plus NDVI model with 

n=1944; *** significant at <0.001 level, * significant at 0.1 level 

a) Estimate Std. Error t value Pr(>|t|)     Significance 

(Intercept) 2.965e+00 4.609e-01 6.434 1.57e-10 *** 

X 6.015e-06 3.064e-07 19.629 <2e-16 *** 

Y -5.963e-06 2.200e-07 -27.098 <2e-16 *** 

Z -7.581e-03 3.582e-04 -21.163 <2e-16 *** 

Mean Feb T -3.006e-01 4.070e-02 -7.387 2.22e-13 *** 

Wet or Dry 

Soil 

1.534e-01 3.139e-02 4.888 1.10e-06 *** 

 

b) Estimate Std. Error t value Pr(>|t|)     Significance 

(Intercept) -4.853e+00 3.448e-01 -14.072 <2e-16 *** 

X 1.316e-06 2.350e-07 5.599 2.46e-08 *** 

Y -1.954e-06 1.760e-07 -11.100 <2e-16 *** 

Z -2.167e-03 2.673e-04 -8.107 9.08e-16 *** 

Mean Feb T -1.186e-01 2.771e-02 -4.280 1.96e-05 *** 

Wet or Dry 

Soil 

4.691e-02 2.119e-02 2.213 0.027 * 

C 8.795e-04 2.209e-05 39.813 <2e-16 *** 

Gr 1.242e-01 1.342e-02 9.258 <2e-16 *** 

c*gr -8.593e-06 2.136e-06 -4.023 5.97e-05 *** 

 

Table 3.6: Comparison of the three models, in each case n=1944 

Model r-squared RMSE 

Agri-climatic 0.47 0.64 

NDVI 0.75 0.13 

Agri-climatic+NDVI 0.78 0.13 
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3.5 Discussion 

 

In the SR map (Figure 3.12) the high stocking densities in the south and south-west 

of Ireland that are associated with intensive dairy production, and relatively high 

values in the north-east associated with beef production, are evident. The low 

stocking densities in the west and the north-west reflect these regions’ status as 

less favoured areas under the EU support scheme of that name. The broad 

geographic distribution is in agreement with that discussed in section 1.1. 

 

The modelled spring growth coefficients, c and gr, derived from MODIS NDVI show 

a strong relationship with stocking rate. As discussed above, this is partly due to 

geographic determinism of highly stocked intensive farms developing in climatically 

favourable areas. However the NDVI-only model performs better than the simple 

agri-climatic model in explaining the variation in stocking rate, indicating that NDVI 

is not only capturing agri-climatic conditions but also the effect of management of 

the grasslands by farmers. The marginal improvement in the NDVI model if agri-

climatic factors are included shows that most of the agri-climatic variation is 

accounted for within the NDVI variation. Thus it is concluded that the farmer has a 

detectable influence on grassland performance. This is not unexpected; the best 

performing farmers put considerable resources and management skill into ensuring 

high levels of grass cover in the spring. 

 

The evident heteroscedasticity in Figure 3.11, where errors increase as a function of 

increasing SR, demonstrates that the model captures only a part of the story. Table 

3.2 indicates that at a regional scale stocking numbers change little, as they have 

been largely constrained by EU policy on milk production limits, but this can hide 

inter-farm variation, where production capacity is bought from one farmer to 

increase production by another farmer. It is also worth noting that farms, in 

practice, do not have a single stocking rate, but will have a range of SR with highly 

stocked improved grassland paddocks near the parlour and less improved outfields 

or rented land. 
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Importantly, having only one year of stocking data and using NDVI and weather 

averages largely ignores seasonal impacts on grass production. Whilst weather will 

not influence stocking decisions (as these are made over the medium term of 4-6 

years), it does influence management decisions, for example in a good year, when 

grass growth begins early in the season, farmers will turn out animals early and this 

will affect the NDVI signal recorded by the satellite. Higher stocked farms are 

generally more precisely managed and the farmer responds more readily to signals 

such as early grass growth, thus seasonal effects are likely to be amplified on these 

farms. 

 

The trend for the model to underestimate SR above values of 1 LSU/Ha is partly a 

function of the two error sources discussed above, and also because the use of 

average SR within a townland suppresses the true range of SR evident on the 

ground at sub-townland scale.To reduce the heteroscedastic nature of the model, 

multiple years of stocking rate data with NDVI and weather data in a time 

dependent cross-sectional (or panel data) analysis could be attempted (See section 

6.2 for more detail on panel data analysis). More highly resolved stocking rate 

ground truth, at least to the scale of the remote sensing sensor would also improve 

the model, however these are not currently available. 

 

The combined model outlined in section 3.3 can predict stocking rate with an RMSE 

of 0.13 LSU/Ha, with respect to an average stocking rate of 1.3 LSU/ha. As a grass 

growth model the work presented here using NDVI is successful, however the use 

of other VI or derived biophysical measures such as fAPAR or LAI could be explored. 

 

As outlined in the section 3.1 there is an accepted paucity of good data on stocking 

levels in grassland systems. Official data are often at scales that render them 

useless and the procedure presented here is an improvement on the available data 

in Europe and globally, however issues of scale remain. The townland scale data 

used here are not the stocking rate of the townland (number of cattle/area of 

townland) but the average stocking rate of farms within the townland. The large 
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pixel size of MODIS means the response of non-agricultural land is being captured 

even within the carefully selected townlands, and while this could be partially 

resolved using higher resolution imagery, such as Landsat or the Sentinel program 

from ESA, these systems individually do not have the necessary temporal resolution 

so methods of combining the observations will need to be further developed. Even 

at the farm scale a simple figure of SR does not express the complexity of SR on the 

farm, and in Ireland´s highly heterogeneous farm landscape the effective SR is not 

constant across the farm.  

 

An alternative approach to the one presented here would be through the concept 

of “carrying capacity” that is common in the rangeland literature. In carrying 

capacity, NPP of grasslands is calculated on a seasonal basis and a mechanistic 

model of animal feed demand is used to calculate how may animals could be safely 

fed from the available biomass per Ha (see Peel et al (1998) for a review). Many of 

the rangeland studies assume animals move in and out of grazing areas in response 

to available biomass for grazing (the Oesterheld et al. (1998) study discussed in the 

introduction is a well cited example), but this is not the case in managed paddock 

landscapes, and therefore this approach is probably not appropriate for such 

grazing regimes. 

 

It should also be noted, that while inferring intensification through monitoring of 

grassland management, is particularly suited to Ireland, the UK and some other 

northern European regions, elsewhere intensification is likely to occur through 

continually housed dairy and beef production systems, where animals are confined 

and feed in the form of grain fodder is brought to them. This form of intensification 

is only observable through land use change from grassland to cereals. 

 

3.5.1 A comparison with the global FAO map 
 

In 2014 (Robinson et al 2014) published a global map of farm animal distribution 

produced through a spatial downscaling of national estimates using land 
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cover/animal population models from 2010 data. The map covers all major 

livestock types and resolves to 1km and a comparison for Ireland with the stocking 

density map produced here is instructive.The FAO data are presented as the 

number of cattle per 1km2. To compare the two maps visually, the FAO map is 

recoded to stocking density, cattle/ha (by dividing the cattle numbers in each 1km 

cell by 100). Figure 3.13 compares the two stocking density maps, and the 

distributions do appear similar (“no-data” voids not withstanding), with higher 

stocking densities in the south-west and north-east of Ireland. The difference in 

spatial resolution is also obvious. 

 

To compare the total animal population estimates, the MODIS Teagasc model must 

be converted into absolute animal numbers per pixel by multiplying each 250 meter 

pixel SD value by 6.25 (the area of a 250m pixel in Ha). Comparing the FAO total 

numbers and the numbers estimated with the model presented here with the 

corresponding data from the CSO there are considerable differences. Table 3.6 

shows that the 2010 FAO map over-estimates the 2010 CSO count by 100% 

nationally, while the model developed by this work overestimates the 2007 CSO 

count by only 10%. The FAO data are created using a global allocation model that 

allocates animals to all land cover types at appropriate rates. As such this global 

model cannot take into account local relationships between land cover and cattle 

numbers, for example grazing animals within forests is a common farming practice 

in some parts of the world but not in Ireland.  

To create a more realistic estimate of total cattle numbers from the FAO data, it is 

reasonable to only count those cattle that are in areas classified as “Pasture” and 

“Land Principally Occupied by Agriculture” (classes 231 and 243) in the CORINE 

Landcover Map 2012- i.e. locations where most of the cattle actually are in the 

country. Doing this, the FAO estimate drops to less than 11 million, and compared 

to the 6.6 million estimated by the CSO this is a 60% over-estimate. Applying the 

Teagasc model only in these areas estimates 6.26 million cattle in 2007, compared 

to the CSO figure of 6.89 million, which is an under-estimate of 10%. 
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Table 3.7: Comparison of the total cattle population estimates for Ireland made by the FAO (2010) 

and the Teagasc model presented here (2007) with CSO data, first for all areas and then for 

pasture areas only. 

CSO-2010 FAO 2010 FAO-
Pasture2010 

 CSO-2007 Teagasc2007 Teagasc-
Pasture2007 

6,607,000 13,440,232 10,847,024  6,891,000 7,468,214 6,264,102 

 

Therefore, although the FAO map is a considerable achievement and hugely 

valuable resource at a global scale, the remote sensing approach outlined here 

produces a more accurate and higher resolution national product. 

 

3.6 Conclusion 

 

Most studies on rangeland vegetation index time series rely on smoothing functions 

that assume a “natural” single season growth curve. In highly managed grass 

production regimes, where the same paddock may be used for multiple grazing and 

silage cuttings in the same season, this is unlikely to hold true. By modelling only 

one short component of the grass growth cycle in a period when animals are less 

likely to be present, and as such the grass is responding only to agri-climatic 

conditions and farmer management, it is possible to couple local agronomic 

knowledge with remote sensing modelling techniques to successfully estimate SR in 

complex European managed grassland landscapes using NDVI data alone. This is the 

first time in Europe that this has been achieved without ancillary geospatial inputs, 

and is therefore of relevance to the wider community interested in methods to 

estimate stocking rate across Europe in the absence of official statistics. The model 

presented here compares very well with the best available global data set covering 

Ireland and it successfully estimates the total cattle population in Ireland for the 

reference year. The resultant maps could also play a role in GHG inventories of 
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farmland landscapes and in monitoring intensification trends in European 

grasslands as the EU enters the post milk quota era.  
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4. Time-domain seasonal progression anomaly 

detection in intensively managed grassland 

landscapes. 

 
4.1 Introduction 

 

In Irish dairy systems, the animals are grazed throughout most of the year in open 

fields. They are housed over winter in barns for between 2 to 6 months and the 

animals are “turned out” (released from barns to graze during the day and brought 

back inside over-night) in the spring (Figure 4.1). The date chosen to turn out varies 

across the country, but can have a significant impact on farm performance. 

Research has demonstrated that extending the grazing season by a few days can 

increase farm profitability; for example extending the grazing season by only 14 

days for a dairy herd of a hundred cows reduces costs by up to €2,300 (Kinsella et al 

2010). In many cases the turn out date is set by tradition; for example St. Patrick’s 

Day, March 17th, is a common day for turning out in Ireland largely regardless of 

current or optimal conditions on the farm (see section 5.2 for more detail).  

 

 
Figure 4.1: In Ireland cattle are overwintered in barns (left) before being “turned out” in the spring 

to graze. 
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Ideally the date should be chosen in response to observed local conditions 

(temperature, weather, grass growth and soil trafficability) but optimal timing of 

this event is made harder as farmers, in most cases, do not use feed planning 

software, farm management support systems or even simple record keeping, 

preferring to rely on memory and experience (see Creighton et al (2011) for an Irish 

overview of this phenomena and Gray et al (2003) for a comparative New Zealand 

perspective). Farmers are not alone in relying on memory in strategic decision 

making; the use of memory when assessing current conditions against perceived 

long term trends and planning accordingly, is also a feature of professional 

agricultural advisors’ working practice (Mase & Prokopy 2013). However relying on 

memory for assessment of time critical grass management decisions, such as when 

to “turn out” or when to open and close paddocks, is complicated by  weather 

volatility, making these judgment calls against remembered norms more difficult 

(Loch et al 2012). The increasing likelihood of extreme weather events in Ireland 

(Matthews et al 2016) will compound this issue in the future.  

 

Farmers are not different from the general population (Goebbert et al 2012) in their 

capability in assessing current weather conditions in relation to recent trends and 

averages,  as shown for example by surveys of African farmers dealing with extreme 

weather events (Moyo et al 2012, Simelton et al 2013). Assessments of future 

conditions are strongly influenced by  current conditions and the very recent past, 

not by averages (an example of the availability heuristic (Morewedge et al 2005)), 

and with increased occurrence of weather extremes, remembering what is normal 

and what is abnormal becomes harder. Thus being able to plan for the future using 

only past experience becomes more difficult and this difficulty is amplified by poor 

record keeping. 

 

Long term time series of satellite data provide a potential benchmark for crop and 

plant growth in a given location. Time series of data, some of which go back to 

1980s allow for the establishment of averages over time across a season, but also 

for monitoring trends in seasonal events and the timing of events in plant 

development through the application of phenology. 
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4.1.1 Global monitoring of crop performance. 
 

The use of time series of EO satellite data to provide long term benchmarks of 

vegetation performance for climate studies and agricultural monitoring is now well 

established; for example AVHRR, MODIS and SPOT-VEG satellite sensor data have 

been used for studies of agricultural land use change at country level (de Beurs & 

Henebry 2004, Propastin et al 2007, Wardlow et al 2007) and globally (Friedl et al 

2002, Ganguly et al 2010). Most of these approaches, as discussed in sections 2.1.5-

2.1.9, use some form of vegetation index (VI). Local long term averages of the most 

common of these VI, the Normalised Difference  Vegetation Index (NDVI), have 

been used to characterize agricultural land use (Baldi et al (2008)). Other indices 

have been developed relating to crop performance, especially in the context of 

food security and drought issues. Table 4.1 details some freely available, online 

vegetation monitoring services, most of which exploit an NDVI anomaly approach 

to detecting change or deviation from average conditions. These systems generally 

exploit the concept of land surface phenology, LSP but without any attempt to 

relate the NDVI signal to timed events on the ground, instead comparing current 

events with historical averages (see Rodriguez-Galiano et al (2015)  which includes a 

review of European LSP studies). 

 

Most of these services are concerned with monitoring crops and forestry. However 

a recently established project, Rangelands and Pasture Productivity (RAPP) (CSIRO 

Australia 2014), is an extension of the GEOGLAM (Whitcraft et al 2015) system for 

crops into grasslands. GEOGLAM is a global land cover mapping initiative and RAPP 

is intended as aEO derived equivalent of the annual statistical estimates of cattle 

density (mapped at 3 arc-seconds) from the FAO (Robinson et al 2014) as discussed 

in section 3.5.1. The exact details of the proposed RAPP service are not known but 

the absence of a European pilot site suggests an emphasis on rangelands and not 

enclosed paddock/pasture systems. In 2016, the service has only just begun a five 
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year implementation process for a global monitoring system for pastures and 

rangelands, but a summary document of aims, states: 

“Currently there is no comprehensive global effort for monitoring the status and 

productivity of pastures and rangelands.”(CSIRO Australia 2014). 

 

Table 4.1: The broad characteristics of the major online crop monitoring services. The services 

differ in how data are delivered, but most rely on a combination of satellite derived VI scores and 

local weather data to model crop growth. 

Name20 Coverage Cover* Reporting 
Period 
(days) 

Resolution Service** Data*** 

Crop Explorer Global C 7 /30 25/8/1.1km N/C/A/W SV/M 

GIEWS Global C 8/30 1km N/A/C/S/W AV 

USA FEWS Global C 10/30 1km N/A/W M 

MARS Agri-Cast Europe/Africa C 30 10km N/C/W M/AV/SV 

Vegscape USA C 1/7 0.25km N/A M 

Veg-Anomaly Australia All 8/30 1.1km N/A AV 

Vega-Pro(free) Russia C 8/30 0.25km N/A/ M/L 

*(C)rops,  (A)ll. ** (N)DVI, (A)nomaly, (C)rop performance, (S)easonal progression, (W)eather 

data.*** (M)ODIS, (A)VHRR, (SV)POT-VEG, (L)andsat 

 

4.1.2 NDVI anomaly 
 

By observing NDVI at a given location and time it is possible to compare that 

observation with the long term average (LTA), and express that comparison as a 

positive or negative percentage deviation from the LTA. The NDVI deviations from 

the LTA are assumed to related to vegetation growth changes, with a positive 

anomaly representing more greenness than the average for that time and place, 

and a negative anomaly representing the opposite. As an example, the GIEWS 

service from the FAO uses NDVI anomaly scores derived from AVHRR data, along 

                                                      
20 Web addresses are given in appendix 
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with precipitation data for detecting early signs of drought conditions (low levels of 

green cover associated with plant stress or reduced planting of crops due to 

political or social instability). An early practical use of NDVI anomaly was in  

monitoring fire risk (Burgan et al 1996) where a negative anomaly was associated 

with an increase in area burned, but no statistical relationship was established 

spatially or temporally. 

 

There seems to be little evidence that these online anomaly services are used by 

farmers directly. There could be many reasons for this, including lack of access, 

farmers being unaware of the service, and the service not being designed to be 

incorporated into farm management. In the literature on technology transfer 

through extension services (Klerkx et al 2012) and on the development of decisions 

support systems (Van Meensel et al 2012), the importance of finding a common 

language between scientists and farmers is emphasized. The seasonal anomaly 

services highlighted in Table 4.1 show seasonal anomalies as percentages (NDVI is 

10% higher or lower than the LTA for example), but this can be difficult to interpret 

for non-specialist users. Specifically, as shown in section 2.7.2, new data services for 

farmers have to fit in with existing systems and paradigms for them to be accepted. 

 

In the research literature NDVI anomalies being related to vegetative performance 

anomalies are accepted as a standard, and are also often used in climate studies to 

look at the impact on vegetation of global climate change. An early example is 

Braswell et al (1997) who related AVHRR derived global NDVI anomalies to similar 

anomalies in the global temperature record.  A similar approach has used AVHRR 

anomaly records in Africa to link drought records to actuarial records to create a 

more robust livestock insurance market (Vrieling et al 2014). Rembold et al (2013) 

provide a useful review of the development and application of NDVI anomaly 

mapping. 

 

However, within this literature on the use of NDVI anomaly mapping it is 

uncommon for NDVI anomaly studies to be validated spatially, instead more 

commonly they are validated temporally, with large spatial scale averages of NDVI 
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anomaly related to local climate conditions. A common approach is typified by the 

well cited paper from Anyamba et al (2002) which relates NDVI anomaly with Sea 

Surface Temperature (SST) anomaly in east Africa with respect to ENSO effects, 

where the relationship between a box average NDVI anomaly for a 300 km2 area in 

east Africa with monthly SST anomaly was r=0.06 (n=30). 

 

Steyer et al (2013) used NDVI anomalies from Landsat TM to measure post 

Hurricane Katrina recovery in natural habitats, and tested these against 253 plots 

where vegetation was monitored concluding that NDVI anomalies can be used to 

track post event recovery. Brown et al (2006) tested the compatibility of long term 

time NDVI series from 5 sensors for interoperability, as well as comparing 

statistically the products with each other for a total of 21 sites for calibration 

globally. Peters et al (2002) introduced the concept of a standardised vegetation 

index (SVI), essentially as a statistical measure of how unlike the average the 

current reading is with an NDVI anomaly weighted for the SD of the NDVI variation. 

This anomaly analysis is compared visually to drought maps produced by NOAA but 

there was no statistical analysis of the spatial or temporal variation. 

 

In this section it is intended to develop a spatial and temporal calibration system for 

grass growth anomaly measures derived from NDVI. 

 

4.1.3 Grass Growing season in Ireland 
 

In Ireland, once grass growth starts (typically in March, see section 2.2.2) growth 

rates are high reaching a peak in May of up to 100kgDM/ha/day, growth rates then 

decline  with a secondary peak in August (60kgDM/ha/day) and growth generally 

ceases around November (O'Mara 2008). In simple empirical grass growth models, 

growth is seen to be largely controlled by soil type and soil nutrient levels, along 

with temperature, sun light and rainfall. In Ireland rainfall is rarely a limiting factor, 

and in the early spring, with a short open grass canopy, sun light levels are 

adequate in the sward. 
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Irish and British studies have identified temperature (soil and/or air) as a key 

constraint of grass growth, with studies establishing different thresholds and 

initiators for growth. Broad and Hough (1993) found a mean temperature of 5°C to 

be an initiator of grass growth in the UK, and other studies have shown start of 

growth to be associated with an accumulated temperature threshold, or growing 

degree days (Hutchinson et al 2000). In Ireland and elsewhere (e.g. Frank (1996) a 

common rule applied couples both of these approaches; grass is considered to be 

dormant over winter until growth is initiated by a period of 5 days with a minimum 

soil temperature of 6°C or an air temperature of 5.6°C (Keane 1986). This is a 

frequently applied growth indicator used in analysis of grass growing seasons in 

Ireland, but can also extend elsewhere, as shown by Fealy and Fealy (2008) who 

used the approach in establishing new agri-climatic zones for Ireland and Europe. 

This accumulated temperature threshold approach is the indicator used to 

determine the start of spring grass growth in the research presented here (c.f the 

concept of Growing Degree Days, GDD). 

 

4.1.4 Section Outline 

 

This section describes the development of a satellite NDVI based tool for assessing 

spring growth progress in intensively managed agricultural grasslands in Ireland, 

with a focus on the very early spring growth (January-April), when judgment about 

condition of available fodder for the release of over wintered animals is most 

critical. A linear model is fitted to average decadal MODIS NDVI values, as a 

function of date, at a 250m resolution pixel scale across Ireland. In the model 

outputs the data are presented in the temporal domain as estimates of how many 

days early or late the current state of grass growth is compared to the decadal 

average (rather than the normal percentage). The transformation of the anomaly 

service into the time domain allows for the use of plain language, e.g. “current 

growing conditions are two weeks behind normal”, as opposed to giving a 

percentage difference from the norm, which should improve uptake of any 

subsequent service by farmers. This model is tested against a weather/temperature 
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based estimate of the date of grass growth onset, and its subsequent rate of 

growth, for the spring seasons in 2012 and 2013. This testing of essentially a 

phenological analysis (albeit estimating relative timing of growing events) is part of 

a growing body of work in the literature tying ground truth from varying sources to 

validate satellite time series of LSP (this was explored in a work shop in 2013 

reviewed by Dash et al (2013)). 

 

4.2 Materials and methods 

4.2.1 Satellite data 
 

The selected MOD13Q1 16-day composite product provided detailed quality flags 

and Day of Year acquisition stamp for each 250m pixel (García-Mora et al 2011) (see 

section 3.2 for the rationale behind product selection). All 16-day composites for 

the period January 21- May 15 2003-2013 were used. As with the stocking density 

model, only data from high quality, cloud free pixels were used. A grassland/non-

grassland mask was produced using ancillary national datasets including the 

national agricultural parcel database (LPIS). Only pixels that represented managed 

grasslands were included in the analysis and mapped outputs.  

 

4.2.2 Weather Data 
 

The ground truth weather data are daily maximum and minimum temperatures 

from the national climate stations maintained by the national meteorological 

agency, Met Eireann. Climate stations continually operating from 1/1/2002 to 

30/12/2013, with no data gaps in the spring were selected - giving a total of 51 

station records distributed around the country (Figure 4.2). The spring seasons in 

2012 and 2013 prove to be excellent years for testing seasonal progress tools in 

Ireland given their very different behaviour. The seasons are described in reports 

issued by Met Eireann:  
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• 2012 had above average temperatures, around 2-3°C higher than normal 

from January-March (Met Éireann 2012a). 

• 2013 was a very poor spring (following a cold winter) with average 

temperatures 2°C colder than the 30 year norm and “cold everywhere, dry, 

dull and windy” providing poor conditions for grass growth (Met Éireann 

2013). 

 

To provide viable ground truth for this study, the stations had to be situated in a 

predominately grassland landscape. Thus those stations in urban, tillage or forested 

areas, or that were not within 1km of agricultural grasslands (some island and 

coastal sites) were rejected. This left only 31 stations to act as ground truth sites 

(indicated by a ring in Figure 4.2).  
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Figure 4.2: Geographical distribution of climate stations in Ireland, shaded to show the average 

month in which grass starts to grow. Stations used in the final analysis are ringed. 
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4.3. Methodology 

4.3.1 Establishing seasonal progress ground truth 
 

The model does not intend to estimate the specific date of an event, for example 

the start of spring, but instead shows progress in days ahead or behind a reference 

norm, namely the decadal average NDVI value for that pixel in that 16-day 

compositing period. Therefore a ground truth dataset is needed in the same 

format, with a reliable indicator whose performance against a decadal norm can be 

measured. 

 

Unfortunately there is only one site in Ireland with 12 years of grass growth 

measurements, and weekly measurements are only begun once grass is visibly 

growing. Nevertheless, temperature (as opposed to light levels or rainfall) as a 

controlling factor in initiating grass growth in Ireland is well understood and serves 

as a ground truth proxy for grass data. Using the definition of start of grass growth 

as outlined in section 4.1.3, the first time that five consecutive days occur with a 

minimum ground temperature of 5.5°C was identified, and the 5th day of that 

period selected as the start of growing season ground truth indicator. 5.5°C was 

chosen as it is the middle of the range of temperature thresholds for grass growth 

defined in the literature, however, the exact temperature threshold used is not so 

important as the model judges against on a relative performance. 

 

The climate station database was processed (in MS Access) to identify the date 

when this threshold was achieved, d, for each year in the 2002-13 period at each of 

the 31 stations. Figure 4.3 shows the average date (as DOY) nationally for each year, 

as well as the earliest and latest for each year. For the reference date for the 

model, the ten year average date, 𝑑̅𝑑 (expressed as DOY), for each climate station is 

used. Across the whole country averaged over the 10 years, the mean date on 

which grass starts growing is DOY 88 or March 27th, with the earliest recorded date 

at a station being January 7th (in 2007) and the latest July 5th (in 2002). 
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Figure 4.3: The mean national average, earliest and latest date on which grass starts growing in 

each year 2002-13 for 31 climate stations. 

 

The climate station Seasonal Progress Anomaly in the Time domain, cSPAT, for any 

subsequent year, y, is calculated (eq. 4.1) as 

 

𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦 = 𝑑𝑑𝑦𝑦 −  𝑑̅𝑑   eq. 4.1 

 

Where dy is the date on which the temperature threshold is passed, at a climate 

station, in year y and 𝑑̅𝑑 is the average date on which this occurs. Figure 4.4 shows 

the cSPAT for the 31 climate stations in 2012 and 2013. In this figure it is evident 

that in 2012 the sites are generally indicating a much earlier start of spring growth 

(bars to the left) than normal, with the sites on average being 36 days earlier than 

normal and with one site 90 days early. In the 2013 “poor” spring by contrast, most 

of the sites have a late start of spring date (bars to the right), on average 23 days 

later than normal but with one site 70 days later. 
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Figure 4.4: The difference from the 2002-11 average grass growth start date for the 31 climate 

stations used in the analysis in 2012 and 2013, the most northerly station at the top, and southerly 

at the bottom.  

 

4.3.2 NDVI spring growth model from satellite 
 

Satellite based NDVI phenological analysis has been widely utilized to find both 

spatial and temporal trends in important climate indices, such as start of season 

(Jonsson & Eklundh 2002). Conventional methods for observing growth cycles over 

a season with NDVI data involve first quality checking, filtering and gap-filling the 

data, then fitting a complex function. This approach is well suited to crops with 

features such as maximum NDVI and green-up phase corresponding to identifiable 

phenological stages on the ground. However in managed grasslands in Ireland (and 

elsewhere) where growth can be almost continual, and with complicated dynamics 

of grazing, cutting and hay making operating over cycles of up to 21 days, relating 

the NDVI curve to ground conditions is less straightforward. O’Connor et al (2012) 

used a smoothed time series of 10-day MERIS composite data to link start of season 
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events with land cover, and highlighted the difficulties posed by Ireland’s highly 

fragmented landscape when attempting to extract a spatio-temporal signal at a 

1.2km scale. Common assumptions concerning inherent inter-annual cyclic 

behaviors, specific to land cover types and crops (discussed further in Bradley et al. 

(2007)) used when fitting a curve to NDVI data to represent an annual growth cycle, 

breakdown in managed grassland when management choices can differ year to 

year (Dusseux et al (2014c)). 

 

These difficulties in grasslands can be partly overcome by examining only a short 

part of the growth cycle, where assumptions about management practices can be 

more easily defined. Early spring growth is one such period in Ireland, when it can 

be stated with some confidence that only grass growth is observed with no 

management intervention until animals are released onto paddocks from winter 

housing. This allows the increase in NDVI over this period to be modeled against 

time to represent just spring grass growth. Whilst linear and log-linear models are 

simplistic and do not represent real plant growth over the season, or represent the 

current state of the art in plant growth modeling, a recent review by Paine et al. 

(2012) shows that linear fits are acceptable across short sections of the growing 

cycle. One advantage of a linear approach is that only a few observations across the 

period are needed to characterize the vegetation growth rates at a locality. This 

allows for very rigorous quality assessment of the satellite data at a pixel level to be 

carried out, meaning only the data that have the highest quality flag in the MODIS 

product are used but this leaves enough data points to fit a line. 

 

The first stage of the model is to generate ten year (2002-11) average NDVI scores 

for each day in spring using the high quality flagged MODIS values. A linear model is 

then fitted from January 20th to April 30th defining the rate of increase in NDVI and 

the initial start of year NDVI for every pixel (using a minimum of 3 data points). In 

producing this model only data with the highest quality flag (0) were used which 

meant rejecting >75% of the data across the period, that were lower quality 

typically due to atmospheric effects. Thus each pixel has two model factors 

representing average values for the decade 2002-2011; the intercept, interpreted 
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as an indicator of start of season cover, s (a dimensionless NDVI value), and a 

gradient interpreted as the linear early spring growth rate, g (NDVI/day). Therefore, 

for every 250m pixel (representing 6.25Ha on the ground) across the Republic of 

Ireland the timing and average rate of spring grass growth can be determined (see 

section 3). 

 

NDVI seasonal progress anomalies for any year outside of the reference period can 

be calculated for any day in spring, d, from the modelled NDVI (NDVIm) (eq. 4.2). 

The difference between the modelled value and the observed NDVI (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜) is 

divided by the growth rate parameter from the model giving the seasonal 

progression anomaly (SPA) in days (eq. 4.3). A negative anomaly score indicates 

growth is earlier than would normally be seen at that time and a positive score 

indicates that growth is late. 

  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚 = 𝑔𝑔.𝑑𝑑 + 𝑠𝑠        eq. 4.2 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜
𝑔𝑔

                 eq. 4.3 

 

This calculation is performed on every grassland pixel in each new satellite 

acquisition to map the NDVI-SPAT. The value d, is extracted at the pixel level as the 

Day of Acquisition (DOA) of the observation within the 16-day composite (band 11 

in the MOD13Q1 product). Data in spring are noisy, and even pixels with a good QA 

rating can be of poor quality. To reduce noise, the model output is processed using 

a 3x3 median filter that operates only on values that fall within plus or minus 1 

standard deviation of the global image mean. This process, outlined in Figure 4.5 

was applied to 9 16-day MODIS products (DOY 21 to DOY 137) for both 2012 and 

2013. 

 

To assess the accuracy of the NDVI-SPAT, the mapped outputs for the appropriate 

period were compared to the meteorological estimates of seasonal progression at 

each of the climate station sites, cSPAT. To overcome no-data pixels (those with a 

low QA flag for that observation) the NDVI-SPAT used was the average of good 
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quality observations on grassland pixels within 1km of the station. There were some 

stations, notably in 2013, where even within 1km of the station no good quality 

pixels were found, so in all only 54 (from 30 stations) points were used in the 

accuracy assessment. 

 
Figure 4.5: Flowchart detailing generation of Seasonal Progress Anomaly estimates for any 16-day 

image composite outside the reference years. 

 

4.4 Results. 

Seasonal progression in agricultural grasslands in Ireland was estimated and 

mapped for 18 16-day periods (nine each in 2012 and 2013).To illustrate the type of 

maps that can be produced, the mid-season outputs (16-day composite period 5, 

end of March) for both years are shown in Figure 4.6. The general national trend is 

clear in both, with Figure 4.6b (2012) mostly green, indicating growth is ahead of 

normal, and 4.6a (2013) is mostly blue indicating growth is behind the normal 

schedule, but some interesting local effects are present especially in 2012. Some 



116 
 

parts of the country in 2012 are blue, such as the Areas in the North West indicating 

that the locality is behind normal growth, but as Figure 4.4 shows there were some 

locations with late spring growth in 2012. Interestingly, the apparent lateness of 

growth in the far south is likely to be an artefact, growth started so early in 2012 

that many farmers in this region were able to graze from January and considerable 

biomass had been consumed by mid–March, such that growth appeared backward 

when compared to the average. Conversely the 2013 image, whilst mostly blue 

because of the late spring, there is a fringe of light green along the south coast 

indicating that conditions are normal there. 

 

Figure 4.7 shows the image mean values (average NDVI-SPAT for the country) for 

the 9 periods in 2012 and 2013.The accuracy of the model is illustrated in Figure 

4.8. The NDVI-SPAT correlates well with the meteorologically derived seasonal 

progression anomaly cSPAT, with an r2=0.897 (n=54) and a p value >0.0001. The 

RMSE is 15 days. Figure 4.9 illustrates the progression in 2012 and 2013 as mapped 

by the SPAT process for comparison with Figure 4.7. This figure illustrates one of 

the complexities of mapping managed grassland progression; the April map for 

2012 seems to indicate that progress is behind normal that month. In reality the 

previous month’s growth is so far ahead that grazing began earlier than normal (see 

figure 5.13), leading to removal of biomass and a lower than normal NDVI. 

 

 

4.5 Discussion 

The correspondence between the modeled estimate of seasonal progression and 

the meteorologically derived climate station estimate is good. This suggests that 

the approach does successfully begin to estimate deviations in grass growth in the 

early spring period compared to the average, and that an RMSE of 15 days is within 

the range at which the information could be of value to farmers.  
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Figure 4.6a: Example of the final output of the SPA system for end of March in 2013. No data are 

white and non-grassland areas are excluded in light grey.21 

 

                                                      
21 . As no validation data were available for Northern Ireland it is excluded (Dark Grey) from the 
published maps, though output was generated and the approach is an all-island one. 
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Figure 4.6b: Example of the final output of the SPA system for end of March 2012. No data are 

white and non-grassland areas are excluded in light grey.22 

                                                      
22 . As no validation data were available for Northern Ireland it is excluded (Dark Grey) from the 
published maps, though output was generated and the approach is an all-island one. 
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Figure 4.7: The national mean NDVI-SPAT in 2012 and 2013 for each of the nine 16-day composite 

periods.  

 
Figure 4.8: The relationship between satellite derived NDVI-SPAT and corresponding 

meteorological station derived cSPAT estimates for 54 observations from 30 stations across 

Ireland in 2012 and 2013. The solid black line is the regression between observed and modeled, 

the dotted line shows the 1:1 relationship. 
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The levels of noise in the early part of the season, as well as the intent to provide a 

“real-time”  online service to Irish farmers in the future, justify the use of a simple 

linear model of spring growth rather than the more familiar sinusoidal model used 

to detect “green–up” in the phenological curve. Identifying the actual date of start 

of season with these familiar techniques is difficult in Ireland because of the noise 

levels (O’Connor et al., 2012) and can only be done in hindsight as a significant 

number of data points post green-up are required to satisfactorily fit such a 

function. This would negate any utility to the farmer as identifying the fact that the 

season began a month ago is of little value, but being able to say current conditions 

are a month behind normal, is useful. 

 

Figure 4.6 shows the wide variation in seasonal progress across the country in the 

two years analysed. This wide variety in grass growth behavior across even short 

distances and between two years is not captured in the established maps and 

models of national grass growth onset (Brereton (1995). The number of “no data” 

pixels in 2013 (Figure 4.6b) is much larger than in 2012 (Figure 4.6a) as the 

conditions that lead to poor grass growth are concomitant with increased cloud 

cover, and thus reduced observational efficiency of the satellite. This does mean 

there are challenges in making this a completely reliable operational service in 

extreme conditions. The apparent “lateness” of growth in the far south in 2012 (fig 

4.6a), is likely an artefact of much higher grazing than normal because of the very 

early spring, leading to an apparent reduction in observable biomass in March 

compared to average. This will have to be addressed in any subsequent service, 

probably by comparing consecutive anomaly maps with meteorological data and 

adjusting accordingly. 

 

Figure 4.7 shows how the spring seasons of 2012 and 2013 progressed as evidenced 

in the NDVI images. Both start with growth slightly ahead of normal and the good 

start of 2013 mirrors the meteorological narrative; Met Eireann records report that 

nationally the first half of January was warmer than average and it was only 

subsequently that temperatures dropped significantly and persistently for the rest 

of spring. However, for 2012 the trend remains well ahead of the 2002-11 average. 
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By the end of March 2013 (day 90) the grass performance is up to several weeks 

behind what would be expected, and this again is reflected in the anecdotal 

evidence of the “Fodder Crisis” of that year, where very poor spring growth caused 

severe hardship on farms (Irish Examiner 2013). In both years the trend returns to 

normal by the end of April, however this is likely to be the point where grassland 

management (grazing, and even cutting in 2012) begins to dominate the 

biomass/NDVI signal. 

 

A comparison of Figure 4.4 and Figure 4.7 shows how effects are cumulative over 

the season. On average grass started growing 26 days later than average in 2013 at 

the climate stations (Figure 4.4, but a late start coupled with slow growth meant 

the impact was amplified until the end of March (Figure 4.7). 

 

Figure 4.8 shows the comparison of the satellite estimated progress, NDVI-SPAT, in 

comparison to the meteorologically calculated progress from the climate stations, 

cSPAT. The fit and range of the estimates seem good, with the exception of two 

stations some distance away from the diagonal in 2013. These two sites are counter 

to the overall trend of 2013 and show a slightly early start to spring growth 

compared with the general lateness in 2013. This highlights one of the limitations of 

using accumulated temperature to indicate start of growing season when 

temperatures subsequently drop and grass stops growing, indicating that a “false 

spring” has been identified as seems to be the case at these two sites. When these 

2 outliers are removed, the r2 increases to 0.937.  The positive and negative values 

show that the satellite observations can estimate whether growth is ahead of or 

behind the ten year average and only one observation (one of the two outliers 

discussed above), is in the wrong quadrant, however the wide range may 

overestimate the goodness of fit. If the NDVI-SPAT and cSPAT values are compared 

irrespective of sign, the r2 value drops to 0.78, which although a reduced 

correlation still represents a statistically significant relationship (p>0.001). 
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The relatively coarse resolution (250m) and the high level of noise in optical 

satellite observations is a source of error. Whilst there is considerable spatial 

variability in grass performance in Ireland it is apparent that monitoring the 

national mean of the satellite derived NDVI-SPAT across the season is an indicator 

of spring conditions. New satellites such as ESA’s Sentinel-2  will offer 10m 

resolution compared to the 250m resolution here allowing for improved 

registration  between meteorological sites and the satellite image and improved 

spatial and temporal resolutions for EO farm services. By combining Sentinel, 

Landsat and DMC satellites a revisit time of only a few days will be possible, 

matching the temporal performance of MODIS, but if they are to be used for long 

term trend analysis, research needs to be carried out on cross system calibration 

between these instruments. 

 

4.6 Implementation 

The algorithm outlined here was implemented in Python to automate the 

construction of grassland anomaly maps in ArcMap. As a beta test an online service 

of fortnightly grassland anomaly maps was hosted on the Teagasc ArcGIS online 

web server in 2015. The pixel based outputs were remapped as townland averages, 

the smallest administrative areas in Ireland and in the absence of postcodes 

addresses in rural Ireland do not resolve below townlands. There are 52,000 

townlands in Ireland, each containing approximately 5-7 farms. To speed up loading 

times the original complex townland boundaries were simplified to polygons with a 

minimum of vertices.On the online mapping service, farmers can search via 

townland and the map will locate the appropriate townland and give current 

growing conditions as the temporal anomaly.. Figure 4.10- shows a screen grab of 

the data as presented online.  

 

Feedback was sought informally from Teagasc advisory service officers and it was 

felt that the information was valuable, but that the map presented did not contain 

sufficient geographical markers and the townland boundaries were too simplified 

and this reduced recognition. New versions of the will be recoded to 1km tetrads 
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overlaying current aerial photography and include geographic identifiers like village 

names, main roads and rivers. The search facility will still utilise townlands but 

these townland boundaries will not be displayed. 

 

 
Figure 4.10: Temporal Anomaly Map for Feb 14th 2015 presented at townland scale online. 

 
 



125 
 

4.7 Conclusion 

 

Grassland based farmers need to constantly adjust their management strategies to 

accommodate changing conditions on an almost daily basis and thus, it could be 

argued, are more in need of the timeliness and spatial coverage of satellite based 

productivity monitoring systems than conventional tillage farmers. Existing NDVI 

anomaly services (see section 4.1) typically present the results as a percentage 

change of NDVI from a ten year mean, but this means very little to the average 

farmer and interpreting a percentage change is not intuitive.  

 

This research demonstrates a model that estimates in days, how far ahead or 

behind is grass growth compared to the ten year average. Expressing it in this way 

provides a system that is easier for a farmer to understand and interpret, and it 

allows evaluation of its accuracy against other measures of spring growth anomaly 

that can be expressed in days. The example presented here used ground 

temperature from meteorological stations, but other indicators such as the date 

when cattle are first turned out, or day of the first grazing or mowing could also be 

used to monitor the accuracy of this kind of service. Designing systems that 

produce simple, easy to understand, outputs such as: “Your current grass growth is 

3 weeks behind normal” are essential for the wide acceptance of geospatial data 

products on farms. 

 

Whilst most global food security systems concentrate on crop monitoring for food 

security concerns and commodity markets, managed grazing lands are a significant 

global food resource and should be monitored as assiduously. The availability of 

fodder is a concern, not just in human food security terms, but is important in 

ensuring the welfare of over 1billion domesticated grazing animals. Important 

metrics such as current cover, total grazed biomass and total harvested fodder (hay 

and silage) should be routinely monitored, in the same way as crop yields are 

monitored. In this paper we have shown that in managed paddock grazing 

landscapes the relative progress of early spring cover can be successfully 
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monitored. This information could act as a valuable prompt to the farmer to ensure 

maximum use of in field grazing and thus improve farm profitability. Monitoring 

growth against the average can also act as an indicator of fodder shortages 

nationally. However this should be coupled with monitoring of use, grazing or silage 

cutting in order for a fully rounded picture of current conditions and total 

accumulated biomass. Monitoring needs to be done using optical imagery at a high 

spatial and temporal resolution, and although new radar methods are showing 

early promise in grassland management monitoring, there is not the same robust 

and well understood relationship as between NDVI and biomass. 

 

This work has demonstrated that a time domain anomaly service produces accurate 

estimates of current growing conditions, but a number of steps are needed before 

it can become an operational tool, principally field testing with farmers to create 

the most acceptable delivery mechanism; improving the temporal and spatial 

resolution of the service (down to weekly estimates at 1ha resolution) and 

incorporating weather data into the estimate of the anomaly, rather than as a 

validation of it. 

 

The next chapter explores weather farmers do in fact respond to current 

environmental conditions.  

 



127 
 

 

5. Inter-annual variation in cattle turn-out dates 

on Irish dairy farms and the relationship with 

satellite derived grassland performance indices 

and rainfall. 
 

5.1 Introduction 

5.1.1 Importance of early grazing 
 

As previous sections have shown, managing pasture in intensive grazing dairy 

systems is a complex task that involves matching fodder production to variable feed 

demands in a changing environment. Many of the decisions a farmer makes are 

time dependent and interlinked, such as opening and closing paddocks to allow 

animals to graze, and harvesting silage/hay for the winter. Optimizing these 

decisions, whilst minimising risk, is one of key drivers in ensuring a profitable farm. 

For example linking calving with spring growth has a beneficial impact on 

profitability but requires management skills in husbandry and pasture growth and 

demands a flexible approach to timing of turn out events (Porqueddu et al 2005). 

But the risks associated with mismanaging these decisions, such as 

underperforming animals or feed shortages, has led to a decline in grazing across 

Europe, in favour of continuously housed herds fed a grain based feed (Reijs et al 

2013), despite the economic and environmental benefits of grazing. In Reijs et al.’s 

conclusion the report highlights that the major perceived weakness in grazing 

systems is their unpredictability, and the greater managerial difficulties associated 

with matching feed to demand in an unpredictable system: 

 

“To maintain grazing in the North-West European dairy industry, governments and other stakeholders 

should invest in knowledge development and technological innovation on grazing issues. Important are 

the development of tools and systems that simplify grazing management on large farms and assistance of 

farmers in their management and strategic choices.” (pg 10.) 
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These time critical decisions impact on the length of time a herd is grazing and 

grazing season length affects farm profits, with Irish research demonstrating that 

extending the grazing reduces costs (Kinsella et al 2010). In a survey of Irish dairy 

farmers in 2008, Creighton et al (2011) found the average grazing season length 

was 245 days. Profitability is increased with better utilisation of pasture but only 

18% of farmers use any of the measurement and budgeting methods needed to 

achieve higher utilisation. With respect to turn out dates, fodder availability and soil 

condition were the main factors in the timing of the decision. Field trials have 

shown that early grazing options across a wide range of stocking densities improve 

animal and sward performance and are to be recommended in dairy systems 

(O’Donovan et al 2004). However the situation for specialist beef production in 

Ireland is not as clear, with work suggesting that the effect on profitability is only 

marginal and only for some types of beef production systems (McGee et al 2014).  

 

These environmental conditions can vary significantly year on year as highlighted in 

Figure 5.1, which shows mean growth curves at three Teagasc research farms 

(Moorepark in the South, Ballyhaise in the midlands and Grange in the north-east of 

Ireland). 

 

 
Figure 5.1: Grass growth curves for 3 locations in Ireland (mean of 1982 - 2006 for Moorpark, 1998 

- 2006 for Ballyhaise and 2001 - 2007 for Grange). 

 

In order to understand why farmers do not engage in the management practices 

that would allow for a longer season, the issues around adoption of extended 
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grazing have been examined by O’Shea et al (2015) within the context of technical 

adoption theory. The survey results of 207 respondents were analysed as a binary 

probit model of adoption/non-adoption of extended grazing defined relative to the 

regional average. Agricultural education and off-farm employment had the most 

significant positive relationship with an extended grazing season, while past 

participation in agri-environment schemes had the strongest negative effect on the 

choice of extended grazing. 

 

An Ordinary Least Squares (OLS) analysis of one year (2009) of turn out data by 

Läpple et al (2012), found that geographic region and soil status were strongly 

associated with length of grazing season, but that farm size, stocking density or 

grazing method had no relationship with grazing season length. The absence of a 

grazing method link is instructive, as Irish dairy farmers, by and large, treat their 

herd as a single unit and turn out the whole herd at the same time whereas  Irish 

beef producers release cattle from winter storage in small groups over time in 

anticipation of the animals´ ultimate fate at market as weanlings (being sold in the 

spring or kept for another year) or store cattle (due to spend a second winter in 

houses)(Connor & McGrath 2014).Many of the studies looking at farmer beheivour 

patterns and choices employ panel analysis techniques. 

5.1.2 Panel data and spatial data 
 

Panel data (some-times referred to as longitudinal or cross-sectional data) are data 

that represent multiple observations of the same sample over time (factory profits 

over a number of years is a simple example). For reasons outlined in section 5.3.2 

these have to be treated differently from true random samples as in conventional 

statistical analysis). 

 

The use of panel data analysis within a remote sensing context is an emerging field. 

Whilst spatial econometrics has a broad acceptance within the literature, and a 

strong conceptual basis from which to develop (see Anselin (2013) for a standard 

textbook), there is no review of EO explicitly within econometrics or of the use of 

common econometric statistical techniques within the EO literature. 
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Broadly, remote sensing and econometrics techniques interact in three ways. The 

first and most common is the provision of data, derived from remote sensing as an 

a-priori dataset. The most common EO derived data are land use/cover information 

which is used for building models of economic drivers of change (Irwin & 

Geoghegan 2001). Analysis of forestry dynamics has been a particular focus of such 

work, for example Nelson and Hellerstein (1997) with an analysis of new roads and 

forest clearance.  

 

Secondly, statistical techniques such as logistic regression and Bayesian analysis, 

common in econometrics, are used to predict and map change in  remote sensing 

datasets, improving second order products such as change detection but not acting 

upon the “raw” pixel data. This is particularly common in agent based approaches 

(where complex systems are modelled as the sum effects of individual smaller 

autonomous agent models) to change prediction/detection in land cover (see 

Verburg et al (2004)). 

 

Thirdly, and least common, are statistical approaches more usually associated with 

econometrics that are used directly on EO data to perform analysis and 

classification. For example logit models have been used to classify image pixels into 

land use classes with some success (Seto & Kaufmann 2005) instead of traditional 

clustering techniques familiar in the EO literature. 

 

From an econometric perspective, conventional panel analysis often ignores spatial 

dimensions and issues of geographic relationships within datasets. Although the 

issue is beginning to be addressed in the literature; with the special case of spatial 

heterogeneity being handled with spatially defined lags (Anselin et al 2008) ( cf.  the 

more familiar time-lags employed in panel analysis). More sophisticated 

approaches are being developed such as the geographically weighted panel 

regression approach put forward by Yu (2010). 

 

The use of EO derived data in panel analysis (with or without a spatial component) 

is increasing as econometrics begins to draw on a new source of independent data 
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that can, through GIS systems, be incorporated into traditional data models. An 

example is Wheeler et al (2013) which uses a panel approach to investigate drivers 

of deforestation in Indonesia, where the deforestation data were taken from a 

monthly satellite derived inventory. 

 

5.1.3 Overview of Chapter 5 
 

The purpose of this section is to investigate the environmental drivers, if any, that 

influence the decision when to turn out cattle for spring grazing on Irish farms. Five 

years of geocoded farm level data recording when animals are first turned out from 

winter housing along with contemporaneous satellite derived measures of fodder 

availability and local rainfall data (as a proxy for soil condition) are analysed. First 

the environmental conditions present when animals are turned out are 

characterised and then through a panel analysis those indicators that are most 

strongly associated with the decision to turn out are determined. This model is 

developed further as a random effects model with time lags to predict when a 

farmer is likely to have turned out given prevailing spring conditions. The 

implications from the model regarding farmer decision making are discussed. 

 
5.2. Data Sources 

5. 2.1 Dependent variable: Turn out date 
 

The Teagasc National Farm Survey (NFS) (Hanrahan et al 2014a) is collected as part 

of the EU Farm Accountancy Data Network. It consists of a detailed set of accounts 

for approximately 900 farms and is statistically sampled to take different farm 

systems into account. Between 2008 and 2012 specialist dairy farmers in the NFS 

(~300 farmers in each survey year, with some change each year in the sample) 

recorded turn out dates. This gave a total of 1536 recorded turn out events, 

however to avoid issues of an unbalanced panel (incomplete records), only those 

farms with five complete years of data were selected for the final analysis, leaving a 

sample population of 199 farmers and 995 turn out dates. The TOD is transformed 
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to Julian day of year, with January 1st as 1, so an early turn out date is a low number 

and a late turn out date a high number. 

 

The farms are linked to environmental variables via location, with the NFS geo-

coded (Green & Donoghue 2013) using address matching methods. In Ireland this is 

not a trivial matter as a postcode system has only been in place since July 2015 (and 

the uptake of postcodes seems slow). Moreover, Irish toponymy is complicated 

with a history of local place-names surviving against imposition of standards by 

different authorities meaning there are multiple “official” versions possible for each 

address. Furthermore the absence of street names or numbers in rural Ireland, 

outside of towns and villages, means that most rural addresses are not unique, and 

instead are resolved to a single location through the addressee’s name. 

 

The addresses were matched using SQL in MS Access to location via the An Post 

database of delivery addresses called the Geo-directory. This database is supplied 

with tables and fields allocating every address to a building and every building to a 

geographic 6-figure position in Irish National Grid (ING) coordinates (Fahey & Finch 

2008). Figure 5.223 shows the percentage of NFS addresses that automatically 

match with a given number of buildings in the Geo-directory. Only 6% of NFS 

addresses match one-to-one with a Geo-directory entry, the rest matching with a 

range of numbers of buildings and on average  an NFS address matches to 10 

Geodirectory buildings. It is important to note that this is not an “error”, all ten 

buildings in the Geo-directory have exactly the same address, and this one-to-many 

matching is common in rural Ireland and cannot be eliminated unless the actual 

location from another source, such as parcel ID or postcode24, is known.  

 

                                                      
23 Figures 5.2 and 5.3 are taken, with permission, from Green and Donoghue (2013)  
 
24 This problem has technically been eliminated since 2015 with the introduction of a national 
postcode scheme, Eircode, where every address in Ireland has been allocated a unique 7 figure ID. 
However access to the full database is very expensive. 
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In order to allocate a single point for each farm the geographic centre of the cluster 

of buildings with the NFS address is used. Figure 5.3 shows the relationship 

between the geographic size of the cluster (defined at 1 standard deviation 

distance from the centre) with the number of addresses within the cluster. This 

ambiguity around location however does help preserve NFS respondent anonymity 

and the true locations of the farms are not specified in this thesis. The geo-coding 

used in this analysis was a six figure coordinate, to the nearest meter, in the Irish 

Transverse Mercator projection.  

 

 
Figure 5.2: Frequency histogram showing the percentage of the NFS addresses that match to a 

cluster of buildings of a given size.  

 

 
Figure 5.3: Frequency histogram showing the number of NFS addresses found within a range of 1 

standard deviation from the geographic mean of each building cluster. 
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To illustrate the geographic distribution, the average turn out month over the five 

years for the farms in this analysis is mapped in 10km tetrads in Figure 5.4a and the 

range of dates (difference in days between the earliest and latest turn out date on 

each farm ) is shown in 5.4b.  It is evident that farms in the south generally turn out 

up to three months earlier than farms in the north but there seem little geographic 

trend in the range of dates. 

 

Looking at the turn out date data graphically it is apparent that some trends and 

habits persist. If we look at all recorded turn out dates between 2008-2012 and not 

just those farmers who recorded a TOD for all five years (as this is not a panel 

analysis, we can use all the data)) gives a total of 1536 turn out events and these 

are plotted to look at day of the week when turn out occurs (Figure 5.5), the day of 

the month (Figure 5.6) and day of the year (Figure 5.7). 

 

There seems to be little bias in day of the week, Figure 5.5, with perhaps a small 

drop at the weekend, but as dairy farmers run a 7 day week operation, it is 

unsurprising that there is no preference by day of the week for when turn out 

occurs. 

 

However, there is a clear bias toward the 1st of the month when turning out ( Figure 

5.6) which may be farmers responding to advice or defaulting to a habitual day (it 

may also be casual recording, a post hoc record of turn out being “around the start” 

of March being noted as March 1st). Clearly there is no agronomic reason for the 

start of the month turn out but it must be acknowledged that this decision does not 

occur in a vacuum and having a fixed date, set in advance, may have personal 

advantages within a farm household that faces the myriad of competing demands 

of any other family home. Also the 10th, 15th and 20th of the month stand out, the 

15th and 20th may reflect activity around traditional turn out days such as 

valentine’s day and St Patricks day, the reason for a spike around the 10th of the 

month is less obvious. 
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We can see clearly in Figure 5.7 that March 1st is the most favoured turn out day, 

with February 15th next (which may reflect response to Teagasc advice of 

considering the period around Valentine’s day as a TOD target. It is this apparent 

tendency for inertia around set calendar days that advice around extending the 

grazing season according to actual conditions seeks to overcome. 
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Figure 5.5: Day of the week on which turn-out first occurs, 1536 turn out events, 2008-2012 

 

 

 

 

Figure 5.6: Day of the month on which turn-out first occurs, 1536 turn out events, 2008-2012 
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Figure 5.7: Day of the year on which turn-out first occurs, 1536 turn out events, 2008-2012 

5.2.2 Explanatory variables: Satellite observation of grass growth 
 

The satellite data used were 16-day composites of Normalised Difference 

Vegetation Index (NDVI) imagery from the MODIS sensor on the Terra satellite 

(Huete et al 2002) as discussed in section 3.2 in detail.  The selected MOD13Q1 

product provided detailed quality flags and a Day of Year acquisition stamp for each 

250m pixel (García-Mora et al 2011). All 16-day composites for the period January 

1- May 15 2003-2012 were used with 9 images each year. The farm locations in the 

study were overlaid on  the images and the corresponding NDVI pixel value 

extracted so that each farm has 9 NDVI scores each year. 

 

The average NDVI score for each year for each farm and the actual 16-day 

composite NDVI score at turn out for each farm was also recorded. It is important 

to note that the NDVI score is uncalibrated, it is related to grass cover amounts but 

is not a direct estimate of such. 

] 
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5.2.3 Explanatory data: Rainfall 
 

Daily rainfall data from the national rain gauge network from Met Eireann was used 

(Walsh 2012). The exact number of stations in the network varies from year to year 

but in this analysis (2008-2012) there were approximately 550 stations of which 301 

had complete records and were used in this analysis, Figure 5.8. Each farm in the 

sample set was ascribed the average of the daily rainfall recorded at the 3 stations 

closest to it (mean distance, farm to rain gauge, was 7.5km).  

 
Figure 5.8: Distribution of rain gauge stations used in analysis. 
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Field experiments in Ireland have shown that Soil Moisture Deficit, SMD, the 

amount of rain needed to bring the soil moisture content back to field capacity, is a 

predictor of potential soil damage through poaching (Piwowarczyk et al 2011). SMD 

is often negative in Ireland indicating excessive water (a SMD <-10mm is considered 

saturation).  

 

SMD is the interaction of weather and soil. As the soil remains the same over time it 

was assumed that SMD and thus trafficability would be strongly influenced by 

recent rainfall volume. Therefore total rainfall (in mm) in the 16 day period before 

each satellite acquisition and the number of dry days in the period was calculated 

for each farm as proxies for SMD and trafficability conditions. The total rainfall in 

spring and the total number of dry days in spring were also calculated each for year 

for each farm. Table 5.1 list summarizes the variables used. 

 

Table 5.1: Summary of variables used in analysis 

Variable Obs Mean Std. Dev. Min Max Description 
       

TOD 995 60.871 21.686 4 121 Turn Out Day 

meanvi 995 0.762 0.059 0.467 0.866 Average NDVI Jan 1-May8 

totrain 995 358.972 111.772 123.4 880 Total Rain Jan1-May8 (mm) 

totdry 995 63.537 16.622 11 119 Total Number of Dry Days Jan1-

May8 

truevi 995 0.757 0.066 0.440 0.882 Actual NDVI at TOD 

trurain 995 40.962 28.521 0 184.2 Total Rain 16days prior to TOD 

(mm) 

trudry 995 6.587 3.399 0 16 Total number of Dry Days 16 

days prior to TOD 

totr_1 995 45.966 43.066 0 269.7 Total Rain Jan1-Jan16 (mm) 

totr_17 995 69.835 37.070 0 246.9 Total Rain Jan17-Feb1 (mm) 

totr_33 995 43.053 25.347 0 152.1 Total Rain Feb2-Feb17 (mm) 

totr_49 995 37.082 29.960 0 170.8 Total Rain Feb18-Mar5 (mm) 

totr_65 995 38.850 21.606 0 139 Total Rain Mar6-Mar21 (mm) 

totr_81 995 23.681 16.327 0.2 84.3 Total Rain Mar22-Apr6 (mm) 
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5.3. Methodology 

 

5.3.1 GIS and spatial analysis  
 

This study is primarily concerned with farm inter-annual variation in turn out date 

than with between farm spatial variation in turn out date. However a spatial 

analysis technique to identify geographic trends was applied to test if location 

influences the size of the within farm inter-annual variation i.e. does the turn out 

date vary more in some locations than others. 

       

Table 5.1 

cont. 

      

totr_97 995 40.621 35.635 0 168.5 Total Rain Apr7-Apr22 (mm) 

totr_113 995 28.035 24.724 0 99.3 Total Rain Apr23-May8 (mm) 

totr_129 995 31.850 22.151 0 140.6 Total Rain May9-May25 (mm) 

ndvi_1 995 0.731 0.065 0.463 0.864  NDVI Jan1-Jan16 

ndvi_17 995 0.731 0.067 0.448 0.859  NDVI Jan17-Feb1 

ndvi_33 995 0.737 0.069 0.440 0.879  NDVI Feb2-Feb17 

ndvi4_49 995 0.748 0.069 0.444 0.882  NDVI Feb18-Mar5 

ndvi_65 995 0.763 0.067 0.459 0.885  NDVI Mar6-Mar21 

ndvi_81 995 0.780 0.062 0.477 0.893  NDVI Mar22-Apr6 

ndvi_97 995 0.796 0.056 0.493 0.895  NDVI Apr7-Apr22 

ndvi_113 995 0.810 0.049 0.512 0.895  NDVI Apr23-May8 

ndvi_129 995 0.755 0.066 0.440 0.879  NDVI May9-May25 

dry_1 995 7.006 3.964 0 16 No. Dry Day  Jan1-Jan16 

dry_17 995 4.716 3.127 0 16 No. Dry Day  Jan17-Feb1 

dry_33 995 6.778 3.087 0 16 No. Dry Day  Feb2-Feb17 

dry_49 995 7.401 3.403 0 16 No. Dry Day  Feb18-Mar5 

dry_65 995 5.371 3.453 0 15 No. Dry Day  Mar6-Mar21 

dry_81 995 8.232 3.221 0 15 No. Dry Day  Mar22-Apr6 

dry_97 995 7.426 3.532 0 14 No. Dry Day  Apr7-Apr22 

dry_113 995 8.963 4.538 0 16 No. Dry Day  Apr23-May8 

dry_129 995 7.644 3.990 0 16 No. Dry Day  May9-May25 
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The technique chosen is well suited to the analysis of geographic trends in point 

data (whilst the farms are not points on the ground, their attributes are associated 

with a single point, the location of the farmhouse in this analysis). Moran’s I test is a 

test of spatial autocorrelation, and provides information on whether a spatial 

characteristic is random (a value of zero in the test) with respect to location, 

perfectly dispersed (-1) or entirely dependent on location (1).  For ease of 

interpretation these values are transformed into a Z-score with 5% significance 

(Anselin 1992). 

 

The test is a two dimensional (x and y coordinate) extension of the standard 

measure of autocorrelation with variance. The extension to two dimensions is 

achieved via a matrix of site to site distances between points; in practice maximum 

calculation distances are often imposed in order to rationalise any hypothesized 

spatial relationship. The calculation was performed in ArcGIS. A range of maximum 

distances for calculations were selected to observe any scale effects. The spatial 

effects on average turn dates and intra-farm range (difference between earliest and 

latest date at each farm) were examined. As the sample of farms in the NFS is not 

selected to represent a random or representative geographic sample, row 

standardisation was employed to counter any clustering in the sample. 

 

5.3.2 Panel data analysis 
 

Our sample of farms is not a random one and was not designed to model the 

distribution of farm response to environmental conditions. The repeated 

measurements are not equivalent to treatments and are not controlled. So simple 

general linear modelling of response would be inappropriate. 

Here recall the assumptions for standard multivariate OLS fits (or many of the 

clustering approaches used in EO): 

 

• Random sample 

• No complete co-linearity between regressors; none  of the x terms can be 

written as a linear combination of the others. 
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• The average error value is zero; E(e)=0 

• None of the x’s are correlated with the error; Cov(x,e) = 0. (no endogeneity) 

• Homoscedasticity; the variance in the y term is not a function of the x term 

(or the error term when analysing results) 

 

These do not always hold for time-series data and especially “natural experiment” 

ground truth data. Data points recorded in time t+1 at the same location as at time, 

t, are not independent and should not be treated as such. This issue is of principal 

concern in growth studies and phenological studies. It´s unlikely our sample and 

variables capture all effects and that any omitted covariate will cause a bias in 

estimating the effects of the covariates we have included.  

 

However our data is presented as a panel. A data set is said to be a “cross-sectional 

panel” when we have repeated observations of the same variable over time from 

the same target. Examples might be pollution samples from a fixed point over a 

number of years or a set of production figures from the same set of factories over a 

number of years. In an EO context – then the pixels in a time series of images of the 

same target are in fact a panel data. Using a fixed effects model allows us to control 

for all fixed differences between farms (location, size of farm, farmer education , 

soil type, etc) within the panel. 

 

This is illustrated in figure 5.9 where ignoring between and within farm effects on 

the relationship between NDVI and TOD is shown to lead to erroneous conclusions 

about the trend. In figure 5.9a data from 6 farms over the five years are shown and 

a linear trend fitted demonstrating an apparent positive relationship between NDVI 

and TOD. However when individual trends are fitted to each farm, as in 5.9b, then 

the trend between TOD and NDVI is negative. By using a Fixed effect model on this 

panel we eliminate the problems caused by omitted variables in our analysis. 
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Figure 5.9: The relationship of NDVI at turn out and TOD for 7 farms over 5 years. A) shows the 

trend fitted against all data treated as independent observations, as NDVI increases so does TOD 

B) shows trends of individual farms, and that the relationship on the  farm is the opposite, later 

TOD associated with lower NDVI. 

 

The fixed model then essentially looks at how variation in TOD (around the mean) 

changes in response to variation in NDVI and rainfall. In the fixed effect model the 

intercept is allowed to change between farms but the slope of the response is 

considered the same across each farm and is formulated as: 

𝒀𝒀𝒊𝒊𝒊𝒊 = 𝜶𝜶𝒊𝒊 + 𝜷𝜷𝟏𝟏𝑿𝑿𝒊𝒊𝒊𝒊 + 𝑼𝑼𝒊𝒊𝒊𝒊   eq. 5.1 

a) 

b) 

Turn Out Day 

Turn Out Day 
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• Yit is the dependent variable (TOD) where i = farm (i=1….199) and t = time 
(t=2008…2012). 

• α i is the intercept for each farm. 
• Xit represents one independent variable (NDVI or Rainfall), 
• β1 is the coefficient for that variable, 
• Uit is the error term 

 

It should be noted that this model assumes there are unobserved factors that 

influence TOD that are time invariant. A possible source of non-time-invariant 

factors could be severe weather in an autumn or policy/advice changes nationally – 

neither are considered to have occurred during 2008 -2012. 

 

A fixed effect linear panel analysis of the variation between years of TOD and 

environmental variables was carried out. The panel of 199 farms with 5 years of 

observations (995 observations in total) is balanced (there are no data gaps, each 

farm is represented all five years). The panel ID variable is Farm ID and the time 

variable is year (2008-2012) and the panel is structured as shown in Table 5.2. 

When examining the presence of a seasonal effect, then a year dummy is included.  

 

Table 5.2: Structure of the panel 

Farm ID Year 

NDVI_1… 

NDVI129 

TOTR1… 

TOTR129 

DRY1… 

…DRY129 TOTRAIN TOTDRY MEANVI TRUVI TRURain TRUDRY 

1 2008          
1 2009          
1 2010          
1 2011          
1 2012          
2 2008          
2 2009          
2 2010          

…
 

…
 

         
199 2010          
199 2011          
199 2012          

 

As explained above the focus on inter-annual variation in TOD in response to 

changing environmental variables, as opposed to the causes of variation between 
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farmers, indicated the use of a fixed effect model, as did the results of the spatial 

analysis (see 4.1). This was confirmed by the application of a Hausmann test 

strongly suggesting the rejection of a random effects model (F test results strongly 

indicated fixed effects over pooled approaches). All non-spatial statistical analyses 

were conducted in the statistical package Stata 11 (StataCorp, 2009). The 

relationship is illustrated in Figure 5.10, where the NDVI in each 16 day period is 

plotted against the rainfall in the period for each farm for each year (199*9*5= 

8955 points) and colour coded for whether the cattle are turned out (“no” if the 

period is before the turn out date that year, “yes” if after). The relationship is 

complex but in general the black dots (yes) cluster around low rain, high NDVI. 

 
Figure 5.10: NDVI against rainfall for all observed periods, coded for whether the cattle are turned 

out (yes or no) 
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5.4. Results 

5.4.1 Spatial Analysis 
 

The Moran’s I index score was calculated for average TOD and the range of 

TOD of each farm. The analysis was calculated over a number of distances from 

50km to 400km. As well as the Moran’s score, the corresponding z value was 

calculated (with reference to the null hypothesis of no spatial co-dependency, a 

Moran’s score of zero). The results are plotted in Figure 5.11. 

 

 

Figure 5.11: results of a spatial analysis of the distribution of average TOD and on farm variation 

(latest day of year minus earliest day of year) 199 farms over 5 years. 

 

There is a relationship between location and average TOD, a positive Moran’s I 

score (with relatively a high Z positive score at distances less than 100km) that 

weakens as distance increases (your TOD is likely to be similar to your near 

neighbour but not to someone at the other end of the county) but there is no 

relationship between inter-annual variation in TOD and location ( Moran’s I score 

near 0, with an insignificant Z score). So whilst some locations in Ireland will always 
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be able to turn out animals earlier than other locations, no place in Ireland suffers 

more unpredictability in turn out dates than any other.  

 

5.4.2 NDVI panel analysis 
 

Table 5.3 shows the result of the fixed effect panel analysis examining how 

amounts of grass and rainfall during the spring season relates to the decision of the 

farmer to turn out. The within variation r2= 0.387 (199 farms, 5 years a total of 995 

observations) shows the overall fit of the model is good but many of the variables 

have a low significance. Note that when interpreting the variables the TOD variable 

is a Julian day , with January 1st as 1, January 2nd as 2 etc., so a low value TOD 

indicates an early turn out of cattle and this is generally desirable; this means 

negative coefficients will decrease TOD as the variable increases.  

 

Rainfall at End of March is significant, with every extra 10.1 mm of rain in the 

period delaying the TOD by 1 day. This seems logical, farmers may delay turn out if 

rainfall is heavy, even if enough grass is present. However rainfall at the end of April 

is also significant but this time the increasing rain leads to a decrease in TOD; this is 

difficult to interpret but nearly all farmers will have already turned out by then and 

we may be capturing a seasonal effect in that a wet April may indicate a wet spring 

and farmers have waited as long as possible and thus turn out earlier than is 

advisable given the prevailing conditions. 

 

Grass growth as indicated by NDVI has less of an apparent influence, nonetheless 

NDVI at the end of February, when many farmers will be considering turning out, is 

related such that an early turn out date is more likely with higher grass growth. The 

NDVI score for Mid-May is significantly related to turnout and this is a seasonal 

effect, the significance disappears when year dummies are included. The coefficient 

seems to indicate that more grass in Mid-May is associated with a later turn out 

date, this is because in a “good year”, significant biomass is removed by mid-May 

through grazing and even silage cutting, so high NDVI in May indicates that perhaps 
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spring began slowly. The “number of dry days” is not influencing, individually, the 

TOD. Rainfall and number of dry days were both included to attempt to account for 

intensity of rainfall. Interaction terms for these variables were investigated and 

show no significance in the model performance or make up. 

 

It is clear that multi-collinearity between variables must be high in this scenario- the 

grass growth in March is strongly related to grass growth in February and so on. 

Even rainfall shows a relative pattern of decrease across the spring. To attempt to 

reduce this effect, the bi-weekly variables were reduced to three single metrics to 

describe the overall spring: Mean NDVI score Jan 1st to May 25th (a high mean NDVI 

score across spring implies good grass growth), the total rainfall Jan 1st to May 25th 

and the total number of dry days in the same period. We also included 3 metrics to 

characterise TOD: the NDVI score at actual turn out date, the rainfall in the 16 days 

preceding and the number of dry days in the same period. 

 

Table 5.4 shows the results of a fixed effect panel analysis on TOD using these 

variables with and without a year dummy. Without year dummies all the variables 

are significant with average NDVI strongly influencing TOD. If grass growth over 

spring is high then turn out dates are early, if spring is wet then TOD is late (3.5 

days later for every 100mm of rain). But the number of dry days seems to affect 

TOD contrary to expectation with TOD later if the number of dry days increases. 

 

Around the time of making the TOD decision an increase in the number of recent 

dry days makes the TOD earlier (0.46 days earlier for every extra dry day) but so 

does an increase in rainfall and higher grass growth at turn out is associated with a 

later date. Some of these contrary results are partially explained when a year 

dummy is included in the result. We can see that, in comparison with 2008, 2010 is 

associated with TOD being 4.94 days later and 2012 with TOD being 5.96 days 

earlier.  As a result of including the year dummies total dry days are no longer 

significant and total rainfall is only just significant at the 5% level. 
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Table 5.3: Factors associated with turn out date. 

Variable associated with  

Turn Out Day (Julian Day of 

Year) 

Coefficient (t) Variable associated with  

Turn Out Day (Julian Day of 

Year) 

Coefficient (t) 

Total Rain Jan1st-Jan16 

(mm) 

-0.001(0.05) No. Dry Day  Jan1st-Jan16 0.238(1.26) 

Total Rain Jan17-Feb1 (mm) 0.025(1.71) No. Dry Day  Jan17-Feb1 0.156(0.60) 

Total Rain Feb2-Feb17 (mm) 0.008(0.37) No. Dry Day  Feb2-Feb17 0.236(1.33) 

Total Rain Feb18-Mar5 

(mm) 

-0.019(0.78) No. Dry Day  Feb18-Mar5 -0.022(0.10) 

Total Rain Mar6-Mar21 

(mm) 

0.009(0.38) No. Dry Day  Mar6-Mar21 -0.395(1.88) 

Total Rain Mar22-Apr6 

(mm) 

0.109(2.76)** No. Dry Day  Mar22-Apr6 0.217(0.87) 

Total Rain Apr7-Apr22 (mm) 0.023(0.73) No. Dry Day  Apr7-Apr22 -0.311(1.37) 

Total Rain Apr23-May8 

(mm) 

-0.088(2.64)** No. Dry Day  Apr23-May8 -0.279(1.33) 

Total Rain May9-May25 

(mm) 

0.015(0.54) No. Dry Day  May9-May25 0.045(0.29) 

 NDVI Jan1st-Jan16 -42.132(1.14) Constant 81.505(5.76)** 

 NDVI Jan17-Feb1 2.005(0.03)   

 NDVI Feb2-Feb17 -94.435(1.61)   

 NDVI Feb18-Mar5 -111.586(2.03)*   

 NDVI Mar6-Mar21 -91.843(1.70)   

 NDVI Mar22-Apr6 -144.295(1.81)   

 NDVI Apr7-Apr22 174.002(1.37)   

 NDVI Apr23-May8 -103.291(1.42)   

 NDVI May9-May25 380.257(11.54)**   

Observations= 995. Panel ID FARM_CODE=199.Time ID Years=5 

Within r2=0.387 (F=9.57***).Absolute value of t-statistics in parentheses  

* p<0.05; ** p<0.01 
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Table 5.4: Seasonal and local factors associated with TOD 

Variables associated with  with year dummies 

Turn Out Day (Julian Day of Year) Coefficient (t) Coefficient (t) 

Average NDVI Jan 1-May8 -399.312(11.74)** -357.209(10.70)** 

Total rain Jan1-May8 (mm) 0.036(6.77)** 0.015(1.96)* 

Total number of Dry Days Jan1-

May8 

0.245(4.54)** 0.093(1.60) 

Actual NDVI at TOD 323.206(11.26)** 323.439(11.37)** 

Total rain 16days prior to TOD (mm) -0.079(4.68)** -0.082(4.84)** 

Total number of dry days in 16 days 

prior to TOD 

-0.464(2.84)** -0.518(3.19)** 

   

Year Dummy   

2009  0.322(0.703) 

2010  4.94(2.83)** 

2011  1.2(0.83) 

2012  -5.962(-4.13)** 

   

Constant 98.246(8.70)** 83.273(6.54)** 

   

Observations=995. Panel ID FARM_CODE=199.Time ID Years=5 

Within r2=0.323 (F=35.59***), with Year Dummies r2=0.363 (F=24.91***)  

Absolute value of t-statistics in parentheses 

* p<0.05; ** p<0.01 

 

 

If the assumption of a farmer having a target date is true then this could be picked 

up with a lagged variable- the previous year´s TOD. If farmers have a preference for 

a TOD regardless of conditions and only change in extremis, using the previous 

year´s TOD allows us to capture this. One impact of using a lagged variable is that 

2008 cannot be used as we do not have 2007 TOD. 
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The inclusion of the lagged variable in the FE model above has little impact.  The 

lagged variable itself is not significant, although the overall model r2 marginally 

increases and the RMSE goes from 15.3 to 14.3 (see table 5.5). Note that the year 

dummy now references 2009 as 2008 data not included in analysis. 

 

Table 5.5: Seasonal and local factors associated with TOD in a fixed effects model with a lagged 

TOD variable added 

Variables associated with with year dummies 

Turn Out Day (Julian Day of Year) Coefficient (t) 

Average NDVI Jan 1-May8 -344.342(9.55)** 

Total rain Jan1-May8 (mm) 0.012(1.34) 

Total number of Dry Days Jan1-

May8 

0.037(0.54) 

Actual NDVI at TOD 301.930(10.34)** 

Total rain 16days prior to TOD (mm) -0.072(3.82)** 

Total number of dry days in 16 days 

prior to TOD 

-0.227(1.16) 

TOD_lag 0.017(0.5) 

Year Dummy  

2010 4.57(2.77)** 

2011 0.930(0.63) 

2012 -6.475(-3.75)** 

  

Constant 83.841(6.13)** 

Observations=796. Panel ID 

FARM_CODE=199.Time ID Years=4 

Year Dummies r2=0.382 (F=22.51)  

Absolute value of t-statistics in parentheses 

* p<0.05; ** p<0.01 

 

 

 

5.4.3 A predictive model 
 

The explanatory approach in the previous section can be expanded to look at 

prediction of TOD knowing current conditions. For the predictive model we can 

move beyond the fixed effects into a random effects model that incorporates 



152 
 

variance between farms. This is important as formally the fixed effects model can 

only be used to infer relationships within the sample whereas a random effects 

model allows for inference and thus prediction from the larger population from 

which the sample was drawn (due to the assumption of a normal distribution to the 

residual term). This allows us to include x and y location and soil type (dummy 

variable for well drained or poorly drained recorded in the NFS) in our model as a 

between farm effect. The result of the random effects models (maximum 

likelihood) also shows the much bigger impact of using the lagged TOD variable , 

table 5.6. 

 

Table 5.6: Seasonal and local factors associated with TOD in a random effects model with a lagged 

TOD variable added 

 

Variables associated with i) ii) with lag 

Turn Out Day (Julian Day of Year) Coefficient (t) Coefficient (t) 

X Coor -0.0000141(-1.03) -0.00000677(0.77) 

Y Coor 0.0000627(7.00)** 0.00000924 (1.56) 

Dry Soil Dummy -4.230995 (2.97)** -2.581223(3.02)** 

Average NDVI Jan 1-May8 -503.589(23.22)** -375.260(17.86)** 

Total rain Jan1-May8 (mm) 0.038(7.4)** 0.0313 (6.37)** 

Total number of Dry Days Jan1-

May8 

0.250(6.56)** 0.130(3.92)** 

Actual NDVI at TOD 427.206(22.73)** 313.487(16.84)** 

Total rain 16days prior to TOD (mm) -0.102(-5.95)** -0.097(5.53)** 

Total number of dry days in 16 days 

prior to TOD 

-0.489(3.01)** -0.199(1.18) 

   

TOD_Lag  0.4868 (20.9)** 

   

Constant 94.168(10.83)** 66.239(9.63)** 

   

Observations=995. Panel ID FARM_CODE=199.Time ID Years=5 

Overall r2=0.589, with TOD lag  

Observations=796. Panel ID FARM_CODE=199.Time ID Years=4 

r2=0.745  

Absolute value of t-statistics in parentheses 

* p<0.05; ** p<0.01 
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This random effects model, shows the influence of location and soil drainage as 

found in other studies (see 5.1), with dry soil associated with TOD being 4.5 days 

earlier and northerliness (y coordinate) leading to TOD being 1 day later for every 

16km north. The other terms are similar to the FE coefficients. If the TOD_lag is 

introduced we can see the r2 fit of the model increase significantly but the x and y 

coordinates are no longer significant as the TOD variation is captured in the lagged 

variable. This model allows us to predict a TOD for the NFS farmers using the 

equation: 

 

𝑻𝑻𝑻𝑻𝑻𝑻 = 𝟔𝟔𝟔𝟔.𝟐𝟐𝟐𝟐𝟐𝟐 + 𝑫𝑫𝑫𝑫𝑫𝑫. (−𝟐𝟐.𝟓𝟓𝟓𝟓𝟓𝟓) + 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎. (−𝟑𝟑𝟑𝟑𝟑𝟑.𝟐𝟐𝟐𝟐𝟐𝟐) + 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎) +

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (𝟎𝟎.𝟏𝟏𝟏𝟏) + 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (𝟑𝟑𝟑𝟑𝟑𝟑.𝟒𝟒𝟒𝟒𝟒𝟒) + 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕. (−𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎) + 𝑻𝑻𝑻𝑻𝑻𝑻_𝒍𝒍𝒍𝒍𝒍𝒍. (𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒) eq. 5.2 

 

To tease out the interpretation of equation 5.2, the First coefficient tells us we have 

a baseline turn out day 66.236 DOY, ie March 6th or 7th (depending on leap year). 

The negative dry soil dummy variable tells us that farm TOD is 2.581 days earlier on 

a farm with well drained soils compared to poorly drained soils, the negative 

meanndvi term tells us that for every 0.01 increase in average NDVI score for the 

spring, TOD is 3.75 days earlier (where an NDVI change of 0.001 is approximately a 

weeks’ worth of growth when we look at the growth rates calculated in section 3). 

Every mm of extra rain from the average in spring delays TOD by 0.03 days but 

every extra dry day also delays TOD by 0.13 days. 

 

The coefficient of NDVI actually at TOD (truendvi) shows that higher NDVI scores 

are associated with later TOD, a 0.01NDVI increase at TOD means TOD is 3.13 days 

later and rain at TOD is higher for earlier dates. The lag term shows strong the 

influence of inertia, for very day the previous years TOD was later than March 6 the 

current TOD is 0.487 days later. 

 

Predicted TOD and actual TOD for the period are shown in figure 5.12. Note that in 

the TOD_lag model the constant value (66.2) is 28 days earlier than the model 

without the lagged variable (94.2). The lagged coefficent is 0.487. If we apply the 
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coefficient to the mean TOD we get 29.7 days, this is not a coincidence as the 

lagged variable within the random effects model is moving variation from the alpha 

term fixed in time into a time variant variable. It would be preferable to have an 

independent test set to test this predictive power fully. 

 
Figure 5.12: Predicted TOD against actual TOD (Julian days) for the model data. 

 

 

5.5. Discussion 

Better overall grass growth in spring seems to be related to earlier turn out dates 

but an opposite, equal effect is present locally at turn out, more grass on the farm 

at turn out is related to a later turn out. It is important to remember the strong 

seasonal effects; grass grows over time, all things being equal, the longer you wait 

the more grass there will be and less rain will fall as spring turns to summer. 

However we have hypothesised that farmers have a target grass level at their farm 

they want to achieve before turn out.  

 

A simple plot helps us to understand some of the apparently contrary results. 

Figure 5.13 shows the average national turn out date for all 199 farms and the 
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average national NDVI value at time of turn out for each of the five years. If it were 

true that farmers have an ideal target of grass growth that they want to reach and 

they always wait for that target then the line would be horizontal but we can see 

that the later the average national TOD the less grass there is when cattle are 

turned out; so farmers wait as long as they can but eventually turn out cattle at less 

than ideal grass cover in bad years and contrary to that are not turning out as early 

as they could in good. 

 

This allows us to interpret the results in table 5.10. Farmers respond to overall 

conditions, to a “bad” spring, like 2010, or to a “good” spring like 2012 and adjust 

their turn out dates but they do not do so optimally, there is a lag in the response, 

shown by the positive relationship between NDVI at turn out and TOD. In a good 

year they are letting the grass grow too far before responding.  

 

 

 
Figure 5.13: Relationship between national average turn out day and the NDVI score on the farm 

at TOD. Five years are shown and the “good” spring of 2012 and the “bad” spring of 2010 are 

labelled. 
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If the response of farmers to good conditions was optimal then the coefficient of 

NDVI at turn out date would be zero in equation 5.2, all else being equal the 

amount of grass at turn out on the farm should always be the same. The size of the 

coefficient is an indicator of how far from optimal the group of farmers are. 

 

The increased rainfall at turn out being related to early TOD could be a seasonal 

effect, there is more rainfall early in the season and could indicate that farmers are 

more driven by available grass growth than soil conditions when considering an 

early turn out. A soil drainage dummy was included in earlier analysis and did not 

prove significant. The increase in the number of dry days at turn out being 

associated with earlier turn out is however an indicator that farmers are responding 

to local weather conditions when deciding to turn out. An interaction term 

between rainfall and dry days at turn out was investigated and not found 

significant. 

 

It is likely that better knowledge of soils and drainage on the NFS farms would add 

considerable nuance to the picture of weather conditions and turn out date as 

would a more sophisticated handling of the rainfall data (the number of days over 

which to sum rain to get a picture of soil trafficability would vary considerably by 

soil type). However such farm level soil profiles are not available and would have to 

collected at considerable expense. It should be noted soils in Irish farms are often 

quite heterogeneous, with wet and dry soils on the same farm. 

 

Our picture of NDVI and growth is also crude but better resolution satellite imagery 

form Landsat and Sentinel programs, and better geolocation of the NFS farms 

(mapped parcels rather than location of farmhouse) will allow us in the near future 

to be able to characterise the grass growth at field scale rather than in the generally 

location of the farm. Better temporal resolution of the satellite imagery will also 

help in resolving the decision making process but this has to be considered in the 

context of the prevailing cloudy conditions. 
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The predictive capabilities of the model seem good, at least for the NFS sample, in 

the absence of previous TOD for all farms then any national TOD prediction will 

depend upon the random effects coefficients in table 5.6. A comparison of the 

predictive capabilities is shown in table 5.7. The RMSE of 10.8 days when compared 

to an intra-farm average TOD variation of 25 days suggests this model could provide 

useful high resolution measurements of impact on TOD of current spring conditions 

on the farms in the NFS and wider. 

 

Table 5.7: Comparison of the internal predictive capabilities of the four models 
 

r2 predict Rmse on prediction 

(days) 

Fixed Effects 

(FE) 

0.501 15.32 

FE+ TOD lag 0.549 14.3 

Random 

Effects(RE) 

0.581 14 

RE+TOD lag 0.7419 10.8 

 

5.6. Conclusion 

Farmers are responding to general springtime grass growth conditions and 

measurements of NDVI over spring by satellite can quantify the effect on turn out 

dates at the farm, and nationally, of changes in grass growth year on year. Farmers 

seem to have a lag in their response to good conditions, waiting until there is more 

grass than is normal at their farm before turning out and turning out early in poor 

years to lower levels of grass cover. The number of dry days in the run up to turning 

out and the total amount of rainfall are associated with changes in TOD. 

In the future we will be able to characterise generally growing conditions and give 

an estimate at the end of April of the turn-out dates across  the NFS farms. New 

methods are being developed to directly estimate the amount of grass biomass in 

fields (Kg DM/Ha) from satellite, so rather than a relative score like NDVI we would 

have the actual amounts of grass cover on the farm. Incorporating a spatial 

dimension using newly developed spatial panel analysis techniques will allow for 
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national maps of TOD to be produced. This will allow for geographically tailored 

advice and turn out date targets. Having a more realistic target for turn out (as 

opposed to the promoted national target of the start of February ) could help to 

increase up take of extended grazing. 

 

Remote sensing data can add a considerable dimension to conventional agri-

economic analysis providing the independent “real-time” data that is sometimes 

lacking; allowing for evaluation of current conditions rather than analysis of past 

performance. It is possible to use current observations of spring conditions and 

deduce national and local impacts on TOD.  
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6 Summary and conclusion. 
6.1 Summary 

In this work we attempted to answer three research questions: 

 Can the effects of grass management be observed using medium resolution 

(250m) optical satellite imagery? 

 Can current intensive grass growing conditions be assessed by satellite? 

 Can management decisions be predicted from observed conditions? 

 

6.1.1 Can the effects of grass management be observed using medium resolution 
(250m) optical satellite imagery? 

 
Yes by coupling an understanding of farm systems with available time series 

satellite data it is possible to map LSU/ha, an important grassland classification that 

had been identified in the literature as a significant gap. 

 

Stocking density or stocking rate is the number of animals per unit area on a farm. 

This simple figure (measured as Livestock Units per hectare, LSU/ha) is hugely 

important in ecological studies, GHG inventories and socio-economic modelling of 

the agricultural geography and yet, as demonstrated in section 3.1, the information 

is not readily available across the EU. Authors repeatedly bemoan a lack of such 

data or that data supplied at a very coarse spatial resolution. 

 

In Chapter 3 it is shown how the growth rate and cover of grass in the early spring is 

related to the stocking density of the farm and this relationship can be modelled to 

produce a 250m resolution national map of stocking density in Irish grasslands.  

 

Many of the studies examined in chapter 3 used a phenological approach, tracking 

growth over time and fitting a theoretically driven “growth curve”; often a 

sigmoidal function. This approach is fine in a natural or semi natural ecosystem 

where growth is driven by climate but in a highly managed grassland landscape 

where individual fields are grazed, mowed or cut repeatedly throughout the season 
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this “growth curve” fails as has been shown in earlier French and Irish studies 

referenced. Thus the decision was made to look only at a limited time period (1st 

January to 31st April) and assume that growth, once it starts, is linear (an 

assumption borne out by the literature and the data). By using a linear model this 

allows for only the very highest quality data to be used to characterise spring 

growth (only a few data points are needed to fit a straight line). 

 

Within this linear model, 10 years of MODIS satellite data, using the 16 day NDVI 

composite, over the spring period was used to fit a linear model to the high quality 

pixels on the days available to create a decadal average growth rate and start of 

season cover values for every 250m pixel. 

 

Using a database of stocking figures a simple relationship between the log of 

stocking density and these parameters was developed based on the assumption 

that in spring, before animals are put out to graze, the amount of grass is a function 

not only of water and soil but of management practices put in place by a farmer to 

support the level of intensification on the farm. 

 

This model predicts stocking density with an RMSE= 0.13 LSU/ha (compared to a 

national average stocking density of 1.8 LSU/ha) and explains more of the variation 

in national stocking rate than the simple meteorological model presented in the 

section (an r2 of 0.74 compared to 0.47 for agro-climatic model). 

 

So for the first time, an accurate estimate of stocking density, at high spatial 

resolution has been made in the complex heterogeneous managed grassland 

landscapes common in northern Europe. 

 

6.1.3 Can current intensive grass growing conditions be assessed by satellite? 

 
Yes, taking the well-established idea of NDVI anomaly but re-figuring in the context 

of pastoral farming allows for the creation of a tool that satisfies adoption criteria in 
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the literature and also means it can be meaningfully compared to an independent 

measure of likely performance in the meteorological record. 

 

The fodder crisis of 2012/13 demonstrated the need for regular updates of current 

grass growing conditions. In chapter 4 the spring growth models from chapter 3 

was repurposed to create a growth anomaly map of current grass growing 

conditions. 

Whilst anomaly maps based on NDVI data are common monitoring tools, they are 

presented as percentage deviations from a normal value, something that farmers 

can find difficult to interpret. Using a decadal average spring growth model means 

that the deviation from the norm can be expressed in days or weeks difference for 

normal,  using language the farmer can understand.  

 

Anomaly services are usually presented as caveat emptor with little interpretation 

and no validation. Here, for the first time, an anomaly map is validated against a 

temperature driven start of season index derived at meteorological stations. The 

accuracy of the model is that NDVI-SPAT correlates well with the meteorologically 

derived seasonal progression anomaly cSPAT, with an r2=0.897 (n=54) and a p value 

>0.0001 (when the 2 outliers are removed, see discussion, the r2 = 0.937). The RMSE 

is 15 days. This means we can, accurately and repeatedly, estimate local and 

national growing conditions compared to the 10 year average. In the face of 

increasing weather extremes and variability this should prove useful for national 

policy makers looking to predict likelihood of a fodder shortage and for farmers 

looking to plan their spring grazing. As section 5 shows, the average variation, year 

on year, of turn out date on a farm is 25 days, so this RMSE value shows the output 

accurate enough to be potentially useful. 

 

To further demonstrate usefulness a beta version of a SPAT service was trialled on 

the Teagasc/ArcGIS online mapping platform, with a growth anomaly map 

produced for every 16 day MODIS acquisition period in the spring of 2015, where 

Teagasc advisors could enter their address and get the current SPAT value for their 

locale. As a result of feedback the design of the online service was altered post 
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2016. The simplified Townland boundaries used (simplified to speed up loading 

times) was not liked. Instead the SPAT data will be delivered as 1km tetrads 

(equivalent to 16 MODIS pixels). Static national and regional maps will also be 

created and hosted by Teagasc on the client website for those advisors who do not 

want to interact with the data. 

 

6.1.4 Can management decisions be predicted from observed conditions? 

 
For the first time we have linked direct observation of growing conditions with 

contemporaneous records of a management over 5 years and showed, within a 

panel analysis how these two are related. The potential is then of improving 

responses by showing missed opportunities or targeting advice when it is likely 

decisions are being made is huge. 

 

Understanding how farmers respond to conditions when making farm management 

decisions is important when designing decision support systems. In section 5 how 

grass growth and soil conditions influence the decision on when to turn cattle out 

from winter housing to spring grazing is discussed. Five years of NDVI MODIS data 

was used along with daily rainfall data from more than 300 rain-gauges and turn 

out dates from 199 participants in the NFS. Using a statistical technique known as 

panel data analysis that   a review of the remote sensing literature indicates is not 

widely used, it was possible to link conditions at the time of turn out with the actual 

date. 

 

Seasonal effects dominate over local and for every extra 0.01 in the average spring 

NDVI score at the farm location turnout was 3.7 days earlier. However this early 

turnout was associated with a higher actual NDVI on the day, that showed 

effectively the turn-out was 3.3 days later than it could have been. As 0.01 NDVI 

equates to a week’s growth typically it showed that farmers do respond to good 

conditions but not as quickly as they could. Outputs from the model based on use 

of the rainfall data implied that soil condition was of secondary importance to grass 
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levels, especially in poor springs and year dummies showed that seasonal effects 

are national- 2010 was a cold spring and caused turn out dates to be 4.6 days later, 

whereas the warm spring of 2012 allowed cattle to be turned out 5.6 days earlier. 

 

The inertia in decision making around a preferred date was shown by using the 

previous year´s TOD in the model. The model accurately predicts when turn out 

occurs with a RMSE of 10 days. Compared with the average difference between the 

earliest and latest dates (25days) on a farm a 10 day RMSE on the estimated TOD 

can be considered accurate. The model presented here can be used to predict TOD 

for any spring, this could be coupled with economic models on the costs associated 

with, for example, a late spring and allow Teagasc to make forecasts of cost impact 

of weather on farming as it happens. 

 

6.2 Conclusion 

 

The work presented here is part of a wider movement toward “smart” agriculture 

in Irish dairying and as such will continue to be developed. It also points towards 

gaps in understanding of the role that EO technologies may play in grazing systems; 

how managed grasslands cannot be treated as a crop in the EO community and 

specific issues regarding developing of EO services in Ireland.  

 

6.2.1 Implementing EO solutions in managed grasslands farms. 
 

By supporting Irish Dairy through new PA technologies in which EO will play a big 

role it will be demonstrated to European policy makers that grazing grass is a 

sustainable and resilient farming model. Surveys show that European consumers 

want produce from animals that graze at least some of the year and the PA 

approaches developed here will support farmers across Europe in doing so. 

 

This will mean overcoming technical challenges in designing EO tools that deliver 

what the farmer wants and deliver it reliably when it is needed. The literature 
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review in section 2 showed that farmers resist PA technologies that do not 

integrate with their normal management modes and they do not want to spend a 

great deal of time inputting data in DSS. 

 

The accepted paradigm of EO driven PA, that of passive data production and 

presentation “this is the crop yield today” needs to change. EO scientists need to go 

beyond interrogating the pixel and no further, to see how the information within 

the pixel matches the understanding of the person managing the land imaged by 

the pixel. Grassland farmers need information regarding the whole farm every day, 

they also need forecasts of future conditions and growth rates. It is possible to see 

a near future in Ireland where this is possible but certain infrastructure and 

algorithmic developments are needed.  

 

6.2.2 Improving EO methods for monitoring managed grasslands 
 

Cloud is the most serious handicap to fully integrating EO data into day to day 

management within Ireland. However with frequent enough acquisitions, the sort 

of gap filling/compositing systems developed in the MODIS program could 

maximise the cloud free viewing opportunities. However the gap filling algorithm 

must be tailored to the particular dynamics of grassland management in Ireland. 

 

Sentinel 2 and Landsat 8 are designed to be compatible and have complementary 

acquisition programs, meaning Ireland will be imaged every 8 days.  This may 

provide an opportunity for spring time monitoring of grass growth at a <30m 

resolution, allowing for sub-farm level characterisation. Using commercial services 

like DMC and SPOT by themselves would be too expensive but using them to gap fill 

a Landsat/Sentinel 2 series would be more cost effective. These approaches 

however will demand a more robust and open infrastructure for handling large 

volumes of data. 
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Cloud can be overcome using radar data from space but the current literature of 

trying to derive grass biomass or soil moisture from the complex Irish farming and 

pedological landscape is only just beginning. However it may be possible to use the 

back-scatter coefficient of the Sentinel 1a & 1b satellites directly as an input into a 

model similar to the one presented in section 5. Rather than trying to untangle the 

contributing factors of moisture, roughness, cover etc., use the total backscatter as 

a simple index of the combination of soil and grass condition. Because the panel 

analysis can ignore variation between farms then a backscatter value particular to 

each farm or field may be related to the conditions when that farmer turns out 

cattle at that farm.  

 

Farmers may choose to bypass EO systems and move directly to RPAS or drones. 

There has been a huge growth in a very short space of time in the provision of 

drone based services for Irish farmers. For now the focus is on farm mapping and 

farm design and regulation form the IAA has stymied the use of the autonomous 

systems. Technical issues still need to be overcome regarding flight time and 

stability in windy conditions but it is easy to see a time in the next decade when 

lightweight (<5kg) systems are autonomously flying Irish farms with 4 band NIR 

cameras. A new European project, GrassQ, lead by Teagasc and Maynooth 

university is looking at these issues, with a particular focus on estimating grass 

quality. 

 

The challenge in the EO community is to ensure that the systems are fully 

autonomous and provide robust estimates of grass biomass which feed directly into 

the farm grass budget plan. One possible way to continually test for robustness is 

compare drone acquired observations with satellite driven models, comparing and 

refining results with each acquisition. 

 

A national repository/ hub for all acquisitions over Ireland, combined with a big 

data analytics sandbox is critical. Also important is the construction of a ground 

segment in Ireland allowing for the ad hoc acquisition of data form EO satellites not 
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normally tasked with observing Ireland. This ground segment could play a role 

beyond Ireland, especially in the area of ocean remote sensing. 

 

A recent paper (to which this author contributed) by O’Donoghue et al (2016) 

proposed a national spatial analytical platform for combining agronomic, 

meteorological and remote sensing data to characterise in near real time farm 

performance across Ireland. The driver for this is the understanding of the need to 

move from passive advice to active service delivery- providing farm services (such 

as annual accounts, feed budgets, nutrient management plans) directly to the 

farmer, freeing the farmer to farm. 

 

6.2.3 Fusing EO and other approaches  
 

Another solution to over-come data gaps due to cloud is to model the grass growth 

between clear observations. Weather data driven bio-physical models allow for 

accurate biomass estimates. On-going work in Teagasc has lead to development of 

the Moorepark Grass Growth Model that can successfully simulate grass growth 

using data on weather and soil conditions, future grass growth using weather 

forecast data (Paillette et al 2015).  

 

These mechanistic models can interact with EO data models in two ways, they can 

bridge data gaps by modelling grass growth during the period when EO data is not 

available. More usefully EO data can tie mechanistic simulations of grass growth to 

the real world. By coupling local weather and soil data to drive the mechanistic 

model with an EO observation of actual conditions the EO data acts as an empirical 

term in the model correcting for local conditions (management, drainage, grass 

variant, etc.) and improving accuracy. The EO data can also capture management, 

grazing and cutting, that of course a synthetic grass growth model cannot. 

 

New meteorological weather prediction products from Met Eireann and IBM are 

moving weekly forecasts of weather down to 5km cells or less and using EO 
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observations of current conditions means that field scale forecasts of grass growth 

up to one week ahead are very close to being realised. 

 

Ideally a system that reliably gives weekly 1 ha scale data on the following is 

needed: 

 

• Current grass cover in kgDM/ha 

• Current grass growth in kgDM/ha/day 

• Soil Moisture 

• Comparison with average (SPAT) 

• Current usage (grazing, cutting, hay making) 

• Forecast of likely growth in the next week/fortnight 

• Farm level feed demand 

 

All these can be feasibly achieved based on the work presented here and by others 

in the last few years. 

 

The results presented here are a basis for a set of tools at both national and farm 

levels to allow Irish farmers fully exploit their managed grasslands, improving 

profitability and helping to ensure long term sustainability and animal welfare as 

the Irish Dairy Industry grows. 

 

Managed European grasslands as a farm system have been largely ignored in the 

EO literature. It is hoped that the work here prompts a deeper interest in these 

systems. These are incredibly valuable and complex systems and our limited 

understanding across Europe of the dynamics of these farm landscapes hampers 

everything from rural development to GHG reporting and only EO can help provide 

the answers. 
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Appendix 
Global vegetation monitoring services referenced in section 4.1.1 

 

Links live, December 2018 

 

USDA, Crop Explorer - http://www.pecad.fas.usda.gov/cropexplorer/Default.aspx 

Australian NDVI Maps- http://www.bom.gov.au/jsp/awap/ndvi/index.jsp# 

USA, Food Early Warning System (FEWS): http://www.fews.net/ 

MARS/JRC Agri4Cast: http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST 

GIEWS: http://www.fao.org/giews/ 

VegScape: http://nassgeodata.gmu.edu/VegScape/ 

GeoGlam: http://www.earthobservations.org/geoglam_me.php 

Vega-Pro: http://pro-vega.ru/eng/ 

 

 

 

http://www.pecad.fas.usda.gov/cropexplorer/Default.aspx
http://www.bom.gov.au/jsp/awap/ndvi/index.jsp
http://www.fews.net/
http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST
http://www.fao.org/giews/
http://nassgeodata.gmu.edu/VegScape/
http://www.earthobservations.org/geoglam_me.php
http://pro-vega.ru/eng/
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