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3Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy & INFN, Gruppo collegato di Cosenza
4School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, United Kingdom

(Received 1 December 2010; published 2 March 2011)

Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev.
Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange
mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is
effectively Markovian and that such a point separates two regions with completely different dynamical behaviors.
Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful
one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the
environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete
and intuitive characterization of the qubit channel.

DOI: 10.1103/PhysRevA.83.032103 PACS number(s): 03.65.Yz, 75.10.Pq, 42.50.Lc

In the study of open quantum systems, quite often the
Markovian approximation has been a useful starting point to
describe their dynamics. Only very recently, new and powerful
tools have been designed in order to tackle the important
question of explicitly quantifying the non-Markovian character
of a system-environment interaction or a dynamical map [1–3].
Such a task is extremely important, given that non-Markovian
effects are known or expected to occur in a wide range
of physical situations, especially in the realm of solid-state
devices where a system of interest is often exposed to
memory-preserving environmental mechanisms. As a specific
example, switching impurities have been shown to affect
superconducting devices in various regimes [4].

From a fundamental point of view, devising a reliable
way to actually quantify non-Markovianity is very useful
in light of the plethora of frequently ad hoc or technically
rather involved approaches put forward so far in order to
study memory-keeping environmental actions. A few instances
emerge as promising measures for the non-Markovian nature.
Wolf et al. [1] have proposed to quantify the degree of
non-Markovianity of a map by considering the minimum
amount of noise required in order to make the evolution of a
system fully Markovian. On the other hand, in Ref. [2], Rivas
and co-investigators discussed two approaches, founded on the
deviations of a given map from full divisibility. Finally, Breuer
et al. proposed a way to quantify non-Markovian effects by
looking at the backaction induced on the system under scrutiny
by its memory-keeping environment [3]. Further approaches
have been considered, and measures have been proposed that
are based on the use of other interesting instruments such as
the quantum Fisher information [5].

In this paper, we focus on the non-Markovianity measure
proposed in Ref. [3] to study the dynamics of a qubit coupled
to a spin environment described by an XY model in a
transverse magnetic field. Our aim is to analyze a simple
and yet nontrivial system-environment set, displaying a broad
range of behaviors in the parameter space, in order to relate
the features of the non-Markovianity measure to the known
spectral and dynamical structures of the spin system. The
choice of the model has been also dictated by the versatility

demonstrated by spin-network systems in the engineering
of protocols for short-range communication [6] and for the
investigation of the interplay between quantum-statistical and
quantum-information-related aspects [7].

Intuitively, one would expect that the coupling to a spin
environment always leads to a non-Markovian dynamics
for the qubit. This can be justified by noticing that the
environmental correlation time is nonzero even in the weak
coupling regime and by conjecturing that, by increasing
the coupling strength, a Markovian approximation can only
become less valid. However, we demonstrate that this is not at
all the case and that peculiar behaviors occur at intermediate
couplings. The chosen measure for non-Markovianity, in
fact, turns out to be identically null at specific dynamical
regimes, thus demonstrating the absence of a net re-flux of
information from the environment back to the qubit. Our
study of non-Markovianity makes the use of measures for
its quantification a valuable tool for the identification of
special conditions in the parameter space of the environment.
Moreover, our study opens up the possibility to exploit the
different memory-keeping regimes induced by controlling
and tuning the properties of the environment to effectively
“drive” the qubit dynamics in a nontrivial and potentially
very interesting way. The effective evolution of our two-level
system could be guided across different regimes, ranging
from strong environmental backaction to completely forgetful
dynamics typical of a Markovian map. The potential of such
flexibility for reliable control at the quantum level is a topic
that will be explored in the future.

The reminder of this paper is organized as follows. In Sec. I
we introduce the model under scrutiny and revise the basic
principles behind the chosen measure for non-Markovianity.
We study a few cases amenable to a full analytical solution and
highlight how, in a few such instances, a simple experimental
protocol can be designed for the inference of the properties of
the qubit dynamics. Most importantly, we reveal the existence
of an operating regime where the chosen measure is strictly null
and relate such an effect to intriguing modifications occurring
at the level of the energy spectrum of the qubit-environment
system. Section II is devoted to the formal characterization
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of such peculiar point in the parameter space. We first
demonstrate divisibility of the corresponding dynamical map,
hence its Markovian nature, and then perform a theoretical
analysis based on the use of quantum process tomography to
quantitatively infer its properties. Finally, in Sec. III we draw
our conclusions.

I. THE MODEL AND THE MEASURE

We consider a qubit Q coupled to a chain � of N

interacting spin-1/2 particles. The qubit is described by the
spin-1/2 vector operator ŝ0, while the operator ŝn (n = 1,. .,N )
corresponds to the spin located at site n of the chain �. The
logical basis for the spins and Q is given by {|0〉j ,|1〉j }
with j = 0, . . . ,N . The Hamiltonian ruling the intrachain
interaction is taken to be of the XY -Heisenberg type (we set
h̄ = 1):

Ĥ� = −2
N−1∑
n=1

(
J x

n ŝx
n ŝx

n+1+J y
n ŝy

n ŝ
y

n+1

) − 2
N∑

n=1

hnŝ
z
n, (1)

where hn is the local field applied at site n. � is open-ended
with J

x,y
n ’s and hn’s being not necessarily uniform. The qubit

is coupled to the first spin of the environment, embodied by �,
via an exchange interaction of strengths J

x,y

0 and is subjected
to a local field h0 according to

Ĥ0 =−2
(
J x

0 ŝx
0 ŝx

1 + J
y

0 ŝ
y

0 ŝ
y

1

)−2h0ŝ
z
0. (2)

In order to determine the time evolution of Q, we resort to
the Heisenberg picture and the formal apparatus put forward
in Ref. [8], which provides particularly powerful tools for
the study of the many-body problem embodied by Ĥ0 + Ĥ� .
Using the operator-expansion theorem and the algebra satisfied
by Pauli matrices, we find that the time evolution of the
components of ŝ0 reads

ŝx
0 (t) = 1

2

N∑
n=0

[
�x

n(t)σ̂ x
n + �x

n(t)σ̂ y
n

]
P̂n,

ŝ
y

0 (t) = 1

2

N∑
n=0

[
�y

n(t)σ̂ y
n − �y

n(t)σ̂ x
n

]
P̂n, (3)

ŝz
0(t) = −iσ̂ x

0 (t)σ̂ y

0 (t)/2,

where σ̂ α
n (α = x,y,z) are the Pauli operators for the spin at site

n and P̂n = ∏n−1
i=1 σ̂ z

i . The time-dependent coefficients �x
n(t)

and �x
n(t) are the components of the (N + 1)-dimensional

vectors �x(t) and �x(t) defined by

�x(t) =
∞∑

p=0

(−1)p
t2p

(2p)!
(ττ T )pυ, (4)

�x(t) =
∞∑

p=0

(−1)p
t2p+1

(2p + 1)!
τ T (ττ T )pυ, (5)

where T stands for transposition, the vector v has components
vi = δi0, and the tridiagonal adjacency matrix τ has elements

τij = J x
i−1δi−1,j + J

y

i δi+1,j − 2hiδi,j . (6)

Notice that we have labeled columns and rows of
(N+1)×(N+1) matrices and (N+1)-dimensional vectors

using indices ranging from 0 to N . The coefficients �y(t)
and �y(t) are obtained from Eqs. (4) and (5) by replacing
τ with τ T . Both ττ T and τ T τ can be easily diagonalized by
orthogonal matrices U and V such that (ττ T )p = U�2pUT and
(τ T τ )p = V�2pVT , with � a diagonal matrix whose elements
λij = λiδij are the (positive) square roots of the eigenvalues
of τ T τ . Consequently, Eqs. (4) and (5) can be fully summed
up to give

�x(t) = U�(t)UT v,�x(t) = V�(t)UT v,
(7)

�y(t) = V�(t)VT v,�y(t) = U�(t)VT v,

where �(t) and �(t) are diagonal matrices with elements
	ij (t) = cos(λit)δij and 
ij (t) = sin(λit)δij .

By using Eqs. (3), one can determine the time evolution of
the state of Q as ρ(t) = 1̂/2+ ∑

α〈ŝα
0 (t)〉σ̂ α

0 . In the evaluation
of the expectation values required to determine ρ(t) we assume
that Q and � are initially uncorrelated. The conservation rule
[Ĥ,

⊗N
n=0 σ̂ z

n ] = 0 and the property 〈σ̂ α
n σ̂

β �=α

m�=n 〉 = 0 imply

〈
ŝx

0 (t)
〉 = 1

2

N∑
n=0

[
�x

n(t)
〈
P̂nσ̂

x
n

〉 + �x
n(t)

〈
P̂nσ

y
n

〉]
,

〈
ŝ
y

0 (t)
〉 = 1

2

N∑
n=0

[
�y

n(t)
〈
P̂nσ̂

y
n

〉 − �y
n(t)

〈
P̂nσ̂

x
n

〉]
,

〈
ŝz

0(t)
〉 = 1

2

N∑
n=0

[
�x

n(t)�y
n(t) + �x

n(t)�y
n(t)

]〈
σ̂ z

n

〉
(8)

−1

2

N∑
n<m

[
�y

n(t)�x
m(t) + �x

n(t)�y
m(t)

]〈
P̂n+1P̂mσ̂ x

n σ̂ x
m

〉

−1

2

N∑
n<m

[
�x

n(t)�y
m(t) + �y

n(t)�x
m(t)

]〈
P̂n+1P̂mσ̂ y

n σ̂ y
m

〉
.

In order to evaluate the above equations one needs multispin
correlation functions, involving, in particular, the degrees of
freedom of �. To this end, we consider it to be in its ground
state in what follows. However, as will be shown later, the
value of the measure of non-Markovianity chosen for this work
is independent of the state of �, provided that 〈sx(y)

n (0)〉 = 0
holds, as it does for the ground state with no broken symmetry.

By using Eqs. (8), one can finally determine ρ(t). The
interaction with the spin chain acts for Q as a dynamical
map (t,0) such that ρ(t) = (t,0)ρ(0). The properties
of the map depend on the relative weight of the various
parameters entering Ĥ0+Ĥ� . Our aim is to characterize the
non-Markovian nature of  as a function of these parameters.

To pursue our task, we consider the measure proposed
in Ref. [3], based on the study of the time behavior of the
trace distance D[ρ(1)(t),ρ(2)(t)] = 1

2 Tr|ρ(1)(t)−ρ(2)(t)|∈[0,1]
between two single-qubit density matrices ρ(1,2)(t). The trace
distance is such that D[ρ(1)(t),ρ(2)(t)] = 1 when the two
probed states are completely distinguishable, while it gives 0
for identical states [9]. The degree of non-Markovianity N ()
of the dynamical map , is defined as

N () = max
∑

n

{D[ρ(1)(bn),ρ(2)(bn)]−D[ρ(1)(an),ρ(2)(an)]},

(9)
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where the maximization is performed over the states ρ(1,2)(0)
and (an,bn) is the nth time window such that

σ [t,ρ(1,2)(0)] = ∂tD[ρ(1)(t),ρ(2)(t)] > 0. (10)

The function σ [t,ρ(1,2)(0)], which has been dubbed flux of
information in Ref. [3], encompasses per se the condition
for revealing non-Markovianity of an evolution: The mere
existence of even a single region where σ [t,ρ(1,2)(0)] > 0 is
sufficient to guarantee the non-Markovian nature. Conceptu-
ally, in fact, N () accounts for all the temporal regions where
the distance between two arbitrary input states increases, thus
witnessing a re-flux of information from the environment
to the system under scrutiny. Such re-flux of information
amplifies the difference between two arbitrarily picked input
states evolved up to the same instant of time. A Markovian
dynamics is such that the above-mentioned re-flux never
occurs and σ [t,ρ(1,2)(0)] < 0 always. For the case at hand
and for two generic input density matrices ρ(1,2)(0), we find
D[ρ(1)(t),ρ(2)(t)] = √

ζ , where

ζ = [
�x

0(t)�y

0(t) + �x
0(t)�y

0(t)
]2

p2

+ |cf+(�0,�0,t) + c∗f−(�0,�0,t)|2/4 (11)

with f±(�0,�0,t) = �x
0(t) ±�

y

0(t) ± i[�x
0(t) ±�

y

0(t)] where
p = ρ

(1)
11 (0)−ρ

(2)
11 (0) and c = ρ

(1)
01 (0)−ρ

(2)
01 (0). We have used

the notation ρ
(a)
ij (0) = 0〈i|ρ(a)|j 〉0 with i,j = 0,1 and a =

1,2. It is worth noticing that in the above equation the
initial state of the environment is completely absent, so
that the environment’s multispin correlators are not relevant.
Equation (11) can be recast into a much more intuitive form by
referring to the Bloch vectors ra = (rx

a ,r
y
a ,rz

a) representative of
the state ρ(a) (we have chosen rα = 〈ŝα

0 〉 as the mean value of
the spin-1/2 operator rather than that of the more usual Pauli
operator to avoid the appearance of irrelevant 1/2 factors). By
calling �rα = rα

1 −rα
2 the difference between the vectors of

two input states, we have

ζ = |r1(t)−r2(t)|2≡[
�x

0(t)�y

0(t)+�x
0(t)�y

0(t)
]2

(�rz)2

+ [
�x

0(t)�rx+�x
0(t)�ry

]2 + [
�

y

0(t)�ry − �
y

0(t)�rx
]2

.

(12)

One can thus write the flux of information between the qubit
and the environmental chain � as

σ [t,ρ(1,2)(0)] = (�rz)2A∂tA + B∂tB + C∂tC

D[ρ(1)(t),ρ(2)(t)]
, (13)

where A = �x
0(t)�y

0(t) + �x
0(t)�y

0(t), B = �x
0(t)�rx +

�x
0(t)�ry , and C = �

y

0(t)�ry − �
y

0(t)�rx . Due to
the non-negativity of D[ρ(1)(t),ρ(2)(t)], the condition
for non-Markovian dynamics can be simply stated as
(�rz)2A∂tA + B∂tB + C∂tC > 0. Numerically, it turns
out that the maximum in the corresponding measure of
non-Markovianity is achieved for ρ(1,2)(0) being antipodal
pure states lying on the equatorial plane of Q’s Bloch
sphere (we will come back to this point later in this paper).
This considerably simplifies the necessary condition for
memory-keeping dynamics to the form ∂t (B2 + C2) > 0.

Although our analysis can be carried out without major
complications in the general case, in order to simplify the

presentation, hereafter we restrict ourselves to the case of
a uniform spin environment with equal isotropic couplings
between every pair of nearest-neighboring spins (XX-model)
and set this coupling constant as our energy (and inverse time)
unit. We thus consider J x

0 = J
y

0 = J0, a condition under which
the measure of non-Markovianity becomes

D[ρ(1)(t),ρ(2)(t)] =
√

(p2f (t) + |c|2)f (t), (14)

where f (t) = �2
0(t) + �2

0(t) ∈ [0,1]. The corresponding rate
of change of the trace distance is

σ [t,ρ(1,2)(0)] = [2p2f (t) + |c|2]f ′(t)
2D[ρ(1)(t),ρ(2)(t)]

. (15)

As f (t) � 0, the sign of σ [t,ρ(1,2)(0)] is determined by f ′(t),
regardless of the pair of input density matrices ρ(1,2)(0). Yet we
should look for the states maximizing the contributions to the
trace distance within these time intervals. As |f (t)|�1, such
optimization is achieved for c = 1 and p = 0, that is, antipodal
pure states on the equatorial plane of the Bloch sphere, in line
with the (more general) numerical findings reported above.
The condition for non-Markovianity can be further elaborated
as f ′(t) = 2[�0(t)�′

0(t) + �0(t)�′
0(t)] > 0.

To pursue the task of evaluating N () in the quite rich
parameter space of our model, we start by considering the
case of a qubit resonant with the spin environment and assess
the special case of h0 = h first. It can be shown analytically
that in this case one gets �0(t) = J1(2t) cos(2ht)/t and
�0(t) = −J1(2t) sin(2ht)/t [11], where Jn(x) is the Bessel
function of order n and argument x. Correspondingly, f (t) =
J 2

1 (2t)/t2 and f ′(t) = −4J1(2t)J2(2t)/t2. For those states
with |c| = 1 and p = 0 that maximize N , we have the flux

σ [t,ρ(2,3)(0)] = −(2/t)sgn[J1(2t)]J2(2t) (16)

with sgn[x] being the sign function. Equation (16) is inde-
pendent of h, which is joint result of the condition p = 0 and
the invariance of the trace distance under the global unitary
transformation embodied by the operator exp[−ith

∑N
i=0 σ̂ z

i ]
needed in order to pass to the interaction picture. The time
windows where σ [t,ρ(1,2)(0)] > 0 are determined by the chain
rule of the zeros of the Bessel functions. Overall, we get that
the flux is positive for a time tσ>0 = ∪(t1

i ,t2
i ), where t1

i (t2
i ) is

the ith zero of the Bessel function of order 1 (2). From this
special case and the general considerations reported above, we
learn that N () depends only on the detuning δh = h − h0.

Due to this fact, the simple case in which all of the
magnetic fields are absent (h = h0 = 0), which can be tested
experimentally in an easy way, allows to draw some interesting
conclusions on the more general case δh = 0. In the absence
of magnetic fields, indeed, the behavior of σ and N can be
extracted directly by monitoring the dynamics of the qubit.
To show that this is indeed the case, we start by noticing
that, if h/J = h0/J = 0, we have �0(t) = 0 [11], so that both
the trace distance and the flux of information are determined
by f (t) = �2

0(t), which represents the squared length of the
Bloch vector, |r(t)|2. This implies that, in order for Q to
experience a re-flux of information from �, �2

0(t) has to
be a strictly nonmonotonic function. Therefore, we observe
non-Markovian dynamics when the Bloch vector of the qubit
is alternatively shrunk and elongated during its evolution. This
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FIG. 1. (Color online) N () versus h/J with h0/J = 0, J0/J =
1 and N = 100. To avoid spurious recursion effects, the dynamics is
evaluated up to a temporal cutoff of ∼ 2N/3. We checked that the
precise cutoff is not relevant and that the plot remains unchanged if
N is varied, provided N � 1. All quantities are dimensionless.

can be witnessed by reconstructing the density matrix of Q

using standard quantum-state tomography techniques [9,10],
which are routinely implemented in a variety of physical
setups. However, there is also an interesting alternative that
does not require full state reconstruction. From the first of
Eqs. (8), we get that 〈ŝx

0 (t)〉 = 1
2�0(t)〈σ̂ x

0 (0)〉. Thus, in the
spirit of the proposals put forward in Refs. [8,12], by preparing
the state of Q in one of the eigenstates of σ̂ x

0 [a choice
that would be perfectly consistent with our results on the
input states to be used for the calculation of N ()], we can
measure 〈ŝx

0 (t)〉 to determine the non-Markovianity of the qubit
dynamics, which would be revealed by its nonmonotonic time
behavior.

Other points in parameter space exist for which the model
is amenable to an exact analytic solution. However, in order
to give a complete overview of the behavior of N , we first
resort to numerical techniques to solve our model. The results
of such an analysis are shown in Fig. 1, where the quantitative
degree of non-Markovianity is shown as a function of h/J (we
set h0 = 0) in the isotropic case and for equal intrachain and
qubit-environment coupling strengths.

A highly nontrivial behavior followed by N () is revealed.
The largest deviation from a Markovian dynamics is achieved
at h/J = 0, while, for 0 � h/J � 0.5, N () decreases
monotonically to zero. By further increasing h we see that
N () achieves a very broad maximum around the saturation
point h/J  1 of the environmental chain. Finally, it goes
to zero for h/J � 1, as it should be expected given that
this situation corresponds to an effective decoupling of the
qubit from the environment [11]. By generalizing our study
to the case of h0/J �= 0, we emphasize the presence of a
Markovianity point at δh/J = 1/2. It turns out that this point
separates two regions in which the dynamics of the qubit
(although being non-Markovian in both cases) is completely
different. For δh/J�1/2, indeed, the qubit tends toward a
unique equilibrium state at long times, irrespective of the
initial condition; that is, the trace distance goes to zero after
some oscillations. For larger detunings, on the other hand,
the trace distance does not decay to zero, implying that some
information about the initial state (and, in particular, about the
relative phase between its two components) is trapped in the
qubit.

The Markovianity point at δh/J = 1/2 (with J0/J =
1) is one of those points in parameter space for
which the model can be treated fully analytically [13].

0.0 0.5 1.0 1.5

0.2

0.6

1.0

1.4

FIG. 2. (Color online) N () versus h/J for h0/J = 0 and three
different values of J0/J for a chain of N = 200 spins. For J0/J > 1,
the Markovianity point disappears. All quantities are dimensionless.

We have �0(t) = J0(2t) cos t+J1(2t) sin t and �0(t) =
J1(2t) cos t−J0(2t) sin t [11], so f (t) = J 2

0 (2t)+J 2
1 (2t) and

f ′(t) = −2J 2
1 (2t)/t < 0∀t . As a consequence, the corre-

sponding non-Markovianity measure is always zero at this
point of the parameter space, which is a very interesting result
due to the relatively large Q − � coupling strength. Such a
feature, in fact, would intuitively lead to exclude any possibility
of a forgetful dynamics undergone by the qubit. Yet this is not
the case, and a fully Markovian evolution is in order under
these working conditions. A deeper characterization of this
Markovian dynamical map is given in Sec. II.

As J0 represents the energy scale of the qubit-environment
interaction, it is natural to expect that significant changes
in N () occur as this parameter varies. In particular, we
find that (i) a Markovianity point with N () = 0 exists
only for J0/J�1 and (ii) N () tends progressively toward
a monotonically decreasing function of δh if J0/J grows
from 1 to

√
2 (see Fig. 2). Strikingly, at J0/J = √

2 and
δh = 0, the adopted measure of non-Markovianity diverges,
as it can be checked by using the analytic integrability of
the qubit-chain interaction at this point in the parameter
space. Indeed, at J0/J = √

2, we have �0(t) = J0(2t) and
σ (t) = −2sgn[J0(2t)]J1(2t). Integrating over all the positive
time intervals determined by means of the usual chain rule
we get N ()→∞, thus witnessing a strong backaction of
� on the state of the qubit. The divergence of N () should
not surprise us, as it is common to other situations with spin
environments, such as the so-called central-spin model, where
a single qubit is simultaneously coupled to N independent
environmental spins via Ising-like interactions (see Breuer
et al. in Ref. [3]). We provide a physical explanation for
the enhanced non-Markovian nature of the qubit dynamics
simply by looking at the spectrum of the Hamiltonian ruling
the evolution of the qubit-chain system. For J0/J�

√
2, the

spectrum of Ĥ� + Ĥ0 exhibits a continuous spectrum (a band
of extended eigenstates) that is lower- and upper-bounded by
two discrete energy levels whose eigenstates are localized at
the sites occupied by the qubit and the first spin of � [14]. As a
consequence, a certain amount of information remains trapped
into such a localized state, bouncing back and forth between
the qubit and the first spin and therefore mimicking a highly
non-Markovian dynamics characterized by strong backaction,
so that N () diverges.

An analysis similar to the one performed above allows
us to obtain an intuition for the behavior of the measure
of non-Markovianity near this point. For δh/J > 1/2 the
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FIG. 3. (Color online) We call E+ (E−) a discrete level lying
above (below) the continuous energy band in the (single-particle)
spectrum of the total Hamiltonian Ĥ0 + Ĥ� . The parabolas h/J =
±[1 − (J0/J )2/2] divide the (h/J,J0/J ) parameter plane in three
regions with one, two, and no localized state (light-colored, dark-
colored, and uncolored region in the plane, respectively). All
quantities are dimensionless.

spectrum of the system shows one eigenenergy out of the band,
and its corresponding eigenvector is localized around the site
occupied by Q. This can explain the information trapping
that occurs for δh/J > 1/2. For definiteness, in what follows
we report explicit results for the case h0/J = 0. Therefore,
hereafter we consider δh/J ≡ h/J .

In order to determine the existence of a more general
connection between the emergence of localized eigenstates
in the system-environment spectrum and a point of zero N
in the qubit evolution, we analyze the (h,J0) plane to find
where localized eigenstates appear and then evaluate the
corresponding degree of non-Markovianity. In doing this, we
take advantage of the fact that the Hamiltonian describing
an environmental XX model has the same single-particle
energy spectrum as a tight-binding model with an impurity.
Following the approach given in Ref. [15], we deduce that, in
the (h/J,J0/J ) plane, the parabolas h/J = ±[1 − (J0/J )2/2]
define regions with, respectively, zero, one, and two localized
energy levels out of a continuous-energy band (see Fig. 3).

The central region with no localized energy state and
the zones with only one localized state (either a upper-
or lower-lying one with respect to the continuous band)
correspond to N () �= 0, although finite. The frontiers of
such regions, marked by the parabolas, give the limiting
values of (h/J,J0/J ) for the appearance of the localized states
and are such that N () = 0 only for J0/J � 1, whereas for
1 < J0/J <

√
2 the measure of non-Markovianity is non-null

and finite. Finally, the regions with two localized states
and their frontier with the no-localized state region have
N ()→∞, in line with the analytical results discussed above.

In particular, we remark once again that the Markovianity
points (when they exist, i.e., for J0/J � 1) stay on the
parabolas; that is, they are found to occur at the onset for the
existence of one discrete eigenstate outside the energy band.
This kind of state contains a spatially localized spin excitation
with a localization length that decreases with increasing h [14].
Precisely at the border, the localization length becomes as large
as the length of the chain itself, so that all of the environmental
spins are involved in (or share excitation of) the initial state.
This can intuitively justify the fact that N is zero there. For
J0/J > 1, on the other hand, the first spin of the environment

3 2 1 0 1 2

energy

0.6

0.5

0.4

0.02

0.04

0.06
n (k)

FIG. 4. (Color online) Average number of fermion excitations in
the initial state for a qubit-chain system with N + 1 = 50, coupling
strength J0/J = 1, and three values of the magnetic field around
the Markovianity point (h/J = 0.5,h0/J = 0). The initial state is
always taken to be the tensor product of an equatorial state of Q and
the ground state of �.

becomes more important for the dynamics of the qubit (which
is “strongly coupled” to it), and an information exchange
is always found to occur between them, irrespectively of
the existence of the discrete level. This information re-flux
becomes more and more pronounced with increasing J0/J

and decreasing h/J .
To stress once more the close relationship between the

non-Markovianity measure and the properties of the overall
Hamiltonian Ĥ� + Ĥ0, we report here the energy distribution
of the excitations that are present in the initial state of the
system (given by the product of an equatorial state for the qubit
times the ground state of the environment). These excitations
are spinless fermions of the Jordan-Wigner type, and the
procedure to obtain them is the one described, e.g., in Ref. [16].
Figure 4 reports the average value of the excitation number in
the initial state versus single-particle energy for various values
of the magnetic field. The plot shows what happens near a
Markovianity point: The energy distribution of initial-state
excitations becomes flat (i.e., structureless) at theN = 0 point,
while it shows a maximum for lower values of h, corresponding
to a finite value ofN , and a spike for h/J > 0.5, corresponding
to the discrete level giving rise to information trapping.

From this discussion we conclude that the measure of
non-Markovianity of the qubit dynamics is, in fact, a detector
of general aspects of the full qubit+environment system and
that various features of N () can be related to general
characteristics of the overall many-body problem described
by the full Hamiltonian model.

II. CHARACTERIZATION OF THE POINT OF
ZERO MEASURE

The occurrence of a null value of N () at h/J = 1/2
and J0/J = 1 deserves a special attention. Naively, one could
expect a special behavior to occur at the chain saturation
point (i.e., at h/J = 1), where the intrinsic properties of
the environmental system are markedly different from the
situation at h/J < 1. To the best of our knowledge, indeed, no
significant dynamical feature has been reported for the model
under scrutiny away from saturation.
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A. Characterization of the dynamical map: Formal features
and divisibility

The aim of this section is to characterize the dynamical map
that we obtained for the qubit under these conditions.

Due to the analytical solution for the case at hand provided
in Ref. [13], we can sum up the terms appearing in Eq. (8) and
determine the complete density matrix of Q. For n = 0,. .,N

we have

�n(t) =
{

(−1)
n
2 [sin(t)Jn+1(2t)+ cos(t)Jn(2t)], n even,

(−1)
n+1

2 [cos(t)Jn+1(2t)− sin(t)Jn(2t)], n odd

(17)

and

�n(t) =
{

(−1)
n
2 [cos(t)Jn+1(2t)− sin(t)Jn(2t)], n even,

(−1)
n+3

2 [sin(t)Jn+1(2t)+ cos(t)Jn(2t)], n odd.

(18)

The dynamical map transforms the elements of the input
density matrix ρij (0)(i,j = 0,1) as

ρ00(t) = f (t)ρ00(0) + A11
00(t),ρ01(t) = A01

01(t)ρ01(0),
(19)

ρ11(t) = A00
11(t) + f (t)ρ11(0),ρ10(t) = A10

10(t)ρ10(0),

with A11
00(t) = [1−f (t)+g(t)]/2, A00

11(t) = [1−f (t)−g(t)]/2
and A01

01(t) = �0(t)+i�0(t) = [A10
10(t)]∗, and where f (t) =

�0(t)2+�0(t)2 has already been defined in Sec. I. We intro-
duced here the function g(t) = ∑N

n=1[�2
n(t) + �2

n(t)]〈σ̂ z
n 〉 −

1
4

∑N

n �= m = 1 [�n(t)�m(t) + �n(t)�m(t)]gnm, written in

terms of the magnetization and the two-point longitudinal
correlation function〈
σ̂ z

n

〉 = 1− 2

N + 1

{
kF − cos[(kF + 1)ϑn] sin[kF ϑn]

sin ϑn

}
,

(20)
gnm ≡ 〈P̂nP̂mσ̂ x

n σ̂ x
m〉 = ϕn,kF +1ϕm,kF

− ϕn,kF
ϕm,kF +1

2(cos ϑn − cos ϑm)
,

with ϕj,k = √
2/(N + 1) sin(jϑk), ϑk = kπ/(N + 1),

k = 1, . . . ,N and kF being the Fermi wave number (see
Ref. [17]).

The condition for divisibility stated in Ref. [3] implies the
existence of a completely positive dynamical map �(t + t1,t)
such that, for two arbitrary instants of time t and t1, we have
(t + t1,0) = �(t + t1,t)(t,0). Here (t,0) is the dynam-
ical map in Eq. (19). Any dynamical map that is divisible
according to the above definition is Markovian. This implies
that nondivisibility is a necessary condition for memory-
keeping effects in the evolution of a system. A dynamical
connection �(t + t1,t) between the states (t + t1,0)ρ(0) and
(t,0)ρ(0) can be straightforwardly found to be given by the
map changing the elements of the qubit state ρ(t) at time t into

ρ00(t + t1) = f (t + t1)

f (t)
ρ00(t) +A11

00(t + t1) − f (t + t1)

f (t)
A11

00(t),

ρ11(t + t1) = f (t + t1)

f (t)
ρ11(t) +A00

11(t + t1)−f (t + t1)

f (t)
A00

11(t),

ρ01(t + t1) = ρ∗
10(t + t1) = A01

01(t + t1)

A01
01(t)

ρ01(t). (21)

Therefore, in order to ensure the divisibility of (t + t1,0), we
should investigate the complete positivity of �(t + t1,t). To
this purpose we make use of the Choi-Jamiolkowski isomor-
phism [18] and prove the complete positivity of �(t + t1,t)
by checking the non-negativity of (�(t + t1,t) ⊗ I2)ρ, where
ρ is the density matrix of one of the Bell states [19] and I2 is
the identity map. By choosing ρ(t) = 1

2 (|00〉 + |11〉)(〈00| +
〈11|), the action of the map (�(t + t1,t) ⊗ I2) determines the
following nonzero matrix elements (up to an irrelevant factor
1/2) at time t + t1:

ρ00,00(t + t1,t) = f (t + t1)

f (t)
+A11

00(t + t1)−f (t + t1)

f (t)
A11

00(t),

ρ00,11(t + t1,t) = A11
00(t + t1)−f (t + t1)

f (t)
A11

00(t),

ρ11,00(t + t1,t) = A00
11(t + t1)−f (t + t1)

f (t)
A00

11(t), (22)

ρ11,11(t + t1,t) = f (t + t1)

f (t)
+A00

11(t + t1)−f (t + t1)

f (t)
A00

11(t),

ρ01,01(t + t1,t) = ρ∗
01,01(t + t1,t) = A01

01(t + t1)

A01
01(t)

.

Here we have used ρi ′j ′,ij = 〈i ′i|ρ|j ′j 〉 with the primed (un-
primed) indices corresponding to the evolving (nonevolving)
qubit. The condition for positivity of the composite two-qubit
map turns out to be equivalent to the positivity condition of the
single-qubit one given in Eqs. (21), which is in turn translated
into the inequality 0 � C(t,t1) � 1 with

C(t,t1) = 4|ρ01(t + t1)|2 + [ρ00(t + t1) − ρ11(t + t1)]2. (23)

In Fig. 5 we show the typical behavior of C(t,t1) at the
Markovianity point [panel (a)] and away from it [panel (b)]. We
have taken the qubit Q as prepared in (|0〉0 + |1〉0)/

√
2, which

is a significant case as equatorial states in the Bloch sphere
are those optimizing the calculation of N (). Although this
is simply a representative case, we have checked that for a
uniform distribution of random initial states of Q, no signif-
icant quantitative deviations from the picture drawn here are
observed. Clearly, by moving away from h/J = 1/2, temporal
regions where C(t,t1) > 1 are achieved. This demonstrates,
from a slightly different perspective, the flexibility of the
effective qubit evolution: A wide range of dynamical situations
is spanned, from fully forgetful to deeply non-Markovian
dynamics, strongly affected by the environmental backaction.

FIG. 5. (Color online) Divisibility condition C against t and t1
for qubit Q initially prepared in (|0〉0 + |1〉0)/

√
2. Divisibility is

guaranteed for 0 � C � 1. In panel (a) we have taken J0/J = 1 with
h0/J = h/J = 1/2, while in panel (b) it is h/J = 1.1. All quantities
are dimensionless.
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The kind of evolution of Q can be determined by tuning the
parameters of the environment and its interaction with it.

B. Formal characterization of the channel through theoretical
quantum process tomography

We now turn our attention toward the formal character-
ization of the channel achieved at the Markovianity point,
so as to qualitatively explain the reasons behind the nature
of the corresponding qubit evolution. We stress that this sort
of investigation is meaningful only at this specific point in
parameter space, where complete positivity is guaranteed. In
principle, full information on the reduced dynamics of Q

could be gathered from the Kraus operators {K̂i} such that
(t,0)ρ≡ ∑

i K̂i�K̂
†
i with ρ the density matrix of the generic

qubit and
∑

i K̂
†
i K̂i = 1̂. As their direct computation is not

possible due to the complications of the Q − � coupling, here
we gain useful information on the structure of the K̂i by means
of the formal apparatus for quantum process tomography [9],
which we briefly mention here.

The characterization of a dynamical map  reduces to
the determination of a complete set of orthogonal operators
{K̂m} over which one can perform the decomposition K̂i =∑

m eimK̂m so as to get

(t,0)� =
∑
m,n

χmnK̂m�K̂†
n, (24)

where the channel matrix χmn = ∑
i eime∗

in has been intro-
duced. This is a pragmatically very useful result as it shows
that it is sufficient to consider a fixed set of operators, whose
knowledge is enough to characterize a channel through the
matrix χ . The action of  over a generic element |n〉〈m| of
a basis in the space of the 2×2 matrices (with n,m = 0,1)
can be determined from a knowledge of the map  on
the fixed set of states |0〉,|1〉,|+〉 = (1/

√
2)(|0〉+|1〉) and

|+y〉 = (1/
√

2)(|0〉+i|1〉) as follows

E(|n〉〈m|) = E(|+〉〈+|) + iE(|+y〉〈+y |)
− i + 1

2
[E(|n〉〈n|) + E(|m〉〈m|)]. (25)

Therefore, each �j = |n〉〈m| (with j = 1,..,4) can be found
completely via state tomography of just four fixed states.
Clearly, (�j ) = ∑

k λjk�k as {�k} form a basis. From the
above discussion we have

(t,0)�j =
∑
m,n

K̂m�j K̂†
nχmn =

∑
m,n,k

βmn
jk �kχmn =

∑
k

λjk�k,

(26)

where we have defined K̂m�j K̂†
n = ∑

k βmn
jk �k so that we can

write

λjk =
∑
m,n

βmn
jk χmn. (27)

The complex tensor βmn
jk is set once we make a choice for {K̂i},

and the λjk’s are determined from a knowledge of (�j ). By
inverting Eq. (27), we can determine the channel matrix χ and
characterize the map. Let Û † be the operator diagonalizing the
channel matrix. It is straightforward to prove that, if Di are the
elements of the diagonal matrix Û †χ Û , then eim = √

DiÛmi

so that

K̂i =
√

Di

∑
j

ÛjiK̂j . (28)

This apparatus can be applied to the problem at hand. To this
end, we numerically determine the evolution of the four qubit
states |0〉, |1〉, |+〉 and |+y〉 at h/J = 1/2, h0 = 0 and in
the uniform-coupling case for N+1 = 150. As the timescale
within which an excitation travels back and forth to Q scales
as N [11], in order to avoid recurrence effects we limit the
time window of our analysis to [0,2N/3] = [0,100], which
we chop into small intervals of amplitude 0.2. At each instant
of time in such a temporal partition, we evaluate the evolution
of the four probing states given above. This is the basis for
the reconstruction of the Kraus operators, which is performed
as described above. The results of our numerical calculations
are four Kraus operators, whose form depends on the instant
of time at which the dynamics is evaluated. In principle, an
analytic form of such operators can be given. Upon inspection,
one can see that the action of the channel embodied by � over
the four probing qubit states can be summarized as follows:

|0〉→�0 =
(

α 0
0 1 − α

)
,|+〉→�+ =

(
a b + ic

b − ic 1 − a

)
,

|1〉→�1 =
(

β 0
0 1 − β

)
,|+y〉→�+y

=
(

a −c − ib

−c + ib 1 − a

)
(29)

with a,α,β ∈ [0,1] and b,c ∈ C. The form of the correspond-
ing analytical Kraus operator can then be found, although their
cumbersome nature makes them unsuitable to be reported here.
Despite the lack of analytic formulas, useful information can
be gathered from this study. Figure 6 shows the dynamics of 10

0.5
0.0

0.5x 0.5

0.0

0.5

1.0

y
1.0

0.5

0.0

0.5

1.0

z

-

-

-

-

FIG. 6. (Color online) Dynamics of 10 random pure initial states
of qubit Q pictured in the Bloch sphere. Each dot shows the qubit
state (evolved from the corresponding input state) at a given instant of
time. Different colors stand for different initial states. Time increases
as the dots move toward point (0,0,0), thus showing that Q converges
toward a state close to a fully mixed one.
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FIG. 7. (Color online) (a) Distribution of density matrices evolved
according to the dynamics induced by a quantum channel correspond-
ing to h/J = 1/2. We consider a sample of 500 random initial states.
Regardless of the initial density matrix, the final state is the same,
thus resulting in a zero-volume state distribution. This is no longer
the case for h/J = 0.6 [panel (b)], where a finite-volume distribution
of final states is found.

random pure input states of the qubit. Each dot represents the
state of the qubit at time t in the space of the density matrices.
Colors identify the evolved states of a given input one. As
time increases, i.e., as we follow the points of the same color
from the outer to the inner region of the plot, the Bloch vector
of each initial pure state spirals converging toward the center.
That is, the state becomes close to a maximally mixed state.

We should mention that, for any fixed N , this does not
exactly occur as the final state of Q lies slightly offset along
the z axis and does not describe a perfect statistical mixture.
We ascribe such an offset to the finite length of the chain being
studied and the existence of a sort of effective magnetic field
(scaling as 1/N ) acting on Q and induced by its coupling

with the environmental chain, which determines the residual
polarization of the qubit. Numerical evidences suggest that,
in the thermodynamical limit, such a residual polarization
effectively disappears, and the final state of the evolution is
1/2.

As discussed in the previous section, from the study of
the trace distance D[ρ(1)(t),ρ(2)(t)] at the basis of our chosen
measure of non-Markovianity, one can infer an interesting
general trend: For values of h/J � 1/2, D generally tends
to zero at long evolution times. In order to put such an
effect in context, here we study the long-time distribution of
density matrices resulting from the evolution of a large sample
of random input states according to the channel identified
through quantum process tomography. Figure 7(a) shows
the agreement between the effective description provided
here and the true physical effect induced on the state of
Q by �. The red dot close to the center of the sphere shows
the ensemble of 500 random input states evolved until a final
time equal to 100. Clearly, there is a single fixed point of the
map toward which any input state converges after a sufficient
amount of time.

As anticipated, by repeating the above analysis for
h/J > 1/2, we get a distribution of long-time evolved output
states which is much more widespread, even at very small
deviations from the Markovian case. An example is given in
Fig. 7(b) for h/J = 0.6. At long interaction times, the channel
does not bring its input states to the same unique state, but a
finite-dimensional subspace of asymptotic states exists.

Going back to our attempt of describing the dynamics
as an effective channel, we have considered the case of a
qubit evolving under a Markovian channel resulting from the
action of a generalized amplitude damping channel and an
independent dephasing mechanism. The output state for such
a process can be written as

ρ(t) =
⎛
⎝ρ00(0)e−2γ̃ (2µ̃+1)t + µ̃+1

2µ̃+1 [1 − e−2γ̃ (2µ̃+1)t ] ρ01(0)e−[2�̃+γ̃ (2µ̃+1)]t

ρ10(0)e−[2�̃+γ̃ (2µ̃+1)]t µ̃

2µ̃+1 + [ µ̃+1
2µ̃+1 − ρ00(0)]e−2γ̃ (2µ̃+1)t

⎞
⎠ (30)

with µ̃ being the mean occupation number of the thermal en-
vironment responsible for the generalized amplitude damping,
γ̃ the rate of amplitude damping, and �̃ the rate of dephasing.
From this expression, one can determine the matrix of the
corresponding process, to be compared to the matrix of the
process associated with the qubit evolution induced by its
coupling to the chain determined by the quantum process
tomography machinery. Calling χ (t) such a matrix evaluated
at time t and χc the matrix of the process embodied by Eq. (30),
the similarity between such two processes, as time passes, is
determined by the process fidelity

Fp =
{

Tr[
√√

χ (t)χc

√
χ (t)]

}2

. (31)

In calculating this, we have considered scaled parameters
µ = µ̃t , γ = γ̃ t , and � = �̃t and optimized Fp against
them. Therefore, time-dependent values of such quantities are
retained at each instance of J t for the maximization of the
process fidelity, which is always at least 90%, as shown in
Fig. 8.

This gives strong numerical indications that our process is
an homogenizing, time-dependent Markovian channel.

III. CONCLUSIONS

We have studied the dynamics of a qubit interacting
via energy-exchange mechanisms with a spin chain un-
der the viewpoint of a recently proposed measure for
non-Markovianity [3]. We have provided an extensive
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FIG. 8. (Color online) (a): Optimized quantum process fidelity between a generalized amplitude damping channel and the dynamical map
here under scrutiny. The process fidelity has been maximized with respect to the parameters of the generalized amplitude damping channel at
each instant of time. In panels (b) and (c) we show the time behavior of µ and �. An analogous behavior is found for γ . The time dependence
of the last two parameters, and in particular their positivity, are fully in line with the Markovian nature of the qubit effective dynamics.

characterization of the effective open-system evolution expe-
rienced by the qubit, often giving fully analytical expressions
for the measure of non-Markovianity and an operative recipe
for its experimental determination under certain conditions.
Our investigation has allowed us to reveal various features of
the non-Markovianity measure and to relate them to general
properties of the overall Q − � system. In particular, we
have focused on the existence of unexpected points in the
parameter space of the model, where the chosen measure of
non-Markovianity is exactly null, so that the qubit evolution
corresponds to a Markovian dynamical map. By using tech-
niques typical of quantum process tomography, we have been
able to shed light onto the reasons behind the forgetful nature
of such peculiar working point, showing, in particular, that
the zero-measure dynamical map has a single fixed point
corresponding to an almost completely mixed qubit state.
We have found an excellent agreement between the effective
Markovian map and a generalized amplitude damping channel
with an additional (independent) dephasing mechanism. The
comparison between the two descriptions allows us to deter-
mine the behavior of the effective dephasing and damping
rates, which are time dependent yet positive, in agreement
with the Markovian nature of the dynamics at hand [3].

The richness of the qubit open-system dynamics is very
interesting. We believe that a more extensive exploration
of the possibilities offered by the tunability of the degree
of Markovianity in such system should be performed so
as to understand if a proper and arbitrary “guidance” of
the qubit state via the sole manipulation of the properties
of the environmental chain is in order. This topic is the
focus of our currently ongoing work, which will be reported
elsewhere [20].
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