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Abstract: We present a tissue mimicking optical phantom recipe to create robust well tested 
solid phantoms. The recipe consists of black silicone pigment (absorber), silica microspheres 
(scatterer) and silicone rubber (SiliGlass, bulk material). The phantom recipe was 
characterized over a broadband spectrum (600-1100 nm) for a wide range of optical 
properties (absorption 0.1-1 cm−1, reduced scattering 5-25 cm−1) that are relevant to human 
organs. The results of linearity show a proper scaling of optical properties as well as the 
absence of coupling between the absorber and scatterer at different concentrations. A 
reproducibility of 4% among different preparations was obtained, with a similar grade of 
spatial homogeneity. Finally, a 3D non-scattering mock-up phantom of an infant torso made 
with the same recipe bulk material (SiliGlass) was presented to project the futuristic aspect of 
our work that is 3D printing human organs of biomedical relevance. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Tissue-mimicking optical phantoms play a crucial role in characterization, optimization, 
routine calibration and validation of biophotonics systems [1–3]. The phantoms can be made 
both in solid or liquid forms, however, solid phantoms have some advantages such as long 
shelf life, can be molded to realistic organ shapes, stable optical properties (absorption-µa, 
reduced scattering-µ’s), and easy handling for routine instrument validation. In general, a 
phantom consists of three main components: bulk material (water, epoxy resin, silicone, 
agar), absorber (India ink, printer toner, black silicone), and scatterer (intralipid, titanium 
oxide, aluminum oxide, silica microspheres) [4–8]. The advent of silicone rubber has enabled 
the phantoms to mimic not only optical but also mechanical properties to some extent [7,9]. 
Importantly, the advancement of 3D printing technology has enabled the printing of realistic 
human organs from X-ray CT scans [10]. The recent work of Larsson et al. showed a 3D 
phantom of the upper body of an infant which includes lung, heart, bones, and muscles. This 
work used a liquid phantom recipe to obtain realistic optical properties [11]. Taking this 
technology to solid phantoms was achieved by Dempsey et al. who created a 3D printed brain 
phantom [12]. The recent work of Kennedy et al. used a room temperature vulcanizing 
silicone rubber as a bulk material and a special absorber to mimic optical properties of water 
and lipid absorption [13]. A recent review of tissue-mimicking optical phantoms can be found 
in Ref [8]. 
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Multiple phantom recipes are thus found in literature, indicating remaining challenges to 
find a phantom material that is ideal for a wide range of needs in biophotonics. Possible 
limiting factors for the acceptance of some of the published phantom recipes include that the 
recipe does not provide a detailed manufacturing procedure or a systematic study of phantom 
behavior over a wide range of absorber and scatterer concentrations. In addition, liquid 
phantoms are cumbersome to handle especially for realistic tissue geometries and typically 
have a short shelf life. An example of a phantom developed for a specific purpose is given by 
Maughan Jones et al. They proposed an improved method for phantom manufacturing using 
silica microsphere as a scatterer for OCT applications. This phantom was thereby 
characterized at a single wavelength only [4]. Similarly, multiple groups have proposed 
various manufacturing procedures, some proposed complex methods to ensure absorber and 
scatterer uniformity [14,15], while some simpler recipes are also available [9,13,16]. Yet, all 
of these methodslack one of the following aspects: 

i) A detailed protocol for the procedure of phantom manufacturing and the phantom recipe. 

ii) A characterization of the behavior of the phantom over a wide range of absorber and 
scatterer concentrations relevant to the tissue optical properties. 

iii) A broadband (600-1100 nm) optical characterization of the phantoms. 

iv) Characterization of the phantoms in terms of reproducibility, shelf life, and homogeneity. 
The first (i) point takes care of robust manufacturing procedure, whereas the second point 

ensures the phantoms have linear optical behavior over the entire range of absorber and 
scatterer concentrations. Point (iii) makes sure that point (ii) was tested over a broad 
wavelength range, while (iv) ensures the phantoms are optically reproducible and 
homogeneous over the entire phantom volume. In addition, thorough consideration of 
phantom ingredients is important in order to facilitate the best possible properties. These 
points form the building block to provide a well-tested, robust solid phantom that could be 
manufactured by any group interested in optical properties relevant to human organs. 

In our opinion there is still a need for a recipe for a good 3D tissue–mimicking phantom 
that is robust and tested over the wide range of optical properties covering most of the human 
organs, preferably characterized over the entire therapeutic wavelength range to benefit the 
wide community in biophotonics. The aim of this work was to fulfill this need. The study was 
designed to cover optical properties (absorption 0.1-1 cm−1, reduced scattering 5-25 cm−1) 
relevant to various organs of the human body. The optical characterization was performed 
using photon time-of-flight diffuse optical spectrometer (pTOFS) which has been validated in 
various phantom and clinical studies [17]. Time domain measurements can inherently 
disentangle absorption and scattering properties, providing reliable results of both absorption 
and scattering properties of the phantoms [18–21]. To the best of our knowledge, this was the 
first study that covers all the above-mentioned challenges to provide an integrated recipe 
solution that could provide 3D solid phantoms in biomedical optics. To emphasize the cause, 
a realistic anatomically correct 3D phantom of an infant's torso was provided in the results 
section. 

2. Materials and methods 

2.1 Phantom recipe 

A detailed description of the phantom ingredients, the method to make the phantoms, and the 
concentration of absorber and scatterer for different optical properties are shown in Fig. 1. 
The bulk material of the phantom was made of SiliGlass which is a transparent silicone 
rubber procured from MBFibreglass (PlatSil SiliGlass). SiliGlass is a two-component cured 
room-temperature-vulcanizing (RTV) silicone. It consists of two liquid parts, part A (base 
material) and part B (hardener). When the two parts are mixed together in a 1:1 ratio, the 
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mixture cures to a solid at room temperature within 1 hour. Compared to other silicone based 
rubbers, SiliGlass is a clear medium instead of becoming bluish or turbid on curing. The 
scattering contribution from the silicone matrix needs to be negligible for better control of 
scattering properties in the produced phantoms. Also, low scattering regions, such as the 
cerebrospinal fluid (CSF) in the human head can be accurately modeled. The absorber 
employed was black silicone pigment (Polycraft Black Silicone Pigment) compatible with 
silicone and silica microspheres (440345, Sigma-Aldrich) were used to obtain the desired 
reduced scattering. The pure absorber was highly absorbing hence it was diluted in Part A 
(silicone base) at a ratio of (2272:1), here onwards whenever the absorber is mentioned it is 
the diluted (2272:1) stock solution of black silicone pigment in Part A. 

The phantom preparation includes two parallel processes. One part comprises of mixing 
part A of the SiliGlass and the absorber (stock solution). The absorption properties of the 
phantoms were tuned by changing the quantity of absorber (stock solution) and part A with 
their total sum kept at constant value (75 g). The second process constitutes mixing part B of 
the SiliGlass with the microspheres. Both processes follow a similar procedure as shown in 
Fig. 1. Process B includes an extra step where the silica microspheres were disaggregated 
manually for 15 minutes with a spatula prior to the mixing with a magnetic stirrer (two 
magnetic beads (25x8 mm), speed-5, VWR VMS-C7). In general, both processes start with 
magnetic stirring for 15 minutes followed by ultrasonication (power-5, VWR USC500THD, 
45 kHz) for 15 minutes. The entire preparation of the phantoms produced in this study was 
carried out at a controlled temperature (21° C) to avoid temperature-related reactions and 
extensive bubbling in the vacuum chamber employed for degassing. Following the bubble 
removal in a vacuum, both parts were mixed together and stirred manually for 5 minutes to 
ensure uniformity of the phantom mixture. The final step was to pour the mixture in the 
phantom cast, which for the characterization was a 3D printed cylinder with large diameter 
(10 cm). Subsequent measurements were performed in transmittance geometry. Therefore, the 
phantoms were made with large diameter (10 cm) to avoid boundary effects and granting use 
of a slab model [22]. The thickness of the phantoms was 18 mm. This value was chosen as a 
good compromise between the validity of the Diffusion equation and the signal level over the 
entire spectrum. A previous study on the validity of the Diffusion equation for time-resolved 
measurements at different source detector distances is reported in reference [23]. In total 24 
phantoms were created with a matrix combination of 6 absorption values and 4 reduced 
scattering values as shown in Fig. 1. For a convention we used small alphabets (a, b, c, d, e, f) 
for the absorption series and capital letters (A, B, C, D) for the scattering series. The exact 
values of the absorber (stock solution) and scatterer percentage concentrations used for the 
entire phantom matrix are tabulated in the table of Fig. 1. 
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Table 1. Linearity parameters (slope and intercept) of phantom matrix over the 
broadband range (600-1100 nm) 

Wavelength 
λ (nm) 

Parameters 
Absorption Linearity Reduced scattering Linearity 

A B C D a b c d e f 

600 
slope 0.031 0.028 0.029 0.027 3.70 3.72 3.30 3.44 3.79 3.22 

intercept 0.015 0.041 0.025 0.056 −1.26 −1.57 0.15 −0.53 −0.93 0.47 

700 
slope 0.028 0.026 0.024 0.024 3.54 3.53 3.11 3.43 3.43 3.01 

intercept 0.016 0.033 0.042 0.053 −1.23 −1.37 0.28 −1.00 −0.56 0.31 

800 
slope 0.024 0.024 0.023 0.024 3.36 3.34 2.97 3.30 3.26 3.15 

intercept 0.018 0.026 0.029 0.032 −0.81 −1.04 0.33 −0.79 −0.31 −0.37 

820 
slope 0.024 0.023 0.022 0.023 3.36 3.33 2.93 3.23 3.22 3.08 

intercept 0.011 0.024 0.026 0.033 −0.82 −0.96 0.41 −0.53 −0.15 −0.05 

900 
slope 0.022 0.021 0.021 0.022 3.05 3.10 2.86 3.16 3.14 2.97 

intercept 0.075 0.094 0.087 0.090 −0.49 −0.77 0.09 −0.93 −0.48 −0.40 

1000 
slope 0.021 0.019 0.020 0.021 3.06 3.09 2.80 3.02 3.18 2.96 

intercept 0.020 0.041 0.038 0.044 −0.56 −0.87 0.30 −0.47 −0.66 −0.37 

1100 
slope 0.019 0.018 0.018 0.019 3.02 3.11 2.62 3.01 3.33 2.76 

intercept 0.023 0.044 0.045 0.046 −0.50 −1.02 0.76 −0.43 −1.07 0.12 

 
Figure 3(c), 3(d) illustrate the dependency of reduced scattering coefficient on absorber 

concentration and vice versa. The straight lines observed in these plots confirm the absence of 
any chemical reaction between the scatterer and absorber. The slight coupling of absorption to 
scatterer concentration observed in Fig. 3(d) (especially for the f-series) relates to the change 
in total volume of the phantom due to increasing scatterer concentration and may be partly 
due to no longer fulfilling the assumptions of the diffusion approximation for high absorption 
(μa ≈0.8 cm−1) and low reduced scattering (μs’ ≈5 cm−1). 

A key feature of a robust recipe is to ensure that the outcome is insensitive to irrelevant 
parameters like the person who made the phantom, the day it was produced, the batch of raw 
material used, etc. To this end, a reproducibility test was conducted by manufacturing four 
phantoms (series code: cB) on different days by different people using a different batch of 
bulk material. Figure 4(a), 4(b) show the absorption and reduced scattering spectra, 
respectively, of the same phantom (series code: cB) produced under different conditions. 
Though the CV was found to be slightly higher in the shorter wavelengths, the overall CV of 
around 4% reaffirms the robustness of the recipe. Finally, a test to confirm the homogeneity 
of the phantom (series code: cB) was carried out by measuring optical properties at different 
points on the same phantom surface. Five points on the phantom surface were chosen, one in 
the middle and four points were around the midpoint of the phantom top surface (Fig. 4(c) 
and 4(d)). Similar to the reproducibility test, the CV of the homogeneity test was well below 
4%, which confirms the homogenous nature of thek sample. A long term stability of the 
phantom was performed by measuring phantom (cB) 3 times in the last 5 months and the 
results showed that the phantom were fairly stable with a CV close to 5% with more variation 
in the short wavelength range. 
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