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Abstract 

There is a growing appreciation of the importance of the bidirectional communication 

between our gut and brain on regulating the function and development of 

multiple physiological systems, including the central nervous system. Recently, the 

gut microbiota was demonstrated to interact with the gut-brain axis to regulate 

behaviour which has driven a paradigm shift in our understanding of neuropsychiatric 

disorders. An individual’s microbiota starts to develop mainly upon birth and 

continues to change throughout life. This initial colonization has a significant impact 

on development and maturation of the immune system. Conversely, disruptions of 

early-life microbiota have been implicated to long-lasting effects on stress, social 

behaviour and anxiety. Understanding the importance of early-life for shaping the gut-

brain axis will further contribute to better strategies for disease prevention and 

treatment. 

This thesis investigated the impact of the gut-brain axis disruptions in early-life and 

the neurobehavioural consequences in two different scenarios: birth by C-section and 

maternal immune activation with polyinosinic-polycytidylic acid during pregnancy. 

To this end, here we developed a mouse model of C-section in NIH Swiss mice and 

demonstrated for the first time that the mode of delivery at birth can alter the stress-

response, social behaviour, anxiety-like behaviour and cognition across the lifespan. 

These neurobehavioural deficits were associated with marked changes in the gut 

microbiota composition and diversity in early-life and adolescence with special 

decrease in Bifidobacterium spp. Further, we demonstrated that some deficits in social 

behaviour and cognition induced by the mode of delivery are reversed by targeting the 

gut microbiota in early-life through prebiotic, probiotic treatment, microbial transfer, 

and by pharmacological treatment with oxytocin. Complementary to the findings in 

mice some aspects of stress-related behavioural and physiological changes were also 

observed in a cohort of young-adults individuals.  

To further interrogate the importance of early-life for priming the gut-brain axis 

function in a different animal model, we investigated whether maternal immune 

activation with polyinosinic-polycytidylic acid (poly I:C) at gestational day 12.5 could 
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behavioural, physiological and molecular aspects relevant to neurodevelopmental 

disorders in offspring of an outbred (NIH Swiss) and an inbred (C57BL6/J) strain. By 

looking at these two different strains we were able investigate whether gene and 

environment can interact in the susceptibility to develop gut-brain axis phenotype. We 

demonstrated that these strains differ in anxiety and depression-like behaviours with 

the effects being more pronounced in NIH Swiss mice. These strain-specific 

behavioural effects in the NIH Swiss mice were associated with marked changes in 

important components of gut-brain axis communication: stress and gut permeability. 

Taken together, these data suggest that gut-brain axis alterations in early-life may 

underpin altered programming of the developing brain and behaviours. Moreover, 

genetic background is a critical factor in susceptibility to the gut-brain axis alterations 

in certain conditions. Further efforts into understanding the factors that contribute to 

the major role for the gut-brain axis on programing brain health in early life may allow 

the development of new treatment strategies.  
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Chapter 1. General Introduction 

1.1 The Gut Microbiota as a Key Regulator of the Gut-Brain Axis 

 The Gut-Brain Axis  

Gut-brain interactions have long been invoked in our language to express emotions, 

feelings and intuitions in our daily lives (e.g., gut feelings, gut-wrenching, gut instinct, 

gutted, gutsy, it takes guts, butterflies in one's stomach). Now we are beginning to 

understand the biological mechanisms underlying the bi-directional communication 

between gut and brain (Foster et al., 2017). The first comprehensive scientific 

description of gut-brain cross-talk was in the 1880s, when William James and Carl 

Lange critically associated emotions such as fear, anger, love to visceral responses. 

Further, in the 1920s, Walter Cannon added an important contribution to the field by 

proposing a pivotal role for the brain in regulating gastrointestinal functions. These 

bidirectional interactions between gut and the brain have been recognised for many 

years, and are referred to as the gut-brain axis (Cryan and Dinan, 2012; Mayer, 2011).  

The emergence of the gut-brain axis is closely associated with the discovery of the 

third branch of the autonomic nervous system (ANS), the enteric nervous system 

(ENS). The ENS can act independently from the central nervous system (CNS); 

however, both systems are inter-connected by a complex network involving afferent 

and efferent pathways of the parasympathetic and sympathetic nervous systems 

(Furness et al., 2013). The human ENS contains between 200 and 600 million neurons 

– as many neurons as in the spinal cord. Most of the cell bodies of these neurons are 

grouped into small ganglia that are connected within the myenteric plexus and the 

submucous plexus (Goyal and Hirano, 1996). The interactions between ENS and CNS 

are important for maintenance of individual homeostasis and were studied by 

prominent psychologists, psychiatrists and physiologists of the late nineteenth and 

early twentieth centuries (Mayer, 2011). Over the last few decades, researchers have 

started to reveal the mechanisms underlying this cross-talk, which likely involves 

complex interactions between the afferent and efferent pathways of the vagus nerve, 

neuronal networks of the ANS, the hypothalamic-pituitary-adrenal (HPA) axis, the 
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immune system and metabolic pathways. Recently, a key role of the gut microbiota in 

governing this communication has been demonstrated (Cryan and Dinan, 2012; Cryan 

and O’Mahony, 2011).   

The bidirectional nature of this communication allows the brain to control 

gastrointestinal functions (such as satiety, hunger, motility, epithelial permeability, 

mucus production/secretion) and modulate mucosal immune function (such as 

cytokine production and release). At the same time, the presence of specific intestinal 

contents can influence brain neurochemistry and influence the maturation and 

activation of CNS resident immune cells (Rea et al., 2016). These complex and multi-

system interactions work to maintain homeostasis within the gastrointestinal tract and 

other physiological systems with consequences on mood, stress perception, behaviour, 

function and cognition (Foster et al., 2017). Therefore, disruptions in gut-brain axis 

signaling have the potential to disturb homeostasis, and adversely affect mental health 

(Cryan and Dinan, 2012; Cryan and O’Mahony, 2011; Foster et al., 2017; Grenham et 

al., 2011). The clinical relevance of this association is clearly evident, in the frequent 

comorbidities of gastrointestinal disorders and psychiatric illnesses; for example, 

irritable bowel disorder (IBD) and inflammatory bowel syndrome (IBS) very often 

manifest with stress and mood disorders (Farrokhyar et al., 2006; Minderhoud et al., 

2004; Simrén et al., 2002). Pathological stress conditions are also known to disrupt gut 

epithelium barrier and mucosal immune system. In its turn, gut barrier dysfunction can 

lead to a “leaky-gut,” triggering the translocation of luminal contents such as 

inflammatory cytokines and bacterial products into the peripheral circulation that can 

further cross the blood-brain barrier (BBB) and reach the brain (Bischoff et al., 2014; 

O’Mahony et al., 2009). 

Finally, perturbations of gut-brain pathways have been implicated in the pathogenesis 

of a wide range of psychiatric conditions from schizophrenia (SZ), anxiety, mood 

disorders, autism spectrum disorders (ASDs), Alzheimer’s disease to Parkinson’s 

disease (Sherwin et al., 2017). Thus, elucidating the mechanisms underlying these 

interactions are crucial for gaining new insight into disease etiology and the 

development of novel and efficacious therapeutic approaches. 
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1.2 The Gut Microbiota 

Humans and other mammals harbour a complex gut microbiota, comprised of 

organisms from all three domains of life (Archaea, Bacteria and Eukarya) (Donaldson 

et al., 2016). It is estimated that the human microbiota is populated with 3.9 × 1013 

bacteria, estimated to be almost a ratio of 1:1 in comparison to the number of cells in 

the entire body (≈0.3 × 1013) (Sender et al., 2016) The life-long host-microorganism 

associations were established over many eras of symbioses and co-evolution, with a 

strong mutualistic relationship that enhanced the fitness of both the host and 

microorganisms (Donaldson et al., 2016). Thus, these important interactions between 

microorganisms and host have been incorporated in the holobiont (host and its 

symbionts) and hologenome (gene pool of host and its associated symbionts) concept 

(Kundu et al., 2017). 

This life-long microbial-host realtionship is generally initiated at birth, and is further 

influenced by a series of environmental factors such as diet, the immune system and 

exposure to chemical agents or environment in general (e.g. stress; nurturing system; 

infection etc.) along the individual life-span (Cryan and Dinan, 2012; Donaldson et 

al., 2016). The notion that microorganisms can confer health benefits to the host was 

recognized long ago (Dubos, 1941). However, in the past decades, the advent of DNA 

sequencing, and metagenomic, meta-transcriptomic analyses, coupled with the Human 

Microbiome Project has renewed interest in the relationship between the intestinal 

microbiome and the host (Stilling et al., 2014). Moreover, the use of animal models 

for manipulation of the gut microbiome has allowed investigation of microbiome-host 

interactions in health and disease states. Therefore, research employing germ-free 

(GF), gnobiotics, and mono-associated animal models, and numerous techniques, 

including antibiotic-induced microbiota depletion, feacal microbiota transplantation, 

co-housing, cross-fostering (CF), infection studies and the use of prebiotics and 

probiotics, have played key roles in unravelling such interactions (Cryan and Dinan, 

2012; Ericsson and Franklin, 2015; Luczynski et al., 2016a) (Figure 1.1).  
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 Microbial Distribution across the Gut 

The most abundant bacterial taxa present in the human gut belong to the phylum 

Firmicutes, which includes species such as Lactobacillus spp., Clostridium spp., 

Enterococcus spp., and Bacteroidetes, which includes Bacteroides spp. (Dethlefsen et 

al., 2007). Bacteria from other phyla also widely common within the gut ecosystem 

include species from Actinobacteria (Bifidobacteria), Proteobacteria (Escherichia 

coli), Fusobacteria, Verrucomicrobia, and Cyanobacteria (Eckburg et al., 2005; Qin et 

al., 2010). There are several factors that can influence microbial distribution and 

diversity within the gut , such as pH, diet and nutrient availability, antimicrobials, the 

presence or absence of mucus, adherence to the the gut wall, oxygen levels, and the 

host immune system, in addition to the presence of founder effects of pioneer 

colonisers (Tropini et al., 2017). For instance, the microbial community present in the 

small intestine, comprised of the duodenum, jejunum and ileum, is characterised by 

fast-growing facultative anaerobes bacteria which are adapted to the acidic pH and 

higher levels oxygen in addition to the presence of bile acids and antimicrobial 

substances. These bacteria present in the small intestine use simple carbohydrates as 

an energy source. In mice, members of Proteobacteria (particularly 

Enterobacteriaceae) and Firmicutes (members of the family Lactobacillaceae, in 

particular), are dominant in the small intestine (Donaldson et al., 2016; Sharon et al., 

2014) (Figure 1.1). The microbial composition of the large intestine, comprised of the 

caecum and colon, is much more diverse. The large intestine has lower concentrations 

of antimicrobials, a slower transit time in comparison to the small intestine, and lacks 

the simple carbon sources that are suitable for the growth of fermentative 

polysaccharide-degrading anaerobes. In mice, the caecum is enriched in species of the 

families Ruminococcaceae and Lachnospiraceae, whereas the colon is enriched in 

members of the families Bacteroidaceae and Prevotellaceae (Donaldson et al., 2016). 
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Figure 1.1 - Microbial distribution within the gut.  

The human gut is mainly populated by bacteria from Bacteroidetes, Firmicutes, Actinobacteria, 

Proteobacteria and Verrucomicrobia phyla. Bacterial distribution within the gut reflects physiological 

differences along its portions. For example, the small intestine is characterised by a high gradient of 

oxygen, antimicrobial peptides (including bile acids) and lower pH which limits bacterial abundance. 

Lactobacillaceae and Enterobacteriaceae are the most prevalent in this portion. A lower oxygen 

gradient, fewer antimicrobial substances, and a higher pH characterises the colon, resulting in a greater 

bacterial abundance and diversity, including families such as Bacteroidaceae, Prevotellaceae, 

Rikenellaceae, Lachnospiraceae and Ruminococcaceae (colours correspond with the relevant 

phyla).,cfu= colony-forming units. Figure taken from Donaldson et al. (2016). 

 

 The Establishment of the Microbiome in Early-life 

 Pregnancy & Microbiome 

Maternal microbiota dynamicaly changes over the normal course of pregnancy (Koren 

et al., 2012). It has been suggested that the biological role for these changes has to due 

with mother’s adaptation to pregnancy and foetal growth and development (Gohir et 

al., 2015). The microbial diversity normaly increases from early to late pregnancy. 
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Besides changing in diversity and complexity, maternal microbiome also changes its 

metabolic profile (Koren et al., 2012). Briefly, in the first trimester of gestation, the 

gut microbiome of the pregnant mother is similar to that of healthy, non-pregnant 

women. As the pregnancy develops, increased abundance of Actinobacteria and 

Proteobacteria and a reduction in alpha diversity is observed (Nuriel-Ohayon et al., 

2016). In the third trimester of gestation, levels of Faecalibacterium, a butyrate-

producing bacterium with anti-inflammatory activities are decreased (Haro et al., 

2016). Moreover, By colonizing GF mice with first and third-trimester pregnant 

mothers, researchers demonstrated that between-subject diversity (beta diversity) is 

increased in the third trimester associated with metabolic changes including weight 

gain, insulin insensitivity, and higher pro-inflammatory profile (Koren et al., 2012). 

Some factors are known to adversely affect the pregnant microbiome with implications 

to the neonatal health include: preterm birth, cardiometabolic complications of 

pregnancy such as preeclampsia and gestational hypertension, and gestational weight 

gain (Dunlop et al., 2015).  

 Placenta 

More recently, the use of whole metagenomic shotgun sequencing has demonstrated 

that the placenta has a very distinct microbiome signature, composed of bacteria from 

the phyla Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria, 

which most closely resembles the human oral microbiome (Aagaard et al., 2014). 

Similarities between the neonatal microbial intestinal community and that of the 

amniotic fluid and placenta were also found in other studies (Collado et al., 2016; 

Perez-Muñoz et al., 2017). In a longitudinal study, in which the microbiota 

composition of different bodily regions of newborns from birth to 6 weeks of life was 

assessed, the microbial content of the first meconium was demonstrated to most 

similarly reflect the in utero environment (Chu et al., 2017). However, given that the 

overall biomass of microbiota in the placenta is very low (Aagaard et al., 2014) and 

the methodologies applied in many of these studies do not differentiate between living, 

dead bacteria (Kliman, 2014), further research is needed to provide a more conclusive 

consensus on the role microbial infant-mother transmission via placenta (Perez-Muñoz 

et al., 2017).  
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 Early-life 

The most consistent finding in the field is that robust changes of the microbiome occur 

in the periods during and after birth (Kundu et al., 2017). Upon birth, the newborn is 

exposed to the maternal vaginal, skin and fecal microbiota, which initiates microbial 

colonisation in the newborn (Laforest-Lapointe and Arrieta, 2017). The first bacterial 

communities to grow are facultative anaerobic species (e.g. Escherichia coli, 

Staphylococcus, and Streptococcus) which will colonise the infant gut, producing an 

anaerobic environment in the first few days of life. The presence of anaerobic 

conditions enables other anaerobes, including Bacteroides and Bifidobacterium spp. 

to seed in the sequence (Pantoja-Feliciano et al., 2013). The initial microbiota seeding 

is crucially determined by the mode of birth (Biasucci et al., 2010; Borre et al., 2014; 

Hill et al., 2017; Moya-Pérez et al., 2017; Mueller et al., 2017). Thus, disrupting the 

mother-infant bacterial transmission by Caesarean-section (C-section) leads to a 

different pattern of microbial colonisation within the neonatal gut, resulting in 

decreased Bifidobacteria and Bacteroides genera (Dominguez-Bello et al., 2010, 

2016; Hill et al., 2017; Mueller et al., 2017; Pantoja-Feliciano et al., 2013) (The 

consequences of C-section birth mode to the early microbial seeding will be 

extensively discussed in the section 1.2.2.4).  

The microbial colonisation after birth is strongly influenced by mode of feeding 

(Walker and Iyengar, 2015). Breastfeeding contributes to the maternal-infant 

transmission of a unique microbiota rich in Streptococci and Staphylococci (Hunt et 

al., 2011). Not only does breastfeeding confer protection from harmful bacterial 

species, via the the transmission of secreted maternal antibodies, breast milk is also a 

source of oligosaccharides, which may promote the growth of specific, beneficial 

microbial communities, e.g. Bifidobacterium spp. and Bacteroides spp,, which confer 

protection to the general health of the newborn (Castanys-Muñoz et al., 2016). The 

presence of these specific microbes protect against pathogenic organisms, by acting at 

the mucosal barrier function and promoting immunological and inflammatory 

responses (Akbari et al., 2015; Messaoudi et al., 2011). The use of formula-fed 

nutrition systems also greatly affect infant gut microbiota composition (Bakker-

Zierikzee et al., 2005; Hill et al., 2017; Walker and Iyengar, 2015). Exclusive and 

partial formula-feeding is demonstrated to shift microbial diversity to a 
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proinflammatory microbiota profile, impair intestinal barrier and decrease the 

concentration in beneficial short-chain-fatty-acids (SCFA) in neonates (Mueller et al., 

2015). These effects were reversed by the use of prebiotic and probiotic 

supplementation which may represent an important strategy for positively shaping the 

infant microbiome (Mueller et al., 2015).The gut microbiome continues to develop 

after weaning and, subsequently, introduction of solid food plays a key role in the 

maturation of the infant microbiome to a more adult-like profile (Bäckhed et al., 2015). 

The cessation of breastfeeding results in a rise of butyrate producers such as members 

of Bacteroides spp. and Clostridium spp.. The microbiome will reach complete 

functionality at approximately one and a half years of age (Putignani et al., 2014) and 

complete stability by the age of three years old (Borre et al., 2014). 

Some prenatal and postnatal factors that can shape the infant gut microbiota include 

the delivery birth by C-section (Dominguez-Bello et al., 2010, 2016; Hill et al., 2017), 

not being breastfed (Azad et al., 2016; Bergström et al., 2014; Hill et al., 2017; 

Pannaraj et al., 2017), early-life stress (Golubeva et al., 2015; Jašarević et al., 2015a); 

environment (Marquez et al., 2010), maternal diet (Buffington et al., 2016), gestational 

age (Hill et al., 2017), host genetic (Rodríguez et al., 2015), maternal medication (de 

Theije et al., 2014); exposure to infections (both maternal and infant) (Hsiao et al., 

2013; Kim et al., 2017), and antibiotic usage (Penders et al., 2013) and hospitalization 

(Penders et al., 2013) (Figure 1.2). 
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Figure 1.2- Prenatal and Postnatal factors influencing the gut microbiota development in early-life. 

The individuals microbiome starts to develop mainly after birth reaching complete funcitonality at one 

and half years of age and complete stability by the age of three years old. The sequence of microbial 

community stablishment in the infant gut is influence by both prenatal and postnatal factors, including: 

maternal gestational age, maternal diet, maternal infection and stress, maternal medication, host 

genetics, hospitalization, birth mode, brestfeeding system and solid food introduction, exposure to 

antibiotics and additional environmental factors.  
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 The Mode of Delivery at Birth Shapes the Intestinal 

Microbiota 

Medically-indicated C-section is a life-saving procedure (Deshpande and Oxford, 

2012). However, the number of infants delivered by C-section has rapidly increased 

worldwide over recent years with many territories far exceeding the World Health 

Organization guidelines of between 10-15% (Betran et al., 2016). For example, Latin 

America and the Caribbean region shows the highest rates of 40.5%, followed by 

North America at 32.3%, Oceania with 31.1%, Europe with 25%, Asia with 19.2% 

and Africa with 7.3% (Betran et al., 2016). In the United States approximately 1 in 3 

babies was delivered via C-section in 2013. In Brazil and in China, C-section occurs 

in 30-85% of births due to several cultural, aesthetic and economical reasons. 

Conversely, in some areas with severe poverty, there is limited access to medically-

necessary C-section (especially in sub-Saharan Africa) (Moya-Pérez et al., 2017).  

As mentioned in previous sections, one of the major influences on the composition of 

the gut microbiota during infancy is the mode of delivery at birth. While vaginally 

born (VB) infants are colonised by faecal and vaginal bacteria from the mother, infants 

born by C-section are colonised by hospital (or other) microbial species derived from 

the external environment (Dominguez-Bello et al., 2010). Thus, infants born by C-

section have different gut microbial composition than VB, during the first years of life 

(Dominguez-Bello et al., 2010; Hill et al., 2017; Korpela et al., 2018; Martinez et al., 

2017; Moya-Pérez et al., 2017). Babies born via C-section have less Bifidobacteria 

and Bacteroides (Biasucci et al., 2010; Penders et al., 2013) and more Clostridium 

difficile in their intestinal microbial community (Penders et al., 2013). A seminal study 

by Dominguez-Bello and colleagues (2010) characterised the bacterial communities 

from mothers' skin, vaginal and oral mucosa, and those of their newborns’ skin, oral 

and nasopharyngeal mucosa, and meconium. They reported that distribution of the 

neonatal microbiota is akin to the delivery mode; Lactobacillus, Prevotella, 

Atopobium, or Sneathia spp. were abundant in samples from VB newborns, whereas 

C-section babies were mainly colonised by typical skin taxa, 

including Staphylococcus spp. (Dominguez-Bello et al., 2010). Furthermore, a series 

of follow-up studies consistently demonstrated that C-section born infants are 
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colonised with fewer Bacteroides and Bifidobacterium (Bäckhed et al., 2015; Makino 

et al., 2013). Longitudinal studies suggest that these initial differences remain for the 

first months of life to years (Bäckhed et al., 2015; Moya-Pérez et al., 2017). However, 

a recent study by Hill and colleagues (2017) showed that C-section-mediated gut 

microbiota diversity is restored to that of VB infants by 6 months of age (Hill et al., 

2017). 

The perinatal period is a crucial developmental window for the establishment of 

lifelong host health (Borre et al., 2014). Moreover, early-life microbiota perturbations, 

interfering with Bifidobacterium and Bacteroides levels, have been reported to precede 

the development of certain disorders including allergies and obesity (Negele et al., 

2004; Watanabe et al., 2003). Consistently, C-section delivery mode has been 

associated to a greater risk of developing immune-related conditions such as asthma 

and allergies (Kero et al., 2002; Mårild et al., 2012), and metabolic disorders including 

obesity and type-I diabetes (Blustein et al., 2013; Huh et al., 2012; Hyde and Modi, 

2012) and hypertension in young adults (Horta et al., 2013). Although a number of 

factors can be attributed these findings, one perspective is that the disturbances of early 

postnatal gut microbiota may prime aspects of physiology which persist across the 

lifespan (Cho and Norman, 2013). Interestingly, recent studies using animal models 

have revealed an association between C-section delivery mode on the shaping of the 

gut microbiota and effects on host health. For example, mice born by C-section exhibit 

a distinct bacterial profile at weaning, although this does not persist into adulthood 

mice (Hansen et al., 2014). Moreover, in non-obese diabetic (NOD) mice, which are 

used to model type 1 diabetes, alterations in the early-life microbiota have long-term 

systemic effects on priming of the immune system. NOD mice born by C-section 

exhibit lower levels of Foxp3+ regulatory (reg) T cells, tolerogenic CD103+ dendritic 

cells, and decreased Interleukin-10 (IL-10) gene expression in mesenteric lymph nodes 

and spleen (Hansen et al., 2014). More recently, C-section was demonstrated to also 

alter gut microbiota diversity and increase body weight in wild-type mice, with the 

greatest impact on females (Martinez et al., 2017).  

In parallel to the C-section studies discussed above, recent epidemiological findings 

suggest that C-section delivery is related to a modest increase in rates of some 

neuropsychiatric disorders such as bipolar disorder, ASDs, and attention deficit 
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hyperactivity disorder (Curran et al., 2015a, 2016a, 2016b). More thorough 

interrogation of epidemiological data revealed that associations between C-section and 

ASDs and psychosis disappear after familial confounds are taken into account; 

however, an increased in obsessive-compulsive disorder in C-section individuals was 

observed following adjustment for these confounds (Curran et al., 2016c).  

Considering the health implications of early-life microbiota acquisition (including 

mental health) (O’ Mahony et al., 2015), and the increasing numbers of C-sections, 

the investigation of microbial-based strategies to overcome possible adverse effects of 

the mode of birth could be of great value (Moya-Pérez et al., 2017). Recently, the 

inoculation of a neonate with maternal vaginal microbiota, termed vaginal seeding, 

was proposed as one possible therapeutical strategy (Dominguez-Bello et al., 2016). 

In this study, C-section-delivered infants were swabbed with maternal vaginal fluid 

over their entire body immediately following birth, resulting in microbiota 

compositions similar to VB infants after 30 days (Dominguez-Bello et al., 2016). A 

major concern about this practice leading accidental infection and sepsis has been 

highlighted (Cunnington et al., 2016), and additional, more extensive studies 

employing longitudinal approaches are needed to demonstrate the efficacy and safety 

of this procedure (Moya-Pérez et al., 2017). 

 Targeting the Microbiota with Pre and Probiotics in Early-Life 

The influence of diet on shaping the microbiota composition is well-established 

(Oriach et al., 2016). In this way, the modulation of the gut microbiota through specific 

dietary components is a growing area of investigation specially to overcome 

microbiota-associated deficits in early-life (Moya-Pérez et al., 2017) 

 Prebiotics 

Prebiotics were initially characterised as “non-digestible food ingredient that 

beneficially affects the host by selectively stimulating the growth and/or activity of 

one or a limited number of bacteria already resident in the colon” (Gibson and 

Roberfroid, 1995). More recently this definition has been expanded upon to describe 

“a substrate that is selectively utilized by host microorganisms conferring a health 



 

13 

 

benefit” (Gibson et al., 2017).  Prebiotics can act as energectic  substrate for probiotic 

bacteria such as Bifidobacterium and Lactobacillus. Fermentation of prebiotics by 

these bacteria results in production of SCFAs, and lactic and acetic acids, which can 

have profound effects on host metabolism (Moya-Pérez et al., 2017) and also prevent 

infection by pathogenic bacteria (Slavin, 2013). Moreover, prebiotics are found 

naturally in various foods such as vegetables, wheat, and soybeans and are typically 

composed of oligosaccharides or more complex saccharides (Oriach et al., 2016). 

Prebiotics can be used in conjunction with probiotics (synbiotic) which has been 

shown to be more effective on modifying the gut microbiota than when used alone. So 

far, the most commonly studied prebiotic compounds are inulin, 

fructooligosaccharides (FOS), and galactooligosaccharides (GOS) (Pandey et al., 

2015).  

Several studies have demonstrated that GOS and FOS have indirect beneficial effects 

on the host immune-system (Arslanoglu et al., 2008), metabolism (Knol et al., 2005) 

and gastrointestinal function (Niittynen et al., 2007). The use of GOS/FOS mixtures 

in infant formula, not only increase Bifidobacteria levels, but also have been reported 

to enhance the metabolic activity of the entire infant microbiome (Knol et al., 2005). 

Indeed, GOS/FOS-induced changes in SCFA, lactate and pH were akin to what is 

observed in breastfed infants, rather than those fed the control formula, lacking the 

GOS/FOS mixture (Knol et al., 2005). Moreover, dietary supplementation with GOS 

and polydextrose during the first 2 months of life was demonstrated to reduce crying 

and fussiness in preterm infants (Pärtty et al., 2013). Moreover, research using aminal 

models suggests that consumption of FOS during gestation has anti-inflammatory 

effects on the offspring, resulting in fewer skin lesions (Fujiwara et al., 2010). Another 

study in mice suggests that adding another prebiotic (GOS, 9:1 ratio) to the maternal 

diet during gestation and lactation and exposing offspring to the same prebiotic post-

weaning, increases offspring muscle mass (Desbuards et al., 2012). However, there is 

limited data available on the effects of prebiotic supplementation in infants with 

disrupted microbiota seeding in early-life. 

Only recently, has investigation of the effects of prebiotics on behaviour and CNS 

function begun (Burnet, 2012).One of the first studies to report central effects of 

prebiotics involved administration of Bimuno-GOS (B-GOS) and FOS formulation to 
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rats. This treatment resulted in an increase in hippocampal brain-derived neurotrophic 

factor (BDNF) and N-methyl-D-aspartate receptor (NMDAR) subunits. Both receptors 

play a critical role in maintaining synaptic plasticity and optimal memory function 

(Savignac et al., 2013). Administration of the GOS/FOS mixture to adult mice was 

shown to attenuate chronic stress-induced elevations in corticosterone, 

proinflammatory cytokines, and depression- and anxiety-like behaviours, in addition 

to normalising the effects of stress on gut microbiota (Burokas et al., 2017). Moreover, 

anxiety-like behaviours, impairments in hippocampal-dependent learning and their 

associated changes in hippocampal genes related to stress circuitry, anxiety and 

learning, were ameliorated in maternally-separated rats maintained on a diet 

containing polydextrose/GOS following weaning (McVey Neufeld et al., 2017). 

 Probiotics  

A probiotic can be defined as “a live organism that, when ingested in adequate 

amounts, exerts a health benefit.” The first scientific evidence of a probiotic effect was 

described by Metchnikoff in 1908, based on his findings on the beneficial effects of 

fermented milk products on longevity (Mackowiak, 2013). Although the definition of 

probiotics is widely accepted, it is important to note that live and non-viable 

microorganisms can exhert similar effects that probiotics itself (Dinan et al., 2013). 

The most widely used probiotics are Lactobacillus spp. and Bifidobacterium spp. 

Probiotics can induce beneficial effects when they remain viable in the gastrointestinal 

tract at a concentration of at least 106-107 CFU/g (Vinderola et al., 2011). 

That probiotics can produce neurochemical substances, has been known for nearly a 

century (Lyte, 2011).However, a new concept recently introduced, focuses on the 

potential for probiotics to act as psychotropic agents, psychobiotics (Dinan et al., 2013; 

Sarkar et al., 2016). Probiotics have been proposed as a potential way to augment the 

conventional therapies for depression (Logan and Katzman, 2005). Psychobiotics were 

originally defined “a live organism that, when ingested in adequate amounts, produces 

a health benefit in patients suffering from psychiatric illness” (Dinan et al., 2013). 

However, this has been expanded to also include prebiotics and other targeted 

interventions of the microbiome that supports brain health (Sarkar et al., 2016).The 

ability of probiotics to produce benefits to patients suffering from psychiatric illness 
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may be, in part, explained by their ability to produce and release neurotransmitters. 

For example, strains from Lactobacillus spp. and Bifidobacterium spp. are known to 

produce gamma-Aminobutyric acid (GABA), serotonin (5-HT), acetylcholine, and 

cannabinoids, which are essential neurotransmitters for CNS homeostasis and 

behavioural function (Dinan et al., 2013). The mechanisms by which probiotics can 

produce beneficial effects are being actively investigated by both clinical and 

preclinical studies. 

Since manipulation of the microbiota at an early developmental stage can have a long-

lasting impact, intervention strategies including probiotic treatment in early-life have 

been investigated (Moya-Pérez et al., 2017). For example, maternal supplementation 

with commensal bacteria L. rhamnosus GG (LGG) was demonstrated to increase 

bifidobacterial diversity in infants (Gueimonde et al., 2006). In another study, the the 

maternal consumption of LGG during gestation increased this taxa in newborn infant 

gut for at least 6 months and, in certain cases, these effects were observed for as long 

as 24 months (Schultz et al., 2004). However, it is worth noting that in a different 

study, administration of LGG promoted Bifidobacterium spp. without increasing 

microbial diversity of early infant gut (Ismail et al., 2012). Moreover, treatment with 

Bifidobacterium breve to preterm infants significantly decreased aspirated air volume 

from the stomach and improved weight gain (Kitajima et al., 1997). A series of clinical 

studies have also demonstrated a positive effect of probiotic treatment, by reducing 

the incidence of necrotising enterocolitis (Patel and Underwood, 2018). Together, 

these studies support the use of probiotics for ameliorating the adverse effects of gut 

microbiota disruptions in early life. Furthermore, the gut microbiota has been 

suggested as a potential target for the treatment of some CNS disorders as outlined 

above including ASDs, stress-related disorders, IBS and IBS (O’ Mahony et al., 2015). 

 Tools for Investigating the Impact of the Gut Microbiota on Gut-

Brain Function 

Some of the strategies commonly used for investigating the impact of the gut 

microbiota on gut-brain function are depicted in the Figure 1.3 and described in the 

sub-sections bellow.  
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Figure 1.3- Tools for investigating the microbiota-gut brain axis. 

The use of germ-free animals provide evidences on the functional role of the gut microbiota in 

comparison to conventional raised animals as wells as allows for the investigation on the effects of by 

specific bacteria (for example, a probiotic) on the microbiota–gut–brain axis. The administration of 

antibiotics can deplete the gut microbiota in a temporally controlled and more realistic manner and also 

consisits in important tool for investigation on the role of microbiota to host behaviour. Moreover, both 

germ-free animals and antibiotic-treated aniamls can be re-colonized with human microbiota, by feacal 

transplantation. Figure taken from (Cryan and Dinan, 2012). 

 

 Germ-free Mice  

The first successful generation of germ-free (GF) mice was in 1946 by James Reyniers 

(Reyniers et al., 1946), providing evidence that life is possible without 

microorganisms. Since then, the use of gnobiotic animals in research has 

increasingly grown (Luczynski et al., 2016a). GF mouse colonies are generated by C-

section surgery where offspring have no contact with maternal microorganisms from 

the skin or vaginal microbiota. Newly born animals are then raised in sterile conditions 

inside aseptic isolators and fed with sterile milk. After weaning, GF mice continue to 

be provided with sterile water, food and bedding. Another way to generate GF rodents 

is through embryo transfer at the two-cell stage to a pseudo-pregnant mother. 
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Following generations are more easily generated; GF are interbred and mothers are 

allowed to give birth by natural delivery without exposing the offspring to microbes 

(Ericsson and Franklin, 2015; Kirk, 2012; Luczynski et al., 2016a; Reyniers et al., 

1946). The lack of microbiota in GF mice has been associated with several alterations 

in physiology, metabolism, immune system and brain function. Some of the important 

feautures of the GF phenotype are specified in the Figure 1.4. 

Mice raised in a controlled, aseptic environment, without any exposure to microbes, 

that are then colonised by identified microbiota are named gnotobiotics (Luczynski et 

al., 2016a; Turnbaugh et al., 2009). The term gnotobiotic is derived from the Greek 

gnotos, meaning “known,” and bios, meaning “life” (Ericsson and Franklin, 2015). 

Historically, Louis Pasteur proposed experiments using gnotobiotic animals and 

hypothesised that the presence of microorganisms was necessary for life (Gordon and 

Pesti, 1971). Therefore, gnotobiotic animals were created to study the importance of 

different members of the microbiota on host health and disease in a controlled situation 

(Ericsson and Franklin, 2015).  

The colonisation of GF mice with specific microorganisms has provided exciting 

insights into microbial-host interaction (Luczynski et al., 2016a). For example, GF 

mice can be colonised by one specific strain of bacteria, generating mono-associated 

mice, or by two different microorganisms, to obtain di-associated mice. Microbial 

reconstitution of GF gut microbiota with “cocktails” or consortia of bacteria, virus and 

Fungi, other mice’ gut microbiota, human gut  microbiota and from other animal 

species are also important tools for studying the role of the microbiome (Kirk, 2012).  
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Figure 1.4- Central nervous system alterations in germ-free mice. 

Mice raised and kept in germ-free conditions present with many alterations in the CNS including: 

changes in neuronal homeostasis such as altered myelination, synapsis dysfunction, neuronal plasticity 

and brain neurochemistry; differences in microglia morphology and activation in response to an 

inflammatory stimuli; increased hippocampus neurogenesis and amygdala volume and blood brain 

barrier (BBB) dysfunction.  

 

 Microbial Depletion by Antibiotics 

Germ-free mice have exhibit profound phenotypic differences from “normal” mice 

due to the developmental effects related to the absence of commensal microorganisms. 

Therefore, in order to rule out these confounding effects upon developmental 

trajectories, alternative microbiota depletion strategies may be applied, such as the use 

of antibiotics in adulthood (Ericsson and Franklin, 2015; Hoban et al., 2016a). The use 

of antibiotics allows for microbiota depletion to be applied during any desired period 

of time during an animal’s lifespan. Importantly, manipulation of the gut microbiota 

by antibiotic administration is shown to induce changes in behaviour and brain 

neurochemistry (Hoban et al., 2016a). However, despite its advantages, some 

antibiotics can cross the blood brain barrier (BBB) and act directly in the CNS, 

possibly confounding interpretation of results.  
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Administration of antibiotics during early-life and adulthood can have long-lasting 

impact on gut microbiota. For instance, the administration of cocktails of broad-

spectrum antibiotics alters microbial diversity, reducing Firmicutes and Bacteroidetes 

phyla within the gut for as long as three months (Manichanh et al., 2010). Early-life 

treatment with vancomycin selectively induces visceral hypersensitivity in rats in 

adulthood (O’Mahony et al., 2014). Moreover, the administration of antibiotics in 

mice during adolescence shifts gut microbiota composition, decreases spleen weight, 

reduces anxiety-like behaviour, induces cognitive deficits, and changes brain gene 

expression and tryptophan metabolism (Desbonnet et al., 2015). Recently, maternal 

exposure to antibiotics has been demonstrated to have transgenerational impacts, 

inducing colitis in IL10−/−offspring (Schulfer et al., 2018). 

 Faecal Microbial Transplantation 

Animals (GF or antibiotic-treated, in particular) can have their microbiota 

(re)colonised with a desired microbial population through faecal microbial 

transplantation (FMT) (Manichanh et al., 2010). FMT is also employed in a clinical 

setting, often referred to as faecal bacteriotherapy; faecal bacteriotherapy has been 

used to treat Clostridium difficile infection for over 50 years. Recently, FMT has 

garnered attention for its potential to treat numerous clinical conditions including, but 

not limited to, metabolic, gastrointestinal and psychiatric disorders (Borody and 

Khoruts, 2011; Shanahan, 2009; Turnbaugh et al., 2009). Experimentally, FMT is an 

important tool for understanding the complex microbial populations and providing 

causal relationships between phenotype and microbiota. For example, the link between 

faecal microbiota and depression has been recently established by transplantation of 

faecal microbiota from clinically depressed patients to antibiotic-depleted rats. Rats 

that received faecal microbiota from depressive patients exhibited anhedonia and 

anxiety-like behaviour, whereas FMT from control subjects to rats had no effect (Kelly 

et al., 2016). In another example of FMT application in experimental science, 

microbiota transplantation from obese mice to GF mice resulted in weight gain 

(Turnbaugh et al., 2006).  



 

20 

 

 Co-housing as a Method of Microbiota Transfer 

Cohabitation has been demonstrated to have a great impact on the human microbiome 

(Moore and Stanley, 2016). A human study analysing 60 different families concluded 

that the microbiota composition of members from the same household is more similar 

than that of individuals from different households (Song et al., 2013). Notably, this 

occurs between different host species; cohabitation effects on microbiota exchange 

also extend to dogs and their owners (Song et al., 2013).  

In preclinical research using rodent models, microbiota transfer is facilitated by their 

natural, coprophagic behaviour. Co-housing decreases inter-individual variability and 

results in a clustering effect. The effect of this co-housing effect on normalisation of 

the gut microbiota is robust, and therefore, a widely accepted method, eliminating the 

need for the investigator to perform the faecal transplantation. One of the advantages 

of this method is that allows for continual seeding rather than a single administration 

as occurs in most of faecal transplantation protocols (Moore and Stanley, 2016). 

Interestingly, co-housing is also efficient for transferring the phenotypes associated 

with certain microbiota profiles. For example, co-housing of obese with lean mice 

prevented obese mice from gaining weight and returned their metabolic profile to one 

similar to the lean mice (Ridaura et al., 2013). These effects were associated with the 

transfer of specific microbes from the lean to obese mice (Ridaura et al., 2013). 

Recently, co-housing was also shown to ameliorate social and microbial deficits in an 

animal model of ASD, which was induced by maternal high-fat diet (MHFD) during 

pregnancy (Buffington et al., 2016).  

 Cross-Fostering as Method for Transferring Microbes in 

Early-life 

Cross-fostering (CF) is a widely used laboratory practice used for many different 

research purposes such as for dissecting genetic and environment effects (Benus & 

Rondigs 1996) and it consist in an additional method used for manipulation of the gut 

microbiome. CF consists of the removal of offspring from the birth dam, and transfer 

to foster dams harbouring the desired microbiota. Different CF protocols has been 
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applied i.e all‐litter fostered, only one pup fostered, etc. This method is particularly 

relevant for early-life manipulation of the gut microbiome (Moore and Stanley, 2016). 

Cross-fostering experiments are employed to study the role of maternal transmission 

of gut microbiota. For example, TRUC (T-bet-/- RAG2-/- ulcerative colitis) mice co-

housed with the wild-type mice transmitted the phenotype to wild-type control mice 

(Garrett et al., 2010). In another study, NOD mice fostered by Nonobese Diabetes-

Resistant (NOR) mice prevented NOD mice from developing Type-1 diabetes (Daft 

et al., 2015).  

CF methods are also a good tool to access mother-to-offspring transmission of 

placental and milk compounds (Howdeshell et al., 1999). Recently it has gain a lot of 

popularity as some knockout strains of mice exhibit low maternal care, CF with other 

strain that shows high maternal care is an alternative to overcome such bias and to 

allow their appropriate growing process. CF contribution to behaviour has been 

studied in different protocols. Of interest, CF mice pups at birth was shown affect male 

and female adult behavior in a different manner. While female mice exhibit normal 

behavior and HPA-axis response was unaffected in both sex, CF males showed 

decreased anxiety. These effects appears to be independent of changes in maternal -

offspring interaction (Bartolomucci et al., 2004). The neurobiological effects CF has 

been also associated to the duration of the separation events (Luchetti et al., 2015).  

1.3 The Microbiota-gut Brain Axis  

 The Emergence of the Microbiota-gut Brain Axis 

Over a century ago, the British surgeon Sir Arbuthnot Lane and the Nobel Prize-

winning microbiologist Ilya (Elie) Metchnikoff introduced the idea that microbes 

could have an impact on mental health disorders. The studies of Metchnikoff 

demonstrated that lactic acid bacteria could slow down processes associated with 

ageing and senescence (Mackowiak, 2013). Additionally, Hubert J. Norman, working 

at the Camberwell House asylum, and George Porter Phillips Bethlem Royal Hospital, 

both in London ,suggested that lactic acid bacteria play a key role in psychological 

aspects of depression (Sherwin et al., 2017). Other contemporary scientists have 

contributed to the field by further describing associations between commensal 
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microorganisms and mental health. (See Cryan et al. (2015) for a more complete 

historical review). Evidence that the microbiome had the potential to regulate brain 

function resulted in the formation of a new interdisciplinary field of research in the 

21st century. Over past two decades, a quickly growing body of research supports the 

idea that our gut microbiota can profoundly influence the host’s CNS function and 

behaviour. This relationship occurs in a bi and/or multi-directional way with both top-

down and bottom-up pathways. Therefore, the term gut-brain axis had been revised to 

accommodate the key role of the microbiota, and the term “microbiota-gut-brain axis” 

was introduced (Cryan and Dinan, 2012; Mayer, 2011; Rhee et al., 2009). This new 

and promising field of research is at its very early stages, and the mechanisms 

underlying the communication between the gut microbiota and brain are under 

ivnestigation. A number of mechanisms have been implicated, including afferent 

sensory neurons of the vagus nerve, neuro-immune and neuroendocrine pathways, 

microbial-derived metabolites such as SCFA and microbial-derived neurotransmitters 

(Kennedy et al., 2017) (Figure 1.5). 
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Figure 1.5- The Microbiota gut-brain axis. 

The biderectional communicaiton between the gut microbiota and the brain is mediated by several direct 

and indirectpathways. The routes of communication include the ENS and ANS (vagus nerve), the 

neuroendocrine system and HPA axis, immune system (inflammatory mediators), and various spinal 

afferents and neurochemical interactions. The gut microbiota can produce neuroactive compounds as 

neurotransmitters (i.g. gamma-Aminobutyric acid (GABA), noradrenaline, dopamine, serotonin) and 

microbial metabolites such as short-chain-fatty acids (SCFA) that can either go through portal 

circulation or act directly on locally in the ENS and vagus nerve (i.g. serotonin (5-HT) produced by 

enterochromafin cells and bacterial produced SCFA). Figure taken from (Dinan et al., 2015). 
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 Microbiota-gut Brain Axis Routes of Communication 

 The Vagus Nerve Route 

Evidence obtained from preclinical studies has implicated the vagus nerve as the main 

route of communication between the abdominal cavity to the nucleus of the solitary 

tract (NTS) and other brain regions. The information from many peripheral organs, 

including stomach and intestines, is transmitted to the brain via sensory fibres 

(Forsythe et al., 2014). Earlier evidence pointing to a role for the vagus nerve in 

mediating behavioural responses comes from studies on animals which demonstrated 

sickness and depression-like behaviour in association to a pro-inflammatory response 

followed by administration of the endotoxin LPS (Konsman et al., 2000; Luheshi et 

al., 2000). However, such effects were abolished after vagotomy (Konsman et al., 

2000; Luheshi et al., 2000). The vagus nerve was further demonstrated to sense 

inflammatory stimulus and sends afferent signals to the brain. Since the gut 

microbiome modulates many immunoregulatory pathways, it is not surprising that 

commensal bacteria use this path to act through the CNS and manipulate behaviour 

(Forsythe et al., 2014).  

There is now substantial evidence of vagally-mediated communication between the 

microbiota and brain, obtained from animal studies. For instance, Bercik et al. (2011) 

demonstrated that the administration of the probiotic Bifidobacterium longum 

NCC3001 ameliorated anxiety-like behaviour and associated changes in BDNF 

expression in an animal model of colitis. These beneficial effects of B. longum 

disappeared following vagotomy. A similar effect was observed in studies with 

Lactobacillus spp.; the majority of Lactobacillus rhamnosus (JB-1) effects on 

emotional behaviour and associated-changes in GABA receptor expression are not 

sustained in vagotomised mice (Bravo et al., 2011). Furthermore, Perez-Burgos et al. 

(2013) demonstrated an ex-vivo experiment that the administration of L. rhamnosus 

(JB-1) immediately increased firing in vagal afferent neurons. On the other hand, 

Lactobacillus reuteri was shown to improve wound healing in mice, and that this effect 

was mediated by the vagus nerve (Poutahidis et al., 2013). 
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 The Neuroendocrine and Metabolic Pathways of the 

Microbiota-Gut-Brain Axis 

 Microbial-derived Neurotransmitters 

Among the different cell types that form the gut epithelium, there are epithelial 

absorptive cells, Goblet cells, Paneth cells and enteroendocrine cells (EECs). The 

EECs are distributed across the entire gastrointestinal tract and produce several 

hormones that are important for regulating multiple physiological functions (Cani and 

Delzenne, 2009; Gunawardene et al., 2011). Among other secretory products, different 

EECs types produce gut peptides, hormones and neurotransmitters such as 5-HT, 

somatostatin, glucagon-like peptide-1 (GLP-1), peptide YY (PYY), glicentin, ghrelin, 

oxyntomodulin, and orexin. It is now becoming widely appreciated that the gut 

microbiota can influence the activity of EECs and the release of many neuroendocrine 

substances (Lach et al., 2018). Moreover, the fact that several of these substances have 

also receptors within, or signal to the brain suggests an important role for EEC-

microbiota cross-talk in brain-gut axis communication (Moran, 2006; Moran et al., 

2008). Moreover, dysfunction of EEC cells is associated with many gastrointestinal 

and psychiatric comorbidities including IBS and obesity (Cani and Knauf, 2016). 

Bidirectional neuroendocrine-intestinal signalling to the brain is supported by findings 

of numerous studies. For example, serotonergic EECs can act as chemosensors within 

the gut, controlling 5-HT release and the expression of 5-HT3 receptors in the primary 

afferent nerve fibers which can transduce the signal to the nervous system (Bellono et 

al., 2017). Furthermore, brain regions that control appetite can also be directly 

activated by gut hormones. Indeed,  ghrelin, predominantly derived from the stomach, 

is transported across the BBB where it can then interact with mesolimbic brain areas 

involved in food-reward and appetite control (Banks et al., 2002; Torres-Fuentes et 

al., 2017). Conversely, the gut also produces anorexigenic hormones such as 

cholecystokinin (CCK) and peptide YY (PYY), which can induce satiety (da Silva et 

al., 2012). These microbial-derived molecules can modulate appetite  and influence 

host energy balance through several possible mechanisms that include the activation 

of pattern recognition receptors in the intestinal epithelium, ENS and vagus nerve 

signaling and epigenetic mechanisms (van de Wouw et al., 2017). 
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In addition to neuropeptides, other important neuroactive products are released by gut 

bacteria, including GABA, which is produced by several Lactobacillus and 

Bifidobacterium strains (Barrett et al., 2012). Gut bacteria can also produce precursors 

of benzodiazepine receptor ligands in a rat model of encephalopathy, increasing 

GABAergic transmission in the brain (Yurdaydin et al., 1995). The production of the 

neurotransmitter histamine is also influenced by the gut microbiota (Hegstrand and 

Hine, 1986), and L. reuteri modulates histamine production in the gut (Thomas et al., 

2012). Indeed, mice lacking gut bacteria have lower hypothalamic histamine 

concentrations (Hegstrand and Hine, 1986). Pioneering studies from the 1990’s 

demonstrated that some pathogenic bacteria have the ability to respond to exogenous 

catecholamines in vitro and grow (Lyte and Ernst, 1992). More recently, dopamine 

and norepinephrine have been detected in the gut lumen of SPF mice, which are absent 

in GF mice, suggesting that gut bacteria are likely responsible for their production of 

(Asano et al., 2012). 

  Short-chain Fatty Acids  

The most intensively studied mechanism by which the microorganisms can influence 

host health is through the production of short chain fatty acids SCFA. SCFAs, which 

includebutyrate, propionate and acetate are bacterial metabolites derived from the 

enzymatic processing of nutrients and prebiotics (non-digestible fibres) (Sharon et al., 

2014). They are monocarboxylic acids with a chain length of up to six carbon atoms, 

and comprise an essential energy source to the host. SCFAs mediate signaling 

pathways by a number of ways including altering histone acetylation, and by acting as 

endogenous ligands for free fatty acid receptors 2 and 3 (FFAR2 and FFAR3), which 

are G-protein-coupled receptors (Morrison and Preston, 2016). SCFAs have a 

modulatory effect on immunity, physiology and metabolism. They confer protection 

against infection and inflammation, and participate in the recruitment and maturation 

of various subsets of immune cells (Smith et al., 2013), including microglia, the 

resident brain immune cell. (Erny et al., 2015). Several studies provide evidence that 

SCFAs mediate gut-brain communication (Stilling et al., 2016).Propionate and 

butyrate have been observed to activate gluconeogenesis through a gut-brain signaling 

mechanism (De Vadder et al., 2014). These SCFAs can modulate brain functioning, 

in particular regulation of appetite through release of specific gut neuropeptides such 
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as PYY and GLP-1 that regulate energy homeostasis and have become a target of 

many anti-obesity therapies (Byrne et al., 2015). 

 The Immune System and the Microbiota-Gut-Brain Axis  

 The Gut Microbiota Shapes Immune System Development 

It is now well established that the gut microbiota plays a significant role in the 

development of the immune system. In association with this, the early-life succession 

of mucosal colonisers occurs in parallel with the development and maturation of the 

mucosal immune system (El Aidy et al., 2014). The development of the immune 

system begins in utero, and extends into the postnatal period. Recently, it has been 

reported that the maternal microbiota modulates the growth of the innate immune cells 

of mouse offspring, preparing the offspring for host-microbial mutualism after birth 

(Gomez de Agüero et al., 2016).  

Early-life is a critical period of host immune system maturation in response to 

microbiota colonisation (El Aidy et al., 2014; Foster et al., 2017; Rea et al., 2016). 

Studies utilising GF mice have revealed that the gut microbiota is essential for gut 

associated lymphoid tissue development and for the aggregated lymphoid follicles 

forming Peyer's patches (Thaiss et al., 2016). GF mice have lower number cells in the 

lamina propria of the intestinal epithelium, which is rich in immune cells, and reduced 

numbers of T-cells (CD4+ and CD8+) (El Aidy et al., 2012; Wei et al., 2010). A proper 

balance of effector CD4+ T cells, T helper 1 (TH1) and T helper 2 (TH2), each 

carrying out distinct and opposing activities, are required for the development of a 

healthy immune system. Notably, colonisation of the GI tract with early-life bacterial 

colonisers, such as Bacteroides fragilis and Bifidobacterium spp., can critically 

influence the maintenance of TH1/TH2 balance, and affect the production of 

immunomodulatory molecules. Dysregulation of this pathway is associated with 

allergies, autoimmune and inflammatory disorders (Mazmanian et al., 2005; Round 

and Mazmanian, 2009). More recently, altered levels of B. fragilis were associated 

with neurodevelopmental disorders (Hsiao et al., 2013). Several recent studies point 

to a key role of breastfeeding in the development of a healthy immune system, acting 

through the microbiome, either by directly providing the infant with milk-derived 
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microbes or through breast milk oligosaccharides, which can be utilised by 

Bifidobacterium spp. as a substrate for growth (Bäckhed et al., 2015; Walker and 

Iyengar, 2015).  

By the age of three years old, a stable microbiome is established (Borre et al., 2014); 

however, the microbiota continues to interact with the immune system producing and 

releasing lymphocytes and cytokines. During a healthy state, the gut microbiota can 

maintain a low-level of activation of the innate immune system that starts in the 

intestinal mucosa surface and expands to the rest of the body (El Aidy et al., 2015). In 

the past half-century, as marked decreases in infectious diseases in developed 

countries were achieved, concomitant increases in allergies and autoimmune diseases 

were observed (Okada et al., 2010)This paradoxical effect is referred to as “the old 

friends hypothesis,” which posits that proper colonisation with healthy microbiota 

during early-life may prime the immune system for health, whereas disrupted bacterial 

colonisation may increase vulnerability to develop immune-mediated diseases (Rook, 

2012; Rook et al., 2014).  

 Immune Signalling Across the Microbiota-Gut-Brain Axis 

Given the well-established immunomodulatory properties of the gut microbiota, it is 

not surprising that cells of the immune system can act as an intermediary between the 

gut microbiota and the brain. Immune-signaling mediators, such as cytokines and 

chemokines, can affect the brain through the vagus nerve, or directly, via 

circumventricular organs (regions characterised by a permeable BBB). Microbe-

associated molecular patterns (MAMPs), which include bacterial peptidoglycan and 

LPS, components of gram-negative cell walls, are candidates mediating this 

communication. The host immune system recognises bacterial LPS through Toll-like 

receptors (TLRs; i.e. TLR-4) which are expressed on monocytes, macrophages and 

microglia. For instance, LPS can reach the brain via blood circulation and act on 

central TLRs, initiating a cascade of neuroinflammatory processes (El Aidy et al., 

2015). In conditions such as IBS, depression and ASD, increased intestinal 

permeability leads to translocation of bacteria and/or pro-inflammatory cytokines into 

the systemic circulation which have the potential to affect the brain (Kelly et al., 2015).  
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The peripheral immune system can also mediate this communication with the brain. 

As previously described, intestinal bacteria play a key role in the development of the 

mucosal and systemic immune system. Notably, peripheral inflammation is present in 

many CNS disorders, including, but not limited to anxiety and depression, ASDs, and 

Alzheimer’s and Parkinson’s diseases). However, nature of these interactions are 

complex, and poorly understood (Rea et al., 2016). Interestingly, a recent study 

demonstrated that microbiota colonisation with segmented filamentous bacteria 

(SFB), epithelial-associated bacteria that promote the development of TH17 cells, is 

sufficient to promote experimental autoimmune encephalomyelitis (EAE) in 

comparison to GF mice (Lee et al., 2017). The presence of the commensal bacteria B. 

fragilis can rescue the EAE phenotype (Ochoa-Repáraz et al., 2011). B. fragilis is 

known activates Treg cells in mouse colon via capsular expression of polysaccharide 

A (PSA), (Round and Mazmanian, 2009) and can rescue autistic phenotype in MIA 

mice offspring although through a PSA independent-manner (Hsiao et al., 2013). 

Until recently, the central nervous system was believed to be isolated from the 

peripheral immune system, due to the lack of a lymphatic drainage system. However, 

functional lymphatic vessels lining the dural sinuses were recently discovered, and 

these are capable of transporting both fluid and immune cells from the cerebrospinal 

fluid (Louveau et al., 2015). Moreover, the migration of immune cells and mediators 

is still regulated by the highly selective, semipermeable BBB, which separates the 

circulating blood from the brain and extracellular fluid of the CNS. In addition to other 

cell types, the BBB is composed of astrocytes and endothelial cells (Rea et al., 2016). 

Not only are astrocytes important for regulation of BBB integrity, they are also the 

most abundant glial cells in the brain. Interestingly, they are known to participate 

in the gut microbiota-brain communication. For instance, gut microbes can 

modulate astrocyte activity, as metabolites produced by microbes can interact with 

type I aryl hydrocarbon receptors present on astrocytes. Consistent with this, 

depletion of the gut microbiota by antibiotics decreases levels of the aryl 

hydrocarbon receptor signalling, aggravating symptoms associated with EAE 

(Rothhammer et al., 2016). 

Although the interaction between the gut microbiota and innate immune cells is well-

established, the role of the brain’s resident innate immune cells has only emerged in 

https://en.wikipedia.org/wiki/Extracellular_fluid
https://en.wikipedia.org/wiki/Central_nervous_system


 

30 

 

the recent years, shifting the direction of research in the field (Cryan and Dinan, 2015; 

Foster et al., 2017; Rea et al., 2016). Microglia are the primary resident immune cells 

of the CNS and are responsible for initiating the cascade of neuronal responses to 

potential threats (including those arising from peripheral inflammation and stress). 

Following insult, microglia cells switch from the resting state to an activated state, 

resulting in morphological changes (Cryan and Dinan, 2015). Recently, a proof of 

concept study by Erny et al. (2015) demonstrated that a normal microbiota is necessary 

for healthy microglia development and maturation, activation and morphology, and 

this effect is mediated by bacterial-derived SCFAs. Indeed, compared to 

conventionally colonised controls, GF mice have increased numbers of immature 

microglia in several brain regions (Erny et al., 2015). Interestingly, a further study 

showed that microglia respond differently to the permanent lack of microbiome in 

males and females: in males microglia is most affected in embryonic life, whereas in 

females the most critical period is adulthood (Thion et al., 2018). Recently, a causal 

association between microbiota, SCFA, and microglia was demonstrated in the 

development of behavioural and neuropathological changes in α-synuclein 

overexpressing mice, used to model Parkinson’s disease (Sampson et al., 2016). 

Whether microbial-microglia interactions contribute to symptoms of other 

neuropathological conditions that involve neuroinflammation and comorbid 

gastrointestinal symptoms, such as ASDs; Alzheimer’s disease, and depression, is 

an important question to be addressed (Fung et al., 2017; Rea et al., 2016). 

 The Intestinal Barrier 

The mucosal surface of the gastrointestinal tract is a primary site of contact between 

immunogenic particles, environmental toxins, microorganism-derived antigens and 

the immune system, and is essential for maintaining health. The intestinal mucosa is a 

complex barrier consisting of different layers of intestinal flora, mucus, columnar 

epithelia, extracellular matrix and the lamina propria. The lamina propria, the inner 

layer of the gastrointestinal tract, is where blood and lymph vessels, resident immune 

cells (i.e. lymphocytes, macrophages, eosinophils, dendritic cells and mast cells) and 

nerve terminals can be found. It is now well-established that these components can 

interact using neurotransmitters, neuropeptides, cytokines and chemokines, and 

neurohormones as mediators (Turner, 2009). With these characteristics, the central 
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role of the intestinal barrier is to regulate the absorption of nutrients, electrolytes and 

the secretion of antimicrobial compounds from the lumen into the circulation and to 

prevent the entry of harmful substances and microorganisms (Fukui, 2016). 

One of the first reactions to a noxious stimulus involves the release of mucus 

containing secretory immunoglobulin A, defensins and other mediators that help the 

host fight against bacterial invasion (He et al., 2007). The commensal gut microbiota 

is shown to interact with these processes continuously, and changes in its composition 

may have implications for the maintenance of these critical barrier functions (Kelly et 

al., 2015). 

The epithelial cells of the mucosal barrier are impermeable to most hydrophilic solutes 

in the absence of specific transporters. When intact, the epithelial barrier is sealed by 

the apical junctional complex, which is composed of adherens junctions and tight 

junctions. Adherens junctions are required for assembly of the tight junctions, which 

seal the paracellular space. Tight junctions consist of transmembrane proteins such as 

claudin, occludin, tight-junction protein-1 (TJP-1) and tricellulin that connect with the 

plasma membrane (Kelly et al., 2015). Transport across tight junctions can occur by 

at least two routes: (1) The leak pathway, which consists of paracellular transport of 

large solutes, including limited flux of proteins and bacterial LPS. Cytokines may 

increase the flux across the leak pathway and (2) Passage through small pores that are 

thought to be defined by tight junction-associated claudin proteins. These pores have 

a radius that excludes molecules larger than 4Å (Turner, 2009). Different aspects of 

intestinal epithelial barrier function have been investigated by utlilising a variety of 

techniques, by determining markers of physical barrier loss and methods to assess 

functional barrier loss in both clinical and preclinical research (See Kelly et al. (2015) 

for more deteailed information on available methodology). 

In humans, intestinal barrier development occurs at the end of the first trimester of 

gestation, with the epithelial cells being formed by week eight and tight junctions by 

week ten. The development of intestinal barrier function continues postnatally, and is 

influenced by diet and feeding regimen (Cummins and Thompson, 2002). 

Interestingly, this process occurs in parallel with maturation of the immune system 

and the gut microbiota.  
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The role of gut microbiota in disruption of the intestinal barrier in response to stress 

and neuropsychiatric conditions, such as IBD, anxiety, ASD and depression is of great 

interest and an important focus of ongoing research. The interaction of stress, gut 

microbiota and intestinal barrier function has been demonstrated in numerous animal 

models. For example, early-life maternal separation in rats, frequently used to model 

early life stress, disrupts the offspring's microbiota and promotes colonic 

hypersensitivity, anxiety and a depression-like phenotype (Cryan and O’Mahony, 

2011; O’Mahony et al., 2009). Furthermore, exposure to brief maternal separation in 

a limiting nesting stress protocol disrupts epithelial integrity in the large intestine and 

increased basal corticosterone on offspring (Moussaoui et al., 2016). Alterations in gut 

paracellular permeability were also demonstrated in rats submitted to a partial restraint 

stress, an acute stressor (Ait-Belgnaoui et al., 2005). Interestingly, restoring the gut 

microbiota with probiotic interventions has a beneficial effect on stress-induced 

changes in intestinal permeability. In one study, treatment with Lactobacillus 

farciminis prevented the leaky gut and attenuated the hypothamic-pituitary-adrenal 

(HPA) axis response, and decreased endotoxemia and neuroinflammation in rats 

exposed to partial restraint stress (Ait-Belgnaoui et al., 2012). Moreover, the same 

research group demonstrated beneficial effects of another probiotic formulation, a 

combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 

(Probio'Stick®), in attenuating HPA axis and ANS responses and restoring gut 

permeability and tight junction protein levels of rats exposed to chronic stress (Ait-

Belgnaoui et al., 2014). Importantly, Corticotropin-releasing factor (CRF) and its 

receptors act as important mediators of stress-induced gut permeability, but the precise 

signalling mechanisms remain poorly understood (Overman et al., 2012).  

Gut barrier dysfunction is also observed in individuals with ASD and in animal models 

of the condition. LPS is increased in the serum of the autistic individuals compared 

with healthy individuals demonstrating intestinal permeability impairments 

(Emanuele et al., 2010). Another study by Fiorentino et.al , 2016 reported gut barrier 

impairments in ASD individuals, as demonstrated by decreases in tight-junction 

proteins (Fiorentino et al., 2016). Increased intestinal permeability in ASD children 

has also been reported as assessed by the lactulose: mannitol test (de Magistris et al., 

2010). Interestingly, preclinical models of ASD have also revealed GI dysfunction. 

Alterations in gastrointestinal permeability, gut microbiota and social behaviour have 
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been demonstrated in both the maternal immune activation (MIA) and BTBR 

T+Itpr3tf/J mouse models of ASD (Golubeva et al., 2017; Hsiao, 2014).  

Finally, alterations in the CNS, gut permeability and the gut-brain axis are observed 

in a wide range of conditions including neuropsychiatric disorders (as described 

above), diabetes and the metabolic syndrome, liver encephalopathy. Although the 

ultimate pathophysiological mechanism behind these alterations remains to be 

established, the gut microbiota may play an important role in their development.  

1.4 Microbiota-gut Brain Axis and Stress 

 Stress 

Stress has become engrained in our vocabulary and daily life, used to refer to feelings 

of anxiety and frustration, that affect our ability to cope. However, this use of the term 

stress is somewhat ambiguous. The stress response is important and necessary process, 

that enables one to react and cope with threats. However, chronic overactivation of the 

stress response can result in damage and pathological conditions (McEwen, 2006). 

Interest in an organism’s ability to adapt to challenges was a major focus of interest in 

the early 20th century. Walter Cannon was the first to introduce and popularise the 

ideas of homeostasis (building upon Claude Bernard’s theory of the “milieu 

interieur”), the “fight-or-fight” response, and the sympathoadrenal system (Cannon, 

1929). Hans Seyle was the first to propose stress as a sickness condition (Selye, 1936). 

By using animal models, he demonstrated his theory of general adaptation syndrome 

(GAS) which is characterised by enlargement of adrenal glands, lymph node and 

thymic atrophy, and the development of gastric erosions/ulcers. Seyle also recognised 

the major role of glucocorticoids in GAS. He performed extensive structure-activity 

studies in the 1930s–1940s, resulting in the first rational classification of steroid 

hormones, e.g. corticoids, steroids/androgens, and folliculoids/estrogens. Finally, 

Seyle also recognised that individuals can perceive and react to stress in different 

ways. Sterling and Eyer coined the term allostasis, which means “achieving stability 

through change,” referring to the active process of the body to maintain homeostasis 

in response to daily events. Considering the importance of acknowledging the 

protective, as well as the potentially damaging effects of stress, McEwen et al. 
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introduced the term “allostatic load,” the failure to terminate the stress response when 

it is no longer needed, and “allostatic overload” to denote the more extreme condition, 

associated with pathological states (McEwen, 2006). 

The brain perceives stressful stimuli and recognises environmental threats, stores 

memories and adjusts the physiological as well as behavioural responses to the 

stressors. However, a state of allostasis involves the orchestration of many biological 

systems, including, but not limited to, the HPA axis, autonomic nervous system and 

their interaction with the metabolic and immune systems (McEwen et al., 2015) and 

the intestinal microbiota (Cryan and Dinan, 2012; Foster et al., 2017). 

 HPA Axis, Stress and Stress-related Disorders 

The HPA axis coordinates emotional, immunological and autonomic inputs regulating 

allostasis, transducing these into behavioural, neuronal and endocrine responses. The 

perception of stress activates hypophysiotropic neurons of the paraventricular nucleus 

of the hypothalamus (PVN), which secrete releasing hormones such as CRF and 

vasopressin (AVP) into the brain or the portal circulation. CRF acts mainly through its 

receptor CRF receptor 1 (CRFR1) which is widely expressed in the anterior pituitary, 

but also in corticolimbic structures, including the prefrontal cortex, hippocampus, 

PVN and the basolateral amygdala (BLA). The release of CRH by the PVN triggers 

the secretion of adrenocorticotropic hormone (ACTH) into the circulation by the 

anterior pituitary. Circulating ACTH initiates the synthesis and release of 

glucocorticoid hormones (corticosterone in rats and cortisol in humans) from the 

adrenal cortex (Ulrich-Lai and Herman, 2009) (Figure 1.6). 
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Figure 1.6- Hypothalamic-pituitary-adrenal axis activation in response to stress and gut-brain axis 

activity. 

Exposure to a real or perceived stressor stimuli activates parvocellular neurons in the paraventricular 

nucleus of the hypothalamus that secrete corticotropin-releasing factore (CRF) and vasopressin (AVP) 

into the brain or the portal circulation. CRH can bind through its receptor CRF receptor 1 (CRHR1) 

which is widely expressed in the anterior pituitary, but also in the hippocampus, PVN and amygdala. 

CRH and AVP act synergistically at the pituitary to stimulate release of adrenocorticotropic hormone 

(ACTH), that stimulates the adrenals to produce and release corticosteroids such as cortisol (humans) 

and corticosterone (rodents). Dessensitisation of corticosteroid receptors leads to impaired 

neurotransmitter alterations (e.g. 5-HT, NA, DA) in corticolimbic structures. Activation of this 

pathways affect immune and gastrointestinal system. Figure taken from (Dinan and Cryan, 2013).  

 

Glucocorticoids can bind to high-affinity mineralocorticoid receptors (MRs) and lower 

affinity glucocorticoid receptors (GRs). GRs are ubiquitously expressed throughout 

the brain and periphery, and are richly represented in the limbic system and at all levels 
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of the HPA axis. MR expression, however, is mainly confined to the limbic regions, 

with highest expression levels found in the hippocampus. The effects of 

glucocorticoids within the brain depends on the MR: GR balance (Joëls and de Kloet, 

2017). The most well-described mechanism of action of glucocorticoid receptors is 

through the induction or repression of gene transcription, which occurs within the 

nucleus. Importantly, glucocorticoids also modulate HPA axis activity via negative 

feedback; glucocorticoids on receptors within the HPA axis to inhibit further release 

of ACTH and CRH release within minutes. This rapid feedback control does not 

depend on gene transcription, and is believed to be mediated through non-genomic 

actions of glucocorticoid receptors located within the membrane (Herman et al., 2012). 

Indeed, glucocorticoids were shown to act through G-protein-coupled membrane 

receptors, rapidly modifying neuronal function and behaviour (Orchinik et al., 1991). 

However, the underlying mechanisms of GR fast feedback are yet to be fully 

understood Additional evidence suggests that some limbic regions, such as the 

hippocampus and prefrontal cortex are also involved in dampening of the HPA axis 

response, whereas others, such as the amygdala enhance HPA axis activity (Phillips 

and LeDoux, 1992).  

Proper basal and stress-induced function of the HPA axis is of critical importance to 

an organism's health, and alterations in its circuitry and connectivity underlie 

emotional expressions of fear and aggression, cognitive performance, motivation, 

reward and aversion (Joëls and de Kloet, 2017). Indeed, dysfunctional HPA axis 

function has been associated with a higher risk of two of the most common mental 

disorders: depression and anxiety, which are often considered stress-related disorders 

(Lopez-Duran et al., 2009). For instance, patients with major depressive disorder 

(MDD) are often reported to have elevated basal plasma cortisol and ACTH, whereas 

successful antidepressant treatment is associated with the resolution of impaired HPA 

axis negative feedback through normalisation of glucocorticoids receptor in the brain 

(Pariante, 2004). Moreover, a dysfunctional HPA axis is demonstrated to play a role 

in the onset of anxiety (Faravelli et al., 2012). A modest, but significantly elevated 1 

h cortisol awakening response has been observed in anxious patients, especially in 

individuals with comorbid depression (Vreeburg et al., 2010). Stress and stress-

related syndromes are complex and heterogeneous. Therefore, both diagnosis and 

treatment depend on taking individual behavioural, physiological or neurochemical 
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changes, rather than the entire phenotype into consideration. The study of these 

features in both humans and translational animal models can provide a more clear 

understanding of stress neuropathology, potentially enabling more effective 

therapies (Cryan and Holmes, 2005). 

 Laboratory-based Human Psychological Stress Procedures 

As described in the previous section, psychological stress may change the internal 

homeostatic state of an individual. Mason (1968) described three main psychological 

determinants that induce stress responses in humans: a novel situation and/or 

unpredictability, lack of control, and threat to the ego (Mason, 1968). Although these 

determinants were further debated by Seyle, studies confirmed that these 

psychological factors are very specific to stress situations and are quantifiable. Stress 

can be measured in humans through psychological questionnaires (i.g. perceived stress 

scale (PSS)); physiological measures (i.g. cortisol can be measured in blood or saliva); 

autonomic measures (blood pressure, vagal tone, salivary alpha-amylase) (Cozma et 

al., 2017). Relevant psychological stress measurements and test procedures used in 

this thesis are discussed in the next two sections. 

 Perceived Stress Scale  

The PSS is the most widely used psychological instrument for measuring individual 

perception of stress. It has been described by Cohen et al. as “a measure of the degree 

to which situations in one’s life are appraised as stressful” (Cohen et al., 1983). The 

PSS consists of a questionnaire that evaluates the degree to which an individual has 

perceived life as unpredictable, uncontrollable and overwhelming, and how often they 

have felt so during the previous month. The PSS also assesses the degree to which 

external demands seem to exceed the individual's perceived ability to cope (Nielsen et 

al., 2016). 

 Higher levels of psychological stress as measured by the PSS correlate with elevated 

physiological markers including elevated cortisol, biological ageing, and suppressed 

immune function, resulting in greater susceptibility to infectious disease and slower 

wound healing (Ebrecht et al., 2004). The questionnaire generic in nature and can be 
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applied to any sub-population. More recently, research from our laboratory has utilised 

the PSS and other tests to investigate psychological aspects of the microbiota-gut-brain 

axis (Allen et al., 2016, 2017a; Kennedy et al., 2017).  

 The Trier Social Stress Test  

The trier social stress test (TSST) is an acute stress protocol established at the 

University of Trier and first outlined in the early nineties (Kirschbaum et al., 1993). It 

has been extensively used in research that aims to investigate the neuroendocrine or 

psychological effects of stress, as well as in research on how specific factors (such as 

existing psychiatric disorders or gender differences) can contribute the stress response 

(Kirschbaum et al., 1995). The TSST combines many salient psychological stressors: 

public speaking, mental arithmetic, anticipation, social evaluation. Interestingly, 

studies employing the TSST demonstrate consistent and robust effects on HPA axis 

responses, with measures of cortisol and ACTH being the most frequently studied 

(Allen et al., 2017a). Furthermore, the TSST was also demonstrated to induce 

alterations in peripheral inflammatory markers such as cytokines, in addition to 

changes in lymphocytes, monocytes, neutrophils, basophils and T cells, T-helper cells 

and natural killer cells. The TSST protocol can be modified to include repeated 

measurements (e.g pre and post-stress and pre and post-treatment). In this way, the 

same participants are exposed to the TSST on more than one occasion (Allen et al., 

2017b). 

This methodological procedure has been applied in recent studies characterise the 

stress responses of IBS patients (Suárez-Hitz et al., 2012; Sugaya et al., 2012). 

Recently, a more comprehensive study used the TSST to investigate the 

neuroendocrine, immunological and self-reported stress and mood in female patients 

with IBS. The result of this study indicated a prolonged HPA axis response to acute 

psychosocial stress, suggesting impaired negative feedback, in addition to an increase 

in self-reported GI symptomatology indicating a possible use for the TSST on research 

investigating novel therapeutic approaches in IBS (Kennedy et al., 2014). 
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 Modeling and Testing Stress-related Disorders in Laboratory 

Animals  

Charles Darwin emphasised that “the difference between the mind of the lowest man 

and that of the highest animal is immense” in The Descent of Man (1871). 

Nevertheless, he also observed that the expression of emotion in humans and other 

mammals is phylogenetically preserved: “... the young and the old of widely different 

races, both with man and animals, express the same state of mind by the same 

movements...” (Darwin, 1871). These assumptions have brought evolutionary theory 

close to the basis of the behavioural neuroscience (Campos et al., 2013; Cryan and 

Holmes, 2005). 

Given that understanding emotional disorders in the clinical context has practical and 

ethical limitations, animal models and tests that recapitulate some aspects of the 

human emotional condition by correlating the physiological and behavioural changes 

associated with specific emotional states (face validity), the aetiology of diseases 

(construct validity), and responses to pharmacological treatments (predictive validity) 

(Cryan and Sweeney, 2011; Nestler and Hyman, 2010; Slattery and Cryan, 2017; 

Willner, 1984). However, in light of the differences in cognitive function between 

humans and animals, some aspects of the human symptomatology associated with 

stress are more complex and cannot be entirely modelled in animals (i.g. the feelings 

of worthlessness, suicidal ideation and low self-esteem are impossible to model in 

rodents) (Cryan and Holmes, 2005). 

The majority of the stress tests evaluate behavioural and phsyiological responses 

induced by exposing the experimental animals to a new environment, which evokes 

both fear and curiosity, known as an approach-avoidance conflict. Others expose the 

animals to an inescapable situation leading to physical and psychological stress. 

Various stress stimuli can be applied in studies involving experimental models of 

stress-related disorders. The animal’s response to stress depends on the state and 

conditions as well the nature of the stressor itself (e.g. duration, severity and 

predictability) (Campos et al., 2013). 
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Animal models of stress-related disorders and stress tests have different concepts: 

an animal model involves both a manipulation and a readout, whereas the test only 

focus on the measurement readout (Slattery and Cryan, 2017). Some of the most 

common behavioural tests used to assess stress responsivitiy include the forced-

swim test (FST); tail suspension test, elevated-plus maze (EPM); sucrose preference 

test and marble-burying (MB). Animal models of stress and stress tests have been 

extensively reviewed elsewhere (Cryan and Sweeney, 2011; Nestler and Hyman, 

2010; Slattery and Cryan, 2017). The following sections will focus on the 

behavioural tests that employed in this thesis (Figure 1.7).  

 

Figure 1.7- Stress-related behavioural paradigms applied in this thesis. 

a) Open-field. b) Elevated-plus maze. c) Forced swim test. d) Marble burying 

 

 Forced-swim Test  

Immobilization models produce an inescapable physical and psychological stress with 

a low rate of adaptation. One of the most widely used immobilisation models is the 

model of stress coping and helplessness, the FST, or despair test, developed by Porsolt 

and colleagues (Porsolt et al., 1977). This test is based on the observation that rodents 

placed in an enclosed (inescapable) cylinder filled with tepid water will initially 

engage in vigorous escape-orientated movements, subsequently followed by 
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increasing bouts of immobility. This animal model is one of the most frequently used 

behavioural paradigms and was initially developed for the screening of antidepressant 

therapies. Indeed, the pre-administration of antidepressants reverses the immobility 

phenotype in rodents (Cryan and Holmes, 2005). In addition to attenuating FST-

induced immobility, specific antidepressants have also been demonstrated to recover 

HPA axis response in rats (Connor et al., 2000). Other immobilisation tests include 

the tail-suspension test, foot shock stress and restraint stress. Moreover, after 

immobilisation stress, animals exhibit higher levels of anxiety in the elevated plus-

maze (EPM) and other anxiety-related tests (Campos et al., 2013). 

 Elevated Plus-maze  

The EPM is possibly the most frequently used test of anxiety-like behaviour, initially 

developed by Handley and Mithani (Handley and Mithani, 1984) and further validated 

by (File et al., 1990). The EPM is named as such because the raised apparatus consists 

of 4 arms that form a cross or ‘plus’ shape, with 2 “open arms,” facing each other, and 

2 closed arms facing each other. Closed arms have walls, whereas open arms do not. 

In the centre of the plus maze is a centre square, which separates the arms. This test is 

based on rodents’ natural avoidance of open spaces and the conflict between this 

aversion and motivation to explore a novel environment. 

The number of entries into, and duration of time spent in the open versus closed arms 

is used as a measure of anxiety-like traits. Additional ethological measures such as 

rearing, stretch- attend postures, and head dipping, behaviours associated with risk 

assessment, can also be quantified . Some studies also suggest that the number of 

entrances into the enclosed arm can be used as a measure of locomotor activity 

(Albrechet-Souza and Brandão, 2010). 

The EPM permits rapid screening of anxiety-modulating agents with some distinct 

advantages over other more complex paradigms that require food restriction, water 

deprivation or shock administration. However, elevated-plus maze outcomes are 

sensitive to variations and influenced by a series of factors including age, sex, strain, 

illumination, handling, housing conditions and time of testing (Campos et al., 2013).  
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 Open-field 

The open field test was originally designed to evaluate locomotor activity, and consists 

of placing an animal in an unknown environment with surrounding walls. However, it 

has been further adapted to include measures of anxiety and stress reactivity to a novel 

environment (Ennaceur and Chazot, 2016). Animals that exhibit higher trait anxiety 

tend to stay on the periphery of the test arena and avoid the central zone, known as 

thigmotaxis. They often defecate and urinate more during the test session. To generate 

a more aversive environment, a bright light can be applied. Bright light exacerbates 

fear in the novel environment as rodents feel more vulnerable to predators in brightly 

lit, open environments (Godsil et al., 2005).  

 Marble-burying Test  

Rodents often engage in a large number of natural behaviours such as repetitive 

behaviour including grooming and digging, however under stress situations these can 

be exhacerbated (Deacon, 2006). Repetitive behaviours are characteristic of some 

human psychiatric condition like obsessive-compulsive disorder (OCD) and ASD. The 

marble-burying test is a robust and sensitive test for detection of repetitive and anxiety-

like behaviours (Angoa-Pérez et al., 2013). Rodents trend manifest neophobia, avoid 

new objects by burying them. This behaviour is responsive to pharmacological 

treatments, and is attenuated by low doses of benzodiazepines drugs and by 5-HT 

reuptake inhibitors (SSRIs), which are often prescribed for anxiety, depression or 

OCD (Borsini et al., 2002). However, whether marble burying test is an anxiety is 

not without controversy (Albelda and Joel, 2012; Deacon, 2006); in one of the first 

publications on the marble burying test, the authors specifically state that “marble 

burying may be a correlational model for detection of anxiolytics rather than an 

isomorphic model of anxiety” (Njung’e and Handley, 1991). 
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 Early-life Programming of HPA Axis Function and Stress 

Response 

Although there is great variation among species in the development of the HPA axis, 

in most mammals, development begins prenatally and continues postnatally. In utero 

development of the HPA axis and the corresponding increase in circulating foetal 

corticosterone/cortisol, and increased maternal production of prostaglandin, 

contributes to initiation of the birth process (Challis et al., 2001; Howland et al., 2017). 

In humans, basal cortisol levels decrease gradually throughout the first year of life and 

early childhood. From mid-childhood and adolescence, the cortisol circadian rhythm 

is established. HPA axis development is subject to programming by early life events 

(van Bodegom et al., 2017) and perturbations during critical periods of HPA axis 

development can have lasting effects on behavioural and emotional regulatory 

systems. This can, in turn, influence susceptibility to stress-related disorders which 

may extend to future generations (Bale, 2015; Golubeva et al., 2015; Jašarević et al., 

2015a). 

An emerging perspective is that the gut microbiome influences the development and 

regulation of the HPA axis, participating in the early-life programming of the 

neuroendocrine stress response system (Foster et al., 2017). In 1974, Tannock and 

Savage reported alterations in gut microbiota composition, and Lactobacillus spp., in 

particular, of mice exposed to a cage lacking bedding, food and water (Tannock and 

Savage, 1974). The relationship between stress and microbiota has since been 

investigated using gnotobiotic mice and various models of early-life stress (Sudo et 

al., 2004). The first strong evidence that exposure to stressors can impact the gut 

microbiota came from studies demonstrating significantly reduced Lactobacillus spp. 

populations in the gut microbiota of rhesus monkeys (Macaca mulatta) experiencing 

maternal separation early in life. Interestingly, these alterations in the gut microbiota 

profile correlated with stress-related behaviours (Bailey, 1999). An important study 

by Sudo and colleagues (2004) demonstrated that GF mice have an exaggerated stress 

response to restraint. The authors demonstrated that postnatal microbiota colonisation 

with Bifidobacterium infantis, which is a representative inhabitant of the neonate gut, 

but not Bacteroides vulgatus, blunted this HPA axis hyperactivity. Our group has also 
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observed hyperactivity of the HPA axis in GF mice exposed to a mild stressor, and 

this effect is reversed by post-weaning colonisation of the GI tract (Clarke et al., 2013). 

These and other studies using GF mice highlight the importance of commensal bacteria 

for proper HPA axis development. Moreover, they also demonstrate that the reversal 

of HPA axis hyperactivity in GF mice can only occur when colonisation is performed 

early in life, suggesting that there is a critical period when development is particularly 

vulnerable to microbiota-based manipulations.  

The importance of early-life microbial colonisation in programming of the HPA axis 

have also been demonstrated in the maternal separation model of early life stress. 

Maternal separation results in increased corticosterone plasma levels, increased 

systemic immune response to LPS stimulation, alters visceral pain sensitivity and 

gastrointestinal motility, and these changes occur in concert with changes in the faecal 

microbiota (O’Mahony et al., 2009). Importantly, treatment with Lactobacillus 

rhamnosus and Lactobacillus helveticus is able to reverse HPA axis hyperactivity 

associated with maternal separation (Cowan et al., 2016). Additional studies have 

supported the associations between gut microbiota and the HPA axis by demonstrating 

that stress exposure early in life (during prenatal and/or postnatal period) leads to long-

term effects on adult microbiota composition and priming of the HPA axis response 

(Bailey et al., 2011; Golubeva et al., 2015; Jašarević et al., 2015a; De Palma et al., 

2015).  

The logical question that arose from the finding that GF mice have abnormal 

microbiota development and HPA axis hypersensitivity, was whether the microbiota 

could also influence stress-related behaviours, such as anxiety and depression. 

Accordingly, Neufeld and colleagues (Neufeld et al., 2011) demonstrated a reduced 

baseline anxiety in female GF mice (Neufeld et al., 2011). Furthermore, independent 

studies reproduced this phenotype in both male and female GF mice (Clarke et al., 

2013; Diaz Heijtz et al., 2011). In line with this findings, microbial restoration was 

able to restore a “normal” anxiety phenotype in GF mice (Clarke et al., 2013). 

However, conflicting results for anxiety-like behaviour have also been reported 

(Bercik et al., 2011a). Although the finding that GF exhibit exaggerated HPA axis 

responses while engaging in fewer anxiety-like behaviours seems contradictory, it is 

evident that normal gut microbiota is required for proper functioning of the HPA axis 



 

45 

 

and typical behavioural phenotype (Luczynski et al., 2016a). Moreover, Bercik and 

colleagues (2011) utilised GF mice to determine whether transfer of the gut microbiota 

from one strain to another could also alter behavioural phenotype. To this end, they 

colonised GF male NIH Swiss mice (less anxious mouse strain) with microbiota from 

SPF Balb/C mice (more anxious mouse strain), and an increased anxiety-like 

behaviour was observed (Bercik et al., 2011b).  

The influence of gut microbiota on anxiety- and depressive-like behavioural 

phenotypes have been further demonstrated. For example, treatment with L. 

rhamnosus decreases anxiety-like and depressive-like behaviours (Bravo et al., 2011). 

Recently, a study from our laboratory has further documented the association between 

depression, anxiety and alterations in the gut microbiota by demonstrating that FMT 

from depressed patients to microbiota-depleted rats increased depression and anxiety-

like behaviours when compared to rats that received microbiota from control donors 

(Kelly et al., 2016).  

 Gut Microbiota Coordinates Neuroendocrine-immune 

Interactions  

As described in the previous section, exposure to physical and psychological stress 

results in activation of the HPA axis and the neuroendocrine system. Stress is also 

associated with gastrointestinal disorders that involve activation of both immune cells 

and the CNS, such as IBS and IBD (Kraneveld et al., 2008). The neuroimmune system 

may mediate the interaction between gut microbiota and neuroendocrine responses 

(Rea et al., 2016). In fact, neuroimmune interactions have long been described and can 

occur by afferent and efferent pathways. Both innate and adaptive activation of the 

immune system can result in the release of inflammatory mediators, such as cytokines 

and chemokines, which can in turn modulate CNS activity (Kraneveld et al., 2008). 

Additional inflammatory signals may also activate the local immune system including 

microglia, which are a source of inflammatory cytokines and chemokines, including 

monocyte chemoattractant protein 1 (MCP-1 ) (Rook et al., 2011). In turn, MCP-1 can 

recruit monocytes into the brain under the stimulus of LPS or TNFα (Deshmane et al., 

2009). Interestingly, glucocorticoid receptors are highly expressed on microglia 
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throughout the brain (Bellavance and Rivest, 2014), supporting the hypothesised role 

of microglia in facilitating HPA axis and neuroimmune communication. Microglia 

activation and the release of inflammatory mediators has been implicated in 

behavioural changes observed in stress-related disorders (Blandino et al., 2013). 

Moreover, neuroendocrine hormones are demonstrated to modulate lymphocyte-

derived neuropeptides and neurotransmitters production which will, in turn, modulate 

sensory perception (Kraneveld et al., 2008). Given that the gut microbiota is involved 

in the activation of the HPA axis by stress and inflammation, the gut microbiota 

may play an integral role in governing the neuro-immune-endocrine network (Error! 

Reference source not found.).  

 

Figure 1.8- Schematic representation of immune system, Hypothamic-pituitary-adrenal (HPA) axis 

and microbiota interplay.  

The possible mechanisms of interaction between CNS and the gut include activation of the vagus nerve, 

release of inflammatory mediators, neuropeptides and neurotransmitters, microbial-derived metabolites 

such as short-chain-fatty acids (SCFAs), and through lymphatic and systemic circulation. These signals 

can cross the blood brain barrier and influence the maturation and activation of microglia. Once 

activated, microglia cells exert its function on protection, synaptic pruning and clearance. The release 

of glucocorticoids, through activation of the HPA axis, can influence microglia and influence cytokine 

release and trafficking of monocytes from the periphery to the brain. BDNF Brain derived neurotrophic 

factor; LTP Long term potentiation; BBB Bloodbrain barrier; GC Glucocorticoids; GR Glucocorticoid 

receptor; FFAR Free fatty acid receptor; SCFA Short chain fatty acid; NP Neuropeptide; NT 

Neurotransmitter; DC Dendritic cell; EEC Enteroendocrine cell. Figure taken from Rea et al., 2016. 
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1.5 Microbiota-gut Brain Axis and Neurodevelopment 

 Neurodevelopment 

Comparative developmental studies show that brain maturation occurs differently 

across altricial (early) and precocial (late) birth timing (rodent versus humans) 

(Workman et al., 2013). However, predictive models demonstrate that the sequence 

of major neuroembryological events (neurogenesis, axon extension, synaptogenesis, 

and axonal sorting, brain growth, and early behavioural development) follows the 

same order across many of the mammalian species (including rodents and humans) 

(Workman et al., 2013). Therefore, although there are important differences in the 

development of the neuroanatomical structures in rodents and humans, analogous 

structures can be identified and the ontogeny of specific behaviours is useful for 

understanding the process of brain maturation in this both species (Cryan and Holmes, 

2005).  

The first major neurodevelopmental event occurs during embryogenesis, specifically 

during neurulation, which refers to the formation of the neural tube at 3-4 weeks of 

gestation in humans. The cortex also starts to develop in utero and continues through 

approximately 2.5 years of life (Borre et al., 2014). Moreover, the peak of 

hippocampus neurogenesis is at 8–9 weeks of gestation, but the process continues 

postnatally. However, primate hippocampal neurogenesis was recently demonstrated 

to decrease rapidly following the first year of life, and is considered to be extremely 

rare in adult humans (Sorrells et al., 2018). In humans, the formation of functional 

synapses starts in the late gestational period and continues to develop into early 

infancy (Meredith et al., 2012). Synapse maturation continues into adolescence, 

stabilising in adulthood (Borre et al., 2014). Although the neurobiological mechanisms 

underlying development of brain function and behaviour remains to be fully 

understood, it is clear is that childhood and adolescence are critical periods, which are 

particularly vulnerable to insult, due to the dynamic changes in neuronal organisation 

(O’ Mahony et al., 2015). Thus, perturbations of this process by perinatal factors, 

which may include as alterations in microbiota, can have drastic programming effects, 

contributing to the etiology of neurodevelopmental disorders (Kelly et al., 2017).  
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The use of animal models of neurodevelopmental disorders and/or early-life 

perturbations are of great value for understanding the mechanisms involved in long-

term programming of brain development and function (Bale et al., 2010). The 

abnormal behavioural phenotypes observed in neurodevelopmental disorders are most 

likely due to “miswiring” during critical neurodevelopmental windows. Underlying 

mechanisms may include dysregulation of gene expression (i.e. epigenetic pathways), 

altered neurocircuitry, changes in the overall input and output of structures, changes 

in neurotrophic factors (Meredith et al., 2012). Therefore it is imperative to identify 

the common factors that may influence disease predisposition. 

 Interactions During Critical Developmental Windows  

Interestingly, the rapid changes in organisation of the microbiome during the first 

years of life occurs in parallel with maturation of the neuroimmune and 

neuroendocrine systems, and development of corticolimbic structures, all of which 

play critical roles in stress sensitivity and vulnerability. Perturbations of any of these 

components may induce permanent changes that have lasting effects on stress 

susceptibility and mental health later in life. In fact, the period from early postnatal 

period through adolescence is critical for the development of the microbiota-gut-brain 

axis (Figure 1.9). Although the temporal overlap between organisation of the gut 

microbiota and neurodevelopment is very clear, the nature of their relationship and 

possible interaction remains to be elucidated. Addressing the potential mechanisms by 

which the developing gut microbiota and nervous system interact opens new avenues 

for the creation of novel microbiota-modulating interventions in early life for the 

treatments of neurodevelopmental and stress-related disorders.  
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Figure 1.9- Developmental windows for the gut microbiota and central nervous system 

Temporal profile of microbiome complexity and diversity throghout the lifespan occuring in parallalel 

to synaptic plasticity and neuronal growth. Early-life and adolescence are critical periods with dynamic 

period for both processes and windows of oportunity for microbiota-gut-brain manipulation.  

 

 The Gut Microbiota is Crucial for Development of Social 

Behaviour 

One of the most consistent and surprising findings in the field of microbiota-gut-brain 

research is the that microbial communities can influence social organization and 

behaviour (Archie and Tung, 2015). The fundamental hypothesis for this association 

is based on research suggesting that the established symbiosis between host and 

microorganisms affects social recognition, partner selection and formation of social 

bonds and structure (Archie and Theis, 2011). Conversely, the microbial community 

can be strongly influenced by social relationships (Shawkey et al., 2007). Moreover, 

social interactions confer advantages to the host, by increasing species fitness, while 

at the same time increasing contact with symbiotic bacteria. The microbes acquired by 
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these interactions can be transmitted transgeneratioally, influencing evolutionary costs 

and species fitness (Stilling et al., 2014).  

The influence of social relationships on the gut microbiome are illustrated by the 

transmission of microbes by co-housing/co-residency as described in section 1.2.4.4. 

Moreover, there is additional, robust evidence of this effect from research involving 

numerous species, including invertebrates, rodents and non-human primates (Archie 

and Tung, 2015). For instance, in newly emerged adult bumblebees, microbial transfer 

with nestmates’ faeces is essential for seeding of the gut microbiome. This confers 

protection against parasite infection and mediates queen fertility (Koch and Schmid-

Hempel, 2011). Moreover, changes within the social hierarchy of baboons results in  

alterations to both taxonomic structure of the gut microbiome and the structure of 

genes encoded by the microbiome (Tung et al., 2015). Negative social experiences can 

also affect composition of the gut microbiome following chronic unpredictable social 

stress in rodents, resulting in a reduced relative abundance 

of Bifidobacteriaceae and Coriobacteriaceae and concomitant increases in 

Propionibacteriaceae (Burokas et al., 2017). 

The influence of gut microbiota on social behaviour is clearly evident in GF mice, 

although the effects are not always universal. In one study of GF mice, which lack gut 

microbiota, sociability and preference for social novelty was reduced, akin to deficits 

in social cognition that are present in ASD (Desbonnet et al., 2014). These behavioural 

abnormalities were then reversed during adolescence by colonisation of the gut with 

microbiota from SPF control mice (Desbonnet et al., 2014). However, using a similar 

approach, another group reported that the absence of gut microbiota mice resulted in 

an increase in social investigation when compared to SPF mice (Arentsen et al., 2015). 

Decreased social investigation was also observed in GF rats, reinforcing this 

connection (Crumeyrolle-Arias et al., 2014). Recently, a causal role for the microbiota 

on regulating social behaviour was demonstrated in a MHFD model of ASD where 

social deficits were reversed either by microbial reconstitution by co-housing or by 

administration of L. reuteri (Buffington et al., 2016). 
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 Autism Spectrum Disorders  

ASDs are a group of neurodevelopmental disorders that manifest in early childhood 

(Lenroot and Yeung 2013). ASD impacts one in every 68 children and its estimated 

prevalence is higher amongst boys (23.6 per 1,000) than girls (5.3 per 1,000) at 

8 years of age (Christensen, Baio et al. 2016). Symptoms are often heterogeneous, 

changing over time, but are currently characterised by three fundamental domains: 

social communication, social interaction and repetitive behavioural patterns (Lenroot 

and Yeung 2013).  

In addition to the core symptoms, ASDs often manifest with several psychiatric 

comorbidities (Plummer et al., 2016). It is estimated that between 37 and 78% of 

children with ASD also meet criteria for Attention Deficit and Hyperactivity Disorder 

(Leitner 2014), up to 30% are diagnosed with mood disorders and 56% are experience 

anxiety disorders (Brookman-Frazee, Stadnick et al. 2017). Other symptoms that often 

present in conjunction with ASDs include cognitive impairments, seizures, sleep 

disorders, and gastrointestinal dysfunction (Nadeau, Sulkowski et al. 2011, Clarke, 

Lupton et al. 2016, Nithianantharajah, Balasuriya et al. 2017).  

Although research on the neuropathology of ASDs highlight the heterogeneous nature 

of the spectrum, some common neuroanatomical features are defined (Abrahams and 

Geschwind 2010). Some of the most consistent neuroanatomical changes across ASD 

studies are the presence of aberrant neuronal migration patterns and alterations in 

cortical mini-column architecture, within the frontal and temporal lobes (Opris and 

Casanova 2014, Reiner, Karzbrun et al. 2016). These abnormalities may affect the 

integration of neuronal processing across cortical layers (Ecker, Ronan et al. 2013, 

Opris and Casanova 2014). Other common neuropathological features are accelerated 

postnatal growth in specific regions of the brain including frontal and temporal cortex, 

cerebellum, and amygdala (Carper and Courchesne 2005). Alterations in the amygdala 

have long been reported in ASD, with reductions in volume and the number of neurons 

within the lateral nucleus among them (Baron-Cohen, Ring et al. 2000). Additional 

neuroanatomical changes have been reported in other brain areas, including the 

Purkinje cells of the cerebellum and lower grey matter volume in the hypothalamus. 

Importantly, the hypothalamus synthesises the hormones oxytocin (OXT) and 
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vasopressin (AVP), which have been also associated with alterations in behaviour and 

neuroendocrine function observed in ASD (Hernandez et al., 2017).  

Although the etiopathology of ASD is complex and has not been fully elucidated, 

several studies support the hypothesis that ASD is a multifactorial hereditary disorder 

which includes genetic factors, environmental factors, and gene × environment 

interactions (Tordjman et al., 2014). More recently, a new hypothesis has emerged that 

implicates the gut microbiota, inflammation, infection, auto-immune disorders, 

environmental insults and genetic predisposition as triggers for neurodevelopmental 

disorders (Hsiao, 2014). 

  Genetic factors 

Several lines of evidence support genetics as a major factor contributing to the 

development of ASDs (Abrahams and Geschwind 2008). Three main methodologies 

have been applied to assess this relationship: (1) twin studies, comparing monozygotic 

twins and dizogotic twins; (2) family studies that evaluate the rate of autism in first 

degree relatives in comparison with rates in the general population; and (3) research 

that focuses on rare genetic syndromes with comorbid ASD (Geschwind 2011). Meta-

analyses from twin-studies have identified a concordance rate of 98% among 

monozygotic twins, and 53% among dizygotic twins (Tick et al., 2016). Family studies 

have also revealed that first-degree relatives of ASD children exhibit a higher 

prevalence of behavioural or cognitive autistic-like features, in comparison with the 

general population (Losh et al., 2009). Some individuals carrying rare genetic 

conditions also manifest autistic-like features. For example, dozens of genetic 

syndromes including Smith-Lemli-Opitz and Joubert Syndromes, Tuberous Sclerosis, 

and Fragile X Syndrome lead to autism, although many with less than 50% penetrance. 

However, these conditions are considered rare cases, and account for less than 1% of 

ASD cases (Geschwind 2011).  

Investigation into the genetic basis of ASDs has been enhanced by the development 

of cytogenetic studies, microarray analyses of single-nucleotide polymorphisms 

(SNPs), genome-wide association studies (GWAS), and the assessment of a priori-

selected candidate genes known to affect brain development or implicated in 
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pathogenesis (e.g. NLGN4, NRXN1, SHANK3, MET) (Eagleson et al., 2011; De Rubeis 

et al., 2014). A large whole-exome sequencing (WES) study, analysing 16 sample 

sets comprising 15,480 DNA samples, has identified that gene variants associated 

with ASD risk disrupt three critical developmental pathways: chromatin remodeling, 

transcription and splicing, and synaptic function (De Rubeis et al., 2014). Collectively, 

individual genes account for 10 to 15% of cases, and variants of these and other loci 

are reported in 2% of children affected by ASD (Abrahams and Geschwind 2010). 

Due to the extensive variability in the spectrum, ASD is finally gaining recognition as 

a polygenic disorder with different genes implicated with each subtype of autism 

(Tordjman et al., 2014). 

 Environmental factors 

Given that genetics can only explain 10-15% of ASD cases, and that a high number of 

genetic disorders with epigenetic etiologies present with ASD, it has been proposed 

that environmental factors are required to trigger the onset of disease (Sealey et al., 

2016; Tordjman et al., 2014). One strong possibility is that the origins of ASD are 

based on events that occur during the critical prenatal and/or early postnatal periods 

when the brain is most vulnerable to environmental insults (Dietert, 2011). Several 

environmental factors have been associated with a higher risk of neurodevelopmental 

disorders, including: maternal infections during pregnancy (Patterson 2002, Meyer 

2014, Estes and McAllister 2016), advanced parental age (Durkin, Maenner et al. 

2008, Sandin, Schendel et al. 2016), complications of pregnancy and birth such as 

gestational diabetes (Xiang et al., 2015), the use of antibiotics during pregnancy 

(Kraneveld et al., 2016) and low birth weight (Schendel and Bhasin 2008). In addition 

to these, excessive hygiene practices have been linked to higher rates of ASDs 

(Becker, 2007). Birth by caesearean section (C-section) has also been associated with 

an increase in ASD rates; however, this was later determined to be due to familial 

confounds (Curran et al., 2015a, 2015b, 2016c). Exposure to prenatal and perinatal 

stress (Kinney, Munir et al. 2008), maternal exposure to valproate (de Theije et al., 

2014) and to certain dietary constituents (Grabrucker 2012) are also linked to ASD. 

Although very speculative, a growing body of literature links ASDs to gastrointestinal 

dysfunction, and alterations in gut microbiota composition and diversity. These 
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findings support the importance of the gut microbiota in early-life neurodevelopment 

(Hsiao et al.2013; Kranaveld et al., 2016).  

 Gastrointestinal Dysfunction and Microbiota Alterations in 

Autism  

ASD patients commonly report gastrointestinal symptoms (including diarrhoea, 

constipation, abdominal pain, alterations in barrier function, and/or bloating), which 

often correlate with the severity of the core sympthoms (Chaidez et al., 2014). For 

example, the presence of gastrointestinal symptoms is associated with more severe 

communication deficits (Gorrindo et al., 2012). These GI symptoms in ASD are 

reported to significantly affect quality of life (Buie et al., 2010). The prevalence of 

gastrointestinal symptoms in ASD varies from 9-90% (Hsiao, 2014). Although 

associated gastrointestinal symptoms are well-described, research on microbiota 

alterations are limited, and data from meta-analyses studies are inconclusive. Despite 

this, studies employing techniques such as bacterial culture of stool samples, qPCR, 

16S rRNA gene sequencing and fluorescent in situ hybridization (FISH), consistently 

demonstrate increased Clostridium spp. in individuals with ASD. Other shifts in 

microbial composition include elevated Desulfovibrio and altered 

Bacteriodetes/Firmicutes ratio (Kraneveld et al., 2016). 

Most recently, GI dysfunction and microbiota alterations have been demonstrated to 

have considerable impact on ASD pathogenesis. For instance, mice exposed to 

valproate in utero exhibit alterations in the phyla Bacteroidetes and Firmicutes and the 

order of Desulfovibrionales, similar to what is observed in the human condition (de 

Theije et al., 2014). Interestingly, these changes were accompanied by increased levels 

of the bacterial metabolite butyrate, ileal inflammation, decreased levels of intestinal 

5-HT and deficits in social behaviours (de Theije et al., 2014). Altered composition of 

the gut microbiota and several of its bacterial metabolites have also been observed in 

the polyinosinic-polycytidylic acid (poly (I:C)) rodent model of ASDs and are 

associated with gut barrier dysfunction and impairments in social behaviour (Hsiao et 

al., 2013). Interestingly, the injection of 4-ethylphenylsulfate, a bacterial-derived 

metabolite, is sufficient to induce anxiety-like behaviour in mice (Hsiao et al., 2013). 
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Moreover, the administration of large amounts of propionic acid, a SCFA, has been 

associated with an autistic-like phenotype in rodents (MacFabe, 2012). Interestingly, 

propionic acid is a fermentation product produced by Clostridia, Bacteroidetes and 

Desulfovibrio (MacFabe, 2012). In line with these findings, the presence of certain gut 

microbial communities that promote a pro-inflammatory status, particularly excessive 

TH17 cell stimulation, has been implicated with ASD in the Poly (I:C) animal model 

(Kim et al., 2017). Recently, a reduction in the relative abundance of Bifidobacterium 

and Blautia microbial species was associated with deficient bile acid and tryptophan 

metabolism in the intestine and marked gastrointestinal dysfunction in a BTBR 

T+Itpr3tf/J mouse model of ASD (Golubeva et al., 2017) (Figure 1.10). 

 

Figure 1.10- Microbiota-gut brain axis and autism spectrum disorders. 

Potential mechanisms mediating the role of the microbiota-gut-brain axis in autism include 

neuroimmuno-endocrine interactions. BBB, blood brain barrier; LPS, lipopolysaccharide; EEC, 

enterochromaffin epithelial cell; IEC, intestinal epithelial cells; MC, mast cell; DC, dendritic cell; TNF, 

tumor necrosis factor; NGF, nerve growth factor. Figure taken from Kraneveld et al., 2016. 
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 Maternal Immune Activation and the Risk for 

Neurodevelopmental Disorders 

Over 50 years ago, the reported rates of ASDs and Schizophrenia (SZ) increased from 

less than 1% to approximately 13 and 20%, respectively, following congenital rubella 

infection (Meltzer and Van de Water, 2017; Patterson, 2002). Subsequent studies 

including prospective analyses reported an increase in SZ, ASD and mood disorders 

following bouts of flu, measles, mumps, chickenpox, and polio (Reisinger et al., 2015). 

Gestational exposure to other viruses such as the Herpes simplex virus and the 

parasites like Toxoplasma gondii have also been linked to development of SZ (Brown, 

2006). More recently, the epidemic of Zika virus-induced microcephaly raised 

significant public health concerns as to the deleterious effects of maternal infection 

during pregnancy (Jurado et al., 2017). 

Mounting evidence implicates dysfunctional immune responses, inflammation, 

cytokine dysregulation, and anti-brain autoantibodies in ASD. Given the influence of 

the immune system on neurodevelopment, cognitive function, and behaviour (Onore 

et al., 2012), an important hypothesis has emerged relating to the timing of maternal 

immune stimulation and the appearance of neurodevelopmental disorders in offspring 

(Estes and McAllister, 2016). Moreover, abnormal immune response to environmental 

stimuli are also known to strongly impact ASD (Meltzer and Van de Water, 2017; 

Patrich et al., 2016). These associations are supported by evidence that activation of 

the maternal immune system is a common factor in various other neurodevelopmental 

disorders, including SZ and depression. Therefore, whether maternal immune 

activation (MIA) has a causal role in neurodevelopmental disorders in being 

investigated in animal models (Estes and McAllister, 2016; Meyer et al., 2007; Shi et 

al., 2003).  

 Animal Models of Maternal Immune Activation 

Maternal Immune Activation (MIA) has been studied in animal models by exposing 

the dam to a variety of immunogens during a specific periods of gestation and then 

characterising the alterations in brain and behaviour of offspring (Careaga et al., 2017). 
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One of the very first models of MIA used live influenza virus (H1N1) to recapitulate 

some of the epidemiological observations obtained following the influenza epidemic 

of 1957 (Fatemi et al., 2002). MIA on gestational day 9 in mice was demonstrated to 

induce both short- and long-term effects on offspring brain structure and development, 

including abnormal corticogenesis and alterations in pyramidal and non-pyramidal cell 

(Fatemi et al., 2002). Currently, the most commonly used models are based on the 

administration of immunogenic substances such as the bacterial endotoxin LPS which 

targets Toll-like receptor 4 (TLR-4) ,and poly- (I:C), the double-stranded RNA 

(dsRNA) analog, which acts on TLR-3 (Reisinger et al., 2015; Shi et al., 2003; Smith 

et al., 2007; Spencer and Meyer, 2017; Straley et al., 2017). These substances robustly 

stimulate the maternal immune system, and the production and release of many pro-

inflammatory mediators, including Interferon (IFN)-α and IFN-β, IL-1β, IL-6, and 

TNF-α (Meyer and Feldon, 2012). Although both substances produce these effects via 

different mechanisms, they both reproduce various aspects of psychiatric disorders, 

such as ASD, SZ and depression, in offspring (Reisinger et al., 2015). Models based 

on the administration of both LPS and poly (I:C) meet the three major criteria of 

validity for an appropriate animal model: they mimic a known disease-related risk 

factor (construct validity), they exhibit a wide range of disease-related symptoms (face 

validity), and they can be used to predict the efficacy of treatments (predictive validity) 

(Estes and McAllister, 2016). Given the limitations of current treatments and 

interventions for most neurodevelopmental conditions, the MIA model is an important 

tool for investigating novel therapies (Careaga et al., 2017) (Figure 1.11). 

 

Figure 1.11. Structure and function of brain regions impacted by poly(I:C)-induced maternal 

immune activation.  
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Abnormalities in the HPA axis commonly associated with depression-like behaviour in offspring after 

poly(I:C) MIA have been documented (Babri et al., 2013). Alterations in the mesolimbic pathway, 

projecting from the VTA to the NAc and the Amyg, related to schizophrenia, have been identified in 

offspring exposed to poly(I:C) MIA (Zuckerman et al., 2003). Prenatal poly(I:C) is reported to 

compromise the function of the SN and striatum (Deleidi et al., 2010). Abbreviations: HPA: 

hypothalamic pituitary adrenal, VTA: ventral tegmental area, NAc: nucleus accumbens, Amyg: 

amygdala, SN: substantia nigra, Hipp: hippocampus, PFC: prefrontal cortex, GABA: γ-aminobutyric 

acid, Poly(I:C): polyinosinic:polycytidylic acid, MIA: maternal immune activation. Figure and legend 

modified from Reisinger et al., 2015. 

1.6 Microbiota-gut Brain Axis and Social Behaviour  

 Social Behaviour 

Social interaction is essential for reproduction and survival for humans. However, the 

need for interaction is not exclusive to humans and it is manifested early in evolution 

of both invertebrates and vertebrates (Carter, 2014). In fact, different species use social 

behavior strategies in response to specific selective forces driven by their 

environments (Johnson and Young, 2017). Even prokaryotes use advanced 

cooperative motility behavior, as observed in Paenibacillus vortex, which confers 

adaptive value to the species by increasing its survival and replication (Ingham and 

Ben Jacob, 2008). Although common among many forms of life, social behaviour is 

likely to have multiple genetic and physiological origins and many neuronal 

substrates. Whether social tendency is governed by a common genetic core remains to 

be determined (Carter, 2014). 

The term “social neuroscience” was coined in the early 1990s to describe a research 

movement to understand the neural basis of social behaviour (Cacioppo et al., 2010).  

To study this connection, behavioural neuroscientists created a comprehensive set of 

behavioural assays for studying the neuronal basis of social behaviour and social-

related disorders. Although many of the behavioural tests were originally designed for 

rats, they have been successfully adapted to mouse models reproducing robust features 

of social-related disorders (Silverman et al., 2010a). The use of mice for studying 

social behaviour is of scientific value because they manifest many types of social 

behaviour such as social investigation of an unfamiliar conspecific, communal nesting, 

sleeping in group huddles, aggression directed towards intruders, sexual approach and 

https://www.sciencedirect.com/science/article/pii/S0163725815000029#bb0035
https://www.sciencedirect.com/science/article/pii/S0163725815000029#bb1200
https://www.sciencedirect.com/science/article/pii/S0163725815000029#bb0290
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mating behavior patterns, parental care of the pups and juvenile play (Crawley, 2007; 

Kaidanovich-Beilin et al., 2011). Specific assays applied in this thesis are described 

below and in the Figure 1.12.  

 Social Behavioural Tests  

 Pup Ultrasonic Vocalization (USV) 

Mounting evidence suggests that disruptions in brain development in early life can 

contribute to the prevalence and severity of ASD and other neurodevelopmental 

disorders. Thus, it is important that animal models that are used for studying 

neurodevelopmental disorders are behaviourally phenotyped during the 

developmental period. In this regard, USV is being used as a measure of early 

communicative behaviour and as an aversive affective measure of separation stress 

(Scattoni et al., 2009). Pup vocalizations are important cues for maternal orientation, 

approach and retrieval, thus influencing the quality of maternal care overall and can 

be quantitatively measured with minimum manipulation of the offspring (Nagasawa 

et al., 2012). The range frequencies of isolation-induced USVs in pups vary from 30 

kHz to 90 kHz, varying across strains and developmental age (Branchi et al., 2001). 

Usually, outbred pups elicit a higher number of USV calls around P8 and decreases to 

zero by two weeks. In contrast, C57Bl/6 strain pups exhibit lower calling rate and 

earlier profile peak around P3 (Scattoni et al., 2009). Although in this thesis we only 

focus on pup USVs, it is important to note that adult USVs can also be determined 

during the behavioural phenotyping of mouse models of human neurodevelopmental 

and neuropsychiatric disorders. 

 Homing Test (attachment) 

Attachment is a psychological construct reflecting a strong emotional bond between 

two individuals, such as mother and offspring (Porges, 2003). The homing test 

paradigm is an additional test to access social behavioural deficits in early-life. It is a 

measurement of neonatal social recognition, maternal attachment, and early 

motivation towards a relevant social stimulus (2011). Pups are given the choice 

between a familiar odour (their own mother’s nest) and a neutral odour (neutral 
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bedding or other mother nest). The test is conducted at the point of locomotive 

behavioural development when pups are able to coordinate their body movements 

towards the olfactory stimulus. As their eyes are still closed, their orientation towards 

the maternal nest occurs through olfactory system.  

 Three-chamber Test and Reciprocal Social Interaction Test 

The three-chamber test was originally proposed to evaluate social approach behaviors 

relevant to social disorders such as ASDs, social phobias and social anxiety, and 

schizophrenia (Moy et al., 2004; Nadler et al., 2004). It consists of a three-chambered 

apparatus where mice are given the choice between spending time in a chamber 

containing conspecific mice or an object, or in an empty compartment (Crawley et al 

2007). Rodent tendency to spend more time with another rodent as compared with an 

object or an empty compartment represents sociability. An important aspect of social 

behaviour that can also be investigated in the three-chamber test is the preference for 

social novelty. Normally, when rodents are given the choice between a novel and a 

familiar rodent, they would prefer to spend more time with a novel rodent than a 

familiar one. In addition, this part of the test incorporates aspects of cognition in the 

form of interest in social novelty (Kaidanovich-Beilin et al., 2011). Thus, animal 

models that intent to mimic social deficits present in ASD and other social-related 

disorders usually demonstrate a deficit in sociability and/or decreased preference for 

social novelty (Crawley, 2012).  

Sociability can also be investigated throughout other paradigm: the reciprocal social 

interaction test. This test was shown to be more sensitive for detecting deficits in social 

interaction in some peculiar cases where social approach is intact in animals that are 

expected to have sociability deficits (Kaidanovich-Beilin et al., 2011). The social 

interaction test offers the possibility to quantify different aspects of social behavioural 

traits such as nose-to-nose sniffing, anogenital sniffing, following the other mouse, 

initiating physical contact, and emitting ultrasonic vocalizations. Social interaction in 

juvenile mice has also been used as a readout of social withdrawal (Wilson et al., 2009) 

and social reward (Panksepp et al., 1984). 
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 Social Transmission of Food Preference 

The social transmission of food preference (STFP) is a social behaviour task that 

allows the investigation of social cognition components based on olfactory memory 

(Wrenn, 2004). In addition, the test is based on the principle that dietary information 

can be communicated between rodents during social interaction (Galef and Kennett, 

1987). Smelling a novel food odour on another rodent could indicate that this food is 

safe to eat. The test consists in letting the “observer” mice interact with a 

“demonstrator” mouse that has recently been exposed to a novel food. When observer 

mice are given the choice between the food eaten by the demonstrator and the novel 

food, observer mice prefer the food eaten by the demonstrator. Social transmission of 

food preference depends on the observer mice detecting olfactory cues during social 

interaction with the demonstrator. The preference for the cued food serves as a 

measure of social memory (Wrenn, 2004). 

 

Figure 1.12- Social behavioural paradigms applied in this thesis. 

a) Ultrasonic vocalization. b) Homing test (attachment). c) Three-chamber test. 

 

 Oxytocin and Vasopressin: Social Hormones 

Oxytocin (OXT) and its analogue, vasopressin (AVP), are nonapeptides that are 

present in all placental mammals (Van Kesteren et al., 1995). OXT was the first 

neurophypophysial hormone to have its structure described, and the first to be 

chemically synthetized in a biologically active form (Vigneaud et al., 1953). Its 

genomic structure was elucidated in 1984 (Ivell et al., 1986), and its sequence was 
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described in 1992  (Kimura et al., 1992). During evolution, OXT, AVP, and their 

homologues remained highly conserved across the animal kingdom and are present in 

mammals (as OXT and AVP), bony fish (as isotoicin and vasotocin), other non-

mammalian vertebrates (as mesotocin and vasotocin) and several invertebrates (as 

echinotocin, cephaloptocin, annetocin, annepressin, conopressin and inotocin) 

(Knobloch and Grinevich, 2014). Within the mammalian lineage these 2 peptides 

differ by a single amino acid, and both OXT and AVP genes are localized adjacent to 

one another on the same chromosome, but are oppositely transcribed (Feldman et al., 

2016). 

Interestingly, across species, OXT/AVP and their homologues play a critical role in 

adapting organisms to changes (Manning et al., 2012) that affect both behaviour and 

physiology (Feldman et al., 2016). OXT and AVP can modulate a wide range of 

biological functions, including neuroendocrine function, vocalization, regulation of 

emotional and stress responses, social bonding, affiliative behaviours, mating, 

parturition, milk ejection, ejaculation and cardiovascular tone (Gimpl and Fahrenholz 

2001, Knobloch and Grinevich 2014, Dumais and Veenema 2016). Due to their sexual 

dimorphic actions, some of their roles differ in males and feels (Dumais and Veenema 

2016). However, in general, OXT and AVP facilitate reproduction and social 

behaviour in all vertebrates, which is critical to survival and fitness of the species 

(Gimpl and Fahrenholz 2001).  

 Oxytocin and Vasopressin: Production and Release  

In vertebrates, OXT and AVP are predominantly synthesized in parvocellular neurons 

of the paraventricular nucleus of the hypothalamus (PVN) and the supraoptic nucleus 

of the hypothalamus (SON) (Lee et al., 2009). However, some OXT synthesizing cells 

are also present in the accessory magnocellular nucleus of the hypothalamus in rodents 

and humans (Dumais and Veenema, 2016). OXT-producing neurons of the PVN, SON 

and magnocellular nucleus project to the posterior pituitary gland where OXT can be 

stored and/or released into the bloodstream (Lee et al., 2009). Moreover, OXT-

synthesising neurons project centrally, where OXT and/or AVP can bind to receptors 

(Knobloch and Grinevich, 2014) In addition, OXT can also be synthesised 
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peripherally, in a number of tissues including the uterus, placenta, amnion, corpus 

luteum, testis and heart (Gimpl and Fahrenholz, 2001). 

OXT and AVP are stored in large vesicles spread throughout the soma, dendrites and 

axons of OXT and AVP neurons. These vesicles can be exocytosed in response to 

increased concentrations of Ca2+ and to a variety of osmotic, reproductive, stress, 

social and other behavioural and physiological stimuli (Lee et al., 2009). Release of 

OXT can occur via a number of routes, which include classical synaptic transmission, 

dendritic release and global diffusion (Knobloch and Grinevich 2014). For example, 

OXT secretion can occur by somatodendritic exocytosis, in which the peptide is 

diffused to hypothalamic and extra-hypothalamic areas and directly into the 

ventricular circulation. Moreover, axonal release of OXT/AVP from neurons 

innervating extrahypothalamic brain regions may underlie behavioural responses to 

peptide signaling. It has also been proposed that non-synaptic release of OXT can 

occur via periaxonal exocytosis or en passant OXT release of the vesicles (Johnson 

and Young 2017).  

In rodents, OXT/AVP neurons of the hypothalamus mainly express vesicular 

glutamate transporter 2, and the depolarization of these neurons may involve synaptic 

glutamate release. In addition, OXT-OXT and AVP-AVP monocellular neurons are 

connected by intrahypothalamic glutamatergic synapses. However, axonal and 

somatodendric release of OXT can occur without depolarization, through the 

activation of melanocortin-4 receptors (MC4R4) and the transmembrane protein CD38 

which are expressed in OXT neurons. Both pathways play an important role in 

triggering OXT secretion and modulating social behaviour (Bartz and McInnes 2007).  

 Oxytocin and Vasopressin Receptors  

AVP and OXT can act through three distinct AVP receptors, V1a, V1b, and V2, and 

one OXT receptor. Unlike the conserved nature of OXT and AVP and their analogue 

peptides and genes, receptor expression varies and is species-specific (Johnson and 

Young 2017). Moreover, genetic variations in the OXT/AVP gene region and 

polymorphisms in non-coding regions of OXTR and AVPR, predict individual 
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variations in behaviour that may be relevant to neuropathologies relating to OXT/AVP 

signalling in humans (Chen et al., 2011). 

The biological effects of OXT and AVP can exert their effects at very low 

concentrations through binding to their specific receptors (OXTR and AVPR) for 

which they have great affinity and (Johnson and Young 2017). OXTRs and AVPRs 

belong to the G-protein coupled receptor (GPCR) family, having seven putative 

transmembrane helices. OXTR is a 389 amino acid polypeptide that is located at 3p25-

3p26.2 (Manning et al., 2012). 

Though agonists and antagonists of OXT and AVP are important in elucidating key 

mechanisms in their biological function, there are a number of caveats to note: their 

lack of receptor selectivity (Johnson and Young 2017), species-specificity (Manning 

et al., 2012), complementarity between OXTR and AVPR expression in the brain, and 

sex-specific expression (Dumais and Veenema 2016) (Figure 1.13). 

 

 

Figure 1.13- Oxytocin and vasopressin production and release sites in the brain. 

Oxytocin (OXT) and arginine vasopressin (AVP) are synthesized in magnocellular in the 

paraventricular neurons and supraoptic nuclei of the hypothalamus, and are stored in the posterior lobe 

of the pituitary, and released into peripheral circulation or brain. OXT and AVP receptors are expressed 



 

65 

 

in different brain areas including the amygdala, hippocampus, striatum, suprachiasmatic nucleus, bed 

nucleus of stria terminalis and brainstem — where they act as neuromodulators or neurotransmitters, 

and thereby influence neurotransmission in these areas. ACC, anterior cingulate cortex; BNST, bed 

nucleus of the stria terminalis; NAc, nucleus accumbens; SCN, suprachiasmatic nucleus. Figure from 

(Meyer-Lindenberg et al., 2011) 

 

 Distribution of OXTR in the Brain  

The ontogeny of OXTR varies within species and age (Johnson and Young 2017) and 

it has been investigated predominantly by two methods: expression of the mRNA 

transcript and ligand binding studies using autoradiography (Vaidyanathan and 

Hammock 2017). Receptor autoradiography had been described as the most 

commonly used and reliable method for localisation of OXTR in rodent brain tissue 

(Elands, Beetsma et al. 1988), but the OXTR radioligand is now known to bind to both 

human OXTR and AVPR1a with a high affinity (King 2016). More recently, studies 

have pharmacologically optimized OXTR receptor autoradiography, resulting in the 

first reliable technique for specifically identifying OXTR (and AVPR1a) in human 

and nonhuman primate brain tissue (Freeman et al., 2017). 

Although analyses of OXTR in rodent brain have revealed some variations in the 

OXTR distribution in mice and in rats (King et al., 2016), they confirm that OXTR are 

strongly and widely expressed in brain during the postnatal period through weaning, 

and expression decreases into adulthood (Insel and Shapiro, 1992). In the rat brain, 

robust OXTR labeling has been observed in the posterior cingulate cortex, dorsal 

subiculum, lateral septum, and the CA1 subfield of hippocampus during the early 

postnatal period. However, of these regions, only the lateral septum 

expresses oxytocin receptors in adulthood. Conversely, OXTR binding in the bed 

nucleus of the stria terminalis and in the ventromedial nucleus of the hypothalamus 

are only obseved in adulthood (Shapiro and Insel, 1989) (Shapiro and Insel 1989). 

OXTR distribution in the brain is also regulated in a regional manner by gonadal 

steroids (Insel et al., 1997). 

Detailed analyses performed by Hammock and Levitt (2013) revealed differences in 

OXTR distribution in the mouse brain when compared to that of the rat. In the mouse 

brain, OXTR ligand binding is evident in the lateral septum, diagonal band of broca, 
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piriform cortex, central and medial amygdala, and hypothalamus. However, OXTR 

binding has only been detected in the CA3 subregion of the hippocampus (Hammock 

and Levitt, 2013). OXTR binding is also expressed in the accessory and main olfactory 

bulbs, claustrum, endopiriform cortex, bed nucleus of the stria terminalis, ventral 

caudatoputamen, and the periventricular thalamus for the majority of the ages 

examined. Expression of OXTR binding in rats contrasts with the data from mice 

within in the neocortex; while there is a transient and limited OXTR ligand binding in 

the neocortex of rats (Shapiro and Insel, 1989), the data from mice demonstrate a much 

broader OXTR expression within this area (Hammock and Levitt, 2013). In addition, 

voles have a much wider neocortical expression of OXTR than mice and rats with peak 

binding in some brain areas during the 2nd and 3rd postnatal weeks (Wang and Young 

1997).  

Oxtr mRNA expression in rat (Chen et al., 2000) and mouse brain (Tamborski et al., 

2016) has been detected at E12 by qPCR, and at E13 by in situ hybridization in rats 

(Yoshimura et al., 1996). By E13 Oxtr mRNA was also detected in the dorsal motor 

nucleus of the vagus nerve, with a progressive increase in expression in other regions 

over time. In this study, the authors noted two distinct expression patterns: transient 

and constant (Yoshimura et al., 1996). Both patterns were observed in brainstem, 

mesencephalon, diencephalon, and telencephalon. Transient Oxtr mRNA expression 

was detected in the caudate, putamen, cingulate cortex, anterior thalamic nuclei, 

ventral tegmental area, and the hypoglossal nucleus during the early postnatal period, 

whereas while constant expression, once detected, persisted into adulthood in the 

anterior olfactory nucleus, tenia tecta, some amygdaloid nuclei, piriform cortex, the 

ventromedial hypothalamic nucleus, subiculum, and the dorsal motor nucleus of the 

vagus (Yoshimura et al., 1996). 

The expression patterns of OXTR in the human brain is sparse due to the lack of 

specificity in methods currently available (Freeman et al., 2017). Using 

autoradiography, OXTR binding in human brain was localised in the ventrolateral 

septum, and throughout the preoptic and hypothalamic area, similar to observations in 

rodents (Loup et al., 1989, 1991). In contrast to rodents, no binding in human 

amygdala or hippocampus was observed (Loup et al., 1989, 1991). However, the 

validity of these studies has been questioned since a subsequent study has 



 

67 

 

demonstrated that 125I-OTA ligand binds to AVP receptor 1a as strongly as OXTR in 

non-human primate brain (Toloczko et al., 1997). 

Human OXTR expression has also been investigated using immunohistochemistry, 

but the reliability of this method has also been questioned (Yoshida et al., 2009). These 

studies demonstrated the presence of the OXTR in cortical, limbic and brainstem areas 

of female brain tissue. OXTRs were also visualized in discrete cell bodies and/or fibers 

in the central and basolateral regions of the amygdala, medial preoptic area (MPOA), 

anterior and ventromedial hypothalamus, olfactory nucleus, vertical limb of the 

diagonal band of broca, ventrolateral septum, anterior cingulate and hypoglossal and 

solitary nuclei. OXTR staining was not observed in the hippocampus (including CA2 

and CA3 subregions), parietal cortex, raphe nucleus, nucleus ambiguus or pons 

(Boccia et al., 2013). 

 Functions of Oxytocin  

OXT regulates a wide range of behavioural and physiological responses. The most 

well-studied of OXT functions pertain to parturition, lactation and pair bonding (Lee 

et al., 2009, Waldherr and Neumann, 2007). However, OXT has wide-ranging effects 

and can also influence interpersonal trust, anxiety, HPA axis and stress responses, 

immune system development and responses, memory formation and information 

processing (Buisman et al., 2015). Some aspects of OXT function will be discussed 

extensively in this chapter. 

 Developmental Effects of Oxytocin  

The OXT system starts to develop in utero and continues developing throughout early-

life and adolescence in both rodents and humans (Buisman-Pijlman et al., 2014). 

Despite variations across species, the peak of OXTR binding occurs prior to weaning 

and coincides with critical periods for brain wiring and development (Hammock and 

Levitt 2013). This overlapping time-window leads to increased vulnerability of the 

OXTR to adverse early-life experiences and external factors (Bales and Perkeybile, 

2012). The majority of studies demonstrate that early-life stress and social 

environment can have lasting consequences on OXT system development and function 
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(Buisman-Pijlman et al., 2014). For example, in rats, OXTR density is affected by 

maternal separation during the early postnatal period (Lukas et al., 2011). The OXTR 

system of offspring is also sensitive to stress exposure during gestation; exposing 

pregnant rat dams to unpredictable stressors during the last week of gestation alters 

social behavior of male offspring with concomitant reductions in OXTR mRNA 

expression in the PVN and increased OXTR binding in the central amygdala (Lee et 

al., 2007).  

In this context, early-life pharmacological manipulations of the OXTR system and 

subsequent behaviour and physiological changes are of great interest (Carter, 2003). 

The magnitude of effects of OXTR manipulation in early life can project far beyond 

the OXT system itself, having possible organisational effects and influencing other 

neurotransmitter systems, estrogen and AVP receptor systems, and affecting a variety 

of behaviours (Miller and Caldwell, 2015). Some of these effects are summarized 

below.  

One of the first reports of early-life organisational effects of OXT dates back to 1989 

(Noonan et al., 1989). In this study, treatment of rats with OXT at postnatal day three 

(PND3) resulted in exaggerated novelty-induced grooming responses to stress in adult 

(Noonan et al., 1989). The developmental effects of OXT have been extensively 

studied in voles (Bales and Perkeybile 2012). In voles, a single intraperitoneal 

administration of OXT on PND1 decreases AVP 1a labeling in many brain areas 

including the stria terminalis, cingulate cortex, mediodorsal thalamus, medial preoptic 

area of the hypothalamus, and lateral septum, with differential effects in males and 

females (Bales et al., 2007). In a separate study, the same treatment protocol at PND1 

indicated that oxytocin can have organisational effects on the expression of estrogen 

receptor alpha in a sexually dimorphic manner (Yamamoto et al., 2006). In mice, a 

single subcutaneous injection of OXT, 3-5h after birth, rescued a lethal feeding defect 

in melanoma antigen gene expression L2 (Magel2) deficient mice-a gene associated 

with Prader-Willi syndrome and ASDs (Schaller et al., 2010). It is interesting to note 

that, whereas the administration of OXT is capable of rescuing these abnormal 

phenotypes, a single administration of AVP to newborns is lethal to mutant pups 

(Schaller et al., 2010). Moreover, daily administration of OXT in the first week of life 

prevents impairments in social behaviour and cognitive deficits observed in adult 
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Magel2 deficient mice at the same time as it corrected OXT alterations in the their 

brains (Meziane et al., 2015). Postnatal OXT injections has also been demonstrated to 

ameliorate abnormal social behaviours associated with ASD in contactin-associated 

protein-like 2 (Cntnap2) knockout mice (Peñagarikano et al., 2015). Intranasal 

delivery of OXT from P21-51 was not as successful in reversing ASD-related 

behaviours in the BTBR model of ASD (Bales et al., 2014).   

These studies are relevant in the context of human neuropsychiatric disorders, as there 

are growing numbers of clinical trials investigating the efficacy of single and 

prolonged-dose infusions of OXT for ameliorating symptoms in ASD individuals 

(Andari et al., 2010; Guastella et al., 2010; Hollander et al., 2003, 2007; Kosaka et al., 

2012; Tachibana et al., 2013). However, systematic reviews and meta-analyses have 

also reported adverse side-effects associated with OXT treatment in clinical trials (Cai 

et al., 2017).  

It is also important to note that, at birth, OXT plays an important role in the switch of 

GABAergic activity from excitatory to inhibitory, which is a common feauture among 

several neurodevelopmental disorders (Ben-Ari et al., 1989; Khazipov et al., 2008). In 

fact, alterations in the timing of the GABA switch have been previously reported in 

mice lacking the OXTR (Oxtr−/− ), a model of ASD, and in Fragile X Mental 

Retardation 1 knockout (Fmr1−/− ) mice, a model of fragile X syndrome (Leonzino et 

al., 2016; Tyzio et al., 2014). OXT-mediated effects in GABA switching are also 

associated with protective effects, preparing the fetal brain for delivery by increasing 

protection against hypoxia and preventing an autistic-like phenotype in mice 

(Khazipov et al., 2008; Tyzio et al., 2014). Perinatal administration of synthetic OXT 

(pitocin) is a common obstetric practice to accelerate childbirth, and OXTR 

antagonists are often administered in order to prevent premature labor. Given the 

multitude of effects that OXT can have on health and neurodevelopment, it is 

important to better characterise the effects of these early-life manipulations.  

 Oxytocin and Social Behaviour 

Among its various functions, OXT is a key regulator of social bond formation, from 

early-life parent-infant bonds to adult pair-bond relationships (Pohl et al., 2018). Thus, 
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it regulates social behaviour, attachment and affiliative behaviour in human and non-

human mammals (Lim and Young, 2006). Understanding the role of OXT in social 

behaviour is relevant to the field of neuroscience, brain evolution, and disorders such 

ASD, SZ and anxiety (Churchland et al., 2012). The first demonstrations of OXT’s 

modulatory effect on social recognition dates back approximately 30 years (Dantzer 

et al., 1987). Subsequent studies have demonstrated that mice lacking the OXT gene 

exhibit disruptions in social recognition of familiar conspecifics (Choleris et al., 2003; 

Ferguson et al., 2001). However, this deficit was temporarily reversed following 

central administration of OXT prior to, but not after the initial encounter with the 

familiar mouse (Ferguson et al., 2001). Likewise, AVP has been implicated in social 

recognition for many decades. Peripheral or intracererebroventricular (i.c.v.) injection 

of AVP receptor 1a in rats as well as null mutations of this receptor in mice has been 

demonstrated to inhibit social recognition (Dantzer et al., 1987), whereas activation of 

AVP receptor 1a in the lateral septum via viral vector administration (AAV-V1a) 

restored the phenotype (Bielsky et al., 2005). Additional examples of OXT’s role in 

social behaviour and social recognition come from studies of sheep and the 

monogamous prairie vole. In the monogamous prairie vole, OXT regulates mate social 

recognition, determining the monogamous status of the species (Young and Wang, 

2004). Overall, OXT seems to facilitate approach behaviour by decreasing the fear of 

social interaction in laboratory animals (Neumann, 2008). 

OXT also modulates social behaviours in many other vertebrate species. In humans, 

intranasal OXT administration is shown to increase trust and may have an essential 

role in the biological basis of prosocial approach behaviour. For example, in an 

economic game involving allocating money to a stranger, OXT increases individual’s 

willingness to accept social risks arising through interpersonal interactions (Kosfeld 

et al., 2005). Furthermore, OXT was demonstrated to facilitate positive trait 

judgements of strangers (Theodoridou et al., 2009). However, there are relatively few 

studies of OXT on social behavior of humans, warranting further investigation 

(Campbell, 2010).  

Early work on OXT and social behaviour focused mainly on its role in supporting 

maternal behaviours (Insel, 2010). Although the role of OXT in mouse maternal 

behaviour was questioned by initial observations from studies performed in mice 
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lacking OXT (Nishimori et al., 1996), subsequent experiments demonstrated that OXT 

knockout mice display impaired maternal behaviours under semi-naturalistic 

conditions (Ragnauth et al., 2005). Moreover, OXT is critical for the expression of 

spontaneous maternal behaviours in both adult and juvenile prairie voles (Olazabal 

and Young, 2006). Regulation of maternal behaviours by OXT occurs through 

activation of the receptor in several brain areas including the MPOA, VTA, BNST, 

medial amygdala and olfactory bulb). The bond between mother-offspring is essential 

and it is utmost importance for offspring survival, as this bond influences cognitive, 

social, ,emotional and physiological development, with implications for mental health 

later in life (Pohl et al., 2018).  

 Oxytocin and Vasopressin Systems and the Neuroendocrine–

Immune Network 

As mentioned before, OXT and AVP are mainly produced by the magnocellular 

neurons of the hypothalamus, stored in the pituitary gland and secreted into the 

circulation. In addition, oxytocin is produced in small amounts outside the CNS in 

immune cells, the GI tract, pancreas, skin, testis, ovary, uterus, placenta and kidney 

(Knobloch and Grinevich, 2014). OXT and AVP can also bind to widespread 

peripheral OXT receptors influencing several physiological functions, such as GI 

motility, metabolism, cardiovascular function, thermoregulation (Gimpl and 

Fahrenholz, 2001; Wang et al., 2015). At the same time, oxytocin has a fundamental 

role in the immune and neuroendocrine system (Wang et al., 2015).  

 The Influence of Oxytocin and Vasopressin on Immune 

System Maturation  

Data obtained from preclinical research indicates that several peptide hormones (as 

well as nonpeptide hormones) act on the immune cells, mediating their proliferation, 

differentiation, migration and apoptosis (Savino et al., 2016). For instance, OXT 

and AVP can influence the thymus and bone marrow, two major immune organs 

(Wang et al., 2015). OXT and AVP can also be produced by thymic epithelial cells 

and bind through both OXT and AVP 1b thymic receptors (Savino et al., 2016). OXT 
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mediates T cell maturation in a cryptocrine (hidden secretion) manner, transducing 

signaling pathways between thymic epithelial cells and pre T cells (Li et al., 2016). In 

line with this, it has been reported that inhibition of the OXT receptor in foetal 

thymic cell cultures results in early apoptosis of CD8+ mature T cells, while 

inhibition of AVP receptor 1b receptor abolishes T-cell differentiation and favours 

the development of CD8+ T cells (Hansenne et al., 2005). Additionally, OXT/AVP 

can also participate in the transport of hematopoietic progenitor cells from the bone 

marrow to blood and peripheral lymphoid tissues (Elabd et al., 2014). OXT/AVP 

receptors are also present in mouse spleen eosinophils as detected by in situ 

hybridization, and a mechanism of synthesis and storage for these neuropeptides in 

eosinophils has been proposed (Kumamoto et al., 1995). However, the role for these 

peptides in the spleen is less not well understood or represented in literature.  

In general, OXT-mediated effects on inflammatory processes are regulatory and 

suppressive (Wang et al., 2015). The hormone mainly suppresses neutrophils, 

oxidative stress and proinflammatory cytokines including TNF-α, IL-4, IL-6, 

macrophage inflammatory protein-1α and 1β, monocyte chemoattractant protein 1, 

and IL-1β. Importantly, it also contributes to the efficient regulatory T-cell functions 

(Li et al., 2016). 

 Oxytocin, the HPA Axis and Anxiety 

The PVN integrates neuroendocrine and autonomic functions, and contains neurons 

that release ACTH, PVN and OXT. Interestingly, within the PVN, both OXT receptor 

mRNA and CRH are co-expressed in OXT neurons (Neumann et al., 2000). Therefore, 

it is not surprising that brain OXT can also regulate the activity of the main 

neuroendocrine stress system, the HPA axis. Moreover, local release of OXT within 

the PVN has been proposed to regulate stress responses through the modulation of 

CRH neuron excitability (Jamieson et al., 2017). Clear evidence for this relationship 

is evidenced by research demonstrating that the cortisol response in infants is 

attenuated by breastfeeding immediately before exposure to a social stressor 

(Heinrichs et al., 2001) Additionally, both OXT and social support blunt HPA axis 

activation (Heinrichs et al., 2003). However, the direction of the relationship between 

OXT and HPA axis is not straightforward (Neumann et al., 2000).  
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 Besides playing a role in stress response, OXT has been demonstrated to mediate 

anxiety-related behaviours (Neumann, 2008). Interestingly, acute or chronic central 

administration of synthetic OXT was found to reduce anxiety in both female and male 

rats and mice (Ring et al., 2006; Windle et al., 1997). However, a subsequent study 

demonstrated that in females, the anxiolytic action of OXT, specifically when applied 

to the central amygdala, occurs solely in pregnant and lactating rats (Neumann, 2002). 

The brain regions where OXT acts in order to modulate anxiety, have yet to be fully 

elucidated. However, brain substrates whereby OXT may act include the PVN and 

amygdala (Blume et al., 2008), and are likely to be part of a widespread network that 

may also include the medial prefrontal cortex (Sabihi et al., 2014). 

 Oxytocin: a Possible Mediator of Microbiota-gut Brain Axis  

As described in previous sections, the gut microbiome and host animal interact via 

immune–endocrine–brain signalling networks. Interestingly, the administration of L. 

reuteri was demonstrated to increase plasma levels of OXT in mice at the same time 

as it accelerated skin wound healing, increased resistance to obesity and increased 

maternal care (Erdman and Poutahidis, 2014; Poutahidis et al., 2013; Varian et al., 

2017). Moreover, the beneficial effects induced by L. reuteri were found to be 

dependent upon OXT, as they were not observed in OXT knockout mice (Varian et 

al., 2017). These findings opened a venue for investigation into microbial regulation 

of the oxytocinergic system with implications for promoting general well-being and 

mental health (Erdman and Poutahidis, 2014) . 

A recent study in mice supports this hypothesis and demonstrates that a gut microbiota 

with reduced L. reuteri is associated with deficits in social behaviour in a MHFD 

model of ASD (Buffington et al., 2016). Conversely, supplementation with L. reuteri 

increased oxytocin positive neurons in the PVN and tegmental-ventral areas and 

ameliorated social behavioural deficits (Buffington et al., 2016). Although the 

mechanisms of interaction between OXT system and the gut microbiota are yet to be 

fully elucidated, microbial regulation of OXT systems may occur through the immune 

system (Erdman and Poutahidis, 2014; Varian et al., 2017). Mice consuming L. 

reuteri retain a sizable thymus in adulthood and this effect is mediated by probiotic-

induced upregulation of Forkhead Box N1 (FoxN1) in thymic epithelial cells and IL-

https://www.sciencedirect.com/topics/neuroscience/fox-proteins
https://www.sciencedirect.com/topics/neuroscience/epithelial-cells
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10-mediated induction of CD4+CD25+Foxp3+ Treg lymphocytes (Poutahidis et al., 

2013). In a more recent study, treatment with L. reuteri was shown to increase thymus 

weight, increase blood levels of OXT, lower circulating neutrophil counts, and 

decrease circulating corticosterone (Varian et al., 2017), thus, supporting a role for 

OXT as key microbiota-gut brain axis mediator Figure 1.14.  

 

Figure 1.14- Microbiota and oxytocin interactions.  

Possible pathways mediating the cross-talk between gut microbiota and oxytocin system may invovle 

neuro-immuno interactions including the vagus nerve and activation of T-regulatory cells (TREG) 

Figure taken from (E Erdman, 2014). 

 

1.7 Goals and Aims of this Thesis  

The overall goal of this thesis was to investigate the impact of gut-brain axis 

disruptions in early-life and their associated neurobehavioural consequences. 

Moreover, we investigated whether targeting the gut-brain axis early in life could 

potentially represent a viable strategy to overcome long-term deficits induced by 

microbial perturbations during this critical period. To this end, we utilised two animal 

https://www.sciencedirect.com/topics/immunology-and-microbiology/lactobacillus-reuteri
https://www.sciencedirect.com/topics/neuroscience/neutrophil-granulocyte
https://www.sciencedirect.com/topics/neuroscience/corticosterone
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models of microbiota-gut-brain axis perturbations: the C-section animal model and the 

well-established model of autism induced by gestational poly (I:C) administration. 

Given the importance of the initial colonisation of the gut microbiota on brain 

development and behaviour, we developed a mouse model to assess the long-term 

consequences of birth by C-section. Moreover, we investigated the impact of 

microbiome-based interventions (prebiotics, probiotics and faecal microbiota transfer) 

and of pharmacological treatment with OXT on such effects. To further assess the 

translational potential of our model of C-section, we investigated whether mode of 

birth could impact stress in young adults. Lastly, we investigated whether genetic 

background influences susceptibility to gut-brain axis dysregulation, following 

gestational poly (I:C) injection.  

• Aim 1: To investigate whether the mode of delivery at birth could alter microbiota-

gut-brain axis function, with neurobehavioural and physiological consequences 

(Chapter 2).  

• Aim 2: To determine whether microbiome-based interventions (prebiotics, 

probiotics and microbiota transfer) could reverse effects associated with C-section 

(Chapter 2). 

• Aim 3: To assess the translational value of our animal model of C-section, by 

determining whether the mode of birth could impact stress responses of young 

adults (Chapter 2). 

• Aim 4: To investigate whether pharmacological treatment with OXT during early-

life was able to reverse behavioural and physiological effects associated with C-

section (Chapter 3). 

• Aim 5: To investigate whether genetic background of mice could influence the 

effects of MIA on behaviour and function of the gut-brain axis (Chapter 4).  
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2.1 Abstract 

Birth by Caesarean (C)-section impacts early gut microbiota colonization, bypassing 

stress and immune priming, and is associated with an increased relative risk of 

developing immune & metabolic disorders. The long-term effects of C-section on 

neurobehavioral processes remain unknown. Here, we demonstrate that birth by C-

section in the mouse leads to enduring social and cognitive deficits in addition to 

increased anxiety and stress response. These behavioral alterations are associated with 

marked but transient changes in the gut microbiota composition and diversity in early-

life and in adolescence, particularly affecting Bifidobacterium spp. Next, we find that 

specific behavioral deficits induced by C-section are corrected by co-housing with 

vaginally born mice. Moreover, supplementation with dietary prebiotics which 

stimulate the growth of Bifidobacteria, or colonization from birth with a 

Bifidobacterium breve strain, prevented both the neurobehavioral and microbiota 

alterations in C-section mice. Finally, to assess the translatability of the findings we 

demonstrate that healthy young adults initially delivered by C-section also have 

increased psychological vulnerability to either acute or prolonged stress. Given the 

global rise in C-section rates, our findings have significant implications for public 

health policy and for determining vulnerabilities to stress-related mental health 

problems.  

2.2 Introduction 

The number of infants delivered by Caesarean (C)-section worldwide has rapidly 

increased over recent years, in many jurisdictions far exceeding the World Health 

Organization guidelines of between 10-15% (Dominguez-Bello et al., 2016). This 

trend is occurring despite growing evidence that birth by C-section is associated with 

an increased likelihood of developing immune and metabolic disorders in childhood, 

including specific allergies and asthma (Decker et al., 2010; Mårild et al., 2012), 

hypertension in young adults (Horta et al., 2013), type 1 diabetes (Algert et al., 2009) 

and obesity in both children and adults (Darmasseelane et al., 2014). The mechanisms 

underlying such changes remain elusive but there is increasing focus on alterations in 

the composition of the gut microbiota (the trillions of microorganisms inhabiting the 
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human gastrointestinal tract) in infants born by C-section (Dominguez-Bello et al., 

2010; Penders et al., 2006). Indeed, alterations in abundance of Bifidobacterium 

species, which are associated with appropriate immune and gastrointestinal 

development in infancy, are among the first microorganism to colonize the human gut 

by vertical transmission from mother-to-infant during birth (Dominguez-Bello et al., 

2010; Hill et al., 2017; Makino et al., 2013).  

Given that the gut microbiota has a significant influence on the programming of 

multiple body systems in early-life (Bäckhed et al., 2015; Borre et al., 2014), it is 

perhaps not surprising that C-section-induced perturbations of the early microbial 

environment has such widespread effects on host physiology (Cho and Norman, 2013; 

Hansen et al., 2014). However, the relationship between C-section delivery and brain 

health is less clear (Brander et al., 2016; Curran et al., 2015a, 2015b, 2016a, 2016b; 

Al Khalaf et al., 2015). This is despite the growing realisation that the gut microbiota, 

especially in early-life, can influence many aspects of neurodevelopment and 

behavior. Preclinical studies using germ-free mice have highlighted the long-lasting 

effects of the disruption of the normal acquisition and maturation of gut microbiota on 

social behaviour (Desbonnet et al., 2014), cognition (Gareau, 2014), hypothalamic-

pituitary (HPA) axis development (Clarke et al., 2013; Sudo et al., 2004), stress-related 

behavior (Bercik et al., 2011b; Diaz Heijtz et al., 2011; Dinan and Cryan, 2017a; 

Foster and McVey Neufeld, 2013) and brain development (Dinan and Cryan, 2017a; 

Sampson and Mazmanian, 2015). However, germ free studies are specialized model 

systems and it is unclear if more medically relevant alterations in microbiome 

composition in early-life can have enduring psychological, neurobehavioral and 

physiological effects.  

Similarly in healthy humans, a growing body of data indicates that the gut microbiota 

composition can influence aspects of cognitive function (Chung et al., 2014; Schmidt 

et al., 2015), brain morphology (Labus et al., 2014, 2015, 2017), sociability, mood and 

anxiety (Allen et al., 2014; Benton et al., 2007; Messaoudi et al., 2011; Steenbergen 

et al., 2015), the neuroendocrine response to stress (Allen et al., 2016), and brain 

activity under baseline conditions (Allen et al., 2016) or in response to an emotional 

attention task (Labus et al., 2014, 2015, 2017; Pinto-Sanchez et al., 2017). In addition, 
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emerging evidence has identified gut microbiota composition alterations in stress-

related psychiatric cohorts (Kelly et al., 2016; Zheng et al., 2016). 

Given the importance of the initial colonization of the gut microbiota on brain 

development and behavior, we developed a mouse model to assess the long-term 

consequences of birth by C-section compared with vaginal delivery on physiology and 

behavior. Moreover, we investigated the impact of targeting the microbiome on such 

effects. Finally, the translatability of the findings to humans was assessed in a sample 

of healthy young adults undergoing acute or chronic stress. 

2.3 Results  

2.3.1 C-section-induced Neurobehavioral Changes in a Preclinical 

Mouse Model  

Following birth by C-section, pups were given to foster dams (CS). To control for the 

potential effects of fostering itself, pups born per vaginum were also given to foster 

dams (CF). Additional pregnant females were allowed to deliver spontaneously, and 

the litters were used as a full-term vaginally-born control group (VB) (Figure 2. 1a). 

We compared the consequences of mode of delivery in early-life and in adulthood by 

using a sequence of behavioral tests relevant to stress-related disorders (Figure 2. 1b). 

We found that, in early-life (P9), CS pups exhibited increased ultrasonic vocalizations 

when isolated from their littermates and mother at a frequency far greater than that of 

CF or VB animals (Figure 2. 1c). It has been previously demonstrated that by P10 

pups are normally able to discriminate relevant social stimuli and move towards the 

mother’s nest when physically separated (Macrì et al., 2010). Unlike VB or CF 

animals, CS failed to display preference for their home bedding (Figure 2. 1d) 

indicating early social recognition and maternal attachment deficits. One caveat to the 

mouse studies is the fact that CS animals are born prematurely (max 1 day), and thus 

this is a potential confounder for some of these early measures.  

In adulthood, CS offspring develop exaggerated anxiety-like behavior as observed by 

increased number of buried marbles when compared with VB offspring (Figure 2. 1e), 

reduced locomotion and time spent in the central zone of an aversive open-field arena 
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(Figure 2. 1f), and reduced number of entries in the open arms of the elevated plus 

maze (EPM) in comparison with both VB and CF offspring (Figure 2. 1g). In order to 

verify if an anxiety-like behavioral phenotype is accompanied by a disrupted HPA 

axis, we examined the acute stress response in CS offspring by measuring plasma 

corticosterone (CORT) levels at various time-points. C-section delivery did not affect 

baseline CORT secretion (Figure 2. 1h). However, it induced an exaggerated HPA 

axis response 15 minutes following an acute stressor in comparison with VB and CF 

offspring (Figure 2. 1h). This differential maturation of the HPA axis in CS mice was 

coincident with increased corticotropin-releasing factor receptor 1 (Crhr1) expression 

in the pituitary gland in comparison with the CF group (Figure 2. 1i). However, no 

differences were found between the groups for glucocorticoid and mineralocorticoid 

receptors (Supplementary figure 2.1 a-b). Since stress has been demonstrated to 

reduce social interactions in a variety of social paradigms (Sandi and Haller, 2015), 

and microbiota-deficient mice have social deficits (Desbonnet et al., 2014), we 

investigated if mice born by C-section exhibit deficits in social behavior. Although CS 

mice have normal sociability in the three-chamber test (Figure 2. 1j), a specific deficit 

in social-novelty preference was revealed compared with VB and CF mice (Figure 2. 

1j). Interestingly, this phenotype is similar to that of germ-free mice that have been 

colonized post-weaning (Desbonnet et al., 2015). Furthermore, working memory is 

susceptible to the effects of stress and here we demonstrate that CS-born offspring 

exhibit deficits in a novel object recognition working memory task (Figure 2. 3j). 

Although both stress and the microbiota have been strongly associated with pain 

sensitivity, when we tested the mice in the hot-plate test, no group differences were 

identified (See Supplementary figure 2.2a). In addition, we investigated if the 

observed behavioral changes are accompanied by alterations in gene expression in the 

brain. To this end, we performed deep sequencing of cDNA (RNAseq) extracted from 

the ventral hippocampus, paraventricular nucleus of the hypothalamus (PVN), and the 

amygdala. Analysis of the ventral hippocampus but not amygdala or PVN revealed 

differential expression with 48 (up) and 31 (down) partially-overlapping genes with 

the CS group compared to VB and CF group, respectively (Figure 2. 1k, see online 

supporting material). Functional enrichment analysis was used to search for over-

representation of genes involved in the proteinacious extracellular matrix and cell 

adhesion processes in CS offspring compared with VB, with no significant differences 

between VB and CF groups.  
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Figure 2. 1- Behavioral and physiological changes in CS offspring across lifespan. 

a-b) CS animal model and experimental design. c) CS-born offspring exhibit a higher number USV calls (x2=33.303, p<0.001) ([Kruskal-Wallis, followed by U-

Mann Whitney test]). d) CS-born offspring failed to exhibit preference for their home bedding (x2=26.106, p<0.0001) but displayed increased preference for a 

neutral bedding (x2=20.577, p<0.0001) ([Kruskal-Wallis, followed by U-Mann Whitney test]). Scatter dot-plots represent Median ± interquartile range. e-g) In 

adulthood, mice delivered by CS displayed enhanced anxiety–like behaviour; e) increased the number of buried marbles (F (2,38)= 14.73, p<0.0001); f) in the 

open-field arena; reduced time spent in the central zone (F(2,38) = 4.43, p= 0.019) and reduced total distance travelled (F(2,38) = 5.22, p= 0.01); and g) decreased 

number of entrances in the open arm of the elevated plus maze (F (2,38)= 4.74, p=0.015). No differences between groups for the number of entrances in the closed 

arms (F (2, 38) =0.614, p=0.4047) ([One-way ANOVA, followed by Tukey post hoc]). h) Corticosterone (CORT) release in response to an acute stress. Time effect 

(F (4, 112) = 108.869, p<0.001); group effect (F (2,28)= 3.8, p= 0.034); time x group (F(8,112)= 2.751, p=0.008 ([Two-way ANOVA]). A one-way ANOVA and 

Tukey post hoc for each time-point revealed significant increased CORT in CS at T15 (F (2,34) = 10.435, p<0.0001) ([VB n= 13, CF n=13, CS n=11]). T0 (F 

(2,37) =0.001, p=0.999) ([VB n= 15, CF n=13, CS n=12]); T45 (F (2,34) =2.689, p=0.082) ([VB n= 12, CF n=13, CS n=12]); T90 (F (2,34) =0.409, p=0.667) ([VB 

n= 14, CF n=12, CS n=11]); T120 (F (2, 32) =2.060, p=0.144) ([VB n= 13, CF n=11, CS n=11]). i) Increased Corticotropin-releasing factor receptor 1 expression 

in the pituitary gland of CS born offspring (F (2,23) = 3.829, p=0.037) ([One-way ANOVA, followed by Tukey post hoc]). j) Three-chamber test. C-section does 

not impact sociability. VB t (14) = 6.341, p<0.0001, CF t (13) =9.776, p<0.0001, CS t (11) =9.811, p<0.0001. Reduced social novelty preference in CS. VB t (14) 

= 7.8, p<0.001, CF t (13) = 5.1, p<0.0002, CS t (11) =-0.167, p= 0.8707 ([Paired-Student T-test]). j) RNA-sequencing of the adult hippocampal transcriptome 

([Raw data online; VB n= 5, CF n= 4, CS n= 6]). c-j) Animal numbers per group are specified above each bar. c-j) Scatter dot-plots represent Mean ± Stard Error 

of the Mean (S.E.M.) Behavioral results shown representative of 2-4 experimental replicates. Offspring in each cohort derived from three independent litters/ group. 

*p< 0.05 and ***p<0.0001 CS vs. VB; #p<0.05 and ###p<0.0001 CS vs. CF. VB, vaginal birth; CF, cross fostered; CS, C-section.  

. 
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2.3.2 Impaired Intestinal Barrier Function Mediates Immune Activation in 

C-section Model  

Given the importance of gut health for brain function, we next assessed whether 

gastrointestinal function including intestinal motility and permeability and, in turn, 

systemic endotoxemia (Hsiao et al., 2013; Kelly et al., 2015), were modified by C-section. 

Using carmine red as an in vivo marker of motility, we determined that CS born mice have 

faster gastrointestinal transit than VB mice (See Supplementary figure2.4d). In addition, 

we measured small-intestinal permeability in adolescent and adult mice. The presence of 

fluorescein isothiocyanate (FITC) in plasma of mice reflects the level of paracellular 

permeability in the small intestine. In adolescence (P23), small intestine permeability was 

significantly reduced in CS mice compared with VB mice reflecting a more effective 

barrier (Figure 2. 2a). At P23 intestinal development is incomplete and the digestive 

system is still immature. In contrast, there was no significant difference in intestinal 

permeability between CS mice and VB mice in adulthood, suggesting that when the 

intestinal barrier is fully-formed, paracellular permeability increases in CS mice (Figure 

2. 2b). Next, we examined if mode of delivery affected systemic endotoxemia in mice at 

different stages of life. Lipopolysaccharide (LPS) levels were measured in the plasma of 

male mice born by VB, CF and CS at early-life (P9), adolescence (P25) and in adulthood. 

At P25, plasma LPS concentrations in the plasma were higher in CS compared with VB 

and CF mice. By P9 and adulthood, there was a trend towards higher levels in CS mice 

(Figure 2. 2c), but differences failed to reach statistical significance. 

Having observed changes in intestinal permeability and plasma LPS concentration in CS 

compared with VB mice in early-life, we investigated changes in gene expression in the 

colon and ileum of male mice at P9, P25 and adulthood for Toll-like receptors 4 (Tlr4), a 

marker of host-response, and Tight-junction protein 1 (Tjp1) and occludin, markers of 

colonic barrier integrity. However, no difference in gene expression was observed in Tlr4 

(See Supplementary figure 2.3a), Tjp1 (See Supplementary figure 2.3b and d) or 

Occludin (See Supplementary figure 2.3c and e) in CS compared with VB mice, 



 

85 

 

suggesting that although paracellular permeability is altered due to CS birth mode, 

transcellular permeability is unaffected by mode of delivery. The increased levels of 

plasma LPS in CS compared with VB and CF mice suggests subtle changes in the immune 

response due to C-section birth mode. To further probe this phenomenon, cells isolated 

from the thymus and spleen were stimulated with Concanavalin A (ConA) and LPS, 

activators of T lymphocytes and TLR4 receptors respectively. Cytokines were measured 

in supernatants of these isolated cells 24 hours after the immune challenge. Stimulated 

thymocytes from CS mice when challenged with ConA produced significantly more IL-

10 and TNFα, than VB mice (Figure 2. 2d). There were no differences in splenocyte 

responses between CS and VB stimulated with ConA (Error! Reference source not 

found.). Similarly, there was a significant increase in IL-12p70 production in the CS group 

as compared with CF mice in LPS-stimulated thymocytes (Error! Reference source not 

found.). However, there was no significantly different increase in LPS-stimulated 

splenocyte (Supplementary Table 2. 1). 



 

86 

 



 

87 

 

Figure 2. 2- Mode of Delivery has modest effect on intestinal permeability and immune function 

a,b) Intestinal permeability as measured by plasma fluorescein isothiocyanate (FITC)-dextran concentration 

(μg/mL): a) decreased intestinal permeability to FITC-dextran in adolescence (F(2,19)=5.633, p=0.012); b) 

no differences in the intestinal permeability between groups in adulthood (F(2,35)=2.583, p= 0.090) ([One-

way ANOVA, followed by Tukey post hoc]). c) Plasma lipopolysaccharide concentration (enzyme units 

(EU)/mL of plasma) at P9 (F (2,18) = 3.988, p=0.037); at P25 (F(2,24)=5.57, p=0.01) and in adulthood 

(F(2,36)= 2.140, p=0.132) ([One-way ANOVA, followed by Tukey post hoc showed an increase in LPS in 

the CS group at P25]). a-c) Animal numbers per group are specified above each bar. d,e) Immune response: 

d) thymocytes and e) splenocytes were isolated from male adult mice and stimulated with Concanavalin A 

(2μg/mL). Concentration of IFNγ, Interleukin (IL)-6, IL-10 and TNFα were measured (pg/mL). 

Thymocytes: IFNγ (F(2,27)=0.707, p= 0.502) ([VB n= 7, CF n=11, CS n=12]); IL-6 (F(2,27)=1.594, p= 

0.222) ([VB n= 6, CF n=12, CS n=12]); IL-10 (F(2,28)=4.099, p=0.027) ([VB n= 7, CF n=12, CS n=12]); 

TNFα (F(2,27)=3.660, p= 0.039) ([VB n= 6, CF n=12, CS n=12]). Splenocytes: IFNγ (F(2,30)=2.225, p= 

0.126) ([VB n= 9, CF n=13, CS n=11]); IL-6 (F(2,31)=2.642, p= 0.087) ([VB n= 9, CF n=13, CS n=12]); 

IL -10 (F(2,30)=2.046, p= 0.147) ([VB n= 9, CF n=13, CS n=11]); TNFα (F(2,31)=1.5.091, p= 0.012) ([VB 

n= 9, CF n=13, CS n=12]). One-way ANOVA, followed by Tukey post hoc. a-e) Scatter dot-plots represent 

mean ± S.E.M. Offspring in each cohort derived from three independent litters/group. *p< 0.05 CS vs. VB; 

#p<0.05 CS vs. CF. VB, vaginal birth; CF, cross fostered; CS, C-section.  
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2.3.3 Early-life Microbiome Changes Are Evident in C-section Offspring  

Given the role of the microbiome in early-life in programming body systems and how its 

composition is altered by C-section in humans (Hill et al., 2017), we investigated the 

composition of the microbiota in the mouse model. Principal coordinate analysis of 

unweighted UniFrac distances from the averaged rarefied 16S rRNA gene dataset showed 

that CS samples clustered separately from VB in early-life (Figure 2. 3a). In adolescence, 

a trend towards a separation still persists (Figure 2. 3b) (p=0.056), whereas by adulthood 

no statistically significant separation between the groups was found (Figure 2. 3c).  

Taxonomy-based analysis of the assigned sequences showed that at phylum, family and 

genus level the intestinal microbial signature is distinct between CS and VB groups at all 

ages (Supplementary Table 2. 2). The main differences in the microbiota composition 

between VB and CS-born offspring in microbiota composition are found in early-life in 

the phyla Firmicutes and Proteobacteria (Figure 2. 3d). During adolescence and through 

adulthood, the microbiota separation based on mode of delivery at birth was still 

statistically significantly, although at a lower magnitude than during early-life, possibly 

due to the former group receiving increased microbial exposure from the laboratory 

environment compared with the VB group (Figure 2. 3e-f). Although there are marked 

differences in the microbiota composition and diversity, the alpha-diversity index 

(reflecting net microbiota phylogenetic diversity) did not differ between CS and VB mice 

(Supplementary Table 2. 3). The observed differences in microbiota between treatment 

groups (Figure 2. 3a-f) were associated with alterations in the short chain fatty acid 

(SCFA) profile, whereby cecal levels of acetate were lower in adolescence and butyrate 

levels in adulthood in CS compared with CF mice (Supplementary Table 2. 4). 

To investigate a causal role of microbiota in mediating the observed effects, we tested 

whether transferring microbiota from VB to CS mice at P21 could prevent CS-mediated 

effects on behavior. We exploited the copraphagic nature of mice and performed fecal 

transfer by co-housing one CS mice with three VB mice in adolescence (based on the 

strategy utilized by (Buffington et al., 2016). Behavior was assessed in adulthood (Figure 
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2. 3g). as previously described. Strikingly, co-housing CS with VB mice selectively 

reversed the CS-induced deficits on preference for social novelty (Figure 2. 3i), working 

memory (Figure 2. 3j) and time spent in the central zone of the aversive open-field 

(Figure 2. 3h), but not the entire behavioral phenotype with some aspects of anxiety-like 

behaviour being resistant to reversal (See Supplementary figure 2.4a). Thus, as 

previously described in germ free animals (Diaz Heijtz et al., 2011; Neufeld et al., 2011), 

there are critical windows post-weaning in which the restoration of microbiota can reverse 

some but not all of the responses observed due to the CS-associated altered microbiota. 
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Figure 2. 3- Mode of delivery affects microbial composition throughout the lifespan. 

DNA was extracted from colonic contents in early-life (P9) and cecal contents in adolescence (P25) and 

adulthood (week 20): (a-c) Principal coordinate analysis (PCoA) plots, based on bray-curtis distances: a) 

Early-life (p=0.003); b) Adolescence (p=0.056); c) Adulthood (p=0.128). (d-f) Relative abundance of 

phylum in vaginal birth (VB); cross-fostered (CF) and C-section (CS) mice. The dominant phyla are labelled 

in the legend on the right. g) Co-housing experimental design. h) Aversive open-field. Time spent in the 

central zone. Group effect (F(1, 36)=1.566, p=0.219); mode of delivery effect (F(1, 36)=1.790, p=0.189); 

group x mode of delivery effect (F(1, 36)=8.648, p=0.0.006) ([Two-way ANOVA, followed by Tukey post 

hoc]). i) Three-chamber social novelty preference. VB (t (9) =-4.566, p=0.001), VB co-housed (t (9) =-

3.199, p=0.0011), CS (t (9) =0.21, p=0.830), CS co-housed (t (10) =-4133, p=0.002) ([Paired-Student T-

test]). *p< 0.05, **p<0.01, ***p<0.001 Novel vs. Familiar mouse. j) Novel object recognition. VB (t (9) 

=2.678, p=0.0025), VB co-housed (t (9) =4.146, p=0.002), CS (t (10) =1.909, p=0.085), CS co-housed (t 

(12) =2.445, p=0.035) ([Paired-Student T-test]). *p< 0.05, ***p<0.001 Novel vs. Familiar object. h-j) 

Scatter dot-plots represent mean ± S.E.M. Animal numbers per group are specified above each bar. a-f) 

Offspring in each cohort derived from three independent litters/ group. h-i) VB group, 9 litters; CS group, 

6 litters; VB co-housed group, 10 litters; and CS co-housed, 7 litters. VB, vaginal birth; CF, cross fostered; 

CS, C-section.  

 

2.3.4 Bifidobacterium spp. Contribute to C-section Induced 

Neurobehavioral Changes. 

Knowing that mode of delivery is an important factor in shaping Bifidobacteria 

community structure in infants (Rodríguez et al., 2015), we sought to investigate if C-

section could alter these specific bacteria taxa in the animal model. The levels of 

Bifidobacterium genus members was quantified by q-PCR specific for this microbial 

group in the feces of VB and CS mice at weaning (P21) and in adulthood (wk 8). We 

identified a transient decrease in the total Bifidobacteria number in CS offspring at 

weaning (Figure 2. 4a) which was rectified by adulthood (Figure 2. 4b). Bifidobacterium 

spp. are critical in shaping neonatal intestinal and immune system development (Bakker-

Zierikzee et al., 2005). Thus, we hypothesized that a reduction in its abundance during 

early neurodevelopmental windows could contribute significantly to the specific 

behavioral effects induced by C-section. To test this, we supplemented a group of CS pups 
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with a dietary intervention of specific prebiotics (a combination of short-chain galacto-

oligosaccharides and long-chain fructo-oligossaccharides -scGOS/lcFOS- in a ratio of 

9:1), that are known to stimulate Bifidobacterium growth (or with specific human 

commensal Bifidobacterium breve M16-V (B.breve) (Wopereis et al., 2014), by giving it 

to dams during the lactation period. By P21, CS and VB offspring were weaned to their 

maternal diet. Indeed CS offspring have a significant reduction in Bifidobacterium spp. 

levels, whereas treatment with scGOS/lcFOS and B.breve corrects these CS-associated 

changes in Bifidobacterium spp. levels (Figure 2. 4i). 

Notably, even as early as P9, treatment with prebiotic prevented anxiety-like behavior by 

reducing the number of calls emitted by the CS pups when they were isolated from their 

nest (Figure 2. 4d). Moreover, at P10, treatment with both interventions had marked effects 

on restoring neonatal recognition abilities and maternal attachment deficits in the CS pups 

(Figure 2. 4e).  

Since we determined that social and object recognition memory deficits present in adult 

CS mice were at least in part driven by gut microbiota alterations (Figure 2. 3i-j), we next 

assessed if the selective decrease of Bifidobacterium spp. abundance in CS offspring could 

functionally contribute to these deficits. Indeed, treatment with B.breve ameliorated CS-

induced social and working memory deficits while treatment with GOS/FOS completely 

reversed this effect (Figure 2. 4f-g). Collectively, this supports the concept of a causal role 

of Bifidobacterium early in life for recognition memory programming.  

Oxytocin is one of the key neurochemical mediators of attachment, social memory and 

anxiety (Ross and Young, 2009). Moreover, alterations in the oxytocin receptor (OXTR) 

have been implicated to the aetiology of a wide range of psychopathologies (Johnson and 

Young, 2017). Moreover, gut microbiota can stimulate the oxytocin system in the brain 

leading to beneficial effects to behaviour and stress and improving general health of the 

host (Varian et al., 2017). Here we demonstrate that CS mice had elevated levels of 

oxytocin receptor mRNA in the amygdala, an effect which was reversed by both the 

prebiotic and B.breve treatments (Figure 2. 4h). 
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Figure 2. 4- Reduction of Bifidobacterium spp. abundance mediates behavior and microbiota changes in C-section born mice. 

 a) Bifidobacterium spp. is reduced in CS adolescent microbiome (colony forming unit (cfu)/g feces) (U=129.00, p=0.015; Mann Whitney test). b) Bifidobacterium 

spp. concentration is normalized by adulthood in the CS offspring (x2=2.327, p=0.507; Kruskal-Wallis test). c) B.breve and scGOS/lcFOS administration and 

experimental design. d) scGOS/lcFOS administration reversed CS increase in number of ultrasonic vocalization calls (VB vs CS, U=27.500, p=0.025; CS vs CS + 

treatment; x2=6.203, p=0.045, Kruskal-Wallis test followed by U-Mann Whitney test). e) CS reduced preference for the foster dam bedding is reversed by B.breve 

and scGOS/lcFOS administration (VB vs CS, x2=35.000, p=0.001, Mann-Whitney test; CS vs CS + treatment; x2=10.484, p=0.005, Kruskal-Wallis test followed 

by multiple comparisons). CS increased preference for neutral bedding is normalised by treatment with B.breve and GOS/FOS (VB vs CS, x2=35.000, p=0.001, 

Mann-Whitney test; CS vs CS + treatment; x2=10.484, p=0.005, Kruskal-Wallis test followed by multiple comparisons test).f) Novel object recognition. VB (t 

(10)=3.935, p=0.003), CS (t (7)=-0.211, p=0.839), CS+B.breve (t (9)=1.876, p=0.093), CS+scGOSlc/FOS (t(7)=5.772, p=0.001) ([Paired Student T-test]).Novel 

vs. Familiar object. g) Social novelty.VB (t (10)=-2.974, p=0.014), CS (t (7)=0.180, p=0.863), CS+B.breve (t (8)=-2.227, p=0.057), CS+scGOS/lcFOS (t(7)=-3776, 

p=0.007) ([Paired Student T-test]).Novel vs. Familiar mouse. h) Oxytocin receptor (Oxtr) relative expression (VB vs CS, t (17)=-2.543, p=0.021, Student t- test; 

CS vs CS + treatment (F(2,21)= 5.402, p=0.013, One-way ANOVA, followed by Tukey post hoc. i) (VB vs CS, U=0.000, p=0.004, Mann-Whitney test; CS vs CS 

+ treatment; x2=20.472, p<0.0001, Kruskal-Wallis test followed by multiple comparisons). i) Treatment with B.breve and scGOS/lcFOS restores Bifidobacterium 

spp. concentration in the CS offspring (VB vs CS, x2=0.000, p=0.004, Mann-Whitney test; CS vs CS + treatment; x2=20.472, p<0.0001, Kruskal-Wallis test followed 

by multiple comparisons. Exact n numbers of offspring used are specified at the graphs. a-b) Offspring in each cohort derived from VB group, 9 litters; CS group, 

6 litters. c-i) Offspring in each cohort derived from VB group, 4 litters; CS group, 3 litters; CS+ B.breve, 3 litters; and CS scGOS/lcFOS, 3 litters.*p< 0.05 CS vs 

VB; £p=0.05 and £££p<0.001 CS vs CS+ treatment groups, ###p<0.001 CS prebiotic vs. CS B.breve. VB, vaginal birth; CS, C-section.
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2.3.5 C-section Increases Stress Vulnerability in Healthy Young Adults 

Although microbiome changes have been well documented in C-section born individuals 

(Dominguez-Bello et al., 2010; Hill et al., 2017; Penders et al., 2006), there has been 

limited investigation on the long-term effects of this dysbiosis on psychological and 

physiological responses to stress. To fill this knowledge gap and to test the translatability 

of our mouse model findings, adult human volunteers of known birth modality underwent 

a Trier Social Stress Test (TSST) to investigate the HPA axis, inflammatory and 

psychological response to acute psychosocial stress (Allen et al., 2014). Although C-

section participants did not exhibit a differential salivary cortisol response to the TSST 

(Figure 2. 5a), concentrations of IL-1β (Figure 2. 5b.) and IL-10 (Figure 2. 5c), but not 

IL-6, IL-8 or TNF-α (Supplementary figure 2.5a-c), were significantly higher in C-

Section subjects compared with vaginally born participants throughout the testing period, 

although this was due to elevated baseline levels and not acute stress. Measures of positive 

affect were significantly lower throughout the procedure (See Supplementary figure 

2.6a), although negative affect was not (See Supplementary figure 2.6b). Participants 

born by C-section reported greater psychological stress in response to the TSST when 

compared to vaginally born participants (Figure 2. 5c).  

To further examine the effect of stress on individuals born by C-section, a subset of 

participants attended two experimental days, one of which took place during their end-of-

term university examination period (Exam Stress; after their 1st but prior to their last exam, 

and not on the same day as an exam) and one took place during term-time, but at least 4-

6 weeks before or after their end-of-term examination period (Non-Stress). HPA axis 

function, as measured by the cortisol awakening response during the Non-Stress and 

Exam-Stress periods, was not significantly different between C-section and vaginally 

born participants (See Supplementary figure 2.7a). However, the anti-inflammatory 

cytokine IL-10 was significantly elevated during the Exam-Stress period in C-Section 

participants (See Supplementary figure 2.7a). There was no group difference in IL-1β, 
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IL-6 or IL-8 (See Supplementary figure 2.7b-d). Marginally elevated levels of TNF- α 

were observed in the C-section participants during the Non-Stress and Exam-Stress 

periods compared with vaginally born participants (Figure 2. 5d). When comparing 

psychological distress levels during the Non-Stress and Exam-Stress periods, participants 

born by C-section reported significantly greater levels of trait anxiety (Figure 2. 5e), 

perceived stress (Figure 2. 5f), but not depression (See Supplementary figure 2.6c) 

when compared to vaginally born participants, during the Exam Stress period but not 

during the Non-Stress period. Interestingly, we identified no difference in cognitive 

performance on tests of visuospatial memory (See Supplementary figure 2.8a), response 

inhibition (See Supplementary figure 2.8b) attentional flexibility (See Supplementary 

figure 2.8c) or reversal learning (See Supplementary figure 2.8d) were detected 

between C-section and vaginally born participants during the Non-Stress or Exam Stress 

period. With regard to the microbiome composition unweighted UniFrac distances from 

the averaged rarefied 16S rRNA gene dataset determined that as in the adult mouse study, 

the microbiota data from C-section delivered subjects did not separate from vaginally born 

young adult participants. Likewise, there were no differences in alpha diversity and 

relative phylum abundance in vaginally-born and C-section born adults (See 

Supplementary figure 2.11, Supplementary Table 2. 7 and Supplementary Table 2. 

8). 
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Figure 2. 5- Increased psychological response to acute psychosocial stress and exam stress, and elevated 

inflammatory markers in C-section participants. 

a) Salivary cortisol response (Stress (F(3.19, 220.01)= 73.26, p=0.001, p
2 = 0.52); Group (F(1, 69)= 0.14, 

p=0.7, p
2 = 0.002); Stress x Group (F(3.19, 220.01)= 0.36, p=0.79, p

2 = 0.005; n= 3 [VB], n= 32 [C-

section]). b) IL-1β response (Stress (F(3, 120)= 3.143, p=0.026, p
2 = 0.043); Group (F(1, 70)= 6.584, 
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p=0.012, p
2 = 0.086); Stress x Group (F(3,120)= 5.92, p=0.62, p

2 = 0.008; n= 39 [VB], n= 33 [C-section]). 

c) IL-10 are elevated in C-Section participants from baseline and across time-points (Stress (F(2.492, 

176.96)= 0.521, p=0.634, p
2 = 0.007); Group (F(1, 71)= 4.24, p=0.043, p

2 = 0.056); Stress x Group 

(F(2.492, 176.96)= 0.615, p=0.58, p
2 = 0.009; n= 39 [VB], n= 34 [C-section]).d) Self-reported 

psychological stress response (Stress (F(2, 146)= 92.53, p<0.001, p
2 = 0.56); Group (F(1, 73)= 4.72, 

p=0.033, p
2 = 0.061); Stress x Group (F(2, 146)= 1.17, p=0.31, p

2 = 0.016; n= 40 [VB], n= 35 [C-section]), 

to the TSST procedure. e)TNF-α levels (Stress (F(1, 65)= 30.448, p<0.001, p
2 = 0.319); Group (F(1, 65)= 

4.513, p=0.037, p
2 = 0.065); Stress x Group (F(1, 65)= 0.006, p=0.936, p

2 < 0.001; n= 38 [VB], n= 29 [C-

section]), post-hoc comparisons at Non-Stress period [ p= 0.069] and Exam-Stress period [ p=0.058]). f) 

State anxiety levels as measured using the State Trait Anxiety Inventory (Stress (F(1, 67)= 35.48, p<0.001, 

p
2 = 0.35); Group (F(1, 67)= 5.21, p=0.026, p

2 = 0.072); Stress x Group (F(1, 67)= 0.59, p=0.59, p
2 = 

0.45; n= 38 [VB], n= 31 [C-section]). g) Psychological stress as measured using the Perceived Stress Scale 

(Stress (F(1, 68)= 5.12, p=0.027, p
2 = 0.07); Group (F(1, 68)= 5.45, p=0.023, p

2 = 0.074); Stress x Group 

(F(1, 68)= 2.98, p=0.089, p
2 = 0.07; n= 38 [Vaginally born], n= 32 [C-section]), during a Non-Stress and 

Exam Stress period. Post hoc comparisons using Bonferroni correction: *p> 0.05; **p< 0.01. Data are 

presented as mean ± S.E.M. 

 

2.4 Discussion 

Mode of delivery at birth is one of the key factors regulating microbiota composition of 

infants (Brestoff and Artis, 2013; Makino et al., 2013). Disturbances in the appropriate 

establishment of the microbiota composition at the beginning of life have been implicated 

in long-term programming of health and in increasing susceptibility of immune and 

metabolic disorders (Brestoff and Artis, 2013). Here, for what is to our knowledge the 

first time, we extend the known negative outcomes of C-section to include enduring 

changes in behavior and stress sensitivity. In the mouse model we describe that birth by 

C-section leads to elevated stress, anxiety-like behavior, working memory, social 

recognition deficits, immunological and physiological changes. The translational 

relevance of these preclinical findings is demonstrated by the increased psychological 

distress and anxiety in healthy young adults born by C-section.  

Use of an animal model allowed us to interrogate a number of potential mechanisms 

whereby C-section delivery may lead to changes in behavior and physiology. Of interest, 
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a recent study demonstrated that birth by C-section results in metabolic changes in a 

similar animal model. Here we demonstrate that neurobehavioral differences in mice are 

associated with gut microbiota changes in early-life and adolescence whereas, by 

adulthood, all differences in gut microbiota are resolved both in animals and humans 

(Figure 2. 2 and Supplementary figure 2.9). Altered microbiome composition at critical 

stages of early-life, during which rapid central nervous system development occurs, has 

been implicated in a variety of behavioral alterations in animals (O’Mahony et al., 2017) 

and humans (Carlson et al., 2018; Christian et al., 2015). Interestingly, although the 

microbiota composition changes are fully recovered by adulthood the negative behavioral 

effects of C-section endure. The finding that co-housing can reverse the cognitive, anxiety 

and social deficits, which occur due to C-section, further implicates the microbiota in 

mediating some of these deficits. Moreover, co-housing VB with CS mice induced 

intestinal motility deficits but not behavioral deficits. Previous human studies have 

demonstrated that C-section reduces bifidobacterium abundance (Dominguez-Bello et al., 

2010) and given the importance of this species to early priming of gut and immune health 

we investigated whether alterations in Bifidobacteria levels contribute to the changes 

observed. Indeed, C-section resulted in a transient decrease in Bifidobacterium spp. 

abundance in the fecal microbiota of adolescent mice. Further promotion of growth of 

Bifidobacterium spp. from birth with either prebiotics (scGOS/lcFOS) or a specific B. 

breve strain both prevented CS offspring from developing anxiety-like, working memory 

and social cognition deficits. These data, coupled with that emanating from germ free 

animals (Diaz Heijtz et al., 2011; Foster and McVey Neufeld, 2013) and other models of 

disrupted microbiota (Diaz Heijtz et al., 2011; Foster and McVey Neufeld, 2013; Kelly et 

al., 2016), confirm that there are critical windows in which the restoration of microbiota 

post-weaning can reverse some but not all of the responses observed due to loss of 

microbiota. Moreover, they support the concept of microbiota-targeting interventions to 

reverse C-section-induced changes across the microbiota-gut-brain axis (Moya-Pérez et 

al., 2017). 

Alterations in early-life gut microbiota are also implicated in social behavior development 

(Sandi and Haller, 2015) and here we show that CS mice have maternal attachment deficits in 
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early-life. Although these animals present normal social preference, they have a specific 

deficit in social-novelty preference which is similar to the social behavior of germ-free mice 

that have been colonized post-weaning (Desbonnet et al., 2015). Oxytocin signaling in the 

amygdala is essential for processing of relevant social cues and modulating social recognition 

(Ferguson et al., 2001). In addition, alterations in the oxytocin receptor (OXTR) have been 

implicated to the aetiology of a wide range of psychopathologies (Johnson and Young, 2017). 

In accordance with this, CS mice have elevated gene expression levels of the oxytocin receptor 

in the amygdala. There is growing evidence that microbiota could influence oxytocin levels 

improving social behaviour, stress and general health in the host (Buffington et al., 2016; 

Poutahidis et al., 2013). Interestingly, in this study promotion of growth of Bifidobacterium 

spp. from birth also corrected C-section mediated changes in the OXT receptor system. 

Moreover, as in germ free mice, CS-born offspring exhibit deficits in hippocampal-dependent 

working memory tasks (Desbonnet et al., 2014). In agreement with this, gene expression 

analysis of the hippocampus revealed differential expression of genes involved in the 

proteinacious extracellular matrix (ECM) and cell adhesion processes in the hippocampus of 

CS offspring, both of which have been implicated in memory processes (Tsien, 2013). Indeed, 

during brain maturation, the ECM is crucial for plasticity and synapse formation underpinning 

cognitive flexibility and memory (Happel et al., 2014). Further studies on the relative 

contribution of the up-regulation of proteinaceous ECM genes in the hippocampus of CS mice 

to their social and cognitive deficits are now warranted.  

Gastrointestinal dysfunction may be a potential mechanism mediating the C-section-induced 

behavioral and HPA axis alterations observed (Hsiao et al., 2013; Kelly et al., 2015). Indeed 

CS born mice have faster gastrointestinal motility compared with VB mice. Moreover, in 

adolescence (P23), small intestine permeability was significantly reduced in CS mice 

compared with VB mice reflecting a more resilient small intestine barrier whereas in 

adulthood this had resolved. Conversely, circulating LPS levels were higher in the plasma of 

adolescent mice which would result in elevated inflammatory processes at this critical period. 

Interestingly, immune changes persist into adulthood whereby CS mice have more IL-10, 

TNFα and IL-12p70, produced from stimulated thymocytes challenged with ConA than VB 

mice. 
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The data from healthy human volunteers, although preliminary, implies that mode of delivery 

at birth has an enduring effect on host immune system and behavioral response to stress. 

Indeed, as in our animal studies (Figure 2. 3c), the microbiota of both groups is 

indistinguishable in adulthood (See Supplementary figure 2.9). The higher levels of IL-1β 

and 1L-10 in C-section when compared to vaginally-born participants support a dysregulation 

of immune-brain signaling in regulating behavior (Sternberg, 2006) and parallels the enduring 

immune changes in the animal model. Some early gut bacteria colonizers (i.e. Bacteroides; 

Bifidobacteria and Lactobacillus species) promote regulatory T cells (Foxp3(+) regulatory T 

cells (Tregs) and induce IL-10 production (Johansson et al., 2012; Round and Mazmanian, 

2010). Likewise, these early bacterial colonizers are important for the activation of regulatory 

B cells that can drive IL-10 and IL1-ß production (Rosser et al., 2014). The association 

between the mode of delivery and the production of IL-10 and IL1- ß has been previously 

described in early-life in humans (Malamitsi-Puchner et al., 2005) and mice (Hansen et al., 

2014).  

Measures of positive affect in the human cohort were significantly lower throughout the acute 

stress procedure and these individuals reported greater psychological stress in response to the 

TSST. Perhaps surprisingly, there is a dissociation between self-reported stress measures and 

cortisol output in the TSST. However, there are a large number of studies which have not 

reported any relationship between self-reported stress and cortisol output (See (Campbell and 

Ehlert, 2012) for review). To probe this dysregulation in stress sensitivity we took advantage 

of a naturalistic stressor, University examination stress, and found that the anti-inflammatory 

cytokine IL-10 was significantly elevated during the Exam-Stress period in C-section 

participants and levels of TNF-α were increased. Individuals born by C-section also reported 

significantly greater levels of trait anxiety and perceived stress during the Exam Stress period 

but not during the Non-Stress period. Given the importance of mode of delivery in microbiota 

composition and subsequent immune and HPA axis priming (Foster and McVey Neufeld, 

2013), it is tempting to speculate that it may be causally related to the changes observed. 

However, the nature of the current study design does not allow us to investigate factors that 

are responsible for such changes in this cohort as they occurred >20 years prior to testing. 

Moreover, although both mice and men show increased stress vulnerability, the behavioral 
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and physiological manifestations of these is qualitatively different in both species which may 

reflect their very different life and nutritional experiences. Future cohort studies, which have 

temporal microbiota analysis coupled with different mode of delivery stratifications, across 

the lifespan, are now warranted to investigate such mechanisms (Dominguez-Bello et al., 

2010). Such studies should take into account the rationale underpinning the C-section (e.g. 

complicated pregnancy) and could also include prenatal maternal stress measures which is 

known to affect microbiome composition and offspring stress responses (Jašarević et al., 

2015a). Moreover, the role of sex, birth-order and season of testing should be explored in 

future studies. Until recently there has been limited epidemiological data examining 

behavioral and psychiatric outcomes in individuals born by C-section. Indeed, where 

associations have been made in autism and psychosis they disappear when familial 

confounding is taken into place (Curran et al., 2015a; O’Neill et al., 2016). However, 

associations between mode of delivery and attention deficit disorder (Curran et al., 2016b) and 

school performance in Swedish adolescents have been described (Curran et al., 2017), 

however direct measures of stress and cognitive performance have not been investigated to 

date. Thus, our human data are, to our knowledge, the first attempt at stratification of stress 

response by mode of delivery.  

Together these findings raise significant concerns regarding the increased use of C-section 

deliveries because of likely consequential stress, social and cognitive effects. The animal 

model data implicate the microbiome in mediating such effects. However, it is clear that C-

section induces many other physiological changes (Golubeva et al., 2015; Jašarević et al., 

2015b; Zijlmans et al., 2015) such as stress and immune priming during the birthing process 

that may also contribute to the phenotype (Lagercrantz and Slotkin, 1986a). Finally, since C-

section deliveries when medically indicated are unavoidable lifesaving interventions, our data 

point to the possibility of developing adjunctive microbiota-targeted therapies (Dominguez-

Bello et al., 2016; Moya-Pérez et al., 2017) which may help to avert any long-term negative 

consequences on stress responsivity, physiology and behavior.  
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2.5 Online Methods  

2.5.1 Animals 

The experiments were performed out in male Swiss mice of different ages. 8 week old 

female and male breeders were obtained from Harlan laboratories, UK. Breeding began 

after 1-2 weeks of acclimatization to the animal holding room. The animals were kept 

under a strict 12:12-h dark-light cycle and temperature (20±1 oC, 55.5%), with food and 

water ad libitum unless specified otherwise. Male offspring were weaned at P21 and 

group-housed in 3-4 mice per cage. Groups consisted of offspring from 3-10 independent 

litters. Moreover, 10 weeks old Swiss mice, purchased from Harlan laboratories, UK, 

were used as conspecifics on the three-chamber test. All the procedures used in the present 

study were conducted in accordance with the Directive 2010/63/EU for the protection of 

animals used for scientific purposed and were approved by the Animal Experimentation 

Ethics Committee of University College Cork # 2012/036.  

2.5.2 C-section Surgery 

Mice were time-mated, and the presence of a vaginal plug was marked as gestational day 

0.5 (G0.5). Males were removed from the cage and pregnant females were not disturbed 

unless for cage cleaning. At full term (G20.5) female mice was euthanized by cervical 

dislocation. To reduce bacterial contamination of the abdominal cavity, the abdominal 

skin was prepped by application of 70 % ethyl alcohol and the abdominal skin was 

retracted. The abdomen was incised and the uterus was removed and placed on sterile 

gauze. To prevent hypothermia of the fetus in the uterus, a heating pad was placed beneath 

to provide thermal support. The pups were then removed by gentle pressure with a sterile 

swab and the umbilical cord was cut. Sterile cotton swabs were used to tear the amniotic 

membrane and massage each pup until spontaneous breathing was noted. The pups were 

given to a foster dam that gave birth on the same day. Additional pregnant females were 

allowed to deliver spontaneously and the litters were used as full-term vaginal delivery 
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controls. The pups were dried by smearing them with the bedding material in the cage of 

foster dam. To control for the effects of fostering an additional cross-fostered vaginally 

born group was included in the design.  

2.5.3 Cross-fostering 

Cross-fostering was performed on pups born from breeding pairs within 12 hours of each 

other. On the day of the birth the litters were removed and put with their nurse mothers. 

The pups were nursed by their respective foster mothers until weaning. Given that CF and 

VB animals had the same phenotype across a variety of domains (anxiety, HPA axis 

response, and social behavior and immune system), for later experiments (Figure 2. 3 and 

Figure 2. 4) we focused on just one control group to minimize animals usage.  

2.5.4 Co-housing Procedure 

At three weeks of age, male offspring born by vaginal birth or C-section were weaned and 

mice were divided into different housing conditions: vaginal birth group, where each cage 

consisted of three to four vaginal delivered mice housed together (from 9 litters); C-

section, where each cage consisted of four C-section born mice housed together (from 6 

different litters); co-housing, where for each cage one C-section born mice was housed 

together with three vaginal born mice (CS co-housed, from 7 litters and VB co-housed: 

n=36, from 10 litters) (Figure 2. 3). The co-housing system was based on Buffington et 

al., (2016) (Buffington et al., 2016). In the vaginal birth co-housed group, one animal per 

cage was randomly selected to pass through behavioral and for post-mortem analysis. 

2.5.5 Probiotic and Prebiotic Administration 

Following birth by C-section pups were exposed to probiotic Bifidobacterium breve 

M16V (B.breve) suspended in MediDrop clear H2O (75-02-1001) at a concentration of 

109 c.f.u./ml or a combination of scGOS and lcFOS in a 9:1 ratio at a final concentration 
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of 1% into the custom-made AIN93G rodent diet. Both interventions were given to the 

dams from birth during the lactation period. Male offspring were weaned at P21 on to the 

same corresponding interventions throughout behavioral testing. Foster dams of VB 

control mice received MediDrop clear H2O (75-02-1001) and AIN93G diet at libitum 

during lactation. At P21 the VB mice were weaned on the same corresponding diet as 

their foster dams. 

2.5.6 Behavioral Testing 

The short and long-term effects of C-section were evaluated in male mice both during 

early-life and (P9/P10) adulthood (week 8-16). An independent cohort of animals of mice 

was used for the behavioral tests conducted in adolescence starting at P21. Mice were 

habituated to the room 30 minutes prior to each test. The experimental procedures are 

described below and illustrated in Figure 2. 1b. The order of selected behavioral test and 

intervals was chosen to minimize the potential confounding carryover effects from the 

previous behavioral test.  

2.5.6.1 Isolation-induced Ultrasonic Vocalizations Test (USV) 

At P9, the USV was performed accordingly with the protocol described previously 

(Robertson et al., 2017).  

2.5.6.2 Homing Test 

The homing test was performed at P10 in order to evaluate the tendency of pups to 

recognize their mother and siblings nest as previously described (Macrì et al., 2010). 

2.5.6.3 Forced-swim Test  

Forced swim test is widely used experimental paradigm to assess depression-like 

behaviour in rodents as described (Cryan et al., 2001; Mombereau et al., 2004). 
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2.5.6.4 Three-chamber Test  

Sociability and preference for social novelty were assessed in a three-chamber apparatus, 

as described previously by (Desbonnet et al., 2014). 

2.5.6.5 Defensive Marble Burying 

The defensive marble burying test was performed accordingly to (Sweeney et al., 2014).  

2.5.6.6 Elevated Plus Maze 

The elevated plus maze was conducted as described (Jacobson et al., 2007). 

2.5.6.7 Aversive Open Field  

The test was performed accordingly to (Savignac et al., 2011) with the lights set as 1000 

lux. 

2.5.6.8 Hot Plate 

The hot plate test was performed as described by (Tramullas et al., 2012). 

2.5.6.9 Novel Object Recognition Task  

Working memory was assessed through the novel task as described by (Robertson et al., 

2017). 

See Supplementary Methods for detailed description of behavioral tests. 
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2.5.7 In Vivo Intestinal Motility  

Mice were single-housed and habituated to new cages for three hours for acclimatization. 

Following the acclimatization, mice received 200µL oral gavage of Carmine (C1022; 

Sigma Aldrich) suspended in 0.5% carboximethylcelulose (CMC) sodium salt (Sigma; St 

Louis, MO, USA). Time of the first coloured bolus is recorded.  

2.5.8 Murine HPA Axis Response  

2.5.8.1 Corticosterone Response to FST 

Blood samples were taken to assess the HPA axis response to a mild acute stress (FST) in 

adolescence (P25) and adulthood (week 16) accordingly to (Robertson et al., 2017). Total 

corticosterone was measured according to manufacturer's protocol, Corticosterone ELISA 

kit (Enzo Life Sciences, Farmingdale). Plasma dilution was 1:50.  

2.5.9 Intestinal Permeability Assays 

2.5.9.1 In Vivo Intestinal Permeability to Fluorescein Isothiocyanate–

dextran (FITC-dextran)  

For this procedure mice were fasted overnight. Next day early in the morning FITC-

dextran, MW = 4 kDa (FD4, Sigma) was given orally by gavage, (600 mg/kg, 80 mg/ml) 

in phosphate buffered saline (PBS). A blood sample (100 μl in heparin-coated glass 

capillary) is taken from tail vein 2 hours after oral gavage. Samples were kept on ice, 

centrifuged at ~ 3500 g for 15 min, plasma was aspirated, transferred to amber tubes, kept 

on ice and analysed on the day of sampling. Plasma was measured undiluted, 25 μl in 384 

well plate. FITC was measured with a Victor spectrometer. The excitation maximum is 

490 nm, the emission maximum was 520 nm (measured at 535 nm). For a standard curve, 

serial dilutions of FITC were prepared in PBS. 
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2.5.9.2 Detection of Gram-negative Bacterial Endotoxin 

Endotoxin levels in the murine plasma were estimated using the Limulus Amebocyte 

Lysate (LAL) QCL-1000 assay kit (Lonza) according to manufacture’s instructions.  

2.5.10 RNA Isolation and Synthesis of cDNA 

Total RNA was isolated from the ventral hippocampus (HIP), paraventricular nucleus of 

the hypothalamus (PVN), amygdala (AMY), hypothalamus (HYP), pituitary gland, colon 

and ileum using the mirVana™ miRNA Isolation Kit as per manufacturer’s instructions 

(Thermo Fisher Scientific). RNA concentration was quantified using the ND-1000 

spectrophotometer (NanoDrop®). Following RNA extraction, equal amounts of RNA 

were reverse transcribed to cDNA using a High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems, Life Technologies, Carlsbad, CA). All cDNA was stored at −20 

°C until time of assay. 

2.5.11 qRT-PCR 

Gene expression was analyzed using Gene Expression Assays on an AB7300 system 

(Applied Biosystems, Thermo Fisher Scientific). Expression levels were calculated as the 

average of three technical replicates for each biological sample from all three groups 

relative to β-actin expression. Fold changes were calculated using the ΔΔCt method 

(Livak and Schmittgen, 2001). 

2.5.12 RNA Sequencing Brain Samples 

Library preparation and sequencing as well as Fastq-file generation was done by Beckman 

Coulter Genomics service (Danvers, MA, USA). Paired-end reads of 2×100 bp were 

produced on an Illumina HiSeq2500 sequencer. 
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2.5.12.1 Bioinformatic Analysis Pipeline 

Fastq-format reads were quality filtered and trimmed using Trimmomatic (v0.32) (Bolger 

et al., 2014) with the following non-default parameters: AVGQUAL: 20; 

SLIDINGWINDOW: 4:20; LEADING: 10; TRAILING: 10; MINLEN: 60. Alignment to the 

mouse reference genome (GRCm38.p3) was achieved using the STAR aligner (v2.4.0f1) 

Dobin (Dobin et al., 2013) with default options and an index compiled with gene models 

retrieved from the Ensembl database (release 78). These gene models were also used for 

read counting for each gene using HTSeq-Count (v0.6.0) (Anders et al., 2015) with the 

following non-default parameters: -s: no; -r: pos; -q –f bam –m intersection-nonempty. 

Differential gene expression was determined using the DESeq2 R-package (v1.6.2) (Love 

et al., 2014) with default parameters on pairwise comparisons of all possible group 

combinations. An adjusted p-value ≤ 0.1 (Benjamini-Hochberg method) was considered 

significantly differentially regulated. Raw and processed original data will be deposited 

in NCBI's Gene Expression Omnibus (Barrett et al., 2013) and made accessible through 

a unique GEO accession number upon publication. 

2.5.13 Murine Splenocyte and Thymocyte Stimulation 

Spleens and thymus were collected immediately following sacrifice and cultured as 

described (Robertson et al., 2017). 

2.5.14 Study Participants  

The study protocol (APC050 2014) and all procedures were approved by the Cork 

Teaching Hospitals Ethics Committee and conducted in accordance with the ICH 

Guidelines on Good Clinical Practice, and the Declaration of Helsinki. Study participants 

were all male between 18-25 years of age, recruited via advertisement from the student 

population of University College Cork. Forty vaginally born participants and by 36 

participants born by C-section (18-planned C-section; 15-emergency C-section; 3-

http://topics.sciencedirect.com/topics/page/Reference_genome
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unknown. Self-reported race and ethnicity were: for vaginally born participants (38 

Caucasian and 2 Asian) and C-section participants (34 Caucasian and 2 Asian) matched 

on the basis of age, BMI and average units of alcohol consumed per week. Exclusion 

criteria included having a BMI ≥30, formal psychiatric diagnosis of major depression, 

anxiety disorder, bipolar spectrum disorder, schizophrenia or other DSM-IV Axis-I 

disorder, use of psychoactive medication(s) (anxiolytics, antipsychotics, antidepressants, 

corticosteroids and opioid pain relievers), regular use of non-steroidal anti-inflammatory 

medications or antibiotic use in the previous 4 weeks. In addition, healthy control 

participants were excluded if they reported a history of chronic physical illness  

2.5.15 Human Study Procedures  

Participants were screened to check suitability for study inclusion and were subsequently 

scheduled to attend one or two study visits at the Mercy Hospital, Clinical Research 

Facility, Cork City. All participants provided full written informed consent before any 

experimental procedures commenced. All participants attended one visit during term-time 

(Non-Stress/TSST visit), but not within ± 6 weeks of a formal end of term examination 

period, and a subset of 38 vaginally born and 32 C-section participants completed another 

visit carried out during the participants University Examination period (Exam Stress visit) 

(See Supplementary Supplementary Table 2. 5 for detailed description of participants 

demographic). Order of visits was counterbalanced so that roughly half of each group 

completed the Non-Stress visit first and the other half completed the Exam Stress visit 

first. At the Exam Stress and Non-Stress visit, participants completed a battery of 

cognitive tests and completed self-report measures assessing mood, anxiety and perceived 

stress (see Self-Report Measures). In addition, during the Non-Stress visit participants 

completed the Trier Social Stress Test (TSST; See Supplementary Methods for detailed 

description of TSST methodology).  
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2.5.15.1 Self-Report Measures 

See Supplementary Methods for detailed description of Self-Report Measures. 

2.5.16 Human Proinflammatory Cytokine Sampling & Analysis  

To determine the immune response to acute psychosocial stress 5-10ml of whole blood 

was collected in EDTA tubes at 4 time-points throughout the TSST; t -45, t+20, t+50, 

t+80. To determine the effect of exam-stress on immune function 10-15ml of whole blood 

was collected in EDTA tubes during each study visit (Non-Stress/ Exam Stress). Samples 

were centrifuged immediately at 1,500 x g for 10 minutes and aliquoted plasma samples 

were frozen at -80°C until analysis. Plasma levels of IL-10, IL-1β, IL-6, IL-8, and TNF-

α were assayed in duplicate using high sensitivity commercially available 

electrochemiluminescence MULTI-SPOT® Meso Scale Discovery kits (MSD, Rockville, 

MD, USA) as per manufacturer’s instructions. The median lower limits of detection for 

each cytokine are; IL-6- 0.06 pg/ml, IL-8- 0.04 pg/ml, TNF-α- 0.04 pg/ml and IFN-γ- 0.2 

pg/ml.  

2.5.17 Human Hypothalamic-pituitary-adrenal (HPA) axis response 

2.5.17.1 Salivary Free Cortisol Sampling & Analysis  

Saliva samples were obtained using Salivette® devices (Sarstedt, Ireland). Participants 

were instructed to roll the synthetic bud around their mouths while chewing lightly for 

1.5 minutes. To determine the HPA axis response to acute psychosocial stress, saliva 

samples were collected at seven time-points throughout the TSST; t -45, t0, t+20, t+35, 

t+50, t+65, t+80. Samples were kept chilled at ~4°C until the end of the experimental 

protocol. To determine the effect of exam stress on HPA axis function, the salivary 

cortisol awakening response (CAR) was measured at each time point. On the morning 

prior to each study visit (Non-Stress/ Exam Stress) participants were instructed to collect 
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4 saliva samples (upon wakening, 30 minutes post-wakening (t+30), 45 minutes post-

wakening (t+45), 60 minutes post-wakening (t+60).  

 Saliva samples were centrifuged for 5 minutes at 1000g to extract saliva and samples 

were stored at -80°C until analysis. Cortisol concentrations were determined using the 

Cortisol Enzyme Immunoassay Kit as per manufacturers’ instruction (Enzo® Life 

Sciences, Exeter, UK). Assay detection limit was 0.16 nmol/L. Inter and intra-assay % 

C.Vs were 11.24 % and 8.2% respectively.  

2.5.18  Cognitive assessment: Tests from the CANTAB battery 

(http://www.cambridgecognition.com/) 

See Supplementary information for detailed description of cognitive tests.  

2.5.19 16S rRNA Gene Amplicon Sequencing of Intestinal Microbiota 

Animal and Human Samples 

Raw sequences were merged using Flash (with a minimum overlap of 30 bp and minimum 

read length of 460bp) and quality checked using the split libraries script (with default 

parameters) from the QIIME package version 1.8.1. Reads were clustered into OTUs with 

97% sequence identity threshold and chimeras and singletons removed with the 64-bit 

version of USEARCH (version 7). Subsequently, OTUs were aligned to the SILVA rRNA 

specific database (version 123) to assign taxonomy and a phylogenetic tree was generated 

within QIIME (for animal samples). Taxonomy to genus level was assigned using the 

Mothur program (version 11.4) using the RDP database (version 11.4). Species level 

classification was performed using SPINGO (version 1.3) using the RDP database 

(version 11.2) (for human samples). Alpha diversity analyzes were also implemented within 

QIIME. Principal coordinate analysis plots, based on bray-curtis distances, were 

generated using the vegan package in R. 

http://www.cambridgecognition.com/
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2.5.20 DNA Isolation from Fecal Samples for Bifidobacteria Determination 

Total bacterial DNA was extracted from the fecal pellets using the QIAamp DNA Stool 

Mini Kit (Qiagen, Sussex, UK) according to manufacturer’s instructions, coupled with an 

initial bead-beating step.  

2.5.21 Quantitative Determination of Bifidobacteria in Fecal Pellets  

Absolute quantification of Bifidobacterium spp. in fecal pellets DNA was determined by 

q-PCR using the Roche LightCycler 480 platform (Roche Diagnostics, West Sussex, UK) 

and KAPA SYBR® FAST qPCR Kit Master Mix (2x) Universal (KAPA Biosystems, 

Massachusetts, US) as per the manufacturers recommended protocol. Previously 

described genus-specific primers were used for the quantification (Matsuki et al., 2002). 

Standard curves were created using bacterial DNA extracted from a pure culture of 

Bifidobacterium longum NCBIM8809 as previously reported (Arboleya et al., 2012). 

2.5.22 Statistical Analysis  

See Supplementary Methods for detailed description of statistical methodology.  

2.6 Supplementary Methods 

2.6.1 Preclinal Study 

 Behavioral Tests 

Behavioral tests were performed and analyzed by two independent experimenters blinded 

to group and intervention.  
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 Isolation-induced Ultrasonic Vocalizations Test 

Isolation-induced ultrasonic vocalizations (USV) are produced by mice pups during the 

first two weeks of life when separated from mother and littermates (Winslow et al., 2000). 

Pups were isolated from their mother and littermates and placed in a clean plastic 

container into a sound attenuating chamber. Emission of ultrasonic vocalizations are 

monitored by an ultrasound sensitive microphone – a bat detector (US Mini-2 bat detector, 

Summit, Birmingham, USA) tuned in the range of 60-80 kHz – suspended above the 

isolated pup for 3 minutes and the number of calls were noted. 

 Homing Test 

The homing test evaluates the tendency of pups to recognize their mother and siblings 

nest (Macrì et al., 2010). At P10 the floor of a clean mouse cage was subdivided into three 

areas by wire-mesh dividers, one of which was uniformly covered with wood shavings 

from the home cage, thus containing familiar odour stimuli. The opposite space was 

covered with wood shavings from the cage of another litter (born at approximately the 

same time), the middle section was covered with clean bedding material. Individual pups 

were placed in the middle section for 1 minute, the dividers were then removed and the 

pups were allowed to freely move around for 2 minutes. Total time spent in each area was 

noted. 

 Forced-swim Test  

In this test, animals were placed into a cylinder of tepid water (23-25 oC) to a depth of 17 

cm. Behavior was recorded by a camera positioned from above the swim tank. The 

immobility time was scored during the last 4 min of the 6 min test. Animals, after removal 

from the cylinder, are placed into a separate cage for recovery. 
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 Three-chamber Test  

Animals were placed in a rectangular apparatus divided into three chambers (left and right 

and a smaller center chamber) by transparent partitions with small circular openings 

allowing easy access to all compartments. The test is composed of three sequential 10 min 

trials: (1) habituation (the test animal were allowed to explore the three empty chambers); 

(2) sociability (an unfamiliar animal was placed in an inner mesh wire cage in either the 

left or right chambers); (3) social novelty preference (a novel animal was placed into the 

previously empty inner cage in the chamber, opposite the now familiar animal). All 

animals were age- and sex-matched, with each chamber cleaned and lined with fresh 

bedding between trials. For each of the three stages, behaviors were recorded by a video 

camera mounted above the apparatus and time of active interaction was measured. 

 Defensive Marble Burying 

The defensive marble burying (DMB) test measures repetitive and anxious behavior, 

indicating higher levels of anxiety at high number of marbles buried. Clean cages were 

filled with a 4-cm layer of chipped cedar wood bedding. Animals were habituated to the 

room for 30 minutes prior to the test. Twenty glass marbles (15 mm diameter) were gently 

laid on top of the bedding, equidistant from each other in a 4×5 arrangement. During the 

testing phase, each mouse was placed in the cage and allowed to explore it for 30 min. At 

the end of the test, animals were placed back into the home and the number of marbles 

buried (> 2/3 marble covered by bedding material) in 30 min was recorded. 

 Elevated Plus Maze 

The elevated plus maze (EPM) is one of the most widely-used behavioral tests to screen 

anxiety-related behaviors (Holmes, 2001; Rodgers, 1997a). The plexiglas maze consists 

of a plus-shaped apparatus with two open and two enclosed arms (50 cm × 5 cm × 15 cm 

walls) elevated from the floor by 1m. The animal was placed in the center of the EPM 
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apparatus facing an open arm and was allowed to explore it for a total period of 5 minutes. 

The apparatus was cleaned with 10% (vol/vol) ethanol after each subject to prevent 

olfactory cues from the previous mouse. Main classic parameters considered were the 

number of entries into open and closed arms and the total entries (open and closed arms). 

Entries into the open and closed arms were considered when mice placed all four paws on 

the arm.  

 Aversive Open Field (OF) 

The open field (OF) test is used to assess the locomotor activity and the response to a 

novel stressful environment. Light was set as 1000 lux. Mice were placed in the center of 

an open field arena (Perspex box with white base: 30 x 30 x 20 cm) and were allowed to 

explore the arena for a 10 minute period. The distance moved and velocity of movement 

in the open field were recorded using Ethovision videotracking system (Noldus 

Information Technology). Using this technology, a center zone and outer zone were 

demarcated. The time spent in and frequency of entry into each zone was also measured 

for each mouse. Mice were placed back into the home cage after testing. The box was 

cleaned with 10% alcohol and allowed to dry prior to next test. 

 Hot Plate 

Mice were placed on a hot plate (Panlab SL, Barcelona, Spain) with the temperature 

adjusted to 55 ± 1 °C. The time to the first sign of nociception, paw licking, flinching or 

jump response was recorded and the animal immediately removed from the hot plate. A 

cut-off period of 30 seconds was maintained to avoid damage to the paws. 

 Novel Object Recognition  

On day 1 animals are habituated to a square open field box (Perspex sides and base: 

34.5cm x 42.7 cm for mice; in a dimly lit room, by individually placing animals into the 
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apparatus for 10 min exploration periods. On day 2, two identical objects are positioned 

on adjacent corners approximately 5 cm from each wall of the open field and each animal 

was introduced for a 10 min exploration period. Animals were then placed directly back 

into their home cages. After a 24hr inter-trial interval, one familiar object was replaced 

with a novel and each animal was introduced for a further 10 minutes exploration period. 

On each day, animals are acclimatized to the testing room for approximately 1 hr. Object 

exploration is defined as when the animal’s nose comes within a 2cm radius of the object. 

In between trials, objects and testing arenas are cleaned with alcohol wipes and rinsed 

with water.  

2.6.1.2 Murine Splenocyte/ thymocyte Stimulation and Cytokines 

Measurement 

Spleens were collected immediately following culling and were cultured. To culture spleen 

cells, first the spleens were dissociated in media [RPMI (with l-glutamine and sodium 

bicarbonate, R8758 Sigma +FBS) (F7524, Sigma)+Pen/Strep P4333, Sigma)]. The 

homogenate was then filtered over a 70µm strainer, centrifuged at 200g for 5min and 

resuspended in media. Cells were counted and seeded (4x106 cells /ml of media). After 2.5 

hours cells were stimulated with lipopolysaccharide (LPS-2 μg/ml) or Concanavalin A (ConA-

2.5 μg/ml) for 24 hours. Similarly, thymocytes were isolated as above and seeded at a 

concentration of 2x106 cells /mL of media.  

Following stimulation, the supernatants were harvested to assess IFNᵧ, IL1β, IL-2, IL-4, IL-5, 

IL-6, KCGRO, IL-10, IL-12p70 concentration (pg/mL) using the Proinflammatory Panel 1 

(mouse) V-PLEX MULTI-SPOT® Meso Scale Discovery kits (MSD, Rockville, MD, USA) 

as per manufacturer’s instructions. The median lower limits of detection for each cytokine are; 

IFNᵧ 0.04 pg/mL, IL1β 0.11 pg/mL, IL-2 0.22 pg/mL, IL-4 0.14 pg/mL, IL-5 0.07 pg/mL, IL-

6 0.61 pg/mL, KCGRO 0.24 pg/mL, IL-10 0.95 pg/mL, IL-12p70 0.13 pg/mL, TNFα 0.13 

pg/mL. 
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2.6.1.3 Qualitative Determination of Bifidobacterium Breve in Fecal 

Pellets 

The occurrence of Bifidobacterium breve species was determined by qualitative PCR 

(Applied Biosystems 2720 Thermal Cycler, Fisher Scientific Ireland Ltd, Ireland) using 

species-specific primers F (5’-AATGCCGGATGCTCCATCACAC-3’), R (5’-

GCCTTGCTCCCTAACAAAAGAGG-3’) and conditions as previously described 

(Gueimonde et al., 2006). The total volume of each reaction mixture was 25 µl, employing 

1µl of DNA extract as a template, 12.5 µl of BioMixTM Red Master Mix (2x) (Bioline, 

UK) and 0.4 µM each primer. The thermal cycle program consisted of an initial cycle of 

95°C for 10 min for denaturation and polymerase activation, 30 cycles of 95°C for 15 s, 

62°C for 1 min, and 72°C for 45 s, and a final extension step of 10 min at 72°C. 

Bifidobacterium breve NCBIM2257 was used as positive control. Amplified products 

were subjected to gel electrophoresis in 1.5% agarose gels and visualized by ethidium 

bromide staining. Samples were analysed in two independent PCR runs. 

2.6.1.4 Short Chain Fatty Acid Analysis  

Briefly, cecal content (30- 40mg) from adolescent and adult mice was vortex-mixed with 1ml 

Milli-Q water and incubated at room temperature for 10 min and subsequently centrifuged at 

10,000g for 5mins to pellet bacteria and other solids. The supernatant was filtered, transferred 

to a clear gas chromatography (GC) vial and 2-ethylbutyric acid (Sigma-Aldrich, Ireland) was 

added as an internal standard. Standard solutions of 10.0 m mol/L, 8.0m mol/L, 6.0m mol/L, 

4.0m mol/L, 1.0m mol/L and 0.5m mol/L of acetic acid, propionic acid, isobutyric acid and 

butyric acid (Sigma-Aldrich), respectively were used for calibration. The concentrations of 

SCFA were measured using a Varian 3800 GC-flame-ionization system fitted with a ZB-FFAP 

column (30 m X 0.32 mm X 0.25 µm; Phenomenex, Macclesfield, Cheshire, UK). Initial oven 

temperature was set at 100ºC for 30 secs and raised to 180ºC at 8ºC per min and subsequently 

held for 1 min, then increased to 200ºC at 20ºC per min and finally held at 200ºC for 5 min. 
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Helium was used as the carrier gas at a flow rate of 1.3ml/min. The temperature of injector 

and the detector were set at 240ºC and 250ºC respectively. A standard curve was constructed 

with different concentrations of a standard mix containing acetic acid, propionic acid, 

isobutyric acid and N-butyric acid (Sigma-Aldrich). Peaks were integrated using the Varian 

Star Chromatography Workstation v6.0 software. 

2.6.1.5 Statistical Analysis for Animal Data 

Data distribution was checked by Kolmogorv-Smirnov test and variances were compared 

using Levene’s test. For parametric data, a Paired Student t-test, a One-way ANOVA, 

Two-way ANOVA and two-way repeated measures ANOVA followed by Tukey post-

hoc was applied accordingly to the protocol adopted. For nonparametric data, a Kruskal-

Wallis test followed by U-Mann Whitney was used. All statistical analyses were carried 

out using IBM SPSS Statistics 22.0 for Windows software package. Extreme outliers and 

technical outliers were excluded when values are 2 x Standard Deviation from the mean. 

Differences for microbiota composition and diversity were calculated using the package 

in R and corrected for multiple comparisons using the Benjamni-Hochberg method. F 

values, P values are presented in the figure legends and Supplementary tables. Statistical 

significance was accepted at the level of p< 0.05. All parametric data is expressed as the 

means ± S.E.M. Non-parametric data is expressed by median and interquartile range. 

2.6.2 Human Study Procedures  

2.6.2.2 TSST Methodology 

The TSST procedure began between 13.00-14.30h for each participant to control for 

diurnal fluctuations in cortisol levels. Participants were instructed to abstain from alcohol 

and strenuous physical exercise for 24 hours prior to visits. In addition, they were asked 

not to consume any caffeine containing products on the day of their Non-Stress study 

visit, and to consume only water for 2 hours prior to the TSST procedure. After collection 

of the first saliva sample for measuring salivary cortisol, participants rested for a 45 



 

120 

 

minute baseline period. Participants were then given standardized written instructions, 

introducing the TSST which was carried out as previously described (Allen et al., 2014). 

Participants were then led to a separate room, equipped with a video camera and 

microphone and two desks. After reiterating the task instructions, participants were given 

a 3 minute speech preparation period, after which, participants were required to perform 

a 5 minute speech outlining their suitability for an ideal job of their choice. This was 

followed by a 5 minute mental arithmetic task in which they serially subtract 17 from 

2023. Task were performed in front of two committee members (one male and one 

female), wearing white laboratory coats and introduced as being experts in identifying 

non-verbal aspects of behavior. Participants were also informed that their speech would 

be both audio and video recorded for later behavioral analysis. Saliva samples and self-

report measures of mood and stress were collected at a number of time-points pre and post 

the TSST procedure (see below). Participants were fully debriefed following collection of 

the final sample.  

2.6.2.3 Self-Report Measures 

Mood was assessed using the Positive and Negative Affect Schedule (PANAS) (Watson 

et al., 1988), and psychological stress was measured using a visual analogue scale (VAS), 

ranging from 0 (‘not stressed at all’) to 100 (‘As stressed as I could possibly imagine’).  

State Trait Anxiety Inventory (STAI) 

The STAI is a self-report measure consisting of two subscales each with 20 items, one 

measuring trait anxiety and the other measuring state anxiety (Spielberger et al., 1983). 

For the current study we only measured state anxiety. Participants rate how they feel either 

right now (state) or generally (trait), in response to each item on a 4-point scale from ‘not 

at all’ to ‘very much.’ The range of scores for each sub-scale is 20-80 with higher scores 

indicating greater anxiety.  
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Perceived Stress Scale (PSS) 

The PSS is a self-report measure in which participants rate, on a 5 point scale ranging 

from 0 (never) to 4 (very often), how often they have particular thoughts or feelings 

described by each of the 10 items (Cohen et al., 1983). Scores range from 0-40 with higher 

scores indicating greater stress over the previous month.  

Beck Depression Inventory (BDI)-II 

The BDI-II is a self-report measure consisting of 21 items rated on a 4-point scale from 0 

(absence of symptom) to 3 (severe manifestation of symptom) (Beck et al., 1996). Scores 

range from 0-63. Cut-off scores indicating clinically relevant levels of depression have 

been determined as 0-13 (minimal); 14-19 (mild); 20-28 (moderate); 29-63 (severe). 

Cognitive Assessment: Tests from the CANTAB Battery 

(http://www.cambridgecognition.com/) 

CANTAB tests were presented on a high-resolution touch-screen monitor under computer 

control. Participants interact with the system by touching the touch screen whilst a test 

administrator provides verbal instructions from a standardised script, as well as specific 

verbal prompts and encouragement when needed. The test administrator has full control 

of a keyboard used to start, pause or abort each test. Participants were assessed on the 

following tests from the battery: 

IED: Attentional Flexibility and Reversal Learning  

The IED is a test of executive function and assesses rule acquisition and reversal, 

attentional set formation, maintenance and shifting. The outcome measures assessed to 

determine reversal learning performance were the errors made on stage 2, 5, 7 and 9, and 

to determine attentional flexibility performance the errors made on stage 6 and 8.  

http://www.cambridgecognition.com/
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Stop Signal Task (SST): Response Inhibition  

The SST assesses participant’s ability to inhibit a prepotent response. The outcome 

measure assessed was the stop signal reaction time (SSRT; calculated for last 20 sub-

blocks). 

Paired Associates Learning (PAL): Visuospatial Memory  

The PAL assess conditional learning of pattern-location associations and gives an index 

of visuospatial memory. The outcome measure assessed to determine visuospatial 

memory was the PAL total errors adjusted.  

2.6.2.4 Statistical Analysis for Human Data 

Independent sample t-tests were used to explore differences in group characteristics (age, 

BMI, years of education and units of alcohol per week). To allow for repeated measures 

analysis and to avoid bias that may be introduced by using list-wise deletion of incomplete 

cases (Graham, 2009), missing data analysis was performed on physiological, 

psychological and cognitive variables subject to repeated measures analysis. In total 

5.95% of data was missing and determined to be missing completely at random (MCAR) 

using Littles MCAR test (Little, 1988); χ2 (688) = 703.356, p=0.334). Missing values 

were inputted by assigning the group mean for that variable except for cytokine and 

cortisol awakening response data. All analyzes were performed with missing data 

excluded (data not shown) and missing data included, which showed that inputing values 

using this method did not significantly change the nature of our results. Participants with 

more four or more missing data points for salivary cortisol during the TSST were excluded 

from this analysis. If a participant had missing data at all time-points for a given variable 

(during the TSST or Exam Stress/ Non Stress visit) missing values were not imputed and 

the participant was excluded from this analysis. Following missing data insertion, 

normality checks were performed using the Shapiro-Wilk test and visual inspection of 
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histograms. Outliers were checked using box and whisker plots and only extreme outliers 

were considered for exclusion from analysis. Salivary cortisol (TSST), IL-10 (TSST), IL-

1β (TSST), IL-6 (TSST), IL-8 (TSST), TNF-α (TSST), IL-8 (Non-Stress/Exam Stress), 

TNF-α (Non-Stress/Exam Stress), PANAS, STAI, BDI and CANTAB PAL (Visuospatial 

Memory) data was not normally distributed and transformed using a natural log 

transformation (ln); VAS psychological stress data was transformed using a square-root 

transformation; IL-10 (Non-Stress/Exam Stress), IL-1β (Non-Stress/Exam Stress), IL-6 

(Non-Stress/Exam Stress), CANTAB IED (Attentional Flexibility/ Reversal Learning) 

data was not normally distributed, but no transformations improved normality, so we 

proceeded with parametric analysis but with caution in interpreting the analysis. Salivary 

cortisol awakening response values at each time-point were converted to area under the 

curve with respect to ground (AUCg) values (Pruessner et al., 2003). AUCg cortisol data 

was not normally distributed and no transformations improved normality, so again we 

proceeded with parametric analysis but with caution in interpreting the results. PSS and 

CANTAB SST data (stop signal response time last 20) were normally distributed and no 

transformations were performed. Following data imputation and transformation (if 

needed) to improve normality, repeated measures analysis of variance (ANOVA) with 

group as between-subjects factor and change across time points due to stress in each 

variable (salivary cortisol (TSST), IL-10 (TSST), IL-1β (TSST), IL-6 (TSST), IL-8 

(TSST), TNF-α (TSST), cortisol awakening response AUCg ((Non-Stress/Exam Stress), 

IL-10 (Non-Stress/Exam Stress), IL-1β (Non-Stress/Exam Stress), IL-6 (Non-

Stress/Exam Stress), IL-8 (Non-Stress/Exam Stress), TNF-α (Non-Stress/Exam Stress), 

PANAS Positive/Negative, VAS psychological stress, STAI State, BDI, PSS, PAL Total 

Errors Adj., SSRT last 20, IED Attentional Flexibility, IED Reversal Learning) as the 

within-subjects factor. Significant main effects were followed by post-hoc comparisons 

using a Bonferroni correction for multiple comparisons as appropriate. Where Mauchly’s 

test of sphericity was significant, the Greenhouse-Geisser or Huynh-Feldt correction was 

applied. Our primary outcome variable was salivary cortisol output in response to the 

TSST. Based on previous findings from out laboratory (Kennedy et al., 2014) we powered 

our study to detect between group differences in the salivary cortisol response with a 
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medium effect size (f= 0.25). At an alpha of 0.05 and obtaining a power of 0.08, a total 

sample size of 74 was required. This calculation is based on a repeated measures ANOVA, 

between factors, using G*Power software. Non-transformed data are presented as mean 

± S.E.M. Effect sizes are reported as partial Eta squared (p
2). All statistical analyzes were 

carried out using IBM SPSS Statistics 22.0 for Windows software package. 

2.6.3 Microbiota Statistical Analysis (Mice and Human Samples) 

Statistical differences for microbiota composition based on alpha diversity and for the 

abundance of taxa were calculated using the compare Groups package in R. P-values were 

adjusted using the Benjamini-Hochberg method. Three dimensional principal coordinate 

analysis plots, based on Bray-Curtis beta diversity, were created using the made4 and car 

packages in R. Supplementary figures  

 

Supplementary figure 2.1- Mode of delivery does not alter expression of glucocorticoid and 

mineralocorticoid receptors in the pituitary gland.  

RNA was isolated from the pituitary gland and gene expression for glucocorticoid receptor (Nr3c1) and 

mineralocorticoid receptor (Nr3c2) relative to Actb expression was examined. Fold changes were calculated 

using the ΔΔCt method. a) Glucocorticoid receptor expression. No differences were found between groups 

for Nr3c1 expression (F (2,25)= 2.259, p= 0.1253). b) Mineralocorticoid receptor expression. No 

differences were found between groups for Nr3c2 expression (F(2,25)= 0.8219, p= 0. 4511). One-way 
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ANOVA followed by Tukey post hoc. Scatter dot-plots represent mean ± S.E.M. Behavioral results shown 

representative of 2 experimental replicates. Offspring in each cohort derived from three independent litters/ 

group. Animal numbers per group are specified above each bar. VB, vaginal birth; CF, cross fostered; CS, 

C-section 

 

 

Supplementary figure 2.2- Effects of the mode of delivery on nociception, depression-like behaviour and 

HPA axis response in early-life (P9) and adolescence (P23).  

a) Pain sensitivity. No significant differences were found in the latency of nociception (sec.) (F(2,27)= 

3.084, p= 0.064 [One-way ANOVA]). b-c) Depression-like behavior. b) Forced swim test in adolescence. 

No differences were found between the groups in the immobility time (sec.) in adolescence (x2(34)= 0.2654, 

p= 0.87 [Kruskal Wallis]). Scatter dot-plots represent Median and interquartile range c) Forced swim test 

in adulthood. No differences were found between groups (F (2,35)= 0.1002, p= 0.9049) [One-way 

ANOVA]). d-e) Hypothalamic-pituitary-adrenal (HPA) axis response in early-life and adolescence. d) No 

differences were found between the groups in the baseline corticosterone in early-life (P9) (F (2,23)= 

0.1312, p= 0.87). e) Corticosterone response to an acute stress in adolescence (P25). Time effect (F (1,22)= 

85.821, p<0.0001); group effect (F (2,22)= 2.054, p=0.152) and time x group effect (F (2,22)=3.017, 

p=0.069) ([Repeated measures ANOVA]). T0 (F (2, 25) = 1.695, p=0.204) ([VB n= 10, CF n=10, CS n=8]); 
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T45 (F (2, 23) =2.885, p=0.076) ([VB n= 10, CF n=9, CS n=7]). Data are represented by mean + S.E.M. a, 

c, d) Scatter dot-plots represent mean ± S.E.M. a-e) Offspring in each cohort derived from three independent 

litters/group. Animal numbers per group are specified 
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Supplementary figure 2.3- Barrier function-related genes in the colon and ileum.  

RNA was extracted from the colon and ileum of mice. a) Tlr4 expression in the colon of P9 (F(2, 24)=1.485, p=0.247), P25 (F(2, 28)=2.560, p=0.095), 

and adult mice (F(2, 29)=2.975, p=0.067). b) Tjp1 expression in the colon of P9 (F(2, 26)=1.166, p=0.327), P25 (F(2, 29)=3.808, p=0.034), and adult 

mice (F(2, 29)=0.775, p=0.470). c) Occludin expression in colon of P9 (F(2, 26)=1.935, p=0.165), P25 (F(2, 29)=1.926, p=0.164) and adult mice (F(2, 

29)=0.1.286, p=0.292). d) Tjp1 expression in the Ileum of adult mice (F(2, 30)=0.601, p=0.555). e) Occludin expression in the ileum of adult mice (F(2, 

30)=0.601, p=0.555). Tlr4, Occludin and Tjp1 were quantified by qRT-PCR relative to Actb. Fold changes were calculated using the ΔΔCt method. One-

way ANOVA followed by Tukey post hoc. Scatter dot-plots represent mean ± S.E.M. Behavioral results shown representative of 2 experimental 

replicates. Offspring in each cohort derived from three independent litters/ group. Animal numbers per group are specified above each bar. VB, vaginal 

birth; CF, cross fostered; CS, C-section.
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Supplementary figure 2.4- Co-housing effects on anxiety-like behavior and on gastrointestinal motility.  

a-b) Anxiety-like behaviour: a)Time spent in the open arms of the elevated plus maze (EPM). Group effect 

(F(1, 40)=0.139, p=0.711); mode of delivery effect (F(1, 40)=11.580, p=0.002); group x mode of delivery 

(F(1, 40)=0.933, p=0.340).Time spent in the closed arms of the EPM. Group effect (F(1, 40)=0.681, 

p=0.414); mode of delivery effect (F(1, 40)=5.783, p=0.021); group x mode of delivery (F(1, 40)=0.068, 

p=0.796). ([Two-way ANOVA, followed by Tukey post hoc]). b) Aversive open-field. Total distance 

moved (cm). Group effect (F(1, 36)=0.646, p=0.590); mode of delivery effect (F(1, 36)=1.758, p=0.193); 

group x mode of delivery effect (F(1, 36)=0.016, p=0.901). c) Marble burying. Group effect (F(1, 

42)=0.181, p=0.672); mode of delivery effect (F(1, 42)=3.207, p=0.081); group x mode of delivery effect 
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(F(1, 42)=2.611, p=0.114). Two-way ANOVA, followed by Tukey post hoc. Scatter dot-plots represent 

mean ± S.E.M. d). Intestinal motility time in (x2(3)=9.931, p= 0.019 ([Kruskal-Wallis, followed by U-Mann 

Whitney test]). Scatter dot-plots represent median and interquartile range. a-c) Animal numbers per group 

are specified above each bar. VB group, 9 litters; CS group, 6 litters; VB co-housed group, 10 litters; and 

CS co-housed, 7 litters. Animal numbers per group are specified above each bar. Behavioral results shown 

representative of 2 experimental replicates. VB, vaginal birth; CS, C-section.  

 

Supplementary figure 2.5- The TSST had no differential effect on immune activity in C-section 

participants in response to the TSST procedure.  

a) IL-6; (Stress (F(1.491, 104.37)= 1.6, p=0.21, p
2= 0.022); Group (F(1, 70)= 0.71, p=0.4, p

2 = 0.01); 

Stress x Group (F(1.491, 104.37)= 1, p=0.35, p
2 = 0.014; n= 39 [VB], n= 33 [C-section]). b) IL-8; (Stress 

(F(3, 210)= 5.51, p=0.001, p
2= 0.073); Group (F(1, 70)= 0.278, p=0.6, p

2 = 0.004); Stress x Group (F(3, 

210)= 0.552, p=0.65, p
2 = 0.008; n= 39 [VB], n= 33 [C-section]). c) TNF-α; (Stress (F(2.061, 144.283)= 

7.02, p=0.001, p
2= 0.091); Group (F(1, 70)= 2.898, p=0.093, p

2 = 0.04); Stress x Group (F(2.061, 

144.283)= 0.169, p=0.85, p
2 = 0.002; n= 39 [VB], n= 33 [C-section]) response to the TSST. (Post hoc 

comparisons using Bonferroni correction: *p> 0.05; **p< 0.01. Data are represented by mean + S.E.M. 
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Supplementary figure 2.6- Positive affect is lower in C-Section participants throughout the TSST 

procedure but there is no differential effect of stress between groups  

a) Positive Affect response as measured using the Positive and Negative Affect Schedule (Stress (F(2, 144)= 

6.74, p=0.02, p
2= 0.086); Group (F(1, 72)= 5.78, p=0.019, p

2 = 0.074); Stress x Group (F(2, 144)= 0.17, 

p=0.85, p
2 = 0.002; n= 40 [VB], n= 34 [C-section]). b) Negative Affect response to the TSST procedure 

as measured using the Positive and Negative Affect Schedule; (Stress (F(2, 144)= 101.12, p<0.001, p
2= 

0.58); Group (F(1, 72)= 1.71, p=0.19, p
2 = 0.023); Stress x Group (F(2, 144)= 0.86, p=0.43, p

2 = 0.012; 

n= 35 [VB], n= 31 [C-section]). c) Depression levels as measured using the Beck Depression Inventory-II 

during a Non-Stress and Exam Stress period (Stress (F(1, 66)= 5.67, p=0.02, p
2= 0.079); Group (F(1, 66)= 

2.53, p=0.12, p
2 = 0.037); Stress x Group (F(1, 66)= 0.776, p=0.38, p

2 = 0.012; n= 38 [VB], n= 30 [C-

section]). Data are presented as mean ± S.E.M. 
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Supplementary figure 2.7- Exam stress has no effect on HPA axis function as measured by the cortisol 

awakening response but causes elevated levels of the anti-inflammatory cytokine IL-10 in C-Section 

participants.  

Salivary cortisol awakening response (Stress (F(1, 56)= 2.692, p=0.11, p
2= 0.046); Group (F(1, 56)= 0.146, 

p=0.704, p
2 = 0.003); Stress x Group (F(1, 56)= 3.711, p=0.059, p

2 = 0.062; n= 33 [VB], n= 35 [C-

section]). b) IL-10 (Stress (F(1, 66)= 0.853, p=0.359, p
2= 0.013); Group (F(1, 66)= 6.044, p=0.017, p

2 = 

0.084); Stress x Group (F(1, 66)= 0.22, p=0.884, p
2 < 0.001; n= 38 [VB], n= 30 [C-section])c) IL-1β (Stress 

(F(1, 61)= 7.878, p=0.007, p
2= 0.114); Group (F(1, 61)= 2.934, p=0.092, p

2 = 0.046); Stress x Group (F(1, 

61)= 0.57, p=0.453, p
2 = 0.009; n= 37 [VB], n= 28 [C-section]). d) IL-6 (Stress (F(1, 64)= 0.434, p=0.512, 

p
2= 0.007); Group (F(1, 64)= 2.304, p=0.134, p

2 = 0.035); Stress x Group (F(1, 64)= 0.825, p=0.367, p
2 

= 0.013; n= 37 [VB], n= 29 [C-section]). e) IL-8 (Stress (F(1, 65)= 11.557, p=0.001, p
2= 0.151); Group 

(F(1, 65)= 0.027, p=0.87, p
2 < 0.001); Stress x Group (F(1, 65)= 0.25, p=0.619, p

2 = 0.004; n= 39 [VB], 

n= 29 [C-section]) levels during the Non-Stress and Exam Stress period. Data are presented as mean ± 

S.E.M.. 
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Supplementary figure 2.8- Cognitive function did not differ in response to exam stress in C-section 

participants. 

a) Visuospatial memory as measured by the Paired Associates Learning (PAL) test, Total Errors Adjusted 

(Adj) (Stress (F(1, 67)= 0.02, p=0.89, p
2< 0.001); Group (F(1, 67)= 0.462, p=0.499, p

2 < 0.007); Stress x 

Group (F(1, 67)= 0.076, p=0.783, p
2 = 0.001; n= 37 [VB], n= 32 [C-section]). b) Response inhibition as 

measured by the Stop Signal Task (SST), stop signal reaction time (SSRT; calculated for last 20 sub-blocks) 

(Stress (F(1, 67)= 1.44, p=0.24, p
2= 0.021); Group (F(1, 67)= 0.494, p=0.484, p

2 = 0.007); Stress x Group 

(F(1, 67)= 1.37, p=0.25, p
2 = 0.02; n= 37 [VB], n= 32 [C-section]). c) Attentional Flexibility as measured 

by the Intra-Extra Dimensional Set Shift (IED), total errors made on stage 6 and 8 (Stress (F(1, 67)= 0.28, 

p=0.598, p
2= 0.004); Group (F(1, 67)= 0.016, p=0.9, p

2 = 0.001); Stress x Group (F(1, 67)= 1.82, p=0.182, 

p
2 = 0.026; n= 37 [VB], n= 32 [C-section]). d) Reversal Learning as measured by the IED, total errors on 

stage 2, 5, 7 and 9 (Stress (F(1, 67)= 0.795, p=0.376, p
2= 0.012); Group (F(1, 67)= 0.009, p=0.93, p

2 = 

0.001); Stress x Group (F(1, 67)= 1.81, p=0.183, p
2 = 0.026; n= 37 [VB], n= 32 [C-section]). Data are 

presented as mean ± S.E.M.. 
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Supplementary figure 2.9- The effect of mode of delivery on the microbial composition of adults. 

DNA was extracted from feces in a group of adults. a) Principal coordinate analysis (PCoA) plot, based on 

Bray-Curtis distance (p=0.8). b) Relative abundance of phylum in VB and CS born adults. The dominant 

phyla are labelled in the legend on the right. This plot was created using the ggplot2 package in R. Taxa 

below 0.5% sample abundance and the unclassified taxa were grouped into the “Other” category. ([An 

analysis of variance test was carried on Bray-Curtis beta diversity to calculate statistical significance using 

the adonis function in the vegan package in R.)]. VB, Vaginal birth; CS, C-section. 

 

 

Supplementary figure 2.10- Effects of the mode of delivery on body weight at P9. 

 a) At P9, CS pups have a lower body weight in comparison to CF pups (F(2,34)= 5.487, p= 0.009 [One-

way ANOVA followed by Tukey post hoc]). Scatter dot-plots represent mean ± S.E.M. Offspring in each 

cohort derived from three independent litters/group. Animal numbers per group are specified above each 

bar. *p< 0.05 CS vs. VB; ##p<0.01 CS vs. CF. VB, vaginal birth; CF, cross fostered; CS, C-section.  
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Supplementary figure 2.11- Main neurobehavioral changes in C-section offspring across lifespan 

analysed by litter.  

a) Marble burying (F (2,9)= 9.778, p=0.006); b) number of entrances in the open arm of the elevated plus-

maze (F (2,9)= 2.427, p=0.144 ) ; number of entrances in the closed arms (F (2,9)= 3.758, p=0.407 ); c) 

time spent in the central zone (F(2,9) = 4.171, p= 0.052) of the aversive open field and total distance 

travelled (F(2,9)= 8.221, p= 0.009) d) Corticosterone (CORT) release in response to an acute stress. Time 

effect (F (4,36) = 61.905, p<0.001); group effect (F (2,9)= 2.547, p= 0.133); time x group (F(8,36)= 

1.695, p=0.133 ([Repeated measures ANOVA]). e) Three-chamber test. C-section does not impact 

sociability. VB t (3) = 5.382, p=0.013, CF t (3) =14.061, p=0.001, CS t (3) =5.958, p<0.009. Reduced 

social novelty preference in CS. VB t (3) = 9.945, p=0.002, CF t (3) = 4.655, p=0.019, CS t (3) =-0.351, 

p= 0.749 ([Paired-Student T-test]). N=4 litters per group. *p< 0.05 and ***p<0.0001 CS vs. VB; #p<0.05 

and ###p<0.0001 CS vs. CF. VB, vaginal birth; CF, cross fostered; CS, C-section. Data are presented as 

mean ± S.E.M.. 
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Supplementary figure 2.12- Qualitative determination of Bifidobacterium breve in faecal pellets. 

The occurrence of Bifidobacterium breve species was determined by qualitative PCR in VB, CS, CS 

B.breve and CS prebiotic groups. Bifidobacterium breve NCBIM2257 was used as positive control. 

Amplified products were subjected to gel electrophoresis in 1.5% agarose gels and visualized by ethidium 

bromide staining. VB, vaginal birth; CS, C-section.  
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2.7 Supplementary Tables 

      

Cytokines 

Mean ± S.E.M (n) One-way ANOVA 
Tukey post-

hoc     
Dependent 

measure  
  VB CF CS P-value F-value DF 

ConA Conc. (pg/mL) 

Thymus 

IL-1b 0.35±0.1(7) 0.56±0.07 (12) 0.56±0.05(11) 0.111 2.389 2,29 ns 

IL-2 204.5±16.5(7) 204.3±22.1(11) 224.4±27.1(12) 0.789 0.239 2,29 ns 

IL-4 292.8±99.8(7) 407.2±68.2 (11) 605.1±93.8(12) 0.062 3.09 2,29 ns 

IL-5 2.17±0.35(6) 4.16±0.72 (12) 4.72±1.19(11) 0.243 1.494 2,28 ns 

KCGRO 9.59±1.2 (7) 9.97±1.3 (11) 11.10±0.6 (11) 0.593 0.533 2,28 ns 

IL-12p70 43.5±4.8(7) 42.5±2.8 (12) 45.7±3.2(12) 0.861 0.15 2,30 ns 

Spleen 

IL-1b 9.0±0.9 (8) 5.80±0.55 (13) 8.4±1.6(12) 0.095 2.557 2,30 ns 

IL-2 7248.2±365.1(9) 5894.6±453(13) 7277.9±398(11) 0.037 3.672 2,31 ns 

IL-4 130.2±22.1(8) 186.3±21(12) 193.7±15.1(11) 0.081 2.735 2,29 ns 

IL-5 22.1±3.2(8) 20.44±4.11(11) 27.2±4.9(13) 0.503 0.704 2,30 ns 

KCGRO 10.6±0.8(9) 10.43±0.70(13) 11.7±0.8(11) 0.437 0.851 2,31 ns 

IL-12p70 169.6±4.1(8) 133.7±8.2(13) 146.0±7.4(12) 0.015 4.833 2,30 VB vs CF* 

The table specifies the dependent measures and summarizes the main effects. The table compares the group effect of cytokines concentration (pg/mL) 

in thymocytes and splenocytes stimulated with Con-Afor VB, CF and CS. The table compares the group effect for IL-1β, IL-2, IL-4, IL-5, KCGRO, 

IL-12p70. Data was analyzed by one-way ANOVA followed by Tukey post hoc. The table also specifies the corresponding n number, degrees of 

freedom (DF) and F-values. Vaginal birth=VB; Cross-fostered=CF; C-section=CS Significant effects (P < 0.05) are given in bold font. 
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Cytokines 

Mean ± S.E.M (n) One-way ANOVA 

Tukey post-

hoc     
Dependent 

measure  
  VB CF CS P-value F-value DF 

LPS Conc. (pg/mL) Thymus 

IFNy 0.3±0.1(7) 0.6±0.2 (13) 0.28±0.1 (11) 0.071 2.912 2,30 ns 

IL-1b 0.6±0.1(8) 0.7±0.1 (13) 0.59±0.0 (11) 0.555 0.601 2,31 ns 

IL-2 0.6±0.1(8) 0.79±0.1(13) 0.74±0.2(11) 0.526 0.658 2,31 ns 

IL-4 19.4±11.3 (8) 16.6±5.71(12) 3.56±0.7 (11) 0.189 1.767 2,30 ns 

IL-5 0.13±0.1(8) 0.2±0.04(12) 0.09±0.0(11) 0.379 1.005 2,30 ns 

IL-6 81.5±15.8(8) 90.9±12.05(12) 75.43±7.7(11) 0.617 0.492 2,30 ns 

KCGRO 38.6±4.7(8) 45.2±6.02(13) 40.87±4.3(12) 0.685 0.383 2,32 ns 

IL-10 4.7±0.8(7) 6.9±1.32(13) 4.78±0.4(11) 0.227 1.562 2,30 ns 

IL-12p70 13.6±1.3(8) 17.5±1.83(13) 8.54±1.2(11) 0.001 8.831 2,31 CF vs CS* 

TNFα 40.3±5.27(8) 43.50±4.56(13) 33.51±3.2(11) 0.244 1.482 2,31 ns 

The table specifies the dependent measures and summarizes the main effects. The table compares the group effect of cytokines concentration (pg/mL) 

in thymocytes stimulated with LPS for VB, CF and CS. The table compares the group effect for IFNγ, IL1β, IL-2, IL-4, IL-5, IL-6, IL-10, KCGRO, IL-12p70, 

TNFα. Data was analyzed by one-way ANOVA followed by Tukey post hoc. The post hoc analyzes revealed significant difference in the levels of IL-

12p70 between between CF and CS (p<0.05). Vaginal birth=VB; Cross-fostered=CF; C-section=CS. The table also specifies the corresponding n number, 

degrees of freedom (DF) and F-values. Significant effects (P < 0.05) are given in bold font.  
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Cytoki

nes 

Mean ± S.E.M (n) One-way ANOVA 

Tukey post-hoc  

 

 

  

 Depend

ent 

measur

e  

  VB CF CS P-value 
F-

value 
DF 

 

 

LPS 

2μg/mL 

 

Conc. 

(pg/mL) 
Spleen 

IFNγ 750.0 ±186.8 (10) 480.3±114.2(12) 864.5±327.0(10)  0.43 0.868 (2,29 )  ns 
 

 
 IL1β 35.3±6.3(9) 29.2±4.1(12) 47.9±24.2(10) 0.628 0.473 (2,28)  ns 

 

 
 IL-2 20.5±1.4(9) 15.6±1.3(12) 20.92±1.8(11) 0.032 3.874 (2,29)  ns 

 

 
 IL-4 1.34±0.1(9) 1.1±0.1(11) 1.47±0.14(10) 0.078 2.805 (2,27)  ns 

 

 
 IL-5 1.03±0.2(9) 0.8±0.1(12) 1.07±0.21(10) 0.358 1.066 (2,28)  ns 

 

 
 IL-6 2276.6±305.0(10) 2183.3±308.1(12) 3092.7±855.5(10) 0.429 0.872 (2,29)  ns 

 

 

 KCGR

O 
114±11.4(10) 113.1 ±9.0(12) 125.9±19.4(10) 0.776 0.256 (2,29)  ns 

 

 
 IL-10 393±54.3(10) 341.7±43.6(12) 397.14±76.5(11) 0.755 0.284 (2,30)  ns 

 

 

 IL-

12p70 
77.4±8.9(10) 55.9±6.5(11) 85.2±17.8(10) 0.202 1.695 (2,28)  ns 

 

 

 TNFα 830.4±49.3(9) 566.9±57.3(11) 866.1±245.9(10) 0.298 1.267 (2,27)  ns 
 

  
 

           

Supplementary Table 2. 1- Summary of the statistical tests and outcomes for the cytokines analyzes in splenocytes stimulated with Lipopolysaccharide 

from CS, CF and VB offspring.  

The table specifies the dependent measures and summarizes the main effects. The table compares the group effect of cytokines concentration (pg/mL) 

in splenocytes stimulated with Lipopolysaccharide (LPS) for VB, CF and CS. The table compares the group effect for IFNγ, IL1β, IL-2, IL-4, IL-5, IL-6, 

IL-10, KCGRO, IL-12p70, TNFα. Data was analyzed by One-way ANOVA followed by Tukey post hoc. Vaginal birth=VB; Cross-fostered=CF; C-

section=CS. The table also specifies the corresponding n number, degrees of freedom (DF) and F-values. Significant effects (P < 0.05) are given in 

bold font. 
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  Taxa Taxonomic 

Median [1stquartile;3rdquartile] 

  

  

      

  

    
 level 

VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

Early-

life  
Acidobacteria p 0e+00 [0e+00;0e+00]    0e+00 [0e+00;0e+00]    0.00E+00 0.011 0.021 

    

N/A      
0.098 

          [0e+00;1e-05]             

  Proteobacteria p 
0.04138 

[0.00596;0.45960] 
0.51542 [0.25449;0.77717] 

0.05550 

[0.04317;0.38229]  
0.024 0.048 0.048 0.491 

  Deferribacteres p 0e+00 [0e+00;0e+00]    0e+00 [0e+00;0e+00]    0.00E+00 0.032 0.066 0.358 0.066 

          [0e+00;1e-05]             

  Firmicutes p 
0.87032 

[0.48448;0.96583] 
0.42689 [0.12893;0.60411] 

0.70625 

[0.58908;0.74191]  
0.035 0.125 0.071 0.427 

  Cyanobacteria p 
0.00000 

[0.00000;0.00000] 
0.00000 [0.00000;0.00005] 

0.00002 

[0.00001;0.00408]  
0.042 0.194 0.09 0.053 

  
Uncultured 

Cyanobacteria  
f 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     1.00E-05 0.002 0.01 0.358 0.018 

          [0e+00;1e-05]             

  Veillonellaceae f 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00003]  

0.01758 

[0.00001;0.02425]  
0.003 0.009 0.158 0.009 

  Pasteurellaceae f 
0.00320 

[0.00037;0.00479]  
0.27615 [0.03471;0.51854]  

0.00141 

[0.00088;0.15332]  
0.005 0.089 0.008 0.315 

  Orbaceae f 
0.00010 

[0.00000;0.00017]  
0.00002 [<0.00001;0.00007] 

0.00000 

[0.00000;0.00000]  
0.009 0.009 0.22 0.034 

  
Acidobacteria 

Unknown Family 
f 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.011 0.021 

       

N/A 
0.098 

          [0e+00;1e-05]             

  Deferribacteraceae f 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.032 0.066 0.358 0.066 

          [0e+00;1e-05]             

  Lactobacillaceae f 
0.60149 

[0.42740;0.95999]  
0.32948 [0.08108;0.52279]  

0.02594 

[0.01455;0.21948]  
0.032 0.09 0.09 0.069 

  Alcaligenaceae f 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000]  

0.00000 

[0.00000;0.00000]  
0.037 

  N/A  

.      
0.049 0.198 

  Phyllobacteriaceae f 1.00E-05 0e+00 [0e+00;0e+00]     
0e+00 

[0e+00;0e+00]     
0.043 0.932 0.061 0.151 

      [0e+00;3e-05]                 

  
 Uncultured 

Cyanobacteria 
g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     1.00E-05 0.002 0.01 0.358 0.018 

          [0e+00;1e-05]             

  Veillonella g 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00002]  

0.01758 

[0.00001;0.02425]  
0.003 0.009 0.175 0.009 

  Actinobacillus g 
0.00320 

[0.00037;0.00479]  
0.27615 [0.03471;0.51854]  

0.00141 

[0.00088;0.15332]  
0.005 0.089 0.008 0.315 

  Odoribacter g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     2.00E-05 0.008 0.013 1 0.025 

          [0e+00;2e-05]             

  Gilliamella g 
0.00010 

[0.00000;0.00017]  
0.00002 [<0.00001;0.00007] 

0.00000 

[0.00000;0.00000]  
0.009 0.009 0.22 0.034 
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  Taxa Taxonomic 

Median [1stquartile;3rdquartile] 

  

  

      

  

    
 level 

VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

  Blastocatella g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.011 0.021 N/A 0.098 

          [0e+00;1e-05]             

  

Eubacterium 

coprostanoligenes 

group 

g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.022 0.078 0.179 0.037 

          [0e+00;2e-05]             

  Mucispirillum g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.032 0.066 0.358 0.066 

          [0e+00;1e-05]             

  Lactobacillus g 
0.60149 

[0.42740;0.95999]  
0.32948 [0.08108;0.52279]  

0.02594 

[0.01455;0.21948]  
0.032 0.09 0.09 0.069 

  
 Uncultured 

Prevotellaceae  
g 

0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000]  

0.00000 

[0.00000;0.00000]  
0.037   N/A 0.049 0.198 

  Sutterella g 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000]  

0.00000 

[0.00000;0.00000]  
0.037   N/A 0.049 0.198 

  Herminiimonas g 0.00E+00 0e+00 [0e+00;0e+00]     0.00E+00 0.041 0.311 0.077 0.077 

      [0e+00;1e-05]       [0e+00;0e+00]             

  Alloprevotella g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     0.00E+00 0.043 0.041 0.54 0.28 

          [0e+00;4e-05]             

  Ruminiclostridium g 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00001]  

0.00001 

[<0.00001;0.00091] 
0.046 0.125 0.212 0.053 

  Ruminiclostridium g 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000]  

0.00000 

[0.00000;<0.00001] 
0.049 0.032 0.037 1 

Adolesc. Tenericutes p 
0.00019 

[0.00004;0.00050] 
0.02848 [0.01911;0.03942] 

0.00461 

[0.00028;0.01049] 
0.004 0.023 0.007 0.213 

  Saccharibacteria p 
0.00023 

[0.00013;0.00116] 
0.00262 [0.00123;0.00348] 

0.00544 

[0.00211;0.01004] 
0.036 0.203 0.146 0.063 

  Anaeroplasmataceae f 
0.00015 

[0.00004;0.00050]  
0.02848 [0.01909;0.03940] 

0.00432 

[0.00022;0.01043]  
0.004 0.023 0.007 0.213 

  
Saccharibacteria 

Unknown Family 
f 

0.00023 

[0.00013;0.00116]  
0.00262 [0.00123;0.00348] 

0.00544 

[0.00211;0.01004]  
0.036 0.203 0.146 0.063 

  Rikenellaceae f 
0.11658 

[0.09044;0.12660]  
0.11056 [0.10432;0.14343] 

0.15878 

[0.14587;0.17826]  
0.04 0.124 0.77 0.039 

  
Clostridiales 

vadinBB60 group 
f 

0.01059 

[0.00396;0.01436]  
0.02721 [0.01154;0.03404] 

0.01497 

[0.01284;0.01793]  
0.05 0.487 0.093 0.093 

  Anaeroplasma g 
0.00015 

[0.00004;0.00050]  
0.02848 [0.01909;0.03940]  

0.00432 

[0.00022;0.01043]  
0.004 0.023 0.007 0.213 

  
Eubacterium brachy 

group 
g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]     1.00E-05 0.007 0.076 0.34 0.01 

          [1e-05;1e-05]             

  Anaerosporobacter g 3.00E-05 1.00E-05 
0e+00 

[0e+00;0e+00]     
0.011 0.094 0.199 0.011 

      [1e-05;5e-05]     [0e+00;2e-05]               
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  Taxa Taxonomic 

Median [1stquartile;3rdquartile] 

  

  

      

  

    
 level 

VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

  
Lachnospiraceae UCG 

008 
g 

0.00084 

[0.00054;0.00211]  
0.00551 [0.00414;0.00672]  

0.00164 

[0.00082;0.00292]  
0.013 0.056 0.014 0.424 

  
Clostridiales 

vadinBB60 group 
g 

0.00018 

[0.00004;0.00024]  
0.00309 [0.00099;0.00329]  

0.00050 

[0.00036;0.00072]  
0.015 0.042 0.042 0.076 

  
Lachnospiraceae UCG 

005 
g 

0.00038 

[0.00004;0.00158]  
0.00004 [0.00001;0.00014]  

0.00000 

[0.00000;0.00001]  
0.015 0.107 0.107 0.024 

  
Lachnospiraceae 

uncultured 
g 

0.04657 

[0.04082;0.05149]  
0.05906 [0.05118;0.06618]  

0.03353 

[0.02971;0.03908]  
0.02 0.061 0.061 0.11 

  Erysipelatoclostridium g 2.00E-05 0.00E+00 
0e+00 

[0e+00;0e+00]     
0.022 0.563 0.044 0.044 

      [1e-05;3e-05]     [0e+00;1e-05]               

  
Ruminococcaceae 

UCG 009 
g 

0.00039 

[0.00019;0.00087]  
0.00013 [0.00000;0.00020]  

0.00014 

[0.00009;0.00027]  
0.023 0.486 0.047 0.047 

  Acetatifactor g 3.00E-05 1.00E-05 0.00E+00 0.024 0.172 0.172 0.028 

      [2e-05;5e-05]     [1e-05;4e-05]     [0e+00;1e-05]             

  
Candidatus 

Saccharimonas 
g 

0.00023 

[0.00013;0.00116]  
0.00262 [0.00123;0.00348]  

0.00544 

[0.00211;0.01004]  
0.036 0.203 0.146 0.063 

  
Lachnospiraceae 

FCS020 group 
g 

0.00013 

[0.00011;0.00019]  
0.00012 [0.00006;0.00018]  

0.00005 

[0.00004;0.00006]  
0.038 0.124 0.626 0.039 

  

Eubacterium 

coprostanoligenes 

group 

g 
0.00169 

[0.00052;0.00448]  
0.00008 [0.00002;0.00071]  

0.00095 

[0.00036;0.00122]  
0.04 0.158 0.044 0.328 

  Parabacteroides g 
0.00021 

[0.00001;0.00037]  
0.00004 [0.00002;0.00012]  

0.00000 

[0.00000;0.00001]  
0.042 0.067 0.236 0.067 

Adult Verrucomicrobia p 
0.00174 

[0.00048;0.01566] 
0.03489 [0.01124;0.06378] 

0.01377 

[0.00070;0.02204] 
0.043 0.249 0.035 0.328 

  Acidaminococcaceae f 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000] 

0.00000 

[0.00000;<0.00001] 
0.032 0.071     .      0.071 

  Verrucomicrobiaceae f 
0.00174 

[0.00048;0.01566]  
0.03489 [0.01124;0.06378] 

0.01377 

[0.00070;0.02204]  
0.043 0.249 0.035 0.328 

  Christensenellaceae f 2.00E-05 7.00E-05 5.00E-05 0.049 0.386 0.038 0.269 

      [1e-05;4e-05]     [4e-05;1e-04]    [1e-05;9e-05]             

  Mollicutes uncultured f 
0.00005 

[0.00003;0.00011]  
0.00013 [0.00010;0.00026] 

0.00012 

[0.00008;0.00027]  
0.049 0.908 0.096 0.062 

  
Bacteroidales S24.7 

group 
f 2.00E-05 4.00E-05 4.00E-05 0.011 0.862 0.022 0.022 

      [1e-05;4e-05]     [3e-05;6e-05]    [3e-05;6e-05]             

  Desulfovibrio g 
0.00397 

[0.00277;0.00605]  
0.00244 [0.00104;0.00466] 

0.00198 

[0.00141;0.00219]  
0.017 0.817 0.15 0.006 

  
Candidatus 

Arthromitus 
g 5.00E-05 1.00E-05 0.00E+00 0.028 0.781 0.044 0.061 

      [2e-05;5e-05]     [0e+00;2e-05]    [0e+00;2e-05]             
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  Taxa Taxonomic 

Median [1stquartile;3rdquartile] 

  

  

      

  

    
 level 

VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

  Phascolarctobacterium g 
0.00000 

[0.00000;0.00000]  
0.00000 [0.00000;0.00000] 

0.00000 

[0.00000;<0.00001] 
0.032 0.071     .      0.071 

  
Ruminococcaceae 

NK4A214 group 
g 

0.00105 

[0.00081;0.00141]  
0.00070 [0.00057;0.00092] 

0.00128 

[0.00078;0.00142]  
0.038 0.046 0.067 0.918 

  Akkermansia g 
0.00174 

[0.00048;0.01566]  
0.03489 [0.01124;0.06378] 

0.01377 

[0.00070;0.02204]  
0.043 0.249 0.035 0.328 

  Senegalimassilia g 0e+00 [0e+00;0e+00]     0.00E+00 1.00E-05 0.044 0.226 0.226 0.045 

        [0e+00;1e-05]    [0e+00;2e-05]             

  
Eubacterium 

ruminantium group 
g 

0.00020 

[0.00001;0.00206]  
0.00000 [0.00000;0.00001] 

0.00000 

[0.00000;0.00003]  
0.045 0.842 0.08 0.08 

  
Lachnospiraceae 

uncultured bacterium 
g 0.00E+00 2.00E-05 

0e+00 

[0e+00;0e+00]     
0.045 0.06 0.124 0.553 

      [0e+00;2e-05]     [0e+00;5e-05]              

  
Porphyromonadaceae 

uncultured 
g 0e+00 [0e+00;0e+00]     0e+00 [0e+00;0e+00]    0.00E+00 0.047 0.099 0.355 0.175 

          [0e+00;1e-05]             

  
Erysipelotrichaceae 

uncultured bacterium 
g 0e+00 [0e+00;0e+00]     1.00E-05 0.00E+00 0.049 0.274 0.045 0.264 

        [0e+00;3e-05]    [0e+00;2e-05]             

  Mollicutes uncultured g 
0.00005 

[0.00003;0.00011]  
0.00013 [0.00010;0.00026] 

0.00012 

[0.00008;0.00027]  
0.049 0.908 0.096 0.062 

Supplementary Table 2. 2- Summary of the statistical differences and outcomes for taxonomy for early-life, adolescence and adulthood for VB, CF 

and CS. 

Significant differentially abundance taxa between CS, CF, VB groups in ealy-life, adolescence and adulthood at phylum(p), family (f) and genus (g) 

level, indicated by the p-value. Vaginal birth =VB; Cross-fostered=CF; C-section=CS. The p-values are correct for multiple testing at a defined false 

discovery. Significant effects (p<0.05) are given in bold.  
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Age Diversity metric 

Taxonomic  Median [1stquartile;3rdquartile] P-value 

level VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

Early-

life 

chao1 

210.82500 

[168.05530; 
167.55556 

210.82500 

[168.05530;434.83285] 
246 

0.279 1 0.279 0.279 
434.83285] [142.35294;   [184.75000;322.00000] 

  252.66667]     

simpson 

0.59513 [0.36188; 0.58874 0.59513 [0.36188;0.70911]    0.87489 

0.06 0.075 0.542 0.075 0.70911]    [0.10365;   [0.57677;0.90721]    

  0.77676]        

shannon 

2.16485 [1.30430; 1.89436 2.16485 4.08773 

0.107 0.1 0.486 0.1 2.80319]    [0.56167; [1.30430;2.80319]    [1.82870;4.28035]    

  3.23007]        

PD_whole_tree 

5.00302 [4.50525; 5.21185 5.00302 

5.84350 [4.24261;6.79752]    0.711 0.634 0.634 0.634 5.60048]    [5.10231; [4.50525;5.60048]    

  5.45896]      

observed_species 

172.50000 

[128.25000; 
145 172.5 

205.00000 

[128.50000;269.00000] 
0.368 0.819 0.366 0.366 

323.25000] [100.00000; [128.25000;323.25000] 

  201.00000]   

Adolesc. 

chao1 

724.38158 

[680.43694; 
735.55561 724.38158 

777.80000 

[693.43341;798.74887] 
0.968 0.908 0.908 0.908 

814.99446] [714.53363; [680.43694;814.99446] 

  792.31075]   

simpson 

0.96354 [0.96109; 0.9708 0.96354 

0.96513 [0.96175;0.96651]    0.55 0.643 0.57 0.57 0.96562]    [0.95878; [0.96109;0.96562]    

  0.97444]      

shannon 

6.09444 [6.00854; 6.24047 6.09444 

6.00689 [5.87900;6.15395]    0.4 0.495 0.495 0.495 6.15921]    [6.06030; [6.00854;6.15921]    

  6.33626]      

PD_whole_tree 

24.57861 [22.85232; 24.69626 24.57861 

26.89073 [21.92052;28.67326]   0.983 0.908 0.908 0.908 27.56155]   [23.76503; [22.85232;27.56155]   

  26.78379]     

observed_species 

632.00000 

[607.00000; 
668 632 

726.50000 

[637.25000;751.25000] 
0.915 0.908 0.908 0.908 

770.50000] [637.75000; [607.00000;770.50000] 

  711.25000]   

Adult 

chao1 

840.06606 

[719.12816; 
805.04152 840.06606 

786.12240 

[713.24712;858.50561] 
0.832 0.681 0.681 0.681 

893.71028] [751.45427; [719.12816;893.71028] 

  831.49694]   

simpson 

0.97644 [0.97564; 0.97844 0.97644 

0.97724 [0.97177;0.97994]    0.951 0.918 0.918 0.918 0.98103]    [0.97327; [0.97564;0.98103]    

  0.98057]      

shannon 
6.58155 [6.46689; 6.65903 6.58155 

6.59537 [6.45072;6.72102]    0.984 0.954 0.954 0.954 
6.73930]    [6.45822; [6.46689;6.73930]    
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Age Diversity metric 

Taxonomic  Median [1stquartile;3rdquartile] P-value 

level VB CF CS overall 
CF x 

CS 

CF x 

VB 

CS x 

VB 

  6.75114]      

PD_whole_tree 

26.95793 [25.05227; 24.53608 26.95793 

25.90536 [23.68774;28.73040]   0.113 0.862 0.071 0.355 28.26768]   [23.86014; [25.05227;28.26768]   

  25.43093]     

observed_species 

814.00000 

[689.50000; 
779.5 814 

763.00000 

[693.00000;827.25000] 
0.846 0.7 0.7 0.7 

865.75000] [722.50000; [689.50000;865.75000] 

  809.50000]   

Supplementary Table 2. 3- Summary of the statistical analyses for diversity in VB, CF,CS groups for ealy-life, adolescence and adulthood at 

phylum(p), family (f) and genus (g) level, indicated by the p-value.  

Vaginal birth =VB; Cross-fostered=CF; C-section=CS. The p-values are correct for multiple testing at a defined false discovery. 

Significant effects (p<0.05) are given in bold. 
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SCFA 

 Mean ±S.E.M (n) One-way ANOVA 

Tukey 

post-hoc   

 

 

Dependent 

measure  VB CF CS P-value 
F-

value 
DF 

 

 
 

 

 

Adolescent  

Acetate  

Conc. 

(μmol/g) 

33.67±1.62(8) 30.29 ±1.37(8) 36.96±1.87(7) 0.03 4.178 2, 20 ns 
 

 
Proprionate  5.56±0.88(8) 5.87±.67(8) 6.17±0.93(7) 0.877 0.132 2, 20 ns 

 

 
Iso-butyrate 3.04±0.57(8) 2.65±0.55(8) 3.05±0.68(7) 0.861 0.15 2, 20 ns 

 

 
Butyrate 16.58±0.94(8) 17.47±1.16(8) 19.84±1.32(7) 0.148 2.107 2, 20 ns 

 

 
Total SCFA 58.84±3.05(8) 56.28±2.69(8) 66.01±3.90(7) 0.117 2.391 2, 20 ns 

 

 

Adult 

Acetate  25.6±1.58(14) 21.97±1.19 (12) 24.70±1.57(13) 0.219 1.584 2, 37 ns 
 

 
Proprionate  2.87±0.2(14) 2.58±0.16(12) 2.81±0.18(13) 0.503 0.7 2, 37 ns 

 

 
Iso-butyrate 0.17±0.01(14) 0.16±0.02(12) 0.16±0.01(13) 0.86 0.151 2, 37 ns 

 

 
Butyrate 10.54±1.21(13) 8.21±0.48(12) 10.8±1.0(13) 0.036 3.674 2, 38 CF vs CS* 

 

 
Total SCFA 40.27±2.56(14) 32.93±1.53(12) 38.47±2.53(13) 0.083 2.664 2, 36 ns 

 

 
    

  
          

  

Supplementary Table 2. 4- Summary of the statistical tests and outcomes for the Short chain fatty acids (SCFA) analyzes from CS, CF and VB 

offspring. The table specifies the dependent measures and summarizes the main effects. 

The table compares the group effect of short chain fatty acids (concentration (conc.) (μmol/g) cecum content in the adolescent and adult VB, CF and CS. 

The table compares the group effect for acetate, propionate, iso-butyrate, butyrate and total SCFA. Data was analyzed by one-way ANOVA followed by 

Tukey´s post hoc. The post hoc analyzes revealed significant differences in the acetate between CF and CS mice in the adolescence and in butyrate 

between CF and CS in the adulthood. Vaginal birth=VB; Cross-fostered=CF; C-section=CS. The table specifies the Mean ± S.E.M. The table also 

specifies the corresponding degrees of freedom (DF) and F-values. Significant effects (P < 0.05) are given in bold font. 
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Age 

Vaginally-born 

20.22 ± 0.24 

C-section 

20.34 ± 0.22 

P-value 

0.72 

BMI 23.66 ± 0.46 24.58 ± 0.63 0.21 

Years of Education 16.03 ± 0.22 15.83 ± 0.19 0.5 

Units of Alcohol per week 7.42 ± 1.04 9.96 ± 1.53 0.17 

Smoker (%) 4 (10) 2 (5.6) 0.473 

Social Class (%)   1 (Professional) 18 (45) 22 (61.1) 0.232 

                               2 (Managerial/Technical) 6 (15) 1 (2.8)  

                               3 (Non-Manual) 3 (7.5) 6 (16.7)  

                              4 (Skilled Manual) 3 (7.5) 3 (8.3)  

                              5 (Semi-Skilled) 4 (10) 1 (2.8)  

                              6 (Unskilled) 5 (12.5) 3 (8.3)  

                              7 (Other gainfully occupied &   

                                 unknown) 

1 (2.5)  0 (0)  

CTQ (Abuse)       Emotional  5.76 (0.38) 6.23 (0.43) 0.45 

                              Physical  5.86 (0.14) 5.57 (0.28) 0.59 

                              Sexual 4.7 (0.26) 5.17 (0.35) 0.33 

CTQ (Neglect)    Emotional 6.95 (0.55) 7.83 (0.61) 0.32 

                             Physical 5.11 (0.3) 5.91 (0.39) 0.14 

CTQ                     Minimization/Denial  10.38 (0.61) 10.54 (0.59) 0.85 

Supplementary Table 2. 5- Participant Demographics.  

The table specifies the demographic information for the Vaginally-born and C-section participants. The table compares body mass index (BMI); years 

of education; average of units of alcohol intake per week; the percentage of smoker participants; social class; childhood trauma questionnaire (CTQ) in 

Vaginally-born and C-section participants. The table specifies the Mean ± S.E.M. The table also specifies the corresponding P-values.  

  



 

147 

   
                  

 

 

  

Dependent measure 

Mixed-effects model 
 

 

VB CF CS 

 

 

P-value F-value DF P-value F-value DF P-value F-value DF 

 

 

Marble 

burying  
Number of marbles buried (n) .209 1.720 (1,15) 0.681 0.176 (1,14) 0.323 1.062 (1,12 )  

 

 
Elevated-

plus maze  

Entrances in the open arms (n) 0.0001 38.983 (1,15) 0.001 19.475 (1,14) 0.185 1.981 (1,12 )  
 

 
Entrances in the closed arms (n) 0.354 0.917 (1,15) 0.446 0.614 (1,14) 0.903 0.015 (1,12 )  

 

 
Aversive 

open-field 

Time in central zone (sec.) 0.106 2.959 (1,15) 0.458 0.582 (1,14) 0.13 2.645 (1,12 )  
 

 
Total distance (cm) 0.198 1.814 (1,15) 0.368 0.865 (1,14) 0.343 0.976 (1,12 )  

 

 Sociability 

Interaction time (sec.) (Mouse) 0.291 1.199 (1,15) 0.815 0.057 (1,14) 0.664 0.198 (1,12 )  
 

 
Interaction time (sec.) (Object) 0.283 0.602 (1,15) 0.549 0.378 (1,14) 0.348 0.955 (1,12 )  

 

 
Social 

Novelty 

Interaction time (sec.) (Novel mouse) 0.938 0.006 (1,15) 0.554 0.368 (1,14) 0.604 0.283 (1,12 )  
 

 
Interaction time (sec.) (Familiar mouse) 0.467 0.505 (1,15) 0.053 4.475 (1,14) 0.048 4.848 (1,12 )  

 

 

Stress 

response 

T0 0.306 1.123 (1,15) 0.104 3.053 (1,13) 0.246 1.487 (1,12 )  
 

 
T15 0.933 0.007 (1,13) 0.922 0.01 (1,13) 0.295 1.208 (1,12 )  

 

 
T45 0.362 0.9 (1,12) 0.063 4.12 (1,13) 0.296 1.194 (1,12 )  

 

 
T90 0.571 0.337 (1,14) 0.024 6.651 (1,12) 0.592 0.305 (1,11 )  

 

 
T120 0.952 0.004 (1,13) 0.57 0.343 (1,11) 0.925 0.009 (1,11 )  

 

             

Supplementary Table 2. 6- Summary of the statistical tests and outcomes for Mixed-model design.  

The table specifies the dependent measures and summarizes the main effects of Mixed-model design. The table compares an estimative for the litter 

effect within each group for the main neurobehavioral outcomes. The table also specifies the corresponding degrees of freedom (DF) and F-values. 

Significant effects (P < 0.05) are given in bold font.  
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  Median [1st Quartile;3rd Quartile]   

Diversity metric VB CS P-value 

chao1 316 [278;361] 

347 

[313;396] 0.029 

simpson 0.96 [0.95;0.97] 

0.96 

[0.96;0.97] 0.679 

shannon 5.45 [5.25;5.85] 

5.67 

[5.40;5.83] 0.236 

PD_whole_tree 17.3 [15.1;20.5] 

18.7 

[17.1;22.2] 0.075 

observed_species 276 [236;320] 

305 

[275;333] 0.044 

Supplementary Table 2. 7- Alpha diversity statistics for VB and CS groups for a group of adult males.  

A Mann-Whitney U test was performed on these. The p-values are unadjusted, as they relate to different diversity metrics and are thus not directly 

comparable. VB, Vaginal birth; CS, C-section. 

 

    Median [1st Quartile;3rd Quartile] 

Taxa 

Taxonomic 

Level VB CS 

P-

value 

Actinobacteria 
p 

4.29 [2.95;5.87] 
4.06 

[2.52;6.64] 
0.847 

Bacteroidetes 
p 

13.7 [7.31;19.7] 
15.7 

[9.64;22.0] 
0.448 

Firmicutes 
p 

77.4 [71.5;81.8] 
77.3 

[72.1;82.9] 
0.934 

Proteobacteria 
p 

0.30 [0.20;0.61] 
0.33 

[0.15;0.66] 
0.815 

Verrucomicrobia 
p 

0.62 [0.02;2.16] 
0.02 

[0.00;0.33]  
0.027 

Actinomycetaceae 
f 

0.01 [0.00;0.01] 
0.01 

[0.01;0.02] 
0.098 

Bifidobacteriaceae 
f 

2.73 [1.98;3.70] 
2.71 

[1.30;3.96] 
0.945 

Coriobacteriaceae   
f 

1.55 [0.87;2.15] 
1.13 

[0.83;2.28] 
0.491 

Bacteroidaceae   
f 

5.45 [3.91;11.0] 
9.19 

[5.74;14.0] 
0.092 

Porphyromonadaceae  
f 

1.05 [0.52;2.07] 
0.92 

[0.53;1.46] 
0.424 

Prevotellaceae  
f 

0.46 [0.01;4.30]  
0.12 

[0.01;1.82]   0.624 

Rikenellaceae  
f 

0.96 [0.52;1.55]  
1.04 

[0.37;1.86]  0.836 
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    Median [1st Quartile;3rd Quartile] 

Taxa 

Taxonomic 

Level VB CS 

P-

value 

Enterococcaceae 
f 

0.01 [0.00;0.03]  
0.01 

[0.00;0.02]    0.195 

Lactobacillaceae 
f 

0.01 [0.00;0.09]  
0.01 

[0.01;0.03]    0.689 

Streptococcaceae  
f 

0.34 [0.13;0.66]  
0.37 

[0.16;0.73]    0.526 

Clostridiaceae_1  
f 

0.57 [0.21;1.12]  
0.44 

[0.11;1.09]   0.629 

Eubacteriaceae  
f 

0.01 [0.01;0.02]  
0.02 

[0.01;0.03]    0.572 

Lachnospiraceae   
f 

32.1 [27.5;42.0] 
 33.3 

[29.6;39.0]    0.424 

Peptostreptococcaceae   
f 

1.19 [0.62;2.39]  
1.54 

[0.60;2.06]    0.879 

Ruminococcaceae    
f 

28.6 [24.7;32.2]  
29.5 

[23.7;34.8]   0.679 

Erysipelotrichaceae  
f 

1.07 [0.54;2.52]  
1.67 

[0.84;2.23]   0.356 

Acidaminococcaceae 
f 

0.07 [0.01;1.15]  
0.47 

[0.01;1.52]    0.244 

Veillonellaceae      
f 

3.74 [1.38;5.49]  
1.54 

[0.18;5.44]   0.19 

Sutterellaceae 
f 

0.10 [0.02;0.22]  
0.05 

[0.01;0.18]   0.436 

Desulfovibrionaceae 
f 

0.07 [0.03;0.12]  
0.04 

[0.02;0.15]    0.639 

Enterobacteriaceae  
f 

0.01 [0.00;0.06]  
0.02 

[0.01;0.09]    0.25 

Pasteurellaceae 
f 

0.01 [0.00;0.03]  
0.02 

[0.00;0.07]    0.33 

Verrucomicrobiaceae 
f 

0.62 [0.02;2.16]  
0.02 

[0.00;0.33]   0.027 

Actinomyces                g 0.01 [0.00;0.02]  

0.01 

[0.01;0.02]    0.136 

Akkermansia                g 0.65 [0.02;2.18]  

0.02 

[0.00;0.34]    0.025 

Alistipes                  g 0.96 [0.54;1.56]  

1.06 

[0.40;1.89]    0.858 

Anaerostipes               g 1.26 [0.58;1.59]  

1.14 

[0.59;2.03]    0.689 

Asaccharobacter            g 0.10 [0.04;0.17]  

0.05 

[0.02;0.13]    0.209 

Bacteroides                g 5.90 [4.00;11.0]  

9.67 

[6.02;15.6]    0.098 
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    Median [1st Quartile;3rd Quartile] 

Taxa 

Taxonomic 

Level VB CS 

P-

value 

Barnesiella                g 0.23 [0.12;0.69]  

0.23 

[0.15;0.48]    0.684 

Bifidobacterium            g 2.75 [1.99;3.76]  

2.85 

[1.31;3.99]    0.912 

Bilophila                  g 0.05 [0.01;0.09]  

0.03 

[0.01;0.08]    0.535 

Blautia                    g 5.58 [4.52;9.30]  

6.10 

[4.48;8.48]    0.793 

Butyricicoccus             g 0.43 [0.31;0.59]  

0.41 

[0.28;0.66]    0.783 

Butyricimonas              g 0.02 [0.00;0.04]  

0.02 

[0.00;0.05]    0.792 

Clostridium_IV             g 0.50 [0.23;1.42]  

0.40 

[0.26;0.89]    0.6 

Clostridium_sensu_stricto  g 0.58 [0.21;1.13]  

0.45 

[0.11;1.09]    0.62 

Clostridium_XI             g 1.19 [0.63;2.43]  

1.55 

[0.61;2.10]    0.858 

Clostridium_XlVa           g 1.06 [0.77;1.94]  

1.26 

[0.92;1.67]    0.408 

Clostridium_XlVb           g 0.05 [0.02;0.17]  

0.04 

[0.01;0.14]    0.517 

Clostridium_XVIII          g 0.53 [0.18;0.92]  

0.74 

[0.27;1.24]    0.16 

Collinsella                g 0.90 [0.63;1.83]  

0.84 

[0.50;1.62]    0.416 

Coprococcus                g 3.32 [1.20;6.18]  

2.13 

[1.07;3.76]    0.195 

Dialister                  g 1.98 [0.74;4.11]  

0.64 

[0.01;3.40]    0.067 

Dorea                      g 1.41 [0.81;1.96]  

1.64 

[0.94;2.56]    0.264 

Eerthella                g 0.00 [0.00;0.02]  

0.00 

[0.00;0.02]    0.814 

Enterococcus               g 0.01 [0.01;0.03]  

0.01 

[0.00;0.02]    0.209 

Escherichia.Shilla       g 0.01 [0.00;0.06]  

0.01 

[0.00;0.05]    0.71 

Eubacterium                g 0.01 [0.01;0.02]  

0.01 

[0.01;0.03]    0.699 

Faecalibacterium           g 13.1 [9.81;16.0]  

11.9 

[7.84;15.7]    0.535 

Flavonifractor             g 0.03 [0.02;0.04]  

0.02 

[0.02;0.10]    0.61 
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    Median [1st Quartile;3rd Quartile] 

Taxa 

Taxonomic 

Level VB CS 

P-

value 

Gemmir                   g 1.11 [0.57;1.78]  

1.15 

[0.64;2.51]    0.572 

Gordonibacter              g 0.01 [0.00;0.03]  

0.01 

[0.00;0.02]    0.571 

Haemophilus                g 0.01 [0.00;0.04]  

0.02 

[0.00;0.06]    0.374 

Holdemania                 g 0.01 [0.01;0.01]  

0.01 

[0.01;0.02]    0.581 

Lachnospira                g 0.23 [0.02;0.72]  

0.24 

[0.03;1.12]    0.836 

Lactobacillus              g 0.01 [0.00;0.09]  

0.01 

[0.01;0.03]    0.689 

Odoribacter                g 0.07 [0.02;0.17]  

0.06 

[0.02;0.16]    0.783 

Oscillibacter              g 0.20 [0.09;0.29]  

0.17 

[0.08;0.39]    0.858 

Parabacteroides            g 0.59 [0.28;0.84]  

0.41 

[0.25;0.83]    0.491 

Parasutterella             g 0.01 [0.00;0.07]  

0.01 

[0.00;0.02]    0.562 

Phascolarctobacterium      g 0.01 [0.00;0.55]  

0.22 

[0.00;1.36]    0.214 

Prevotella                 g 0.07 [0.00;4.29]  

0.01 

[0.00;1.71]    0.276 

Roseburia                  g 7.48 [6.28;13.2]  

10.4 

[5.73;12.3]    0.639 

Ruminococcus               g 4.59 [3.23;6.60]  

5.35 

[1.66;7.42]    0.526 

Ruminococcus2              g 1.16 [0.93;1.81]  

1.23 

[0.72;1.87]    0.783 

Streptococcus              g 0.34 [0.12;0.68]  

0.37 

[0.14;0.65]    0.699 

Sutterella                 g 0.01 [0.00;0.15]  

0.02 

[0.00;0.11]    0.78 

Turicibacter               g 0.04 [0.01;0.14]  

0.08 

[0.01;0.20]    0.416 

Veillonella                g 0.04 [0.01;0.12]  

0.06 

[0.01;0.19]    0.62 

Supplementary Table 2. 8- Differentially abundance taxa between VB and CS groups in adults at phylum(p), family (f) and genus (g) level, as tested 

with a Mann-Whitney U-test.  

The p-values are correct for multiple testing at a defined false discovery. Significant effects (p<0.05) are given in bold. Vaginal birth =VB; C-section=CS.  
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Gene 

name 
Assay ID Ref. Seq. Exon Location Primers 

 

 
Actb REF4352341E (VIC labeled) NM_007393.1     

 

 
Tjp1 Mm.PT.58.12952721 NM_001163574 25-26 1: 5’-GCCACTACAGTATGACCATCC-3’ 

 

 
        2: 5’-AATGAATAATATCAGCACCATGCC-3’ 

 

 
Ocln Mm.PT.58.30118962 NM_008756 6-7 1: 5’-GTTGATCTGAAGTGATAGGTGGA-3’ 

 

 
        2: 5’-CACTATGAAACAGACTACACGACA-3’ 

 

 
Tlr4 Mm00445274_m1 NM_021297.2 2-3 Not Available  

 

 
Nr3c1 Mm.PT.56a.42952901 NM_008173 1-2 1: 5’ -GAT CCT CAA GAC CTT CCA AGA-3’ 

 

 
        2: 5’ -AGT CAT TTC TTC CAG CAC ACA- 3’ 

 

 
Nr3c2 Mm.PT.56a.30752774 NM_001083906(1)   1: 5’ -GAT TAC TGC TCT GGC TCC TAG-3’ 

 

 
        2: 5’ -GAC TCA TCG TAC TCC TGC TTG -3’ 

 

 
Crhr1 Mm.PT.58.13604366 NM_007762(1)   1: 5’-TGC CTT TCC CCA TCA TTG TG-3’ 

 

 
        2: 5’ -GCC CTG GTA GAT GTA GTC AGT A-3’ 

 

 
Oxtr Mm.PT.58.10758.10711295 NM_001081147 1-2 1: 5’-ATGGCAATGATGAAGGCAGA-3’ 

 

 
        2: 5’-CGCACAGTGAAGATGACCTT-3’ 

 

Supplementary Table 2. 9- PrimeTime® qPCR assays used in this study.  

ß-Actin, household gene (Actb) ; Tight junction protein-1 (Tjp1); Occludin (Ocln) ; Toll-like receptor 4 (Tlr4); Glucocorticoid receptor (Nr3c1); 

Mineralocorticoid receptor (Nr3c2); Corticotropin-releasing factor receptor 1 (Crhr1), Oxytocin receptor (Oxtr).
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3.1 Abstract  

The oxytocin (OXT) system has been strongly implicated in the regulation of social 

behaviour and anxiety, potentially contributing to the aetiology of a wide range of 

psychopathologies. Alterations in the microbiota-gut brain axis have also been 

implicated in the development of both social and anxiety-related behaviours. Birth by 

Caesarean-section (C-section) results in alterations in microbiota diversity and 

complexity in early-life and has recently been associated with long-term social and 

anxiety-like behaviour deficits. In this study, we assessed whether OXT intervention 

in the early postnatal period could reverse C-section-mediated effects on stress, 

anxiety-like behaviour, social behaviour, and physiology in early-life and adulthood. 

Following C-section or per vaginum birth, pups were reared by foster dams, and OXT 

(0.2 or 2 μg/20μl; s.c.) or saline was administered daily from postnatal days one to 

five.  

In early-life, high-dose OXT administration reversed C-section-mediated maternal 

attachment impairments. Moreover, treatment with low-dose OXT restored social 

memory deficits, some aspects of anxiety-like behaviour and disrupted gastrointestinal 

motility in adulthood. Furthermore, as a consequence of OXT intervention in early 

life, OXT plasma levels in adult male mice were increased, baseline corticosterone 

levels were decreased, and the dysregulation of immune response in C-section animals 

was attenuated. These findings indicate that there is an early developmental window 

sensitive to manipulations of the OXT system that can prevent lifelong behavioural 

and physiological impairments associated with mode of delivery. 

 



 

 

155 

 

3.2 Introduction  

Delivery by Caesarean-section (C-section), when medically indicated, is a crucial life-

saving procedure. However, in recent decades, the use of elective C-section has 

dramatically increased worldwide, with rates exceeding World Health Organization 

guidelines (of 10-15%), especially in middle and high-income countries (Betran et al., 

2016). This trend raises significant concerns given the growing evidence for an 

association between C-section delivery and increased risk for immune and metabolic 

disorders (Algert et al., 2009; Darmasseelane et al., 2014; Decker et al., 2010; Horta 

et al., 2013; Mårild et al., 2012). Moreover, birth by C-section results in a different 

pattern of microbiota seeding early in life (Dominguez-Bello et al., 2010; Hill et al., 

2017; Martinez et al., 2017; Penders et al., 2006), interfering with the wiring of the 

entire microbiota-gut-brain axis (Moya-Pérez et al., 2017). Recently, we have 

demonstrated that mice delivered by C-section develop enduring abnormal 

behavioural and physiological phenotypes in addition to a reduction in gut microbiota 

diversity and altered oxytocin receptor mRNA expression in the amygdala (Morais et 

al., 2017). 

OXT is a key modulator of mammalian maternal-offspring attachment and social 

behaviour (Carter, 2003; Donaldson and Young, 2008; Insel, 2003; Johnson and 

Young, 2017). Moreover, the OXT system is activated by stressful and anxiogenic 

stimuli and acts as key-modulator of the hypothalamic-pituitary-adrenal (HPA) axis 

(Neumann and Slattery, 2016). Consistent with the important role of OXT in social 

behaviour promotion and stress regulation, OXT dysregulation has been associated 

with anxiety and autism spectrum disorders (ASDs) (Kosaka et al., 2016; Liu et al., 

2005; Mamrut et al., 2013). Therefore, there is a growing interest in the OXT system 

as a potential target in the treatment of neuropsychiatric disorders associated with 

stress and social dysfunction (Andari et al., 2010, 2017; Bakermans-Kranenburg and 

van I Jzendoorn, 2013; Parker et al., 2017). Indeed early-life administration of 

oxytocin can reverse long-lasting social behavioural deficits and restored oxytocin 

immunoreactivity in the PVN in the contactin-associated protein-like 2 (CNTNAP2) 

model of ASD (Peñagarikano et al., 2015). Moreover, OXT treatment after birth 

prevents social and cognitive deficits and normalises OXT system function in adult 

mice deficient for Magel2 gene, which is involved in Prader-Willi Syndrome and ASD 
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and (Meziane et al., 2015). OXT developmental effects are not limited to OXT system 

and behaviour, it influences the development of HPA-axis (Kramer et al., 2003), and 

other neurotransmitter systems such as GABaergic (Tyzio et al., 2014), noradrenergic 

and serotoninergic systems (Eaton et al., 2012). Thus, demonstrating organisational 

effect during development (Miller and Caldwell, 2015). 

Recently, there have been numerous studies investigating the link between gut 

microbiota and social behaviour (Arentsen et al., 2015; Desbonnet et al., 2014; 

Golubeva et al., 2017; Hsiao et al., 2013; Kim et al., 2017). Moreover, there is growing 

evidence showing that the microbiota can interact with the OXT system by acting 

through immune-system to produce beneficial effects in the host (Varian et al., 2017). 

For example, treatment with Lactobacillus reuteri was shown to increase OXT plasma 

levels and OXT-positive cells in the paraventricular nucleus (PVN) of hypothalamus, 

and accelerate wound healing in mice (Poutahidis et al., 2013; Varian et al., 2017). In 

another study, the same bacteria were able to reverse social deficits and increase brain 

levels of oxytocin of mice born to obese dams on high fat diet (Buffington et al., 2016). 

Similarly, we have recently demonstrated that birth by C-section induces alterations 

in OXT receptor mRNA expression in the amygdala which are reversed by restoring 

bifidobacteria in the mouse gut (Morais et al., 2017). However, it remains unclear 

whether interventions targeting the OXT system can ameliorate the enduring effects 

of C-section on physiology and behaviour. Therefore, in this study, we investigated 

the long-term effects of early postnatal OXT treatment on mice delivered by C-section.  

3.3 Materials and Methods  

 Animals 

The experiments were carried out in male Swiss mice of different ages. 8-week-old female 

and male breeders were obtained from Harlan laboratories, UK. Breeding began after 1-2 

weeks of acclimatization to the animal holding room. Animals were kept under a strict 

12:12-h dark-light cycle and temperature (20±1 oC, 55.5%) with food and water given ad 

libitum unless specified otherwise. Male offspring were weaned at postnatal (P) day 21 and 

group-housed in 3-4 mice per cage. Each experimental group included the offspring from 

3-10 independent litters. In addition, 10-week-old Swiss male mice, purchased from Harlan 
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laboratories, UK, were used as conspecifics in the three-chamber test. All experimental 

procedures were conducted in accordance with the Directive 2010/63/EU and were 

approved by the Animal Experimentation Ethics Committee of University College Cork # 

2012/036.  

3.3.2 Mode of Delivery: Experimental Groups 

Mice were time-mated, and the presence of a vaginal plug in females was marked as 

a gestational day 0.5 (G0.5). Males were removed from the cages, and pregnant 

females were not disturbed except for cage cleaning. Pregnant dams were randomly 

assigned to one of two experimental groups (using a generator of random numbers): 

(1) Vaginal delivery: the offspring were delivered naturally and raised by their 

biological mother. (2) C-section: the offspring were delivered by C-section surgery 

and raised by a foster dam that gave birth on the same day. Treatments were assigned 

to the entire litter; each of the offspring in a litter received the same treatment. (See 

Oxytocin administration for further details). 

3.3.3 C-section Surgery 

At full term (G20.5), female mice were euthanized by cervical dislocation. All further 

procedures were performed in nearly aseptic conditions. The abdominal skin was prepped 

with 70% ethanol; the uterus was excised with sterile surgical tools and placed on sterile 

gauze, preheated to +37C with a heating pad. The pups were removed from the uterus by 

applying a gentle pressure with a sterile swab, and further massaged for 1-2 minutes to 

clear the amniotic membrane and stimulate pulmonary breathing. Once spontaneous 

breathing was recorded, the pups were immediately transferred to a foster mother. To 

facilitate nursing, pups were briefly smeared with the bedding material from the foster 

mother’s cage prior to transfer. 

3.3.4 Oxytocin Administration 

From P1 to P5, male and female pups were temporarily removed from their nest (5 min) 

weighed and given a daily subcutaneous (s.c.) injection as previously described (Schaller 

et al., 2010, Meziane et al., 2015). Pups received a s.c. injection of either 0.2 µg or 2 µg of 
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OXT (Tocris, Bioscience, UK) dissolved in 20 µL of isotonic saline, or 20 µL of isotonic 

saline alone (control) (Meziane et al., 2015; Schaller et al., 2010). 

3.3.5 Experimental Design  

Effects of C-section on behaviour were evaluated in both male and female offspring in 

early-life (P9/P10) and only in males in adulthood (weeks 10-16). Mice were habituated to 

the room 30 minutes prior to each test. The exact order of behavioural tests, as well as 

resting intervals between them were optimized to reduce cumulative stress effects and the 

potential confounding carryover effects from previous tests (see Figure 3. 1a). 

3.3.6 Behavioural Assessments  

3.3.6.1 Attachment Behaviour (Homing Test) 

The homing test evaluates the tendency of pups to recognize their mother’s and 

siblings’ nest and is an indirect measure of attachment behaviour (Macrì et al., 2010). 

At P10, a clean mouse cage was divided into the three equal-size quadrants by wire-

mesh dividers. One of the side quadrants was uniformly covered with wood shavings 

from the home cage, thus containing familiar odour stimuli. The opposite side quadrant 

was covered with wood shavings from the cage of another litter (born at approximately 

the same time); the middle quadrant was covered with clean bedding material. Pups 

were placed individually in the middle part for 1 minute; the dividers were then 

removed, and the pups could freely move around for 2 minutes. Total time spent in 

each area was recorded. 

3.3.6.2 Three-chamber Test  

Sociability and preference for social novelty were assessed in a three-chamber 

apparatus, as described previously (Desbonnet et al., 2014). Animals were placed in a 

rectangular apparatus divided into three chambers (left, right and a smaller central 

chamber) by transparent partitions with small circular openings allowing easy access 

to all compartments. The test was composed of three sequential 10 min trials: (1) 

habituation (a test animal was allowed to explore the three empty chambers); (2) 
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sociability (an unfamiliar animal was positioned in a wire mesh cage in either the left- 

or right- side chamber); (3) social novelty preference (a novel animal was positioned 

in either right- or left- side chamber, opposite the one occupied by the now familiar 

animal). Each trial started from the central chamber. All animals were age- and sex-

matched; each chamber was cleaned and lined with fresh bedding between trials. 

Behaviours were recorded by a video camera mounted above the apparatus, and the 

time of active interaction was measured. 

3.3.6.3 Defensive Marble Burying Test  

The defensive marble burying (DMB) test measures repetitive and anxiety-like 

behaviours; the number of marbles buried during the test correlates with anxiety 

(Sweeney et al., 2014). Clean cages were filled with a 4-cm layer of chipped cedar 

wood bedding. Twenty glass marbles (15mm diameter) were gently laid on top of the 

bedding, equidistant from each other in a 4×5 arrangement. The mouse was then 

placed in the cage and allowed to explore it for 30 min. At the end of the test, the 

number of marbles buried (> 2/3 marble covered by bedding material) was recorded. 

3.3.6.4 Elevated Plus Maze Test 

The elevated plus maze (EPM) is one of the most widely used behavioural tests to 

assess anxiety-related behaviours (Holmes, 2001; Rodgers, 1997b). The Plexiglas 

maze consists of a plus-shaped apparatus with two open and two enclosed arms (50 

cm × 5 cm × 15 cm walls) elevated from the floor by 1m. Mice were placed in the 

centre of the EPM apparatus facing an open arm and allowed to explore it for 5 

minutes. The number of entries into open and closed arms were scored. When all four 

paws of a test mouse were standing on the arm, this position was considered as an 

“entry”.  

3.3.6.5 Aversive Open Field (OF) Test 

The open field (OF) test is used to assess locomotor activity, as well as the response 

to a novel, stressful environment (O’Leary et al., 2014). Light was set at 1000 lux. A 

test mouse was placed in the centre of an open field arena (Perspex box with white 
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base: 30 x 30 x 20 cm) and allowed to explore the arena for a 10-minute period. The 

distance moved and the time spent in the central zone (16 x 15 cm) of the open field 

were recorded using Ethovision videotracking system (Noldus Information 

Technology).  

3.3.6.6 In vivo Intestinal Motility  

In vivo intestinal motility was measured as previously described (Golubeva et al., 

2017). Mice were single-housed and habituated to new cages for three hours. 

Following the acclimatisation, mice received a 200µL oral gavage of carmine (C1022; 

Sigma Aldrich) suspended in 0.5% carboximethylcelulose (CMC) sodium salt (Sigma; 

St Louis, MO, USA). Cages were checked every 10 minutes, and the time between the 

gavage and the appearance of the first coloured faecal bolus was recorded.  

3.3.6.7 Oxytocin Measurement 

Oxytocin measurement was performed as previously described (Neumann et al., 

2013). Briefly, trunk blood was collected and centrifuged (5 min, 5000 g, 4 °C), and 

plasma samples were kept at −20°C until oxytocin concentration was measured using 

a highly sensitive and specific radioimmunoassay performed by RIAgnosis, Munich.  

3.3.6.8 Gene Expression Analysis with qRT-PCR  

Total RNA was extracted from the paraventricular nucleus of the hypothalamus (PVN) 

using the mirVana™ miRNA Isolation Kit as per manufacturer’s instructions (Thermo 

Fisher Scientific). RNA concentration was quantified using the ND-1000 

spectrophotometer (NanoDrop®). Equal amounts of RNA were reverse transcribed to 

cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Life 

Technologies, Carlsbad, CA). cDNA was stored at −20 °C prior to the assay. Gene 

expression was analysed using TaqMan Gene Expression Assays on the AB7300 system 

(Applied Biosystems, Thermo Fisher Scientific). Changes in gene expression levels were 

calculated using the ΔΔCt method (Livak and Schmittgen, 2001); the average of three 

technical replicates for each biological sample was first related to β-actin expression, then 

the fold changes vs. the control (VB) group were calculated. 



 

 

161 

 

3.3.6.9 Analysis of Cytokine Release in Stimulated Murine Splenocyte  

Splenocytes were isolated as follows: immediately upon collection, cellular contents of 

spleen and thymus were gently dissociated in RPMI medium (R8758, supplemented with 

10% FBS and 5% penicillin/streptomycin, Sigma), treated with Red Blood Cells lysis 

buffer (Sigma) to clear the culture from erythrocytes, passed through a 70 μm filter, and 

resuspended in fresh RPMI medium (as above) for seeding. Splenocytes were seeded in 6 

well plates at 16x106 cells/well in 4 mL. Following a 2.5 h rest period, cells were stimulated 

with lipopolysaccharide (LPS-2 μg/mL) for 24 h. Following stimulation, the supernatants 

were harvested to assess IL-10 and TNF-α concentration (pg/mL) using the 

Proinflammatory Panel 1 (mouse) V-PLEX MULTI-SPOT® Meso Scale Discovery kits 

(MSD, Rockville, MD, USA) as per manufacturer’s instructions. The median lower limits 

of detection for each cytokine are IL-10 0.95 pg/mL, TNF-α 0.13 pg/mL. 

3.3.6.10 Statistical Analyses 

Statistical analyses were carried out using SPSS version 19 (Armonk, NY, USA). 

Parametric data were analysed by Two-way ANOVA for mode of delivery and 

treatment factors followed by LSD post-hoc tests or Paired Student t-test and 

represented as mean ± S.E.M. Non-parametric data were analysed by Kruskal-Wallis 

followed by U- Mann Whitney tests and data are represented as median ± interquartile 

range. p<0.05 was considered statistically significant. The main statistical differences 

are represented in the graphs 
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3.4 Results  

 Postnatal Oxytocin Reversed C-section Mediated Maternal 

Attachment Deficits 

Birth by C-section was recently shown to have a negative impact on the offspring-

maternal attachment (Morais et al., 2017). To test whether the postnatal treatment with 

oxytocin (Figure 3. 1a) could ameliorate these effects, pups homing behaviour was 

tested at P10 (Figure 3. 1b). As expected, VB pups from all treatment groups could 

discriminate between the familiar and non-familiar stimuli and move towards the 

mother’s nest (Figure 3. 1b), whereas CS offspring failed to show a preference for the 

familiar stimuli (Figure 3. 1b). Strikingly, the postnatal treatment with the higher dose 

of OXT re-established the preference for the mother’s bedding. To exclude the 

possibility that differences in offspring phenotype investigated in this study are due to 

cross-fostering effects on nurturing per se, we assessed maternal care behaviour at P6 

(Supplementary figure 3. 1). Of interest, cross-fostering CS offspring did not impair 

maternal care behaviour (Supplementary figure 3. 1). Interestingly, when pups were 

treated with oxytocin there was a significant increase on the time the mother spent 

engaged in high care behaviours (licking, grooming, and arched back nursing the pups) 

in both VB and CS groups (Supplementary figure 3. 1). 



 

 

163 

 

 

Figure 3. 1- Early postnatal administration of OXT rescued C-section mediated effects on attachment 

behaviour. (a) Schematic representation of OXT treatment and behavioural testing sequence.  

Following birth by C-Section or per vaginum, pups received daily injections of oxytocin (0.2 or 2 

μg/20μl saline; s.c.) from postnatal days 1-5 and were subjected to a sequence of behavioural tests. (b) 

High-dose OXT administration reversed C-section mediated effects on attachment behaviour. VB 

control t (35) = 2.531, p<0.0001, n=36; VB 0.2 OXT t (35) =4.281, p<0.0001, n=36; VB 2 OXT t (23) 

=3.444, p<0.0022, n=24; CS control t (22) = 0.5392, p=0.5952, n=23; CS 0.2 OXT t (35) = 1.571, 

p=0.1252, n=36; CS 2 OXT t (24) = 2.462, p=0.0214, n=25. Male and Female offspring in each cohort 

derived from three independent litters/ group. Scatter dot-plots represent Mean ± Standard Error of the 

Mean (S.E.M.). *p< 0.05, *p< 0.01 and ***p<0.0001. Paired Student’s t-test comparing time spent in 

the mother’s bedding with time spent in other bedding (mother’s bedding + neutral bedding) as a 

measure of attachment behaviour. OXT, oxytocin; VB, vaginal birth; CS, C-section.  
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 Postnatal Treatment With Low-dose OXT Restored the Preference 

for Social Novelty in C-section Born Adult Mice  

To investigate if OXT could attenuate the enduring social behavior deficits induced 

by C-section, we performed the 3-chamber test in adulthood (Figure 3. 2). Previous 

results did not detect differences in sociability due to C-section delivery mode(Morais 

et al., 2017). Here, we confirmed these findings and demonstrated that OXT treatment 

does not interfere with this pattern (Figure 3. 2a). However, when CS mice were given 

the choice to interact with a novel or with a familiar mouse, they exhibited decreased 

preference for social novelty (Figure 3. 2b) which was completely restored by 

treatment with low-dose OXT early in life (Figure 3. 2b). 
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Figure 3. 2- Early postnatal OXT restores social novelty preference in adult CS mice. 

(a) There were no significant differences on sociability across all groups in the three-chamber test. VB control t (11) = -3893, p=0.003, n=12; VB 0.2 OXT 

t (12) =-6144, p<0.0001, n=13; VB 2 OXT t (11) =5.066, p<0.0001, n=12; CS control t (11) = 6.298, p=0.0001, n=12; CS 0.2 OXT t (11) = 5.395, p<0.0.001, 

n=12; CS 2 OXT t (11) = 5.118, p<0.0001, n=12. Paired Student’s t test comparing interaction time with mouse to an object. (b) Low-dose oxytocin rescued 

the preference for social novelty in CS. VB control t (11) = 4.681, p=0.001, n=12; VB 0.2 OXT t (11) =3.064, p=0.011, n=12; VB 2 OXT t (10) =3.404, 

p=0.007, n=11; CS control t (11) = 0.594, p=0.564, n=12; CS 0.2 OXT t (11) = 3.671, p=0.004, n=12; CS 2 OXT t (10) = 0.970, p=0.355, n=12. Paired 

Student’s t test comparing interaction time with a familiar mouse to a novel mouse. Scatter dot-plots represent Mean ± Standard Error of the Mean (S.E.M.). 

Male offspring in each cohort derived from three independent litters/ group. *p< 0.05, *p< 0.01 and ***p<0.0001. OXT, oxytocin; VB, vaginal birth; CS, 

C-section.  
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 Early-life Oxytocin Improved But Does Not Completely Reverse the 

Anxiety-associated Phenotype Induced by C-section 

To extend our investigation on the effects of the early-life pharmacological manipulation 

of OXT on the C-section-associated behavioural phenotype, adult VB and CS offspring 

were tested in a variety of anxiety-like-behavioural paradigms. In early-life, anxiety-like 

behaviour was assessed in the isolation-induced USV test (Supplementary figure 3. 2). 

Although there was no significant effect of the mode of delivery in this test, the treatment 

with low-dose OXT significantly increased the number of calls in both VB and CS groups 

(Supplementary figure 3. 2).  

In adulthood, as expected, CS showed increased anxiety-like behaviour as they buried 

significantly more marbles in comparison to VB in the marble burying test 

(Supplementary figure 3. 2a). Interestingly, postnatal injection with the low-dose OXT 

attenuated these effects (Supplementary figure 3. 2a). Additionally, we measured 

anxiety-like behaviour in the EPM (Supplementary figure 3. 2b). Although we confirmed 

that C-section reduces the number of entrances into the open arms of the EPM in 

comparison to the control group, there were no significant effects of OXT treatment on this 

test (Supplementary figure 3. 2b). Similarly, when mice were tested in the aversive open-

field, C-section reduced the total distance moved with no effects of OXT on ameliorating 

these effects (Supplementary figure 3. 3a). Moreover, treatment with OXT significantly 

reduced the distance travelled in the open-field arena in the VB group (Supplementary 

figure 3. 3b). 
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Figure 3. 3- Effects of postnatal OXT administration on C-section-associated anxiety phenotype. 

(a) Early postnatal treatment with low-dose OXT attenuated the number of marbles buried in the CS group. 

Mode of delivery effect (F (1, 73) = 4.716, p=0.033); treatment effect (F (2, 73) = 2.258, p= 0.112); mode of 

delivery x treatment (F (2,73) = 3.351, p=0.041) ([VB control n= 12, VB 0.2 OT n=14, VB 2 OT control 

n=13, CS control n=15, CS 0.2 OXT n=12, CS 2 OXT n=13]). (b) OXT administration did not improve C-

section-induced anxiety-like behaviour in the EPM. Mode of delivery effect (F (1, 74) = 7.614, p=0.007); 

treatment effect (F (2, 74) = 0.663, p= 0.518); mode of delivery x treatment (F (2,74) = 0.820, p=0.444). (c) 

There were no significant differences in the number of entrances of the closed arms of the EPM. Mode of 

delivery effect (F (1, 74) = 0.843, p=0.361); treatment effect (F (2, 74) = 0.829, p= 0.441); mode of delivery 

x treatment (F (2,74) = 1.497, p=0.231). ([VB control n= 12, VB 0.2 OT n=14, VB 2 OT control n=13, CS 

control n=16, CS 0.2 OXT n=12, CS 2 OXT n=13]). Two-way ANOVA followed by LSD post-hoc. Scatter 

dot-plots represent Mean ± Standard Error of the Mean (S.E.M.). Male offspring in each cohort derived from 

three independent litters/ group. *p< 0.05, *p< 0.01 and ***p<0.0001. OXT, oxytocin; VB, vaginal birth; 

CS, C-section.  
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 Early-life Postnatal OXT Improved Intestinal Motility Deficits in 

Adult C-section Offspring 

Birth by C-section has been associated with alterations in gastrointestinal function in mice 

(Morais et al., 2017). To further characterize whether the pharmacological treatment with 

OXT could, as well, have beneficial effects on the gastrointestinal function in adult C-

section offspring, we used the carmine red assay as an in vivo marker of motility. As 

expected, we confirmed that CS mice have faster gastrointestinal transit when compared 

with VB mice. Surprisingly, the treatment with low-dose OXT early in life reversed these 

effects (Figure 3. 4). To test whether this effects of OXT on gastrointestinal motility would 

correlate with changes in gastrointestinal permeability, we measured fluorescence in 

plasma of VB and CS offspring following gavage with fluorescein isothiocyanate (FITC)-

labelled dextran. However, no significant alterations were observed across the groups 

(Supplementary figure 3. 4).  

 

Figure 3. 4- Oxytocin improved gastrointestinal motility in C-section.  

CS exhibited faster intestinal transit in comparison to VB, which was fully reversed by the low-dose OXT 

treatment in early-life. Mode of delivery effect (F (1, 74) = 1.278, p=0.262); treatment effect (F (2, 74) = 

5.238, p= 0.007); mode of delivery x treatment (F (2, 74) = 2.523, p=0.087). ([VB control n= 12, VB 0.2 OT 

n=14, VB 2 OT control n=13, CS control n=16, CS 0.2 OXT n=12, CS 2 OXT n=13]). Two-way ANOVA, 

followed by LSD post-hoc. Scatter dot-plots represent Mean ± Standard Error of the Mean (S.E.M.). Male 
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offspring in each cohort derived from three independent litters/ group. *p<0.05 for mode of delivery effect. 

#p< 0.05 for treatment effect within the group.  OXT, oxytocin; VB, vaginal birth; CS, C-section. 

 

 Early-life OXT Modulates Immune Response and Neuroendocrine 

Function in Adult Mice 

To combine the pharmacological evidence of a role of OXT in ameliorating specific C-

section behavioural phenotype with the established link between the gut-brain axis, OXT 

and immune system (Varian et al., 2017), we assessed whether early-life treatment with 

OXT could modulate CS immune response in adulthood. Interestingly, when splenocytes 

from CS mice were challenged with LPS they produced significantly more TNFα than the 

splenocytes from VB mice (
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Figure 3. 5a). This aberrant immune response was attenuated by administration of low-

dose and high-dose OXT early in life (Figure 3. 5b). Moreover, treatment with low-dose 

and high-dose OXT reduced IL-10 production in CS splenocytes.  

OXT modulates immune system function through multiple approaches that include neuro-

endocrine immune network (Wang et al., 2015). Here we showed that early-postnatal OXT 

can decrease baseline corticosterone levels in both VB and CS groups. However, OXT had 

no effect on HPA-axis response to an acute stressor (Supplementary figure 3. 5). 

Decreased HPA-axis activity has been associated to alterations in OXT plasma levels 

(Grewen et al., 2010). Next, we assessed the long-term effects of the mode of delivery to 

the OXT system by measuring the concentration of OXT in the plasma of VB and CS adult 

mice. Although, there was no significant effect of the mode of delivery, a sustained increase 

in the peptide concentration was observed in VB and CS mice followed high-dose OXT 

administration in early in life (Figure 3. 5c). However, only VB group increased plasma 

OXT in response to low-dose OXT (Figure 3. 5c). In addition, we determine OXT and 

AVP1a receptor mRNA expression in the PVN of CS mice. However, no differences were 

detected between the groups (Figure 3. 5d-e)
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Figure 3. 5- Early-life oxytocin administration induced long-lasting effects on neuro-endocrine-immune function. 

(a) Early-life OXT attenuates TNF-α secretion in CS splenocytes stimulated with LPS. Mode of delivery effect (x2= 0.019; df=1; p=0.892) and treatment 

effect (x2= 0.7.314; df=1; p=0.026) ([VB control n= 6, VB 0.2 OT n=5, VB 2 OT control n=6, CS control n=12, CS 0.2 OXT n=6, CS 2 OXT n=11]). (b) 

Early-life OXT decreases IL-10 in CS group. Mode of delivery effect (x2= 1.820; df=1; p=0.117) and treatment effect (x2= 22.805; df=1; p=0.003) ([VB 

control n= 6, VB 0.2 OT, n=5, VB 2 OT control n=8, CS control n=14, CS 0.2 OXT n=6, CS 2 OXT n=10]). Kruskal-Wallis test followed by Mann-Whitney 
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U test. Scatter dot-plots represent Median ± Interquartile range. (c) OXT administration in early-life increases OXT plasma levels in adulthood. Mode of 

delivery effect (F (1, 41) = 1.116, p=0.297); treatment effect (F (1, 41) = 5.893, p= 0.006); mode of delivery x treatment (F (2,41) = 0.886, p=0.420). ([VB 

control n= 6, VB 0.2 OT n=7, VB 2 OT control n=8, CS control n=10, CS 0.2 OXT n=8, CS 2 OXT n=8]). Two-way ANOVA, followed by LSD post-hoc. 

d) There were no significant effects on OXT receptor mRNA expression in the PVN. VB x CS (t=0.622; df=18; p=0.542). CS x CS + treatment (F (2,23) 

=0.850, p=0.440). ([VB control n= 9, CS control n=11, CS 0.2 OXT n=7, CS 2 OXT n=8]). (e) There were no significant effects on AVP1a receptor mRNA 

expression in the PVN. (t=1.018; df=18; p=0.322), CS x CS + treatment (F (2,23) = 0.531, p=0.595). ([VB control n= 9, CS control n=11, CS 0.2 OXT n=7, 

CS 2 OXT n=8]).d-e) Student’s t -test and One-way ANOVA. c-e) Scatter dot-plots represent Mean ± Standard Error of the Mean (S.E.M.) Male offspring 

in each cohort derived from three independent litters/ group. *p<0.05 for mode of delivery effect. #p< 0.05 for treatment effect within the group. OXT, 

oxytocin; VB, vaginal birth; CS, C-section. 



 

 

173 

 

3.5 Discussion 

It is well established that birth by C-section results in a different pattern of microbiota 

seeding early in life(Dominguez-Bello et al., 2010; Hill et al., 2017; Martinez et al., 2017; 

Penders et al., 2006). These alterations are critically implicated in aberrant development of 

the microbiota-gut-brain axis, resulting in long-term neurobehavioural consequences 

(Morais et al., 2017). Recent discoveries point to a pivotal a role for OXT in regulating the 

microbiota-gut-brain axis, as well as general well-being through its influence on neuro-

immune-endocrine pathways (Erdman, 2016). Here we demonstrate that pharmacological 

manipulation of the OXT system during the early postnatal period improves social, anxiety, 

endocrine and immune responses later in life in the C-section model of early-life disruption 

of gut microbiota. 

One of the main findings of this study is that early-life treatment with OXT prevented adult 

CS offspring from immune hyper-reactivity and decreased the production of both pro- 

(TNFα) and anti-inflammatory IL-10 cytokine production in splenocytes stimulated with 

LPS. Alterations in the initial microbial acquisition due to C-section has been previously 

associated with abnormal immune responses in humans (Cho and Norman, 2013) and in 

mouse models (Hansen et al., 2014). On the other hand, OXT has emerged as key factor 

regulating immune homeostasis through several different neuro-immune-endocrine 

networks(Varian et al., 2017; Wang et al., 2015) . Here we observed a reduction in basal 

HPA-axis activity in adult mice that received OXT early in life as indicated by 

Supplementary figure 3. 5a. However, there were no differences in the corticosterone 

response to acute stress in these animals (Supplementary figure 3. 5b). In addition, OXT 

is known to be involved in immune system maturation and by reinforcing immunotolerance 

by activation of a subset of CD4+Foxp3+CD25+ regulatory T cells (Tregs) (Poutahidis et 

al., 2013). Interestingly, some early-life bacteria colonizers that are decreased in the mouse 

model of C-section (i.e. Bifidobacteria, Bacteroides, Lactobacillus) (Morais et al., 2017) 

are known to promote Foxp3(+) Treg development (Hansen et al., 2014; Johansson et al., 
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2012; Round and Mazmanian, 2009). Thus, the relative contribution of such OXT-

microbiota-immune interactions to the behavioural effects observed should be explored in 

future studies. Another noteworthy aspect is that OXT can modulate immune system 

maturation by activation of OXTR and AVPR present in the PVN (Wang et al., 2015) and 

in immune organs such as the thymus and spleen (Elands et al., 1990). However, mRNA 

expression of OXTR and AVPR in the PVN were not affected by C-section model 

suggesting this may not be the mechanism of immune dysfunction at play. 

OXT, and the closely related AVP system, are fundamental for establishing maternal-

offspring attachment and social behaviour in mammals (Carter, 2003; Donaldson and 

Young, 2008; Insel, 2003; Johnson and Young, 2017). The most consistent finding in 

relation to behavioural changes is that postnatal treatment with OXT reversed C-section-

mediated social recognition deficits. At P10, CS offspring failed to show preference for a 

familiar nest which was completely restored by the high-dose of OXT. Importantly, the C-

section-associated attachment deficits are not due to differences in maternal care received 

by the foster dam. Interestingly, OXT treatment applied to the offspring increases maternal 

care in all groups, supporting the role of OXT in strengthening maternal-offspring bonds 

(Insel and Young, 2001). Furthermore, early orientation to specific odour cues is critical to 

mammalian offspring survival and to social behaviour developmental trajectories 

(Hammock, 2015). As expected, adult CS offspring showed deficits in social recognition 

and social novelty preference which was fully restored by low-dose OXT treatment early-

in-life. Our laboratory has previously demonstrated that C-section alters OXTR mRNA 

expression in the amygdala (Morais et al., 2017), an important brain region involved in 

recognition of socially relevant cues (Ferguson et al., 2001). Here we extended the 

investigation to the effects of the delivery mode on peripheral levels of OXT (in plasma) 

and on OXTR and AVPR mRNA expression in the PVN. Although mode of delivery did 

not affect plasma OXT or PVN expression of OXTR and AVPR in the PVN, postnatal 

pharmacological manipulation of the OXT system increased the peptide plasma levels in 

adulthood in both VB and CS groups. These results are in line with recent studies 
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demonstrating long-term pro-social behavioural effects and neuropeptide system 

alterations in rodents following OXT system manipulation during the developmental phase 

(Bales and Perkeybile, 2012; Meziane et al., 2015; Mogi et al., 2014; Peñagarikano et al., 

2015; Schaller et al., 2010).  

As previously shown, CS offspring exhibited enduring behavioural effects on anxiety-like 

behaviours in the MB, EPM and aversive OF tests. In addition to its role on social 

behaviour, OXT has been associated with anxiolytic and anti-stress effects in the brain 

(Neumann and Slattery, 2016). Here we demonstrated that postnatal treatment with a low-

dose of OXT reduced anxiety in the marble burying test but not in the EPM or in the OF. 

Although these three behavioural models evaluate the tendency of mice to engage in 

exploratory behaviour in an aversive space (Crawley, 1985), the MB is also widely thought 

as a measure of repetitive behaviour (Silverman et al., 2010a). This suggests the possibility 

that postnatal OXT may be differentially acting in neuronal mechanisms and circuits that 

are involved in obsessive-compulsive-behaviours which may be also be relevant to ASDs. 

In this study, some tests of the anxiety- and stress-related behaviours did not reveal 

differences between CS and VB groups (Supplementary figure 3. 2, Supplementary 

figure 3. 3b and Supplementary figure 3. 5b). It may be that these measures are more 

sensitive to handling effects, masking differences between the groups. Handling pups 

during the 1st week after birth is reported to affect the quality of maternal care received and 

can have long-lasting behavioural effects to the offspring (Bales and Perkeybile, 2012; 

Villescas et al., 1977). 

In this study, we observed an interesting physiological effect of postnatal OXT on restoring 

gastrointestinal transit in CS adult mice without compromising gut permeability. To date, 

only a few studies have investigated the role of OXT in the gut and OXT/OXTR signalling 

in the enteric nervous system. These studies have demonstrated that OXT slows 

gastrointestinal motility, protects the intestinal barrier from inflammation and decreases 

macromolecular permeability (Welch et al., 2014). Although speculative, the restoration of 

the gastrointestinal transit could reflect an indirect developmental effect of OXT in the 
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microbiota-gut-brain axis network. Additional investigation into the role of postnatal OXT 

on the development of the gastrointestinal system in C-section mice would be of value. 

The results obtained from this study demonstrate that there is an early developmental 

window sensitive to manipulations of the OXT system, which may be capable of preventing 

some of the lifelong behavioural and physiological impairments induced by the mode of 

delivery. Interestingly, the higher dose of OXT was more effective in preventing the CS-

mediated effects in early postnatal days whereas the low dose of OXT was associated with 

long-term changes. A similar dose response curve has been reported in several studies 

involving OXT and other peptides (Bales and Perkeybile, 2012; Popik et al., 1992). A better 

understanding of the dynamic role of the OXT system during development would be 

required for the interpretation of these results. It is worth noting that exogenous exposure 

to OXT early in life can interact with receptor systems beyond OXT and AVP (Bales and 

Perkeybile, 2012). In the present experiments, OXT was given subcutaneously and resulted 

in changes in CNS function. Although the passage of peptides through the blood-brain 

barrier is still not well understood, the dose and method of administration employed for 

this study, was previously reported to have effects within the brain (Meziane et al., 2015). 

There is a growing interest in manipulation of the OXT system for potential therapeutic 

use. Our study opens an avenue for the investigation on how manipulation OXT system 

influences the wiring of the gut-brain axis when the normal seeding of the microbiome has 

been disrupted. Although the translation of findings in animal models are limited, OXT is 

present in human breast milk (Takeda et al., 1986) and breast-feeding initiation may also 

be adversely affected by C-section (Hobbs et al., 2016). As a rise in unplanned C-section 

deliveries are a global trend, the data from this study suggest that targeting OXT in parallel 

with re-establishment of the gut microbiome may serve as a novel and worthy target for 

improving health outcomes associated with the procedure.  
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3.6 Supplementary Material 

 Supplementary Materials and Methods  

 Maternal Care 

Maternal care was assessed at P6 in order to exclude possible cross-fostering confounding 

effects. Home cages were transported to the experimental room 30 minutes prior to the 

experiment. The behaviour of each dam was monitored for 30 minutes in the morning in 

their home cage. The time spent on nursing, pup licking/grooming, carrying and time on-

nest were collectively considered as high care behaviours. The data is presented as time 

engaged in high care behaviours. 

 Isolation-induced Ultrasonic Vocalization  

Ultrasonic vocalizations (USV) are produced by mice pups during the first two weeks of 

life when separated from the mother and littermates (Insel et al., 1986). At P9 pups were 

isolated one by one and placed in a clean plastic container inside a sound attenuating 

chamber. Emission of ultrasonic vocalizations was monitored by an ultrasound sensitive 

microphone (US Mini-3 bat detector, Summit, Birmingham, USA) tuned in the range of 

60-80 kHz and suspended above the isolated pup. The microphone was connected via an 

Ultravox Noldus automated system to a personal computer and the recordings were carried 

out with a sampling range of 70 kHz for 3 minutes. The recordings were analysed using 

computer analysis software (UltraVox 2.0; Noldus Information Technology). The number 

of USVs during the test period was recorded. 
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 Forced-swim Test (FST) 

Depression behaviour was used as a mild acute stressor as previously described (Robertson 

et al., 2017). In this test, mice were placed into a cylinder of tepid water (23-25 oC) to a 

depth of 17 cm for 6 min. Behaviour was recorded by a camera positioned above the swim 

tank. After removal from the cylinder, animals were placed into a separate cage for 

recovery. The immobility time was blinded scored during the last 4 min. by two 

investigators. 

 HPA Axis Response 

Blood and subsequent plasma samples were taken to assess the HPA axis response to a 

mild acute stress. A blood sample was taken at a baseline time point at week 13 and 30 min 

after the FST onset at week 15. Blood samples (50-70µl) were taken from the tail vein and 

placed in heparin-coated capillary tubes. Bleeding was performed in a separate room. Total 

corticosterone was measured according to the manufacturer's protocol, Corticosterone 

ELISA kit (Enzo Life Sciences, Farmingdale). Plasma dilution was 1:40.  

 In Vivo Intestinal Permeability Assay (FITC-dextran) 

Intestinal permeability was indirectly measured by plasma concentration of FITC-dextran 

as described before (Golubeva et al., 2017). Following overnight fasting, mice were orally 

gavaged with 600 mg/kg FITC-dextran (FD4, Sigma) in PBS. Blood was taken from the 

tail vein 2h after the gavage. FITC was measured in plasma at 490 nm excitation/520 nm 

emission wavelengths. For a standard curve, serial dilutions of FITC were prepared in PBS. 



 

 

179 

 

3.7 Supplementary Results  
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Supplementary figure 3. 1- Mode of delivery did not affect time spent on maternal care behaviours. 

To exclude the possibility that differences in offspring phenotype investigated in this study are due to 

variation in maternal care per se, we assessed maternal care behaviour on P6. There was no significant effect 

of the mode of delivery (x2= 0.282; df=1; p=0.595). However, when pups were treated with OXT there was 

a significant increase on the time the mother spent engaged in high care behaviours across all the groups (x2= 

11.615; df=2; p=0.003). n=3 dams per group. Kruskal-Wallis test followed by Mann-Whitney U test. Scatter 

dot-plots represent Median ± Interquartile range. #p< 0.05 for treatment effect within the group. OXT, 

oxytocin; VB, vaginal birth; CS, C-section.  
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Supplementary figure 3. 2- Low-dose OXT increases the number of calls followed isolation-induced USV.  

Isolation-induced USV was measured at P9. There was no significant effect of the mode of delivery (x2= 

0.034; df=1; p=0.853). However, when pups were treated with low-dose OXT there was a significant increase 

on the number of calls emitted in both birth conditions (x2= 51.080; df=2; p=0.0001). ([VB control n= 44, 

VB 0.2 OT n=43, VB 2 OT control n=24, CS control n=30, CS 0.2 OXT n=29, CS 2 OXT n=25]). Male and 

Female offspring. Kruskal-Wallis test followed by Mann-Whitney U test. Scatter dot-plots represent Median 

± Interquartile range. #p< 0.05 for treatment effect within the group. OXT, oxytocin; VB, vaginal birth; CS, 

C-section.  
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Supplementary figure 3. 3- Effects of postnatal OXT administration on the aversive open-field and on the 

forced-swim test.  

a) Early postnatal treatment did not reverse C-section-mediated effects on the total distance travelled in an 

open-field arena. Mode of delivery effect (F (1, 64) = 7.296, p=0.009); treatment effect (F (2, 64) = 2.291, 

p= 0.109); mode of delivery x treatment (F (2,64) = 8.538, p=0.001) ([VB control n= 9 VB 0.2 OT n=11, VB 

2 OT control n=12, CS control n=14, CS 0.2 OXT n=12, CS 2 OXT n=12]). b) There were no significant 

effects on time spent in central zone of an aversive-open field. Mode of delivery effect (F (1, 64) = 5.994, 

p=0.017); treatment effect (F (2, 64) = 0.771, p= 0.261); mode of delivery x treatment (F (2,64) = 0.2.255, 

p=0.113) ([VB control n= 9 VB 0.2 OT n=11, VB 2 OT control n=12, CS control n=14, CS 0.2 OXT n=12, 

CS 2 OXT n=12]). c) There were no significant differences in the FST. Mode of delivery effect (F (1, 74) = 

0.881, p=0.351); treatment effect (F (2, 74) = 0.295, p= 0.745); mode of delivery x treatment (F (2,74) = 

2.300, p=0.107). ([VB control n= 12, VB 0.2 OT n=14, VB 2 OT control n=13, CS control n=16, CS 0.2 

OXT n=12, CS 2 OXT n=13]). Male offspring. Two-way ANOVA, followed by LSD post-hoc. Scatter dot-

plots represent Mean ± Standard Error of the Mean (S.E.M.). Male offspring in each cohort derived from 

three independent litters/ group. ***p<0.0001 for mode of delivery effect. ##p< 0.01 for treatment effect 

within the group. OXT, oxytocin; VB, vaginal birth; CS, C-section.  
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Supplementary figure 3. 4- Effects of early-life treatment with OXT to gastrointestinal permeability.  

There was no significant effect of mode of delivery or OXT treatment in gastrointestinal permeability as 

measured by plasma Fluorescein isothiocyanate (FITC)-dextran concentration (μg/mL). Mode of delivery 

effect (F (1, 74) = 3.449, p=0.068); treatment effect (F (2, 74) = 0.178, p= 1.774); mode of delivery x 

treatment (F (1, 74) = 0.3291, p=0.721). ([VB control n= 12, VB 0.2 OT n=10, VB 2 OT n=10, CS control 

n=14, CS 0.2 OXT n=11, CS 2 OXT n=10]). Male offspring. Two-way ANOVA, followed by LSD post-hoc. 

Scatter dot-plots represent Mean ± Standard Error of the Mean (S.E.M.). Offspring in each cohort derived 

from three independent litters/ group. Two-way ANOVA, followed by LSD post-hoc. *p< 0.05, *p< 0.01 

and ***p<0.0001. OXT, oxytocin; VB, vaginal birth; CS, C-section. 
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Supplementary figure 3. 5- Early postnatal OXT restores social novelty preference in adult C-section born mice.  

a) There were no significant differences on sociability across all groups in the three-chamber test. VB control t (11) = -3893, p=0.003, n=12; VB 0.2 OXT t 

(12) =-6144, p<0.0001, n=13; VB 2 OXT t (11) =5.066, p<0.0001, n=12; CS control t (11) = 6.298, p=0.0001, n=12; CS 0.2 OXT t (11) = 5.395, p<0.0.001, 

n=12; CS 2 OXT t (11) = 5.118, p<0.0001, n=12. Paired Student’s t test comparing interaction time with mouse to an object. b) Low-dose oxytocin rescues 

the preference for social novelty in CS. VB control t (11) = 4.681, p=0.001, n=12; VB 0.2 OXT t (11) =3.064, p=0.011, n=12; VB 2 OXT t (10) =3.404, 

p=0.007, n=11; CS control t (11) = 0.594, p=0.564, n=12; CS 0.2 OXT t (11) = 3.671, p=0.004, n=12; CS 2 OXT t (10) = 0.970, p=0.355, n=12. Male 

offspring. Paired Student’s t test comparing interaction time with a familiar mouse to a novel mouse. Scatter dot-plots represent Mean ± Standard Error of 

the Mean (S.E.M.). Offspring in each cohort derived from three independent litters/ group. #p< 0.05 for treatment effect within the group. VB, vaginal birth; 

CS, C-section.
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4.1 Abstract  

There is a growing realisation that the severity of the core symptoms of autism 

spectrum disorders and schizophrenia are associated with gastrointestinal 

dysfunctions. Nonetheless, the mechanisms behind such comorbidity remain 

unknown. Several genetic and environmental factors have been linked to a higher 

susceptibility to neurodevelopmental abnormalities. The maternal immune activation 

(MIA) rodent model was shown to be a valuable tool for elucidating the basis of this 

interaction. We induced maternal immune activation (MIA) with polyinosinic-

polycytidylic acid (poly I:C) at gestational day 12.5 and assessed behavioural, 

physiological and molecular aspects relevant to the gut-brain axis in the offspring of 

an outbred (NIH Swiss) and an inbred (C57BL6/J) mouse strain. Our results showed 

that the current MIA protocol induces social deficits in both strains. However, 

alterations in anxiety and depression-like behaviours were more pronounced in NIH 

Swiss mice. These strain-specific behavioural effects in the NIH Swiss mice were 

associated with marked changes in important components of gut-brain axis 

communication: the endocrine response to stress and gut permeability. In addition, 

changes in vasopressin receptor 1a mRNA expression in the hypothalamus were 

observed in NIH Swiss mice only. Taken together, these data suggest that genetic 

background is a critical factor in susceptibility to the gut-brain axis effects induced by 

MIA. 

Key-words 

Gut-brain axis; poly (I:C); maternal immune activation; autism spectrum disorders; 

schizophrenia; gut permeability; vasopressin; gene-environment; behaviour. 
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4.2 Introduction 

A growing body of evidence suggests that exposure to maternal immune activation 

(MIA) during pregnancy can increase the risk of neuropsychiatric disorders such as 

autism spectrum disorder (ASD) and schizophrenia (SZ) (Atladóttir et al., 2010; 

Brown, 2006; Estes and McAllister, 2016). Epidemiological studies suggest that there 

is a specific time window in the second trimester of gestation when infection and 

associated inflammation leads to long-lasting consequences on brain development and 

behaviour (Patterson, 2002). In addition, neurodevelopmental disorders such as ASD 

and SZ have a significant genetic basis (van Os et al., 2010; Ronald et al., 2011; Ziats 

et al., 2015). Epidemiological data from twin studies suggests strong heritability 

associated with ASD and SZ. Moreover, genetic alterations such as rare de novo 

mutations, microdeletions, cytogenetic abnormalities, and single nucleotide 

polymorphisms are shown to trigger disease-related symptoms (Turner et al., 2000). 

Hence, understanding the interactions between genetic and environmental factors is 

important in unravelling the neurobiology of neurodevelopmental disorders (Chaste 

and Leboyer, 2012; Stamou et al., 2013).  

In view of the emerging role of prenatal infection as an environmental factor 

implicated in the aetiology of ASD and SZ, translational animal models based on MIA 

have been shown to be valuable tools for elucidating disease mechanisms and for 

developing new therapeutic approaches for the treatment of these conditions (Knuesel 

et al., 2014; Reisinger et al., 2015). In this regard, administration of influenza virus, 

lipopolysaccharide (LPS, a cell wall component of gram negative bacteria) and 

polyinosinic-polycytidylic acid (poly (I:C); a synthetic double-stranded RNA) to 

pregnant dams have been used (Basta-Kaim et al., 2012; Hsiao et al., 2013; Lombardo 

et al., 2017; Meyer, 2014; Oskvig et al., 2012; Shi et al., 2003; Straley et al., 2017). 

In particular, the rodent poly (I:C) model of MIA has contributed significantly to the 

understanding of specific changes that occur in ASD and SZ. For example, poly (I:C) 

given during the second gestational trimester results in decreased pre-pulse inhibition 

and increased startle sensitivity (Meyer et al., 2005; Wolff and Bilkey, 2010), reduced 

sociability (Xuan and Hampson, 2014), cognitive impairments (Ozawa et al., 2006), 
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communication deficits, repetitive behaviours (Malkova et al., 2012), altered gut 

permeability and perturbations of the gut microbiota (Hsiao et al., 2013). 

Of the comorbidities associated with ASD and SZ, gastrointestinal (GI) dysfunctions 

are among the most prevalent (Buie et al., 2010; Molloy and Manning-Courtney, 

2003). The GI symptoms identified include increased GI permeability (Severance et 

al., 2012, 2015), altered intestinal motility (Nikolov et al., 2009) and changes in 

intestinal microbiota composition (Dinan et al., 2014). Importantly, GI disturbances 

have also been associated with disease severity, including the development of 

emotional dysregulation, which is a major determinant of quality of life (Hill et al., 

2017; Mazurek et al., 2013). Given that alterations in gut-brain signalling during 

development have a significant impact on programming of the brain and behavioural 

function (Dinan and Cryan, 2017a; Neufeld and Foster, 2009), there is an urgent need 

to better understand the GI associated neurobehavioral symptoms ASD and SZ (Hsiao, 

2014; Nithianantharajah et al., 2017).  

Previous studies using the poly (I:C) model have mainly focused on a single mouse 

strain (Babri et al., 2014; Schwartzer et al., 2013). Although inbred strains are 

commonly used in biomedical research, they tend to be considerably more expensive 

than outbred lines (Peters and Festing, 1985). In contrast, outbred stocks are often used 

in toxicology and pharmacology research (Chia et al., 2005). As defined by (Festing, 

1993) they are a closed population (for at least four generations) of genetically variable 

animals that are bred to maintain maximum heterozygosity. Of the many outbred 

strains available, National Institutes of Health (NIH) Swiss mice are a widely used 

albino strain (derived from a nucleus colony obtained from the National Institutes of 

Health, Bethesda, Maryland , USA in 1935, Envigo) that has been particularly 

important in establishing the effects of gut-brain interactions and neurodevelopmental 

disorders in germ free models (Bercik et al., 2011b; Hoban et al., 2016b; Luczynski et 

al., 2016b)  

In this study we investigated whether genetic background could influence the effect of 

maternal immune activation on important pathways of the gut-brain axis and 

behaviour in inbred and outbred mice. We hypothesised that MIA would differentially 

affect behavioural, neuroendocrine function and gut physiology in the NIH Swiss mice 

in comparison to C57BL6/J. To this end, NIH Swiss and C57BL6/J dams were 
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exposed to poly (I:C) on GD 12.5 and behavioural, physiological and molecular 

parameters were assessed in the offspring in early-life, adolescence and adulthood. 

4.3 Experimental Procedures 

4.3.1 Animals 

C57BL/6J and NIH Swiss adult mice were obtained from Harlan. The animals were 

kept under a 12 h light/dark cycle with lights on at 07:30 am and off at 7:30 pm. Mice 

were kept under controlled temperature and humidity (21±1 oC, 55.5%) and food and 

water ad libitum. Animals were housed in breeding pairs and the presence of a vaginal 

plug was set as gestational day (G)0.5. Pregnant females were left undisturbed except 

for cage cleaning until G12.5, when they were weighed and randomly assigned to one 

of two treatments: poly (I:C) or saline. Each group contained three to five pregnant 

females. All pups remained with the mother until weaning at postnatal (P) day 21 when 

male mice were housed in same-sex littermate groups containing three to four mice. 

No significant differences in the average litter size at birth, spontaneous abortion rate, 

and postnatal vitality between groups were found. Strain differences in body weight 

were observed.  

4.3.2 Prenatal Immune Activation 

Pregnant dams received either a single intraperitoneal (i.p.) injection of 20 mg/kg poly 

(I:C) (potassium salt; Sigma-Aldrich, Sigma, St. Louis, MO) or saline on G12.5 (Hsiao 

et al., 2013). 

4.3.3 Experimental Design  

All behavioural tests were performed during the light phase of the circadian cycle 

(9:00 to 17:00). All experimental mice underwent the same sequence of behavioural 

procedures. Maternal care behaviour was observed on P6, in order to ensure that 

differences in the offspring were not due to differences in maternal care during 

postnatal development. Behavioural analyses of MIA offspring were carried out in 
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male mice throughout the life-span, starting on P9 and continuing into adulthood 

(week 16) (Figure 4. 1).  

 

Figure 4. 1- Experimental time line. 

A graphical representation of the treatment with poly (I:C) or saline on gestational day 12.5 and the 

sequence of behavioural testing performed in the offspring. 

4.3.4 Behavioural Assessments  

4.3.4.1 Maternal Care 

Maternal care was assessed at P6. Home cages were transported to the experimental 

room 30 minutes prior to the experiment. The behaviour of each dam was monitored 

for 30 minutes in the morning in their home cage. The time spent on nursing, pup 

licking/grooming, carrying and time on-nest were collectively considered as high care 

behaviours. The data is presented as time engaged in high care behaviours. 

4.3.4.2 Isolation-induced Ultrasonic Vocalization  

Ultrasonic vocalizations (USV) are produced by mice pups during the first two weeks 

of life when separated from the mother and littermates (Insel et al., 1986). At P9 pups 

were isolated one by one and placed in a clean plastic container inside a sound 

attenuating chamber. Emission of ultrasonic vocalizations was monitored by an 

ultrasound sensitive microphone (US Mini-3 bat detector, Summit, Birmingham, 

USA) tuned in the range of 60-80 kHz and suspended above the isolated pup. The 

microphone was connected via an Ultravox Noldus automated system to a personal 

computer and the recordings were carried out with a sampling range of 70 kHz for 3 

minutes. The recordings were analysed using computer analysis software (UltraVox 
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2.0; Noldus Information Technology). The number of USVs during the test period 

were recorded. 

4.3.4.3 Homing Test 

The homing test evaluates the ability of pups to recognise their own nest and is an 

indirect measure of maternal-offspring attachment behaviour (Macrì et al., 2010). At 

P10 the floor of a clean mouse cage was subdivided into three areas by wire-mesh 

dividers, one of which was uniformly covered with wood shavings from the home 

cage, thus containing familiar odour stimuli. The opposite space was covered with 

wood shavings from the cage of another litter (born at approximately the same time), 

the middle section was covered with clean bedding material. Individual pups were 

placed in the middle section for 1 minute, the dividers were then removed and the pups 

were allowed to freely move around for 2 minutes. Total time spent in each area was 

noted. 

4.3.4.4 Reciprocal Social Interaction 

Reciprocal social interaction was performed based on (Peñagarikano et al., 2015) At 

week 4, animals were acclimatized to the experiment room for 30 minutes prior to the 

test. The reciprocal social interaction consisted of two sessions of 10 minutes: the first 

10 minutes were considered a habituation session and the subsequent 10 minutes were 

considered the actual test session. Mice were placed in a new cage and allowed to 

interact with an unfamiliar mouse matched in strain, age and sex. The time spent in 

active social interaction (nose-to-nose sniffing, nose-to-anus sniffing and 

following/crawling on each other) was measured during both sessions.  

4.3.4.5 Defensive Marble Burying 

The defensive marble burying test measures repetitive and anxious behaviour, with a 

higher number of marbles buried indicating higher levels of anxiety or stereotyped 

behaviour (Thomas et al., 2009). Clean cages were filled with a 4-cm layer of chipped 

cedar wood bedding. At week 8 animals were habituated to the room for 30 minutes 

prior to the test. Twenty glass marbles (15mm diameter) were gently laid on top of the 
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bedding, equidistant from each other in a 4×5 arrangement. During the testing phase, 

each mouse was placed in the cage and allowed to explore for 30 minutes. At the end 

of the test, animals were placed back into the testing cage and the number of buried 

marbles were counted. A marble was considered as fully buried when > 80% of the 

marble was covered by bedding material and considered to be partially buried when 

50-80% of marble was covered by bedding. Total buried marbles was calculated as 

the sum of fully buried and partially buried marbles. 

4.3.4.6 Three-chamber Test  

The three-chamber test is a widely used experimental paradigm to investigate social 

approach, measuring the tendency of the subject mouse to approach another mouse 

and engage in social investigation (Crawley, 2007). At 9 weeks of age, animals were 

placed in a rectangular apparatus divided into three chambers (left and right and a 

smaller centre chamber) by transparent partitions with small circular openings 

allowing easy access to all compartments. The test was composed of three sequential 

10 minute trials: (1) habituation (test animal allowed to freely explore the three empty 

compartments); (2) sociability (an unfamiliar animal was placed in an inner mesh wire 

cage in either the left or right compartment); (3) social novelty preference (a novel 

animal was placed into the previously empty inner cage in the chamber, opposite the 

now familiar animal). All animals were strain, age- and sex-matched, with each 

chamber cleaned and lined with fresh bedding between trials. For each of the three 

stages, behaviours were recorded by a video camera mounted above the apparatus and 

time of active interaction was measured. 

4.3.4.7 Novel Object Recognition  

At 10 weeks mice were tested in the novel object recognition test, a widely used test 

to assess recognition memory in rodents. On day 1, animals were habituated to a square 

open field arena (Perspex sides and base: 34.5 x 42.7 cm) in a dimly lit room by 

individually placing animals into the apparatus for 10 minutes. On day 2, two identical 

objects were positioned on adjacent corners approximately 5 cm from each wall of the 

open field and each animal was introduced for a 10-minute exploration period. 

Animals were then placed directly back into their home cages. After a 24hr inter-trial 
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interval, one familiar object was replaced with a novel object and each animal was 

introduced for a further 10 minutes. On each day, animals were acclimatised to the 

testing room for approximately 30 minutes prior to the test. Object exploration was 

defined as when the animal’s nose came within 1 cm from the object. In between trials, 

objects and testing arenas were cleaned with alcohol wipes and rinsed with water. A 

discrimination index was calculated as the difference between time spent investigating 

the novel and familiar objects, divided by the total time exploring both objects 

[Discrimination index= (Novel Object Exploration time – Familiar Object Exploration 

time)/(Novel Object Exploration time + Familiar Object Exploration time)]. 

4.3.4.8 Open-field 

The open field test is used to assess locomotor activity and the anxiety response to a 

novel environment. At 10 weeks, mice were placed in the centre of a grey open field 

arena (40 x 32 x 23 cm, L x W x H) and allowed to explore the arena for a 10 minute 

period. The total distance travelled in the open field was measured using the 

Ethovision videotracking system (Noldus Information Technology). A centre zone 

was demarcated as (20 x 15 cm, L x W). Time spent in each zone and the frequency 

of entries into each zone were also measured. Mice were placed back into the home 

cage immediately after testing. The box was cleaned with 10% alcohol and allowed to 

dry prior to the next test. 

4.3.4.9 Elevated Plus Maze 

The elevated plus maze (EPM) is a widely used behaviour assay to assess anxiety-like 

behaviour (Jacobson et al., 2007). The Plexiglas maze consisted of a plus-shaped 

apparatus with two open and two enclosed arms (50 cm × 5 cm × 15 cm walls) elevated 

1m above the floor. At week 11, the animal was placed in the centre of the EPM 

apparatus facing an open arm and was allowed to explore for a total of 6 minutes. The 

apparatus was cleaned with ethanol after each subject to prevent olfactory cues from 

the previous mouse. The time spent into open and closed arms was considered. 
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4.3.4.10 Social Transmission of Food Preference 

This test was performed as previously described by (Desbonnet et al., 2015). At 12 

weeks of age, mice were deprived of food for 18 hours before the test, whereas water 

was available ad libitum. Food choices consisted of either 1% ground cinnamon or 2% 

powdered red cocoa (Drinking Chocolate, Cadbury Ltd.) made with ground mouse 

chow. Naïve mice (strain/sex/aged matched) were used as demonstrators. The 

demonstrator mice and the experimental mice were co-housed in a same new cage 18 

hours before the beginning of the test. Their fur was marked using blue marker to 

enable identification during subsequent social interactions. Demonstrator mice 

received only one of the types of food (cinnamon or cocoa) during a 1 h sampling 

session and food containers were weighed before and after it. A minimum of 0.2 g of 

consumed food was required for inclusion in the test. Demonstrator mice were placed 

back into their respective home cages for a 20 minute interaction with cage-mates. 

Subsequently cage-mates were individually tested for preference of cued food and 

novel food for 30 min. Containers were weighed immediately before and after each 

choice session. Observer mice were then placed back into their respective home cages 

and the choice session was repeated 24 hours later. 

4.3.4.11 Forced-swim Test  

The forced swim test (FST) is a widely used experimental paradigm to assess 

depression-like behaviour in rodents (Cryan et al., 2001). At week 14, animals were 

placed into a cylinder of tepid water (23-25 oC) to a depth of 17 cm. Behaviour was 

recorded by a camera positioned above the swim tank. The immobility time was scored 

during the last 4 min of the 6 min test. After removal from the cylinder, animals were 

placed into a separate cage for recovery. 

4.3.5 In Vivo Intestinal Motility  

At week 13, mice were single-housed and habituated to new cages for three hours. 

Following the acclimatisation, mice received 200µL oral gavage of Carmine (C1022; 

Sigma Aldrich) suspended in 0.5% carboximethylcelulose (CMC) sodium salt (Sigma; 

St Louis, MO, USA). Time until the first coloured bolus was recorded. 
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4.3.6 In Vivo Intestinal Permeability Assay (FITC-dextran) 

For this procedure mice were food-deprived overnight. Early the next morning, FITC-

dextran (MW = 4 kDa; FD4, Sigma), was administered orally by gavage, 600 mg/kg, 

80 mg/ml in Phosphate buffered saline (PBS) (pH 7.4). A blood sample (100 μl in 

heparin-coated glass capillary) was taken from the tail vein 2h after the oral gavage. 

Samples were kept on ice, centrifuged at ~ 3500 g for 15 min, plasma was aspirated, 

transferred to amber tubes, kept on ice and analysed on the day of sampling. Plasma 

was measured undiluted, 25 μl in a 384 well plate. FITC was measured with a Victor 

spectrometer. The excitation maximum was 490 nm, the emission maximum was 520 

nm (measured at 535 nm). For a standard curve, serial dilutions of FITC were prepared 

in PBS. 

4.3.7 HPA Axis Response 

Blood and subsequent plasma samples were taken to assess the HPA axis response to 

a mild acute stress. A blood sample was taken 5 min before and at different time-points 

following the FST test at week 14. Samples were taken at: 1) baseline (5 min before 

the onset) 2) 15 min after the onset of FST, 3) 30 min after the onset of FST 4) 60 min 

after the onset of FST and 5) 120 min after the onset of FST. Blood samples (50-70µl) 

were taken from the tail vein and placed in heparin-coated capillary tubes. Bleeding 

was performed in a separate room. During the recovery period, animals were single 

housed in separate cages; after the last bleed animals were returned to the home cage. 

Total corticosterone was measured according to the manufacturer's protocol, 

Corticosterone ELISA kit (Enzo Life Sciences, Farmingdale). Plasma dilution was 

1:40.  

4.3.8 Oxytocin Measurement 

Oxytocin measurement was performed as previously described by (Neumann et al., 

2013). At 15 weeks of age, trunk blood was collected and centrifuged (5 min, 5000 

rpm, 4 °C), and plasma samples were kept at −20°C until oxytocin concentration was 

measured using a highly sensitive and specific radioimmunoassay performed by 

RIAgnosis, Munich.  
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4.3.9 RNA Isolation and Synthesis of cDNA 

Total RNA was isolated from the ventral hypothalamus using the mirVana™ miRNA 

Isolation Kit as per manufacturer’s instructions (Thermo Fisher Scientific). RNA 

concentration was quantified using the ND-1000 spectrophotometer (NanoDrop®). 

Following RNA extraction, equal amounts of RNA were reverse transcribed to cDNA 

using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Life 

Technologies, Carlsbad, CA). All cDNA was stored at −20 °C until time of assay. 

4.3.10  qRT-PCR 

Gene expression was analysed using Gene Expression Assays on an AB7300 system 

(Applied Biosystems, Thermo Fisher Scientific). Expression levels were calculated as 

the average of three technical replicates for each biological sample from all three 

groups relative to β-actin expression. Fold changes were calculated using the ΔΔCt 

method (Livak and Schmittgen, 2001) and normalised by the average of the four 

experimental groups. 

4.3.11  Statistical Analyses 

Statistical analyses were carried out using SPSS version 19 (Armonk, NY, USA). Data 

was analysed by Two-way ANOVA for strain and treatment factors followed by LSD 

post hoc tests. Additionally, one-sample t-test (with test value=0) was performed for 

NOR data. All data are presented as mean ± S.E.M. Corticosterone data was analysed 

by Mixed-design ANOVA. p<0.05 was considered statistically significant. In all 

datasets, the individual values outside the group mean ± 2 x standard deviation range 

were considered as outliers. 

4.4 Results 

4.4.1 Maternal Immune Activation Did Not Influence Maternal Care 

Firstly we determined the influence of strain on the impact of MIA on maternal care 

maternal care behaviour on P6 (Table 4.1). Although we did not find significant effect 
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of treatment (F(1,10)=0.351, p=0.567) or interaction between treatment and strain 

(F(1,10)=754, p=0.408). There was a significant main effect of mouse strain, with 

C57BL6/J dams spending more time in high care behaviours than NIH Swiss dams 

(F(1,10)=6.396, p=0.030) (Table 4.1). 

Time spent in maternal care (min.) 

C57BL6/J NIH Swiss 

Saline  

n=3 litters 

MIA  

n=5 litters 

Saline 

 n=3 litters 

MIA  

n=3 litters 

3.56±1.46 4.58±3.70 16.44±1.83# 10.91±5.38 

 

Table 4. 1- Maternal immune activation (MIA) did not affect time spent on maternal care behaviours.  

Total time spent on high care behaviours (nursing, pup licking/ grooming, carrying and time on-nest) 

during the 30 minute test was noted. Data is represented as mean ± S.E.M. #indicates p<0.05 compared 

to the C57BL6/J control group. 

4.4.2 Maternal Immune Activation Did Not Affect Isolation-induced 

Ultrasonic Vocalization 

We next investigated communication deficits in the offspring by measuring pup 

ultrasonic vocalization at P9 (Table 4.2). While maternal exposure poly (I:C) had no 

effect on the number of 70kHz calls elicited by the offspring from the two strains 

(treatment effect [F(1,49)= 1.53, p=.222]; treatment x strain [F(14,49)= 0.00, p=0.994]), 

NIH Swiss strain showed a higher number of calls overall (F(1,49)=17.282 p=0.001) 

(Table 4.2). 

Table 4.2: Maternal immune activation (MIA) did not affect isolation-induced 

ultrasonic vocalization. Total number of 70kHz calls was recorded for 3 minutes. 

Number of calls 

C57BL6/J NIH Swiss 

Saline  

n=10 pups 

MIA  

n=8 pups 

Saline 

 n=24 pups 

MIA  

n=11 pups 

9.7±3.6 8.4±5.38 37.5±8.2# 27.91±14.05 

Table 4. 2- Maternal immune activation (MIA) did not affect isolation-induced ultrasonic 

vocalization.  

Total number of 70kHz calls was recorded for 3 minutes. Data is represented as mean ± S.E.M. 

#indicates p<0.05 compared to the C57BL6/J control group. 
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4.4.3 Maternal Immune Activation Did Not Affect Homing Behaviour in 

a Strain Dependent Manner 

Further, we investigated the effects of MIA on maternal attachment by using the 

homing behaviour test (Figure 4. 2). When comparing the time spent with the familiar 

or non-familiar bedding, a Two-way ANOVA showed a significant effect of strain (F 

(1,52)=11.824, p=0.001) .However, no significant effect of treatment with MIA (F 

(1,52)=0.21, p=0.887) or of the interaction between strain and treatment (F(1,52)=0.169, 

p=0.382) were found (Figure 4. 2a-b). 

 

Figure 4. 2- Effects of maternal immune activation (MIA) on homing behaviour.  

(A) The preference for the familiar bedding was not affected in the C57BL6/J offspring. (A) The 

preference for the familiar bedding was not affected in the NIH Swiss offspring. Data is represented as 

mean ± S.E.M ([Sal C57BL6/J n= 11, MIA C57BL6/J n= 8, Sal NIH Swiss n= 25, MIA NIH Swiss n= 

12]). 

4.4.4 Maternal Immune Activation Altered Reciprocal Social Interaction 

in Adolescence  

Social interaction during adolescence is essential for normal development of socio-

affective response in adulthood (Trezza et al., 2011). Thus, we investigated the effects 

of MIA on reciprocal social interaction in adolescent offspring (Figure 4. 3). 

Interestingly, Two-way ANOVA of the time spent in social interaction during the 

habituation session showed that MIA treatment to the dams induced significant deficits 

in social interaction behaviour in the offspring of both strains (F(1,36)=14.625, 

p=0.0001) (Figure 4. 3a-b). However, no significant effect of strain (F(1,36)=0.744, 
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p=0.394) or interaction between the factors (F(1,36)=0.004, p=0.952) was found. 

Interestingly, at the test session, there was a significant interaction between strain and 

treatment (F(1,36)=4.824, p=0.035) with MIA affecting social interaction time only in 

the C57BL6/J offspring. Regardless, no significant effect of strain (F(1,36)=3.531, 

p=0.068) or treatment (F(1,36)=3.025, p=0.091) was found (Figure 4. 3c-d). 

 

Figure 4. 3- Maternal immune activation alters reciprocal social interaction in adolescent offspring.  

(A,B) Maternal immune activation offspring displayed decreased social interaction in the habituation 

phase in both (A) C57BL6/J (B) NIH Swiss strains. (C) Social interaction time remained significantly 

reduced in the C57BL6/J mice during the test session. (D) There were no significant differences 

between NIH Swiss groups during the test session. Data is represented as mean ± S.E.M ([Sal C57BL6/J 

n= 9, MIA C57BL6/J n= 9, Sal NIH Swiss n=12, MIA NIH Swiss n= 10]).* indicates p<0.05 compared 

with the respective control group. 
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4.4.5 Maternal Immune Activation Had a Modest Effect on C57BL6/J 

Offspring Behaviour in the Marble Burying Test  

At week 8, repetitive behaviour was evaluated using the marble burying test (Table 

4.3). Although no differences were found between MIA and control groups for the 

fully buried marbles (treatment ([F(1,38)=0.528, p=0.472]; strain x treatment 

[F(1,38)=3.286, p=0.584]), there was a significant strain effect with NIH Swiss mice 

burying significantly more marbles than C57BL6/J strain (F(1,38)=51.315, p<0.0001). 

For partially buried marbles, Two-way ANOVA revealed a significant effect of the 

strain x treatment interaction (F(1,38)=7.041, p=0.012) but no main effect of strain 

(F(138)=0.026, p=0.872) or treatment (F(1,38)=1.713, p=0.199). Interestingly, post-hoc 

comparisons showed that C57BL6/J mice buried significant more marbles after MIA, 

whereas MIA had no effect in NIH Swiss mice. Finally, for the total number of buried 

marbles, Two-way ANOVA showed a significant effect of strain (F(1,38)=46.000, 

p<0.0001) such that NIH Swiss mice buried more marbles than C57BL6/J mice, but 

no significant effect of treatment (F(1,38)=3.259, p=0.079) or the strain x treatment 

interaction (F(1,38)=0.371, p=0.546). 

Number of buried marbles  C57BL6/J NIH Swiss 

  Saline MIA  Saline  MIA  

 
 n=10  n=9  n=12 n=11  

Fully buried (>80%) 1.6±0.47 1.77±1.11 8.5±1.16# 9.6±1.26# 

Partially buried (50-80%) 1.9±0.50 4.6±0.79* 3.7±0.61 2.6±0.67 

Total buried (Fully+Partially 

buried marbles) 
3.3±0.55 6.5±1.6 12.20±1.19# 13.18±1.1# 

Table 4. 3- Maternal immune activation (MIA) increased the number of partially buried marbles in 

C57BL6/J.  

Data is represented as mean ± S.E.M. #indicates p<0.05 compared to the C57BL6/J control and MIA 

groups. 
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4.4.6 Maternal Immune Activation Mediated Effects on the 3-chamber 

Test 

At week 9, sociability and social novelty preference was assessed using the 3-chamber 

test. For sociability, Two-way ANOVA revealed significant effects of treatment 

(F(1,37)=22.490, p<0.0001). Individual group comparisons showed a significant 

decrease in time spent with the conspecific in C57BL6/J (Figure 4. 4a) NIH Swiss 

(Figure 4. 4b). Additionally, there was a significant effect of strain with NIH Swiss 

mice spending less on social interaction than C57BL6/J (F(1,37)=11.584, p<0.002), 

although, no significant effect of the interaction between MIA and strain was found 

(F(1,37)=0.361, p<0.552) (Figure 4. 4b). Two-way ANOVA revealed no significant 

differences in the time spent interacting with the object. When social memory was 

tested, Two-way ANOVA revealed significant effects of treatment (F(1,37)=29.214, 

p<0.0001) and strain x treatment interaction (F(1,37)=7.132, p=0.011) with decreased 

time spent with the novel mouse in the MIA C57BL6/J (Figure 4. 4c) and in the MIA 

NIH Swiss (Figure 4. 4d) groups. Moreover, there was significant effect of strain 

(F(1,37)=5.683, p=0.022) with NIH Swiss spending less time interacting with the novel 

mouse than C57BL6/J. 
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Figure 4. 4- Maternal immune activation induced deficits in social behaviour in adult offspring.  

(A,B) MIA decreases sociability in both (A) C57BL6/J and (B) NIH Swiss offspring. (C,D) Further, 

MIA induced social preference deficits in both (C) C57BL6/J and (D) NIH Swiss groups. Data is 

represented as mean ± S.E.M ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n=11, MIA 

NIH Swiss n= 11]). * indicates p<0.05 compared with the respective control group. #indicates p<0.05 

compared to the C57BL6/J control.  

 

4.4.7 Maternal Immune Activation Affects Social Transmission of Food 

Preference 

In addition, social behavioural deficits were assessed in the social transmission of food 

preference test at week 12. Food preference in observer mice was tested 1 hour (Fig. 

Figure 4. 5a-b) and 24h (Figure 4. 5c-d) after exposure to a demonstrator mouse. At 

the 1h test, Two-way ANOVA showed a significant effect of the interaction between 

strain and treatment (F(1,37)=6.863, p=0.013) but no significant effect of strain 

(F(1,37)=0.433, p=0.515) or treatment (F(1,37)=1.033, p=0.316). Post hoc comparisons 

revealed a significant decrease in the preference for the cued food in MIA C57BL6/J 

mice (Figure 4. 5a). A similar pattern was observed at the 24h test. Two-way ANOVA 
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showed a significant interaction between treatment and strain (F(1,38)=6.376, p=0.016) 

whereas there were no main effects of treatment (F(1,38)=2.341, p=0.134) or strain 

(F(1,38)=1.203, p=0.280). Post-hoc analyses revealed that the deficits for the cued food 

preference remained in the MIA C57BL6/J compared with its control group (Figure 

4. 5d). Additional strain comparisons showed that NIH Swiss have a decreased 

preference for the cued food in comparison to C57BL6/J at the both time points 

investigated (Figure 4. 5b and Figure 4. 5d). 

 

Figure 4. 5- Effects of Maternal immune activation in social transmission of food preference.  

(A) Reduced preference for cued food was observed in MIA C57BL6/J offspring at 1 h test. (B) No 

differences were found in the preference for cued food in the NIH Swiss mice at 1 h test. (A,B) [Sal 

C57BL6/J n= 9, MIA C57BL6/J n= 9, Sal NIH Swiss n=12, MIA NIH Swiss n= 10].(C) Reduced 

preference for cued food was observed in MIA C57BL6/J offspring at 24 h test. (D) No differences 

were found in the preference for cued food in the NIH Swiss mice at 24 h test. Data is represented as 

mean ± S.E.M. (C,D) [Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n=12, MIA NIH 

Swiss n= 10].* indicates p<0.05 compared with the respective control group. #indicates p<0.05 

compared to the C57BL6/J control group. 
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4.4.8 Maternal Immune Activation Induces Depression-like Behaviour in 

a Strain-dependent Manner  

The immobility time in the FST was used as measure of depression-like behaviour. 

Two-way ANOVA showed a significant strain effect (F(1,37)=68.571, p<0.0001) with 

the NIH Swiss strain spending significantly less time immobile than the C57BL6/J 

strain (Figure 4. 6a-b). Two-way ANOVA showed no significant effect of the 

treatment (F(1,37)=3.580, p=0.066) or in the strain x treatment interaction (F(1,37)=3.384, 

p=0.074). Further individual group comparisons revealed that MIA significantly 

affected immobility time in the NIH Swiss mice in comparison with its control group 

(Figure 4. 6b). A Two-way Mixed-design ANOVA over the 6-min time revealed a 

significant effect of time (F(5,38)=38.503, p<0.0001) and a significant effect strain (F(1, 

38)=102.044, p<0.0001) with the NIH Swiss strain showing less immobility overall. 

Additionally, there was a significant effect of the strain in respect with the time 

(F(1,38)=5.718, p=0.022). However, no interaction between time and treatment was 

found (F(1,38)=0.059, p=0.202) or between time, treatment and strain (F(1,38)=2.526, 

p=0.120) (Figure 4. 6c-d).  

 

Figure 4. 6- Maternal immune activation (MIA) effects on depression-like behaviour.  
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(A) No significant effect of MIA was noted on the immobility time in C57BL6/J mice. (B) MIA 

significantly increased immobility time in NIH Swiss mice. (C-D) There was no significant effect of 

MIA across the 6-min test in both (C) C57BL6/J and (D) NIH Swiss mice. Data is represented as mean 

± S.E.M ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n=11, MIA NIH Swiss n= 11]) * 

indicates p<0.05 compared with the respective control group. #indicates p<0.05 compared to the 

C57BL6/J control. 

 

4.4.9 Maternal Immune Activation Increases HPA Axis Response to 

Acute Stress in the NIH Swiss Strain  

To examine whether MIA alters HPA axis response in the offspring, corticosterone 

production was measured before and after an acute stress (FST). Mixed-design 

ANOVA revealed a significant effect of time (F(4,31)=92.063, p<0.0001) and a 

significant interaction between time and strain (F(4, 31)=7.852, p<0.0001). Additionally, 

there was a significant effect of the strain and treatment in respect with the time 

(F(4,31)=40.769, p<0.046). However, no interaction between time and treatment was 

found (F(4,31)=7.852, p=0.749). Overall, in both strains MIA offspring had similar 

baseline corticosterone levels in comparison to control group (Figure 4. 7a-b). 

Interestingly, a restricted ANOVA of the 15 min post stress time-point revealed a 

significant interaction between treatment and strain (F(4,35)=5.74, p<0.022) with MIA 

resulting in a higher corticosterone response in the NIH Swiss strain as revealed by 

LSD post hoc analyses (Figure 4. 7a). However, there was no significant effect of 

treatment (F(4,35)=0.688, p=0.412) or strain (F(4,35)=1.602, p<0.214) per se. Overall, no 

differences were found between C57BL6/J groups at any time point (Figure 4. 7b).  
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Figure 4. 7- HPA axis response is altered in NIH Swiss maternal immune activation (MIA) offspring.  

(A) No differences in corticosterone levels were observed in C57BL6/J offspring. (B)MIA significantly 

increased the corticosterone response 15 min after swim stress in NIH Swiss offspring. Data is 

represented as mean ± S.E.M ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 8, Sal NIH Swiss n=8, MIA 

NIH Swiss n= 9]). * indicates p<0.05 compared with the respective control group. 

 

4.4.10  Effects of Maternal Immune Activation on Anxiety and 

Locomotion 

Offspring anxiety-like behaviour and locomotion were tested in the EPM and in the 

OF arena. In the EPM, two-way ANOVA revealed a significant effect of strain on the 

time spent in the open arms (F(1,37)=32.505, p<0.0001). There was no significant effect 

of treatment (F(1,37)=2.799, p=0.103) or the interaction between treatment and strain 

(F(1,37)=2.119, p=0.154). Interestingly, further post hoc analyses showed a significant 

increase in the time spent in the open arms in the MIA NIH Swiss group when 

compared to its control group (Figure 4. 8b). However, no significant differences were 

found across C57BL6/J groups (Figure 4. 8a). In regards to the time spent in the 

closed arms, two-way ANOVA revealed a significant effect of strain (F(1,37)=27.715, 

p<0.0001). Post-hoc analyses further showed that MIA NIH Swiss mice spent 

significant less time in the closed arms in comparison to saline controls (Figure 4. 8d). 

As was the case for the open arms, no differences between MIA and saline C57BL6/J 

were found for time spent in the closed arms (Figure 4. 8c). Further LSD post hoc 

showed that C57BL6/J mice spent significantly more time in the closed arms when 

compared to NIH Swiss mice. 
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When mice were tested in the OF arena, two-way ANOVA revealed significant strain 

effects in the time spent in the central zone (F(1,37)=58.878, p<0.0001), such that NIH 

Swiss spent significantly less time in the central zone than C57BL6/J (Figure 4. 8e-

f). However, there was no effects of MIA treatment (F(1,37)=1.823, p=0.185) or 

interaction between treatment and strain (F(1,37)=0.436, p=0.153). . Similarly, when 

general locomotion was assessed a significant effect of the strain was detected 

(F(1,37)=72.781, p<0.0001) but no effects of treatment (F(1,37)=0.438, p=0.512) and no 

treatment x strain interaction (F(1,37)=0.1427, p=0.240). Locomotion was significantly 

increased in NIH Swiss mice compared to C57BL6/J mice (Figure 4. 8g-h). 
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Figure 4. 8- Effects of maternal immune activation on anxiety-like behaviour and locomotion. 

 (A) No changes in C57BL6/J offspring were found. (B)Maternal immune activation significantly 

increased time spent in the open arms of the EPM in NIH Swiss offspring. (C) In C57BL6/J strain no 

differences were found between groups for the time spent in closed arms. (D) MIA NIH Swiss offspring 
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displayed less time in the closed arms of EPM. (E,F) In the OF no there was no treatment effect in 

either strain in the time spent in the central zone and in (G,H) the total distance moved (cm). Data is 

represented as mean ± S.E.M ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n=11, MIA 

NIH Swiss n= 11]). * indicates p<0.05 compared with the respective control group. #indicates p<0.05 

compared to the C57BL6/J control and MIA groups. 

 

4.4.11  Maternal Immune Activation Did Not Impact Working Memory in 

the Novel Object Recognition Task 

To examine if MIA affected working memory, mice were tested in the novel object 

recognition task. Two-way ANOVA revealed no significant effect of treatment 

(F(1,36)=0.004, p=0.948), strain (F(1,36)=0.144, p=0.707), or the strain x treatment 

interaction (F(1,36)=0.615, p=0.438) (Table 4.4). One-sample t-test comparing the 

discrimination index of each group against the chance level (zero) revealed no 

significant differences for C57BL6/J control (t=2.08, df=9, p=0.066), C57BL6/J MIA 

(t=0.337, df=6, p=0.748), NIH Swiss control ( t=1.301, df=11, p=0.220) and for NIH 

Swiss MIA (t=1.712, df=10, p=0.18) groups.  

Novel object recognition  C57BL6/J NIH Swiss 

  Saline  MIA  Saline MIA  

  n=10 n=7  n=12 n=11  

 Discrimination index 0.1432±0.068 0.056±0.16 0.10±0.07 0.175±0.102 

Table 4. 4- Maternal immune activation (MIA) did not affect working memory. 

 [Discrimination index = (novel object exploration time - familiar object exploration time)/(novel object 

exploration time + familiar object exploration time)]. Data is represented as mean ± S.E.M 

 

4.4.12 Maternal Immune Activation Reduces Vasopressin Receptor 1a 

(AVP1aR) Expression but Does Not Affect Oxytocin Receptor 

Expression in a Strain Specific Manner 

Given that the oxytocin and vasopressin systems are strongly involved in regulating 

social behaviour, stress and anxiety (Neumann and Landgraf, 2012), the hypothalamus 

was dissected and AVP1aR and OXTR mRNA expression was investigated by 

quantitative RT-PCR (Figure 4. 9). With regards to AVP1aR mRNA expression, 
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Two-way ANOVA of relative fold change values revealed a trend towards the 

treatment having a significant effect (F(1,32)=3.739, p=0.062). There were no 

significant effects of strain (F(1,32)=1.067, p=0.309) or treatment x strain interaction 

(F(1,32)=1.067, p=0.309). An explorative LSD multiple comparison test revealed that 

MIA decreased AVP1aR expression in NIH Swiss mice compared to saline controls 

from the same strain (Figure 4. 9a). For OXTR mRNA expression, Two-way ANOVA 

of relative fold change values revealed no significant effects of treatment 

(F(1,31)=0.122, p=0.729), strain (F(1,31)=1.317, p=0.260) or treatment x strain 

interaction (F(1,31)=0.489, p=0.489).  

 

Figure 4. 9- Maternal immune activation (MIA) decreased Vasopressin receptor 1a expression in 

adult NIH Swiss mice. 

(A) No differences in AVP1aR mRNA expression were observed in C57BL6/J offspring. (B) MIA 

significantly decreased AVP1aR mRNA expression in the hypothalamus of NIH Swiss offspring (A,B) 

([Sal C57BL6/J n= 8, MIA C57BL6/J n= 8, Sal NIH Swiss n=10, MIA NIH Swiss n= 10]). (C,D) There 

were no significant differences in OXTR mRNA expression in both (C) C57BL6/J and (D) NIH Swiss 

mice. Data is represented as mean ± S.E.M ([Sal C57BL6/J n= 9, MIA C57BL6/J n= 8, Sal NIH Swiss 

n=10, MIA, NIH Swiss n= 8]). * indicates p<0.05 compared with the respective control group. 
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4.4.13  Maternal Immune Activation Did Not Affect Oxytocin Plasma 

Levels 

We further investigated if MIA could lead to changes in plasma oxytocin levels. As 

revealed by a two-way ANOVA, there was a significant effect of strain (F(1,38)=26.705, 

p<0.001) and a trend towards a treatment effect (F(1,38)=3.819, p<0.058). However, no 

significant interaction between strain and treatment was found (F(1,38)=0.231, 

p<0.634). Within strain post-hoc comparisons revealed higher oxytocin plasma 

concentrations in the NIH Swiss mice (Table 4.5). 

Oxytocin (pg/mL) 

C57BL6/J NIH Swiss 

Saline  MIA  Saline MIA  

n=10 n=9  n=12  n=11 

      

2.027±0.22 0.8996±0.39 4.353±0.59# 3.660±0.38# 

       

Table 4. 5- Maternal immune activation (MIA) did not affect oxytocin plasma levels.  

Oxytocin plasma levels (pg/mL) as measured by radioimmunoassay. Data is represented as mean ± 

S.E.M. #indicates p<0.05 compared to the C57BL6/J control and MIA groups. 

 

4.4.14  Maternal Immune Activation Increased Intestinal Permeability but 

Normal Intestinal Motility in Adult NIH Swiss Offspring  

Concentration of plasma FITC-dextran was taken as a measure of intestinal 

permeability. Two-way ANOVA showed a significant interaction between strain and 

treatment (F(1,38)=4.695, p=0.037) but no significant strain (F(1,38)=2.282, p=0.139) or 

treatment effect (F(1,38)=1.73, p=0.196). Post hoc analyses revealed that MIA NIH 

Swiss mice exhibited increased intestinal permeability to FITC-dextran when 

compared to control mice from the same strain (Figure 4. 10b). Regarding intestinal 

motility, no effects of treatment (F(1,38)=0.217, p=0.644) or strain x treatment 

interaction (F(1,38)=0.479, p=0.493) were observed. However, a significant effect of 

strain was observed (F(1,38)=16.365, p<0.0001), with faster intestinal motility in NIH 

Swiss groups compared to C57BL6/J groups (Figure 4. 10c-d). 
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Figure 4. 10- Maternal immune activation (MIA) affected intestinal permeability but does not alter 

intestinal motility.  

(A) No differences in FITC-dextran plasma concentration (µg/mL) were detected in the C57BL6/J 

offspring. (B) MIA NIH Swiss mice exhibit increased intestinal permeability to flurescein 

isothiocyanate (FITC)-dextran. (A,B) ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n= 

12, MIA, NIH Swiss n= 11]) (C,D) Intestinal transit was unaffected by MIA in both (C) C57BL6/J and 

(D) NIH Swiss mice ([Sal C57BL6/J n= 10, MIA C57BL6/J n= 9, Sal NIH Swiss n=12, MIA, NIH 

Swiss n= 11]). Data is represented as mean ± S.E.M. * indicates p<0.05 compared to the respective 

control group (n- 9-12 per group). #indicates p<0.05 compared to the C57BL6/J control and MIA 

groups.
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Phenotype  Strain Two-way ANOVA effects 

in response to MIA C57BL6/J  
NIH 

Swiss  
Strain Treatment Strain x Treatment 

Adolescent social interaction (Habituation) ↓↓ ↓↓ F(1,36)=0.744, p=0.394 F(1,36)=14.625, p=0.0001 F(1,36)=0.004, p=0.952 

Adolescent social interaction (Test) ↓↓ ↓↓ F(1,36)=3.531, p=0.068 F(1,36)=3.025, p=0.091 F(1,36)=4.824, p=0.035 

Sociability ↓ ↓ F(1,37)=11.584, p<0.002 F(1,37)=22.490, p<0.0001 F(1,37)=0.361, p<0.552 

Preference for social novelty ↓ ↓ F(1,37)=5.683, p=0.022 F(1,37)=29.214, p<0.0001 F(1,37)=7.132, p=0.011 

Social transmission of food preference (1h) ↓↓ ↓↓ 
F(1,37)=0.433, p=0.515 F(1,37)=1.033, p=0.316 F(1,37)=6.863, p=0.013 

Social transmission of food preference (24h) ↓↓ ↓↓ F(1,38)=1.203, p=0.280 F(1,38)=2.341, p=0.134 F(1,38)=6.376, p=0.016 

Repetitive behaviour (partially-buried marbles) ↑ ↑ F(38)=0.026, p=0.872 F(1,38)=1.713, p=0.199 F(1,38)=7.041, p=0.012 

Depression __ ↑ F(1,37)=68.571, p<0.0001 F(1,37)=3.580, p=0.066 F(1,37)=3.384, p=0.074 

Anxiety (elevated plus-maze) __ ↓ F(1,37)=32.505, p<0.0001 F(1,37)=2.799, p=0.103 F(1,37)=2.119, p=0.154 

Stress response (T15) __ ↑ F(4,31)=1.602, p<0.214 F(4,35)=0.688, p=0.412  F(4,35)=5.74, p<0.022  

Intestinal permeability __ ↑ F(1,38)=2.282, p=0.139 F(1,38)=4.695, p=0.037 F(1,38)=4.695, p=0.037 

Vasopressin receptor expression  __ ↓ F(1,32)=1.067, p=0.309 F(1,32)=3.739, p=0.062 F(1,32)=1.067, p=0.309 

Table 4. 6- Summary of maternal immune activation (MIA) effects in NIH Swiss and C57BL6/J offspring.  

The table summarize the main findings and specifies the statistical analyses output. Data was analysed by Two-way ANOVA. The table also specifies 

the corresponding p-values, degrees of freedom (DF). Significant effects (P < 0.05) are given in bold font. 
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4.5 Discussion 

Several genetic and environmental factors have been linked to a higher risk of 

neurodevelopmental disorders (Schwartzer et al., 2013). Importantly, MIA has been 

proposed to act as a primer increasing individual susceptibility to genetic mutations and 

consequently playing a major role in the development of ASD and SZ symptoms (Careaga 

et al., 2017; Estes and McAllister, 2016). A growing body of literature links 

neurobehavioural symptoms of ASD and SZ with associated gut-brain axis dysfunction 

(Hill et al., 2017). Recently, some aspects of ASD and SZ associated gut-brain axis 

dysfunction were reproduced in the MIA poly (I:C) model in C57BL6/J mice (Hsiao et 

al., 2013). Here we replicate some of these previously reported findings for social and 

stereotyped behaviour induced by poly (I:C) in the C57BL6/J strain. In addition, we show, 

for what is to our knowledge the first time, that a single poly (I:C) injection on gestational 

day 12.5 induces a much wider array of neurobehavioural deficits in the NIH Swiss mice, 

including changes in anxiety and depression-like behaviours, stress responsivity and 

vasopressin receptor 1a mRNA expression in the hypothalamus. Notably, these strain-

specific behavioural effects were associated with marked changes in gut permeability 

(Table 6). Thus, these findings highlight the importance of the interactions between MIA 

and genetic background on behavioural and molecular hallmarks of gut-brain axis 

dysfunction that may underpin important aspects of ASD and SZ phenotype. 

Previous research in MIA animal models reproduced many of the core ASD and SZ 

symptoms demonstrating important construct, face and predictive validity to the model 

(Estes and McAllister, 2016; Meyer, 2014). Indeed, core social deficits and stereotyped 

behaviour were observed in the current study. For example, by adolescence, MIA 

offspring from both strains exhibited deficits in reciprocal social interaction. However, 

only C57BL6/J poly (I:C)-exposed mice showed a persistent deficit in social interaction 

at the test session. Juvenile social interaction deficits had been previously reported with 

LPS (Kirsten et al., 2010; Taylor et al., 2012) and valproic acid immune challenge in 

Long- Evans rats (Raza et al., 2015). Moreover, a subtle increase in the number of buried 

marbles was observed in MIA C57BL6/J in late puberty, replicating previous findings 
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that demonstrate repetitive behaviour in this strain (Choi et al., 2016; Schwartzer et al., 

2013). The strain specificity on early behavioural phenotype may reflect differences in 

the postnatal neurodevelopmental trajectory and susceptibility to MIA insult of these two 

strains. Previous studies that attempted to investigate the effects of MIA induced by 

gestational poly (I:C) mainly focused on changes occurring after puberty (Patrich et al., 

2016). It is important to note that, although we do not observe any significant changes in 

maternal care behaviour due to Poly (I:C) treatment, strain differences were noted in this 

study. Such strain differences have been studied previously and may play a role in 

programming epigenetic and behavioural differences later in life (Champagne et al., 

2007). In this study, at P10, MIA pups from both strains have normal maternal attachment 

behaviour as suggested by their ability to recognise the familiar nest at P10. However, 

conflicting findings were previously reported in pups whose mother received gestational 

administration of LPS (Baharnoori et al., 2012) or valproate (Servadio et al., 2016). 

However, a better characterization of the early developmental period including 

differences in the neonatal environment are required to better target the diagnostic 

window of ASD and SZ (Careaga et al., 2017).  

While C57BL6/J MIA offspring show a behavioural phenotype that reflects stereotyped 

and social core symptoms of ASD and SZ, they failed to show communication 

impairments in isolation-induced USV. Discrepancies from previous studies may reflect 

variations in the methodological approach to measure USVs. Here, USVs were measured 

at a single time point in order to avoid excessive stress due to separation whereas previous 

reports have measured USVs repeatedly at several developmental stages (Choi et al., 

2016; Schwartzer et al., 2013).  

As expected, MIA offspring from both strains presented with deficits in sociability and 

preference for social novelty in adulthood. These deficits have long been reported in 

C57BL6/J (Crawley, 2007; Moy et al., 2006) but, as far as we are aware, this is the first 

study to show these MIA-induced deficits in NIH Swiss mice. When mice social 

transmission of food preference was tested a decrease in the preference for the social cued 

food was observed in C57BL6/J. However, NIH Swiss control mice failed to show a 

baseline preference in this test. Social transmission of food preference is widely used as 
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a measure of communication deficits in animal models of autism and it also involves 

short-term and long-term memory (Greco et al., 2013; Silverman et al., 2010b; Wrenn et 

al., 2003). Thus, it is of interest that we observed no deficits in the novel object recognition 

after poly (I:C) treatment and we can conclude that cognitive impairments present in this 

study are specifically associated with social information processing. It is important to note 

that novel object recognition deficits have been previously reported in C57BL6/J poly 

(I:C) offspring in a short-term memory protocol (10 min.) (Ito et al., 2010) however, here 

we opted for a long-term memory protocol (24h). 

In addition to the core behavioural symptoms, SZ and ASD patients are often diagnosed 

with mood disorders and stress (van Steensel and Heeman, 2017; Schwendener et al., 

2009). One of the clearest behavioural findings of this study was that MIA induced 

differential effects on depression, stress response and anxiety-like behaviour in the two 

strains, with the outbred strain being more susceptible to MIA-induced changes in these 

measures. To our knowledge, this is the first time these effects have been observed in NIH 

Swiss mice. Within regard to C57BL6/J mice, our results showing an absence of changes 

in depression and anxiety–like behaviour in adulthood are in line with another strain 

comparison study by (Babri et al., 2014). They reported depression and anxiety-like 

behaviour, accompanied by an abnormal HPA axis response, in NMRI mice but not in the 

C57BL6/J. Surprisingly, in the present study we found that MIA increased time in the 

open arms of the EPM in the NIH Swiss strain. An increase in open-arm activity could be 

interpreted as reduced anxiety behaviour (Walf and Frye, 2007) or increased risk 

assessment  (Blanchard and Blanchard, 1989). Although unexpected, increased time spent 

in the open arms of the EPM has been positively correlated with higher corticosterone 

levels (Mikics et al., 2005). Interestingly, the MIA-induced reductions in anxiety 

behaviour does not generalise to the open-field test cautioning over-interpretation of this 

aspect of the MIA phenotype. Indeed, it is important to note that to date the literature has 

reported contradictory results for the effects of MIA on depression and anxiety 

phenotypes (Giovanoli et al., 2013; Hava et al., 2006; Khan et al., 2014; Schneider and 

Przewłocki, 2005; Schwendener et al., 2009).  
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Early-life events such as MIA and stress are well known to contribute to HPA-axis 

programming during foetal development (Bale et al., 2010). In addition, a depressive 

phenotype has been associated with abnormal HPA axis response in MIA offspring in 

NMRI mice (Babri et al., 2014). In agreement with these previous findings, NIH Swiss 

mice exhibited increased corticosterone in response to an acute stress, thus evidencing 

that genetic background may play an important role in the development of the HPA-axis 

response and neuroanatomical substrates associated with mediation of stress response.  

Oxytocin and AVP neuropeptides are produced by the paraventricular nucleus of the 

hypothalamus, which controls the HPA axis response by the regulation of corticotrophin 

releasing hormone. Thus, Oxytocin and AVP systems plays a modulatory role in 

neuroendocrine and behavioural functions including depression, anxiety and social 

behaviour (Insel, 2010,Neumann and Landgraf, 2012,Sarnyai and Kovács, 2014). 

Importantly, changes in OXT, AVP, Oxtr or Avpr1a have been shown to influence ASD 

and SZ phenotype (Carter, 2007; Demeter et al., 2016; Patterson, 2011). Notably, the 

strain-specific effects on HPA axis and behaviour in this study also tally with the 

reduction in the expression of Avpr1a (but not in Oxtr) in the hypothalamus of MIA NIH 

Swiss mice. It has been demonstrated previously that exposure to LPS during pregnancy 

could alter Avpr1a expression in the PVN but surprisingly this did not correlate with HPA 

axis responsiveness deficits (Shanks et al., 2000). Recently, decreased Oxtr binding in the 

amygdala was reported in the offspring of VPA-injected mothers (Bertelsen et al., 2017). 

It is tempting to speculate that changes in hypothalamic Avpr1a may at least in part 

mediate some of the strain differential effects induced by poly (I:C) administration. Given 

the emerging role of AVP and OXT as potential biomarkers and treatment targets for ASD 

(Carson et al., 2015), future studies should consider a more detailed investigation of AVP 

signalling pathway in the poly (I:C) MIA model. 

Previous studies have highlighted the importance of gut-brain axis pathways on the 

intensity of behavioural symptoms in ASD and SZ (Hill et al., 2017). Several routes of 

communication between the gut and the brain have been studied including neuroendocrine 

and metabolic pathways, neuronal signalling, intestinal barrier function (“leaky gut”) and 

the immune system (Cryan and Dinan, 2012). It is well established that stress can affect 
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the developmental trajectory of the intestinal barrier and in has been associated with a 

“leaky gut” (Kelly et al., 2015; Smith et al., 2010). Importantly, a disrupted barrier 

function has been associated to alterations in microbiota in the poly (I:C) (Hsiao et al., 

2013) and in the BTBR mouse model of autism (Coretti et al., 2017; Golubeva et al., 

2017). A critical question addressed in this study was whether the strain dependent effects 

on behaviour, stress response and neuronal signalling could underlie GI dysfunction and 

compromise gut-brain axis signalling. Here, for the first time, we show an increase of 

intestinal permeability to FITC-dextran in MIA NIH Swiss, but not in MIA C57BL6/J 

offspring. Importantly, intestinal motility was not affected across the groups excluding 

the possibility of bias due to intestinal transit time. Conflicting results with previously 

reported findings in poly (I:C) injected C57BL6/J offspring may be due to the difference 

in the fasting time between this and the previous study (Hsiao et al., 2013).  

The present study suggests that neuroendocrine and intestinal barrier pathways of the gut-

brain axis are likely to be playing a role on strain differences in the vulnerability to MIA-

induced behavioural abnormalities common to ASD and SZ. However, a better 

characterization of strain differences in the behavioural tests more closely related to SZ 

is also warranted in the future and will complement these findings. Recently (Kim et al., 

2017) demonstrated that differences in the susceptibility to poly (I:C) insults of two 

C57BL6/J linage (from Taconic bioscience and Jackson laboratories) are dependent on 

the activation of TH17 cells and the presence of particular gut bacteria population. Since 

both the immune system and the microbiota are important pathways of the gut-brain axis 

communication, further mechanistic studies comparing the vulnerability of C57BL6/J and 

NIH Swiss mice should consider that. A limitation of the current study is that the influence 

of litter-to-litter variation has not been taken into account and may contribute to subject 

to subject variation (Vorhees et al., 2015). In conclusion, the findings of the current study 

are important for a better understanding of gut-brain connections in a widely used model 

of neurodevelopmental disorders in order to support future investigation on new effective 

treatments for neurodevelopmental disorders. However, the sequence of events that 

explain the presence of specific behavioural, stress and intestinal barrier changes in one 

strain but not another remains unknown. 
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Chapter 5. Discussion 

 

5.1 Summary of the Findings 

The data generated in this thesis highlight the importance of early-life on shaping gut-

brain axis development and function with major implications for mental health. We focus 

on the role of perinatal gut-brain axis disruption and its neurobehavioural consequences 

in two different scenarios: following birth by Caesarean-section (C-section) and after 

MIA with polyinosinic:polycytidylic acid (poly I:C) during pregnancy. To this end, 

firstly, we developed a mouse model of C-section and demonstrated for the first time that 

the mode of delivery at birth can induce anxiety-like behaviour, social and cognition 

deficits that is apparent in early life and persists into adulthood as observed in several 

different behavioural paradigms: pup ultrasonic vocalization (USV), maternal attachment, 

elevated-plus maze (EPM), open-field (OF), marble burying (MB) and 3-chamber test. In 

addition to an anxiety-like phenotype, mice born by C-section demonstrate impairments 

in maternal attachment, and deficits in the social recognition and novel object recognition 

tests. These neurobehavioral deficits were associated with an exaggerated response to 

acute stress, increased oxytocin receptor (OXTR) mRNA expression in the amygdala and 

increased Corticotropin-releasing hormone receptor 1 (Crhr1) mRNA expression in the 

pituitary gland of CS born offspring, and an abnormal immune response in adulthood. 

One of the most striking results of this thesis is that C-section leads to marked changes in 

gut microbiota composition and diversity in early-life and adolescence, with decrease in 

Bifidobacterium spp. at P21 (Chapter 2), similar to what has been reported in humans 

born by C-section (Dominguez-Bello et al., 2010, 2016). Interestingly, some of the 

deficits induced by C-section, including impaired recognition, are reversed by co-housing 

C-section with VB mice in adolescence, which effectively transfers microbiota due to 

coprophagia, and highlights the importance of the microbiota in neurobehavioural 

development (Chapter 2). By targeting the gut microbiota from birth with bifidogenic 

diets (prebiotics and probiotics) we were able to reverse anxiety-like behaviour in early-
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life and recognition deficits both in early-life and in adulthood (Chapter 2). We also 

observed that increased OXTR expression in amygdala of CS mice is reversed by 

promoting growth of bifidobacteria. In a complementary experiment in Chapter 2, we 

investigated whether aspects of the core C-section phenotype might be observed in 

humans. Young volunteers of known birth modality underwent a Trier Social Stress Test 

(TSST) to investigate hypothalamic pituitary adrenal (HPA) axis, inflammatory and 

psychological responses to acute psychosocial stress. Strikingly, stress-related 

behavioural and immune system alterations were also observed in a cohort of young-adult 

individuals born by C-section (Chapter2).  

Given that data from Chapter 2 strongly implicate C-section in social recognition deficits 

and associated changes in OXTR expression within the amygdala, in Chapter 3 we further 

investigated whether treatment with OXT from postnatal (P)1 to P5 (via s.c. injection) 

was able to prevent C-section born offspring from developing the associated phenotype. 

Interestingly, early postnatal administration of OXT reversed specific effects associated 

with mode of birth, including early-life deficits in maternal attachment, impaired social 

recognition and some aspects of anxiety-like behaviour in adulthood. OXT treatment also 

attenuated the splenic immune response in C-section born mice stimulated with 

Lipopolysaccharide (LPS) and prevented C-section-associated impairments in intestinal 

motility. Furthermore, we confirmed that postnatal OXT treatment has enduring effects 

on the OXT system, as elevated plasma OXT was observed in these mice into adulthood, 

although OXTR and vasopressin (AVPR) mRNA expression remained unchanged. 

Since MIA has previously been reported to alter the microbiota composition of mouse 

offspring (Hsiao et al., 2013), we further interrogated the significance of gene x 

environment interactions in priming the gut-brain axis function using this paradigm. 

Chapter 4 investigated whether administration of poly I:C at gestational day 12.5 would 

lead to behavioural, physiological and molecular changes relevant to neurodevelopmental 

disorders in offspring of outbred (NIH Swiss) and inbred (C57BL6/J) mouse strains. By 

comparing these two different strains we were able assess the effects of genotype and 

environment on the susceptibility to develop a dysfunctional gut-brain axis. We 

demonstrated that these strains differ in anxiety and depression-like behaviours, with the 
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effects more pronounced in NIH Swiss mice. These strain-specific behavioural effects in 

the NIH Swiss mice were associated with marked changes in important components of 

gut-brain axis communication: stress responsivity and gut permeability. 

 

5.2 The Stress of Being Born Without a Maternal Microbial Signature 

That birth is a stressful experience for both mother and newborn is well established 

(Lagercrantz, 2016). Freud considered being born as the very first stressful experience in 

life and thus a source of anxiety. In fact, the passage through the birth canal involves a 

combination of events that trigger the stress response in the newborn and is referred to as 

“the stress of being born” (Lagercrantz and Slotkin, 1986b). As a matter of fact, infants 

born by vaginal delivery have higher levels of stress hormones right after birth in 

comparison to CS babies (Chiș et al., 2017; Taylor et al., 2000; Vogl et al., 2006). This 

activation of HPA-axis with a peak in corticosterone right after birth is considered an 

adaptive response to environmental challenge (Lagercrantz, 2016).  

The latest research showed that microbiota is required for a proper HPA-axis 

development, activation, and response (Foster and McVey Neufeld, 2013; Foster et al., 

2017; Golubeva et al., 2015; Neufeld et al., 2011; O’Mahony et al., 2014; Sudo et al., 

2004). Early life disruption of the microbiota is implicated in stress- and anxiety-related 

disorders later in life (O’ Mahony et al., 2015). This impact extends beyond the HPA-

axis, influencing many aspects of brain development, function and behaviour (Cryan and 

Dinan, 2012; Foster et al., 2017; Sharon et al., 2016). The assembly of an individual’s gut 

microbial community is determined by maternal–offspring exchanges that primarily occur 

during, and shortly after, birth (Mueller et al., 2017). As discussed in the Chapter 1, these 

processes are influenced by several prenatal and postnatal factors, with the mode of 

delivery at birth being critical for shaping microbial composition and diversity of the 

newborn gut (Tamburini et al., 2016). This concept underlies the main hypothesis of 

Chapter 2, that birth by C-section impacts the wiring of the entire microbiota-gut-brain 

axis, with consequences to stress reactivity and behaviour. By using an animal model, we 
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remarkably demonstrated that birth by C-section induces long-term effects to stress and 

anxiety-like behaviour in early-life and in adulthood with long-term consequences for the 

HPA-axis response and stress-associated gene expression of Crhr1 and OXTR in 

corticolimbic structures. These changes occurred in parallel with marked alterations in the 

gut microbiota in early-life and adolescence. By transferring VB microbiota to CS mice 

by co-housing in adolescence or restoring Bifidobacteria through dietary interventions 

from birth, we were able to attenuate some aspects of the anxiety-like behavioural 

phenotype induced by C-section. Furthermore, in Chapter 2 we took a further step, to 

assess whether these findings translated to a human cohort of young adults. We 

demonstrate that healthy young adults delivered by C-section also exhibit an increased 

psychological vulnerability to either acute or prolonged stress. Although differences in 

gut microbiota are resolved by adulthood in both mice and humans, C-section circumvents 

natural exposure to the vaginal microbiota during labor and birth, altering HPA-axis 

development, with enduring consequences to behaviour.  

The precise mechanisms whereby early-life microbes determine the set point of the HPA-

axis are unknown, but it is suggested that microbial signaling molecules interact with 

neuro-immuno-endocrine pathways (Lyte and Ernst, 1992; Sudo, 2014). Early-life 

microbes derived from the mother are also important for setting the immune system 

response, preparing the newborn for host-microbial mutualism (Gomez de Agüero et al., 

2016). Interestingly, the data obtained in Chapter 2 also demonstrate that C-section 

exacerbates immune-system responses, with increases in pro- and anti-inflammatory 

cytokines, both in mice and in humans. These results are in line with several reports that 

associate C-section with higher risk of developing immune system disorders (Cho and 

Norman, 2013; Hansen et al., 2014). The gut microbiome is known to secrete luminal 

catecholamines including norepinephrine (NE), which is a key mediator of the HPA-axis 

(Sudo, 2014). Both corticosterone (CORT) and NE can modulate immune system 

response through sympathetic innervation of immune system tissues, including spleen and 

thymus, and immune cells, such as lymphocytes and monocytes (Kraneveld et al., 2008). 

The C-section animal model developed in this thesis offers a valuable means to study the 

mechanisms underlying microbiota and neuro-immuno-endocrine interactions in a more 



 

222 

natural human condition, as opposed to the use of germ-free (GF) animals. Using a 

combination of pharmacological approaches, optogenetics, circuit tracing, and behavioral 

analysis will be crucial for elucidating these pathways. 

Recently, it was revealed that gut microbiota is necessary for microglia maturation and 

activation (Erny et al., 2015). Interestingly, glucocorticoid receptors are highly expressed 

on microglia throughout the brain (Bellavance and Rivest, 2014). Whether microglia 

activation is affected by C-section in unclear, but currently under investigation. 

Microbiota-HPA-axis-microglia cross-talk could potentially be investigated by use of 

sequencing methods, including single-cell genomic analysis of microglia. The use of 

single cell transcriptomics enables researchers to identify specific subsets of microglia in 

neuroinflammatory conditions (Boza-Serrano et al., 2018). A whole-transcriptome 

resource of microglia gene expression across different stages of central nervous system 

(CNS) and microbiota development will be helpful to understand this relationship.  

Although activation of the HPA-axis and stress responses enable organisms to cope with 

situations and promote adaptation, sustained stress exposure and HPA activity can have 

adverse effects on brain function and behaviour (van Bodegom et al., 2017; Faravelli et 

al., 2012). Therefore, these findings have significant implications, due to increases in C-

section deliveries and the potential for stress-associated disorders later in life. Future 

studies should also consider sex differences on C-section’s effects, both in mice and 

humans.  

5.3 The Neurobiology of Attachment and Neuronal Substrates of 

Early-life Disruption of the Gut Microbiota 

Stress can critically impact social behaviour and brain circuits that are engaged in the 

processing of social information and expression of social behaviour (Sandi and Haller, 

2015). An interesting finding of this thesis is that microbial disruption in early-life alters 

the expression of genes associated with stress responses and social behaviour in adulthood 

(Chapter 2). Of note, birth by C-section impairs maternal attachment, social recognition 
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and increases the number of distress calls early in life (Chapter 2). Social recognition 

deficits persist into adulthood (Chapter 2). Offspring born to MIA mothers also 

demonstrate strong social behaviour deficits in adulthood (Chapter 4). Indeed, the 

finding that gut microbiota can influence social behaviour is one of the most consistent in 

the field (Needham et al., 2018; Stilling et al., 2014). GF mice exhibit abnormal social 

interactions (Desbonnet et al., 2014) and microbiota alterations often are reported in 

association with social disorders and are also present in animal models of autism spectrum 

disorders (ASD) (de Theije et al., 2014; Buffington et al., 2016; Golubeva et al., 2017; 

Hsiao et al., 2013). Microbiota, attachment and social behaviour may be closely 

correlated, but the neuronal mechanisms mediating these interactions are still an 

important and yet unanswered question in the field. 

“Attachment is a psychological construct reflecting a strong emotional bond between two 

individuals, such as relationship between a mother and her child” (Porges, 2003). In 

mammals, attachment is facilitated by the social engagement system which involves the 

combination of somatomotor and visceromotor components which initially coordinate 

suckling-swallowing-breathing-vocalizing in a newborn. Some researchers contend that 

it is difficult to think of any behavioural process that is more intrinsically important to 

humans than attachment (Carter and Porges, 2011). Indeed, for mammals, social 

behavioural interactions allow for survival and increase fitness of the species. As humans 

are social animals, we live for social attachments. Social attachment also involves neural 

circuits mediating motivation and reward (Insel, 2003; Insel and Young, 2001). 

Disruptions of the social behavioural system early in life can lead to difficulties in 

sociability and emotional processing later in life (Carter and Porges, 2011). Deficits in 

social interactions seem to be a common facet of neurodevelopmental disorders. Thus, 

the findings of this thesis can inform about the complex relationships between early-life, 

microbiota, attachment and social behaviour relevant to neurodevelopmental disorders. 

AVP and OXT systems mediate attachment and social bond formation in mammals 

(Donaldson and Young, 2008). In recent years, OXT and AVP have received growing 

attention due to evidence that OXT may have important clinical applications for disorders 

such as ASD, anxiety and addiction (Neumann and Slattery, 2016; Peters et al., 2013; 
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Shen, 2015; Young and Flanagan-Cato, 2012). An noteworthy finding of this thesis is that 

early life disruption of the microbiome leads to alterations in the OXT and AVP systems, 

in C-section born and MIA offspring, respectively (Chapter 2 and Chapter 4). While 

birth by C-section decreases OXTR expression in the amygdala, MIA decreases AVPR 

expression in the paraventricular nucleous of the hypothalamus (PVN), in a strain-specific 

manner. When C-section born mice received OXT treatment for the first 5 days of life, 

some of the C-section-mediated effects on attachment, social behaviour and some aspects 

of anxiety-like behaviour were attenuated. OXT reversed gastrointestinal deficits and 

blunted immunological response to CS (Chapter 3). Whether OXT has the potential to 

ameliorate MIA-associated effects remains to be addressed.  

That early-life OXT administration acts on the immune system and regulates 

gastrointestinal motility in mice born by C-section is intriguing and suggests a potential 

role for OXT actions on the gut-brain axis, perhaps directly attenuating the effects of birth 

in the absence of a maternal microbial signature. Intriguing, treating CS offspring with a 

bifidogenic diet from birth was able to restore OXTR expression in the amygdala of adult 

mice, and restore normal attachment and social behaviours. Recently, supplementation 

with L. reuteri was shown to increase plasma levels of OXT, with beneficial effects to the 

host and improvements in general health (Erdman and Poutahidis, 2014). Moreover, L. 

reuteri modulates immune response, increases maternal care, modulates social behaviour, 

and attenuates stress responses through OXT production (Buffington et al., 2016; Erdman 

and Poutahidis, 2014; Poutahidis et al., 2013; Varian et al., 2017). Since the microbiota-

gut brain axis involves bidirectional pathways, the findings of this thesis open an avenue 

for exploration of the effects of the neuropeptide OXT on the microbiome in a top-down 

perspective, as well as it supports the search for microbial interventions that modulate 

OXT system in the brain from the bottom-up. The timing of our pharmacological 

intervention indicates an organizational effect of OXT on priming behaviour, immune and 

gastrointestinal function.  

There are other issues of OXT pharmacology that should be considered. For example, 

there is significant cross-talk between OXT, AVP and other neurotransmitter systems 

such as gamma-aminobutyric acid, dopamine and opioid receptors (Hung et al., 2017; 
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Khazipov et al., 2008; Neumann et al., 2006; Panksepp, 1992). Thus, some of the effects 

of exogenously administered OXT could be due to interactions with these other 

neurotransmitter systems. Moreover, the positive effects of OXT seem to be dose-

dependent, varying across mouse developmental window; while high-dose (HD) OXT 

reversed social recognition deficits induced by C-section in early-life, only low-dose (LD) 

OXT was effective in ameliorating social recognition deficits by adulthood (Chapter 3). 

Such dose-dependent effects of OXT are not surprising, given the dynamic plasticity of 

the OXTR system across the life-span (Bales and Perkeybile, 2012; Kosaka et al., 2016); 

however it adds complexity from a pharmacological treatment perspective. Another 

relevant aspect of OXT is its sexually dimorphic nature, with different functions and 

receptor distributions between males and females (Bales et al., 2007). Thus, further 

studies should evaluate sex differences in susceptibility to behavioural deficits induced 

by early life gut-brain axis perturbations and with respect to OXT treatment. Although 

OXT is shown to increase trust, stimulate social engagement and attachment in humans 

(Johnson and Young, 2017), very little is known about OXTR distribution in the human 

brain. Thus, caution should be taken when extrapolating these findings in OXT systems 

of mice to humans (Andari et al., 2017).  

The fact that early-life disruption of the microbiota induces attachment and long-lasting 

social recognition deficits, with possible role for OXT and AVP system, is one of 

strongest findings of this thesis and should be explored in depth, both in terms of 

mechanisms and from an intervention perspective.  

5.4 New Tools for Investigating Mechanisms Underlying Microbial 

Modulation of Oxytocin System and Behaviour 

Our findings indicate a pharmacological mechanism by which a disrupted microbiota 

could modulate behaviour. Because early-life is a very sensitive period for brain and for 

OXT system, some of the effects of the mode of delivery observed in the Chapter 2 were 

blunted by the injections in early-life in Chapter 3. These conflicting results may be 
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explained by handling effects on maternal care and on OXT system development (Bales 

and Perkeybile, 2012).  

An interesting perspective study could include the use of OXTR, OXT, AVP or AVPR 

knockout animals colonised with the microbiota of MIA or CS mice, to test the role of 

gene and environmental interactions in relevant behavioural tests. Instead of inducing a 

global knockout of OXT or OXTR it is also possible to manipulate regional expression of 

receptors through the use of viral vectors. Moreover, the use of optogenetics technology 

and Cre-lines expressed from the OXTR and AVPR promoter would be also helpful in 

unraveling neurocircuits involved. Sequencing methods such as single-cell sequencing of 

PVN, supraoptical nucleous, medial amygdala would also bolster our understanding of 

the role of microbiota on the OXT system. The use of these tools are crucial for addressing 

mechanisms of interaction between gut microbiota and the brain with application to 

psychiatric disorders.  

5.5 Gene x Environment Interactions and Vulnerability to 

Microbiota-gut brain axis insults 

Neurodevelopmental disorders such as ASD and schizophrenia (SZ) have multifactorial 

origins. Recent discoveries have advanced our understanding of the genetic and 

environmental factors that may trigger their manifestation. Numerous environmental risk 

factors contribute to the increased risk for neurodevelopmental disorders, including: birth 

mode, MIA and maternal infection, season of birth, maternal diet and medication, early-

life stress, drug abuse and microbiota (Buffington et al., 2016; Kelly et al., 2017; 

Kraneveld et al., 2016; O’ Mahony et al., 2015; Patterson, 2002; Sampson and 

Mazmanian, 2015). Despite the progress in the identification of risk factors, we still have 

a poor understanding of how these factors interact with genes in neurodevelopmental 

disorders. In the Chapter 4 of this thesis, we aimed to investigate one such interaction by 

using a very well-established model of neurodevelopmental disorders, MIA induced by 

poly I:C administration. The link between maternal infection and neurodevelopmental 

disorder had been appreciated for many years (Meyer et al., 2007; Patterson, 2002). More 
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recently, the Zika virus outbreak and the surge in cases of microcephaly have finally 

returned public attention to the detrimental effects of maternal infection (Estes and 

McAllister, 2016; Jurado et al., 2017), reinforcing the urgency for understanding these 

associations.  

As described in the Chapter 1, in addition to the core social symptoms associated with 

ASD, gastrointestinal symptoms are frequently reported. Recently, causal associations 

between alterations in the microbiota-gut-brain axis and ASD have been demonstrated in 

animal models (de Theije et al., 2014; Buffington et al., 2016; Golubeva et al., 2017; 

Hsiao et al., 2013; Kim et al., 2017). Here we investigated whether administration of poly 

I:C on gestational day 12.5 could lead to behavioural, physiological and molecular aspects 

relevant to neurodevelopmental disorders, in a strain-dependent manner. Although MIA 

induced social behavioural deficits in both strains, the effects of MIA on anxiety- and 

depression-like behaviours, stress reactivity and gut permeability were more pronounced 

in NIH Swiss mice (Chapter 4). The findings in this thesis complement existing literature 

on the MIA model and indicate the possible role for gene x environment interactions in 

modulating gut-brain axis programming during gestation, which may contribute to 

neurodevelopmental disorders. A very pertinent study recently demonstrated that the 

susceptibility to poly (I:C) insults of two C57BL6/J lineages (from Taconic bioscience 

and Jackson laboratories) may be dependent on the presence of particular gut bacteria 

populations which activate TH17 immune responses (Kim et al., 2017). These reports 

support the findings of this thesis, indicating that the differential effects observed in NIH 

Swiss mice and C57BL6/J may reflect differences in gut microbiota composition between 

the two strains. 

The bidirectional interaction of the microbiome and immune system is evident from 

multiple mouse studies using GF mice, which demonstrate that microbiota is required for 

development of a proper innate immune system, in both the periphery and in the CNS (El 

Aidy et al., 2015). Identification of individual genetics with environmental factors and the 

microbiome is needed for the development of personalized microbiota targeting treatment 

(Kurilshikov et al., 2017). Going forward, this will require detailed metagenomic 

analyses, more complete bacterial and brain sequencing, testing proof of concept ideas in 
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more than one mouse lineage and sex differences. These studies will provide important 

information that can used to manipulate this system to support neurodevelopmental 

disorder treatment and/or management. 

5.6 Early-life: a Critical Period of Unique Sensitivity  

For more than a century, clinical research has demonstrated that early life can influence 

the development of adult psychopathology (Bale et al., 2010). The emergence of the gut-

brain axis has driven a paradigm shift in the way we view mental health and 

neuropsychiatric disorders (Dinan and Cryan, 2017b). The early life period is marked by 

the dynamic development of multiple physiological systems and domains, wherein key 

elements of the gut-brain axis, such as immune system, CNS, gastrointestinal tract and 

HPA-axis develop and mature in parallel with the microbiota (O’ Mahony et al., 2015). 

Strong evidence points to the presence of a window of opportunity or vulnerability in 

early-life, during which changes in gut microbial colonisation can result in immune and 

HPA-axis dysregulation, and perturbation of the complex processes of brain and 

behavioural development (Borre et al., 2014). The overall goal of this thesis was to 

investigate the impact of early-life disruption of the gut-brain axis and its 

neurobehavioural consequences. The findings presented in this thesis add relevant 

information as to the effects of early-life insults to gut-microbiota colonisation with public 

health and mental health implications. 

C-section is a lifesaving procedure that is deemed necessary in approximately 10 to 15% 

of births to avoid risking the life of mother and/or child (Deshpande and Oxford, 2012). 

However, the number of infants delivered by C-section has rapidly increased worldwide 

over recent years with many regions far exceeding the World Health Organization 

guidelines (Betran et al., 2016). Currently, the emphasis of research and discussion around 

mode of delivery is on the benefits and potential harms for the pregnant woman herself 

(Cho and Norman, 2013). C-section birth has been associated to a greater risk of 

developing immune and metabolic-related disorders More recently, studies using an 

animal model of C-section support a causal relationship between microbial dysbiosis 

induced by C-section and increased body weight (Martinez et al., 2017) and innate-
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immune dysfunction (Hansen et al., 2014). The findings of this thesis suggest that birth 

by C-section affects priming of the entire gut-brain axis, leading to stress 

hyperresponsivity, anxiety-like behaviour, and recognition deficits. Although we are only 

just starting to understand the mechanisms underlying these associations, our findings 

raise concerns regarding the overuse of C-section in modern medicine and provide new 

information on the importance of early-life microbial colonisation for neuro- and 

behavioural development, its potential consequences on mental health, and ultimately the 

introduction of an animal model for investigating microbiota-gut brain axis interactions.  

MIA has long been associated with an increased risk for neurodevelopmental disorders. 

The poly(I:C) MIA mouse model has both face and construct validity for ASD and SZ, 

and has largely contributed to our understanding neuro-immune interactions during foetal 

brain development and the manifestation of psychiatric disorders (Patterson, 2002). 

However, the microbial components of these interactions are only beginning to be 

explored (Estes and McAllister, 2016). The findings of this thesis reinforce the 

contribution of gene-environment interactions in gut-brain axis dysfunction. Unravelling 

these interactions will be important for identifying individuals at-risk for 

neurodevelopmental disorders.  

5.7 Early-life: a Window of Opportunities 

As discussed in Chapter 1, pregnancy, lactation and weaning are critical periods for 

microbiota maturation. The fact that gut microbiota is modifiable at these stages, presents 

windows of opportunity.  Thus, early-life also represents a preferred stage of life for targeting 

the gut microbiota, in order to prevent or ameliorate the effects of pathologies, including 

neuropsychiatric conditions associated with microbiota-gut-brain axis dysfunction. In fact, 

data from numerous studies has shown that the use of probiotics to support therapeutic 

agents is a safe, more economically affordable and less invasive treatment. In this thesis 

we first targeted the microbiota in adolescence, by using a common approach for microbial 

transfer: co-housing. In a proof of concept experiment, we demonstrated that transferring VB 

microbiota to CS mice by co-housing can reverse recognition deficits induced by C-

section and some aspects of anxiety phenotype (Chapter 2). These findings highlight the 
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importance of environment, including individuals with whom we interact, on shaping the 

gut microbiota (Song et al., 2013; Thevaranjan et al., 2017). Our data are in line with a 

recent study which demonstrated that microbiota transfer by co-housing mice exhibiting 

autism-like features with controls partially restores behavioural phenotype, improves 

sociability and modulates the OXT system (Buffington et al., 2016).  

 Recently, partial restoration of the gut microbiota of infants born by C-section was 

successfully demonstrated via vaginal microbial transfer. Vaginal seeding, performed by 

swabbing babies with vaginal fluid over their entire bodies, successfully colonised the 

newborn gut with maternal vaginal microbes for up to 30 days post-birth and are now in 

clinical trials (Dominguez-bello 2016). However, this practice is controversial, due to the 

lack of sustained evidence and further cohorts are necessary to attest to the safety and 

efficacy of vaginal seeding. Here, we recapitulated the maternal-offspring vertical 

transmission by feeding offspring Bifidobacterium breve and a bifidogenic diet. The 

importance of vertical transmission of Bifidobacteria for priming the immune system in 

early-life has been well-characterised (Makino et al., 2013; Ménard et al., 2008). 

Moreover, Bifidobacterium breve have been used in pediatric practice for clinical 

conditions such as necrotizing enterocolitis (Anderson, 2015; Caplan et al., 1999; 

Kitajima et al., 1997; Patel and Underwood, 2018). In Chapter 2 of this thesis, we report 

for the first time that restoration of Bifidobacteria in the neonatal gut affects brain and 

behavior, and the current probiotic and prebiotic presented here could potentially be 

explored as a coadjutant treatment for many neurodevelopmental conditions associated 

with microbiota-gut-brain axis dysregulation. Manipulating gut microbiota during the 

early-life period offers the potential for therapeutic interventions before deleterious 

symptoms appear, decreasing the incidence of, or even preventing, the emergence of 

psychiatric illnesses associated with microbiota-gut-brain axis dysfunction in adulthood.  

A key environmental determinant of infant gut colonisation is breastfeeding. Breast 

milk is a direct route of maternal-offspring transmission of both microorganisms and 

prebiotics, influencing immune system development (Pannaraj et al., 2017; Walker and 

Iyengar, 2015). However, breast milk is not only a source of microbiota but also supplies 

the infant with important hormones, such as OXT (Higashida et al., 2017). In this thesis 
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we have demonstrated that early-life treatment with OXT prevented the development of 

gut-brain axis alterations in mice born by C-section. Although research has only just 

begun to unravel the interactions between microbes-oxytocin and gut-brain interactions, 

and the findings in animal models are limited, the results of this thesis have some clinical 

significance. C-section should not be discontinued as medical-indicated C-section can be 

truly lifesaving. However, there should be greater awareness and discussion about the 

associations between elective C-section and its potential adverse health effects on 

offspring. On the other hand, strategies that reestablish or rebalance the gut microbiota 

and increase oxytocin exposure in early-life may serve as a novel and worthy target for 

improving health outcomes associated with the procedure.  

5.8 Conclusion 

Taken together the findings of this thesis advanced our knowledge on neurobehavioural 

consequences of early life microbiota disturbances. Here, we suggested that targeting the 

microbiota-gut-brain axis from birth can have preventive effect on behavioural and 

physiological deficits. Understanding the connection between the gut microbiome and 

brain early life will support research towards development of a preventive therapy based 

on prebiotic, probiotic and pharmacological therapies for neurodevelopmental disorders. 

Elucidating this mechanisms and development of safe and effective therapeutics are 

needed to address the modern changes in lifestyle, including burden of maternal infection, 

improved sanitization, C-section, indiscriminate antibiotic use that can shift the 

microbiota composition, and are being studied as potential drivers of increase in 

psychiatric, immune and metabolic disorders in the developed world. 
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