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Abstract 

Engineering Co3O4 nanoparticles into highly ordered, 3D inverse opal (IO) structures is shown to significantly 

improve their performance as more efficient conversion mode Li-ion anode materials. By comparison with Co3O4 

microparticles, the advantages of the porous anode architecture are clearly shown. The inverse opal material 

markedly enhances specific capacity and capacity retention. The impact of various C rates on the rate of the initial 

charge demonstrates that higher rate charging (10 C) was much less destructive to the inverse opal structure than 

charging at a slow rate (0.1 C). Slower C rates that affect the IO structure resulted in higher specific capacities (more 

Li2O) as well as improved capacity retention. The IO structures cycle as CoO, which improves Coulombic 

efficiency and limits volumetric changes, allowing rate changes more efficiently. This work demonstrates how 3D 

IOs improve conversion mode anode material performance in the absence of additive or binders, thus enhancing 

mass transport of Li2O charge-discharge product through the open structure. This effect mitigates clogging by 

structural changes at slow rates (high capacity) and is beneficial to the overall electrochemical performance. 
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1. Introduction 

The development of anode materials for Li-ion applications has attracted significant research attention 

aimed at improving the performance over commercially utilized graphite. [1-4] Unlike conventional 

carbon based anode materials, transition metal oxides (TMOs) that react with Li through conversion 

reactions offer great potential for enhanced performance due to the differences in their lithiation 

mechanisms. [5-7] Rather than operating via a standard intercalation process, conversion mode materials 

undergo reversible redox reactions during charging and discharging. These reactions typically involve a 

higher mole fraction of Li per unit material (compared to intercalation) and, as a result, conversion mode 

materials can possess higher theoretical specific energies. [5, 8-10] To date, extensive research has been 

conducted on a wide range of TMO anode materials encompassing unary (containing only one metal), 

binary and ternary oxides. [11-13] Materials containing Co, Mn, Ni, and Zn have been of particular 

interest and have been examined in various morphologies from nanoparticles to nanowires, core-shell 

structures and nanorods with promising results in terms of specific capacity values and cycle lifetimes. 

[14-17] 

 Nanostructuring of materials for Li-ion applications has allowed various performance issues 

associated with bulk materials to be mitigated. For example, the pulverisation of active materials caused 

by repeated expansion and contraction during cycling can be significantly improved by reducing materials 

below certain size thresholds. [18, 19] Similarly, introducing various levels of porosity into the material 

allows for enhanced electrolyte infiltration and reduced Li-ion diffusion distances, leading to improved 

high-rate performance. For this reason, inverse opals (IOs) have attracted significant interest as battery 

materials. [20-22] IOs are highly ordered structures with porosities defined by a pre-formed sphere 

template. These templates can be infilled with a wide range of precursors (usually a metal salt dissolved 

in a volatile solvent) with subsequent thermal treatment allowing the formation of various IO materials 

encompassing metals, TMOs and mixed TMOs. [23, 24] Given their large surface area, high degree of 

ordering and interconnected nature, IOs have been investigated for a wide range of applications, such as 
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catalysis and photonics. [25, 26] The versatility and promise of IO materials for battery applications was 

recently illustrated when we presented a full IO Li-ion cell comprised of pre-lithiated conversion mode 

Co3O4 anode and an intercalation mode V2O5 cathode. [27] This cell could be cycled for over 100 

charge/discharge cycles with excellent capacity retention, and was a key illustration of IO structured 

active materials.  

 In this report, we investigate the fundamental electrochemical performance of Co3O4 IO anode 

materials in significantly more depth. This is achieved by comparing the performance of the IOs with 

microparticles (MPs) that are formed without the polystyrene sphere (PS) template necessary to form the 

IO structure. By contrasting the response of both material forms, we are able to show a clear improvement 

in performance by constraining the constituent nanoparticles into a three dimensional (3D) IO geometry. 

The rate-dependent characteristics of the IO anodes were examined through post-mortem scanning 

electron microscopy (SEM) analysis, revealing that high-rate galvanostatic charging of the conversion 

mode IO caused less structural changes compared to slower rate charging. Analysis of Raman 

spectroscopy and electron diffraction of a Co3O4 IO sample after 50 cycles indicated that Co3O4 is 

reduced and cycles reversibly as CoO. By comparing microparticles of Co3O4 to a Co3O4 nanoparticle 

network formed into a 3D open-worked inverse opal structure structures (both without additive or 

binders), we demonstrate that 3D IO Co3O4 can avoid unwanted cell inefficiencies and improve the 

consistency in charge-discharge rate, capacity retention, and cycle life. 

2. Experimental Section 

2.1 Materials synthesis 

Co3O4 IO samples were prepared via infilling of a polystyrene (PS) sphere template. Initially a solution of 

PS spheres (Polysciences Inc., diameter = 500 nm) in isopropanol (IPA) was drop cast on to 1 cm2 pieces 

of stainless steel; the sphere templates were then infilled with a 0.1 M solution of CoCl2 in IPA. The 

infilled sphere templates where heated at 450 °C in air for 12 h, to remove the templates and to crystallize 
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the samples. Co3O4 MPs were prepared using the same method as the IOs except without the addition of 

the PS sphere template. 

2.2 Materials characterization 

Transmission electron microscopy (TEM) analysis was conducted using a JEOL JEM-2100 TEM 

operating at 200 kV. SEM analysis was performed using an FEI Quanta 650 FEG high resolution SEM at 

an accelerating voltage of 10 kV. Thermogravimetric analysis (TGA) was performed using a Mettler 

Toledo TGA/DSC1. Dried samples of the solution of CoCl2 in IPA were placed in an alumina crucible 

and heated to 450 ºC in air at a heating rate of 5 ºC min−1. X-ray diffraction (XRD) analysis was 

performed using a Phillips Xpert PW3719 diffractometer using Cu Kα radiation. (Cu Kα, λ = 0.15418 nm, 

operation voltage 40 kV, current 40 mA). X-ray photoelectron spectroscopy (XPS) spectra were acquired 

on an Oxford Applied Research Escabase XPS system equipped with a CLASS VM 100 mm mean radius 

hemispherical electron energy analyzer with multichannel detectors in an analysis chamber with a base 

pressure of 5.0 × 10–10 mbar. Survey scans were recorded between 0 and 1400 eV with a step size of 0.7 

eV, dwell time of 0.5 s, and pass energy of 100 eV. Core level scans were acquired with a step size of 0.1 

eV, dwell time of 0.5 s, and pass energy of 20 eV averaged over 10 scans. A non-monochromated Al Kα 

X-ray source at 200 W power was used for all scans. All spectra were acquired at a take-off angle of 90° 

with respect to the analyzer axis and were charge corrected with respect to the C 1s photoelectric line. 

Data was processed using CasaXPS software where a Shirley background correction was employed and 

peaks were fitted to Voigt profiles. Raman scattering was performed with a Renishaw InVia Raman 

Spectrometer using a 30 mW Ar+ laser at 514 nm excitation. The beam was focused onto the samples 

using a 50× objective lens and spectra were collected using a RenCam CCD camera. 

2.3. Electrochemical characterization 

All electrochemical results presented in this report were performed using a BioLogic VSP 

Potentiostat/Galvanostat. The electrochemical properties of Co3O4 samples were investigated in a half cell 
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configuration against a pure Li counter electrode in a two electrode, stainless steel split cell (a coin cell 

assembly that can be disassembled for post-mortem analysis). The electrolyte used consisted of a 1 mol 

dm-3 solution of lithium hexafluorophosphate salt in a 1:1 (v/v) mixture of ethylene carbonate in dimethyl 

carbonate with 3 wt% vinylene carbonate. The separator used in all split cell tests was a glass fiber 

separator (El-Cell ECC1-01-0012-A/L, 18 mm diameter, 0.65 mm thickness). The mass loading for all 

Co3O4 samples was ~ 0.5 – 1.0 mg, no additional conductive additives or binders were added. Cyclic 

voltammetry was performed using a scan rate of 0.2 mV s-1 in a potential window of 3.0 – 0.01 V. 

Galvanostatic cycling was performed using a range of C rates (0.1 – 10 C) in a potential window of 3.0 – 

0.01 V. 

3. Results and Discussion 

TEM and SEM images of Co3O4 MPs and IOs are shown in Figure 1. Co3O4 MPs are formed when the 

cobalt oxide precursor is dropcast on stainless steel substrates without a PS sphere template coating and 

then heated to 450 °C for 12 h. The diameter of the Co3O4 MPs is ~ 400 nm, as shown in Figure 1a. The 

MPs are an agglomeration of nanoparticles of Co3O4, with diameters of ~ 25 nm as shown in Figure 1b 

and c. Structurally, the Co3O4 MPs are quite similar to previously reported mesoporous Co3O4 cubes, 

which were prepared via a hydrothermal treatment of cobaltous acetate, carbamide and triethanolamine. 

[28] The Co3O4 IOs are formed when a PS sphere template is deposited on the stainless steel substrates 

prior to infilling with the cobalt oxide precursor solution. Thermal decomposition of the sacrificial PS 

sphere template resulted in a highly porous IO network with pore sizes of ~ 400 nm. The walls of the IO 

structure are comprised of an assembly of nanoparticles, as shown in Figure 1f. Interestingly the 

nanoparticles that comprise the walls of the IO have smaller diameters (~ 10 nm) than the nanoparticles 

that make up the disordered MPs. It is possible that confining the cobalt oxide precursor solution between 

the PS sphere template may limit the growth of the Co3O4 nanoparticles during calcination, resulting in a 

smaller particle size, and this is characteristic of several metal oxides we grow as IO structures from 

solution-based precursors. Additional SEM images of the Co3O4 IOs are shown in Figure S1. The electron 
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diffraction patterns for both Co3O4 MPs and IO consisted of a series of diffraction rings, indicating their 

polycrystalline structure, as shown in Figure 1d and h respectively. Both patterns were successfully 

indexed to pure fcc Co3O4, confirming that the MPs and IO represent disordered and highly ordered 

variants of the same material. 

 
 

Figure 1. (a) SEM image, (b) and (c) TEM images and (d) electron diffraction pattern for Co3O4 MPs. (e) 

SEM image, (f) and (g) TEM images and (h) electron diffraction pattern for Co3O4 IO. 

 

Thermogravimetric analysis of the cobalt oxide precursor used to prepare the Co3O4 MPs and the 

IO indicates that ~ 43% mass is lost when heated to 475 °C in air, as shown in Figure 2a. The mass loss 

occurs in 4 discrete steps. Initially, ~ 20% mass is lost during heating from 25 – 63 °C, 2% mass is lost 

from 63 – 100 °C, 12% lost from 100 – 120 °C and 8% mass is lost from 120 – 160 °C. Only ~ 1% mass 

is subsequently lost during heating from 160 – 450 °C, during crystallization stage. The observed mass 

losses are in close agreement with previous studies on the thermal dehydration and decomposition of 

cobalt chloride, [29] which was used as the precursor for both Co3O4 MPs and IO samples. The initial 

mass losses up to ~ 63 °C are most likely due to the removal of physisorbed water. Mass losses from 63 – 

160 °C may be attributed to the removal of chemisorbed water and the thermal decomposition of CoCl2.  
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The XRD patterns for the Co3O4 MPs and the IO are shown in Figure 2b. The reflections 

observed in both XRD patterns can be readily indexed to pure fcc Co3O4 (JCPDS No. 42-1467) with a 

Fd3m space group, confirming that the MPs and the IO are both Co3O4 with identical crystalline phase as 

nanoscale crystallites, and thus the synthesises successfully formed both a disordered MP agglomerate 

and a 3D structured IO variant. The reduced intensity and broader diffraction peaks from the IO confirm 

TEM data of a smaller nanocrystal size that make up the walls of the IO structure. The crystallinity is 

maintained when a 3D IO structure is imposed on the decomposition and crystallization of the precursor 

to Co3O4, with no detectable influence of the calcined polymer spheres on the phase or composition.   

XPS spectra for a Co3O4 IO sample are presented in Figure 2c and d. The Co 2p3/2 and 2p1/2 levels 

were observed in the Co 2p spectrum at ~ 780.2 and 795.4 eV, respectively, which is in excellent 

agreement with previous reports for other Co3O4 nanostructures. [30, 31]  Satellite peaks for the 2p3/2 and 

2p1/2 levels were observed at ~ 788.8 and 804.5 eV, which again is in close agreement with previous 

studies. [32-34] It is likely that both Co2+ and Co3+ are present in the Co3O4 IO structure, as indicated by 

the deconvoluted peaks for the Co 2p3/2 and 2p1/2 levels and the satellite peaks shown in Figure 2c. 

Analysis of the deconvoluted peaks indicates that ~ 76% of the cobalt present was in the Co3+ valence 

state. Three oxygen contributions were observed in the high resolution spectrum for the O 1s shows, 

shown in Figure 2d. The peak at ~ 529.8 eV is typical of metal-oxygen bonds [35, 36], while the peak at ~ 

531.4 eV can be attributed to oxygen vacancy defects and a number of surface species including 

chemisorbed oxygen or under-coordinated lattice oxygen and hydroxyls. [37, 38] The peak observed at ~ 

533.2 eV can be ascribed to a multiplicity of physi- and chemisorbed water at or near the surface. [35, 36] 

As electron diffraction for individual NPs and XRD for the bulk quantities of both MPs and IOs indicate 

the spinel Co3O4 phase, the XPS confirms that surface defects and species common to transition metal 

oxides do exist on both structure. 
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Figure 2. (a) Thermogravimetric analysis mass loss curves for cobalt oxide precursor heated to 450 °C in 

air at a ramp rate of 5 °C/min. (b) XRD patterns for Co3O4 MPs and IOs prepared on stainless steel 

substrates (reflections labelled * are stainless steel peaks). XPS spectra of the (c) Co 2p and (d) O 1s core-

level photoemission from Co3O4 IO. 

 

The nature of the phase and composition of Co3O4 conversion mode anodes, their modification 

during charging and discharging and relationship to cell voltage, capacity, side reactions and stability are 

important considerations to the cell response of materials that reply on displacement reactions. A 

comparison of cyclic voltammograms acquired for Co3O4 MP and IO samples are shown in Figure 3. A 
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sharp reduction peak was observed in the first cathodic scan for Co3O4 MPs ~ 0.62 V, as shown in Figure 

3a. The initial reduction peak for Co3O4 IO, however, is found at a slightly more positive potential of ~ 

0.88 V, followed by a weak shoulder peak at ~ 0.74 V, as shown in Figure 3b, due to the smaller 

nanocrystal size [39] (Figure 1c and g). The strong cathodic peak for both the Co3O4 MPs and IO samples 

corresponds to the reduction of Co3O4 and the formation of amorphous Li2O and the SEI layer [40]. It has 

previously been reported that during the first charge Co3O4 undergoes an irreversible reduction [28, 41-

43] as given by: 

Co3O4 +  8Li+ +  8e−  → 3Co +  4Li2O   (1) 

Consequently, this suggests that Co3O4 MPs and IO are decomposed into a composite consisting of 

nanosized grains of Co embedded in a Li2O matrix. In the second voltammetric scan, the reduction peak 

shifted by 18 mV to a higher potential of ~ 0.80 V for the Co3O4 MPs, but the Co3O4 IO peak shift was 

just 8 mV to ~ 0.96 V, ensuring that IO NP structures are more easily reduced. Co3O4 is known to behave 

as a conversion mode material, i.e. Co3O4 is reduced to form Co metal and during the subsequent anodic 

scan Co is reoxidised. It has previously been reported that the nanoparticles of CoO that are formed 

during the anodic scan can be quite small (~5 nm) and are not reoxidized fully back to spinel Co3O4. [44, 

45] The small shift in reduction peak to higher potentials from the second scan may also be due to the 

reduced particle size of the CoO phase once formed after the first anodic scan. [46] 

Two anodic peaks were observed at in first scan for Co3O4 MPs and IO samples at ~ 1.65 and 

2.05 V, which may be attributed to the oxidation of Co to CoO and the decomposition of Li2O as follows: 

Co +  Li2O → CoO + 2Li+ +  2e−    (2) 

Following the initial reduction of Co3O4 and formation of a stable CoO phase the Li reaction mechanism 

can be described as follows: 

CoO + 2Li+ +  2e−  ↔ Co +  Li2O      (3) 
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Previous studies have suggested that the initial reduction of Co3O4 to form Co0 may not be an irreversible 

reaction [47], i.e. during the anodic scan as described by equation (2), some of the CoO formed may be 

further oxidized to Co3O4. We will investigate this further in the analysis of the Raman spectra after the 

first charge and discharge.  

 

Figure 3. Cyclic voltammograms for (a) Co3O4 MPs and (b) Co3O4 IO, acquired at a scan rate of 0.2 mV 

s-1. Charge and discharge voltage profiles for the 1st, 2nd, 25th and 50th cycles for (c) Co3O4 MPs and (d) 

Co3O4 IO at a C rate of 0.1 C in a potential window of 3.0 – 0.01 V. (e) Comparison of the specific 

capacity values and Coulombic efficiency obtained for Co3O4 MPs and IO over 50 cycles. 
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Galvanostatic tests were performed to determine the effects of particle size and ordering of Co3O4 

samples on specific capacity values and capacity retention. The galvanostatic charge and discharge curves 

for the 1st, 2nd, 25th and 50th cycles for Co3O4 MPs and IO samples at a C/10 rate are shown in Figure 3c 

and d, respectively. A characteristic long voltage plateau was observed in the initial charge curve for both 

samples between 1.1 and 0.8 V, corresponding to the reduction of Co3O4 to CoO and Co0, (equation (1)) 

which is in close agreement with the potential at which the strong reduction peak occurred in the first 

cathodic CV scan for each sample, shown in Figure 3a and b. Following from the long plateau a sloping 

region from 0.8 to the lower voltage limit of 0.01 V was observed for both samples. The sloping region 

may be attributed to the formation of amorphous Li2O and an SEI layer. The plateau observed in the first 

discharge curve for both the Co3O4 MPs and IO samples from ~ 1.6 – 2.1 V, corresponds to the oxidation 

of Co0 to CoO as explained by equation (2). The voltage profile of the 2nd charge does not contain the 

long plateau which was observed during the first charge, and a sloping curve was observed instead. The 

profile of this first charge curve is quite similar to previously reported charge profiles for CoO anode 

materials [48, 49], which indicates that the Co3O4 IO actually avoids reduction to metallic Co0 entirely, 

allowing the anode material to charge and discharge via the reversible reduction and oxidation of CoO, 

which reduces the overpotential for reversible Li2O formation and decomposition during cycling. 

A comparison of the specific capacity values obtained over 50 cycles for Co3O4 MPs and IO 

samples is shown in Figure 3e. It is immediately clear that the highly ordered IO structure offered 

significantly higher specific capacity values compared to the disordered collection of MPs. The initial 

capacity for the Co3O4 IO was ~ 1655 mAh/g, which is significantly higher than the theoretical capacity 

of 890 mAh/g. It has previously been reported that heating transition metal oxides in air can introduce 

defects, such as cation vacancies associated with lithiated oxygen sites, which can electrochemically 

exchange Li ions and serve as additional charge-storage sites. [50] The presence of any such defects after 

heating the Co3O4 samples to 450 °C may result in an initial increased capacity. With electrolyte 

decomposition effect, consequently, the irreversible capacity loss is characteristically significant after the 
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first charge. In addition to this the high initial specific capacity may also be attributed to the formation of 

an SEI layer. [51] The specific capacity for the second charge decreased to ~ 1285 mAh/g. The capacity 

values for the Co3O4 IO sample after the 25th and 50th cycles were ~ 360 and 230 mAh/g respectively, 

attaining a stable value. 

The initial specific capacity of the Co3O4 MPs (~ 900 mAh/g) was much lower than for the IO. 

Analysis of electron diffraction and XRD patterns for the MPs and IOs confirms that both samples are 

pure Co3O4. Hence Figure 3e indicates that the ordering and particle size of Co3O4 samples has a 

significant effect on their electrochemical performance. The specific capacity is enhanced by the open-

worked macroporous structuring of Co3O4 IO, compared to the agglomerated MP structure. The 

disordered Co3O4 MPs suffer severe capacity fading with capacity values of ~ 660, 110 and 65 mAh/g 

after the 2nd, 25th and 50th cycles respectively. Capacity fading issues have been previously reported for 

conversion mode materials, hence many researchers prepare composites of conversion mode materials 

with graphene. [5] The initial irreversible capacity loss is due to the significant change in the phase of the 

Co3O4, from a complex compound to an unary metal. An article by Wu et al. compared the performance 

of Co3O4 nanoparticles on their own and in a composite with graphene. [17] They reported that when 

cycled on their own the Co3O4 nanoparticles suffered from severe capacity fading and their performance 

was significantly enhanced by preparing a composite with graphene. However, they also demonstrated 

that high capacity values can be obtained from the graphene sheets cycled on their own.  Graphene stores 

charge and significantly contributes to the capacity values obtained.  

We desired to investigate the fundamental electrochemical response of our Co3O4 samples in the 

absence of any materials which actively contribute towards the total charge stored. The capacity retention 

of our Co3O4 samples was improved by engineering nanoparticles into an IO architecture. Even though 

Co3O4 is a conversion mode material, cycling of electrolyte-accessible CoO phase with the parallel 

formation and dissolution of Li2O that must be stored and removed (IOs have reduced mass transport 
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limitations and clogging by Li2O compared to the 3D IO), the initial ordering of the sample has a 

profound influence on its electrochemical behaviour.  

It has previously been reported that the capacity values of nanostructured Co3O4 samples can be 

significantly enhanced by preparing composites with graphene and various other forms of carbon. [17, 52] 

It is well known that carbon is electrochemically active toward intercalation within the potential window 

that Co3O4 is cycled in [53], and so may also be contributing to the increased capacity. We desired to 

determine the fundamental effects of particle size, morphology and ordering on the electrochemical 

performance of our Co3O4 samples and consequently tests were performed in the absence of any 

conductive additives which may be contributing towards the charge stored. Further to this, preparing 

composites with graphene or slurries with other conductive additives would block the pores of the IO 

structure making it difficult to assess the contribution of the porous interconnected structure towards the 

performance of the material. 

In order to investigate the reduction process and the subsequent oxidation and cycling, Raman 

spectra of an as prepared Co3O4 IO and an IO after the first charge and discharge (at 0.1 C) were acquired, 

as shown in Figure 4. The Raman spectrum for the as prepared Co3O4 IO contains five distinct peaks at ~ 

196, 484, 524, 620 and 692 cm-1, corresponding to the F1
2g, Eg, F

2
2g, F

3
2g and A1g modes of crystalline 

Co3O4, respectively. [54] After the first charge the five peaks were shifted to lower wavenumbers of ~ 

191, 472, 518, 608 and 675 cm-1, respectively. The Raman shift values after the first charge are in close 

agreement with previously reported Raman spectra for CoO, [55] indicating that the initial Co3O4 is only 

partially reduced to CoO after the first charge; i.e. not fully reduced to Co0. Consequently, it may take a 

number of cycles before all of the Co3O4 present is fully reduced and CoO is cycled reversibly, as 

observed in Figure 3e also. We propose an addition to equation (1) whereby Co3O4 is partially reduced to 

both CoO and Co0 as follows: 

Co3O4 +  4Li+ +  4e−  → 2CoO +  Co +  2Li2O      (4) 
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It has previously been reported that there is a Raman band for Li2O at ~ 522 cm-1. [56] After the 

first charge the relative intensity of the F2
2g mode is higher than that of the Eg mode, the opposite was the 

case for the as-prepared Co3O4 IO. When the proximity of the broad F2
2g mode (from ~ 500 to 535 cm-1) 

is taken into account, it is possible that the Raman band for Li2O may be convoluted into the band 

corresponding to the F2
2g mode. After the first discharge, two strong peaks were observed at ~ 519 and 

691 cm-1. The first peak is a close match to the F2
2g mode of crystalline Co3O4. The second, wide band can 

be deconvoluted into two distinct peaks centred at 667.9 and 694.4 cm-1, as shown in Figure S2. This 

suggests that the wide band is a convolution of the strong bands observed in the Raman spectra for the as 

prepared Co3O4 IO and the IO after the first charge. This indicates that after the first discharge both Co3O4 

and CoO may be present. The broadening and shifting of the Co3O4 Raman bands after the first discharge 

may also be indicative of a decreased particle size. Choi et al. previously reported on size effects in the 

Raman spectra of TiO2 nanoparticles, whereby decreasing particle size resulted in a broadening of Raman 

bands which were also shifted to lower wavenumbers. [57] The presence of F2
2g and A1g modes of Co3O4 

after the first discharge, indicates that CoO is oxidised back to Co3O4. This again supports our suggestion 

that it may take several cycles before all of the Co3O4 is fully reduced to Co0 and the redox process as 

described by equation (3) dominates the electrochemical reaction. To investigate this further a Raman 

spectrum was acquired for a Co3O4 IO sample after 50 cycles. The three peaks at 478, 609 and 690 cm-1 

can be attributed to the presence of CoO and are in close agreement with the peaks observed after the 1st 

charge. Co0 formed during the 50th charge was likely oxidised to CoO during the 50th discharge, resulting 

in the presence of CoO observed in the Raman spectrum after 50 cycles. Additionally the peak at ~ 521 

cm-1 is due to the presence of Li2O. Observing Li2O after the 50th discharge may indicate that there are 

regions of Li2O which were not reduced during the 50th charge. With increased cycling some regions of 

the electrode may become electrically inactive, which may also contribute towards the capacity fading 

issues observed in Figure 3e. 
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Figure 4. Raman spectra for an as prepared Co3O4 IO and a Co3O4 IO after the 1st charge, the 1st 

discharge and the 50th discharge at a C rate of 0.1 C in a potential window of 3.0 – 0.01 V. 

 

In order to determine what effect the initial reduction of Co3O4 would have on the morphology of 

the Co3O4 IO, four different IO samples were charged at C rates of 0.1 C, 1 C, 5 C and 10 C, as shown in 

Figure 5. A comparison of the resulting specific capacity values is shown in Figure 5a. The initial specific 

capacity increased with decreasing C rate with values of ~ 525, 755, 1535 and 1684 mAh/g for C rates of 

10 C, 5 C, 1 C and 0.1 C, respectively. The IO structure on the surface of the sample was no longer 

present after the first charge at the slowest C rate used (0.1 C), instead nanoparticles of CoO and Co0 were 

present. The matrix of Co0 nanoparticles is still quite porous as can be seen in Figure 5b, hence the 

advantage that the IO structure offers over other nanostructures in terms of porosity is still preserved to 

some degree. After the first charge at 1 C, the IO structure shown in Figure 1e is also no longer present. 

This sample has regions containing similar nanoparticles to those observed in Figure 5b as well as areas 

with thick, collapsed IO walls, as shown in Figure 5c. Similar to the IO charged at a 0.1 C rate, there is 

still some evidence of porosity. The highly ordered, 3D IO structure is no longer evident. After the first 
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charge at 5 C, the walls of the IO have significantly swollen due to Li2O formation. Volumetric 

contraction occurs during the Co3O4 reduction and oxidation as it molar volume is ~2× that of Co. 

However, the pores of the IO are noticeably maintained, as shown in Figure 5d. The IO structure was best 

preserved after the first charge at 10 C. The walls of the IO are not as swollen as the after the first charge 

at 5 C and the pores are also much wider, as can be seen in Figure 5e. 

 

Figure 5. (a) Comparison of the voltage profiles for the 1st charge for Co3O4 IO samples cycled at 0.1C, 1 

C, 5 C and 10 C. SEM images of Co3O4 IO samples after the 1st charge at a C rate of (b) 0.1 C, (c) 1 C, 

(d) 5 C and (e) 10 C. 
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From Figure 5 it is clear that faster C rates are less destructive to the IO structure after the first 

charge. The SEM images presented are of the surface of the IO samples, it is possible that other regions 

further into the initial islands of IO, as shown in Figure S1, may retain the IO structure after the first 

charge. Further to this, the retention of the IO structure at the fastest C rate used (10 C) may explain the 

lower initial specific capacity values obtained, i.e. the IO morphology may be maintained due to only a 

partial reduction of Co3O4 to CoO. Interestingly, even though the IO structure is maintained after the first 

charge at 10 C, the highest capacity values were obtained at 0.1 C when the IO structure was destroyed 

and converted to a matrix of CoO nanoparticles in Li2O after the first charge. We surmise that the rate of 

Li2O formation limits the capacity and as the capacity is related to the volume of Li2O, also minimizes the 

changes to the IO structure and avoids clogging electrode and thus ensuring Li2O decomposition. 

 

Figure 6. (a) SEM and (b) and (c) TEM images of a Co3O4 IO sample after 50 cycles. (d) Electron 

diffraction pattern of a Co3O4 IO sample after 500 cycles 
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SEM and TEM images of a Co3O4 IO sample after 50 cycles are shown in Figure 6a,b and c 

respectively. Similar to the Co3O4 IO samples after the first charge at slower C rates (0.1 and 1 C), after 

500 cycles the IO structure has been converted into an agglomeration of nanoparticles. Raman analysis of 

the Co3O4 IO sample after 500 cycles, presented in Figure 4, suggests that the nanoparticles are CoO. In 

order to further investigate this, an electron diffraction pattern for a Co3O4 IO sample after 50 cycles was 

acquired as shown in Figure 6d. The electron diffraction pattern consisted of a series of diffraction rings, 

indicating after 50 cycles the sample has a polycrystalline structure and has not become amorphous. The 

electron diffraction pattern was successfully indexed to pure cubic CoO (JCPDS No. 00-048-1719) with a 

Fm-3m space group. The presence of CoO after the 50th discharge is in close agreement with equation (3) 

and confirms that with increased cycling Co3O4 is reduced and CoO is reversibly cycled. 

 

4. Conclusions 

Conversion mode Co3O4 anode performance can be significantly improved by structuring nanocrystalline 

material in an open 3D inverse opals structure. Li2O formation and decomposition is kinetically limited at 

faster C-rates, and is efficiently and reversibly formed within an IO structure, improving capacity 

retention and overpotential. From galvanostatic testing it is clear that the ordered IO structure offered 

significantly higher specific capacity values compared to the disordered collection of Co3O4 MPs. We 

demonstrated that the electrochemical performance of our Co3O4 samples can be greatly improved by 

organizing assemblies of Co3O4 nanoparticles into an inverse opal architecture. Conversion mode 

reactions can be quite destructive to the initial structure, due to a reduction to an unary metal. Our results 

indicate that despite the destructive nature of this conversion reaction mechanism, the initial ordering of 

the Co3O4 samples has a profound influence on its electrochemical behaviour, capacity retention, energy 

efficiency and rate performance. Raman scattering analysis of a pristine Co3O4 IO and an IO after the first 

charge and discharge indicates that the initial Co3O4 may only be partially reduced to CoO after the first 

charge. SEM analysis of Co3O4 IO samples after the first charge indicates that faster C rates are less 
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destructive to the IO structure charge. Interestingly however the highest capacity values were obtained at 

the slowest rate investigated (0.1 C) when the IO structure was destroyed and converted to a matrix of 

CoO nanoparticles and Li2O after the first charge.  

This result offers useful insight into the morphology of nanostructured conversion mode anode 

materials, whereby the sample which underwent the most severe alteration of the initial IO structure 

ultimately provided the highest specific capacity values, even with some fading during cycling because of 

the mass transport improvement form the open-worked IO structure. The same may not be true for anode 

materials with other Li reaction mechanisms, such as intercalation and alloying materials where it may be 

beneficial to maintain the initial structure. Cycling at 0.1 C results in a capacity of ~ 250 mAh/g after 50 

cycles, making Co3O4 IOs an efficient conversion mode anode. Raman spectroscopy, electron microscopy 

and electron diffraction confirm that after 50 cycles the Co3O4 IO is reduced to an agglomeration of CoO 

nanoparticles. The Li2O phase formed within the IO structure at faster rates is highly reversible, with 

clogging of the pores and capacity fading being significantly reduced to a relatively stable and useful 

value. 
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