

Chemistry-A European Journal

Supporting Information

Nucleophilicities and Nucleofugalities of Thio- and Selenoethers

Biplab Maji, Xin-Hua Duan, Patrick M. Jüstel, Peter A. Byrne, Armin R. Ofial, and Herbert Mayr*

Table of Contents

1. General Information and Methods S2
2. Product Characterization S3
3. Kinetics of the reactions of chalcogenides with benzhydrylium ions S5
4. Determination of nucleofugality parameters N_{f} and s_{f} for $\mathbf{2}$ and $\mathbf{3}$ S16
5. Dynamic ${ }^{1} \mathrm{H}$ NMR Spectroscopy and Line Shape Analysis S17
6. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Lewis adducts S21
7. References S25

1. General Information and Methods

Chemicals. Dichloromethane was freshly distilled over CaH_{2}. Chalcogenides were purchased from commercial sources and freshly distilled before use. Trimethylsilyl triflate (>98\%) was used as purchased. Benzhydryltriphenylphosphonium tetrafluoroborates were prepared as described before. ${ }^{[51]}$ Benzhydryl chlorides $\mathbf{4 e}-\mathrm{Cl}$ and $\mathbf{4 g}-\mathrm{Cl}$ were obtained from the reactions of benzhydrols with thionyl chloride in dichloromethane by following published procedures. ${ }^{[52]}$

Analytics. A 400 MHz nuclear magnetic resonance (NMR) spectrometer was used to acquire ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. ${ }^{13} \mathrm{C}$ NMR were recorded with broad-band proton decoupling. Abbreviations for NMRdata: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, quint = quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Chemical shifts are denoted as parts per million (ppm). NMR spectra were internally referenced to the residual signals of $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\delta_{\mathrm{H}}=5.32 \mathrm{ppm}, \delta_{\mathrm{C}}=54.00 \mathrm{ppm}\right) .{ }^{[53]}$ Signals were assigned on the basis of additional HSQC, HMBC, and ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\mathrm{COSY}$ experiments.

Kinetics. The reactions of the dialkyl sulfides 2 and dimethyl selenide $\mathbf{3}$ with the colored benzhydrylium ions $\left(\mathrm{Ar}_{2} \mathrm{CH}^{+}\right)$were followed photometrically at or close to the absorption maxima of $\left(\mathrm{Ar}_{2} \mathrm{CH}^{+}\right)$by UV-vis spectroscopy as described previously. ${ }^{[44]}$ Reactions were analyzed by laser flash photolytic generation of benzhydrylium ions $\left(\mathrm{Ar}_{2} \mathrm{CH}^{+}\right)$from phosphonium ion precursor salts (4$\mathrm{PPh}_{3} \mathrm{BF}_{4}$) in presence of excess 2 and 3. A solution of known concentration of 4- $\mathrm{PPh}_{3} \mathrm{BF}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(\approx 10^{-5} \mathrm{M}\right)$ was mixed with a solution of known concentration of 2 and $3\left(\approx 10^{-4}\right.$ to $\left.10^{-3} \mathrm{M}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting colorless solution was then irradiated with 7-ns laser pulses (266 nm) from a quadrupled Nd :YAG laser ($266 \mathrm{~nm}, 40-60 \mathrm{~mJ} /$ pulse) to generate the benzhydrylium ions $\mathrm{Ar}_{2} \mathrm{CH}^{+}$. The temperature of solutions was kept constant at $(20.0 \pm 0.1)^{\circ} \mathrm{C}$ during all kinetic studies by using a circulating bath thermostat. The pseudo-first-order rate constants $k_{\text {obs }}\left(s^{-1}\right)$ were obtained by least-squares fitting of the mono-exponential function $A_{t}=A_{0} \exp \left(-k_{\text {obs }} t\right)+C$ to the observed absorbances. The second-order rate constants $k\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ were obtained from the slopes of the linear plots of k_{obs} against the
concentrations of the nucleophiles. Tables with concentrations of reactants and individual rate constants are collected in the Supporting Information.

Dynamic NMR Spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) were acquired at different temperatures ($\pm 1 \mathrm{~K}$) and fitted manually with simulated spectra of the DNMR6 algorithm as part of the iNMR software. ${ }^{[55]}$

2. Product Characterization

Reaction of $4 \mathbf{e}$ with $\mathbf{2 a}$. Dichloromethane solutions of $\mathbf{4 e}-\mathrm{Cl}(21.3 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.5 mL$)$ and of dimethylsulfide (2a) ($7.55 \mathrm{mg}, 0.122 \mathrm{mmol}$, in 0.4 mL) were mixed. Then a solution of trimethylsilyl triflate ($18.6 \mathrm{mg}, 0.0834 \mathrm{mmol}$) in dichloromethane (0.5 mL) was added. Subsequently, volatiles were removed under reduced pressure. The viscous residue was analyzed by NMR spectroscopy, which showed quantitative conversion of $\mathbf{4 e}$ into $\left(4 \mathrm{e}-\mathrm{SMe}_{2}\right) \cdot \mathrm{TfO}^{-} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.56(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}, 3-\mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4-\mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}, 1-\mathrm{H}), 2.77(\mathrm{~s}, 6 \mathrm{H}, 7-\mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, CD ${ }_{2} \mathrm{Cl}_{2}$): $\delta 161.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-2\right), 130.6(\mathrm{CH}, \mathrm{C}-3), 124.8\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-5\right), 121.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}, \mathrm{J}=320\right.$ $\left.\mathrm{Hz}, \mathrm{CF}_{3}\right), 115.9(\mathrm{CH}, \mathrm{C}-4), 66.5(\mathrm{CH}, \mathrm{C}-6), 56.0\left(\mathrm{CH}_{3}, \mathrm{C}-1\right), 24.3\left(\mathrm{CH}_{3}, \mathrm{C}-7\right)$.

Reaction of $\mathbf{4 e}$ with $\mathbf{2 b}$. Dichloromethane solutions of $\mathbf{4 e}-\mathrm{Cl}(21.3 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.5 mL$)$ and of di-n-butylsulfide (2b) ($11.9 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.25 mL) were mixed. Then a solution of trimethylsilyl triflate ($18.6 \mathrm{mg}, 0.0834 \mathrm{mmol}$) in dichloromethane (0.5 mL) was added. Subsequently, volatiles were removed under reduced pressure. The viscous residue was analyzed by NMR spectroscopy, which showed quantitative conversion of $\mathbf{4 e}$ into $\left(4 \mathrm{e}-\mathrm{SBu}_{2}\right) \cdot \mathrm{TfO}^{-} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.60(\mathrm{~d}, \mathrm{~J}=8.8$ Hz, $4 \mathrm{H}, 3-\mathrm{H}$), 6.99 (d, J = $8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4-\mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}, 1-\mathrm{H}), 3.17(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 7-\mathrm{H}), 1.47$ (quint, J = $7.3 \mathrm{~Hz}, 4 \mathrm{H}, 8-\mathrm{H}$), 1.37-1.28 (m, $4 \mathrm{H}, 9-\mathrm{H}$), $0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, 10-\mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101
$\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 161.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-2\right), 130.7(\mathrm{CH}, \mathrm{C}-3), 125.7\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-5\right), 121.2\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}, \mathrm{J}=320 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.8(\mathrm{CH}$, $\mathrm{C}-4), 66.0(\mathrm{CH}, \mathrm{C}-6), 56.0\left(\mathrm{CH}_{3}, \mathrm{C}-1\right), 40.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 28.4\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 22.1\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 13.5\left(\mathrm{CH}_{3}, \mathrm{C}-10\right)$.

Reaction of $\mathbf{4 e}$ with $\mathbf{2 c}$. Dichloromethane solutions of $\mathbf{4 e}-\mathrm{Cl}(21.3 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.5 mL$)$ and of THT ($\mathbf{2 c}$) ($7.14 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.25 mL) were mixed. Then a solution of trimethylsilyl triflate (18.6 $\mathrm{mg}, 0.0834 \mathrm{mmol})$ in dichloromethane (0.5 mL) was added. Subsequently, volatiles were removed under reduced pressure. The viscous residue was analyzed by NMR spectroscopy, which showed quantitative conversion of $4 \mathbf{e}$ into ($4 \mathrm{e}-\mathrm{THT}$) $\cdot \mathrm{TfO}^{-} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.56(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, $3-\mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4-\mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}, 1-\mathrm{H}), 3.28(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, 7-\mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 4$ $\mathrm{H}, 8-\mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 161.6\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-2\right), 130.7(\mathrm{CH}, \mathrm{C}-3), 125.9\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-5\right), 121.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}\right.$, $\left.J=321 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.9(\mathrm{CH}, \mathrm{C}-4), 65.2(\mathrm{CH}, \mathrm{C}-6), 56.0\left(\mathrm{CH}_{3}, \mathrm{C}-1\right), 42.9\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 29.6\left(\mathrm{CH}_{2}, \mathrm{C}-8\right)$.

Reaction of $4 \mathbf{e}$ with 2d. Dichloromethane solutions of $4 \mathrm{e}-\mathrm{Cl}(21.3 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.5 mL$)$ and of THTP (2d) ($8.28 \mathrm{mg}, 0.081 \mathrm{mmol}$, in 0.25 mL) were mixed. Then a solution of trimethylsilyl triflate (18.6 $\mathrm{mg}, 0.0834 \mathrm{mmol}$) in dichloromethane (0.5 mL) was added. Subsequently, volatiles were removed under reduced pressure. The viscous residue was analyzed by NMR spectroscopy, which showed quantitative conversion of 4 e into (4e-THTP) $\cdot \mathrm{TfO}^{-} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.57(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4$ $\mathrm{H}, 3-\mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}, 4-\mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}, 1-\mathrm{H}), 3.22(\mathrm{~s}, 4 \mathrm{H}, 7-\mathrm{H}), 1.98(\mathrm{~s}, 4 \mathrm{H}$, 8-H), 1.82-1.75 (m, $2 \mathrm{H}, 9-\mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 161.5\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-2\right), 130.5(\mathrm{CH}, \mathrm{C}-3), 124.7$ $\left(\mathrm{C}_{\mathrm{q}}, \mathrm{C}-5\right), 121.4\left(\mathrm{C}_{\mathrm{q}}, \mathrm{q}, \mathrm{J}=320 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 115.8(\mathrm{CH}, \mathrm{C}-4), 64.8(\mathrm{CH}, \mathrm{C}-6), 56.0\left(\mathrm{CH}_{3}, \mathrm{C}-1\right), 37.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $23.8\left(\mathrm{CH}_{2}, \mathrm{C}-8\right), 23.1\left(\mathrm{CH}_{2}, \mathrm{C}-9\right)$.

3. Kinetics of the reactions of chalcogenides with benzhydrylium ions

3.1 Kinetics of the reactions of $\mathrm{Me}_{2} \mathrm{~S}(2 \mathrm{a})$ with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}(4)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Kinetics of the reaction of $\mathbf{2 a}$ with (fur) $)_{2} \mathrm{CH}^{+} \mathbf{4 g}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=534 \mathrm{~nm}$)

$\left[\mathbf{4 g}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.00×10^{-5}	7.24×10^{-4}	1.81×10^{5}
3.00×10^{-5}	1.09×10^{-3}	2.13×10^{5}
3.00×10^{-5}	1.45×10^{-3}	2.45×10^{5}
3.00×10^{-5}	1.81×10^{-3}	2.75×10^{5}
3.00×10^{-5}	2.17×10^{-3}	2.97×10^{5}

$$
k=8.10 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of 2a with (fur)(ani) $\mathrm{CH}^{+} \mathbf{4 f}$ at $20^{\circ} \mathrm{C}^{\mathrm{in}} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=524 \mathrm{~nm}$)

$\left[\mathbf{f f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right.$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
2.86×10^{-5}	7.21×10^{-4}	2.19×10^{5}
2.86×10^{-5}	1.08×10^{-3}	3.00×10^{5}
2.86×10^{-5}	1.44×10^{-3}	3.65×10^{5}
2.86×10^{-5}	1.80×10^{-3}	4.42×10^{5}
2.86×10^{-5}	2.16×10^{-3}	5.12×10^{5}

$$
k=2.02 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 a}$ with (ani) $)_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=513 \mathrm{~nm}$)

$\left[\mathbf{4 e}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.12×10^{-5}	7.24×10^{-4}	3.93×10^{5}
3.12×10^{-5}	1.09×10^{-3}	5.89×10^{5}
3.12×10^{-5}	1.45×10^{-3}	7.46×10^{5}
3.12×10^{-5}	1.81×10^{-3}	9.34×10^{5}
3.12×10^{-5}	2.17×10^{-3}	1.15×10^{6}

$$
k=5.14 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 a}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=512$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.20×10^{-5}	7.21×10^{-4}	6.44×10^{5}
3.20×10^{-5}	1.08×10^{-3}	9.56×10^{5}
3.20×10^{-5}	1.44×10^{-3}	1.25×10^{6}
3.20×10^{-5}	1.80×10^{-3}	1.58×10^{6}
3.20×10^{-5}	2.16×10^{-3}	1.92×10^{5}

$$
k=8.80 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.2 Kinetics of the reactions of $\mathrm{Me}_{2} \mathrm{~S}$ (2a) with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}(4)$ in MeCN

$$
k=1.55 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

$$
k=3.29 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 a}$ with $(\mathrm{ani})_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=500 \mathrm{~nm}$)

$\left[\mathbf{4 e}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.12×10^{-5}	1.78×10^{-4}	1.58×10^{5}
3.12×10^{-5}	2.67×10^{-4}	2.28×10^{5}
3.12×10^{-5}	3.56×10^{-4}	2.90×10^{5}
3.12×10^{-5}	4.45×10^{-4}	3.56×10^{5}
3.12×10^{-5}	5.34×10^{-4}	4.26×10^{5}

$$
k=7.46 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 a}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=500$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.20×10^{-5}	2.29×10^{-4}	3.35×10^{5}
3.20×10^{-5}	3.44×10^{-4}	4.84×10^{5}
3.20×10^{-5}	4.58×10^{-4}	6.10×10^{5}
3.20×10^{-5}	5.73×10^{-4}	7.56×10^{5}
3.20×10^{-5}	6.87×10^{-4}	8.98×10^{5}

$$
k=1.22 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 a}$ with (ani)(Ph)CH ${ }^{+} \mathbf{4 b}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=455$ nm)

$\left[\mathbf{4 b}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 a}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.20×10^{-5}	2.88×10^{-4}	9.52×10^{5}
3.20×10^{-5}	4.32×10^{-4}	1.33×10^{6}
3.20×10^{-5}	5.76×10^{-4}	1.81×10^{6}
3.20×10^{-5}	7.20×10^{-4}	2.22×10^{6}
3.20×10^{-5}	8.64×10^{-4}	2.57×10^{6}

$$
k=2.87 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.3 Kinetics of the reactions of $n \mathrm{Bu}_{2} \mathrm{~S}(2 \mathrm{~b})$ with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}(4)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Kinetics of the reaction of $\mathbf{2 b}$ with (fur) $)_{2} \mathrm{CH}^{+} \mathbf{4 g}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=530 \mathrm{~nm}$)

$$
k=5.13 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 b}$ with (fur)(ani) $\mathrm{CH}^{+} \mathbf{4 f}$ at $20^{\circ} \mathbf{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=528$ nm)

$\left[\mathbf{4 f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 b}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
2.26×10^{-5}	1.12×10^{-3}	2.76×10^{5}
2.26×10^{-5}	2.24×10^{-3}	4.40×10^{5}
2.26×10^{-5}	3.36×10^{-3}	5.94×10^{5}
2.26×10^{-5}	4.48×10^{-3}	7.33×10^{5}
2.26×10^{-5}	5.59×10^{-3}	8.54×10^{5}

$$
k=1.30 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 b}$ with (ani) ${ }_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=515 \mathrm{~nm}$)

$$
k=2.73 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 b}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=516$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 b}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.50×10^{-5}	5.59×10^{-4}	2.69×10^{5}
1.50×10^{-5}	1.12×10^{-3}	5.30×10^{5}
1.50×10^{-5}	1.68×10^{-3}	7.74×10^{5}
1.50×10^{-5}	2.24×10^{-3}	1.05×10^{6}
1.50×10^{-5}	2.80×10^{-3}	1.30×10^{6}

$$
k=4.61 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.4 Kinetics of the reactions of tetrahydrothiophene (2c) with the $\mathrm{Ar}_{2} \mathbf{C H}^{+}$(4) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Kinetics of the reaction of $\mathbf{2 c}$ with (fur) $)_{2} \mathrm{CH}^{+} \mathbf{4 g}$ at $20^{\circ}{ }^{\circ}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=534 \mathrm{~nm}$)

$\left[\mathbf{4 g}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.00×10^{-5}	6.65×10^{-4}	5.06×10^{5}
3.00×10^{-5}	9.98×10^{-4}	6.32×10^{5}
3.00×10^{-5}	1.33×10^{-3}	7.14×10^{5}
3.00×10^{-5}	1.66×10^{-3}	7.81×10^{5}
3.00×10^{-5}	2.00×10^{-3}	9.10×10^{5}

$$
k=2.88 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

[2c] (M)

Kinetics of the reaction of $\mathbf{2 c}$ with (fur)(ani) $\mathrm{CH}^{+} \mathbf{4 f}$ at $20^{\circ} \mathrm{C}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=524$ nm)

$\left[\mathbf{f f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
2.86×10^{-5}	6.67×10^{-4}	4.35×10^{5}
2.86×10^{-5}	1.00×10^{-3}	5.75×10^{5}
2.86×10^{-5}	1.33×10^{-3}	6.89×10^{5}
2.86×10^{-5}	1.67×10^{-3}	8.25×10^{5}
2.86×10^{-5}	2.00×10^{-3}	9.52×10^{5}

$k=3.85 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$

Kinetics of the reaction of $\mathbf{2 c}$ with (ani) $)_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=513 \mathrm{~nm}$)

$\left[\mathbf{4 e}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.12×10^{-5}	6.65×10^{-4}	5.85×10^{5}
3.12×10^{-5}	9.98×10^{-4}	8.72×10^{5}
3.12×10^{-5}	1.33×10^{-3}	1.13×10^{6}
3.12×10^{-5}	1.66×10^{-3}	1.41×10^{6}
3.12×10^{-5}	2.00×10^{-3}	1.67×10^{5}

$$
k=8.15 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=512$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.20×10^{-5}	6.67×10^{-4}	8.43×10^{5}
3.20×10^{-5}	1.00×10^{-3}	1.29×10^{6}
3.20×10^{-5}	1.33×10^{-3}	1.64×10^{6}
3.20×10^{-5}	1.67×10^{-3}	2.11×10^{6}
3.20×10^{-5}	2.00×10^{-3}	2.47×10^{6}

$$
k=1.22 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.5 Kinetics of the reactions of tetrahydrothiophene (2c) with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}$(4) in MeCN

Kinetics of the reaction of $\mathbf{2 c}$ with (fur) $)_{2} \mathrm{CH}^{+} \mathbf{4 g}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{3} \mathrm{CN}$ (Laser-flash photolysis, $\lambda=523 \mathrm{~nm}$)

$\left[\mathbf{4 g}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.80×10^{-5}	1.72×10^{-4}	9.60×10^{4}
3.80×10^{-5}	2.58×10^{-4}	1.31×10^{5}
3.80×10^{-5}	3.44×10^{-4}	1.72×10^{5}
3.80×10^{-5}	4.30×10^{-4}	2.02×10^{5}
3.80×10^{-5}	5.16×10^{-4}	2.32×10^{5}

$$
k=3.99 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with (fur)(ani) $\mathrm{CH}^{+} \mathbf{4 f}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=513 \mathrm{~nm}$)

$\left[\mathbf{4 f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
2.72×10^{-5}	1.50×10^{-4}	1.38×10^{5}
2.72×10^{-5}	2.25×10^{-4}	1.92×10^{5}
2.72×10^{-5}	3.00×10^{-4}	2.40×10^{5}
2.72×10^{-5}	3.75×10^{-4}	2.95×10^{5}
2.72×10^{-5}	4.50×10^{-4}	3.45×10^{5}

$$
k=6.89 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with $(\mathrm{ani})_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=500 \mathrm{~nm}$)

$\left[\mathbf{4 e}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.12×10^{-5}	1.72×10^{-4}	3.25×10^{5}
3.12×10^{-5}	2.58×10^{-4}	4.62×10^{5}
3.12×10^{-5}	3.44×10^{-4}	6.16×10^{5}
3.12×10^{-5}	4.30×10^{-4}	7.70×10^{5}
3.12×10^{-5}	5.16×10^{-4}	8.81×10^{5}

$$
k=1.65 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=500$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
3.20×10^{-5}	1.88×10^{-4}	3.67×10^{5}
3.20×10^{-5}	2.82×10^{-4}	5.37×10^{5}
3.20×10^{-5}	3.76×10^{-4}	6.90×10^{5}
3.20×10^{-5}	4.70×10^{-4}	8.50×10^{5}
3.20×10^{-5}	5.64×10^{-4}	1.00×10^{6}

$$
k=1.68 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with (ani)(Ph)CH ${ }^{+} \mathbf{4 b}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=455 \mathrm{~nm}$)

$\left[\mathbf{4 b}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
5.71×10^{-5}	2.99×10^{-4}	1.59×10^{6}
5.71×10^{-5}	4.49×10^{-4}	2.41×10^{6}
5.71×10^{-5}	5.98×10^{-4}	3.13×10^{6}
5.71×10^{-5}	7.48×10^{-4}	3.83×10^{6}
5.71×10^{-5}	8.97×10^{-4}	4.58×10^{6}

$$
k=4.97 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 c}$ with (pop)(Ph)CH ${ }^{+} \mathbf{4 a}$ at $20^{\circ} \mathrm{C}$ in MeCN (Laser-flash photolysis, $\lambda=466$ nm)

$\left[\mathbf{4 a}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 c}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
5.13×10^{-5}	3.08×10^{-4}	1.82×10^{6}
5.12×10^{-5}	4.62×10^{-4}	2.80×10^{6}
5.13×10^{-5}	6.16×10^{-4}	3.58×10^{6}
5.13×10^{-5}	7.70×10^{-4}	4.38×10^{6}
5.13×10^{-5}	9.24×10^{-4}	5.01×10^{6}

$$
k=5.17 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.6 Kinetics of the reactions of tetrahydro-2H-thiopyran (2d) with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}(4)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Kinetics of the reaction of $\mathbf{2 d}$ with (fur) ${ }_{2} \mathrm{CH}^{+} \mathbf{4 g}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=530 \mathrm{~nm}$)

$$
k=8.37 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 d}$ with (fur)(ani) $\mathrm{CH}^{+} \mathbf{4 f}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=528$ nm)

$\left[\mathbf{4 f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 d}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.29×10^{-5}	7.19×10^{-4}	2.19×10^{5}
1.29×10^{-5}	1.44×10^{-3}	3.71×10^{5}
1.29×10^{-5}	2.16×10^{-3}	5.31×10^{5}
1.29×10^{-5}	2.88×10^{-3}	6.84×10^{5}
1.29×10^{-5}	3.60×10^{-3}	8.41×10^{5}

$$
k=2.16 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{2 d}$ with $(\mathrm{ani})_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=515 \mathrm{~nm}$)

Kinetics of the reaction of $\mathbf{2 d}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=515$ nm)

$\left[\mathbf{4 d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{2 d}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.50×10^{-5}	5.13×10^{-4}	4.19×10^{5}
1.50×10^{-5}	1.03×10^{-3}	8.27×10^{5}
1.50×10^{-5}	1.54×10^{-3}	1.21×10^{6}
1.50×10^{-5}	2.05×10^{-3}	1.58×10^{6}
1.50×10^{-5}	2.56×10^{-3}	1.92×10^{6}

$$
k=7.34 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

3.7 Kinetics of the reactions of $\mathrm{Me}_{2} \mathrm{Se}(3)$ with the $\mathrm{Ar}_{2} \mathrm{CH}^{+}(4)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

$\left[\mathbf{4 f}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right.$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[\mathbf{3}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.28×10^{-5}	9.61×10^{-4}	5.94×10^{5}
1.28×10^{-5}	1.44×10^{-3}	7.47×10^{5}
1.28×10^{-5}	1.92×10^{-3}	9.73×10^{5}
1.28×10^{-5}	2.40×10^{-3}	1.05×10^{6}
1.28×10^{-5}	2.88×10^{-3}	1.20×10^{6}

$$
k=3.16 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{3}$ with (ani) $)_{2} \mathrm{CH}^{+} \mathbf{4 e}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=513 \mathrm{~nm}$)

$\left[4 \mathrm{e}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[3]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.39×10^{-5}	9.61×10^{-4}	5.94×10^{5}
1.39×10^{-5}	1.44×10^{-3}	7.47×10^{5}
1.39×10^{-5}	1.92×10^{-3}	9.73×10^{5}
1.39×10^{-5}	2.40×10^{-3}	1.05×10^{6}
1.39×10^{-5}	2.88×10^{-3}	1.20×10^{6}

$$
k=4.90 \times 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{3}$ with (ani)(pop) $\mathrm{CH}^{+} \mathbf{4 d}$ at $20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=516$ nm)

$\left[4 \mathrm{~d}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[3]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.38×10^{-5}	6.31×10^{-4}	6.40×10^{5}
1.38×10^{-5}	9.46×10^{-4}	9.42×10^{5}
1.38×10^{-5}	1.26×10^{-3}	1.26×10^{6}
1.38×10^{-5}	1.58×10^{-3}	1.63×10^{6}
1.38×10^{-5}	1.89×10^{-3}	2.00×10^{6}

[3] (M)

$$
k=1.08 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Kinetics of the reaction of $\mathbf{3}$ with (ani)(tol) $\mathrm{CH}^{+} \mathbf{4 c}$ at $20^{\circ} \mathrm{C}^{\text {in }} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Laser-flash photolysis, $\lambda=516 \mathrm{~nm}$)

$\left[\mathbf{4 c}-\mathrm{PPh}_{3} \mathrm{BF}_{4}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$[3]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	$k_{\text {obs }}$ $\left(\mathrm{s}^{-1}\right)$
1.39×10^{-5}	3.16×10^{-4}	6.05×10^{5}
1.39×10^{-5}	6.30×10^{-4}	1.41×10^{6}
1.39×10^{-5}	8.76×10^{-4}	1.86×10^{6}
1.39×10^{-5}	1.26×10^{-3}	2.57×10^{6}
1.39×10^{-5}	1.58×10^{-3}	3.28×10^{6}

[3] (M)

$$
k=2.06 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

4. Determination of nucleofugality parameters N_{f} and s_{f} for 2 and 3

$$
\begin{gathered}
\mathrm{Me}_{2} \mathrm{~S}(\mathbf{2 a}) \\
N_{\mathrm{f}}=6.33 ; s_{\mathrm{f}}=0.75
\end{gathered}
$$

Tetrahydrothiophen (2c)

$$
N_{f}=7.26 ; s_{f}=0.66
$$

$$
\begin{aligned}
& \mathrm{Me}_{2} \mathrm{Se}(3) \\
& N_{\mathrm{f}}=8.72 ; \mathrm{s}_{\mathrm{f}}=0.66 \\
& \text { Electrofugality } E_{f}
\end{aligned}
$$

THTP (2d)
$N_{\mathrm{f}}=7.33 ; \mathrm{s}_{\mathrm{f}}=0.59$

5. Dynamic ${ }^{1} \mathrm{H}$ NMR Spectroscopy and Line Shape Analysis

3.1 Dynamics of the $\mathrm{Me}_{2} \mathrm{~S}$ exchange in a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ mixture of (bis(2,3-dihydrobenzofuran-5-yl)methyl)dimethylsulfonium triflate ($4 \mathrm{~g}-\mathrm{SMe}_{2} \mathrm{TfO}^{-}$) and dimethyl sulfide (2a)
(PJ147)
Generation of ($\mathbf{4 g}-\mathbf{S M e}_{2}$) triflate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution: $\mathbf{4 g}-\mathrm{Cl}(0.107 \mathrm{M}$, 1 equiv.), dimethylsulfide ($\mathbf{2 a}, 0.16$ $\mathrm{M}, 1.5$ equiv.), and trimethylsilyl triflate (TMSOTf, $0.111 \mathrm{M}, 1.05$ equiv.) were dissolved in 0.7 mL $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of the thus prepared solution acquired at $-80^{\circ} \mathrm{C}$ showed quantitative consumption of $\mathbf{4 g - C l}$ and exclusive formation of the trialkylsulfonium triflate $\left(\mathbf{4 g}-\mathrm{SMe}_{\mathbf{2}}\right) \cdot \mathrm{TfO}^{-}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},-80^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) : $\delta 7.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-10), 7.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-4), 6.75(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H})$, 5.91 (s, 1 H, 2-H), 4.55 (s, 4 H, 7-H), 3.16 (s, 4 H, 8-H), 2.78 (s, 6 H, 1-H), 2.02 (s, 6 H, 11-H).

Broad resonances indicated the dynamics of exchange between free and bound $\mathrm{Me}_{2} \mathrm{~S}$, which triggered us to further investigate the kinetics of the exchange reaction by temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectroscopy. Hence, this sample was used to acquire ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) at variable temperature (Figure S1). Line shape analysis of broadened resonances was performed by manual fitting with simulated spectra generated by the DNMR6 algorithm of iNMR software to determine $k_{\text {rev }}(T)$. ${ }^{[55]}$

Eyring activation parameters were determined by applying the temperature-dependent rate constants $k_{\text {rev }}\left(\mathrm{s}^{-1}\right)$ in the Eyring equation:

$$
\ln \left(k_{\mathrm{rev}} / T\right)=-\Delta H^{\ddagger} / \mathrm{R} \times 1 / T+\ln \left(k_{\mathrm{B}} / \mathrm{h}\right)+\Delta S^{\ddagger} / \mathrm{R}
$$

Determined rate constants and activation parameters are gathered in Table S1.
(a)

(b)

Figure S1. (a) Dimethylsulfide exchange between $\mathbf{4 g}$ - $\mathbf{S M e}_{\mathbf{2}}$ and free $\mathbf{2 a}$. (b) Temperature-dependent ${ }^{1} \mathbf{H}$ NMR spectra of the reaction mixture (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$). The dashed frame indicates the part of the spectrum evaluated in the line shape analysis (DNMR6 algorithm) for the determination of $k_{\text {rev }}(T)$.

Table S1. Rate constants $k_{\text {rev }}$ and Eyring activation parameters for $\mathbf{4 g}-\mathbf{S M e}_{\mathbf{2}}\left(\right.$ in $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

$T\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {rev }}\left(\mathrm{s}^{-1}\right)$
-45	110
-40	200
-35	380
-30	780
-25	1.40×10^{3}

Activation parameters for $k_{\text {rev }}\left(\right.$ at $20^{\circ} \mathrm{C}$):

$$
\begin{aligned}
& \Delta G^{\ddagger}=43.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H^{\ddagger}=58.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta S^{\ddagger \ddagger}=53.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& k_{\mathrm{rev}}\left(20^{\circ} \mathrm{C}\right)=1.3 \times 10^{5} \mathrm{~s}^{-1}
\end{aligned}
$$

3.2 Dynamics of the $\mathrm{Me}_{2} \mathrm{~S}$ exchange in a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ mixture of bis(4,4'-methoxy)benzhydryl dimethylsulfonium triflate ($4 \mathrm{e}-\mathrm{SMe}_{2} \mathrm{OTf}^{-}$) and dimethyl sulfide (2a)
(PJ142)

Generation of ($\mathbf{4 e}-\mathbf{S M e}_{2}$) triflate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution: $\mathbf{4 e}-\mathrm{Cl}(0.107 \mathrm{M})$, dimethylsulfide ($\mathbf{2 a}, 0.118 \mathrm{M}, 1.1$ equiv.), and trimethylsilyl triflate (TMSOTf, $0.111 \mathrm{M}, 1.05$ equiv.) were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of the thus prepared solution acquired at $-60^{\circ} \mathrm{C}$ showed quantitative consumption of $\mathbf{4 e - C l}$ and exclusive formation of the trialkylsulfonium triflate $\left(\mathbf{4 e - S M e} \mathbf{2}^{2}\right) \cdot \mathrm{TfO}^{-}$.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, at $-60^{\circ} \mathrm{C}$): $\delta 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 6.93(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}), 5.86$ (s, $1 \mathrm{H}, 2-\mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}, 7-\mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}, 1-\mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}, 8-\mathrm{H})$.

Broad resonances for 1-H and 8-H indicated the dynamics of exchange between free and bound $\mathrm{Me}_{2} \mathrm{~S}$ (2a), which triggered us to further investigate the kinetics of the exchange reaction by temperaturedependent ${ }^{1} \mathrm{H}$ NMR spectroscopy. Hence, this sample was used to acquire ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) at variable temperature (Figure S2). Line shape analysis of broadened resonances was performed by manual fitting with simulated spectra generated by the DNMR6 algorithm of iNMR software to determine $k_{\text {rev }}(T) .{ }^{[55]}$

Eyring activation parameters were determined by applying the temperature-dependent rate constants $k_{\text {rev }}\left(\mathrm{s}^{-1}\right)$ in the Eyring equation:

$$
\ln \left(k_{\mathrm{rev}} / T\right)=-\Delta H^{\ddagger} / \mathrm{R} \times 1 / T+\ln \left(k_{\mathrm{B}} / \mathrm{h}\right)+\Delta S^{\ddagger} / \mathrm{R}
$$

Determined rate constants and activation parameters are gathered in Table S2.
(a)

(b)

Figure S2. (a) Dimethylsulfide exchange between $\mathbf{4 e}-\mathbf{S M} \mathbf{e}_{\mathbf{2}}$ and free $\mathbf{2 a}$. (b) Temperature-dependent ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixture (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$). The dashed frame indicates the part of the spectrum evaluated in the line shape analysis (DNMR6 algorithm) for the determination of $k_{\mathrm{rev}}(T)$.

Table S2. Rate constants $k_{\text {rev }}$ and Eyring activation parameters for $\mathbf{4 e}-\mathbf{S M e}_{\mathbf{2}}\left(\mathrm{in} \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$.

$T\left({ }^{\circ} \mathrm{C}\right)$	$k_{\text {rev }}\left(\mathrm{s}^{-1}\right)$
-50	3.50
-40	19.0
-30	90.0
-20	245
-10	880
0	3.70×10^{3}

Activation parameters for $k_{\text {rev }}\left(\right.$ at $20^{\circ} \mathrm{C}$):
$\Delta G^{\ddagger}=47.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta H^{\ddagger}=66.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta S^{\ddagger \ddagger}=66.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$k_{\text {rev }}\left(20^{\circ} \mathrm{C}\right)=2.6 \times 10^{4} \mathrm{~s}^{-1}$
6. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of Lewis adducts

(PJ306)

(PJ307)

7. References

[S1] J. Ammer, C. Nolte, K. Karaghiosoff, S. Thallmair, P. Mayer, R. de Vivie-Riedle, H. Mayr, Chem. Eur. J. 2013, 19, 14612-14630.
[S2] (a) B. Denegri, A. Streiter, S. Juric, A. R. Ofial, O. Kronja, H. Mayr, Chem. Eur. J. 2006, 12, 16481656; Chem. Eur. J. 2006, 12, 5415. (b) A. King, A. Doepner, D. Turton, D. M. Ciobota, C. Da Pieve, A.-C. Wong Te Fong, G. Kramer-Marek, Y.-L. Chung, G. Smith, Org. Biomol. Chem. 2018, 16, 2986-2996.
[S3] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176-2179.
[S4] (a) J. Ammer, C. F. Sailer, E. Riedle, H. Mayr, J. Am. Chem. Soc. 2012, 134, 11481-11494. (b) J. Ammer, H. Mayr, J. Phys. Org. Chem. 2013, 26, 956-969.
[S5] Mestrelab Research, iNMR for Windows (version 6.1.8, http://www.inmr.net), 2018.

