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Abstract

The gut microbiome is a complex community of microorganisms that interacts closely
with the human host and is believed to play an important role in the maintenance of
human health. The viral component of this community is referred to as the human gut
virome and is dominated by bacteriophage. Bacteriophage are central to microbial
ecosystems by facilitating nutrient turnover, horizontal gene transfer and driving
bacterial diversity. In this way the gut virome is believed to closely interact with the
human host by shaping the composition and function of the gut microbiome. However,
the gut virome also represents one of the biggest gaps in our understanding of the
microbiome as it is dominated by unknown bacteriophage targeting unknown bacterial

hosts and with uncharacterised downstream functions.

These challenges mean that virome research relies heavily on sequence-based
approaches and metagenomics to identify compositional patterns and targets for future
characterisation. A typical virome study involves physical and chemical separation of
individual virions from the cellular components of the microbiome and the contents
of the faecal, luminal or mucosal sample from which it came. A viral metagenome is
then generated by extracting virome DNA and/or RNA for sequencing on a given
platform. These sequencing reads are then quality filtered and assembled to
reconstruct the viral genomes in the original sample. The abundance of these
assemblies is then estimated by aligning the sequencing reads and performing
statistical analysis. However, each step in a virome analysis pipeline has the potential
to distort the final viral community and given the unknown nature of the virome, this
distortion is difficult to identify and characterise. As a result, conclusions are often
drawn from virome studies without fully appreciating the impact of the analysis
methods on the findings.

This thesis examines the major steps in sequence-based virome analysis
pipelines, highlighting how choices made at each step of an analysis protocol can
impact the final conclusions drawn from a study. In doing so, we have changed our
perspective of the human gut virome and challenged previous assumptions. Chapter
One discusses the current understanding of the virome field, giving particular attention

to how the analysis methods and challenges affect our view of the virome. In Chapter



Two, we focus on the assembly step of virome analysis pipelines. This step is of
particular importance to virome studies, as an assembler’s ability to recover viral
sequences can ultimately determine the amount of sequence information used in a that
study. We compared all short-read assembly programs used in virome studies to date,
across mock communities, simulated and real datasets. We found that not all
assemblers are equal, and choice of assembler can drastically affect the conclusions
that can be drawn from a virome study. These findings call the comparability of
different virome studies into question and would suggest that previous virome studies
would benefit from reanalysis using improved assembly methods and re-examination

of the conclusions drawn.

As discussed, the human gut virome is dominated by “viral dark matter”; those
sequences which do not share homology to reference databases. However, the majority
of what is currently known about the virome in human health and disease is based on
the minor fraction of viral sequences collated in these databases. This presents a
serious gap in our understanding and was the primary focus of Chapter Three. We
reanalysed a keystone inflammatory bowel disease (IBD) dataset, which had formed
the foundation of much of what we knew about the virome in IBD. We developed a
new approach to analysing the virome beyond the identifiable minority and by doing
so, changed our understanding of the virome in IBD significantly.

In the final chapter, we directed our attention to possibly the most important
aspect of a sequence-based study, the sequencing approach itself. This step bridges the
gap between the biological information in a virome and the digital information that is
analysed. As with all steps in a virome analysis pipeline, this has serious implications
for the final conclusions of the study. We described the use of long-read sequencing
in the human gut virome and the benefits and challenges which are associated with
this technology. We also found the ability of amplified short-read sequencing libraries
to represent the gut virome was limited, but that alternative library preparation
methods and long-read sequencing platforms may be able to address these limitations.
These findings imply that much of what we know about that human gut virome may
be linked to sequencing performance, rather than the biology of the community itself.



These three major aspects of virome analysis pipelines highlight the
importance of considering the impact of the analysis approach when interpreting the

results of virome data and complex biological systems in general.
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Abstract

The gut microbiome is widely accepted to have a significant impact on human health
yet, despite years of research on this complex ecosystem, the contributions of different
forces driving microbial population structure remain to be fully elucidated. The viral
component of the human gut microbiome is dominated by bacteriophage, which are
known to play crucial roles in shaping microbial composition, driving bacterial
diversity and facilitating horizontal gene transfer. Bacteriophage are also one of the
most poorly understood components of the human gut microbiome, with the vast
majority of viral sequences sharing little to no homology to reference databases. If we
are to understand the dynamics of bacteriophage populations, their interaction with the
human microbiome and ultimately their influence on human health, we will depend
heavily on sequence based approaches and in silico tools. This is complicated by the
fact that, as with any research field in its infancy, methods of analyses vary and this

can impede our ability to compare the outputs of different studies.

Here we discuss the major findings to date regarding the human virome and
reflect on our current understanding of how gut bacteriophage shape the microbiome.
We consider whether or not the virome field is built on shaky foundations and if so,
how can we provide a solid basis for future experimentation. The virome is a
challenging yet crucial piece of the human microbiome puzzle. In order to develop our
understanding, we will discuss the need to underpin future studies with robust research

methods and suggest some solutions to existing challenges.



Introduction

The human gastrointestinal tract (GIT) is a complex environment containing billions
of microorganisms (Sender et al., 2016). Changes in oxygen concentration, pH,
nutrient availability, water availability and bile salts shape the relative abundance of
microorganisms from all domains of life (fungi, protists, bacteria and archaea)
(Duncan et al., 2009;Espey, 2013;Ridlon et al., 2014;Vandeputte et al., 2016). Of these
microorganisms, bacteria are by far the most characterized, making up the vast
majority of the DNA sequences and biomass (Qin et al., 2010;Yatsunenko et al.,
2012). This bacterial community also plays a central role in normal physiology of the
mammalian gut by facilitating metabolic functions, protecting against pathogens and
modulating the immune system (Sonnenburg et al., 2005;Sokol et al., 2008;Belkaid
and Hand, 2014). Similarly, alterations in the composition and abundance of this
bacterial community are closely associated with diseases such as irritable bowel
syndrome (IBS), inflammatory bowel disease (IBD), colorectal cancer (CRC),
Clostridium difficile infection (CDI), obesity and neurological disorders (Chey et al.,
2015;Sharon et al., 2016;Halfvarson et al., 2017;Liu et al., 2017;Wirbel et al., 2019).
However, the forces that shape the composition of these bacterial communities remain
poorly understood, and this has slowed the development of microbiome based

therapeutics and biomarkers.

Bacteriophage (phage) are viruses that infect prokaryotic hosts and play crucial
roles in shaping the composition and diversity of bacterial communities in many
environments, facilitating horizontal gene transfer and nutrient turnover through
continuous cycles of predation and coevolution (Suttle, 2007;Breitbart, 2011;von
Wintersdorff et al., 2016). To date, the majority of viral metagenome (virome)
research has been focused on environmental communities such as those in the ocean
(Hurwitz and Sullivan, 2013;Hurwitz et al., 2015). In this environment, the virome is
central to the movement of dissolved organic matter across trophic levels of the ocean
food chain and between the surface and the depths of the water column (Suttle,
2007;Lauro et al., 2009). A growing body of evidence also suggests the virome can
shape the functional capacity of host communities encoding functions such as
photosynthetic genes in the photic zones of the ocean (Sullivan et al., 2006) and

bacterial virulence factors in pathogenic bacteria (Muniesa et al., 2012).



Phage make up the vast majority of the viral component of the gut
microbiome(Gregory et al., 2019) . They are also believed to play a key role in shaping
the composition and function of the human gut microbiome in both health and disease
(Norman et al., 2015;Manrique et al., 2016;Zuo et al., 2019). However, despite being
highly abundant in the gut (>10'° g') (Hoyles et al., 2014;Shkoporov et al., 2018b)
and having considerable impacts on microbial ecosystems, they remain one of the least
understood members of the gut microbiome. Early sequencing studies of the human
gut virome estimated that it was dominated by novel sequences, with only 41% sharing
homology to databases(Breitbart et al., 2003). However as sequencing platforms and
library preparation methods improved and yielded a more detailed view of the virome,
this unknown majority or “viral dark matter” was found to make up an even greater
proportion of the virome, lowering the identifiable fraction to as little as (1-14%)
(Aggarwala et al., 2017).

Since phage were first identified by Frederick Twort in 1915 (Twort, 1915),
culture-based methods such as plaque assays have been used to screen and quantify
phage titres from many environments. Today, these methods still play a central role in
identifying phage which target specific bacteria and have contributed to our
understanding the mechanics of phage host interactions and replication cycles.
However, as the vast majority of phage-host pairs in the gut are unknown, these
methods are not suited to large-scale characterization of a complex ecosystem such as
the human gut. Additionally, many of bacteria in the human gut are not routinely
cultivated, despite recent advances(Forster et al., 2019). As a result, virome studies
lean heavily on sequencing based metagenomic approaches to investigate gut phage
communities and to try to understand their role in shaping the gut microbiome
(Aggarwala et al., 2017). This involves sequencing the total viral DNA from a
community following physical separation from the bacterial component, using
assembly software to recreate the viral genomes within that community and
characterizing abundance and function of those genomes. However, many sequence-
based virome studies exclude viral dark matter from analysis, working largely with a
small fraction of known phage sequences (usually 1-14% of the dataset). This can have
profound implications for the conclusions drawn from these studies, as changes in the
known fraction may not reflect changes in the virome as a whole. As a result, database-

independent analysis methods are increasingly being used which include both known



and unknown fractions of the virome (Shkoporov et al., 2018b). However, high levels
of inter-individuality make biological signals across virome studies difficult to detect
(Clooney et al., 2019;Gregory et al., 2019;Moreno-Gallego et al., 2019). Furthermore,
virome studies are particularly susceptible to methodological bias due to difficulties
in benchmarking de novo bioinformatic tools and the dominance of unknown
sequences in virome datasets (Roux et al., 2016;Hesse et al., 2017;Sutton et al.,
2019a).

We will discuss phage of the human gut virome and their interactions with the
microbiome. We will also highlight how little we know about its role in human health.
Finally, we will discuss critical areas of virome analysis methods which must be
addressed and improved upon if we are to fully understand the role of phage in shaping

the microbiome and human health.

How phage interact with bacterial hosts
Phage infection cycles

As obligate parasites of bacteria, phage persistence in a microbial ecosystem
is dependent on the presence of a suitable sensitive host. Phage infection is typically
followed by one of two replication cycles, lytic or lysogenic (Weinbauer, 2004)
(Figure 1.A). In both cases a phage virion binds to the host cell surface using a phage
receptor-binding protein triggering the insertion of its genome into the host. For lytic
phage, subsequent translation of the phage genetic material by the host cell results in
the replication of the phage genome, assembly of phage particles and lysis of the host.
This results in the release of new phage virions into the environment that can infect
nearby hosts. Alternatively, lysogenic infection results in the replication of the phage
genome within the host cell without the immediate synthesis of phage virions. The
phage genome may integrate into that of the host where it exists as a prophage,
replicating together with the host genome and thus persisting in resulting daughter
cells. In the case of pseudolysogeny, the phage genome persists as an episome within
the host cell, separate to the host genome. In order to ensure subsequent daughter cells
contain phage genomes pseudolysogenic phage can use maintenance systems such as
toxin-antitoxin (Ravin, 2015;Cenens et al., 2016).
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Figure 1. Overview of phage-host dynamics in the gut. (A) Phage infection can

lead to virulent or temperate replication cycles. Integrated temperate phage use

internal and external signals from hosts to determine if or when to enter the lytic cycle.

(B) Bacteria can possess a wide array of defence mechanisms which target different

steps of the phage replication cycle. Similarly, phage encode a wide array of counter-

defence mechanisms which target host defences and allow the phage to remain

infectious. (C) Physical separation of phage and host (e.g. in mucous or in lumen)

means that dynamics change along the radial and longitudinal axes of the gut. (D)

Strain-level variation can result from resistance by mutation or by phase variation.
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However, cases of daughter cells lacking pseudolysogenic phage have also been
reported (Cenens et al., 2016). Following an induction event, the lysogenic phage will
initiate the translation of its genome and subsequent production of phage virions
leading to host lysis. Additionally, phage such as M13 undergo chronic non-lethal
infection cycles, where newly produced virions exit the cell without lysis (Smeal et
al., 2017). However, little is known about the prevalence of these different lifecycles

in the human gut.

Resistance and counter resistance

Bacterial hosts employ a wide array of phage resistance mechanisms which have been
comprehensively reviewed by Labrie et al. (Labrie et al., 2010) and Rostal et al.
(Rostgl and Marraffini, 2019). To prevent phage adsorption, bacterial cells can
differentially express or mutate cell surface receptors (Figure 1.B1) (Clement et al.,
1983;Chung et al., 2014), S-layer proteins (Zago et al., 2017), or produce protective
cell surface polysaccharides(Scholl et al., 2005). Additionally, bacterial hosts can
reduce the numbers of phage particles available to infect hosts by producing outer
membrane vesicles (Schwechheimer and Kuehn, 2015). These bind and sequester
phage particles, reducing their numbers in the environment and thereby the risk of
infection. Should the phage successfully bind to the appropriate surface receptor, the
fate of the host is not yet sealed as anti-phage resistance mechanisms extend to all

steps of the phage infection cycle.

Hosts can prevent phage DNA injection entirely by modifying inner-
membrane proteins (Figure 1.B2) (Cumby et al., 2015), identify and degrade injected
phage DNA using restriction modification systems (Figure 1.B3) (Tock and Dryden,
2005) and CRISPR-Cas systems (Figure 1.B4) (Rostgl and Marraffini, 2019),
chemically block phage DNA replication (Kronheim et al., 2018), or prevent virion
assembly (Figure 1.B5) (Ram et al., 2012). Should these defence mechanisms fail to
prevent phage replication within the cell, the bacterial host can sacrifice itself in order
to protect its sister cells (Dy et al., 2014). These are referred to as abortive infection
systems and act by shutting down cellular functions to prevent phage release (Figure
1. B6). Phage defence systems are regularly encoded on mobile genetic elements that
can facilitate the transfer of resistance across the bacterial community. However, due
to their metabolic costs bacterial cells rarely encode more than one of these systems

(van Houte et al., 2016). This gives rise to complex dynamics between hosts with the
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metabolic burden of resistance and susceptible hosts with fitness advantages. In
addition, a cell carrying a prophage can be made resistant to other phage in what is
referred to as superinfection exclusion(Hofer et al., 1995). To further complicate these
relationships, antagonistic coevolution of phage-host pairs has led to the development
of phage counter resistance mechanisms, which allow phage to remain infectious in
the face of a resistant host population(Samson et al., 2013). Phage counter-resistance
can range from glycosidases to degrade host capsules (Leiman et al., 2007) and reveal
binding sites, to directed mutagenesis or hypervariable receptor binding
proteins(Chatterjee and Rothenberg, 2012;Minot et al., 2013;Warwick-Dugdale et al.,
2019). These systems allow phage to retain compatibility with modified host receptors
and also allow for the expansion of host range. Phage can even overcome host
CRISPR-Cas by mutating or deleting CRISPR target sites or expressing anti-CRISPR
proteins to directly interfere with CRISPR-Cas activity (Bondy-Denomy et al., 2013).
Some of the most striking phage counter-resistance mechanisms include alteration of
phage DNA to evade host restriction modification mechanisms (Bair and Black, 2007)
and phage encoded CRISPR-Cas systems that target and disable a range of host
defence systems (Seed et al., 2013).

12



Ecological relevance of phage-host dynamics

These mechanisms of infection, resistance and counter resistance underpin virome-
microbiome interactions. Thus, in order to investigate how the virome shapes or
reflects the microbiome, we must first understand these interactions in the GIT.
Understanding phage host interactions is also vital if we are to use the virome as a
diagnostic or therapeutic tool in the future. To this end, numerous ecological models
have been used to describe phage-host interactions in the context of a biological
system. Some models focus entirely on the interplay of resistance and infectivity such
as the arms race dynamics model (Scanlan, 2017). This model proposes that phage
infection applies selective evolutionary pressure for mutations in the hosts, resulting
in resistant host populations. These mutations in turn select for phage mutations that
restore infectivity, resulting in predator prey cycles (Zhu et al., 2015). Other models
take into account phage-host density and the metabolic cost of resistance such as the
fluctuating-selection dynamics model (Gandon et al., 2008;Hall et al., 2011). This
proposes that as phage predation selects for resistant hosts, it will also reduce the
number of phage virions in the environment. This absence allows for the expansion of
susceptible bacterial strains which lack the metabolic burden of resistance and
therefore out-compete resistant hosts in the absence of phage. This transient resistance
and infectivity of phage-host communities results in short-term fluctuations of phage
and host numbers, but the long-term persistence of both (De Sordi et al., 2019).

It is important to note that strain-level fluctuations of phage-host are difficult
to study in the context of the microbiome, making it difficult to verify or quantify this
model. Strain-level variation within bacterial hosts cannot be detected by 16S rDNA
analysis (Gandon et al., 2008) and hampers metagenomic assembly of phage (Nurk et
al., 2017;Sutton et al., 2019a). Despite these challenges, recent insights have proposed
that variation in capsular polysaccharides encoded by the abundant gut bacterium
Bacteroides thetaiotaomicron play a central role in phage susceptibility (Porter et al.,
2019). This mechanism supports the concept of fluctuating-selection dynamics, as
phase variation of the capsular polysaccharides creates heterogeneous host phenotypes
within an isogenic population. This in turn leads to transient phage resistance across
the population as host phenotypes are dynamic and non-uniform (Turkington et al.,
2019). Additionally, this resistance can occur without the need for horizontally

transferred resistance or mutation (Figure 1.D).
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Phage replication not only requires the host to be present and susceptible but
it must also be metabolically active. It has therefore been proposed that the metabolic
state of the host is one of the primary barriers to phage infection (De Sordi et al., 2019).
In this way bacterial hosts can be transiently resistant to phage infection due to a lack
of nutrient availability and a dormant growth phase, without incurring the metabolic
cost of encoding resistance (Figure 1. D) (Denou et al., 2007). Additionally, this
mechanism would support the proliferation of both phage and host in the GIT,
independent of resistance-counter resistance dynamics. Nutrient availability varies
significantly along the GIT, which implies that phage-host dynamics in the proximal
or distal colon may be significantly different to those in fecal samples (Figure 1. C)
(Maura et al., 2012;Galtier et al., 2017). As the majority of virome studies draw
conclusions from fecal samples, our current understanding of phage host dynamics in
the GIT is limited.

The Kkill-the-winner ecological model is an extension of lotka-volterra
dynamics applied to phage-host interactions. This model describes rapid changes of
diversity and abundance of both phage and their hosts. As the most abundant bacteria
are killed by their phages, other bacterial taxa will take over the ecological niche and
be subsequently killed by their phages. In this way high levels of phage-host diversity
and abundance are maintained (Mirzaei and Maurice, 2017). In ecosystems where
lotka-volterra or kill-the-winner dynamics can be applied, phage exhibit an
exclusively predatory relationship on hosts and the microbial biomass is significantly
below the carrying capacity of the ecosystem (Thingstad, 2000;Avrani et al., 2012).
However, in the human gut ecosystem microbial biomass approaches the carrying
capacity of the ecosystem and the virus to microbe ratio (VMR) is low (Shkoporov
and Hill, 2019). Despite reports of kill-the-winner dynamics in infants(Breitbart et al.,
2008;Lim et al., 2015), this suggests that these models cannot not fully explain phage-
host interactions in the healthy adult gut (Mirzaei and Maurice, 2017). Additionally,
these dynamics overlook lysogeny and conditions that govern the switch between lytic
and lysogenic replication cycles. Furthermore, it has been proposed that the gut virome
is dominated by temperate phage (Reyes et al., 2010) and that compositional changes
in temperate phage communities are associated with disease states (Norman et al.,
2015). Consequently the mechanisms that determine the switch between lytic and

lysogenic replication cycles are also central to understanding virome-microbiome
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dynamics. Recent reports have described phage which can hijack bacterial quorum
sensing machinery to determine the density and metabolic activity of the bacterial
population from within the host cell (Silpe and Bassler, 2019). This in turn, could
dictate whether persisting within in the host genome or excising and entering the lytic
cycle would favor phage proliferation (Figure 1. A). In addition, single cell analysis
of phage-host interactions between the temperate P22 phage and
Salmonella typhimurium suggested that phage were directly involved in creating
transiently resistant host subpopulations (Cenens et al., 2016). This allowed for both
lysogenic and lytic replication without impeding host proliferation. Despite these
intriguing insights, little is known about the dynamics of temperate to lytic switching

in the mammalian GIT, highlighting a crucial target for future virome research.

Ecological models that consider the switch between lytic and lysogenic
replication such as the piggyback-the-winner model appear to support experimental
evidence of phage-host dynamics within the mammalian GIT (Knowles et al.,
2016;Silveira and Rohwer, 2016). This model focuses on a lytic to lysogenic switch
that is host density dependent. Traditionally phage were believed to enter the lysogenic
cycle in cases of high VMR (i.e. increased phage abundance, decreased host
abundance) as a means to persist in the environment until host density can support
Iytic replication cycles. However, experimental evidence from coral reef ecosystems
suggested that phage also entered the lysogenic cycle in high host density situations
(Knowles et al., 2016). Subsequently, phage can “piggyback” on host success in the
ecosystem at that particular time. This model has also been proposed for phage-host
interactions on mucosal surfaces in the GIT. It has been proposed that at the mucosal
surface, high bacterial colonization and high VMR gives rise to piggyback the winner
dynamics, whereas deeper mucosal layers may give rise to kill-the-winner dynamics
due to the lower levels of bacterial colonization and low VMR. This model is also
supported by reports that rapidly evolving Ig-like domains expressed on phage capsids
interact with mammalian host mucus glycans. This in turn results in subdiffusive
motion of phage within mucus and allows them to persist in mucosal layers of the gut
(Barr et al., 2013;Barr et al., 2015).

While these models assist in our understanding of how the virome interacts
with the microbiome and the gut environment, it is also important to consider their

limitations. Phage-host dynamics can be expected to change both radially and
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longitudinally within the GIT (Zhao et al., 2019) to reflect physical separation of
phages and hosts and metabolic changes in the host populations (Figure 1A.). They
will also be heavily influenced by dietary components and the composition of the
faecal matrix itself (Vandeputte et al., 2016). To this end, sampling method and sample
composition must be considered when drawing conclusions from virome data (Figure
2A.). In the absence of studies of how these dynamics change along the human GIT,
phage-host interactions must be interpreted as a snapshot of one particular point in

space and time.
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Figure 2. Impact of analysis choices on virome composition.

Bioinformatics

Each step of a virome analysis protocol presents different options, each of which may
affect the final outcome. (1) Sample type. (2) Physical separation of VLPs. (3)
Amplification of virome DNA can preferentially amplify certain viral taxa (see Figure
3). (4) Sequencing chemistry, depth of sequencing and read length. (5) Assembly
programs vary significantly in their ability to assemble virome data (see Figure 3).
Reporting on the composition of viral sequences with homology to reference databases
excludes the unknown majority of the virome. Clustering viral sequences by gene
composition offers a promising alternative to database dependent methods by

addressing high levels of sequence divergence in viral genomes.
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Composition of the Gut virome
The gut virome consists of two elements, the temperate phage located within bacterial

genomes and the free virions or virus-like particles (VLP). The VLP fraction is
obtained by applying several physical and enzymatic steps that remove dietary debris
and prokaryotic and eukaryotic genetic material (Figure 2.B) (Shkoporov et al.,
2018b). As VLPs represent only a small fraction of the mass of the microbiome,
virome studies that do not carry out this viral enrichment are limited almost entirely
to the prophage sequences within bacterial cells (Waller et al., 2014;Ma et al., 2018).
However, these prophage sequences are in turn under-represented in studies that focus
on the VLP fraction. In order to understand the virome as a whole, both elements need
to be analysed in tandem. The majority virome studies focus on one of these elements
in isolation and as a result the apparent structure and composition of a virome is
heavily dependent on the physical preparation of virome samples in the laboratory, the
sequencing strategy, and the bioinformatic methodology employed (Figure 2.). This is
further complicated by the limited representation of human gut viruses in databases
and a reliance on phage taxonomic classification systems which do not necessarily
represent viral biology. Consequently, our understanding of the taxonomic
composition of the phage populations in the human gut are predictably varied and

contradictory.

Taxonomic composition

Sequence-based analysis suggests the identifiable fraction of the gut virome is
dominated by small single-stranded DNA (ssDNA) phage of the Microviridae family
and double-stranded DNA (dsDNA) phage of the order Caudovirales (Breitbart et al.,
2003;Minot et al., 2013;Manrique et al., 2016;McCann et al., 2018;Shkoporov et al.,
2018b). However, bias in extraction methods has also been reported to skew the
abundance of Microviridae, calling into question their dominance in the virome
(discussed later) (Kim and Bae, 2011) (Figure 2C.). The Caudovirales are classified
into three families according to their distinctive virion morphology, consisting of a
head and a tail structure making them easily distinguishable in microscopy studies.
Siphoviridae exhibit long (sometimes up to 1um in length), non-contractile tails,
Podoviridae exhibit short non-contractile tails, while Myoviridae exhibit a more rigid

contractile tail composed of distinctive sheath proteins. These phage families have
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linear genomes, can encode a relatively large gene repertoire (in extreme cases
containing over 600 genes) and can exhibit both temperate and lytic replication cycles.
Early sequencing studies of the virome reported changes in Caudovirales community
composition being associated with disease (Pérez-Brocal et al., 2013;Wagner et al.,
2013;Norman et al., 2015) and high Caudovirales abundance in EM images (Lepage
et al., 2008;Hoyles et al., 2014). However, reported abundance in EM images could
also be influenced by the fact that they are more easily identified than other viral taxa.
Possibly as a result of these observations, Caudovirales composition and abundance
has become a regular focus of virome studies, where it is used as a proxy for virome
composition as a whole. However, as known Caudovirales only represent a small
minority of VLP sequences in the human gut, caution should be taken when
interpreting these results.

Due to the current structure-based classification system of Caudovirales, phage
that exhibit significant functional similarities can be considered members of different
families due to tail morphology. For example, phages P22 and lambda are classified
as Podoviridae and Siphoviridae respectively, despite both undergoing the same
replication cycle, sharing significant similarity in gene sequences and exhibiting
identical genome organization (i.e. gene order and layout and regulation of
transcription). Additionally this classification system is not grounded in sequence or
protein sharing, yet sequence and protein homology are the primary methods of
identifying Caudovirales in viromes (Reyes et al.,, 2015;Fernandes et al.,
2019;Moreno-Gallego et al., 2019;Zuo et al., 2019). This classification system is
therefore limited in its ability to reflect the biological role or interactions of sequences
classified as Caudovirales. A number of recent studies have also highlighted
anomalies in Caudovirales taxonomy (Hulo et al., 2015;Bolduc et al., 2017;Barylski
et al., 2018) and have proposed novel sequence-based methods to restructure the viral
order (Bolduc et al., 2017). However, these are not without their own challenges, as
shared genes and gene cassettes have been found to blur the boundaries between
various dsDNA viruses (Iranzo et al., 2016;Jang et al., 2019), which will be discussed
in detail later.

Case study of the most dominant gut phage, crAss
A prime example of the limitations of focusing on identifiable Caudovirales alone

when carrying out virome analysis is that of crAssphage, one of the most abundant
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and successful biological entities of the mammalian gut. First reported in 2014 using
novel assembly methods (Dutilh et al., 2012;Dutilh et al., 2014), crAss was found to
be six times more abundant in publically available gut metagenome samples than all
other phage together. 1t made up to 90% of VLP sequencing reads and 30% of whole
metagenomes in certain individuals, yet did not share homology with known reference
databases (Dutilh et al., 2014). As a result, crAss would have gone entirely unnoticed
using database-dependent analysis alone. CrAss has since been found to be globally
distributed, with strains reflecting geographic distribution of human populations
(Edwards et al., 2019). Intriguingly, the presence of distant relatives to crAss in
primates may suggest that crAss has coevolved with humans for millions of years from
ancestors shared with primates, to modern Homo sapiens (Edwards et al., 2019). These
results highlight the importance of the unknown majority of the virome in human
health and why it is critical to analyse the virome as a whole. Given the proposed
ubiquity and dominance of crAss in the human gut it is also possible that the
abundance of Caudovirales reported by EM studies may in fact reflect members of the
extended crass-like phage family, which at the time were unknown.

The characterization of crAss and studying its role in the gut microbiome has
been hampered by a lack of database representation, unknown host range and until
recently (Shkoporov et al., 2018a), unsuccessful attempts to form plaques on agar
overlays. However, its progression from an unknown abundant phage sequence to a
characterized dominant member of the gut virome provides a useful framework in
building our understanding of viral dark matter. Its initial discovery was built upon by
using sensitive protein homology searches to identify an extended family of crAss-
like phage from human gut virome samples (Guerin et al., 2018;Yutin et al., 2018).
Although sequence similarity across family members was low, protein family-based
clustering identified conserved capsid proteins and predicted crAss to encode a short
tail similar to that of the Podoviridae family of Caudovirales (Yutin et al., 2018).
Subsequently, crAss has also been identified in patients with diarrhoea and in
Malawian infants (Guerin et al., 2018). Additionally it was found to be shared across
healthy individuals and was capable of stable engraftment in FMT treatments (Draper
et al., 2018).However, the host range and mechanism behind crAss ubiquity and

abundance remained unknown.
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Through the use of enrichment-based techniques the host for one member of
the crAss family was confirmed to be Bacteroides intestinalis, a finding previously
suggested by co-abundance profiling (Dutilh et al., 2014;Shkoporov et al., 2018a).
This provided new opportunities to study the phage-host interactions of the most
abundant phage family in the human gut and its role in the microbiome. The ability to
culture crAss in vitro also led to the description of one of the most intriguing aspects
of this phage, its ability to coexist with its host at high abundance. This has a profound
impact on our understanding of how the virome shapes the microbiome, as it appears
that in crAss-rich individuals the dominant phage populations do not restrict the
growth and proliferation of their host. Furthermore, it is believed that crAss
persistence and coexistence with its host is not due to crAss undergoing temperate
replication, as it does not possess any of the genes typically associated with lysogeny
(Shkoporov et al., 2018a). Additionally, crAss prophage sequences have never been
observed in the numerous Bacteroidales genomes available in sequence databases. It
is possible that crAss replicates in a pseudolysogenic manner, existing as an episome
within the host cell (Cenens et al., 2016), that it facilitates a chronic infection without
killing the host cell (Smeal et al., 2017), or that it can exist in an extracellular carrier
state (Siringan et al., 2014). The high proportion of resistant host cells in culture (1-
2%) could also suggest that a host cell carrying crAss in a pseudolysogenic state could
confer resistance from infection as in superinfection exclusion. However,
experimental evidence suggests crAss replicates in a lytic manner and its abundance
in the gut is maintained by transiently resistant hosts. As phase variant CPS and
transient resistance have been found to be central in phage-host dynamics in other
Bacteroides species (Porter et al., 2019), it is possible that these mechanisms are also
central to the unusual phage-host dynamics observed in crAss both in vitro and in vivo.
This theory is supported by the reversion over time of some resistant clones to
sensitive states (Shkoporov et al., 2018a). Given the abundance of Bacteroides and
crAss in the human gut, phenotypic heterogeneity across a host populations may be
the central mechanism to support stable interactions between some lytic phage and

their hosts in the microbiome.

Another possible explanation for sustained crAss-host proliferation is the
recently proposed “Royal Family” ecological model (Breitbart et al., 2018). This

suggests continuous Kill-the-winner dynamics occur at a strain-level rather than at a
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species or genus-level. In this way, the abundance of both phage and host would
appear to be stable as fluctuations would occur below the level of detection.
Subsequently, detailed analysis of strain-level variation between crAss and B.
intestinalis could provide insights into the importance of this model in the GIT. A
similar study carried out by De Sordi et al. (De Sordi et al., 2017) supports the “royal
family model” and gave intriguing insights into its mechanics. This study described a
point mutation in the tail fibre gene of P10 which is associated with strain-level host
expansion from E. coli LF82 to E. coli MG1655. Interestingly, this strain-level host
switching was only observed when phage and both hosts coevolved within the murine
model and was not observed when the two strains were cultured separately.
Subsequent experiments revealed that switching required the presence of an
intermediate host E. coli MEc1. These observations suggest that crAss-host stability
in the gut could be caused by a wide array of strain-level and phenotypic variation.
However, as strain-level variation is difficult to observe in vivo and in vitro, novel

analytical approaches may needed to reveal crAss phage-host dynamics in the GIT.

The proliferation of both phage and host as is seen in crAss-B. intestinalis
dynamics could also suggest that the presence of phage could confer an ecological
advantage to the host. This phenomenon has been regularly reported in the ocean,
where phage infecting cyanobacteria were found to carry auxiliary metabolic genes
encoding photosynthetic genes (Sullivan et al., 2006;Hurwitz et al., 2013). Similarly,
phage-mediated transformation of the host has also been well established in disease
such as the lysogenic phage encoding shiga toxin (Muniesa et al., 2012) and cholera
toxin (Waldor and Mekalanos, 1996). It is therefore highly likely that in the dense and
diverse ecosystem of the gut, extensive horizontal transfer of genes between hosts is
facilitated by phage infection. In this way the virome may play a crucial role in shaping
the functional capacity of the microbiome. One report of the presence of significant
numbers of antibiotic resistance genes in gut virome sequences (Modi et al., 2013)
was later shown to have probably resulted from bacterial contamination and confirmed
that examples of phage-encoded antibiotic resistance genes were rare (Enault et al.,
2017). This could be due to the efficiency of phage replication and the fitness cost of
carrying antibiotic resistance genes. Without the selective pressure of antibiotics,
viruses that pay the metabolic cost of carrying antibiotic resistance genes could be

outcompeted (Enault et al., 2017). Additionally, the selective evolutionary pressure of
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remaining infectious in the face of a constantly adapting host may outweigh the need
to preserve the host from an antibiotic. The follow up study also highlighted the
importance of using stringent alignment criteria and validating results when
classifying sequences or proteins. Due to the extensive unknown fraction of the
virome and the difficulty in benchmarking classification criteria, lenient cut-offs can
often lead to false conclusions of virome composition and function (Roux et al.,
2013;Enault et al., 2017;Sutton et al., 2019b).

It is tempting to propose that the piggyback-the-winner hypothesis could be
extended by considering the possible fitness advantages of carrying a prophage over
and above superinfection exclusion. Such advantages could include carrying a
virulence factor or providing access to a novel nutrient source (Brissow et al.,
2004;0beng et al., 2016). Prophage-encoded fitness advantages have been observed
in @ number of pathogenic bacteria. These include prophage-encoded toxins (Waldor
and Mekalanos, 1996;Muniesa et al., 2012), alteration of O antigens in Salmonella and
Shigella (Wright, 1971;Verma et al., 1991) and phage-encoded glycosyl transferase
operons which drive Salmonella LPS diversity (Davies et al., 2013). Furthermore the
horizontal transfer of virulence factors through temperate phage was found to be
increased in gut inflammation (Diard et al., 2017). Additionally, recent observations
in Staphylococcus aureus prophage (Chen et al., 2018) have described the packaging
of chromosomal host DNA in phage capsids through a mechanism deemed lateral
transduction. This mechanism suggests that phage-mediated horizontal gene transfer
occurs at much higher rates than previously thought and that it plays a role in disease.
However, the extent to which lateral transduction mediates gene transfer in the gut
microbiome remains unknown. Examining phage-encoded auxiliary metabolic genes
and how they shape the functional capacity of the gut microbiome is hindered at a
large-scale metagenomic level by the complexity of faecal samples themselves.
Dietary components and the sheer abundance and diversity of bacterial cells in faeces
make it difficult to completely remove bacterial sequences from virome samples. Use
of density gradients such as CsCl are reasonably effective at generating viral particles
devoid of cellular contamination, but will introduce bias in favour of particular viral
capsid types (Castro-Mejia et al., 2015) and are not feasible for large-scale projects
due to their associated manual workload. As a result, background contamination exists

in the vast majority of virome samples (Roux et al.,, 2013;Enault et al.,
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2017;Shkoporov et al., 2018b) making it difficult to determine if a gene is of viral or
bacterial origin. This may be further complicated by potential gene transfer agents
(GTAs) (Lang and Beatty, 2007) in gut VLP samples. GTAs are defective phage
virions that exclusively carry fragments of bacterial chromosomal DNA and are used
by bacteria as a means of HGT. As a result sequences within GTAs are difficult to
differentiate from background contamination. However the presence and prevalence
of GTAs in human gut microbiome remains to be seen. Overall, despite the evidence
of phage shaping the functional capacity of host communities, it is challenging to
determine the extent to which phage transfer genes relevant to human health within

the microbiome.

Controversy surrounding the core virome

The widespread geographical distribution and stability of crass-like phage supports
the concept of a core human virome, which was initially proposed by Manrique et al.
(Manrique et al., 2016). This was in response to a growing body of evidence that a
core microbiome played an important role in human health. The study proposed a core
of 23 viral sequences, one of which being the original crAss genome, which were
shared across more than 50% of samples from an independent cohort of 62 healthy
individuals. However, these findings were in stark contrast to the well-established
belief that the human gut virome is highly individual-specific at a sequence level
(Shkoporov et al., 2018b;Clooney et al., 2019;Moreno-Gallego et al., 2019;Shkoporov
et al., 2019). This disparity is largely due to the criteria used to define the presence of
a viral sequence in a sample. If a single sequencing read from an individual could align
to a particular viral assembly, the assembly was deemed to be present. This lenient
criteria does not account for the modular nature and extensive gene sharing that occurs
across dsDNA viral genomes (Minot et al., 2012;Iranzo et al., 2016;Bolduc et al.,
2017). Thus, it would not be possible to differentiate the true presence of a viral
sequence in a sample from the presence of a shared gene between two unrelated phage.
This in turn, would lead to an inflated number of viral sequences being shared across
individuals. However, the concept of a core virome has received support from a recent
study with adult monozygotic twins, in which 18 contigs were found to be present in
all individuals (n=42) (Moreno-Gallego et al., 2019). Here, more stringent read
recruitment criteria were applied to differentiate shared genes from the true presence

of a viral sequence in a sample. Interestingly more than half of the viral assemblies
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identified across all individuals were homologous to crAss. It should be noted
however, that these assemblies may also represent fragments of the same phage

genome or family.

In contrast to these findings and to the proposed global distribution of crAss
phage in human populations, the compilation of a large-scale gut virome database
called into question the existence of a core human gut virome at a sequence level
(Gregory et al., 2019). By examining VLP metagenomes from 572 individuals, this
study proposed that a core human gut virome does not exist. Recently, Shkoporov et
al., too made observations which support these findings by examining the virome of
ten individuals across a 12-month period (Shkoporov et al., 2019). Here, a personal
persistent virome (PPV) was observed that was composed of viral sequences detected
in at least six of the 12 monthly time points. In accordance with previous longitudinal
studies (Reyes et al., 2010;Minot et al., 2013), some viral sequences were present at
nearly all time points within an individual. However, the virome was also highly
individual-specific and viral sequences were not shared across the PPV of all
individuals which supports the findings of Gregory et al. (Gregory et al., 2019). This
high level of inter-individuality in the gut virome hampers our understanding of the
virome in disease as it is difficult to detect common viral signals within or between
cohorts. While it is likely that the individuality of the virome is driven by infection
and resistance dynamics, the level of taxonomic resolution at which the virome is
studied is also a contributory factor (Clooney et al., 2019). Sequence-based virome
studies are carried out at the level of metagenomic assembly due to the absence of
universal marker genes, limited database representation and established taxonomic
organization. This represents species or strain-level resolution and is in contrast to the
majority of bacterial metagenomics studies, which tend to be analysed at higher
taxonomic ranks such as genus or family. It is possible to find patterns across virome
cohorts using a minor subset of known viral sequences and by excluding unknown
sequences (Norman et al., 2015;Monaco et al., 2016;Zhao et al., 2017;Zuo et al.,
2019). However, it is not known if these subsets represent the dynamics of the virome
as a whole. To this end, a number of clustering programs have been developed that
group viral sequences based on shared protein families (Minot et al., 2012;Bolduc et
al., 2017) such as vContact2 (Bolduc et al., 2017). This is a similar approach to that

which was used to establish the extended crAss family despite low levels of nucleotide
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similarity between family members (Guerin et al., 2018;Yutin et al., 2018). In this
way, protein-based clustering of the virome can reveal compositional patterns across
individuals that were not visible at a nucleotide level. Furthermore, this approach
allows for both the known and unknown components of the virome to be included in

analysis giving new perspectives to the virome in health and disease.

Applying this protein family clustering approach (Jang et al., 2019) to the same
longitudinal cohort can give new insights into the existence and composition of a core
gut virome across individuals. This phylogenetic core was composed primarily of
crAss and Microviridae and was not identifiable at a nucleotide level. Intriguingly,
this core was not composed of temperate phage which is in contrast to observations in
previous reports (Reyes et al., 2010). Furthermore, temperate phage were found to
make up a minor subset of the core virome both within and between individuals. These
findings suggest that mechanisms other than lysogenic replication are responsible for
long term stability of the virome within healthy individuals. Moreover, they are in
accordance with the global distribution and persistence of crAss in the human gut and
ecological models such as the “royal family model”. Upon clustering the stable
fraction of individual viromes (PPV) the largest and most interconnected viral cluster
as associated with known Caudovirales sequences. This is in accordance with previous
observations (Minot et al., 2012;Bolduc et al., 2017) and reflects extensive shared
genetic content across this order. It is also likely that this extensive gene sharing
influenced previous database-dependent reports of temperate phage and Caudovirales
dominance in the human gut virome. Furthermore, it highlights the importance of

considering shared genes and gene cassettes when setting alignment criteria.

26



Gut virome in disease
Given the extensive evidence that phage can shape the composition and function of

bacterial communities, the virome of the human gut has been studied in a number of
diseases. However, as with the concept of the core virome, findings have been
somewhat contradictory and any potential role for the virome in shaping the
microbiome in disease remains elusive. Studies have reported gut phage populations
were not significantly altered in diseases such as colorectal cancer and HIV-associated
AIDS (Monaco et al., 2016;Hannigan et al., 2018), despite established associations
between the gut microbiome and these diseases (Wirbel et al., 2019) (Dinh et al.,
2014). This contradicts the established view that the virome and microbiome are
closely linked but is more likely to reflect limitations of different analysis methods.
These limitations include lenient alignment criteria to reference databases and the
exclusion of viral dark matter from analysis. Furthermore, reports of changes in phage
populations associated with diseases are limited to changes in the composition of
known Caudovirales (Norman et al., 2015;Zhao et al., 2017;Ma et al., 2018;Fernandes
et al.,, 2019). Given the limitations of Caudovirales taxonomy and the challenges
presented by extensive gene sharing across the order, these findings provide little

insight into any role of the virome in disease.

An intervention study by Gogokhia et al. (Gogokhia et al., 2019) sought to target
cancer associated bacteria adherent invasive Escherichia coli and Fusobacterium
nucleatum with lytic phage in a germ-free mouse model. However, a direct interaction
between the mammalian immune system and phage virions resulted in an exacerbated
colitic reaction. The authors also proposed that phage DNA plays a central role in
phage interaction with the mammalian immune system as empty phage capsids did not
induce an immune response. Similarly an in vitro study using Staphylococcus aureus
and Pseudomonas aeruginosa phage observed a production of both pro and anti-
inflammatory cytokines from peripheral blood mononuclear cells following
endocytosis of purified phage virions (Van Belleghem et al., 2017). These
observations are supported by the proposed ability of phage virions to cross the
mammalian epithelial barrier in vitro via peptide sequences expressed on the capsid
surface (Ivanenkov and Menon, 2000;Nguyen et al., 2017). In this way it is possible
that phage communities in the human gut shape the gut microbiome indirectly through

interactions with the mammalian immune system. This concept of phage translocation
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and interaction with mammalian immune system has also been discussed in a number
of reviews and perspective pieces as follows (Gorski et al., 2006;Gorski et al.,
2017;Lusiak-Szelachowska et al., 2017;Gérski et al., 2018). Through the induction of
a pro or anti-inflammatory response, phage could facilitate conditions that would favor
a particular host or replication cycle. It is also possible that proposed phage—immune
system interactions are driven by bacterial populations to facilitate infection or
persistence in the human body. This was first demonstrated by lysogenic Pf phage
which triggered maladaptive viral pattern recognition receptors and facilitated the
chronic infection of Pseudomonas aeruginosa in murine and human cells (Sweere et
al., 2019). This was also the first reported case of a directly pathogenic effect of phage
in bacterial infection and demonstrated that phage do not need to directly encode

virulence factors to impact the virulence of their host.

Faecal microbiota transplantation

FMT (faecal microbiota transplantation) is an emerging and experimental therapy that
aims to restore healthy gut function through infusion of a faecal slurry from a healthy
individual to the colon, cecum or duodenum of the recipient. It has been shown to be
very effective in the treatment of recurrent Clostridium difficile infection (CDI) with
donor bacteria colonizing recipients for up to a year (Jalanka et al., 2016) and reported
success rates of 80-90% (Cammarota et al., 2014). The first evidence that the virome
had potential as a tool to shape the microbiome and may play a role in the efficacy of
FMT treatment was reported by Ott et al (Ott et al., 2017). In this study, patients with
relapsing CDI received faecal filtrates from healthy donors that resulted in CDI
symptoms being eliminated for up to 6 months. Furthermore recipient phage
populations were substantially altered, resembling those of the donor for a minimum
of six weeks. Surprisingly, Lactococcus phage were reported to dominate both donor
and recipient virome, despite Lactococcus spp. representing only a minor fraction of
the gut microbiome. This could reflect a dominance of lactococcal phage in the donor
and recipient, implying lactococcal phage play an important role in homeostasis in
CDI. However, phage sequence databases are dominated by those which are
industrially relevant and cultivable, which includes lactococcal phage (Moineau and
Lévesque, 2005). As a result, unknown sequences are statistically more likely to align
to lactococcal phage and other cultivable or industrially relevant sequences when

lenient alignment criteria are used. Thus, the dominance of lactococcal phage in the
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virome of FFT recipients is likely to be yet another artefact of database-dependent
analysis methods. It should also be noted that, in accordance with the majority of
database dependent virome studies, lactococcal phage are members of the order
Caudovirales. This supports the concept that Caudovirales dominance reported at an
order and family level in the gut virome could be driven by gene modules shared with
Caudovirales in reference databases. However, the resemblance of the donor virome
to that of the recipient suggests that, regardless of classification limitations, the virome
plays a significant role in the maintenance of homeostasis in the gut. A subsequent
study by Draper et al. (Draper et al., 2018) also reported the stable engraftment of
donor phage populations in recipients for up to 12 months. In accordance with
observations at a bacterial level (Jalanka et al., 2016;Wilson et al., 2019) successful
phage engraftment was also dependent on specific donor recipient pairings. It should
be noted that the role of other elements present in the filtrate (i.e. chromosomal DNA,
plasmids, bacterial cellular components and signalling molecules) remains unknown
and could also play a role in the restoration of healthy gut function in CDI. With
conditions such as ulcerative colitis (UC) that are characterized by more subtle
microbiome changes than CDI, successful FMT treatment (i.e. remission and mucosal
healing) was not associated with changes in the phage population (Conceicao-Neto et
al., 2018). This is in contrast to reports of alterations in bacterial diversity following
FMT in UC (Vaughn et al., 2016). Additionally, changes in the diversity of phage
populations between healthy and UC cohorts were not observed (Conceicdo-Neto et
al., 2018). These observations were in contrast with previous IBD virome studies,
which reported differences in phage alpha diversity between healthy and UC cohorts
(Norman et al., 2015;Fernandes et al., 2019).

Inflammatory bowel disease

Inflammatory bowel disease is a prevalent chronic disorder of the gastrointestinal tract
with both genetic and environmental risk factors (Ng et al., 2017). The composition
of gut bacteria and their interaction with the host immune system are believed to be
central to its pathology, yet the aetiology of the disease remains poorly understood.
Given the evidence that the virome can interact directly with the host immune system
and shape the composition and function of the microbiome, both faecal and mucosal
phage communities have been studied in IBD. Current understanding of phage

populations in IBD has focused on VLPs, proposing that disease-specific patterns of
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Caudovirales are linked to Crohn’s disease (CD) and ulcerative colitis (UC).
Furthermore, these changes in VLP composition have been reported not to reflect
alterations of the bacterial community. However, the details of these compositional
changes vary between studies (Lepage et al., 2008;Pérez-Brocal et al., 2013;Wagner
et al., 2013;Norman et al., 2015;Pérez-Brocal et al., 2015;Zuo et al., 2019) .

Early IBD virome studies using the Roche 454 sequencing platform were
limited by sequencing depth. These studies observed lower diversity and greater
variation in the faecal VLP communities of patients with CD relative to healthy
samples (Pérez-Brocal et al., 2013). The same group performed another sequence
based analysis of the faecal and mucosal VLP community of CD and observed greater
viral load and diversity in the faeces than mucosa of all individuals (Pérez-Brocal et
al., 2015). Additionally, virome alpha diversity was reported to be significantly lower
in disease. However, in contrast to their previous study, it was also reported that both
healthy and CD cohorts were dominated by Microviridae rather than Caudovirales.
Another study that analysed the first mucosal virome in paediatric CD(Wagner et al.,
2013) proposed a dominance of Caudovirales phage overall and detected a single viral
sequence in colonic mucosal samples from patients with CD. While this may suggest
an extreme dominance of this virus in the mucosa of paediatric CD it more likely
reflects insufficient sequencing depth resulting from low biomass samples and should

be treated with caution.

As sequencing technology progressed, researchers were granted more detailed
insights into the virome in IBD. However these insights contradicted previous findings
and highlight the impact of sequencing platform on results. This could also suggest
that our understanding of the virome in disease will continue to change as sequencing
technology progresses. Illumina-based studies reported disease-specific increases in
Caudovirales alpha diversity in the VLP viromes of UC and CD compared to healthy
controls in adults (Norman et al., 2015)and children (Fernandes et al., 2019).
Intriguingly, these alterations were also reported not to reflect changes in the bacterial
community (bacteriome). Conversely, decreased alpha diversity was observed in
Caudovirales families from the mucosal VLP virome of UC relative to healthy
controls (Zuo et al., 2019). This supports the idea that viral communities and
ecological models differ at different spatial locations within the gut. Additionally, it

suggests that phage of the order Caudovirales play a central role shaping the
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microbiome in IBD. However, as with other studies of the virome in disease, these
findings are limited to minor fractions of the dataset and offer little by way of insight

into the role of phage in IBD.

To expand our understanding of the virome in IBD beyond the limitations of
databases, we (Clooney et al.) applied the whole-virome analysis (Clooney et al.,
2019) protocol discussed earlier to the keystone IBD virome dataset published by
Norman et al. (Norman et al., 2015;Clooney et al., 2019). In this way, it was possible
to gain the first insights into the composition viral dark matter in this disease. Contrary
to the original findings of the study, alterations in the whole virome mirrored those of
the bacteriome, and differences in overall virome alpha diversity were not seen at a
sequence level. In accordance with current understanding the gut virome, high levels
of inter-individuality were observed, and were likely to conceal any patterns in virome
composition across individuals. Subsequently, we followed the protocol established
in Shkoporov et al. (Shkoporov et al., 2019) to cluster viral sequences according to
gene content. This revealed a core of primarily lytic phage in healthy individuals and
supported observations of Shkoporov et al. (Shkoporov et al., 2019). However, this
healthy core was also found to be absent in patients with IBD where it appeared to be
replaced by a community of temperate phage. The majority (six) of the eight viral
clusters which made up the healthy core virome in this analysis did not share
homology to known viral sequences further highlighting the biological signals that
may be missed when relying on database-dependent methods. Interestingly, one of
these healthy core virome clusters was identified as crAss. This supports previous
observations of its ubiquity in healthy human populations, low rates of detection in

unhealthy individuals and its role in the core healthy human virome.

One possibility is that in the inflamed gut, environmental stresses from the
human immune response such as antibodies and reactive oxygen species, leads to
increased induction of the prophage present in the bacterial microbiome. The
physiology of bacterial cells and the composition of the bacterial community
influences whether integrated prophage enter the lytic or lysogenic replication cycle
(Figure 1.A) (Casjens and Hendrix, 2015;Silpe and Bassler, 2019). It is therefore likely
that temperate virome would react to environmental stress and resulting changes in the
host community. This increased lytic replication and subsequent death of bacterial

hosts would correspond with the observed reduction in bacterial alpha diversity
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associated with IBD. It would also correspond with the observed increase in in free
phage virions (Lepage et al., 2008) and temperate VLPs in disease (Clooney et al.,
2019). Additionally, the resulting increase of bacterial cell wall components and debris
available to interact with the human immune system could perpetuate an inflammatory
response. In accordance with in vitro reports, it is also possible that increased cell wall
permeability associated with inflammation allows for increased phage translocation
(Nguyen et al., 2017) and interaction with the host immune system (Gorski et al.,
2012;Van Belleghem et al., 2017;Gogokhia et al., 2019). The observations of
(Clooney et al., 2019) provide a novel theoretical, mechanistic rationale for the
interaction of the whole virome and the microbiome in disease, beyond taxonomic
assignment and compositional patterns of the known minority. Additionally, they
provide the first comprehensive evidence to support the mechanisms that had been

previously proposed by Norman et al (Norman et al., 2015).

The extent to which the switch from temperate to lytic replication cycles and
the composition of the core virome shape the gut microbiome and influence human
health and disease remains speculative. However, the analysis approach outlined
by(Clooney et al., 2019) paves the way to a better understanding of how the interplay
between the microbiome and the virome reflects or influences human health and
disease. By allowing the detection of biological signals across the entire virome it is
now possible to identify viral signals associated with disease which had been
previously undetected. The WVA approach is also supported by the methods used to
characterize the crAss-like family (Guerin et al., 2018;Shkoporov et al., 2018a;Y utin
et al., 2018). CrAss has progressed from an unknown viral sequencing anomaly to
providing insights into the composition and function of the healthy human gut virome.
In turn, the methods used in this progression provide a framework to characterize
unknown but biologically relevant sequences identified by WVA.

It should be noted, that although many virome studies tend to report the
dominance and composition of known Caudovirales, this provides little insight into
the biological impact of these phages or how they shape the gut ecosystem.
Caudovirales dominate reference databases, exhibit extensive gene sharing across
families and orders and feature temperate phage genera (King et al., 2011;lranzo et
al., 2016;Jang et al., 2019). It is therefore likely that database-dependent methods of

virome analysis classify unknown dsDNA virus sequences as known Caudovirales
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due to shared genes or gene cassettes and lenient detection criteria. As the
representation of gut virome sequences in databases improves with efforts such as
those carried out by Gregory et al.(Gregory et al., 2019) and the characterization of
crAssphage (Guerin et al., 2018;Shkoporov et al., 2018a), database-dependent analysis
methods may be able to better reflect the composition and dynamics of the virome.
However, as extensive gene sharing remains a central part of dSDNA viral genomes it
is essential that stringent alignment criteria are used to differentiate shared functional
modules from the presence of a particular virus (Roux et al., 2016;Roux et al., 2017),
regardless of the database used. Additionally, it is crucial that these alignment methods
and their findings are validated to avoid misleading conclusions as to virome
composition or function (Roux et al., 2013;Enault et al., 2017;0tt et al., 2017;Sutton
et al., 2019b).
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Addressing the current challenges of virome research
As has been discussed, studying phage of the human gut microbiome is made

challenging by the composition of the sample (usually a faecal specimen) (Figure 2.A).
In order to enrich for the VLP fraction of the virome, extensive mechanical, chemical
and enzymatic processing is required to remove cellular DNA and dietary components
(Figure 2.B) (Castro-Mejia et al., 2015;Shkoporov et al., 2018b). Unfortunately, this
results in particularly low DNA vyields that can complicate the generation of
sequencing libraries. This challenge is more pronounced in mucosal virome studies
where DNA vyields are lower again (Hannigan et al., 2015;Hannigan et al., 2018). As
a result, all but one (Manrigue et al., 2016) virome study to date have depended on
multiple displacement amplification (MDA) of viral DNA to reach sufficient
quantities to sequence. As with all metagenomics, it is crucial to find the balance
between sequencing chemistry, depth of sequencing and read length. These factors
have profound impacts on the final virome sequences available for downstream
analysis. This was highlighted by the differences in virome alpha diversity reported
by 454 pyrosequencing, when compared to deeper sequencing on the Illumina
platform as previously discussed. Short read platforms such as the lllumina HiSeq are
a means to perform deep sequencing of the virome with low error rates and relatively
low input DNA requirements. However, these libraries can also lead to fragmented
assemblies and poor recovery of viral genomes (Sutton et al., 2019a). Long read
sequencing offers a promising solution to this assembly challenge, as it is possible to
sequence entire viral genomes on a single read (Supplementary table 1.). This
overcomes hypervariable sequences and repeat regions in viral genomes which
hamper assembly (Warwick-Dugdale et al., 2019). Currently long read sequencing
platforms also require very large quantities of un-fragmented DNA, which can be
challenging acquire from virome samples. As a result, the initial DNA yield and the
amplification step directly influence the sequencing chemistry, read depth and read
length which can be used with virome sequences (Figure 2.D). The MDA step has also
been reported to introduce considerable bias into the composition of the resulting
virome which must be considered when drawing conclusions from data (Figure 3.A)
(Yilmaz et al., 2010;Probst et al., 2015). Studies have also reported MDA
preferentially amplifies small circular sSDNA viruses, which include the family
Microviridae (Figure 2.C) (Kim and Bae, 2011). This could call into question both the

reported abundance and ubiquity of this family across individuals. Although it is
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difficult to quantify the extent to which preferential amplification occurs, recent meta-
analysis of gut virome studies suggested Microviridae may be 10-fold lower in
abundance than previously thought (Gregory et al., 2019). It is believed that priming
biases of the random hexamers used in the MDA reaction do not prime equally across

all genomes, making quantitative interpretation of virome data difficult.

35



A. B.
Aéé a7 e
Physical separation of virome Physical separation of virome
No amplification Amplification Amplification
Accel 1S Plus TruSeq TruSeq
Illumina HiSeq lllumina HiSeq lllumina HiSeq
Relative abundance 16 assembly approaches
1.00 1.00 - e o
i! Correct genome MEGAHIT
0.75{ E . 0.75 l l Shorter genome SPAdes (meta), CLC
. = .
—m== i- Longer genome VICUNA, Geneious,
== Ray Meta
0.501 %% 0.50 7 s
=;E . = Fragmented genome SPAdes (default, single
== i [ cell, single cell +
— =]
05 == 025{== correct), IBDA UD
=== ! L
= == _— Failed to assemble AbysSS (k-mer 63 & k-
[ =
== [, |= mer 127), Velvet,
— _— Metavelvet,
A B C A B C SOAPdenovo2

Figure 3. Examples of how virome composition is influenced by key steps in

analysis.

(A) Three samples were subjected to identical filtration and DNA extraction steps.
One set was amplified and prepared for sequencing using the Illumina TruSeq library
kit while another set of unamplified samples were prepared using the Accel 1S Plus
kit. Both sets were sequenced on the Illumina HiSeq platform. Differently treated
samples differ in terms of final composition, represented in bar plots. Each colour
represents the relative abundance of a unique viral contig in each sample. Abundance
does not reach 100% in the unamplified sample as the higher level of richness also
hampered assembly (adapted from (Shkoporov et al., 2019)). (B) Impact of assembly
software on final virome composition. A faecal samples was spiked with $Q33 10’
PFU ml?, extracted and sequenced. These sequences were assembled using 16
assembly programs. Only one assembler identified the genome in a single contig of
the correct length. Five assemblers completely failed to assemble the genome and a

further five generated fragmented assemblies. (Sutton et al., 2019a).
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MDA bias can also have a significant impact on qualitative analysis of the gut
virome. As the concentration of the DNA template also impacts the products of an
MDA reaction, initial log-fold differences in the abundance of viral sequences are
exaggerated by MDA (Zhang et al., 2006;Woyke et al., 2009). This results in extremes
of both high and low read coverage and uneven representation of the initial
metagenome. As high-abundance sequences sequester sequencing resources, low-
abundance sequences can be insufficiently covered (Garcia-Lopez et al., 2015). These
coverage extremes have profound impacts on a number of steps in bioinformatic
pipelines, but in particular metagenomic assembly (Garcia-Lopez et al., 2015;Sutton
et al., 2019a). A recent comparison of all assemblers used in virome studies to date
observed that both high and low-coverage sequences resulted in fragmented
assemblies and recovered only small proportions of viral genomes (Sutton et al.,
2019a). Furthermore, samples were spiked with an abundant (107 plaque-forming units
ml) exogenous lactococcal phage Q33. These samples underwent identical extraction
amplification and sequencing and resulting viromes were then assembled using all
assembly methods which had been reported in virome studies at the time (16). Ten of
the assemblers either failed to recover or significantly fragmented the Q33 genome
and only one assembler recovered the genome at the correct length (Figure 3.B)
(Sutton et al., 2019a). These results suggest that numerous and potentially biologically
relevant viral sequences may be not only be skewed in abundance but also excluded
by current virome analysis protocols. This also means that we see the virome through
the lens of the extraction protocol before any decision has been made to use database-

dependent or independent methods (Figure 2.).

As with many microbiome studies, conclusions from virome studies are primarily
drawn from relative rather than absolute abundances of sequences. As has been
discussed, these abundances are often skewed by MDA bias. This ambiguity
highlights the need for quantitative analysis protocols in virome studies as was
recently described (Shkoporov et al., 2018b;Clooney et al., 2019;Shkoporov et al.,
2019). These studies reported significant differences in the overall viral load between
individuals. This total viral load was also correlated negatively with viral alpha
diversity within the sample and the presence of abundant non-temperate phage such
as Microviridae and crAss. These results suggest that high viral load is associated with

a low number of abundant phage, which consequently mask underlying temperate
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phage diversity. This also suggests the maintenance of high-abundance non-temperate
phage may be closely linked to the health status of the gut. Subsequently, this may act
as a useful biomarker for disease and give insight into the phage-host dynamics related

to microbiome stability and disease status.
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Future Prospects and Conclusions
Sequence-based analysis of the bacteriophage in the human gut has revolutionized our

view of the gut virome and its relationship with the microbiome. However, this new
insight has also revealed how little we know about this relationship. Our current
understanding is founded predominantly on extending our knowledge generated in
reductionist phage-host studies in vitro, or by large scale metagenomic studies of the
VLP fraction. While these in vitro studies give detailed insights into the mechanics of
individual phage-host interactions, the prevalence of these interactions in the gut
ecosystem remains speculative. Additionally, numerous studies have also reported that
these interactions can change dramatically in the gut (De Sordi et al., 2017;Gogokhia
et al., 2019). Large-scale metagenomic studies suggest that the virome and the
microbiome are closely linked, but these studies tend to give broad overviews of
subsets of the virome and lack details on the host-phage interactions. This leads to
significant gaps in our understanding of how phage-host dynamics in vitro differ from

phage-host dynamics occurring in the gut.

Application of similar analysis methods across studies (i.e. MDA, alignment
to reference databases, reports on Caudovirales alpha diversity) allows for comparison
across samples and studies. However, many virome studies present inconclusive or
contradictory results that hinder the progression of the field. Arguably the overreliance
on these analysis methods is largely to blame for the gaps in our understanding of the
virome. This is also supported by recent observations that methodology had greater
impact on the conclusions drawn from virome studies than health or disease status
(Gregory et al., 2019). As conclusions are drawn from minor fractions of data and as
detection criteria do not take into account phage biology and evolutionary history, we
must pose the question: is the gut virome field built on unstable foundations? With
this in mind, due caution must be used when interpreting the findings of virome data.
As virome data is particularly sensitive to methodological bias, conclusions must be
considered in the context of the analysis methods used (Figure 2, Supplementary table
1.). These limitations highlight the need for radically new approaches to studying the

virome if we are to understand its role in shaping the microbiome in health and disease.

Developments in sequencing library kits such as the Swift Biosciences Accel
1S Plus kit or extraction protocols like the linker amplified displacement LADs (Roux

et al., 2016), offer potential solutions to creating unbiased sequencing libraries from
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low-input DNA vyields. Through the removal of MDA bias and spiking known
concentrations of exogenous phage, (Shkoporov et al., 2018b) it may be possible to
gain new insights into the true composition and absolute abundance of the virome. As
has been discussed at length, the sensitivity of virome data to methodological bias
highlights the critical need for extensive optimization and validation of all steps of
virome analysis protocols, from wet-lab extraction protocols (Roux et al., 2016;Roux
et al., 2017;Shkoporov et al., 2018b) to bioinformatic pipelines (Garcia-Lopez et al.,
2015;Hesse et al., 2017;Vollmers et al., 2017;Sutton et al., 2019a). However,
standardization and consistency must not be at the cost of developing new methods.
Furthermore, when characterizing viral sequences it is crucial to use stringent
detection criteria to minimize the impact of spurious alignments and the influence of

gene sharing across dsDNA viruses.

Significant progress has been made in increasing the representation of gut
phage in reference databases and there is a growing consensus that viral taxonomy
will soon move towards sequence-based taxonomy (Paez-Espino et al.,
2016;Simmonds et al., 2017;Aiewsakun et al., 2018;Eloe-Fadrosh, 2019;Gregory et
al., 2019). However, proposed protocols to add metagenomic sequences to current
taxonomic systems have not yet been accepted (Simmonds and Aiewsakun, 2018).
Given the dominance of unknown sequences in virome data it is therefore crucial to
accept the current limitations of phage taxonomy. Rather than force the virome to fit
current taxonomic systems, we propose that future studies should allow the virome to
reveal its own targets for downstream characterization. Subsequently, we have
outlined a method to analyse the virome in its entirety with our WVA protocol.
Furthermore we have described a framework to characterize unknown but biologically
relevant viral sequences that may be identified using WVA. In this way it may be
possible to address the gaps in our understanding of phage-host dynamics in the human

gut, and see existing datasets in a new light.
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To what extent the phage of the human gut shape the microbiome will dictate
whether it will be possible to use phage as a therapeutic tool in the future. There are
significant gaps in our understanding of phage-host interactions which need to be
addressed before we can reach any conclusions on the usefulness of phage as a
biotherapeutic. By increasing our understanding of phage-host interactions in the gut,
it may be possible to pave the way for therapeutic applications of phage in the human
body. However, the limited insights we have been granted to date of phage-host
interactions have also highlighted some significant hurdles facing phage therapy.
Early evidence that the virome could play a role in the success of FMT (Ott et al.,
2017;Draper et al., 2018) suggests there may be a future in using the virome to shape
the microbiome in disease. To date, the majority of phage intervention studies are
based on single phage-host pairs (or cocktails containing limited numbers of phage)
in vitro which have been shown to be significantly different to phage-host dynamics
in vivo (De Sordi et al., 2017). For example, phage have been found to switch hosts
and interact directly with mammalian immune cells in vivo, which has serious
implications for the future of phage therapy (Gérski et al., 2012;Gogokhia et al., 2019).
Additionally the phage-mediated transfer of host virulence factors (Waldor and
Mekalanos, 1996;Friman et al., 2011;Muniesa et al., 2012;Scanlan et al., 2015) as well
as direct pathogenesis of phage capsids (Sweere et al., 2019) suggests phage could be
a potential risk in therapeutic settings. These challenges are confounded with
regulatory issues (Brissow, 2019) and additional gaps in our understanding of the
pharmacodynamics of phage in mammalian tissue. Having the potential to directly
interact with the immune system (lvanenkov and Menon, 2000;Barr et al., 2013;Barr
et al., 2015;Nguyen et al., 2017) given their larger size relative to other biological
therapeutic agents makes phage a more complex therapeutic agent than any that have
preceded them. However, in light of the increasing incidence of bacterial pathogens
which are resistant to antibiotics, and given the promising results of some existing
phage therapy trials (Wright et al., 2009;Chan et al., 2018;LaVergne et al.,
2018;Garrett, 2019), overcoming these challenges is critically important. Similarly the
gaps in our understanding of how phage shape bacterial communities will need to be

addressed if phages are to have a role in avoiding future global health issues.
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Abstract

The viral component of microbial communities play a vital role in driving bacterial
diversity, facilitating nutrient turnover and shaping community composition. Despite
their importance, the vast majority of viral sequences are poorly annotated and share
little or no homology to reference databases. As a result, investigation of the viral
metagenome (virome) relies heavily on de novo assembly of short sequencing reads
to recover compositional and functional information. Metagenomic assembly is
particularly challenging for virome data, often resulting in fragmented assemblies and
poor recovery of viral community members. Despite the essential role of assembly in
virome analysis and difficulties posed by these data, current assembly comparisons
have been limited to subsections of virome studies or bacterial datasets. This study
presents the most comprehensive virome assembly comparison to date, featuring 16
metagenomic assembly approaches which have featured in human virome studies.
Assemblers were assessed using four independent virome datasets, namely; simulated
reads, two mock communities, viromes spiked with a known phage and human gut
viromes. Assembly performance varied significantly across all test datasets, with
SPAdes (meta) performing consistently well. Performance of MIRA and VICUNA
varied, highlighting the importance of using a range of datasets when comparing
assembly programs. It was also found that while some assemblers addressed the
challenges of virome data better than others, all assemblers had limitations. Low read
coverage and genomic repeats resulted in assemblies with poor genome recovery, high
degrees of fragmentation and low accuracy contigs across all assemblers. These
limitations must be considered when setting thresholds for downstream analysis and

when drawing conclusions from virome data.
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Introduction
The rapid evolution of metagenomics and high throughput sequencing technologies

has revolutionised the study of microbial communities, giving new insights into the
role and identity of the uncultivated microbes which account for the majority of
metagenomic sequences (Solden et al., 2016). However, the majority of microbial
sequencing efforts have focused on the characterisation of prokaryotic microbes. Viral
metagenomes (viromes) are dominated by novel sequences, often with up to 90% of
sequences sharing little to no homology to reference databases (Aggarwala et al.,
2017). Bacteriophage, the most abundant members of viral communities, play a key
role in the shaping the composition of microbial communities and facilitate horizontal
gene transfer (Paul, 2008). Viromes have been shown to play a role in global
geochemical cycles (Breitbart, 2011) and have been studied in varied ecosystems
including the ocean (Hurwitz and Sullivan, 2013). Viromes of the human body are of
particular interest, where they have been linked to disease status (Norman et al., 2015),
maintaining human health (Manrique et al., 2016) and shaping the gut microbiome in
early life (Lim et al., 2015;McCann et al., 2018). Due to the predominance of
uncharacterised viral sequences “viral dark matter”; (Roux et al., 2015), and the lack
of a universal marker gene, virome studies rely on database independent analysis
methods and depend heavily on de novo assembly to resolve viral genomes from

metagenomic sequencing reads.

Metagenomic assemblers typically use de Bruijn graph (DBG) approaches to
address the complexity and size of metagenomic datasets in an accurate and efficient
manner. Microbial metagenomes pose significant challenges to DBG assembly when
compared to single genome assemblies often complicating the DBG and leading to
fragmentation and/or misassembly (Olson et al., 2017). These challenges include
uneven sequencing coverage of organisms within the metagenome, the presence of
conserved regions across different species, repeat regions within genomes and the
introduction of false k-mers by both closely related genomes at differing abundances
and sequencing errors at high read coverage. This hampers the use of coverage
statistics to resolve repeat regions between and within genomes (Olson et al., 2017).

A wide array of metagenomic assembly programs have been employed, each
addressing aspects of metagenomic challenges to varying degrees. However, many of

these programs have been designed and optimised for bacterial metagenomes, which
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share many assembly challenges of viromes but to a lesser degree. Virome data is
characterised by high proportions of repeat regions within viral genomes (Minot et al.,
2012), hypervariable genomic regions associated with host interaction (Warwick-
Dugdale et al., 2018) and high mutation rates which lead to increased metagenomic
complexity and strain variation (Roux et al., 2017). Low DNA vyields also limit read
coverage and often require a multiple displacement amplification (MDA) step which
has been shown to preferentially amplify small single stranded DNA viruses (Kim and
Bae, 2011). Extremes in read coverage caused by MDA bias and dominant viral taxa
such as crAssphage, which can make up large proportions of human gut viromes
(Dutilh etal., 2014), sequester sequencing resources and result in insufficient coverage
of low abundance viruses. These challenges result in fragmented virome assemblies
(Garcia-Lépez et al., 2015), limiting their use in downstream analysis. Despite
benchmarks of bacterial metagenomes having highlighted failings and benefits of
particular assembly programs, many poorly performing assemblers have featured in

virome studies (Foulongne et al., 2012;Hannigan et al., 2015;Guo et al., 2017).

Accurate comparison of metagenomic assemblers is complicated by the
unknown composition of metagenomic datasets and the limited applicability of
general assembly statistics such as N50 (Deng et al., 2015;Vollmers et al., 2017). To
address this, the accuracy and efficacy of metagenomic assembly programs is often
evaluated using simulated datasets and mock communities of known composition.
Although these simulated datasets are undergoing constant improvements (Sczyrba et
al., 2017;Fritz et al., 2018), they have focused primarily on bacterial metagenomes and
remain limited in their ability to accurately replicate the challenges of true
metagenomes. While some virome-specific assembly benchmarks have been
performed, many have been limited to a small number of assemblers, 454 data or
subsections of virome studies and have exclusively used simulated data (Aguirre de
Carcer et al., 2014;Smits et al., 2014;Vazquez-Castellanos et al., 2014;Garcia-Lopez
etal., 2015;Hesse et al., 2017;Roux et al., 2017).

Here we expand upon previous studies and present a detailed investigation of
assembly software for virome analysis which compares all those previously used in
human virome studies to date, as well as other popular or more recently published
assemblers (Table 1). We compare assembly efficacy and accuracy using simulated

viromes, mock viral communities and human gut viromes spiked with a known
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exogenous bacteriophage. Furthermore we confirm these findings using human
virome data from published datasets and assess computational parameters such as
runtime and RAM usage. We also investigate in detail the impact of sequencing
coverage and genomic repeats on assembly performance and highlight important
considerations for future virome studies. Together these data comprise most

comprehensive virome assembly benchmark to date.

Methods

Each assembler with the exception of Geneious and CLC was run as per manual with
default parameters (unless stated) using a Lenovo x3650 M5 server with an intel Xeon
processor E5-2690 v3 and 512Gb RAM running Ubuntu 14.04.5. Geneious assembly
approach mirrored that used in (Manrique et al., 2016) by generating consensus
sequences from the assemblies of both MIRA and Vicuna. CLC and Geneious were
run on a 64-bit windows 10 computer with an i5-4690 CPU and 16 GB of RAM.

Data sources

Sequencing reads from mock communities A and B featured in (Roux et al., 2016),
Simulated Virome dataset featured in (Hesse et al., 2017), reads used to compare the
impact of sequencing depth on time and RAM usage featured in (Manrique et al.,
2016) and human viromes spiked with 107 PFU of Lactococcal phage Q33 (Mahony
et al., 2013) and originated from (Shkoporov et al., 2018) .

Read Pre-processing

Raw read quality was assessed with FastQC v0.11.5 and sequencing adapters were
removed with cutadapt v1.9.1 (Martin, 2011) for the mock, Spiked and healthy gut
virome data sets. Trimming and filtering was carried out with Trimmomatic v0.36
(Bolger et al., 2014) using parameters specific to each dataset. A sliding window size
of 4 with a minimum Phred score of 30 and a minimum length of 60bp was used with
reads from both mock communities. The leading 15bp and trailing 60bp were removed
from “Healthy human gut phageome” reads and a sliding window of 4bp with a
minimum phred score of 20 was applied. The leading 10bp and trailing 100bp were
removed from the Q33 spiked virome reads and a sliding window size of 4bp with a
minimum Phred score of 30. Filtered reads were through a minimum length filter of
60bp.
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Analysis methods

Quality filtered reads from the Q33 spiked dataset consisted of 3 individual viromes
which were pooled and subsequently assembled. Contigs were aligned to the published
Q33 using Blastn with an e-value cut-off of 1e%. Top hit alignments to the Q33
genome with a minimum alignment length of 800 bases and which shared 95% identity
were included in further analysis using QUAST (v. 4.4) (Gurevich et al., 2013) with
“--unique mapping” flag. Further comparison and visualisation of Q33 assemblies was
carried out using Mauve (v. 20150226, build 10) (Darling et al., 2010).

Alignment and comparison of assemblies from mock and simulated data sets
to reference genomes was carried using MetaQUAST (v. 4.4) (Mikheenko et al., 2015)
with “--unique mapping” flag and default parameters (minimum contig length of
500bp, minimum alignment length of 65bp, minimum identity threshold of 95%).
Correlations were carried out using Spearman method and plots were generated using
the package ggplot2 (v 3.0.0) package in R (v.3.4.3). These correlations were
validated using a linear model in R base library. For data which was not normally

distributed, log transformation was carried out.

Reads from the “healthy human gut phageome” were analysed to compare the
overall assembler efficiency and the impact of sequencing depth. Reads were
randomly subset in pairs (both the forward and reverse read of a pair were retained) to
different depths using an in-house python script. Samples were subset in increments
of 300,000 reads to their respective maximum depth (2.7, 3.5, 3 and 3.3 million reads).
GNU time was utilised to measure the maximum RAM and length of time for each
assembly to reach completion. All assemblers were run using 5 threads where possible
with the exception of CLC, Geneious, Ray Meta, Velvet and Vicuna. Ray Meta and
Velvet were run with 10, 1 thread(s) respectively. Ray Meta failed to run with 5 while
Velvet ran with 1 core despite 5 being allocated. Vicuna was also allocated 5 threads
however used upwards of 20. MetaVelvet was run, but after 7 days had failed to reach
completion and was therefore removed from the subsequent analysis of these metrics.
Contig statistics and filtering (contigs greater than 1kb retained) were performed using
the assembly-stats script (v1.0.1) from the Pathogen Informatics group at the
Wellcome Sanger Institute (https://github.com/sanger-pathogens/assembly-stats).
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Versio

Software Link Reference
n used
v2.0.2
ABySS http://www.bcgsc.ca/downloads/abyss/ (Simpson et al., 2009)
https://www.giagenbioinformatics.com/produ https://www.giagenbioinformatics.
CLC v5.0.5
cts/clc-assembly-cell/ com/
. https://www.geneious.com/features/assembly- | v11.0. (Kearse etal., 2012)
Geneious .
mapping/ 3
L _ . . (Peng et al., 2012)
IDBA UD :gps.//l.cs.hku.hk/ alse/hkubrg/projects/idba_ Vil
. . vi.1.1 .
MEGAHIT https://github.com/voutcn/megahit ) (Li et al., 2016)
v12.0 (Namiki et al., 2012)
MetaVelvet | https://metavelvet.dna.bio.keio.ac.jp/ ) -
http://mww.chevreux.org/mira_downloads.ht v4.0.2 | (Garcia-Lopez etal., 2015)
MIRA
ml
(Boisvert et al., 2012)
Ray Meta http://denovoassembler.sourceforge.net/ v2.3.0
AP .
ig denov http://soap.genomics.org.cn/soapdenovo.html | v2.04 | (Luoetal., 2012)
v3.10. .
SPAdes http://cab.spbu.ru/software/spades/ 0 (Bankevich et al., 2012)
SPAdes http://cab.spbu.ru/software/spades/ (variation | v3.10.
meta of SPAdes applied with flag) 0 (Nurkeetal., 2017)
. . vi2.1 . .
Velvet https://www.ebi.ac.uk/~zerbino/velvet/ 0 (Zerbino and Birney, 2008)
VICUNA https://github.com/broadinstitute/mvicuna v1.3 (Véazquez-Castellanos et al., 2014)

Table 1: A list of assemblers used in this study
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Results

Simulated virome dataset

Normalised genome abundance of 572 members of a published simulated community
(Figure. 1A) (Hesse et al., 2017) and the degree of fragmentation, was assessed by
aligning the resulting contigs from each assembler to the reference genomes (Figure.
1B). MetaVelvet was not included in this analysis as it failed to reach completion after
seven days. Approximately half of the genomes in the community featured an average
recovered genome fraction less than 75% and exhibited higher degrees of
fragmentation (>10 contigs per genome on average) across all assemblers. For 87 of
the 572 genomes there was an average recovered genome fraction of less than 20%
across all assemblers (the low recovered genome fraction of VICUNA was excluded
as an outlier). Of these genomes, 84 were present at low abundance (lowest 40% of all
abundances normalised to genome length). The remaining three genomes were present
at higher normalised abundances (50 — 80" percentile) but featured the some of the

highest proportions of genomic repeats (70™-90™ percentile).

Normalised genome abundance within the community had a strong positive
correlation with recovered genome fraction across all assemblers (Supplementary
Table 1, Additional file 5) and was verified using a linear model (Supplementary Table
2, Additional file 5), with the exception of SOAPdenovo2, which was negative.
Normalised abundance also correlated negatively with the degree of fragmentation
(number of contigs) across all assemblers except Velvet which was positively
correlated and Geneious which was not significant (Supplementary Tablel, Additional
file 5). None of the genomes in the lower 30" percentile of normalised abundance
featured an average recovered genome fraction greater than 75%, further exemplifying

the impact of low sequencing coverage.
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Figure 1: Relationship between percentage of each genome recovered (genome
fraction), the number of contigs required for each combination of genome and
assembler and the abundance and proportion of repeats for each genome. (A
and B) Genomes are ordered by their average genome fraction across all
assemblers from high to low along the x-axis. (A main) Relative abundance,
normalized by genome length is plotted along y-axis with upper limit of 0.75%
and colour of bars determined by proportion of repeat regions in each genome.
Blue bars represent genomes with a high proportion of genomic repeats (4"
quartile of all genomes), red represents all other genomes below this quartile.
(A insert) Expanded view of (A) without an upper limit of y value. (B)
Percentage genome recovered is plotted along the y axis. Points are coloured
by assembler with shape of the point is denoting number of contigs generated
by each assembler for each genome.
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However high abundance did not consistently improve genome recovery and of the
172 genomes in the top 30% of normalised abundance, 20 featured an average genome
fraction below 50%. The distance of the log transformed (due to extremes in values)
normalised abundances from the mean was negatively correlated with recovered
genome fraction across all assemblers (correlation coefficient: -0.42, p-value < 2.2¢"
16), Of 171 genomes in the 40" — 60" percentile of normalised abundance 29 featured
an average genome fraction below 50%. This indicates factors other than abundance
may hamper genome recovery. MIRA and Geneious both recovered a greater fraction
of low abundance genomes with fewer contigs than other assemblers. However, MIRA
assemblies of 13 of the most abundant genomes in the community (highest 10%)
exhibited the highest degree of fragmentation in the study, generating between 401
and 2983 contigs per genome.

The proportion of inverted repeats, palindromic repeats, tandem repeats and a
total proportion of genomic repeats was calculated for each genome. The total
percentage of repeat regions predicted in each genome was positively correlated with
the degree of fragmentation observed in each assembly across all assemblers with the
exception of Ray Meta (Supplementary Table 3, Additional file 5), and negatively
correlated with recovered genome fraction across all assemblers except ABySS (k-mer
63/127), Geneious, and SOAPdenovo2. When this relationship between repeat regions
and the recovered genome fraction was assessed using a linear model, correlations
were significant for CLC, MIRA, Ray Meta, Velvet, and all parameters of SPAdes
(Supplementary Table 2, Additional file 5). Both the proportion of repeat regions in a
genome and the relative abundance of that genome contribute to the variation in
recovered genome fraction, though each explain a separate aspect of this variation. No

interaction was found between these two metrics.

VICUNA, Ray Meta, SOAPdenovo2, Geneious, ABYSS (both k-mer sizes)
and Velvet recovered under 50% of the total genome fraction (all genomes in the
community). VICUNA produced just four contigs in total with high levels of
mismatches (174 per 100kb on average) which could possibly be linked to the format
of the artificial reads as this was not observed in real sequencing data. The five
assemblers which recovered the highest genome fraction overall were SPAdes
(default), MEGAHIT, SPAdes (single cell), SPAdes (single cell + careful) and CLC.

All assemblers achieving a minimum average genome fraction of 50% were subjected
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to a ranking system (Supplementary Table 4, Additional file 5). To compare both
recovery and fragmentation assemblers were ordered from best to worst based on
genome recovery and number of aligned contigs. The average rank resulted in Spades
(default) performing best, recovering 72.2% overall genome sequences with 8230
contigs. The remaining top five assemblers of this combined rank were SPAdes (meta)
68.2% with 7419 contigs, SPAdes (single cell) 68.9% with 9506 contigs, CLC 68.6%
with 9152 contigs and MEGAHIT 69.6% with 10083 contigs. The number of
assemblies which recovered greater than 90% of the target genome in one single contig
was compared (Figure. 2). SPAdes (default) performed best, recovering 210, SPAdes
(meta), SPAdes (single cell + careful), CLC, and SPAdes (single cell) each recovered
179, 168, 162 and 160 genomes respectively.

The accuracy of assemblies was assessed by calculating the average count of
indels, mismatches, and misassemblies per 100kb across all genomes. These counts
were normalised to the number of genomes each assembler recovered with a minimum
genome fraction of 50%. These were ranked according to their performance in all three
metrics (Supplementary Table 4, Additional file 5), with assemblies from Velvet
having the lowest overall counts followed by ABySS, IDBA UD, MEGAHIT and Ray
Meta. With the exception of Ray Meta and SOAPdenovo2, the number of mismatches
per 100kb was negatively correlated with both genome abundance and recovered

genome fraction across all assemblers (Supplementary Table 1, Additional file 5).

The rate of false positive (no alignment to reference genomes) and false
negative (recovered genome fraction of 0%) contigs assembled allowed for the
determination of sensitivity. A number of assemblers had a sensitivity greater than
97%, however each returned greater than 7,000 contigs, inferring a high degree of
fragmentation (Table 2). MIRA assembled (partial or complete) 559 of the genomes
with a false positive count of just four. However, this was achieved from more than
27,000 contigs. ABYSS (both k-mer sizes), Geneious, Ray Meta and Velvet returned
very few false positives but failed to detect many of the genomes present. SPAdes
(meta) performed best with 558 of the 572 genomes detected and only five false

positives resulting from 7419 contigs.
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No. of

False False True . e
Positives Negative Positives contigs Sensitivity
returned*

ABSS (k-mer 63) 0 111 461 7957 80.59
ABYSS (k-mer 127) 1 123 449 7732 78.50
CLC 34 5 567 9152 99.13
Geneious 9 190 382 958 66.78
IDBA UD 25 9 563 8999 98.43
MEGAHIT 21 8 564 10083 98.60
MetaVelvet N/A N/A N/A N/A N/A
MIRA 4 13 559 27600 97.73
Ray Meta 0 213 359 4224 62.76
SOAPdenovo2 536 116 456 11548 79.72
SPAdes 29 3 569 8230 99.48
SPAdes meta 5 14 558 7419 97.55
SPAdes sc 38 7 565 9506 98.78
SPAdes sc careful 40 6 566 9724 98.95
Velvet 1 65 507 6343 88.64
VICUNA 0 558 14 4 2.45

*572 in community

Table 2: The number of false positive, false negative contigs generated by each
assembler for the Simulated community, together with the sensitivity rates
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Mock community dataset

Two mock viral communities were used to investigate the impact of high and low
abundance ssDNA viruses on assembly performance. Mock A (Table 3a) contained
12 viral genomes, 10 of which were at equal abundance (9.82% of the total
community) and two sSDNA genomes (NC_ 001330 and NC_001422) at low
abundance (0.92%). Analysis of this community showed that although some
assemblers, namely CLC, Geneious, SPAdes (single cell) and VICUNA, detected all
12 genomes, this was at the expense of a large number of false positives (1143, 53,
1513 and 4969 respectively). Velvet and MetaVelvet generated no false positives, but
failed to assemble three genomes, while AByYSS (for both k-mers) generated a large
number of false positives and failed to assemble four and six genomes, respectively.
IDBA UD and Ray Meta outperformed the other assemblers with an equal number of
contigs to genomes (12), followed by MEGAHIT, SPAdes (default) and SPAdes
(meta) with 13, 14 and 14. Mock B (Table 3b) also contained 12 genomes but with a
higher abundance of ssDNA genomes NC_001330 and NC_001422 (32.47%).
VICUNA assemblies of Mock B improved upon those from Mock A as no false
positives were generated, while the false positive rate in the MIRA assembler
increased to 94 from none in Mock A. IDBA UD performed best followed by SPAdes
(default), Ray Meta, MEGAHIT and SPAdes (meta) based on sensitivity and number
of contigs, while ABySS (both k-mer sizes) and SOAPdenovo2 had the lowest
sensitivity. Despite being a relatively simple community consisting of 12 members,
not all assemblers were able to recover all members (Supplementary Table 5-6,
Additional file 5). A greater number of assemblers (six) failed to assemble all members
of Mock B than Mock A (four). ABySS(k-mer 63), ABySS(k-mer 127), Velvet and
MetaVelvet failed to assemble 6, 4, 3 and 3 genomes respectively, in Mock A and 6,
4,1 and 1 genomes, respectively in Mock B. In addition, MIRA and SOAPdenovo2

failed to assemble 1 and 2 genomes respectively in Mock B.
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A)

Fals_e_ False _ Trug _ No. of contigs Sensitivity

Positives | Negative | Positive returned*
6A3£)3yss (k-mer | g, 4 8 61 66.67
fZE?)’SS (k-mer | g4 6 6 56 50.00
CLC 1143 0 12 1299 100.00
Geneious 53 0 12 65 100.00
IDBA UD 0 0 12 12 100.00
MEGAHIT 0 0 12 13 100.00
MetaVelvet 0 3 9 26 75.00
MIRA 0 0 12 89 100.00
Ray Meta 0 0 12 12 100.00
SOAPdenovo?2 2 0 12 23 100.00
SPAdes 0 0 12 14 100.00
SPAdes meta 0 0 12 14 100.00
SPAdes sc 1513 0 12 1527 100.00
f:r'zfuels *lo 0 12 15 100.00
Velvet 0 3 9 26 75.00
VICUNA 4969 0 12 5385 100.00

*12 in community

78




B)

Fals'e' False ' Tru.e . No. of contigs e

Positive | Negative | Positives | returned*
ABYSS (k-mer 63) 60 4 8 69 66.67
ABYSS (k-mer 127) | 132 6 6 139 50.00
CLC 450 0 12 505 100.00
Geneious 14 0 12 30 100.00
IDBA UD 0 0 12 12 100.00
MEGAHIT 0 0 12 14 100.00
MetaVelvet 0 1 11 24 91.67
MIRA 94 1 11 157 91.67
Ray Meta 0 0 12 13 100.00
SOAPdenovo?2 2 2 10 27 83.33
SPAdes 0 0 12 13 100.00
SPAdes meta 0 0 12 14 100.00
SPAdes sc 593 0 12 607 100.00
SPAdes sc careful 0 0 12 14 100.00
Velvet 0 1 11 24 91.67
VICUNA 0 0 12 15 100.00

*12 in community

Table 3: The number of false positive, false negative

with the sensitivity rates for each

contigs generated by each
assembler for a) Mock community A (overleaf ) and b) Mock community B) along
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All but three VICUNA assemblies in Mock A exhibited a high level of
fragmentation, generating 34.7 + 35 (mean + standard deviation) contigs per genome.
Fragmentation was also seen in MIRA assemblies to a lesser degree with 7.4 £ 10
(mean + standard deviation) contigs per genome on average. There was a high rate of
fragmentation in CLC with one community member generating 144 contigs for
genome KF302035. Average recovered genome fraction of 85.4 £ 6.4 % was skewed
by ABYSS (k-mer 63), ABYSS (k-mer 127), Velvet, MetaVelvet, SOAPdenovo2, and
VICUNA which recovered on average 49.5%, 66.6%, 73.8%, 73.8%, 29.7% and
76.6%, respectively. All other assemblers recovered over 99% of each genome in the

community (Supplementary Figure 1).

Closer inspection of the two ssDNA genomes present at lower relative
abundance highlighted significant differences in the average number of indels across
all assemblies of the NC_001330 and NC_001422 genomes versus other members of
the community (p-value = 0.037). These genomes exhibited an average of 41.7 + 18.5
and 9.4 £ 20.4 indels per 100kb, while all other genomes featured an average of 7.8 +
18.9 indels per 100kb. The low abundant ssDNA genomes NC 001330 and
NC_001422 also featured the highest average mismatches per 100kb at 148.7 + 3 and
302.5 £ 10.7, respectively (Supplementary Figure 1).

The degree of fragmentation observed by VICUNA and MIRA in Mock B was
lower than in Mock A with a mean of 1.3 + 0.89 and 5.3 + 7.7 contigs per genome,
respectively. CLC fragmented genome KF302035 in Mock B (44 contigs), but to a
lesser degree than Mock A (144 contigs). MEGAHIT, which recovered at least 98%
of all genomes in Mock A, also recovered over 98% of all genomes in Mock B except
for the ssDNA genome NC_001422, of which 56.5% was recovered in two contigs.
The majority of assemblies exhibited 147.9 £ 0 and 297 + 1 mismatches per 100kb for
NC_001330 and NC_001422 (high abundance ssDNA), respectively, identical values
to those measured in Mock A. Velvet and MetaVelvet were exceptions with 184.2 and
860.2 for genome NC_001422 and NC_001330. A similar pattern of high values
across a narrow range was also observed with the number of indels, with 49.3 to 32.9
present in all assemblies NC_001330. Genome NC_001422 featured 18.57 indels

across all SPAdes assemblies (all parameters) and 860.2 across both Velvet and
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Metavelvet assemblies. All other assemblers which successfully recovered this

genome did not feature any indels (Supplementary Figure 1).

Q33

Five assemblers failed to generate contigs which met alignment thresholds and were
subsequently excluded from further analysis - namely ABySS (k-mer 63), ABySS (k-
mer 127), SOAPdenovo2, Velvet and MetaVelvet. All remaining assemblers
recovered over 90% of the spiked Q33 genome with the exception of MIRA (8.5%).
Six assemblers recovered over 99% of the Q33 genome in a single contig - SPAdes
(meta) 99.74%, MEGAHIT (99.6%), VICUNA (99.6%), Ray meta (99.6%), CLC
(99.5%) and Geneious (99.1) (Figure. 3). However, only MEGAHIT assembled the
Q33 genome with a contig equal in length to the genome itself. SPAdes (meta) and
CLC generated assemblies shorter than the reference genome by 86 and 141 bases.
VICUNA (723), Geneious (1765), and Ray Meta (9884) each generated assemblies
longer than the reference genome. SPAdes (default) SPAdes (single cell), IDBA UD
and SPAdes (single cell + careful) each assembled Q33 in 2, 3, 4, 5 and 5 contigs,
respectively. Ray Meta and VICUNA assemblies had the lowest number of
mismatches and indels per 100kb, however Ray Meta exhibited the highest rate of
misassemblies (2 relocations, 1 inversion). All assemblers featured a minimum of one
local misassembly with the exception of SPAdes (meta) did not feature any. The six
best assemblies of the Q33 genome and the genome itself are syntenic (although
occasionally on the reverse strand) and the start and end point were not conserved
(Figure .3).
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Read depth analysis (Time and RAM)

Assemblers were compared for practicality by measuring the time to reach completion
and maximum RAM usage via four published healthy human gut viromes (Manrique
et al., 2016) and various sequencing depths . It must be noted that all assembly tasks
were allocated five threads, however specifying the number of threads did not change
the number of threads used by certain programs. MetaVelvet was not included in this
analysis as it failed to reach completion after running for seven days. CLC and
Geneious were performed on a desktop computer and therefore excluded from time
and RAM analysis. Run time is dependent upon the number of reads and this is largely
linear in scale with more reads leading to an increased assembly time (Figure. 4a).
MIRA and Vicuna (Figure. 4a insert) were the slowest with MIRA taking over 15
times longer than the other software to assemble 3.5 million reads. SOAPdenovo2
had the shortest completion time followed by IBDA UD and Velvet. Most assemblers
were consistent across samples (observed via error bars) with the exception of MIRA
and Ray Meta. MIRA, Vicuna and Velvet (Figure. 4b insert) had the highest max RAM
usage while the lowest was Ray Meta, IDBA UD and SPAdes (meta) (Figure. 4b). The

majority of assemblers observed a linear scale pattern similar to that of run time.

Read depth analysis N50 and Longest contig length

For both the N50 (Figure. 4c) and the longest contig length (Figure. 4d), there was a
large amount of variation between samples for the majority of assemblers. The longest
contig length showed a large increase at the final sequencing depth. Particular
assemblers, namely SPAdes (default), SPAdes (meta), MEGAHIT and ABYSS (k-mer

127), produced longer contigs as the sequence depth was increased.
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Figure 4. A) Time, measured in seconds, for each assembly to reach completion
successfully for each read subset. B) The maximum RAM, measured in MB, used
for each assembly for each read subset.
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Discussion

Many bacterial metagenomic assembly comparisons have highlighted that the choice
of assembler has a significant impact on downstream analysis and the accuracy of the
reconstructed metagenome (Mavromatis et al., 2007;Lindgreen et al., 2016;Greenwald
et al., 2017;Vollmers et al., 2017). We have found this also to be true for viral
metagenomes, where accurate and complete assembly are of particular importance
given the lack of viral representation in reference databases. Virome studies depend
heavily on the assembly step and possess many features which are challenging to
successful assembly. In this study we compared the performance of those assemblers
used to date in human viral metagenomics studies using datasets of known and
unknown composition and varying complexity. These included a Q33 spiked virome,
mock virome communities, a simulated virome and the “Healthy human gut
phageome” (Manrique et al., 2016). Each dataset provided unique attributes allowing
for comparison of assembly performance on a number of levels. The combination of
artificial and real viromes used in this study allows for the comparison of various
aspects of assembly performance across a range of datasets rather than depending on
simulated viromes alone, as is commonly carried out in assembly comparisons
(Mavromatis et al., 2007;Fritz et al., 2018) .

The Simulated dataset featured 572 viral genomes at various relative
abundances as published by Vazquez-Castellanos and colleagues (Vazquez-
Castellanos et al., 2014). Fragmented assemblies of individual genomes within
microbial communities hamper downstream analysis and limit the conclusions which
can be drawn from metagenomic data such as taxonomic and functional profiles
(Florea et al., 2011). Consequently, the percentage genome recovery and degree of
fragmentation was assessed across each assembler, with SPAdes (default, meta and
single cell) each performing well. VICUNA performed very poorly, recovering only
four contigs with high numbers of mismatches and misassemblies, despite having
performed well with other datasets and being designed to address challenges of
heterogeneous viral populations (Yang et al., 2012). This failure may reflect the
computational challenges relating to the format of the simulated reads, as benchmarks
carried out within the VICUNA study itself only include actual sequencing reads
(Yang et al., 2012). However, similar poor performance has been previously observed

in virome assembly comparison using VICUNA and 454 reads (VVazquez-Castellanos
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et al., 2014). For those assemblers which could recover greater than 90% of the
reference genome in a single contig, SPAdes (default) outperformed SPAdes (meta).
This may be explained by a lack of strain variants in the dataset and the fact that
SPAdes (meta) was optimised to combine strain variants of each species to form

consensus sequences.

A subset of genomes were poorly recovered (<20% genome fraction) by
nearly all assemblers. This observation indicates that there are challenging aspects of
viral genomes and metagenomes which cannot be overcome with current assembly
strategies. The strong positive correlations between the relative abundance and
genome fraction suggest that a low abundance threshold applies to virome assembly,
below which assemblies will consist of small fractions of the viral genome, and in
most cases be highly fragmented. This detrimental impact of low coverage has been
well established in previous assembly comparison studies (Garcia-Lépez et al.,
2015;Roux et al., 2017;Fritz et al., 2018). Highly abundant genomes also caused
similar recovery and fragmentation issues across all assemblers, which is of particular
importance due to the prevalence of extremely high abundance genomes in viral data
(crAssphage, certain SSDNA viruses). As both abundance extremes are common in
virome data, their impact must be considered when designing virome studies (i.e.
sequencing depth). As relative abundance alone did not fully explain the variation in
genome fraction recovered, the role of genomic repeats (a well-established assembly
challenge (Acufia-Amador et al., 2018) was also investigated. However, genomic
repeats could explain the variation in genome fraction recovered to a lesser degree

than relative abundance, suggesting other factors contribute to poor genome recovery.

Compositional differences between final assemblies and viromes themselves
must be taken into account when drawing conclusions about virome composition and
setting parameters for downstream analysis. Challenges such as genomic content and
strain variation are not currently addressed in human virome assembly strategies and
impact the reconstruction of certain members of a virome. Hybrid sequencing, which
uses both long and short reads to resolve genomic regions associated with poor
assembly (Warwick-Dugdale et al., 2018) is a promising new technology which could
address current virome assembly challenges. Library preparation methods which may
reduce the bias introduced by MDA steps include using Swift Biosciences 1S Plus kit

(Roux et al., 2016) and/or increasing overall sequencing depth or read length to
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improve recovery of lowly abundant viral genomes will be key. Furthermore, utilizing
an assembler which can robustly deal with ultra-high coverage genomes (> 1000x
coverage) is an important but often not appreciated aspect of virome assembly
analysis. While promising, these potential solutions highlight a requirement for

ongoing optimisation and extermination of virome analysis protocols.

Performance of some assemblers in this study was hampered by high coverage
sequences (primarily overlap consensus assemblers). VICUNA assemblies exhibited
the highest degree of fragmentation of all assemblers with Mock A, despite having
resolved both high abundance ssDNA genomes of Mock B to a single contig. MIRA
also exhibited a high degree of fragmentation with high abundance genomes in both
simulated and mock datasets. However, MIRA was least affected by low abundance
reads, recovering a greater genome fraction of low abundance genomes than other
assemblers with fewer contigs. Performance of assemblers hampered by high
coverage sequences in viromes may potentially be improved by sub-setting reads
similar to the assembly approach used by SLICEMBLER (Mirebrahim et al., 2015).

Multi-assembler approaches such as the use of Geneious to generate consensus
sequences from separate assemblers have been developed (Koren et al., 2014;Schiirch
et al., 2014;Deng et al., 2015) but have not been included in human virome studies
using short reads. MIRA assemblies of the Q33 genome and some low abundance
genomes in the Simulated dataset were improved using Geneious, resolving greater
genome fractions with fewer contigs (despite Geneious recovering a lower genome
fraction of the Simulated dataset overall). It is possible that using these approaches
could address issues facing each assembler, i.e. combine the assemblies of SPAdes
(meta) which performs well across all 4 datasets but struggles to recover low abundant
genomes, with MIRA assemblies which are less affected by low abundance but has
difficulty resolving genomes of higher abundance. Comparison of multi-assembler
approaches and combinations of various assemblers was not within the scope of this
study, but should not be ruled out as a potential method of improving virome assembly
in cases where composition could be assessed and obvious assembly challenges were

known to be present.

Across all analysis methods in this study, SPAdes (meta) performed

consistently well and would be our recommendation. It performed best in the
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Simulated data based on false positives, true positives and false negatives, best
assembled the Q33 genome (recovery, fragmentation, misassemblies and genome
size) and performed well with both mock communities in recovering all members
accurately in one or two contigs. SPAdes (meta) RAM usage was low and did not
increase to the same degree as other assemblers with increasing sequencing depth.
This recommendation is in agreement with previous comparisons (Vollmers et al.,
2017) which also suggested using SPAdes (meta) due to its ability to accurately
assemble members of bacterial metagenomes. SPAdes (meta) is less able to accurately
reconstruct micro-diversity as it generates a consensus assembly of “strain—contigs”
in a metagenome, which means it is better equipped to address the high mutation rates
observed in virome data (Nurk et al., 2017). This recommendation is also concurrent
with a previous study (Roux et al., 2017) which found IDBA UD, MEGAHIT and
SPAdes (meta) to perform equally well when assessed using 14 simulated viromes.
However, we found that SPAdes (meta) outperformed IDBA UD and MEGAHIT in
the Q33 spiked dataset, RAM usage in relation to increasing sequencing depth, and in
its ability to recover members of the Simulated virome in a single contig. This
recommendation contradicts two previous assembly comparisons which found CLC
(Hesse et al., 2017) and Velvet (White, Wang et al. 2017) to be best suited to virome
data. However, SPAdes (meta) was not included in either study. Though SPAdes
(meta) was out performed by MIRA in the assembly of low abundance genomes in the
Simulated dataset, MIRA has limited application to large datasets. MEGAHIT also
performed well across all datasets performing well in relation to recovery,
fragmentation and accuracy, but encountered some recovery issues in mock datasets

and minor accuracy issues with the Q33 genome.

The higher levels of accuracy (low mismatch indel and misassembly counts)
of assemblers which performed poorly in other metrics namely (velvet and ABySS (k-
mer 63), highlights the trade-off between accuracy and contiguity observed in previous
assembly studies (Gritsenko et al., 2012;Lin and Liao, 2013). However, both IDBA-
UD and MEGAHIT performed well for accuracy, genome recovery and
fragmentation. These assemblers may be worth considering if strain level detail is of
particular importance. The mock A and B datasets were used to assess the impact of
amplification bias on assembly performance. All ssDNA assemblies featured an equal

minimum number of mismatches across both Mock A and B. This may be caused by

89



challenges in the genomes themselves hampering accurate assembly, but is more likely
to reflect strain variation between genome sequence featured in the original

publication and the genome of the phage used in the community itself.

The Q33 spiked virome consisted of pooled reads from three healthy human
faecal samples, each of which having been spiked with 10’ PFU ml* of lactococcal
phage Q33 prior to virome extraction. This allowed for assembly comparison of one
abundant member of a challenging viral community. Despite the high relative
abundance of the Q33 genome, only 6 assemblers could recover over 90% of the
genome in a single contig, of these SPAdes (meta) and MEGAHIT reconstructed the
Q33 genome accurately without the introduction foreign or chimeric DNA. It was also
noted that the genome synteny was conserved across these six assemblies. This may
reflect circularization of the linear Q33 genome during DNA extraction as the presence
of cos sites has been previously predicted (Mahony et al., 2013).

The longest contigs of each assembler were only detected at the highest
sequencing depths and varied across assemblers, which may indicate that high
coverage is necessary to recover the largest viral genomes in a community. However,
it is also possible that these long contigs may reflect misassemblies and duplication
events caused by read errors at high sequencing depths which must be considered
when analysing high coverage data. At almost all sequencing depths Geneious,
Vicuna, Ray Meta and ABYSS (k-mer 127) exhibited the highest N50 values, despite
performing poorly in other metrics. This further highlights the limitation of using N50
alone as a metric of metagenomic assembly (Vollmers et al., 2017).

A further important consideration when performing any metagenomic
assembly is practicality; size of dataset, computational resources, bioinformatic
resources, and how much hands-on time is required from the end user. Both CLC and
Geneious are available as a GUI (albeit requiring a licence fee) which widens their
audience to researchers with limited command-line experience (CLC can also be run
using the windows command line). However, this limits their practicality for large
scale virome studies as they are limited to the computational power of desktop
computers and are not suited to the assembly of large numbers of samples. Despite the
limitations of computational power, CLC performed well in all datasets in terms of
genome recovery and fragmentation. Of the freely available open source assemblers,
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MIRA and VICUNA are the least efficient in terms of RAM usage and assembly time,
reflecting limitations of the overlap consensus approach to assembly. This limits their
applicability to large virome datasets, and further increases the time required to carry
out the Geneious assembly approach which requires the output of both assemblers.
Despite the long runtime, VICUNA did not adhere to the number of cores specified,
instead using all available cores. All other assemblers had a similar time requirements
(with the exception of SOAPdenovo2 which performed poorly across all datasets). Of
the assemblers which consistently performed well in terms of accuracy, genome
fraction recovered and fragmentation, SPAdes (meta) was most efficient in terms of
RAM usage, which did not increase to the same degree as other assemblers with
increasing sequencing depth. MIRA stood out in terms of impracticality by generating
by far the largest intermediate files of any assembler, requiring several gigabytes of

storage space for intermediate files.

The combination of results from four datasets facilitates accurate comparison
of assemblers as the limitations of each individual dataset vary. Application of Phi29
MDA to amplify virome DNA to sufficient quantities for sequencing can introduce
significant bias and skew the original composition of the virome, making quantitative
viromics difficult (Kim and Bae, 2011;Roux et al., 2016). As a result, it is likely that
true diversity of viral metagenomes is not being accurately captured using current
virome extraction methods. However, as these procedures move away from steps
known to introduce bias, greater diversity will be observed. In this sense, the level of
complexity of the Q33 dataset, which pooled three independent human viromes,
provides a useful testbed for metagenomic assemblers in future virome studies as
extraction methods improve. Additionally, Q33 was not present in the viromes prior
to spiking, assemblers were not challenged by the presence of native strain variations
of Q33 genome. In this study, assemblers were compared without individual
optimisation to the specific dataset. Feasibility dictates that, this “straight out of the
box” approach to assembly is used by almost all metagenomic assembly comparisons.
Additionally, as the true composition of metagenomes is unknown, any impact of
parameter optimisation must be estimated from general assembly statistics such as
N50 and longest contig which have been highlighted to be of limited usefulness
(Aguirre de Cércer et al., 2014;Vollmers et al., 2017). Any parameter optimisation
performed in the study (i.e. ABySS k-mer lengths, SPAdes careful vs. single cell)
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reflected parameters used in published virome studies and were not analysed in greater
depth. While it is possible that parameter optimisation could improve individual
assemblers we believe that the differences in assembly algorithms are the primary

drivers of assembly performance.

This study describes the impact of a crucial analysis step on virome
characterisation and highlights the need for a standardised analysis protocol across
future virome studies. Such a protocol would allow for comparison across studies and
facilitate accurate meta and cross analyses. This will be crucial should virome
sequencing be utilised in diagnostic and clinical settings. However, it must be noted
that any workflow will be somewhat limited biased to the detection of particular viral
taxa. Consequently, studies (e.g. identifying novel viruses) may benefit from
implementing multiple assembly approaches due to the large number of factors, both
technical (read length, quality, paired-end information etc.) and biological (genetic

complexity, evenness etc.) which impact virome assembly.
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Conclusions

Of all assembly programs used in human virome studies, SPAdes (meta) addressed
the challenges of virome data most effectively. However, all assemblers have
limitations and are hampered by aspects of virome data. Low read coverage and high
genomic repeats lead to assemblies with low recovered genome fraction and a higher
degree of fragmentation, with the assemblies themselves being less accurate. This

pattern was seen across all assemblers used in this study.

As assembler choice has significant implications for virome composition and
the conclusions which can be drawn from a dataset, assemblers which performed
poorly in this study (i.e. low genome recovery or accuracy and high degree of
fragmentation) highlight a potential untapped resource in the sequence data of
previously conducted virome studies. It is highly likely that many viral sequences were
poorly assembled and reanalysis using a more effective assembler may yield new
insights. Researchers conducting meta-analysis of virome sequencing studies should
take particular care when evaluating viral assemblies from different assembly
programs. Design of future virome studies should carefully consider the impact of
sequencing depth, as extremes in read coverage will prevent the assembly and
detection of viral genomes at both high and low abundance.

Abbreviations/Glossary
The following terms; Genome fraction, N50, number of contigs, misassemblies, local
misassemblies, are defined by QUAST (Mikheenko et al., 2015)

Genome fraction “is the total number of aligned bases in the reference, divided by the

genome size. A base in the reference genome is counted as aligned if there is at least
one contig with at least one alignment to this base. Contigs from repeat regions may

map to multiple places, and thus may be counted multiple times in this quantity.”

N50 “is the contig length such that using longer or equal length contigs produces half
(50%) of the bases of the assembly. Usually there is no value that produces exactly
50%, so the technical definition is the maximum length x such that using contigs of

length at least x accounts for at least 50% of the total assembly length.”

Number of contigs “is the total number of contigs in the assembly.”
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Misassemblies “is the number of positions in the assembled contigs where the left
flanking sequence aligns over 1 kbp away from the right flanking sequence on the
reference (relocation) or they overlap on more than 1 kbp (relocation) or flanking
sequences align on different strands (inversion) or different chromosomes

(translocation).”

Local misassemblies “A local misassembly has two or more distinct alignments

covering the breakpoint, the gap between left and right flanking sequences is less than
1 kbp and the left and right flanking sequences both are on the same strand of the same

chromosome of the reference genome.”
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Data availability

The Sequencing reads which support this study are available from the following links.

Mock communities A and B are available at:

http://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/DNA Viromes |

ibrary comparison .

Simulated virome reads are available at:
https://figshare.com/articles/Simulated virome datasest for assembly and annotati
on tests/5151163

Reads used to compare the impact of sequencing depth on time and RAM usage are
available from the NCBI SRA; http://www.ncbi.nlm.nih.gov/sra under the accession
numbers SAMNO04415496 to SAMNO04415499

Reads from human viromes spiked with 107 PFU of Lactococcal phage Q33 phage are
available at http://www.ncbi.nlm.nih.gov/sra under the accession numbers
SRX3240741, SRX3240716, SRX3240715

Supplementary material

Supplementary tables 1-6 are available from at the following link

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-
5/MediaObjects/40168 2019 626 MOESM5 ESM.xIsx

Table S1. Spearman correlation values from the relationships of indel, mismatch and
misassembly counts, recovered genome fraction, abundance and total proportion of
genomic repeats within the simulated virome. *GF-recovered genome fraction.

Table S2. Linear modelling correlation values comparing recovered genome fraction,
total proportion of genomic repeats and abundance for the Simulated virome.

Table S3. Spearman correlation values from the relationships of inverted, tandem,
palindromic and total repeats, abundance and the number of contigs generated by each
assembler for the Simulated virome.

Table S4. (A) Ranking table comparing recovered genome fraction and contig
numbers for assemblers which recovered at least 50% of the total genome fraction. (B)
Ranking table of indel, mismatch and misassembly counts per 100 kb, normalised to
the number of genomes recovered to at least 50%.

Table S5. Number of aligned and unaligned contigs generated by each assembler for
mock community A.
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Table S6. Number of aligned and unaligned contigs generated by each assembler for
mock community B.

MetaQUAST outputs for each dataset are available at the following links
Simulated virome

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-
5/MediaObjects/40168 2019 626 MOESM1 ESM.html

Mock virome A.
https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-
5/MediaObjects/40168 2019 626 MOESM2 ESM.html

Mock virome B.

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-
5/MediaObjects/40168 2019 626 MOESM3 ESM.html

Q33-spiked virome

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-
5/MediaObjects/40168 2019 626 MOESM4 ESM.html
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Abstract

The human gut virome is thought to significantly impact the microbiome and human
health. However, most virome analyses have been performed on a limited fraction of
known viruses. Using whole-virome analysis on a published keystone inflammatory
bowel disease (IBD) cohort and an in-house ulcerative colitis data set, we shed light
on the composition of the human gut virome in IBD beyond this identifiable minority.
We observe IBD-specific changes to the virome and increased numbers of temperate
phage sequences in individuals with Crohn’s disease. Unlike prior database-dependent
methods, no changes in viral richness were observed. Among IBD subjects, the
changes in virome composition reflected alterations in bacterial composition.
Furthermore, incorporating both bacteriome and virome composition offered greater
classification power between health and disease. This approach to analysing whole-
virome across cohorts highlights significant IBD signals, which may be crucial for

developing future biomarkers and therapeutics.

Introduction
The virome is likely to be one of the major forces shaping the human gut microbiome,

but is perhaps its least understood component. The virome is dominated by
bacteriophage (phage) which play vital roles in many microbial communities by
driving diversity, aiding nutrient turnover (Weitz et al., 2015) and facilitating
horizontal gene transfer (Canchaya et al., 2003). Understanding the role of
bacteriophages in microbial community structures will be essential if we are to
understand or control the alterations in human gut microbiome composition and
diversity associated with many diseases, including Inflammatory Bowel Disease
(IBD) (Gevers et al., 2014;Halfvarson et al., 2017), obesity (Le Chatelier et al., 2013)
and diabetes (Forslund et al., 2015).

Many gut bacteria (and potential phage hosts) remain difficult to culture
(Forster et al., 2019), which means that analysing the virome depends heavily on
metagenomic sequencing and bioinformatic approaches. However, a lack of universal
marker genes on phage (similar to 16S rRNA in bacteria) and a subsequent lack of
taxonomic information due to poorly populated databases (Krishnamurthy and Wang,
2017) means that database-independent methods are required and that virome analysis

must be carried out at the level of metagenomic assembly or individual viral genomes.
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Early metagenomic studies highlighted the novelty and diversity of the human gut
virome, but were able to classify only a minor fraction (2%) of sequenced DNA (Minot
etal., 2011). Improvements in high throughput sequencing technologies have allowed
the virome to be analysed in unprecedented detail with studies sequencing up to 50
million reads per sample (Zuo et al., 2019). It has been confirmed that the virome is
incredibly diverse, that the majority do not align to known sequences in databases (i.e.
viral dark matter)(Roux et al., 2015b), and that composition is highly unique to
individuals (Reyes et al., 2010;Moreno-Gallego et al., 2019;Shkoporov et al., 2019).

Inflammatory Bowel Disease, including Crohn’s disease (CD) and ulcerative
colitis (UC), is a chronic disorder of the intestinal tract resulting in periods of flare and
remission.  Although the aetiology of IBD remains unclear, it appears to be
multifactorial and has been repeatedly associated with alterations in the human gut
microbiome. These include decreased bacterial diversity and a reduced abundance of
certain Firmicutes and Bacteroides. There is an emerging body of data providing
evidence that the gut virome is altered in IBD (Norman et al., 2015;Fernandes et al.,
2019;Zuo et al., 2019) with increased overall virome diversity, and an increased
relative abundance of the family Caudovirales. Yet nearly all findings have been
drawn from compositional changes of the identifiable fraction of the virome, which
can be as little as 15% of the data (Norman et al., 2015). This limits the overall
understanding of the virome and hampers the identification of potential disease

biomarkers.

A database independent analysis method is essential if we are to fully
characterise changes in the gut virome in health and disease. This approach begins
with metagenomic assembly of short reads to resolve viral genomes and subsequent
alignment of reads to these assemblies to determine their relative abundance. Spurious
alignments to repeat and conserved regions are removed from further analysis by using
a breadth of coverage filter (Roux et al., 2017). However, at this level of resolution
the virome exhibits enormous diversity and interpersonal variation (Reyes et al.,
2010), obscuring any patterns in the virome across individuals and cohorts. As part of
this study, we reanalysed a previously published keystone data set (Norman et al.,
2015) consisting of subjects with CD, UC and healthy controls. We overcame strain-
level resolution using protein homology and MCL (Markov Cluster Algorithm) to

group viral sequences into putative higher taxonomic ranks. In this way it was possible
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to describe compositional changes across the entire virome in health and disease,
beyond the known minority. We propose that a core virome in healthy individuals
shifts towards a community that is less stable and dominated by temperate phage and
IBD. We show that virome alterations mimic those of the bacteriome and that when
used together, they offer an improved method for classifying IBD patients from
healthy subjects. We also validated our results using a longitudinal cohort of patients
with UC in both active and inactive states of disease. This analysis approach supports
future virome studies by providing insight into changes in composition across the
entire data set. By comparing the whole-virome composition of other published
datasets, it may also reveal further disease-specific alterations that had been previously

obscured. For details of the analysis methods used in this study, see (STAR Methods).

Results

Data sets

We reanalysed a previously published dataset of healthy and IBD gut viromes
(Norman et al., 2015). The data set comprised of 165 virome samples from 130
subjects, which consisted of 61 healthy controls, 27 subjects with CD and 42 with UC.
Of these, six samples were known to be collected during CD flare, eight in CD
remission, 13 in UC flare and 20 in UC remission. To expand upon these findings, we
explored a second data set of longitudinal samples for 40 subjects with UC, focusing
on the impact of disease on gut virome composition. The cohort was part of the
PURSUIT-M phase 3 clinical trial (STAR Methods). This data set was generated in-
house and consisted of samples from periods of flare (82) and remission (31). For this
data set, disease activity was determined by Mayo score. For all subjects, initial
samples were taken during a period of flare (week 0). Two further time points were
taken for each subject at weeks 6 and 30. For both data sets, 16S rRNA gene
sequencing data was also obtained and performed on 149 (data set 1) and 109 (data set
2) samples.

Clustering is required to overcome virome individuality and allow cohort
comparisons

Initially, virome analysis was performed on the Norman data set by aligning quality
filtered reads to the final set of virus-like sequences (VLS, see STAR Methods), made
non-redundant at 90% identity over 90% of length. This resulted in a mean of 80.38%
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(£ 29.29%) quality filtered reads per sample being used in the final analysis. As VLS
represent groups of highly related viral genomes (whole or partial), analysis was
carried out at a strain or species level. This was reflected in the extremely high levels
of individuality amongst subjects. It was also observed that the individuals themselves
were the primary drivers of separation and longitudinal samples grouped together
(Fig.1A). This individual specificity masked compositional differences of the virome
and each of the cohorts (control, CD and UC) showed little divergence. PC-axes 1
and 2 described very little of the variation (4.85% and 3.59%), suggesting that disease-
specific changes in virome composition were not visible at the level of VLS (patterns

of B-diversity were reproducible across various metrics, data not shown).

Lower taxonomic resolution (i.e. a higher taxonomic rank) was required to
overcome this high level of interpersonal variation and identify compositional changes
in the virome associated with disease. This was achieved by clustering VLS based on
protein-coding gene sharing networks (Bin Jang et al., 2019) (see STAR Methods).
The VLS clustered into 472 Viral Clusters (VCs) of >2 members with 2,382 singletons
remaining, henceforward referred to as a VC with 1 member. The resulting VCs
formed a new count table and a VC-based analysis of B-diversity was carried out
(Figure. 1B). Samples largely grouped per condition with noticeable increases in the
eigenvalues to 10.36% and 5.58% variation explained for PC-axes 1 and 2,
respectively, meaning the biological signals that drove separation between samples
were considerably stronger. However, it should be noted that samples with true
deviation from the main cohort (such as subjects N208 and N56) remained distinctive,
suggesting that the clustering process retains true compositional differences. To
further determine if clustering VLS could overcome the masking effect of inter-
individual variation, the relative abundances of shared and unique VLS and VVCs were

plotted for control subjects (Figure. 1C).
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At a VLS level, inter-individual variation was represented by a high proportion of
sequences unique to a given subject (relative abundance 14% + 8%). Furthermore,
sequences that were shared across 30% individuals made up a minor proportion of the
virome (relative abundance 1.7% = 4%) and no VLS was shared across 50% or more
of individuals. In contrast, inter-individuality was far less evident at a VC level and
the proportion of VCs unique to an individual was lower (relative abundance 1.3% +
3%). Shared VCs also made up a substantially larger proportion of the virome with a
relative abundance of 15% =+ 6% per subject shared across 30% of the cohort, 7.1% *
6.6% across 50% and 0.7% + 1.4% across 70%. Furthermore, a total of eight VCs
were shared across 30% of CD and UC cohorts (Figure. 1D). Analysis was continued
at a VC level as these shared features made it possible to compare viromes across and
between cohorts.

Analysis of viral clusters reveals IBD specific alterations in the gut virome

In the Norman et al. data set, B-diversity PCoA (Spearman distances) yielded the
greatest degree of separation between the viromes of CD patients (relapse/remission)
and healthy controls (PERMANOVA, p = 0.0023/0.0032, respectively) followed by
UC relapse/remission (PERMANOVA, p = 0.002/0.0023) (Figure. 2A). Variations
observed between disease states of each condition, were not significant, which may be
due to small sample sizes (PERMANOVA, p > 0.05). PCoA without the division of
relapse/remission status showed CD and UC B-diversity significantly differed from
healthy controls (PERMANOVA, p = 0.0002 and 0.0002; Figure. S1A). The healthy
cohort also had the greatest similarity across subjects, having the lowest pairwise
distances between points (Figure. S1B), which supports the previous observations of
shared VCs across individuals (Figure. 1D). This core virome (defined as presence
across >50% of subjects) in the healthy cohort was composed of two VCs (vc2 and
vc7) shared across >70% of subjects and six (vcl, vcl0, ve23, ve25, ve32, ve39) across
>50%. vcl was classified as temperate Siphoviridae with CRISPR hits to various
Firmicutes and Parascardovia (phylum - Actinobacteria) and vc10 was classified as
a crAss-like phage (Guerin et al., 2018). However, the majority of these VCs were
unclassified (i.e. did not cluster with known viral genomes). This highlights the
important biological signals which are often overlooked by database-dependent

analysis methods.
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S. Figure. 1 (related to Figure2, Figure3): A) VC PCoA using Spearman distances
comparing the 3 cohorts CD, UC and controls. B) Distances between points in each
cohort for the VC spearman PCoA (Wilcoxon test). C) 16S PCoA using unweighted
UniFrac distances comparing the 3 cohorts. D) Distances between points in each cohort
for the 16S unweighted UniFrac PCoA (Wilcoxon test).
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Core VC’s were not found across UC subjects and just one VC (vc32 unclassified,

CRISPR hits to Bacteroides dorei) was found across > 50% of CD subjects.

Significant differences had been observed in the richness of both Caudovirales
and the virome overall between health and disease in the original analysis (Norman et
al., 2015). Contrary to those previous findings, there were no significant differences
in virome richness across the cohorts or disease states when VVC count tables were used
(Wilcoxon test, CD flare vs remission, p = 0.31, UC flare vs remission p = 0.96, CD
vs healthy p =0.12, UC vs healthy p = 0.83, Figure. 2B). The Shannon diversity metric
also did not yield a significant difference (Wilcoxon test, CD vs. healthy p = 0.38, UC
vs healthy p = 0.25, UC vs. CD p = 0.76, Figure. S2A-2B). When only VCs classified
as the order Caudovirales were considered (Figure. 2C), a significant increase in
richness was observed in CD versus healthy only (Wilcoxon test, p = 0.024). This
suggests that changes in the composition of identifiable fraction of the virome may not
reflect the virome as a whole. Furthermore, although Anelloviridae were detected in
our reanalysis of this dataset, significant differences in abundance were not observed
across control CD or UC cohorts, contradictory to previous findings (Wilcoxon test, p
> 0.05).

Differential abundance analysis identified 37 VCs which were increased in CD
relative to controls and 34 increased in UC relative to controls. Importantly, of these
VCs increased in disease, over 80% appeared to be temperate (30 of the 37 VCs
increased in CD and 28 of the 34 VVCs increased in UC). Furthermore, temperate VCs
made up just 32% and 24% of VCs increased in controls relative CD and UC,
respectively. Further investigation of temperate VC abundance in each cohort
indicated that temperate VVCs recruited significantly more reads from CD subjects than
healthy controls (Wilcoxon test, p = 0.012, Figure. 2D). The temperate/virulent switch
was also reflected in the taxonomic classification of VCs which were most
differentially abundant. VCs that were increased in healthy cohorts were classified as
the predominantly lytic Microviridae (two) and crAss (one) (Figure. 2E, Figure. 2F).
Similarly, VCs increased in disease were classified as Siphoviridae (nine in CD, eight
in UC) and Myoviridae (one in CD, two in UC), which feature a number of known
temperate species. These findings also support the increased Caudovirales richness

observed in CD.

114



A) B)

071 025
300-
0.70 078
I 1 I 1
07 028
1 —
. 3 . 7
} . : :
" Il CD (27) [l Control (61) l uc (42)
C) D)
S Eh 0.00033
£00- 0.00083 0.0097
= R l 7 " 4ge-08 !
- . * +
s . 5
8 &
; g *
200- + % g :

-0 0-

M CO(8) [l Contol(47) [ UC (39)

S. Figure. 2 (related to Figure2, Figure3): a-diversity of patients with IBD versus
healthy controls. A) Observed VCs, B) Shannon diversity of VCs, C) Chaol diversity of
16S counts, D) Shannon diversity of 16S counts (Wilcoxon test),

115



"SJUN0J S9T
pue SOA Jo A1ISIBAIp uouuryS (4 pue S1UNoI sa19ads [e11a10eq PaAISSCO pue SJUNod DA
PAAIBSUO UdaMIa( Suolle|a1i09 ueweads (3 :(gaanbiq ‘zaanbi4 01 pajejad) g -aanbi4 'S

(s91) Ausiang uouueys SASY [eU3)IBg PAAIISAO
; @ @ ’ ' =8 m m 2
‘ " e ¢ * e s
7 L [ ] @ ° -0
QMOOQDMMQQ ’“ .... = @ .lllllllll..lllllll..l‘..‘ .’ o0 %0
veL 00U o o Mo ge o° ) e » g e oo.%doo ~ebe 00— — w%qon g
» “ ... “ e o = B » ® . ° .. ~ ”
= L o.pl e = - ® e m ® o e o -8
e o " 3 ° ° °
® o ® o° Ge, . g ®
® e® . 2
o ° M ° - €85 0:onje-d -8
o ¢ °®, ° @ 250°0-0u o 2
. @ ° ¢ -8
: 5 *
e L ] ® ® .m

(4 (3

116

SO/ PaARSA0



Furthermore, of the 17 Siphoviridae VCs increased in IBD relative to healthy (nine in
CD, eight in UC), 15 were classified as temperate and had CRISPR hits to Firmicutes.
These observations correspond with the reduced Firmicutes abundance observed in
IBD (Frank et al., 2007) and further support evidence that increased temperate phage
abundance is linked to disease. Induction of Firmicutes prophage in the IBD virome
would explain the observed reduction in host abundance and increased temperate
Firmicutes phage virions. Many of the most differentially abundant clusters were
taxonomically unassigned and represent viral dark matter (49 VCs increased in control
vs. CD, 25 VCs increased in control vs. CD, Tables S1, S2).

The bacteriome also differs between patients with IBD and controls. Bacterial
B-diversity assessed through 16S rRNA gene fragment sequencing showed CD
(relapse/remission) samples grouping furthest from controls (PERMANOVA, p =
0.0065/0.0332) followed by UC (relapse/remission) (PERMANOVA, p
0.018/0.001) (Figure. 3A), which was reflected in the virome composition.

Interestingly, and in contrast to the virome, the largest degree of variation amongst
samples was observed in the control cohort. Furthermore, the CD cohort exhibited the

smallest distances between points (Figure. S1C/D).

Decreased a-diversity was observed in the IBD cohorts versus healthy controls
with the largest differences observed in CD flare (Wilcoxon test, p = 0.012) and
remission (Wilcoxon test, p = 0.018) along with UC Flare (Wilcoxon test, p = 0.051)
(Figure. 3B). Due to the small sample sizes this analysis was also repeated without the
division of disease status and using various metrics (Figure. S2C-D). For both Chaol
diversity (Wilcoxon test, CD vs healthy p = 1.8e—10, UC vs healthy p = 1.6e-4) and
Shannon diversity (Wilcoxon test, CD vs healthy p = 4.8e-10, UC vs healthy p = 3.3e-
4), the healthy cohort was significantly higher than both IBD cohorts, while UC was
also significantly increased when compared to CD (Wilcoxon test, Chaol CD vs UC,
p = 8.3e-4, Shannon CD vs UC, p = 9.7e-3).

117



(g) uoissiway ONEF
(9) se14 On Il
(z¥) 1onuo0 ER
(v) uoissiway AOES
() ese14 GO A

(108lgns Jad sjdwes T Ajuo JO uonuUslal aY) 01 aNP W 01 dAIIR|aJ PadNpal aJe sazis ajdwes
‘ANsIanIp ToeyD) Alistanlp-o (g ‘seouessip oerjrun) paySomun Suisn yo)d (V "S[0U0d
puUe S110Yyod ag| ‘[e 18 UewloN a3y} Jo uosiiedwod jeuonisodwod [elialoeg € ‘aanbi4

° -00C
L ]
2
ooy @ (00 uoIssay O
3 (11) a4 on
2 .
= (05) loauoo| @ |
t . ! 5  (8)uoissiwey o
2100 L i o
— = ale|
8100 -000 Z o) oset3 A0[ 8
“—eo Ryssenip-g s9|
]
€50
{2 S|
1500
120 -008

(g

% 891 -10d
o o
N

-¥'0-

-20
0

8

% 28°G :¢0d

118



A large number of taxa were found to be differentially abundant between
control and CD (Figure. 3C) and control versus UC (Figure. 3D). A total of 113 RSVs
(Ribosomal Sequence Variants) were decreased in CD versus controls while only 17
were increased. Similarly, 69 were increased in control vs UC and only 21
significantly increased in UC (Tables S3, S4). Many of the taxa increased in controls
versus both IBD cohorts (such as the genus Faecalibacterium) were in accordance
with previous reports (Gevers et al., 2014;Machiels et al., 2014;Garcia-Lopez et al.,
2015;Pascal et al., 2017;Lopez-Siles et al., 2018). The most differentially abundant
RSVs increased in IBD (such as Fusobacterium and Veillonella in CD, or Clostridium
sensu stricto and Lachnospiraceae family in UC) were also in accordance with the
literature (Willing et al., 2010;Joossens et al., 2011;Strauss et al., 2011;Gevers et al.,
2014;Pascal et al., 2017).

Correlations between PCoA and abundance counts reveal key drivers of gut
microbiome composition

The drivers of significant shifts in B-diversity were assessed through correlations
between principal coordinates and the relative abundances of VVCs (for the virome)
and RSVs (for the bacteriome). There were 25 VVCs significantly correlated to PC-axes
1 and/or 2 (Spearman, p < 0.05, Figure 4A, Table S5). Dependent upon the correlation
coefficient, the associations could further be broken down into four quadrants and
largely supported differential abundance data. In quadrant 1 (top left), towards
subjects with IBD, there were 18 significant correlations, which comprised of
Siphoviridae and Myoviridae VCs, as well as some heterogeneous and unclassified
VCs. In quadrant 3 (bottom left), one Myoviridae and 1 unclassified VC were
significantly correlated towards subjects with IBD. VCs classed as Microviridae,
crAss-like phages and two unclassified VVCs were significantly correlated towards the
healthy controls (quadrant 4, bottom right). This provides further evidence that a shift
from a lytic core of crAss-like phage and Microviridae to one of primarily temperate

phage may be associated with IBD.
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Figure. 4: (overleaf) Drivers of PCoA separation (Norman et al. data set) for A) the
virome (spearman distances) and B) 16S unweighted UniFrac. VC and RSV
abundances were correlated, using Spearman correlations, with PC-axes 1 and 2. Only
significant spearman correlations with a rho of greater than 0.35 or -0.35 were graphed
for the virome or £ .5 for the 16S (or a maximum of the top 6 for each quadrant). Red
arrows indicate unclassified VCs/RSVs. The length of the arrow represents the degree

of correlation to the PC-axes.
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There were 76 bacterial RSVs significantly correlated towards controls (quadrant 1)
(Figure. 4B, Table S5). The highest correlation coefficient corresponded to RSVs
assigned to the phylum Firmicutes, family Ruminococcaceae or genus Alistipes.
Quadrant 3 correlations, also towards controls, contained 46 RSVs including Alistipes
indistinctus and the order Clostridiales. For Quadrant 4, towards IBD subjects, four
RSVs were significantly correlated including Ruminococcus gnavus and

Flavonifractor plautii.

Procrustes analysis revealed significant associations between bacterial and
viral community composition (procuste.randtest, correlation coefificient of 0.714 p =
0.001, Fig.S3). However, overall VC a-diversity did not significantly correlate with
observed bacterial richness (Spearman, p = 0.58, Figure. S2E), although there was
significant weak correlation with bacterial Shannon diversity (Spearman, p = 0.038, p
= 0.194) (Figure S2F). It is possible that this reflects an underlying biological signal
which is being masked by temporal variation in phage-host dynamics across the
various VCs and RSVs.

Alterations in virome composition are less distinct between UC activity states

Differences in disease states (flare and remission) were investigated using a second
cohort of 40 subjects with UC, sampled longitudinally resulting in 113 virome and
109 16S rRNA amplicon samples (bacteriome). B-diversity analysis of virome
composition using VCs (Figure. 5A) did not show significant separation between flare
and remission (PERMANOVA, p = 0.17), despite one uncharacterised VVC correlating
to the PC coordinates (vc40). In bacteriome analysis, the shift between flare and
remission in B-diversity was significant (PERMANOVA, p = 0.022) and 14 RSVs
correlated to PC-axes 1 or 2 (Spearman, p > 0.05, Figure. 5B, Table S6). Those which
correlated towards UC remission (quadrant 1) included Faecalibacterium prausnitzii,
Dorea longicatena and Coprococcus comes. An RSV classified as Ruminococcus
gnavus was the only one correlated towards UC flare. This agrees with recent reports
that genes involved in oxidative stress responses in Ruminococcus gnavus strains may

confer facilitate colonisation of the inflamed gut (Hall et al., 2017).
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The virome and bacteriome composition were correlated with each other in Procrustes
analysis in agreement with the above results (procuste.randtest, correlation coefficient
of 0.906, p = 0.001, Figure. S4).

Although the median a-diversity was higher in the virome for UC flare (Figure.
5C) and UC remission for the bacteriome (Figure. 5D), these values were not
significant for either Chaol or Shannon diversity metrics, in agreement with the results
obtained above for the Norman et al. data set (Wilcoxon test, p > 0.05). Viral load was
estimated by spiking a known concentration of lactococcal Q33 phage and was found
to be negatively correlated with viral a-diversity (Spearman, p = -0.415, p = 0.009,
Figure. S5A). Viral diversity was also investigated over time and in relation to disease
status (Figure. S5B) and although there were fluctuations in the time series, there was
no observable trend with disease status and a comparison did not and a comparison

did not yield significant differences (Spearman, p = 0.383).

Virome stability across the UC cohort was assessed by identifying VCs present
in all 3 time points of subjects, similar to the methods used in (Shkoporov et al., 2019).
One key VC (vc39) was present in all three time points of 37% of individuals (13 out
of 35) and was the most shared VC across the stable fraction of individuals’ viromes.
Of the individuals which featured vc39 in all 3 time points, 84% (11 out of 13) also
featured RSVs classified as Lachnospiraceae in all time points supporting previous
CRISPR host prediction. Lachnospiraceae was also one of the most stable bacterial
families across the cohort, being present in all timepoints of 82% of all individuals.
However, there was no significant difference between the numbers of stable VCs per
individual (i.e. VCs present in all 3 time points) and remission status (Wilcoxon test,
p =0.738).
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Two crAss-like phages were increased in subjects in remission when compared to flare
along with two Siphoviridae, one Microviridae and seven unclassified phage (Figure.
5E, Table S7). Conversely there were 39 VCs increased in flare. These included two
Anelloviridae, one Myoviridae, ten Siphoviridae and 24 unclassified. Bacteroides and
Dialister were the only RSVs increased in remission while seven RSVs were increased
in flare including Enterococcus, Prevotella and Streptococcus (Figure. 5F, Table S8).
These findings suggest that the changes in virome composition between flare and
remission in UC reflect those of the bacteriome and are more subtle than those

observed between UC and healthy cohorts.

Virome composition aids the classification between Health and Disease

The ability of the virome and bacteriome composition to differentiate between patients
with IBD and healthy controls was tested through machine learning. Sample sizes were
increased by combining CD and UC samples to form a composite IBD cohort. The
virome alone (Figure. 6A) yielded an accuracy of 0.769 (p = 0.032) and four of the
top five contributors (based on gain) (vc39, vc23, ve38 and vc45) were increased in
controls versus both IBD states. All five of these clusters were unclassified,
highlighting the importance of including viral dark matter in virome analysis pipelines.
The top two contributing VCs had CRISPR protospacer alignments to
Lachnospiraceae (vc39) and Parabacteroides (vc23) while the remaining two had
alignments to Bacteroides (vc32 and vc38). Given the association of Bacteroides
species with healthy mammalian gut (Delday et al., 2018), these findings further
support evidence that the healthy virome closely reflects the healthy bacteriome. The
bacteriome alone had a greater predictive power than the virome (accuracy: 0.824, p
= 0.008) with an RSV classified as Ruminococcaceae contributing the largest gain
followed by a Clostridiales and Odoribacter splanchnicus (Figure. 6B). The virome
and the 16S data were combined and the predictive power was again measured (Figure.
6C). The accuracy increased to 0.853 (p = 0.0026) with the virome contributing five
of the top 20 most important features. Of these, four had CRISPR protospacers to
bacteria including the order Clostridiales, the family Lachnospiraceae, genera
Pseudoflavonifractor, Clostridium and Johnsonella along with Fusobacterium and

Bacteroides (Figure. 7).
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Differences between CD and healthy proved to be the main predictors of disease with
11 VCs/RSVs being decreased in CD alone and one increased when compared to

controls.

ROC curve analysis was performed as a second measure of accuracy of each
model (Figure. 6D). The AUC (area under the curve) of the virome alone was 78.31%,
a decrease compared to bacteriome which yielded an AUC of 89.72%. However, the
virome and 16S combined had the largest AUC with 94.79%, successfully predicting

all 16 patients with IBD and only misclassifying five controls as UC.

Key VCs revealed by the analysis of IBD viromes

Through various approaches of virome analysis ten key VCs consistently emerged. A
key VC was defined as any which was core in one cohort and largely absent from
another and/or significantly correlated in the PCoA axes and differentially abundant
between the cohorts. vc23, vc39 and vc10 were present in the healthy core and largely
absent from the subjects with CD (7, 14 and 26%, respectively) and UC (12, 14 and
40%, respectively). These three VCs were all in the top seven importance factors in
the machine learning, while vc39 and vc23 were in the top two. vc23, although
unclassified, contained CRISPR protospacers to Parabacteroides, while vc39, also
unclassified, had hits to undefined Lachnospiraceae (Figure. S6). vc10, a crAss-like
phage, did not have any CRISPR protospacer alignments. Intriguingly, None of these
three key VCs associated with the core virome in healthy individuals featured genes
associated with lysogeny, which supports our previous observations and those made
in recent studies (Shkoporov et al., 2019). Additionally, hosts predicted for these VCs
have been found to be depleted in IBD (i.e. Lachnospiraceae, Parabacteroides)
(Frank et al., 2007;Kverka et al., 2011) or have been shown to reduce the symptoms
of inflammation in the mammalian gut (Parabacteroides)(Kverka et al., 2011). This
supports the idea that the virome and bacteriome are closely linked and that in lytic

populations, phage abundance reflects that of the host (Shkoporov et al., 2018a).
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Six of the remaining seven key VCs (vcl7, vcl3, vcb, veclb, ve9 and vc22)
were significantly correlated to the PC-axes and were at significantly increased
abundance in CD and/or UC compared to healthy controls. vcl13, vcl5, vecl7, all
classified as Siphoviridae, had CRISPR protospacer hits to a number of genera of the
phylum Firmicutes, including Blautia, Coprobacillus, Peptoniphilus, Ruminococcus,
Enterococcus, Lactobacillus, Streptococcus and Clostridium (Figure. S6). vc5, vc9,
vc22, classified as Myoviridae, contained CRISPR protospacers to Firmicutes genera
Clostridium, Coprobacillus, Enterococcus, Lactobacillus, Johnsonella, Roseburia,
Ruminococcus, Veillonella and Flavonifractor along with the Proteobacteria
Parasutterella (Figure. S6). All six of these key VCs featured genes associated with
lysogeny which provides compelling evidence that IBD is associated with a shift from
predominantly lytic virome to that dominated by temperate phage. Furthermore, these
VCs also had predicted hosts which are found to be elevated in IBD (Enterococcus,
Ruminococcus, Streptococcus, Veilonella, Parasutterella) (Ricanek et al.,
2012;Gevers et al., 2014;Zhou et al., 2016;Hall et al., 2017;Pascal et al., 2017) , or are
thought to play an important immunomodulatory role in the gut, by producing short-
chain fatty acids (Roseburia, Blautia) (Zhang et al., 2012;L.i et al., 2018;Qing et al.,
2019). The remaining key VC was classified as Microviridae (vc101) and was
increased in control and UC relative CD. This may reflect the subtle changes between
CD and UC which were observed throughout the study. It did not have CRISPR

protospacer alignments, nor genes associated with lysogeny.

With the exception of two VCs (vcl7, vcl01), strong, significant correlations
were not observed between key VCs and RSVs in the Norman et al. data set
(Spearman, p > 0.05). These findings contradict those of the Procrustes analysis, and
further suggest that temporal fluctuations in the abundance of phage-host populations
across individuals may mask underlying signals. Despite this, vc17 exhibited a strong
positive correlation with an RSV classified as Gammaproteobacteria (Spearman, p =
0.51, p = 9.7e-9), and vc101 exhibited a strong positive correlation with three RSVs
classified as Firmicutes (p = 0.52-0.6, p < 1e-08), one as Bacterioidetes (p = 0.52, p =
2.6e-9), and one Fusobacteria (p = 0.51, p = 5.6e-9). In the longitudinal UC cohort,
again the only strong, significant correlation was observed between vc101 and an RSV
classified as Bacteroidetes (p = 0.61, p = 1.3e-12). It is possible that a uniform signal

across individuals is masked by inverse positive and negative relationships of phage
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host pairs in different replication cycles. Although little is known about phage-host
dynamics in the gut, it has been suggested that factors such as host population density
(Silpe and Bassler, 2019), phase-variation (Turkington et al., 2019), host switching
(De Sordi et al., 2017), and the biogeography of the gut itself (Maura et al., 2012;Zhao
et al., 2019) significantly influence these dynamics and may therefore mask patterns

in the abundance of specific phage-host pairs.

Discussion
Here we performed whole-virome analysis on two IBD virome data sets; a keystone

published data set (Norman et al., 2015) and an in-house UC cohort which investigated
subjects longitudinally through periods of flare and remission. We apply an analysis
approach to the gut virome, which interrogates both known and unknown sequences
and provides insights into viral dark matter in human health and disease. By applying
shared genes network approach (Bin Jang et al., 2019) and replacing individual VLS
with viral clusters, it is possible to reveal compositional patterns in the virome across

individuals that had been previously masked by high inter-individual variation.

This comprehensive virome analysis revealed a core virome in healthy subjects
that did not exhibit identifiable temperate features. This supports recent reports of a
stable, predominantly lytic core virome observed in healthy individuals (Shkoporov et
al., 2019). The healthy core virome was found to be absent in IBD and appeared to be
replaced by an individual-specific shift towards induced temperate phage. This
suggests that a stable core of predominantly virulent or pseudolysogenic viruses is
associated with the maintenance of a healthy human gut. These observations also
suggest that environmental stresses associated with the inflamed gut, such as reactive
oxygen species (Rigottier-Gois, 2013), cause a reservoir of integrated prophage to
enter the lytic cycle. This would correspond with the reduction in bacterial a-diversity
and counts (Vandeputte et al., 2017) and an increase in the relative abundance of
Caudovirales associated with IBD. Additionally, large scale prophage induction and
cell lysis would lead to increased levels of pro-inflammatory bacterial debris available
to interact with local innate immune receptors and mucosa-associated lymphoid tissue.
These observations are also supported by reports of integrated prophage directly using
host physiology and population density to influence the switch from lysogenic to lytic
replication (Casjens and Hendrix, 2015;Silpe and Bassler, 2019). In this way the

temperate virome can respond to environmental stress and changes in the host
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population, such as those observed in IBD. Given these observations, we theorise that
a switch from lysogenic to lytic replication cycles is linked to an increase in the relative
abundance of temperate VLPs in disease. Furthermore, we propose that conditions in
the inflamed gut do not support the maintenance of a stable, predominantly virulent

core virome.

We identified ten key VCs that were consistently associated with healthy or
IBD cohorts which also provide compelling evidence that a core gut virome of
predominantly virulent phages is closely associated with human health. None of the
three key VCs associated with the core virome in healthy individuals featured genes
associated with lysogeny. Additionally, all but one (vc101) of the seven key VCs
associated with IBD did these feature these genes. Furthermore, nearly all of the
predicted hosts for these key VCs play have been associated with IBD. Key VCs found
in the healthy core had predicted hosts found to be significantly reduced in IBD, or are
thought to attenuate the symptoms of inflammation. Similarly, many key VCs
associated with disease also had predicted hosts which are significantly increased in
IBD (Enterococcus, Ruminococcus, Streptococcus, Veilonella, Parasutterella)
(Ricanek et al., 2012;Gevers et al., 2014;Zhou et al., 2016;Hall et al., 2017;Pascal et
al., 2017), or are believed to interact with the mammalian immune system (Roseburia,
Blautia) (Zhang et al., 2012;L.i et al., 2018;Qing et al., 2019).

The reduced abundance or absence of a core virome of IBD subjects compared
to healthy controls was previously described (Manrique et al., 2016) using the Norman
et al. data set. A core of 23 bacteriophages was reported, contradictory to what we
observed pre-clustering. We suspect that is due to the lenient criteria used by the
authors to define the presence of a contig — a view shared by a recent publication
(Gregory et al., 2019). In this study, we employed a breadth of coverage filter (Roux
et al., 2017) of >75% on the basis that if a VLS was truly present, it would recruit
reads across the whole genome, thus removing spurious read alignments to repeats and

regions conserved across broadly different viral genomes.

Whole-virome analysis did not reveal differences between the viral richness of
the subjects with IBD and healthy controls, a finding contradictory to previous
analysis of this data set (Norman et al., 2015). This implies a virome dominated by
temperate phage in disease replaces rather than adds to, the shared lytic core in healthy
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controls. This in turn could reflect an absence of hosts for the lytic core virome,
supported by a reduction in bacterial a-diversity in disease. It is also possible that
rather than being replaced, the lytic core has fallen below the detection threshold of
the analysis method, overshadowed by an induced lysogenic fraction in disease. This
issue could be exaggerated by multiple displacement amplification (MDA) as it known
to skew the abundance of dominant sequences in metagenomes (Parras-Molto et al.,
2018). It is also important to note that an absolute decline of virulent phage following
the reduction of their host abundance in disease would in turn lead to a relative increase
in temperate phage. These findings highlight the need for future virome studies to
quantify total viral load as done previously (Shkoporov et al., 2018b) or to use MDA-
free library preparation methods to definitively conclude whether a healthy core
virome is replaced or supplemented by induced prophage in disease.

Replicating the work of Norman and colleagues (Norman et al., 2015), we
assessed the richness of VCs classified as Caudovirales. In agreement with previous
observations Caudovirales diversity was increased in the CD cohort. However, we did
not observe significant changes in the whole-virome diversity between UC and healthy
controls. It is possible that changes in the identifiable subsets of the virome do not
reflect the virome as a whole. There was no alteration in viral load between disease
status in UC, however there was an inverse relationship between viral load and
diversity. This suggests that higher viral loads are a result of a dominance of a

particular phage or phages rather than the detection of new members.

It has been previously reported that the human gut virome exhibits high levels
of inter-individual variation (Reyes et al., 2010;Minot et al., 2011;Shkoporov et al.,
2019) which is exacerbated by the need to analyse the virome at an assembly level
resulting in analysis being carried out at a strain level. Unlike the bacteriome analysis,
which is typically performed at higher taxonomic ranks such as family and genus, viral
taxonomy does not have a similar defined structure which makes comparisons of
cohorts very difficult. Strain-level resolution hampers cohort comparisons due to a
lack of shared sequences across subjects in the data set thereby masking compositional
patterns occurring at higher taxonomic ranks across cohorts. Our initial analysis was
carried out using VLS (virus-like sequences made non-redundant at 90% identity over
90% of the length), but this level of resolution did not reveal shared signals across

cohorts. We overcame this issue by clustering viral genomes based on their protein-
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coding gene content using vConTACT2 (Bin Jang et al., 2019). This gene network
clustering approach revealed shared virome features while retaining relevant
biological signals across the cohort (as seen by VCs across subjects), increased the
variation explained in the B-diversity and decreased the abundance of unique viral VCs
per subject across the data set. Viral clustering also enabled the detection of a core
virome in healthy subjects, consisting of eight VCs across >50% of the cohort. This
proved to be a key differentiator between health and disease throughout the analysis.
Many of these core VCs were differentially abundant in health and disease and were
primary drivers of cohort separation and machine learning predictions. In B-diversity
analysis, IBD subjects shifted significantly away from healthy controls thus providing
evidence of compositional differences in the gut viromes. Drivers of these separations
were associated with temperate phage such as clusters of Myoviridae and Siphoviridae
in IBD and clusters of Microviridae and crAss-like phages in healthy subjects which

are predominantly non-temperate.

Alterations in the bacteriome agreed with previous observations. However, the
current study provides evidence that alterations in the whole human gut virome in IBD
occur in conjunction with changes in the bacteriome. Although it is not possible from
a cross-sectional study to know whether the virome alters the bacteriome or vice-versa,
the viral/bacterial data sets were shown to be complementary. Although the
bacteriome was more accurate in classifying subjects with IBD from controls, the
addition of the virome improved upon this classification to over 94% AUC and to over
85% accuracy. We acknowledge that this current model is not designed to be used for
diagnosis but does provide evidence that alterations in the gut microbiota are present
in both the bacteriome and the virome. Studies building the fundamental
understanding of interactions between the virome and bacteriome in disease, as
conducted here, are a crucial foundation to the future of virome-based tools to shape

the microbiome.

Alterations in both the virome and bacteriome were more severe in CD patients
relative to UC, which may reflect the severity of the condition relative to UC. The CD
virome was furthest from healthy controls, was the least stable, and exhibited the
greatest number of differential abundant VCs and RSVs relative to healthy controls.
The CD cohort had the least bacterial variability across the cohort which may also be

linked to having the lowest bacterial diversity. Interestingly, CD had a significantly
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higher diversity of Caudovirales and an increased number of reads aligned to
temperate VCs when compared to healthy controls. This again supports the idea that
shift from lysogenic to lytic replication cycles may drive a change in the bacteriome
linked with CD. We did not observe any differences in Caudovirales diversity between
UC and controls along with UC flare versus UC remission in either of our data sets
contradictory to Zuo and colleagues (Zuo et al., 2019). This may be due to the analysis
protocols, whole-virome versus database-dependent, or the sample type, faecal vs
mucosa. It is likely that bacterial-phage dynamics at the mucosal surface in disease are
significantly different to that of faecal samples as previously seen in bacterial profiles
(Gevers et al., 2014). Furthermore, we did not detect any giant viruses such as
Mimivirus or C. ericina virus in our UC cohorts as was suggested by Zuo and
colleagues and believe their previous detection may have been a result of the analysis
pipeline chosen in that study (Sutton et al., 2019a).

Virome compositional changes between UC and control cohorts were more
pronounced than changes observed between flare and remission in UC. This finding,
in conjunction with the overall comparison between UC, CD and healthy controls,
suggests the virome is not only less perturbed between healthy and UC, but also
between flare and remission. This may reflect the disease severity of UC relative to
CD or suggest that these conditions interact with the host in different ways. Variation
in disease location, severity and risk factors such as the potential paradoxical
relationship between CD and UC with smoking (Berkowitz et al., 2018), have
previously alluded to differences in disease aetiologies. It is possible that virome
changes between disease states are more subtle than those between health and IBD.
However, as the virome changes in CD relative to healthy were more exaggerated than
those seen in UC, it is possible that disease status in CD is reflected more significantly

in the virome.

There are a number of future improvements that can be undertaken to expand
upon our current findings. Increased sample sizes, particularly for disease state, would
increase our ability to detect any potential alterations between flare and remission.
Given that diet is a key factor in shaping the microbiota (Singh et al., 2017), inclusion
of food frequency questionnaires would be beneficial, as many subjects with 1BD
undergo significant diet alterations. Furthermore, as many subjects with IBD are on

various medications, detailed medical and medication history (Maier et al., 2018)
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would likely give deeper insight into this data set. Unfortunately, we did not have
access to extensive metadata, including household controls, which can assist in
statistical analysis and allow the exploration of environmental effects. Certain analysis
and figures were limited by missing information at the time of sampling, particularly
information relating to disease activity status (i.e. flare or remission). It has also been
shown that faecal water content (Bristol stool chart) has been associated with bacterial
composition (Vandeputte et al., 2016). Future virome studies would benefit from the
inclusion of water content data in samples. Strain-level variation is believed to play an
important role in phage-host dynamics, particularly when explaining proliferation of
both virulent phage and hosts in an environment (Breitbart et al., 2018;Shkoporov et
al.,, 2019). Consequently, these dynamics may play an important role in the
maintenance of the healthy core virome. However, despite allowing for the
identification of compositional patterns across individuals, analysis at a VC level also
masks these strain-level dynamics. The DNA in these samples was subjected to an
MDA amplification step which has been known to skew overall abundance values
(Parras-Molto et al., 2018). More modern shotgun DNA library kits remove the need
for amplification and should give a more reliable indication of diversity (Roux et al.,
2016). It is also possible that we have excluded some valid viral sequences in our
efforts to prevent contamination and conversely, despite our best efforts we may have
also erroneously included some bacterial contigs. This is ongoing work which will be
improved upon when more hallmark viral genes are identified and prediction software

become available.

This study uses a whole-virome analysis approach to give detailed insights into
the function of the gut virome and its potential role in IBD. We confirm previously
reported disease-specific alterations in the IBD virome but, in contrast to previous
findings, did not see changes in overall viral alpha diversity. However, we did find
evidence to suggest that a predominantly virulent core virome is linked to healthy gut
and shift from lysogenic to lytic replication in the temperate phage population may be
linked to IBD. It should be noted however, that it is not yet possible to conclude if
virome composition reflects or shapes the structure of the bacteriome in the human
gut. This whole-virome analysis approach identified compositional changes across the
entire human gut virome associated with health and disease. These findings are a

significant step towards identifying targets for further wet-lab characterisation and
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future virome biomarkers. This analysis approach also facilitates the comparison of
whole viromes across cohorts in diseases other than IBD and highlights how we can

benefit from a fuller understanding of the role of the microbiome in human health.
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Methods

Faecal samples (Longitudinal UC data set)

Faecal samples from the PURSUIT-M (NCT00488631) phase 3 trial were provided
by Janssen Biotech. This was a multicentre, placebo-controlled, double-blind,
randomized-withdrawal study conducted at 251 centres between September 2007 and
October 2011. The institutional review board or ethics committee at each site approved
the protocol, and patients provided written informed consent. The study cohort
consisted of 40 UC subjects with active disease at baseline, and varying disease states
throughout the study. Disease activity was determined by Mayo score, an index based
on rectal bleeding, stool frequency, physician’s global assessment and endoscopic
findings. The cohort, of which 23 male, had a mean age of 39.55 (£16.60) and mean
BMI of 23.74 (x4.46), while 31 were Caucasian and 9 non-Caucasian. Participants
who had a partial/total colectomy or an ostomy, signs of latent or active granulomatous
infection, or signs/symptoms of malignancy were excluded from this study. All
subjects were taking golimumab at baseline and a full medical and medication history
of all participants in the PURSUIT-M trial are found at
https://clinicaltrials.gov/ct2/show/results/NCT00488631.
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Extraction of faecal VLP DNA, library preparation and sequencing
(Longitudinal UC data set)

Extraction of faecal VLP DNA from the longitudinal UC data set cohort samples,
subsequent library preparation and sequencing were performed as described by
Shkoporov et al. (Shkoporov et al., 2018b;Shkoporov et al., 2019) with the following
modifications: All samples were spiked with the lactococcal Q33 (Mahony et al.,
2013) into the faecal homogenate at 10° pfu/ml, which allowed for quantification of
the total bacteriophage loads in faecal samples. Shotgun library preparation was
carried out using TruSeq Nano DNA HT Library Prep Kit (Illumina) following reverse
transcription of the samples with ThermoFisher Scientific SuperScript IV First Strand
Synthesis System and multiple displacement amplification (MDA) with the Illustra
GenomiPhi V2 kit (GE Healthcare). Libraries were normalised as per the standard
manufacturer’s protocol. Ready-to-load libraries were sequenced using 2 x 150 bp
paired-end chemistry on an Illumina HiSeq 4000 platform (Illumina, San Diego,
California) at GATC Biotech AG, Germany.

Extraction of total faecal DNA for 16S rRNA amplicon sequencing
(Longitudinal UC data set)

Extraction of total faecal DNA from the longitudinal UC data set cohort samples,
subsequent library preparation and sequencing were performed as described by
Shkoporov et al., 2018 (Shkoporov et al., 2018b). Ready-to-load libraries were
sequenced using a proprietary modified protocol using 2 %300 bp paired-end
chemistry on an Illumina HiSeq platform (lllumina, San Diego, California) at GATC
Biotech AG, Germany.

Bioinformatic viral processing

Norman et al., data set

Raw sequence (2,199,754 + 983,529 per sample) quality was assessed using FASTQC
and filtered utilising Trimmomatic (Bolger et al., 2014) using the following
parameters; SLIDINGWINDOW: 4:20, MINLEN: 60 HEADCROP 15; CROP 225.
Human reads were removed using Kraken (v.0.10.5) (Wood and Salzberg, 2014) and
version 38 of the human genome, which resulted in a mean of 1,130,518 + 436,424

sequences per sample. SPAdes meta (Nurk et al., 2017) with default parameters, was
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chosen to assemble the reads into contigs per sample, based on a recent virome
assembly comparison (Sutton et al., 2019b) Assemblies were subsequently pooled and
retained if longer than 1kb. Redundancy was removed with 90% identity over 90% of
the length (of the shorter) retaining the longest contig in each case. This was calculated
by carrying out an all vs all BLASTn and parsing resulting alignments with an in-
house script, as described in (Shkoporov et al., 2018b;Shkoporov et al., 2019). Briefly,
all local alignments between two sequences above an e-value threshold of 1e® were
summed, removing overlaps between alignments. The length of the combined local
alignments was then given as a percentage of the length shorter sequence. Bacterial
contamination was removed by using an extensive set of inclusion criteria to select
viral sequences only. Briefly, contigs were required to fulfil one of the following
criteria; 1) Categories 1-6 from VirSorter when run with default parameters and
Refseqdb (--db 1) (Roux et al., 2015a) positive, 2) circular, 3) a minimum of 2 pVogs
with at least 3 per 1kb (Grazziotin et al., 2017), 4) BLASTn alignment to an in-house
crAssphage database (e-value threshold: 1e%) (Guerin et al., 2018), 5) greater than
3kb with no BLASTn alignments to the NT database (January ‘19) (e-value threshold:
1e19), 6) BLASTn alignments to viral RefSeq database (v.89) (e-value threshold: 1e-
10) ‘and 7) less than 3 ribosomal proteins as predicted using the COG database (Tatusov
et al., 2000). HMMscan was used to search the pVOGs hmm profile database using
predicted protein sequences on VLS with and e-value filter of 1e7, retaining the top

hit in each case.

Quality filtered reads were subsequently aligned to the reference set of viral
sequences (n = 7,605) using bowtie2 (Langmead and Salzberg, 2012). Using
SAMtools (Li et al., 2009), a count table was generated and finally a 75% breadth of
coverage filter was employed to exclude any spurious bowtie2 alignments being
identified as true viral hits. Any viral sequences which did not feature a recruited read
coverage of at least 1 over 75% of the total sequence length were set to 0. These criteria

yielded a final database of 7,582 viruses like sequences.

Longitudinal UC data set

The same processing as described above was performed for the longitudinal UC data
set.cohort where 2,523,262 + 1,289,619 raw reads were quality filtered (Trimmomatic:
SLIDINGWINDOW: 4:20, MINLEN: 60 HEADCROP 15; CROP 135 (fwd), 120
(rev)) and assembled yielding 8,089 VLS in the final count table. VLS classified as
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the spiked exogenous Q33 phage and the internal lIllumina control PhiX were excluded
from further analysis. Subsequent clustering lead to 484 clusters of > 2 members and
4,521 of 1 member.

Clustering and Taxonomy

Protein sequences were predicted using Prodigal (n=121,021) (Hyatt et al., 2010) and
subsequently clustered using vConTACT?2 (Bin Jang et al., 2019) using a pc-inflation
and vc-inflation of 1.5, pcs-mode set to MCL and all other parameters set to default.
This resulted in 472 viral clusters of >2 members and 2,382 singletons, hereby referred
to as a viral cluster (VC) with 1 member. A cluster count table was generated by
summing all the counts from the previous table in each cluster. Taxonomic
classification was assigned to a cluster using vConTACT2 and a custom database of
viral genomes formed from the concatenation of the taxonomically classified portion
of the NCBI's Viral RefSeq (v.89) and the JGI's IMG-VR (downloaded 9 January
2019). The resulting clusters were classified to family-level based on the presence of
reference genomes within. Clusters containing genomes from multiple families, were
termed "heterogeneous”, and may arise from disagreement between protein-based
phylogeny and current taxonomic classification discussed further by Bolduc et al.
CRISPR protospacers were predicted from the human microbiome project bacterial
reference genomes (The Human Microbiome Jumpstart Reference Strains Consortium
2010) using PILRCR (Edgar, 2007). These were aligned to VLS using blastn (-task
“blastn-short”) and formatted with blastn_formatter. (The top alignments with an e-
value score <le-5 to each VLS was retained in each case). A VC was deemed
temperate if it contained VLS with alignments to pVOGs featuring annotated integrase
genes or site specific recombinase genes. These pVVOGs were identified through string
matching “specific recombinase” or “integrase” within the functional annotations of
each pVOG. This yielded 28 pVOGs in total.
(VOG0221,vV0G0275,v0G0286,VOG0303,VOG0375,VOG0559,VOG0944,VOG1

0948,v0G2142,VOG2405,VOG2773,VOG2780,VOG3344,VOG3995,VOG4609,V

0G4650,V0G4942,VOG5508,VOG5717,VOG6225,V0G6237,VOG6282,VOG646

6,VOG7017,VOG7518,vV0G8218,V0OG8244,VOG9501).

Bioinformatic 16S processing - Norman et al. data set
Read quality was assessed on the raw reads (68,146 + 32,196) using FastQC before

and after quality filtering using Trimmomatic under the following parameters;
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HEADCROP:15 CROP:235 SLIDINGWINDOW:4:20 MINLEN:30. The trimmed
reads of the Norman et al. 16S data set were then processed using DADA2 (Callahan
et al., 2016) (v1.10.1). To do this, reads were quality filtered further (truncLen=230,
maxEE=1.4, truncQ=11), before dereplication and de novo chimera removal (method
= "consensus"). 16S reads published in this study were processed using the same
method (truncLen=c(180,100), maxEE=1.4, truncQ=2) and the resulting sequence
tables of both data sets merged in DADA2. Chimeras were removed de novo from the
combined data sets (method="consensus"), followed by a round of reference based
chimera removal using UCHIME (Edgar et al., 2011) (v4.2) against the ChimeraSlayer
Gold database. Resulting non-chimeric RSVs were sorted by length, with all RSVs
having a minimum length of 200 bp and a maximum of 260bp retained. The final count
table resulted in a mean of 41,060 = 17,131 counts per sample. Classification of
retained RSVs was achieved using mothur (Schloss et al., 2009) (v1.38.0, bootstrap
>=80), while SPINGO (Allard et al., 2015) (v1.3, bootstrap >= 0.8, similarity >=0.5)
was used for species-level classification. The RDP v11.4 database was used in both

instances.

Longitudinal UC data set

The same methods are above were employed to process the 16S raw data from the UC
longitudinal data set. There were 382,602 + 181,911 raw reads and the following
Trimmomatic parameters were applied: HEADCROP:20 SLIDINGWINDOW:4:20
CROP:210 MINLEN:50, resulting in a mean of 76,619 + 40,278 counts in the final
count table per sample after being subjected to the bioinformatics pipeline.

Quantification and Statistical Analysis

All statistics and figure generation was performed in R (v.3.5.1). o and p-diversity was
calculated using phyloseq (v.1.26) while differential abundance was carried out using
DESeq2 (v.1.22.1). DESeq2 performs an internal normalization, in which a geometric
mean is calculated for each sequence across all samples. Counts for a sequence in each
sample are then divided by this mean. The median of these ratios in a sample becomes
the size factor for that sample. This procedure corrects for library size and composition
bias within samples. P-values are determined using the Wald test and adjusted with
Benjamini-Hochberg. For further details see

https://bioconductor.org/packages/release/bioc/manuals/DESeg2/man/DESeq?2.pdf.

All correlations except the relative abundance of key VCs and RSVs were carried were
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performed with the cor.test from the stats R package (v3.6.1) using the spearman
method. Correlations between the relative abundance of key VCs and RSVs were
carried out using rcorr from the Hmisc R package (v.4.2-0) with Spearman method.
PERMANOVA was carried out using Adonis from the vegan R package (v.2.5-3) to
investigate for significance in the B-diversity and measure the degree of variation
explained. Procrustes coordinates and significance was generated using procuste and
procuste.randtest also from the vegan library. Machine learning was carried out in R
using the XgBoost package (0.71.2). In each case the model was trained on 70% of
the data and results refer to the remaining 30% of the data which was used to test the
performance of the model. Parameters were optimised for each model using 5-fold
cross validation employing an n.round of 1000 across 200 iterations. ROC curves and
accuracy were performed using the R library ROCR (v.1.0-7). Feature importance was
based on the gain values (i.e. relative contribution of the feature to the model), with

increasing gain referring to increased importance for generating a prediction.

Tests for significance between groups for a-diversity, Caudovirales abundance,
temperate VC abundance, and virome stability in relation to remission status, were
performed using a Wilcoxon test. For all statistical tests significance was defined as
less than 0.05 and all adjustments (where required) was using the Benjamini-hochberg
method and one sample was chosen at random per subject. All figures were generated

using ggplot2 (v.3.1.0).

Data Availability

The longitudinal UC data set 16S and virome reads are available on the SRA under
the following accession number: PRINA552448 (16S) PRINA552463 (virome). Raw
sequencing reads (virome and 16S) for the Norman et al., 2015 cohort were
downloaded from the EMBL-EBI database using a the accession number PRIEB7772

as stated in the original publication (Norman et al., 2015).
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Abstract

The human gut virome is a largely unsolved piece of the gut microbiome puzzle. To
date, our understanding of this community is founded in sequence based studies using
short read libraries, DNA samples amplified using multiple displacement
amplification (MDA) and de novo bioinformatic approaches. While it is known that
MDA introduces bias and hampers downstream processing steps such as assembly and
diversity estimates, the impact of sequencing approaches on the virome has not been
fully characterised. Recent developments in long-read sequencing platforms such as
the Oxford Nanopore Minlon and Pacific Biosciences Sequel are promising solutions
to some of the assembly challenges of virome data, yet to date they have not been used
to our knowledge in virome studies. Here we characterise the impact of sequencing
approach on virome data and describe the use of long read sequencing in the human
gut virome. We report significant limitations in the ability of amplified short read
libraries to represent the human gut virome, and propose the use of alternative
sequencing approaches as a means to address these limitations.

Introduction

The virome is a particularly challenging microbial community to study, primarily
because it heavily depends on sequence-based analysis approaches, and de novo
assembly tools (Clooney et al., 2019;Shkoporov et al., 2019;Sutton et al., 2019a).
Early virome analysis was founded on platforms such as the lonTorrent (Abeles et al.,
2014) or 454 pyrosequenceing (Wagner et al., 2013)which gave the first insights into
virome composition, but was limited by sequencing depth. The field then progressed
to high-throughput short-read platforms such as the Illumina HiSeq or Miseq (Minot
etal., 2013;Norman et al., 2015;Kang et al., 2017), and it is these platforms which laid
the foundation of our current understanding of the virome. The relatively affordable
cost and sequencing depth of these platforms allow for large-scale multi-cohort studies
(Norman et al., 2015) and intensive deep-sequencing of individuals within these
cohorts (Zuo et al., 2019). However, they are also limited in their ability to address
some of the challenges associated with virome data and are known to introduce
significant bias to the composition of virome samples (Kim and Bae, 2011;Roux et al.,

2016). Owing to the dominance of unknown sequences (viral dark matter) in virome
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samples most studies depend on de novo assembly of these short sequencing reads to
resolve viral contigs or genomes in a given sample. However, as discussed extensively
(Hesse et al., 2017;Sutton et al., 2019a;Sutton and Hill, 2019) assemblers vary
significantly in their ability to overcome the challenges of virome data (e.g. genomic
features such as repeats and extremes in coverage) and even the best performing
assembly programs are unable to recover all members of a viral community. As short
read assemblers must balance the trade-off between contiguity and accuracy the
resulting contigs and scaffolds are a consensus of multiple closely related strains (Nurk
etal., 2017). However, in viromes where multiple strains are abundant and diverse this
often leads to fragmented assemblies or failure to assemble the hypervariable regions
of the genome which often relate to host interaction (Warwick-Dugdale et al., 2019).
To make matters worse, these regions are often flanked by repeats and/or areas of low
coverage which further hamper assembly, which often excludes them from

downstream analysis (Warwick-Dugdale et al., 2019).

To our knowledge, only one virome study to date has been carried out on the
Oxford Nanopore (ONT) Minlon platform and none have been carried out on the
Pacific Biosciences Sequel. That study used the Virlon protocol and the Oxford
Nanopore (ONT) Minlon platform to analyse a marine virome (Warwick-Dugdale et
al.,, 2019). Dugdale et al. could scaffold hypervariable regions of abundant
Pelagibacter phage which had proven difficult to assemble using short reads alone.
These hypervariable regions were associated with host interaction and highlighted the
potential benefits of long read sequencing in virome studies. Currently, long read
sequencing has not yet been applied to the human virome, despite this ecosystem
presenting similar assembly challenges and potentially playing an important role in

shaping the composition of the gut microbiome.

Long-read sequencing offers a number of potential benefits over traditional
short read sequencing and may provide solutions to some of the assembly challenges
faced by virome analysis. Given that long-read platforms can potentially sequence
entire viral genomes in a single read, or make up significant fractions of even the
longest phage genomes (e.g. 127.4 kb read on the PacBio Sequel platform, Table 2.)
they offer an opportunity to reduce our reliance on the assembly step and its associated
challenges. Alternatively they can be used to resolve regions which present challenges

to short read assembly such as repeats or regions of varied coverage. However, long-
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read metagenomic sequencing has been primarily carried out on low diversity samples
or mock communities (Tsai et al., 2016;Driscoll et al., 2017;Nicholls et al.,
2019;Sevim et al., 2019;Somerville et al., 2019) and its use in complex metagenomes
is relatively rare (Slaby et al., 2017;Warwick-Dugdale et al., 2019). Therefore its
efficacy and practicality in resolving these complex metagenomes remains to be
determined (Olson et al., 2017). Significant improvements have also been made with
the accuracy and depth of long-read sequencing platforms which had both been
limitations when compared to the high accuracy and depth of sequencing offered by
high-throughput short-read platforms. These have been highlighted by recent
benchmark studies using the ONT PromethlON and GridION which generated 150-
153Gbp and 14-16Gbp, respectively (Nicholls et al., 2019) and in this study that
generated 10.7 Gbp using the PacBio Sequel platform.

However, long-read sequencing platforms also present a number of challenges
which is likely to explain their limited used in metagenomics and viromics. These
platforms currently require several micrograms of input DNA as opposed to
nanograms required by some for short read libraries such as the Accel 1S Plus library.
Given that DNA yields of the human gut virome tend to be low (e.g often < 500ng
(Shkoporov et al., 2018b)) this poses a serious problem. As a result, viromes must be
amplified using either MDA or other amplification methods which introduce
significant bias to the composition of the virome (discussed below). Furthermore
Nanopore and PacBio reads exhibit high indel error rates relative to short read
sequences (5-10%) (Weirather et al., 2017) which cause problems with downstream
OREF prediction software. Indels can shift reading frames to introduce artificial stop
codons and so viral genes can seem truncated (Watson and Warr, 2019). As many
viral prediction methods such as VirSorter (Roux et al., 2015a) or alignment to the
pVOGS database (Grazziotin et al., 2016) depend on accurate ORF calling to identify
viral sequences, these high error rates hamper an already limited ability to identify
viral community members. For this reason long-reads are often used in combination
with, rather than replacing, accurate short reads for metagenomic sequencing (Sevim
et al., 2019;Warwick-Dugdale et al., 2019). Programs such as FMLRC (Wang et al.,
2018) and Plion (Walker et al., 2014) use the accuracy of short reads to correct high
error rates in long-reads. Another challenging aspect of using long read sequencing in

metagenomics and in particular in viromics, is its novelty and the consequence that
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relatively few bioinformatic tools are available that are compatible with metagenomes.
The majority of assembly and error correction tools for long reads require the user to
input estimated depth of coverage (Koren et al., 2017), which in the case of
metagenomes is unavailable, or require higher coverage than is feasible with viromes.
Furthermore very few benchmarking studies of long-read metagenomics have been
performed (Nicholls et al., 2019;Sevim et al., 2019). This means that the few tools
which are compatible with long read metagenomics have not been extensively

validated and their impact on the final community composition is unknown.

Here we present a pilot study in which virome samples from four individuals
were sequenced using multiple sequencing platforms and library prep methods (Table
1). These included the ONT Minion, and two separate library prep methods for the
illumin HiSeq platform, one that used MDA amplification (lllumina TruSeq) and one
which did not (Swift Biosciences Accel 1S Plus). These sequencing approaches were
supplemented by one extremely deep long-read sequencing run for one of the four
viromes using the PacBio Sequel platform to yield 10.7 Gbp across 976,772 reads. To
our knowledge this is the first time the PacBio platform has been used on a virome
sample and is the deepest published PacBio run to be carried out on the human
microbiome to date. As with the ONT Minlon runs, the PacBio run was analysed
individually as corrected reads and in combination with TruSeq reads using two hybrid
assembly methods. These viromes were analysed on an individual basis using two
combinations of the platforms (i.e. hybrid assembly) and the platforms individually to
characterize the elements of the virome which are missed by TruSeq approaches alone.
This is particularly important in the virome as MDA short-read sequencing such as the
TruSeq approach form the foundation of the majority of gut virome research.
Furthermore the impact of sequencing platform and library prep on virome
composition has yet to be fully characterised, despite recent evidence to suggest choice
of virome analysis methods have significant impacts on the conclusions drawn from
virome studies (Sutton et al., 2019a) and can be more pronounced than health or

disease status (Gregory et al., 2019).

With the exception of the Swift Biosciences Accel 1S Plus library on the
illumina HiSeq platform all viromes were amplified using MDA. While MDA is a
crucial step to generating sufficient quantities of high molecular weight required for

sequencing libraries, particularly those used in long-read platforms, it is also known
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to introduce significant bias and is to skew the composition of virome samples (Lasken
and Stockwell, 2007;Kim and Bae, 2011;Sabina and Leamon, 2015;Roux et al.,
2016;Roux et al., 2017). This bias can occur in a number of ways that are of particular
importance to virome samples. “Selection bias” refers to preferential amplification of
certain templates in a multi-template pool, such as that of a metagenome or virome.
MDA primer binding is sensitive to GC content of the priming region as high GC
content regions cause problems with denaturation and primer annealing resulting in
underrepresentation of high-GC regions (Ishii and Fukui, 2001). As Phi29 polymerase
is not capable of strand switching, it also tends to underrepresent sequences near the
beginning and end of templates(Sabina and Leamon, 2015). This also means that as
the number of termini in templates increases, as is the case in fragmented or multiple
short genomes such as those seen in viromes, the degree of underrepresentation also
increases (Lage et al., 2003). As MDA reactions preferentially amplify small circular
ssSDNA genomes such as those in the family Microviridae their abundance in the
sample can be greatly overrepresented (Dean et al., 2002;Kim and Bae, 2011).
Furthermore, initial log-fold differences in coverage in virome sequences (Dutilh et
al., 2014;Shkoporov et al., 2018a) are exaggerated by MDA resulting in extremes in
both high and low coverage, which hamper downstream assembly and diversity
estimates (Sutton et al., 2019a). The low initial yield of faecal virome samples is the
primary reason MDA is required to generate sufficient DNA for library prep protocols.
However this initial low yield further contributes to the bias introduced by MDA
reactions. In low yield samples a small number of early amplification reactions can
often determine the composition of the final amplification products (Blainey, 2013) .
This results in a stochastic loss of template information referred to as “drift bias”

(Sabina and Leamon, 2015).

Another significant challenge of MDA amplified virome samples which
became particularly evident in the viromes sequenced on long read platforms was
chimeric MDA artefacts. The formation of chimeras or rearrangements which are
absent in the template DNA, is closely linked to the strand displacement ability of
Phi29 polymerase (the MDA used in this study) (Lasken and Stockwell, 2007) (Supp.
Figure. 1). The highly-branched amplification products of MDA can form a number
of intermediate secondary structures. DNA strands extending from an initial template

can become displaced and are available to prime on a separate template creating
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chimeric amplification products. The mechanism proposed by Lasken and Stockwell
(Lasken and Stockwell, 2007) suggests that 3° termini displaced by branch migration
are available to reanneal with nearby 5’ strands that have been displaced by the Phi29
polymerase itself. This results in deletion of part of the template sequence and
sequences directly flanking this region becoming joined in an inverted orientation. As
these amplification products are often sheared as part of a short read library
preparation and assembled in downstream processing, they are less evident in short
read viromes. However, when MDA is used to generate long read libraries, these
chimeric sequences remain intact and can cause serious problems with downstream

analysis.
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Due to the large input requirements of long read libraries and the low DNA
yields associated with faecal virome samples, initial attempts to avoid MDA by
pooling multiple extractions of each sample did not to yield sufficient DNA for each
of the library prep methods. Additionally, in order to examine the effect of the library
prep methods and sequencing platform on the final virome it was crucial that identical
DNA samples were used for each approach. For these reasons pooled DNA extracts
from each sample were amplified using Phi29 MDA (illustra GenomiPhi V2 DNA
Amplification Kit, GE Healthcare Life Sciences). However, in an effort to minimize
the impact of drift bias (discussed above) three individual MDA reactions were pooled
for each sample as described by Raghunathan et al. (Raghunathan et al., 2005). This
pooled amplification product was used for all sequencing approaches except the Swift
Biosciences Accel 1S Plus library, which used the unamplified pooled virome from
each sample, allowing for comparison of this amplification bias across both short-read
Illumina platforms. It should be noted that the previously discussed VirlON pipeline
(Warwick-Dugdale et al., 2019) does not use MDA, and may have avoided some of
the MDA-associated issues encountered by this study. However, with all amplification
protocols, the Long-Read Linker-Amplified Shotgun Library (LASL) approach
(Duhaime et al., 2012) used in the VirlON protocol is known to introduce its own bias
to the resulting virome (e.g omission of sSDNA viruses (Kim and Bae, 2011)) but this
bias has not been characterised to the same extent as that of MDA.

While there was significant overlap between analysis approaches, almost all
approaches gave novel insights into the virome composition, which built upon what
would be detected by the standard Truseq analysis. We report numerous cases where
alternative sequencing approaches resolved large viral genomes which would have
otherwise been fragmented by TruSeq assemblies. Furthermore, we observed
instances where long-read and unamplified short-read sequencing approaches detected
viral sequences which had been missed entirely by TruSeq approaches. However, a
number of issues which are particularly pronounced in long-read sequencing
approaches were also observed and are crucial considerations for future long read

virome pipelines
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Methods

Sample recruitment.

Faecal samples were donated by four healthy volunteers who had previously featured
in the longitudinal study by Shkoporov et al. (Shkoporov et al., 2019). Donors that had
been consistently low crAssphage and which had consistently high diversity across
the previous longitudinal study were selected as these viromes can be some of the most
challenging to assemble using short-read approaches. Furthermore viromes of crAss-
rich individuals can be dominated up to 90% by crAssphage (Dutilh et al., 2012;Guerin
et al., 2018;Shkoporov et al., 2018a) and have been successfully sequenced using
short-read platforms. Therefore they may not benefit from the addition of long-reads

to the same degree as more diverse viromes.

Faecal virome extraction

As mentioned above, in an effort to maximize DNA yield from each sample and to
avoid downstream MDA steps, multiple faecal virome extractions were carried out on
each sample using an up-scaled version of a previously described protocol outlined
(Shkoporov et al., 2018b). Briefly eight 2.5g aliquots of each faecal sample were
processed for each round of extraction. These were resuspended in 20ml SM buffer
and homogenised by vortexing for five minutes. A further 25ml of SM buffer was
added to each aliquot and was chilled on ice for five minutes. The aliquots were then
centrifuged at 4,700 rpm in a swing bucket rotor for ten minutes at 4 °C, supernantants
transferred to new tubes and centrifugation repeated. Supernatants were then filtered
twice through a 0.45um pore diameter filter, with the second filtrate of each aliquot
pooled into a sterile 500ml bottle. 44g (10% wi/v) of polyethylene glycol (PEG) -8000
was dissolved in the faecal filtrates and placed on ice overnight. Pooled filtrates were
decanted into 45ml volumes and spun at 4,700 rpm in a swing bucket rotor for 20min
at 4 °C. Supernatant was decanted and the pellet was left to dry inverted. Pellets were
resuspended in 1ml SM buffer and the remaining steps in the protocol carried out as
outlined by Shkoporov et al. (Shkoporov et al., 2018b). Depending on the quantity of
the initial sample, this extraction protocol was carried out 11, 7, 4 and 8 times for
samples 919, 922, 923 and 925 respectively. The resulting viral DNA extracts were
pooled using the Zymo research “DNA Clean and Concentrator” and eluted in into

40ul of elution buffer. Despite maximizing the starting material and pooling and
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concentrating multiple DNA extracts per sample, the final DNA yields were

insufficient to generate unamplified sequencing libraries for all platforms.

Virome DNA amplification, library preparation and sequencing

Consequently, three 1ul aliquots of each sample were amplified using Phi29-based
MDA (illustra GenomiPhi V2 DNA Amplification kit) and subsequently pooled per
sample to reduce the impact of “drift bias” as discussed above. Despite the modified
extraction protocol not yielding sufficient DNA to create all required sequencing
libraries, having a larger amount of starting material for each amplification reaction
will have reduced the impact of “drift bias” as previously discussed. The resulting
pooled amplification products for each of the four samples were prepared for

sequencing as follows.

TruSeq libraries were prepared with the Illumina TruSeq Nano DNA HT
Library Prep Kit and the Accel-NGs libraries were prepared with the Swift
Biosciences Accel 1S Plus kit as per the methods described by Shkoporov et al.
(Shkoporov et al., 2019). Both libraries were normalised as per the manufacturer’s
protocol and sequenced on the were sequenced using 2 x 150 bp paired-end chemistry
on an Illumina HiSeq 2500 platform (Eurofins Genomics Germany).

ONT libraries were prepared with the Oxford Nanopore Rapid Barcoding
Sequencing kit (SQK-RBKO004) as per the manufacturer’s protocol, eluting with
nuclease free water which had been pre-warmed to 65 °C. ONT libraries sequenced

on the Minlon platform using a v.9.4.1 flowcell at APC Microbiome Ireland.

PacBio library preparation and sequencing was performed by our collaborators
(Trevor Lawley and Ana Zhu) at the Wellcome Sanger institute. The library was
prepared according to the BluePippin Size-Selection System for a 7kb fragment size
and was followed by a phenol DNA extraction protocol. The final library was

sequenced using the PacBio Sequel platform.
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Read processing and assembly

Short-reads

Short-read quality was assessed using FastQC v0.11.5. Adapter removal was carried
out with cutadapt v1.9.1(Martin, 2011) and trimming and removal of low quality reads
was carried out using Trimmomatic v0.36 (Bolger et al., 2014) with the following
parameters SLIDINGWINDOW:4:20 MINLEN:60 HEADCROP:10. High-quality
reads from each sample and sequencing library were assembled separately using
SPAdes v3.11.1 (Nurk et al., 2017)in metagenomic mode and default parameters,
based on the findings of our recent assembly comparison for virome data (Sutton et
al., 2019a). Assemblies were then size filtered to 1kb. Redundancy was then removed

within samples and sequencing approach as described below.

Oxford Nanopore read processing and error correction

Nanopore reads were basecalled with Albacore (v2.2.7) and filtered by NanoFilt
v2.2.0 with the following parameters -q 8 -1 1000 --headcrop 50. Porechop v0.2.3 was
used to remove terminal adapters and split reads containing middle adapters. Trimmed
quality filtered reads were then size filtered to 1kb. Nanopore reads were then error
corrected using the trimmed high-quality TruSeq reads from the same sample using
FMLRC v1.0.0. (Wang et al., 2018) (i.e. sample 919 TruSeq reads were used for the

error correction of 919 Nanopore reads).

PacBio read processing and assembly

PacBio subreads were converted from bam to fastq and as with the Nanopore reads,
corrected using high-quality TruSeq reads from the same sample using FMLRC v1.0.0
(Wang et al., 2018). However due to the number and size of the corrected PacBio reads
(10.1 Gigabases over 9.75 x 10° reads) and the computational limitations of our server,
corrected PacBio reads were size filtered to 20kb. This brought the number of reads to
asimilar level to those in the corrected Nanopore libraries while maximising the length
of the retained sequences. Redundancy within the error corrected, size filtered PacBio

reads was then removed on a per sample basis as described below.

Removal of long-read sequencing artefacts

Both Nanopore and PacBio reads featured sequencing artefacts which needed
additional filtering steps to remove. These included long palindromic repeats or
regions of repeated single or double nucleotides (e.g AAAA or ATAT). These
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repeated single and double nucleotide repeats are likely to be errors in either base-
calling software, or the sequencing platform itself. Palindromic repeats (Supp Figure.
1) are likely to be the result of MDA chimeras as described above and were identified
by finding reads which aligned back onto themselves. This involved carrying out an
all vs all BLASTN, filtering for self-hits and flagging long-reads which had aligned
within themselves with an identity of at least 98%, where the query start was not the
same as the subject start, that the self-hit was over 1kb and made up at least 5% of the
total length.

Long-reads which featured extended single and double nucleotide repeats were
flagged by calculating the nucleotide frequency within the reads. If reads were
dominated by only two or three nucleotides which made up an equal percentage of the
total nucleotides, they were removed. Similarly if any nucleotide made up more than
80% of all nucleotides in a given a long-read, the read was removed. It was particularly
important to remove these sequences as they would have caused issues in downstream
redundancy removal and identification of viral sequences. Both of these steps are
based around BLAST nucleotide alignments which masks low complexity regions
such as single and double nucleotide repeats, preventing alignment. Furthermore,
while long palindromic repeats may be duplicates of legitimate viral sequences (Supp.
Figure 2.), they would also be twice the length of any non-chimeric instance instances
of the sequence. This would have made the legitimate instance of the sequence
redundant and retained the chimera. Following error correction, artefact removal and
size filtering, redundancy within Nanopore and PacBio reads was removed within
samples and sequencing approach as described below.

Hybrid Assembly

Hybrid assembly was carried out on a per sample basis using high-quality TruSeq
reads and corrected Nanopore reads. For the sample which was also sequenced on the
PacBio platform (919), hybrid assembly was also carried out using high-quality
TruSeq reads and corrected, size-filtered PacBio reads. Both SPAdes v3.11.1 (Nurk et
al., 2017) (using the --meta and the --nanopore or --pacbio flag in each case) and
OPERA-MS v0.8.2 (Bertrand et al., 2019) (using the --no-ref-clustering --no-strain-
clustering flags) were used as a means to compare hybrid assembly options across
each sample. Redundancy was then removed within samples and assembly method as

described below.
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Sequence redundancy removal

Redundancy was removed within each sample and sequencing approach individually
(e.g. the 919 corrected Nanopore reads and within the 919 Nanopore Hybrid
assemblies were treated as individual samples and redundancy was removed within
each independently). Redundancy was removed at 90% identity across 90% of the
length of the shorter sequence, retaining the longer sequence in each case. In cases
where sequences are equal in length, one representative was kept at random as per the
method outlined previously ((Shkoporov et al., 2018b;Clooney et al., 2019;Shkoporov
et al., 2019)). This involved carrying out an “all versus all” BLASTn and parsing
resulting alignments with an in-house script. In summary, all local alignments between
two sequences above an identity threshold of 90% and an e-value threshold of 1e-5
were summed, removing overlaps between consecutive alignments. The length of the
combined local alignments was then given as a percentage of the length shorter
sequence. This was then filtered to retain the longer sequence, should the summed

alignments make up 90% of the length of the shorter sequence.

Prediction of viral sequences in assemblies and corrected long-reads

Open reading frames (ORFs) were predicted in the assemblies and corrected long
reads of each sequencing approach using Prodigal v2.6.3 (Hyatt et al., 2010) in
metagenomic mode. Viral sequences within each sequencing approach and sample
were identified using the criteria outlined by Clooney, Sutton et al. and Shkoporov et
al.(Clooney et al., 2019;Shkoporov et al., 2019). In summary, sequenced which met
any one of the following criteria were deemed viral and retained for further
analysis; 1) Categories 1-6 from VirSorter (Roux et al., 2015a)when run with default
parameters and Refseqdb (—db 1) (virsorter ref), 2) circular, 3) a minimum of two
pVogs with at least 3 per 1kb (pvogs ref) 4) BLASTn alignment to an in-house
crAssphage database (e-value threshold: 1e71%)(Guerin et al., 2018), 5) greater than 3kb
having no BLASTn alignments to the NT database (January ‘19) (e-value threshold:
1e19), 6) BLASTn alignments to viral RefSeq database (v.89) (e-value threshold: 1e-
10), HMMscan from HMMER v3.1b2 was used to search the pVOGs (Grazziotin et
al., 2016) HMM profile database using predicted protein sequences on assemblies and
corrected long-reads with an e-value filter of 1™, retaining the top hit in each case.
Two additional filters were applied to sequences that were flagged as “viral dark

matter” (i.e. criterion 5 described above) to ensure nonsense sequencing artefacts were
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not being incorrectly classified as viral. First, dark-matter sequences that were masked
by the built-in low-complexity filter in BLASTn “DUST” (R. L. Tatusov and D. J.
Lipman, unpublished NCBI/Toolkit) were removed from the dataset. Second, the
length distribution of ORFs in dark-matter sequences was calculated and sequences
with a coding density below 1 ORF kb were also removed. This cut-off is slightly
more lenient than those referenced in the literature (1.4 ORF kb™) (Mahmoudabadi
and Phillips, 2018) to reflect the loss of viral genomes which use alternative genetic
codes, such as members of the crAss family (Guerin et al., 2018) and possible

megaphage with below-average coding densities (Devoto et al., 2019).

Generating the Multi-Platform Virome (MPV).

The non-redundant, virus like sequences (VLS) from each of these sequencing
approaches were pooled within each sample to make a single multi-platform virome
(MPV) per individual. This consisted of VLS from Corrected Nanopore reads, TruSeq
assemblies, Accel-NGS assemblies, SPAdes hybrid assemblies (Nanopore and
TruSeq) and OPERA-MS hybrid assemblies (Nanopore and TruSeq) pooled within
each of the four samples (919, 922, 923 and 925). The MPV of 919 which included
the additional corrected PacBio reads, SPAdes hybrid assemblies (PacBio and TruSeq)
and OPERA-MS hybrid assemblies (PacBio and TruSeq) was named PB_919 and was
analysed independently to sample 919, giving 5 samples in total (919, 922, 923 , 925
and PB_919).

The MPV was made non-redundant within each sample to investigate if TruSeq VLS
could be extended by alternative sequencing approaches, or if VLS had been missed
entirely by the TruSeq approach and were only present in alternative approaches. This
redundancy removal step differed from the step described above by keeping the
TruSeq assembly in each case where the sequences were redundant, but equal in
length. In this way a TruSeq assembly was only made redundant when it was extended
by another sequencing approach and not when it had performed equally well, allowing

for a fairer comparison.

Examining the breakdown of the MPV

From this non-redundant MPV (NR-MPV) it was possible to examine the contribution
of each sequencing approach to the final virome, which was counted and then plotted
in R using ggplot2. Next was to investigate whether a given VLS from a given
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sequencing approach had been included in the NR-MPV because it had resolved or
extended a TruSeq assembly, or if it had been missed by the TruSeq reads themselves.
This was done by mapping the high-quality TruSeq reads from each sample back to
the NR-MPV using Bowtie2 v2.3.4.1 (Langmead and Salzberg, 2012) and calculating
the breadth of coverage of each sequence using mpileup feature of samtools v1.7 (Li
et al., 2009). However, when given two equally suitable alignment targets for a given
read, bowtie2 will chose one target sequence at random, which could potentially
reduce the breadth of coverage of a given sequence artificially. To minimize the
impact of this issue across sequencing approaches within each sample, high-quality
TruSeq reads were aligned to the VLS of each sequencing approach in the NR-MPV
separately (i.e. 919 TruSeq reads vs. NR-VLS from Accel NGS in sample 919 and
then vs. NR-VLS from corrected Nanopore reads in 919). From here it was possible
to calculate the proportion of each sequencing approach in the NR-MPV which had
been successfully sequenced by TruSeq reads and had therefore extended or resolved
TruSeq assemblies. Subsequently, it was also possible to identify the proportion of
each sequencing approach in the NR-MPV which had been omitted by the TruSeq
reads entirely. Within each sequencing approach, VLS were broken down into 3
categories based on the breadth of coverage thresholds as previously described (Roux
et al., 2017;Clooney et al., 2019;Shkoporov et al., 2019). These were; VLS with
coverage >75% of the total length (i.e. successfully detected by TruSeq reads),
between 75% and 30% (i.e. may have been partially detected, but would not pass the
breadth of coverage thresholds described in the literature) and <30% (i.e. has been

very poorly sequenced by TruSeq reads or missed entirely).

Validating non-TruSeq VLS and their long-term detection

Each of the four samples in this study had featured in a previous study which used the
TruSeq approach across 12 monthly timepoints (Shkoporov et al., 2019). This made it
possible to validate and examine the longitudinal stability the VLS generated by non-
TruSeq approaches. Monthly timepoints (12) from each of the four samples were
trimmed and quality filtered as per the parameters and methods described by
Shkoporov et al. (Shkoporov et al., 2019) and aligned to each sequencing approach
within the NR-MPV separately as described above. In this way it was possible to

validate VLS from other sequencing approaches which had been missed by TruSeq
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reads in this study, and to determine their rate of detection across one year within the

same individual.

Visualising VLS of interest.

The aforementioned processing steps have been designed for large scale sequence
analysis and have been based around sequences passing particular thresholds. While
this facilitates large-scale sequence processing and can reveal overall patterns across
the dataset, artefacts of the analysis methods can go unnoticed and skew findings
(Sutton et al., 2019b;Sutton and Hill, 2019). For this reason, a selection of VLS from
the NR-MPV of each sample were characterised and visualised in detail. VLS selected
for visualisation included the longest VLS in the entire dataset, VLS which were
poorly detected by TruSeq reads in this study but were detected in other longitudinal
samples and VLS which resolved multiple fragmented TruSeq assemblies, despite

having been sequenced fully by TruSeq reads.

VLS were annotated by aligning predicted protein sequences to the pVOGs
(Grazziotin et al., 2016) database as described above. This approach has been found
to give a greater number of functional annotations than automated tools such as
RASTtk using default settings, which is likely due to use of HMM-based alignments
which are more sensitive to distant protein homologies such as those seen in viral
genomes (Karplus et al., 1998). The pVOGs hmm profile database features multiple
functional annotations within each p\VOG, which makes it difficult to assign a single
function to a given query protein. By filtering annotations within each pVOG it was
possible to generate a single “most common” annotation. This was done by counting
the occurrences of all non-hypothetical annotations and assigning the function of the
entire pVOG to that which was most common. However, as there are discrepancies
within the naming scheme of pVOG functions. (e.g. predicted hypothetical protein,
predicted gene productl), assigned functions were first curated manually. Using this
tidied pVOG function database (featuring one function per pVOG), it was possible to
carry out large-scale annotation of VLS sequences. In-house scripts were used assign
function to each VLS protein using the top pVOG hit (HMMscan as described above)
and convert this modified HMMscan output to GFF and GBK formats. TruSeq read
coverage from both this study and longitudinal samples was then converted from
samtools mpileup output (as described above) to a csv file giving the depth of aligned

reads at each nt position in the genome. For particularly large VLS depth was averaged
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across each 100nt. From here it was possible to visualise annotated VLS and TruSeq
read recruitment using GView(Petkau et al., 2010). Alignments between selected VLS
and TruSeq assemblies were visualised using BRIG v0.95 (Alikhan et al., 2011)and
were added to the centre of existing selected VLS plots with Adobe Illustrator CS5.
tRNA sequences were predicted on VLS using ARAGORN v1.2.38 (Laslett and
Canback, 2004) and aligned to Bacterial RefSeq (v.89) and NT using BLASTN.
CRISPR protospacers were predicted from the 3,055 draft and complete bacterial
genome assemblies in the Human Microbiome Project (HMP) database using PILR-
CR v1.06 (Edgar, 2007), size filtered to between 20 and 70 nt long and aligned to VLS

using “blastn-short” mode preset, e-value < 10>,

Results

Read and final assembly counts

TruSeq libraries produced on average 2.7 x10° ( 1.43 x10° mean = std.dev) high-
quality reads across the four samples (4.7 x 10%, 2.9 x 10°, 6.9 x 10° and 2.4 x 10°
across samples 919, 922, 923, and 925 respectively). Accel-NGS libraries produced
less high-quality reads on average at 1.9 x10% + 5.5 x 10° (1.6 x 10%, 2.7 x 105, 2.1 x
105, and 1.2 x 10° across 919, 922, 923, and 925 respectively). Counts, and length
statistics for the sequencing approaches used in the study (e.g. short-read assemblies,
corrected Long reads and hybrid assemblies) are outlined in Table 2 (intermediate files
highlighted in blue). Table 2 is sorted by sample and for comparability, Supplementary
Table 1 is the same data in Table 2 but sorted by sequencing approach. Significant
redundancy (see methods) was observed in the corrected long reads of both platforms
(Table 2, intermediate files) with 88+4% of corrected Nanopore reads over 1kb (5.13
+ 1.1 x 10 reads on average) and 78% of corrected PacBio reads over 20Kb (5 x 10%)
being made redundant. Despite this redundancy, there were on average 7.2 (x4) times
more non-redundant corrected Nanopore reads and 19 (+16) times more corrected
PacBio reads than all short-read and hybrid assemblies across all samples. Excluding
the Corrected PacBio reads (as they had been size filtered to >20kb) the Accel-NGS
library had the longest N50 across all samples (23.8kb) and the corrected Nanopore
reads had the lowest (6kb). Fluctuations in total length and counts of long
reads/assemblies across samples were consistent across platforms (i.e. subject 922

consistently generated the most long reads/assemblies and 923 the least) suggesting
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that discrepancies in DNA samples themselves (i.e. quantity, fragmentation, diversity

etc.) impact all sequencing and assembly approaches.

Sample Software Seq Type Seq Approach  No. Seqs  total_len mean_len longest N_count Gaps NSO | N50n | N90 | N9On
919 SpadesMeta scaffolds AccelNGS 874 5.72E+06 6550.03 238.7Kb 4154 220 32294 36 1627 414
919 SpadesMeta scaffolds Truseq 1351 7.94E+06 5878.38 244.3Kb 3948 214 24955 60 1608 711
919 FMLRC Corrected NP Nanopore 69424 2.07E+08 2982.44 57.0Kb 0 0 3673 16293 1448 52389
919 FMLRC NR NR corrected NP Nanopore 7497 3.23E+07 4303.31 57.0Kb 0 0 6145 1483 1910 5223
919 OPERA-MS scaffolds Truseq + NPCor 1351 7.46E+06 5524.48 109.4Kb 3 1 17123 109 1663 766
919 SpadesMeta scaffolds Truseq + NPCor 1342 8.19E+06 6105.14 483.4Kb 6621 195 34847 51 1658 692
922 SpadesMeta scaffolds AccelNGS 2755 1.04E+07 3760.2 131.0Kkb 7050 309 7381 229 1325 1852
922 SpadesMeta scaffolds Truseq 1908 7.16E+06 3750.32 121.8Kb 5392 255 7521 159 1316 1281
922 FMLRC Corrected NP Nanopore 41400 1.18E+08 2850.69 34.5Kb 0 0 3440 9921 1406 31515
922 FMLRC NR NR corrected NP Nanopore 7315 2.85E+07 3889.52 34.5Kb 0 0 5456 1513 1754 5199
922 OPERA-MS scaffolds Truseq + NPCor 1815 6.78E+06 3733.74 100.5Kb 4 4 6501 188 1375 1234
922 SpadesMeta scaffolds Truseq + NPCor 1887 7.58E+06 4018.52 121.8Kb 9671 259 9064 138 1367 1234
923 SpadesMeta scaffolds AccelNGS 508 3.20E+06 6302.86 164.0Kb 2530 73 41480 20 1625 249
923 SpadesMeta scaffolds Truseq 282 1.73E+06 6128.49 151.1Kb 1020 39 19559 18 1765 149
923 FMLRC Corrected NP Nanopore 53444 1.66E+08 3115.41 59.3kb 0 0 3911 12566 1509 40023
923 FMLRC NR NR corrected NP Nanopore 4133 1.75E+07 423896 59.3Kb 0 0 6370 792 1779 2842
923 OPERA-MS scaffolds Truseq+ NPCor 242 1.77E+06 7315.83 89.6Kb 0 0 15121 25 2859 134
923 SpadesMeta scaffolds Truseq+NPCor 290 2.09E+06 7203.76 161.9Kb 428 21 24208 18 2447 152
925 SpadesMeta scaffolds AccelNGS 742  3.07E+06 4140.13 127.7Kb 2127 104 14153 42 1296 472
925 SpadesMeta scaffolds Truseq 1334 5.12E+06 3836.2 134.2Kb 3768 193 7310 113 1343 887
925 FMLRC Corrected NP Nanopore 67510 2.08E+08 3078.94 45.5Kb 0 0 3805 15742 1487 50665
925 FMLRC NR NR corrected NP Nanopore 7450 3.15E+07 422235 45.5Kb 0 0 6304 1423 1784 5144
925 OPERA-MS scaffolds Truseq + NPCor 1265 4.89E+06 3866.42 134.3Kb 2 2 6927 142 1407 845
925 SpadesMeta scaffolds Truseq + NPCor 1311 5.67E+06 4323.09 134.2Kb 4919 166 9034 106 1463 834

PB_919 FMLRC Corrected PB PacBio 974695 1.05E+10 10795.8 127.6Kb O 0 13471 3E+05 6329 7E+05

PB_919 FMLRC >20KB Corrected PB PacBio 64761 1.05E+10 10795.8 127.6Kb 0 0 13471 3E+05 6329 7E+05

PB_919 FMLRC >20KB NR NR Corrected PB PacBio 14117 4.16E+08 29480.2 127.6Kb 0 0 27356 5055 21056 12089

PB_919 OPERA-MS scaffolds Truseq+PBCor 1099 9.94E+06 9041.18 114.4Kb 151 127 20922 128 3704 578

PB_919  Spades meta scaffolds Truseq + PBCor 1819 1.02E+07 5612.56 349.7Kb 5984 158 19511 81 1779 1054

Table 2. Counts, and assembly statistics for each sequencing and assembly approach
sorted per sample. Intermediate files highlighted in blue were not included in
downstream analysis and are included for reference purposes only.

Sample Software Seq Type Seq Approach | No.Seqgs total_len 'mean_len longest N_count Gaps| N50 = N50n = N90 & N9On
919 SpadesMeta scaffolds AccelNGS 874 5.72E+06  6550.03 238.7Kb 4154 220 32294 36 1627 414
922 SpadesMeta scaffolds AccelNGS 2755 1.04E+07 3760.2 131.0kb 7050 309 7381 229 1325 | 1852
923 SpadesMeta scaffolds AccelNGS 508 3.20E+06 6302.86 164.0Kb 2530 73 41480 20 1625 249
925 SpadesMeta scaffolds AccelNGS 742 3.07E+06  4140.13 127.7Kb 2127 104 14153 42 1296 472
919 SpadesMeta scaffolds Truseq 1351 7.94E+06 5878.38 244.3Kb 3948 214 24955 60 1608 711
922 SpadesMeta scaffolds Truseq 1908 7.16E+06  3750.32 121.8Kb 5392 255 7521 159 1316 1281
923 SpadesMeta scaffolds Truseq 282 1.73E+06  6128.49 151.1Kb 1020 39 19559 18 1765 149
925 SpadesMeta scaffolds Truseq 1334 5.12E+06 3836.2 134.2kb 3768 193 | 7310 113 1343 887
919 FMLRC Corrected NP Nanopore 69424  2.07E+08 2982.44 57.0Kb 0 0 3673 16293 1448 52389
922 FMLRC Corrected NP Nanopore 41400 1.18E+08 2850.69 34.5Kb 0 0 3440 9921 1406 31515
923 FMLRC Corrected NP Nanopore 53444  166E+08 311541 59.3Kb 0 0 3911 12566 1509 40023
925 FMLRC Corrected NP Nanopore 67510 2.08E+08 3078.94 45.5Kb 0 0 3805 15742 1487 50665
919 FMLRC NR NR corrected NP Nanopore 7497 3.23E+07 4303.31 57.0Kb 0 0 6145 1483 1910 5223
922 FMLRC NR NR corrected NP Nanopore 7315 2.85E+07 3889.52  34.5Kb 0 0 5456 1513 1754 5199
923 FMLRC NR NR corrected NP Nanopore 4133 1.75E+07 423896 59.3Kb 0 0 6370 792 1779 2842
925 FMLRC NR NR corrected NP Nanopore 7450 3.15E+07 422235 45.5Kb 0 0 6304 1423 1784 5144
919 OPERA-MS scaffolds Truseq + NPCor 1351 7.46E+06 5524.48 109.4Kb 3 1 |17123| 109 1663 766
922 OPERA-MS scaffolds Truseq + NPCor 1815 6.78E+06  3733.74 100.5Kb 4 4 6501 188 1375 1234
923 OPERA-MS scaffolds Truseq + NPCor 242 1.77E+06  7315.83  89.6Kb 0 0 15121 25 2859 134
925 OPERA-MS scaffolds Truseq + NPCor 1265 4.89E+06  3866.42 134.3Kb 2 2 6927 142 1407 845
919 SpadesMeta scaffolds Truseq + NPCor 1342 8.19E+06 6105.14 483.4Kb 6621 195 34847 51 1658 692
922 SpadesMeta scaffolds Truseq + NPCor 1887 7.58E+06 401852 121.8Kkb 9671 259 9064 138 1367 1234
923 SpadesMeta scaffolds Truseq + NPCor 290 2.09E4+06  7203.76 161.9Kb 428 21 24208 18 2447 152
925 SpadesMeta scaffolds Truseq + NPCor 1311 5.67E+06  4323.09 134.2Kb 4919 166 9034 106 1463 834

PB_919 FMLRC Corrected PB PacBio 974695 1.05E+10 10795.76 127.6Kb 0 0 13471 290192 6329 700761

PB_919 FMLRC >20KB Corrected PB PacBio 64761 1.05E+10 10795.76 127.6Kb 0 0 13471 290192 6329 700761

PB_919 FMLRC >20KB NR NR Corrected PB PacBio 14117 4.16E+08 29480.15 127.6Kb 0 0 27356 5055 21056 12089

PB_919 OPERA-MS scaffolds Truseq + PBCor 1099 9.94E+06  9041.18 114.4Kb 151 127 20922 128 3704 578

PB_919 Spades meta scaffolds Truseq + PBCor 1819 1.02E+07 5612.56 349.7Kb 5984 158 19511 81 1779 1054

Supp.Table 1. Counts, and assembly statistics for each sequencing and
assembly approach as per table 2. sorted per sequencing approach.
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In the short read libraries the average N50 value relative to the number of
quality filtered reads was slightly higher in the Accel-NGS library, with 1.36 x 102 in
the Accel-NGS relative to 9.82 x 10 in the TruSeq. This suggests that independent
of the size of the libraries, 50% of the total length of Accel -NGS assemblies was
contained in longer contigs than those of the TruSeq. The longest sequence generated
across all approaches and samples (483.4kb) was a SPAdes hybrid assembly using
Nanopore and TruSeq reads in sample 919. This is interesting because relative to
Nanopore reads, there were almost twice as many PacBio reads (1.88), the minimum
length of PacBio reads in sample 919 was 20 times longer and the longest PacBio read
was 70.5 kb longer than the longest Nanopore read. Despite these differences in counts
and size, the 483.4kb contig was not assembled using either of the hybrid assemblers
and PacBio reads. This may have been caused by the inappropriate removal of PacBio
reads during read processing steps that were necessary to scaffold this contig,
discrepancies in the error profile of Nanopore and PacBio reads, or biases within the

methods used to prepare both libraries.

Composition of the non-redundant multiplatform virome (NR-MPV)

Pooling all VLS from each sequencing approach per sample and removing redundancy
made it possible to examine the cases where TruSeq assembly had been improved
upon by other sequencing approaches or where they had detected VLS which were
missed by TruSeq (Figure 1). For comparability, final non-redundant VLS information
as per Table 2 was presented for the MPV (Table 3). Maximum and minimum values
of non-redundant VLS are highlighted across sequencing approaches per (e.g. total
and mean length, counts, longest and N50, 70 and 90 values). Importantly, all
sequencing approaches contributed to the final NR-MPV albeit with some approaches
contributing considerably more than others (i.e. 923 Corrected Nanopore contributing
603 NR-VLS and TRuSeq assemblies only 11). Furthermore, TruSeq assemblies made
up a relatively small proportion of the VLPs in the NR-MPV of each sample. This
suggests that standard TruSeq approaches to virome analysis fail to represent the
virome in its entirety and that a more detailed view of the virome is achievable through
the addition of long-read sequencing and alternative methods of preparing short read

libraries.
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Additionally, despite having been sequenced on the same platform, Accel-
NGS sequences contributed considerably more VLS to the NR-MPV of certain
samples than the TruSeq and more VLS on average across all samples (98.4 £ 74
Accel-NGS VLS vs. 94 £ 53 TruSeq VLS). Furthermore, when the number of VLS
contributed by each short read library prep method was normalised by read count,
Accel- NGS still contributed 1.5 times more VLS per read on average in each NR-
MPV (5.5x107° + 2.07 x10™ Accel-NGS VLS/HQread vs. 3.6 + 1.31 x10®° TruSeq
VLS/HQread). This suggests that the differences in the numbers of VLS contributed
by each short read to the NR-MPV were not caused by differences in sequencing depth
alone. This also suggests that even within a given short read platform, the library prep
methods and use of MDA have critical impacts on the final virome composition.
Furthermore this highlights the importance of considering the limitations of any single
sequencing approach when interpreting results of virome studies, as currently all but

one (Warwick-Dugdale et al., 2019) have been carried out using a single approach.

Across all samples, corrected long-reads contribute the greatest number and
total length of NR-VLS (corrected Nanopore reads in samples 919, 922, 923 and 925.
Corrected PacBio reads in sample PB_919) Figure 2. Hybrid OPERA-MS assemblies
using Nanopore and TruSeq reads contributed the least number and total length of
VLS in each NR-VLS. This would suggest (somewhat counter-intuitively) that
corrected long reads are more capable of detecting viral sequences than hybrid
assemblies. This may reflect the novelty of metagenomic hybrid assembly and a need
for optimisation in the face of challenging metagenomes such as the virome. It may
also reflect high error rates in the long reads which hamper hybrid assembly, uneven
coverage within template sequences or bias in library prep methods and platforms
themselves skewing the amount of shared sequences between long and short read
platforms. However, in agreement with the final read and assembly stats of Table 2,
the longest VLS in each sample originated from either Accel-NGS assemblies or
hybrid assemblies using Nanopore and TruSeq reads and not the corrected long reads
themselves. These observations suggest that in order to maximise the data provided
by long-read sequencing both the corrected long-reads themselves and hybrid
assemblies should both be included in the final non-redundant dataset.
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TruSeq read recruitment and breadth of coverage (BOC)

In order to investigate whether VLS from non-TruSeq sequencing approaches had
been included in the NR-MPV because they had resolved or extended a TruSeq
assembly, or if it had been missed, TruSeq reads from each sample were aligned to the
NR-MPYV and coverage broken into three thresholds (see methods). Table 4 represents
the VLS counts in Table 3, with each sequencing approach broken down in to coverage
thresholds for the five NR-MPVs (919, 922, 923, 925 and PB_919) (Figure 1.).
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Sequencing approach 919 922 923 925 PB 919
ACC 42 160 50 47 30
ACCIt75 9 69 41 10 8
ACCIt30 0 10 13 3 0
NPCor 270 196 142 255 117
NPCorlt75 233 297 205 385 192
NPCorlt30 301 386 256 417 301
NPHyOPMS 73 89 10 71 36
NPHyOPMSIt75 1 4 0 1 1
NPHyOPMSIt30 0 0 0 0 0
NPHySPA 79 78 15 135 38
NPHySPAIt75 4 2 5 5 4
NPHySPAIt30 0 0 0 0 0
TS 155 129 11 121 54
PB - - - - 106
PBIt75 - - - - 380
PBIt30 - - - - 1369
PBHyYOPMS - - - - 92
PBHyOPMSIt75 - - - - 81
PBHyOPMSIt30 - - - - 4
PBHySPA - - - - 181
PBHySPAIt75 - - - - 74
PBHySPAIt30 - - - - 7

Table 4. VLS counts in each NR-MPV broken down by sequencing approach and
breadth of coverage (BOC) categories. The sequencing approach identifier alone (i.e.
ACC, see Table 1. for identifier information) represents the number of VLS from that
approach which passed BOC detection criteria (BOC > 75%). “1t75” represents those
with a BOC between 30% and 75% and “1t30” represents VLS which had a TruSeq
BOC < 30%.
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Figure 1. Composition of the NR-MPV across all samples. Note that the scale for
samples 919, 922, 923, and 925 is different to that of PB_919 (highlighted by the
dashed line). Each sequencing approach is broken down into (BOC) categories (lighter
to darker shading within each colour), see Table 4. and “TruSeq read recruitment and
breadth of coverage (BOC)” above.

183



TruSeq coverage patterns were consistent across all samples and sequencing
approaches, with on average 2515 % of corrected Nanopore VLS with a breadth of
coverage (BOC) of >75%, 33+3% with a BOC between 75% and 30% and 43+4% a
BOC less than 30%. This suggests that the vast majority of corrected Nanopore reads
would not pass the BOC filter of 75% as used in the literature and would be deemed
absent from the TruSeq library. This also suggests that despite the same amplification
product having been sequenced on both platforms roughly one third of Nanopore reads
will pass viral inclusion criteria and yet will have been missed entirely by TruSeq
libraries. A similar but far more extreme pattern was observed with the Corrected
PacBio reads with 5.7% of corrected PacBio VLS with a BOC of >75%, 20.4% with
a BOC between 75% and 30% and the outstanding majority of 73.8% with a BOC less
than 30%.

Of the Nanopore hybrid assemblies (both SPAdes and OPERA-MS) in the NR-
MPV, 94+5% had a BOC >75% and none were below 30%, suggesting short reads
play a central role in these hybrid assemblies (Table 4.). This would also give greater
confidence to the VLS generated by these approaches, having originated from two
independent sequencing platforms and library prep methods. However, should the
corrected Nanopore VLS represent genuine viral sequences which have been missed
by the TruSeq approach, these sequences will be excluded from this assembly
approach. Hybrid assemblies of the PacBio and TruSeq reads appear to make greater
use of the PacBio reads that were not shared by TruSeq libraries. 62% of hybrid
assemblies using PacBio and TruSeq (both SPAdes and OPERA-MS) had a BOC
>75%, 35% of assemblies had a BOC between 75% and 30% and 3% of assemblies
had a BOC below 30% (Table 4.).

The majority of VLS generated by the Accel-NGS approach appear to have
also been sequenced using TruSeq (i.e. 71 +13% of Accel-NGS with a BOC >75%)
25+9% of Accel-NGS VLS fell below the 75% BOC threshold and in three of the four
samples a small minority of Accel-NGS VLS were missed by the TruSeq library
entirely (7£4% within samples 922,923 and 925). Therefore the Accel-NGS reads
supplement TruSeqs viromes through improved detection of VLS, but predominantly

as a result of improved assembly.
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Viral inclusion criteria
Each NR-MPV was broken down into the viral inclusion criteria used to identify VLS
(Figure 2, Supp. Table 2) as a means to explore and validate the compositional patterns
seen in the NR-MPV.

Across all five NR-MPVs the majority of sequences were deemed viral because they
were flagged as “dark matter” (i.e. were greater than 3kb long and did not feature
BLASTnN alignments to the NT database, see methods). Alignment to the pVOGS
database and VirSorter also contributed a considerable number of VLS, although
significantly less than the “dark matter” criteria. The “dark matter” category also
recruited the largest amount of TruSeq contigs (174 across all four samples).
Interestingly the majority (94+5%) of corrected Nanopore reads and 78% of PacBio
reads with poor coverage (less than 30 % BOC) in each sample also fell into this dark
matter category and which could potentially question their validity as genuine VLS
(see discussion). However, corrected long reads with poor coverage also featured in
other more stringent viral categories, such as aligning to an in-house crAss database
(32 corrected Nanopore reads in sample 923), being virsorter positive, (1116 corrected
PacBio reads in sample PB_919) and aligning to the p\VVOGS database with minimum
of 2 pVogs and at least 3 per 1kb (118 corrected PacBio reads in sample PB_919).
This would suggest that corrected long reads do represent legitimate viral sequences
which are missed by short read platforms and that they are an important addition to a

virome analysis pipeline.

Recruitment of Longitudinal TruSeq viromes to the NR-MPV

The samples used in this study were donated in February 2018, 15 months after the
last time-point of the longitudinal study (November 2015 to November
2016)(Shkoporov et al., 2019). In concurrence with the high levels of virome stability
observed in the longitudinal study, many of the VLS in each NR-MPV were also
detected in multiple longitudinal timepoints despite the 15 month gap between
sampling. The BOC values for many of these VLS fluctuated above and below
detection thresholds. (i.e. BOC >75%) over time which is also in concurrence with the

previous longitudinal study, and referred to a transiently detected virome (TDV).
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Figure 3. Composition of the NR-MPV across all samples as with Figure 1. White
arrows and figures denote the number of corrected long reads which went from one
BOC category when recruiting TruSeq reads in this study, to another category when
recruiting TruSeq reads from another longtitudinal TruSeq library. (e.g. 19 Corrected
Nanopore reads with a BOC below 30% using TruSeq reads from this study reached
a BOC >75% in at least one longitudinal timepoint, and 143 reached a BOC between
30% and 75% in at least one timepoint.
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To validate the VLS generated by non-TruSeq platforms and investigate if they
could be detected long-term within individuals, TruSeq viromes from each individual
across these 12 monthly time-points were aligned to each NR-MPV. If the coverage
of a corrected long-read VLS changed from one detection threshold to another, or
passed the BOC filter in a separate TruSeq library from the same individual, it would
support the viral predictions within these approaches (Figure 3.). However in the
majority of cases, the BOC did not increase to the point where reads would cross these
BOC thresholds (i.e. from BOC below 30% to between 30% and 75%). Across all
samples, 25+13% of corrected Nanopore VLS with a BOC between 75% and 30% (i.e.
may be present in the TruSeq library but would not pass a BOC filter) exhibited a BOC
greater than 75% in at least one longitudinal time-point from that individual.
Furthermore, 23+9% of corrected Nanopore VLS with a BOC below 30% (i.e. appear
to have been missed by TruSeq sequencing) yielded a BOC greater than 30% in at

least one longitudinal time-point from that individual.

However, very few Nanopore VLS with A BOC below 30% passed the BOC
filter in other longitudinal time-points (i.e. 7£6% went from BOC <30% to >75 in the
longitudinal samples). However, even Nanopore VLS which passed BOC filters in the
NR-MPV did not always remain above detection limits across longitudinal samples,
with 37+£16% of corrected Nanopore VLS with a BOC >75% falling below 75% in all
12 longitudinal samples. These results validate some the VLS predicted from corrected
Nanopore reads which had been missed by TruSeq and suggest that TruSeq libraries
fluctuate in their ability to detect certain viral sequences. Furthermore these patterns
were considerably different across the corrected PacBio VLS with only 1% of VLS
with a BOC below 75% reaching more than 75% in at least one longitudinal sample,
7% of VLS with a BOC below 30% reaching between 30% and 75%. VLS with a BOC
below 30% did not reach detection limits of >75% BOC in at any one longitudinal
sample. Similar to the corrected Nanopore VLS, 43% of corrected PacBio VLS which
passed the BOC filter, and were deemed to be present in the TruSeq library of this

study, did not pass the filter in any of the other 12 longitudinal samples.
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Visualisation of particular VLS.

Results to this point have given a broad overview of trends within the MPV of each
sample, the contribution of each sequencing approach to our final view of the virome
and how they compare to the TruSeq libraries and assemblies. These trends were
validated by plotting annotated genome maps of a selection of VVLPs from alternative
sequencing approaches in the NR-MPV and determining how they recruited TruSeq
reads and assemblies. Detailed validation at the level of individual VLS is crucial in
large scale virome pipelines with numerous analysis steps, as each step can introduce
bias or analysis artefacts which skew findings (i.e. palindromic VLS outlined in
methods). Table 5 describes the BOC values for each of the 12 longitudinal TruSeq
libraries across the nine Genome maps plotted Figure 4 A — H.
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Figure 4 A. Is the genome map of a linear VLS from a hybrid SPAdes assembly
using Nanopore and truSeq reads (the linear sequence is presented as circular to
maximise space for annotation labels). This 483kb VLS was the longest across all
samples and platforms, was the longest sequence overall (Tables 2 and 3), and is
among the largest phage genomes in sequence databases. As was discussed above in
“Read and final assembly counts” it is intriguing that the longest sequence did not
involve a PacBio read, despite the increased sequencing depth and minimum read
length of the PacBio library relative to those of the Nanopore. This sequence did not
align to the viral RefSeq database but did share a 2kb region (at 72-74% identity) with
Clostridium and Longibaculum species. However, top alignments of predicted tRNA
sequences all aligned to Prevotella species, a finding which was supported by CRISPR
protospacer predictions. tRNA and CRISPR host predictions and the sheer size of the
VLS are supported by recent reports megaphage infecting Prevotella species (Devoto
et al., 2019) and suggest it could be somewhat related to Lac Phage. However,
BLASTnN alignments to Lac Phage genomes did not yield any results. Given the lack
of nucleotide homology shared across other recently discovered phage families such
as the extended crAssphage family (Guerin et al., 2018) these findings are not entirely
surprising. Future characterisation may be possible using techniques which are better
suited to distant homology, such as those outlined by Guerin et al. and Yutin et al.
(Guerin et al., 2018;Yutin et al., 2018) to investigate a possible relationship to the Lac
Phage family. Despite having recruited TruSeq reads across the entire length of the
sequence (BOC 100%), TruSeq assemblies were unable to resolve the VLS,
generating 3 scaffolds which made up ~ 75% of the genome, and failed to generate
assemblies which could span a region between ~ 130kb and ~260kb and pass viral
inclusion criteria. It is possible that this gap in TruSeq assemblies represents
hypervariable or low coverage regions associated with host interaction as described
by Warwick-Dugdale et al.(Warwick-Dugdale et al., 2019) and highlight the benefits
of combined long and short read sequencing approaches for the virome. This VLS
fluctuated above and below the threshold of detection across longitudinal TruSeq
libraries, with a BOC >75% in 3/12 timepoints and a BOC <30% in 4/12 timepoints
and being missed entirely in one timepoint (BOC 0%). This extreme fluctuation in the
level of detection may be linked to fluctuations in abundance (i.e. shifts in lytic or
lysogenic replication or predator/prey dynamics) which become exaggerated by MDA

selection bias and drift bias (see discussion).
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Figure 4.A. (overleaf) Gview plot of the longest VLS generated by this study (hybrid
assembly Nanopore + TruSeq). The VLS is linear and has been circularised for
plotting purposes (black intersecting line highlights beginning and end of sequence).
Outer to inner rings are as follows; Forward (blue) and reverse (red) CDS annotated
with pVOGs, GC skew (Blue/Purple), max (green) and min (red) longitudinal read
coverage, TruSeq read coverage from this study, TruSeq assemblies from this study.
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Figure 4 B. is a genome map for the longest VLS which featured PacBio reads,
and similar to Figure 4 A was linear and fully covered by TruSeq reads generated in
this study (BOC 100%). In contrast to Figure 4 A, this VLS shared homology to
multiple TruSeq assemblies across the entirety of its length and made all four TruSeq
assemblies redundant (90% identity across 90% of the TruSeq length). This VLS also
fluctuated in and out of the threshold of detection across longitudinal TruSeq libraries
(four time-points below BOC 30%, four time-points above BOC 75%). Annotation
and host predictions were somewhat contradictory and inconclusive. Top CRISPR
protospacer predictions aligned to Fusobacterium species and contradicted tRNA
predictions which aligned to Bacillus and Staphylococcus species. There were no hits
to Viral Refseq and the longest alignments (>4kb, 74-75% ID) to NT were to the class
Mollicutes. Both of these VLS highlight the benefits of using long reads to improve
the assembly of viral sequences which were detected but fragmented using TruSeq

libraries alone.
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Figure 4 C represents the longest circular (which could be taken as a strong
proxy for being complete) VLS across all sequencing approaches and samples.
Interestingly, this originated from the Accel-NGS library and did not feature in the
long-reads from either platform. As with the previous examples, this VLS exhibited
a BOC of 100% with TruSeq reads but was resolved in six separate TruSeq assemblies
across the entirety of its length. Furthermore, this VLS fluctuated fluctuated in and out
of the threshold of detection across longitudinal samples, albeit with a greater number
of high coverage cases (seven time-points with a BOC above 90%). This VLS did not
align to Viral RefSeq and had one short (80% ID across 1.5kb) with Anaerostipes
hadrus (order Clostridia) when aligned to NT. Predicted tRNAs did not have any
alignments to either NT or bacterial RefSeq, CRISPR protospacers had top hits to
Lachnoanaerobaculum, another genus within the order Clostridia. This VLS
highlights the impact of MDA and library prep on final Virome assemblies and
suggests that virome analysis pipelines can also be improved without changing

sequencing platform.
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In Figure 4. A-C. TruSeq approaches could detect but not fully assemble VLS
from alternative sequencing approaches. Figure 4. D-F. represent cases which appear
to have been missed by the TruSeq libraries entirely (BOC < 30%) in this study but
passed the threshold of detection in longitudinal timepoints (BOC >75%). This
validates these VLS and highlights how alternative sequencing approaches not only
improve truSeq assembly but can detect sequences which are missed by TruSeq.
Figure 4. D. depicts a linear Accel-NGS VLS and is the longest (9.2kb) VLS with a
BOC 28% of Truseq reads in this study and BOC >75% in at least one longitudinal
TruSeq library. However, in half of the longitudinal timepoints (6/ 12) BOC remained
below 30%, reaching above 90% in two timepoints. This case highlights the potential
impact of MDA and library prep in the detection limits of TruSeq libraries. This VLS
did not feature alignments to either viral RefSeq or NT, did not feature predicted
tRNAs and had a top CRISPR protospacer alignment to Bacteroides dorei.
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Figure 4.D. Accel-NGS VLS plotted as per Figure 4.A. Poor Coverage by
TruSeq reads in this study (orange) and fluctuation from full coverage
(green) to poor covergage (red) in longitudinal samples.
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Figure 4.E. Corected Nanopore read plotted as per Figure 4.A. This
sequence shared significant homology with crAssphage, but did not feature
alignments to the pVOGs database. TruSeq read coverage in red, green and
orange as before
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Figure 4.F. Gview plot of Corected Nanopore read. Plots (top to bottom) GC
skew (blue/purple), Truseq read coverage from this study (orange). The
remaining 10 plots are longitudinal TruSeq read coverage (timepoints 1-10)
highlighting high BOC
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In Contrast to Figure 4 D, which depicted an unamplified sample, Figure 4 E
represents a VLS from the same MDA amplification as that sequenced in the TruSeq
library. However this VLS was also entirely missed by the TruSeq library in this study
and detected in multiple (3/12) longitudinal TruSeq libraries from the same individual.
This sequence appears to be a fragment of a crAssphage genome as it shares multiple
(albeit partial, longest 4.6 kb with 88% identity) alignments to prototypical
crAssphage in both NT and viral RefSeq databases. It did not feature predicted tRNAS
and had top CRISPR protospacer alignments to Fusobacterium nucleatum. This
suggests that the limitations in TruSeq detection may not be due to MDA and that
ubiquitous members of the viral community such as crAssphage may be undetected as
a result of library prep methods and sequencing platforms. By underrepresenting
potentially shared viral sequences, this also suggests that sequencing approaches
themselves could exaggerate the high levels of inter-individuality which hamper
virome analysis. Similar to Figure 4 E, the VLS depicted in Figure 4 F also originated
from the same amplification product as that which was sequenced on the TruSeq
library, was missed entirely in the TruSeq library of this study, but featured regularly
in every other time-point within that individual. However, this sequence was entirely
unknown and did not feature alignments to any databases, CRISPR spacers or tRNA
hits. This sequence represents the numerous long read sequences which did not feature
in TruSeq libraries, or reference databases, but did appear throughout multiple time-
points, suggesting that these occurrences may be more numerous than we are able to
characterise, due to limitations in databases, and aligning to databases which are

themselves based on short read sequencing.

The VLS depicted in Figs 4 A-F are clear examples of alternative sequencing
approaches improving either the assembly or detection of viral sequences in TruSeq
libraries. In contrast, Figure 4 G is an example of Corrected Nanopore VLS which are
harder to validate and suggest that sequencing artefacts can be carried through to final
VLS by both TruSeq and/or Corrected Nanopore approaches. However, it is difficult
to validate one approach over another. The VLS in Figure 4 G represents a linear
corrected Nanopore read which was fully represented in the corresponding TruSeq
library in this study (BOC 78%). However, this VLS could not be validated with

longitudinal TruSeq reads as it did not recruit reads from any longitudinal time-points.
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Figure 4.G.1 Gview plot of Corected Nanopore read. Plots (top to bottom) Forward
and reverse CDS (red/blue), GC skew (blue/purple), Truseq read coverage from this
study (orange), no longitudinal reads were recruited. Red box highlights gap in the
corrected read with no TruSeq coverage

Figure 4.G.2 Gview plot TruSeq assembly which shared significant homology with
the Nanopore read in Figure 4.G.1. The VLS is linear and has been circularised for
plotting purposes(black intersecting line highlights beginning and end of sequence).
Plots (Outer to inner ring) Forward and reverse CDS (red/blue), GC skew
(blue/purple), Truseq read coverage from this study (orange), alignment to corrected
Nanopore read in Figure 4.G.1 (pink). Note no gap is present in TruSeq assembly and

all CDS are in the same orientation.

Figure 4.G.3 Mauve alignment highlighting the alignment gap in the corrected
Nanopore read and the inversion between the two sequences.
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This VLS was VirSorter positive and passed pVOGs viral inclusion criteria
(Table 5.) which could suggest that it is a legitimate viral sequences which was
consistently below the limits of detection for the 12 longitudinal timepoints and only
reached levels of detection in the 15 months between the study sampling dates.
Alternatively, this VLS may have been newly acquired between the two studies.
Examining the alignment of TruSeq reads and assemblies to this VLS in highlighted
some unusual behaviour making the sequence difficult to validate. The VLS in Figure
4 Gl is the Corrected Nanopore read (abbreviated read ID “NPCor d9212”) with
positive and negative CDS in red and blue and TruSeq read recruitment in orange as
before. TruSeq reads do not align to a 2.5kb region between (5.5kb-8kb, red box)
which also did not recruit known pVOGs and centred on a shift in GC skew. Having
been included in the final NR-MPV of sample 923 this sequence was not made
redundant by other sequences (90% ID over 90% length).This VLS also did not make
any TruSeq assemblies redundant. However, it did align almost entirely to an 8kb
region within much longer (54.3 kb) TruSeq VLS (Figure 4. G.2) between the regions
of 43 and 51kb (pink bar, inner ring). In agreement with the TruSeq read recruitment,
the 2.5kb region was not present in the longer TruSeq assembly. This gap was long
enough (relative to the Corrected Nanopore read) for the redundancy step to deem
these sequences sufficiently different to both be kept in the final NR-MPV. For this
reason, the origin and validity of this gap is crucial to determining whether the
Corrected Nanopore read is a more accurate representation of this VLS by including
regions which TruSeq reads had missed, or if it introduced sequencing anomalies
which are inflating its length and potentially skewing the representation of corrected
long-reads in the final NR-MPV.

Figure 4 G3 depicts a mauve alignment of this region highlighting the gap in
the Corrected Nanopore VLS which was absent in the TruSeq assembly. Furthermore
this Mauve alignment highlights an inversion of the region downstream of this gap in
the corrected Nanopore read (i.e. major capsid and tail proteins on the Nanopore read
are in the opposite orientation to the portal protein VOG4556, but are in the same
orientation on the TruSeq assembly). As described in the introduction, MDA steps
that are often required to generate sufficient quantities of virome DNA for sequencing
libraries can introduce a number of biases, including the introduction of chimeras

(Lasken and Stockwell, 2007). Given the inversion seen here, it is possible that the
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Nanopore read has carried a chimeric repeat through to the final VLS and by inflating
the length of the original template sequence, has been incorrectly retained in the final
NR-MPV. However, as the same amplified DNA sample was sequenced on both
TruSeq and NanoPore platforms this would also suggest that Nanopore reads are more
susceptible to carrying chimeric repeats from MDA than the corresponding TruSeq
reads and assemblies. Contrary to this, the current proposed mechanism for the
introduction of chimeric inversions in MDA reactions, suggest that a region of the
template sequence is deleted and flanking regions are recombined in an inverted
orientation. Given that the corrected Nanopore read contains a sequence which is
absent in the TruSeq assembly, this would suggest that the inversion and deletion
event may have occurred in the TruSeq assembly and that the Corrected Nanopore

read represents the template sequence more accurately.

In this study, both of these cases are equally likely and cannot be resolved. It
is therefore difficult to say if Figure 4 G1 represents a case where Corrected Nanopore
reads have overcome an MDA artefact and given a more accurate representation of
the VLS, or if they are more prone to falling victim to MDA artefacts and must be

treated with caution.

Discussion

The human gut virome represents one of the biggest gaps in our understanding of
human gut microbiome and poses unique analysis challenges. It is heavily dependent
on sequence-based analysis methods and de novo bioinformatic tools which introduce
bias and skew the composition viral community members. The majority of our current
understanding of the virome is based on amplified short read libraries. While this
technique has been shown to introduce bias, it is not fully known how this bias impacts
the final virome composition. As far as we are aware this study is the first to explore
long read sequencing in the gut virome and investigate the limitations of MDA Short
read sequencing. We explore five combinations of sequencing approach and library
prep methods including corrected long reads, hybrid assemblies and short read
assemblies with and without MDA amplification. By pooling the VLS generated by
each approach per individual and removing redundancy it was possible to compare the

contribution of each approach to the final “consensus virome” or NR-MPV. As
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amplified short read libraries (TruSeq in this study) are the foundation of current

virome research, comparisons were performed relative to this approach.

The majority of VLS in the pooled “consensus virome” originated from
alternative sequencing approaches meaning that they either extended or scaffolded
existing TruSeq assemblies, or generated entirely new VLS which had been missed by
TruSeq assemblies and/or sequencing reads. Both of these cases occurred across all
samples and we describe examples where alternative sequencing approaches improved
both the detection and assembly of TruSeq libraries. This highlights the impact of
sequencing approach on the viral sequences available for downstream analysis.

The NR-MPV for each sample was dominated by corrected long reads with
poor TruSeq read coverage meaning that the long read platforms generated a large
number of VLS which did not feature in TruSeq libraries, despite identical MDA
amplified DNA samples having been sequenced with both approaches. This implies
that either long-read platforms generate large amounts of invalid sequences or that
bias within the long read and TruSeq library prep methods skew the composition of
the sample in entirely different directions. Furthermore, as the Accel NGS library
generated fewer VLS with poor TruSeq coverage than the long-read platforms. This
suggests that the choice of platform (i.e. NanoPore vs. PacBio vs. HiSeq) has a greater

impact on the final virome composition than the impact of MDA within platforms.

We validated the VLS which would have otherwise been fragmented or
undetected using longitudinal samples from each individual and tracked their levels of
detection across time. Many VLS fluctuated above and below the thresholds of
detection across time which we suggest may reflect fluctuations in abundance that are
exaggerated by MDA bias. However we also report the long-term detection (across 27
months in total) of a number of these VLS, in agreement with the previous longitudinal
virome study (Shkoporov et al., 2019). It has also been established that there is an
abundance threshold with short read libraries, below which all current assembly
programs struggle with genome recovery and fragmentation (Sutton et al., 2019a). By
visualising and annotating a selection of these VLS it was possible to further validate
and describe in detail instances where alternative sequencing approaches addressed
limitations in TruSeq detection and assembly. However, in some cases, the

discrepancies between short and long read VLS are difficult to explain. We propose
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that these discrepancies are closely linked to MDA artefacts, but it is not clear whether
short or long reads are more capable of overcoming these artefacts. Below we discuss
the finer details of the findings in the context of the analysis methods, their
implications for past and future virome studies and the future prospects of this

analysis.

Detection thresholds, drift bias of MDA samples and long-term stability

In concurrence with the original longitudinal study, high coverage VLS in this study
were often found at multiple time-points. However, defining detection is difficult on
at aread level. Previous studies which defined detection using a single read (Manrique
et al., 2016) were called into scrutiny (Clooney et al., 2019;Gregory et al.,
2019;Shkoporov et al., 2019) as this criteria does not account for shared sequences
(i.e. repeats or gene cassettes) across distantly related viral families (Iranzo et al.,
2016). Additionally, even VLS which stand out in a given sample as a result of having
recruited high numbers of reads and that may even be differentially abundant across
cohorts (Zuo et al., 2019) can be the result of spurious read alignments (Sutton et al.,
2019b). In these cases, recruited reads are stacked over short regions of the genome
rather than evenly distributed and also represent spurious shared sequences rather than
confirming the existence of the VLS in a given sample. For this reason, breadth of
coverage filters have been recommended by a number of virome studies as a means to
differentiate spurious read alignments from shared VLS (Roux et al., 2017;Clooney et
al., 2019). However, the application of rigid filters such as 75% have limitations and
ultimately determine what is defined as present or absent in a sample. Consequently,
this study analysed a spectrum of breadth of coverage (BOC) values across the dataset
as a means to infer the presence or absence of a VLS in a given TruSeq library rather
than stating it outright. All of the VLS examined in detail (Table 5, Figure 4 A-G)
fluctuated above and below the rigid detection threshold of BOC 75% which has
featured in previous studies, which is in agreement with the “transiently detected
virome” in the original longitudinal study (Shkoporov et al., 2019). However, given
the detection limitations of amplified TruSeq libraries highlighted by this study, it is
likely that aspects of this “transient detection” are linked to the sequencing approach
itself. This also means that the human gut virome may well exhibit an even greater
degree of longitudinal stability than we had previously thought. It is possible that this

transient detection is linked to fluctuations in abundance viral community members
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(i.e. predator prey dynamics, or shifts in the lysogenic/ lytic replication cycles of
temperate phage). These initial differences in abundance are in turn, exaggerated by
MDA “drift bias” as amplification products generated early in the MDA reaction
eventually dominate the final sample. When paired with bias within the TruSeq library
prep or the platform itself this could lead to VLS which had been present at low

abundance being underrepresented or excluded from the sequencing entirely.

The limited ability of amplified short read libraries to fully represent the
virome, as highlighted in this study, also has significant implications for the high levels
of inter-individual variation associated with virome data. High levels of inter-
individual variation complicate virome analyses, as without shared features across
cohorts, it is not possible to identify patterns in the virome associated with features of
the cohort (i.e. health vs. disease) (Clooney et al., 2019). This is individuality is
believed to be linked to rapid evolutionary rates in viral communities (Minot et al.,
2013) and the assembly or strain level of resolution at which virome studies are carried
out (Clooney et al., 2019;Sutton et al., 2019a). However, similar to the fluctuation in
longitudinal detection within individuals as discussed above, the results of this study
suggests that high levels of inter individuality may be exaggerated by the detection
limits of amplified short read sequencing libraries themselves. Similar to the
longitudinal stability, this implies that greater numbers of viral sequences may be
shared across individuals than had previously been thought. The observations of this
study suggest that alternative sequencing approaches are capable of addressing these
detection issues. This makes alternative sequencing approaches a promising means of
increasing the number of shared viral sequences across individuals in future virome
studies and complementary to cluster-based methods of lowering inter-individual

variation(Clooney et al., 2019).

Corrected long-reads with low levels of TruSeq coverage

The long-read error correction program used in this study (FMLRC) (Wang et al.,
2018) uses a kmer-based correction method to create de Bruijn graphs from both long
and short read datasets. An FM-index is then used represent all de Bruijn graphs and
used to generate a consensus sequence. This means that although long read correction
does not depend directly on the recruitment of TruSeq reads, it would be impacted by
the amount of shared sequences between the two libraries. Subsequently, long-reads

which were poorly sequenced in TruSeq libraries are likely to have been corrected to
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a lower degree than those which were fully represented. The majority of these long
reads with poor TruSeq coverage were also classified as “dark matter”, meaning they
did not share nucleotide homology with reference databases. It is possible that this
“dark matter” dominance in corrected long-reads with poor TruSeq coverage is linked
to uncorrected long-read errors (Myers, 2014) that prevents successful alignment to
databases. Furthermore, if long reads were insufficiently corrected the high error
profile may have hampered the BLASTn-based alignments which were used
throughout the study to remove redundancy and predict viral sequences. If BLASTn
could not find sufficient redundancy within each long read library or between long
read VLS and those generated by other approaches, the long-read representation in the
NR-MPV would have been artificially inflated.

However, the databases to which these corrected long reads were aligned have
also been founded primarily on short read sequencing. Furthermore these databases
are known to represent extremely minor fractions of the virome as a whole (Roux et
al., 2015b). Therefore, it is also possible that these long “dark matter” reads represent
legitimate undiscovered viral sequences that are undetected by TruSeq reads (i.e. the
‘unknown unknowns’ of the virome). This lack of detection which could be caused by
low abundance or genomic features of the VLS themselves which are negatively
selected by amplified short read libraries. That considered, not all low-coverage
corrected long reads were “dark matter” as highlighted by Figure 4 D. This corrected
Nanopore VLS represented a fragment of a crAssphage, an important member of the
gut virome which had not been detected by the TruSeq library, despite the same
amplified DNA sample having been sequenced on both TruSeq and Nanopore
platforms. Due to the relative novelty of these long-read platforms and their use in
metagenomics, we do not know the full extent their of detection limits relative to
amplified short read libraries and vice versa. Pilot studies such as this are key to
building and understanding of how these technologies could improve our view of the

virome, despite often generating as many questions as they seem to answer.

Future Prospects and limitations

In this study comparisons were made primarily to TruSeq libraries as they represented
the amplified short read libraries which make up the majority of virome research.

These libraries were shown to underrepresent aspects of the virome and were
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outperformed (i.e. total VLS counts and other assembly stats) by unamplified short
read libraries using the Accel-NGS library prep. However, as both TruSeq and Long-
read libraries used identical MDA-amplified DNA samples, TruSeq reads were also
used in the error correction and hybrid assembly steps. If the Accel-NGS library prep
kit could avoid some of the detection limits of the TruSeq it is possible that long-read
error correction and hybrid assembly could be improved by correcting and performing

hybrid assemblies with the Accel NGS library.

Given the improved levels of assembly and detection observed in the Accel-
NGS approach relative to the TruSeq, it is a promising alternative to virome analysis
pipelines. However, as this study sought to compare alternative sequencing
approaches to amplified short read libraries it highlights sequences which were
elongated or scaffolded TruSeq assemblies, or were undetected in TruSeq libraries.
The extent to which these alternative platforms missed VLS successfully sequenced
and assembled is therefore not known. This is an obvious direction for future iterations
of this study and is particularly important for future studies which may use the Accel-
NGS as a replacement to the TruSeq library prep rather than to supplement it as was

carried out here.

During the long-read processing, reads which featured palindromic repeats
were removed. However, as these sequences may represent legitimate VLS which
became chimeric due to MDA it would be more accurate to identify the repeat region
and split the palindrome and remove redundancy of the entire library. One program
has been designed to address this issue (Warris et al., 2018) and will be included in
future iterations of this study as currently the long reads may not be being used to their
full extent. Despite this limitation, we feel that the main findings of the study would
remain consistent although potentially increasing the number of corrected long-read
VLS that would likely exaggerate the current findings. Similarly, an aggressive size
filter was applied to the PacBio reads due to the sheer size of the dataset and
computational limitations. Future iterations of this study could benefit from cloud

computing facilities in order to make use of this dataset in its entirety.
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Conclusions

Here we present what we believe to be the first long-read sequencing study of
the human gut virome and comparison of sequencing and assembly approaches. We
highlight limitations in the ability of amplified short read libraries to accurately
represent the human gut virome and advocate the use of long-read sequencing and
alternative library prep methods as a means to address these challenges. This study
highlights the need to consider the impact of sequencing approach when interpreting
results from virome studies and has considerable implications for our current
understanding of the human gut virome. We propose that amplified short read
sequencing approaches mask the detection of viral sequences and may therefore
exaggerate the levels of inter-individual variation associated with the virome.
Furthermore, we suggest the virome may be more stable within individuals than had
been previously thought and that transient detection is also exaggerated by the choice
of sequencing approach. We propose that long-read sequencing and alternative library
prep methods have an important role in virome analysis and can resolve members of
the viral community which would have been fragmented or undetected using standard

amplified short reads libraries.
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Thesis Summary
The phages and bacteria of the human microbiome are two sides of the same

coin and the composition of each community is intrinsically linked to the other.
Understanding the forces which shape the human gut microbiome is key to
understanding its role in the maintenance of human health, yet arguably the most
important of these forces, the human gut virome, remains almost entirely unknown.
The majority of current virome research is built on nearly two decades of sequence-
based studies. These have given us new insights into this missing part of the
microbiome puzzle but it appears we have only scratched the surface and the virome
remains dominated by unknown sequences encoding as yet unknown functions. This
unknown majority is also one of the biggest challenges of virome data, as it not only
determines which analysis approaches are possible, but also makes these approaches
very difficult to validate. As a result, virome data is particularly sensitive to
methodological artefacts and the final conclusions which are drawn from virome

studies can depend heavily on the analysis approach used.

Chapter One of this thesis discussed major findings in the gut virome field and
highlighted a number of inconsistencies. We recommend that virome researchers
consider and acknowledge the distortion every particular method may have on a given
result and report it accordingly. Too often virome studies take results at face value and
draw incorrect biological conclusions. Doing so leads to the propagation of certain
analytical methods and could lead to bias in arriving at expected findings. A prime
example is the frequent report of changes in alpha diversity of known Caudovirales in
a number of diseases, which remains a regular feature of more recent virome studies.
While it is possible that this reflects an underlying biological signal, it gives very little
insight into the role of the virome in disease as discussed at length in Chapter One.
This repetition of limited analysis methods and results which give little insight into
the composition and function of the human gut virome highlights a real need for
studies which validate analysis pipelines and develop new approaches. For these
reasons, the work presented in this thesis is of critical importance to the progression

of the virome field and understanding its role in the microbiome.

This thesis sought to validate some of the major steps in sequence-based
virome analysis pipelines from the choice of sequencing platform and assembler, to

how the resulting data is analysed. Interestingly and somewhat alarmingly every step

219



that we analysed had a significant impact on the final output, highlighting the fragility
of our understanding of the gut virome. While the challenges of virome data may be
exaggerated relative to other metagenomes (dominance of unknown sequences,
extremes in high and low sequencing coverage etc.) they are not unique to virome
datasets. This suggests that many of the challenges and limitations of viral
metagenomes in this thesis may highlight limitations of microbial metagenomics in

general.

Chapter Two highlighted a central part of every virome analysis pipeline, the
assembly step. As virome studies are dominated by unknown sequences, alignment of
sequencing reads to sequence databases gives a very limited view of virome
composition. As a result, almost all sequence-based virome studies assemble
sequencing reads to reconstruct the genomes of the viral community. This also means
that assembly performance ultimately determines the amount of sequencing data
which can be used in a given virome study. We compared the performance of all short-
read assembly programs used in virome studies to date and found that the choice of
assembler significantly varied the composition of the final virome. Furthermore,
extremes in both high and low coverage resulted in fragmented assemblies and poor
genome recovery. Given that these extremes are common in virome datasets, the limits
of assembly must be considered before drawing conclusions. Furthermore, the poor
performance of some assemblers suggests that not only should they be avoided in
future virome studies, but that the findings of studies that had used them originally
should be treated with caution. Furthermore, studies which had used poor assemblers
present unique opportunities to gain new insight into the virome simply by re-

assembling and reanalysing existing data.

In Chapter Three, we performed exactly that. Current understanding of the gut
virome in IBD was based primarily in the findings and methods of one keystone study
by Norman et al. (Norman et al., 2015). In that study, disease-specific differences in
viral richness had been reported between CD, UC and healthy cohorts. However, these
findings were based on a minor subset of identifiable Caudovirales. This database-
dependent analysis approach has been since used by many subsequent virome studies
and the findings and methods are regularly referred to and replicated. We sought to
develop a database-independent analysis approach using this dataset to investigate if

the patterns seen across the identifiable minority were truly representative of the
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whole-virome. This whole-virome analysis approach not only highlighted the
limitations of database-dependent approaches but gave new insights into the
microbiome in IBD. However, by including the entire dataset and not just the
identifiable minority, we encountered issues with high levels of inter-individual
variation that masked any compositional changes across cohorts. This was addressed
by clustering viral sequences at a gene-level to increase the number of shared
sequences across cohorts. By doing so, we observed a healthy core virome of virulent
phage which was absent in disease. Furthermore, this healthy core appeared to be
replaced by an individual-specific shift towards temperate phage in disease. This
provided the first functional insight into the gut virome in inflammatory bowel disease
and new insights into viral dark matter in the gut. This study also highlighted the
importance of maximising the data used in a given study and how by changing the
analysis approach we can drastically change our understanding of the human gut

virome.

Chapter Four of this thesis went to the very core of a sequence-based study and
examined both sequencing platforms and library prep methods. We performed a pilot
study using long and short read sequencing and as with the previous chapters
highlighted the sensitivity of virome studies to methodological bias. Our current
understanding of the human gut virome is built on a foundation of MDA amplified
short-read sequencing and while MDA is known to skew the composition of DNA
samples, it has not been fully characterised in the virome. Somewhat alarmingly, we
observed significant limitations in the ability of these amplified short-read libraries to
fully recover the human gut virome. This has serious implications for how we perform
virome studies, and the conclusions we have drawn from them to-date. However, we
also see promise in alternative sequencing approaches (i.e. alternative library prep and
long-read platforms) as a means of addressing these issues and suggest that future

virome studies would benefit from the addition of these approaches.
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These four chapters provide an important resource to virome researchers by
highlighting the importance of considering the analysis approach when drawing
conclusions from virome data. We describe some of the limitations of previous
approaches and suggest that the findings presented by studies using these methods
should be treated with caution. Furthermore, these studies are promising candidates
for reanalysis, which as shown in Chapter Three, can provide useful insight into the
structure and function of the virome. The contents of this thesis will hopefully
contribute to future virome studies by validating existing sequence-based tools and
describing new approaches to analyse the virome. As Melvin James “Sy” Oliver said
in 1939, “'tain't what you do, it's the way that you do it”. Perhaps he too was

considering the impact of analysis methods in virome studies in the future?
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Appendix 1
Giant oversights in the human
virome

Thomas DS Sutton, Adam G Clooney, Colin Hill

This letter has been published as the following:

Sutton, T.D.S., Clooney, A.G., and Hill, C. (2019a). Giant oversights in the human
gut virome. Gut. doi:10.1136/gutjnl-2019-319067.

In response to following publication by Zuo et al.

Zuo, T., Lu, X.-J., Zhang, Y., Cheung, C.P., Lam, S., Zhang, F. et al. (2019). Gut

mucosal virome alterations in ulcerative colitis. Gut, gutjnl-2018-318131.
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We read with interest the paper “Gut mucosal virome alterations in ulcerative colitis”
by Zuo et al.(Zuo et al., 2019) which used deep sequencing to identify gut mucosal
virome alterations in individuals with ulcerative colitis (UC). One of many interesting
findings reported by the authors was the detection of giant viruses infecting algae and
amoeba (Mimivirus and Chrysochromulina ericina virus). The authors suggested an
association with the geographical distribution of individuals and concluded that they
were more abundant in UC patients than controls. We reanalysed the data and propose
that issues related to the virome analysis pipeline led to the incorrect identification of

these viruses.

Firstly, the DNA extraction method states that 0.22 um filters were used to
remove bacterial and eukaryotic cells, followed by chemical and enzymatic
degradation of DNA unprotected by viral capsids. Mimivirus has capsid with a
diameter of 0.5 um, surrounded by a 0.125 pum thick layer of closely packed fibres
(Klose et al., 2010), making its presence in the final DNA extract extremely unlikely.

Secondly, we aligned sequencing reads provided by the authors to a database
of all representative Mimivirus and C. ericina virus sequences present in the UniProt
TrEMBL database (228 as of April 2019; see supplementary methods). Mimivirus
sequences recruited at most 82 reads from any given sample, all of which aligned to
short “AT” repeats covering less than 400 nt of the 1.2 Mb reference sequence (Figure
1A). C. ericina virus recruited significantly more reads on average (934; max 8,205),
but again all reads aligned to three short intergenic “AT” repeats at coordinates 91099-
91267, 260723-260745 and 267717-267744. Individual samples covered, at most,
0.02% of the genome.

The annotation of viral assemblies as Mimivirus and C. ericina virus highlights
an issue in the taxonomic assignment method used in this (and other) virome studies.
We used the assembled sequencing reads to repeat the Zuo et al. method by predicting
open reading frames from viral contigs, aligning them to the UniProt TrEMBL
database to assign viral taxonomy to each ORF and finally using a voting system to

assign a consensus taxonomy across the contig.
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Figure 1. (overleaf) (A) Graphical representation of Moumouvirus displaying GC
skew (green/yellow), reverse strand CDS (red) forward strand CDS (blue) and
alignments of all classified Mimivirus contigs to Moumouvirus genome (pink). (B)
Details of alignments highlighted in (A) with percentage identity, alignment length,
query contig length, percentage of query contig aligning to the reference, start and end
coordinates of the alignment to the reference genome and reference annotation at these
coordinates. (C) Graphical representation of C. ericina virus as was plotted for (A)
with alignments of all classified Phycodnaviridae contigs (pink). (D) Details of

alignments highlighted in (C) as was described for (B).
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The only alignments of contigs classified as Mimivirus and C. ericina virus to
the Mimivirus and C. ericina virus database were short (4.3% of the query contig
length on average), low identity hits to proteins such as heat-shock protein and t-RNA
synthetase (Figure 1 A-D), which are conserved across domains of life (Fujishima and
Kanai, 2014) (Feder and Hofmann, 1999). When aligned to the NT database these
same contigs displayed high identity and often full length alignments to bacterial and
fungal sequences and none to C. ericina or Mimivirus genomes. We appreciate that
these viruses encode similar heat-shock and DNA metabolism genes, but we believe
the observed alignments reflect distant similarities between proteins conserved across
all domains of life. There were no alignments to any genes unique to viruses such as
the major capsid protein. We conclude that there is no evidence for the presence of
Mimivirus or C. ericina virus in the human mucosal virome and any suggestion of an

association with ulcerative colitis should be treated with caution.

The authors also found PhiX174 (incorrectly assigned to the order
Caudovirales) to be significantly increased in subjects with UC, but it should also be
noted that PhiX174microvirus is an internal control used in lllumina sequencing and
is a common contaminant of microbial sequencing studies (Mukherjee et al., 2015)
(Zaheer et al., 2018). The published protocol did not describe any steps to remove
Phix174 sequencing controls and so it is possible that the presence and differential
abundance of Phix174 is a result of sequencing artefacts rather than biological
changes.

Supplementary materials and methods

All nucleotide sequences associated with all C. ericina virus and Mimivirus
UniProtKB/TrEMBL taxon IDs were downloaded from GenBank to form a database
consisting of all full length and genomic fragments (n=228) with C. ericina virus and
Mimivirus genes in the UniProt TrEMBL database. In order to maximise the chances
of detection, all relevant entries were added to this database, including those which
were partial or not yet reviewed. This database was used to recruit reads which were
downloaded from the accession numbers provided in the paper (PRINA504921 and
PRJINA506811) and quality filtered with Trimmomatic v0.36 (Bolger et al., 2014) and
the following parameters (HEADCROP:20 CROP:120 SLIDINGWINDOW:4:20
MINLEN:20). Read alignments were carried out using Bowtie2 v2.1.0 (Langmead and
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Salzberg, 2012) and corresponding read recruitment and coverage statistics were
calculated using SAMtools v0.1.19 (Li et al., 2009). Regions which featured a read
coverage greater than 1 were extracted and investigated in detail using EMBOSS
v6.6.0.0 extractseq (Rice et al., 2000).

Trimmed high quality reads were assembled using SPAdes v3.10.0 (Nurk et
al., 2017) metagenomic mode. Assemblies were clustered at 95% as outlined in
(Shkoporov et al., 2018) and open reading frames predicted using Prodigal
v2.6.3.(Hyatt et al., 2010) We appreciate that our choice of assembly software differs
from those outlined in the materials and methods of Zuo et al., however, based on a
recent assembly comparison (Sutton et al.,, 2019) we observed significant
improvements in SPAdes meta contiguity over IDBA with virome data and felt it
would maximise the detection of giant virus genomes. We also use Prodigal opposed
to Glimmer as was outlined in Zuo et al., as its accuracy has been found to be superior

according to ORF caller benchmarking studies (Tripp et al., 2015).

Taxonomic assignment was carried out as described in Zuo et al., by aligning
predicted ORFs to a database of all sequences in the UniProtKB/TrEMBL with viral
taxonomic assignments, using Blastx (e-value < 1¢). Contigs with one ORF per 10Kb
were excluded and best hit viral taxonomy was applied to each ORF. Contigs were
then classified based on the majority taxonomic assignment across all ORFs, or
labelled “unclassified” if a majority was not found. All contigs annotated as
Phycodnaviridae (n=686) and Mimivirus (n=111) were aligned to the aforementioned
C. ericina virus and Mimivirus database and the NT (March 2019) database using
Blastn (e-value < 1e7) —task Blastn as a means to maximise the likelihood of high-
quality alignments. Blastn alone did not yield any alignments. Alignments of these
contigs were visualised using Gview (Petkau et al., 2010), using C. ericina virus
(Accession no. NC_028094.1) and Moumouvirus (Accession no. JX962719.1)
genomes as references and plotting alignment coordinates as the outermost ring.
Moumouvirus was used to represent all Mimivirus alignments as it recruited the

greatest number of Mimivirus-classified contigs from the dataset.
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Appendix 2
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follows
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Specific. Cell Host & Microbe 26, 527-541.e525.

Assisted the design and implementation of the analysis approach and assisted
in drafting and editing of the final manuscript. Carried out read processing and
assembly of the whole community metagenomic samples and analysed

virome-bacteriome interactions.

Guerin, E., Shkoporov, A., Stockdale, S.R., Clooney, A.G., Ryan, F.J., Sutton, T.D.S.
et al. (2018). Biology and Taxonomy of crAss-like Bacteriophages, the Most
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