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Abstract 

 

The gut microbiome is a complex community of microorganisms that interacts closely 

with the human host and is believed to play an important role in the maintenance of 

human health. The viral component of this community is referred to as the human gut 

virome and is dominated by bacteriophage. Bacteriophage are central to microbial 

ecosystems by facilitating nutrient turnover, horizontal gene transfer and driving 

bacterial diversity. In this way the gut virome is believed to closely interact with the 

human host by shaping the composition and function of the gut microbiome. However, 

the gut virome also represents one of the biggest gaps in our understanding of the 

microbiome as it is dominated by unknown bacteriophage targeting unknown bacterial 

hosts and with uncharacterised downstream functions.  

These challenges mean that virome research relies heavily on sequence-based 

approaches and metagenomics to identify compositional patterns and targets for future 

characterisation. A typical virome study involves physical and chemical separation of 

individual virions from the cellular components of the microbiome and the contents 

of the faecal, luminal or mucosal sample from which it came. A viral metagenome is 

then generated by extracting virome DNA and/or RNA for sequencing on a given 

platform. These sequencing reads are then quality filtered and assembled to 

reconstruct the viral genomes in the original sample. The abundance of these 

assemblies is then estimated by aligning the sequencing reads and performing 

statistical analysis. However, each step in a virome analysis pipeline has the potential 

to distort the final viral community and given the unknown nature of the virome, this 

distortion is difficult to identify and characterise. As a result, conclusions are often 

drawn from virome studies without fully appreciating the impact of the analysis 

methods on the findings.  

This thesis examines the major steps in sequence-based virome analysis 

pipelines, highlighting how choices made at each step of an analysis protocol can 

impact the final conclusions drawn from a study. In doing so, we have changed our 

perspective of the human gut virome and challenged previous assumptions. Chapter 

One discusses the current understanding of the virome field, giving particular attention 

to how the analysis methods and challenges affect our view of the virome. In Chapter 
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Two, we focus on the assembly step of virome analysis pipelines. This step is of 

particular importance to virome studies, as an assembler’s ability to recover viral 

sequences can ultimately determine the amount of sequence information used in a that 

study. We compared all short-read assembly programs used in virome studies to date, 

across mock communities, simulated and real datasets. We found that not all 

assemblers are equal, and choice of assembler can drastically affect the conclusions 

that can be drawn from a virome study. These findings call the comparability of 

different virome studies into question and would suggest that previous virome studies 

would benefit from reanalysis using improved assembly methods and re-examination 

of the conclusions drawn.  

As discussed, the human gut virome is dominated by “viral dark matter”; those 

sequences which do not share homology to reference databases. However, the majority 

of what is currently known about the virome in human health and disease is based on 

the minor fraction of viral sequences collated in these databases. This presents a 

serious gap in our understanding and was the primary focus of Chapter Three. We 

reanalysed a keystone inflammatory bowel disease (IBD) dataset, which had formed 

the foundation of much of what we knew about the virome in IBD. We developed a 

new approach to analysing the virome beyond the identifiable minority and by doing 

so, changed our understanding of the virome in IBD significantly. 

In the final chapter, we directed our attention to possibly the most important 

aspect of a sequence-based study, the sequencing approach itself. This step bridges the 

gap between the biological information in a virome and the digital information that is 

analysed. As with all steps in a virome analysis pipeline, this has serious implications 

for the final conclusions of the study. We described the use of long-read sequencing 

in the human gut virome and the benefits and challenges which are associated with 

this technology. We also found the ability of amplified short-read sequencing libraries 

to represent the gut virome was limited, but that alternative library preparation 

methods and long-read sequencing platforms may be able to address these limitations. 

These findings imply that much of what we know about that human gut virome may 

be linked to sequencing performance, rather than the biology of the community itself.   
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These three major aspects of virome analysis pipelines highlight the 

importance of considering the impact of the analysis approach when interpreting the 

results of virome data and complex biological systems in general.  
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Abstract 
The gut microbiome is widely accepted to have a significant impact on human health 

yet, despite years of research on this complex ecosystem, the contributions of different 

forces driving microbial population structure remain to be fully elucidated. The viral 

component of the human gut microbiome is dominated by bacteriophage, which are 

known to play crucial roles in shaping microbial composition, driving bacterial 

diversity and facilitating horizontal gene transfer. Bacteriophage are also one of the 

most poorly understood components of the human gut microbiome, with the vast 

majority of viral sequences sharing little to no homology to reference databases.  If we 

are to understand the dynamics of bacteriophage populations, their interaction with the 

human microbiome and ultimately their influence on human health, we will depend 

heavily on sequence based approaches and in silico tools. This is complicated by the 

fact that, as with any research field in its infancy, methods of analyses vary and this 

can impede our ability to compare the outputs of different studies.  

Here we discuss the major findings to date regarding the human virome and 

reflect on our current understanding of how gut bacteriophage shape the microbiome. 

We consider whether or not the virome field is built on shaky foundations and if so, 

how can we provide a solid basis for future experimentation. The virome is a 

challenging yet crucial piece of the human microbiome puzzle. In order to develop our 

understanding, we will discuss the need to underpin future studies with robust research 

methods and suggest some solutions to existing challenges. 
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Introduction 

The human gastrointestinal tract (GIT) is a complex environment containing billions 

of microorganisms (Sender et al., 2016). Changes in oxygen concentration, pH, 

nutrient availability, water availability and bile salts shape the relative abundance of 

microorganisms from all domains of life (fungi, protists, bacteria and archaea) 

(Duncan et al., 2009;Espey, 2013;Ridlon et al., 2014;Vandeputte et al., 2016). Of these 

microorganisms, bacteria are by far the most characterized, making up the vast 

majority of the DNA sequences and biomass (Qin et al., 2010;Yatsunenko et al., 

2012). This bacterial community also plays a central role in normal physiology of the 

mammalian gut by facilitating metabolic functions, protecting against pathogens and 

modulating the immune system (Sonnenburg et al., 2005;Sokol et al., 2008;Belkaid 

and Hand, 2014). Similarly, alterations in the composition and abundance of this 

bacterial community are closely associated with diseases such as irritable bowel 

syndrome (IBS), inflammatory bowel disease (IBD), colorectal cancer (CRC), 

Clostridium difficile infection (CDI), obesity and neurological disorders (Chey et al., 

2015;Sharon et al., 2016;Halfvarson et al., 2017;Liu et al., 2017;Wirbel et al., 2019). 

However, the forces that shape the composition of these bacterial communities remain 

poorly understood, and this has slowed the development of microbiome based 

therapeutics and biomarkers. 

Bacteriophage (phage) are viruses that infect prokaryotic hosts and play crucial 

roles in shaping the composition and diversity of bacterial communities in many 

environments, facilitating horizontal gene transfer and nutrient turnover through 

continuous cycles of predation and coevolution (Suttle, 2007;Breitbart, 2011;von 

Wintersdorff et al., 2016). To date, the majority of viral metagenome (virome) 

research has been focused on environmental communities such as those in the ocean 

(Hurwitz and Sullivan, 2013;Hurwitz et al., 2015).  In this environment, the virome is 

central to the movement of dissolved organic matter across trophic levels of the ocean 

food chain and between the surface and the depths of the water column (Suttle, 

2007;Lauro et al., 2009). A growing body of evidence also suggests the virome can 

shape the functional capacity of host communities encoding functions such as 

photosynthetic genes in the photic zones of the ocean (Sullivan et al., 2006) and 

bacterial virulence factors in pathogenic bacteria (Muniesa et al., 2012).  
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Phage make up the vast majority of the viral component of the gut 

microbiome(Gregory et al., 2019) . They are also believed to play a key role in shaping 

the composition and function of the human gut microbiome in both health and disease 

(Norman et al., 2015;Manrique et al., 2016;Zuo et al., 2019). However, despite being 

highly abundant in the gut (>1010 g-1) (Hoyles et al., 2014;Shkoporov et al., 2018b)  

and having considerable impacts on microbial ecosystems, they remain one of the least 

understood members of the gut microbiome. Early sequencing studies of the human 

gut virome estimated that it was dominated by novel sequences, with only 41% sharing 

homology to databases(Breitbart et al., 2003). However as sequencing platforms and 

library preparation methods improved and yielded a more detailed view of the virome, 

this unknown majority or “viral dark matter” was found to make up an even greater 

proportion of the virome, lowering the identifiable fraction to as little as (1-14%) 

(Aggarwala et al., 2017).  

Since phage were first identified by Frederick Twort in 1915 (Twort, 1915), 

culture-based methods such as plaque assays have been used to screen and quantify 

phage titres from many environments. Today, these methods still play a central role in 

identifying phage which target specific bacteria and have contributed to our 

understanding the mechanics of phage host interactions and replication cycles. 

However, as the vast majority of phage-host pairs in the gut are unknown, these 

methods are not suited to large-scale characterization of a complex ecosystem such as 

the human gut. Additionally, many of bacteria in the human gut are not routinely 

cultivated, despite recent advances(Forster et al., 2019). As a result, virome studies 

lean heavily on sequencing based metagenomic approaches to investigate gut phage 

communities and to try to understand their role in shaping the gut microbiome 

(Aggarwala et al., 2017). This involves sequencing the total viral DNA from a 

community following physical separation from the bacterial component, using 

assembly software to recreate the viral genomes within that community and 

characterizing abundance and function of those genomes. However, many sequence-

based virome studies exclude viral dark matter from analysis, working largely with a 

small fraction of known phage sequences (usually 1-14% of the dataset). This can have 

profound implications for the conclusions drawn from these studies, as changes in the 

known fraction may not reflect changes in the virome as a whole. As a result, database-

independent analysis methods are increasingly being used which include both known 
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and unknown fractions of the virome (Shkoporov et al., 2018b).  However, high levels 

of inter-individuality make biological signals across virome studies difficult to detect 

(Clooney et al., 2019;Gregory et al., 2019;Moreno-Gallego et al., 2019).  Furthermore, 

virome studies are particularly susceptible to methodological bias due to difficulties 

in benchmarking de novo bioinformatic tools and the dominance of unknown 

sequences in virome datasets (Roux et al., 2016;Hesse et al., 2017;Sutton et al., 

2019a). 

We will discuss phage of the human gut virome and their interactions with the 

microbiome. We will also highlight how little we know about its role in human health. 

Finally, we will discuss critical areas of virome analysis methods which must be 

addressed and improved upon if we are to fully understand the role of phage in shaping 

the microbiome and human health. 

How phage interact with bacterial hosts 

Phage infection cycles 

As obligate parasites of bacteria, phage persistence in a microbial ecosystem 

is dependent on the presence of a suitable sensitive host. Phage infection is typically 

followed by one of two replication cycles, lytic or lysogenic (Weinbauer, 2004) 

(Figure 1.A). In both cases a phage virion binds to the host cell surface using a phage 

receptor-binding protein triggering the insertion of its genome into the host. For lytic 

phage, subsequent translation of the phage genetic material by the host cell results in 

the replication of the phage genome, assembly of phage particles and lysis of the host. 

This results in the release of new phage virions into the environment that can infect 

nearby hosts. Alternatively, lysogenic infection results in the replication of the phage 

genome within the host cell without the immediate synthesis of phage virions. The 

phage genome may integrate into that of the host where it exists as a prophage, 

replicating together with the host genome and thus persisting in resulting daughter 

cells.  In the case of pseudolysogeny, the phage genome persists as an episome within 

the host cell, separate to the host genome. In order to ensure subsequent daughter cells 

contain phage genomes pseudolysogenic phage can use maintenance systems such as 

toxin-antitoxin (Ravin, 2015;Cenens et al., 2016).  
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Figure 1. Overview of phage-host dynamics in the gut.  (A) Phage infection can 

lead to virulent or temperate replication cycles. Integrated temperate phage use 

internal and external signals from hosts to determine if or when to enter the lytic cycle. 

(B) Bacteria can possess a wide array of defence mechanisms which target different 

steps of the phage replication cycle. Similarly, phage encode a wide array of counter-

defence mechanisms which target host defences and allow the phage to remain 

infectious.  (C) Physical separation of phage and host (e.g. in mucous or in lumen) 

means that dynamics change along the radial and longitudinal axes of the gut.  (D) 

Strain-level variation can result from resistance by mutation or by phase variation.  
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However, cases of daughter cells lacking pseudolysogenic phage have also been 

reported (Cenens et al., 2016). Following an induction event, the lysogenic phage will 

initiate the translation of its genome and subsequent production of phage virions 

leading to host lysis. Additionally, phage such as M13 undergo chronic non-lethal 

infection cycles, where newly produced virions exit the cell without lysis (Smeal et 

al., 2017). However, little is known about the prevalence of these different lifecycles 

in the human gut.  

Resistance and counter resistance 

Bacterial hosts employ a wide array of phage resistance mechanisms which have been 

comprehensively reviewed by Labrie et al. (Labrie et al., 2010) and Rostøl et al. 

(Rostøl and Marraffini, 2019). To prevent phage adsorption, bacterial cells can 

differentially express or mutate cell surface receptors (Figure 1.B1) (Clement et al., 

1983;Chung et al., 2014), S-layer proteins (Zago et al., 2017), or produce protective 

cell surface polysaccharides(Scholl et al., 2005). Additionally, bacterial hosts can 

reduce the numbers of phage particles available to infect hosts by producing outer 

membrane vesicles (Schwechheimer and Kuehn, 2015). These bind and sequester 

phage particles, reducing their numbers in the environment and thereby the risk of 

infection. Should the phage successfully bind to the appropriate surface receptor, the 

fate of the host is not yet sealed as anti-phage resistance mechanisms extend to all 

steps of the phage infection cycle. 

Hosts can prevent phage DNA injection entirely by modifying inner-

membrane proteins (Figure 1.B2) (Cumby et al., 2015), identify and degrade injected 

phage DNA using restriction modification systems (Figure 1.B3) (Tock and Dryden, 

2005) and CRISPR-Cas systems (Figure 1.B4) (Rostøl and Marraffini, 2019), 

chemically block phage DNA replication (Kronheim et al., 2018), or prevent virion 

assembly (Figure 1.B5) (Ram et al., 2012). Should these defence mechanisms fail to 

prevent phage replication within the cell, the bacterial host can sacrifice itself in order 

to protect its sister cells (Dy et al., 2014). These are referred to as abortive infection 

systems and act by shutting down cellular functions to prevent phage release (Figure 

1. B6). Phage defence systems are regularly encoded on mobile genetic elements that 

can facilitate the transfer of resistance across the bacterial community. However, due 

to their metabolic costs bacterial cells rarely encode more than one of these systems 

(van Houte et al., 2016). This gives rise to complex dynamics between hosts with the 
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metabolic burden of resistance and susceptible hosts with fitness advantages. In 

addition, a cell carrying a prophage can be made resistant to other phage in what is 

referred to as superinfection exclusion(Hofer et al., 1995). To further complicate these 

relationships, antagonistic coevolution of phage-host pairs has led to the development 

of phage counter resistance mechanisms, which allow phage to remain infectious in 

the face of a resistant host population(Samson et al., 2013). Phage counter-resistance 

can range from glycosidases to degrade host capsules (Leiman et al., 2007) and reveal 

binding sites, to directed mutagenesis or hypervariable receptor binding 

proteins(Chatterjee and Rothenberg, 2012;Minot et al., 2013;Warwick-Dugdale et al., 

2019). These systems allow phage to retain compatibility with modified host receptors 

and also allow for the expansion of host range. Phage can even overcome host 

CRISPR-Cas by mutating or deleting CRISPR target sites or expressing anti-CRISPR 

proteins to directly interfere with CRISPR-Cas activity (Bondy-Denomy et al., 2013).  

Some of the most striking phage counter-resistance mechanisms include alteration of 

phage DNA to evade host restriction modification mechanisms (Bair and Black, 2007) 

and phage encoded CRISPR-Cas systems that target and disable a range of host 

defence systems (Seed et al., 2013).  
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Ecological relevance of phage-host dynamics 

These mechanisms of infection, resistance and counter resistance underpin virome-

microbiome interactions. Thus, in order to investigate how the virome shapes or 

reflects the microbiome, we must first understand these interactions in the GIT. 

Understanding phage host interactions is also vital if we are to use the virome as a 

diagnostic or therapeutic tool in the future.  To this end, numerous ecological models 

have been used to describe phage-host interactions in the context of a biological 

system. Some models focus entirely on the interplay of resistance and infectivity such 

as the arms race dynamics model (Scanlan, 2017). This model proposes that phage 

infection applies selective evolutionary pressure for mutations in the hosts, resulting 

in resistant host populations. These mutations in turn select for phage mutations that 

restore infectivity, resulting in predator prey cycles (Zhu et al., 2015). Other models 

take into account phage-host density and the metabolic cost of resistance such as the 

fluctuating-selection dynamics model (Gandon et al., 2008;Hall et al., 2011). This 

proposes that as phage predation selects for resistant hosts, it will also reduce the 

number of phage virions in the environment. This absence allows for the expansion of 

susceptible bacterial strains which lack the metabolic burden of resistance and 

therefore out-compete resistant hosts in the absence of phage. This transient resistance 

and infectivity of phage-host communities results in short-term fluctuations of phage 

and host numbers, but the long-term persistence of both (De Sordi et al., 2019). 

It is important to note that strain-level fluctuations of phage-host are difficult 

to study in the context of the microbiome, making it difficult to verify or quantify this 

model. Strain-level variation within bacterial hosts cannot be detected by 16S rDNA 

analysis (Gandon et al., 2008) and hampers metagenomic assembly of phage (Nurk et 

al., 2017;Sutton et al., 2019a). Despite these challenges, recent insights have proposed 

that variation in capsular polysaccharides encoded by the abundant gut bacterium 

Bacteroides thetaiotaomicron play a central role in phage susceptibility (Porter et al., 

2019). This mechanism supports the concept of fluctuating-selection dynamics, as 

phase variation of the capsular polysaccharides creates heterogeneous host phenotypes 

within an isogenic population. This in turn leads to transient phage resistance across 

the population as host phenotypes are dynamic and non-uniform (Turkington et al., 

2019). Additionally, this resistance can occur without the need for horizontally 

transferred resistance or mutation (Figure 1.D). 
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Phage replication not only requires the host to be present and susceptible but 

it must also be metabolically active. It has therefore been proposed that the metabolic 

state of the host is one of the primary barriers to phage infection (De Sordi et al., 2019). 

In this way bacterial hosts can be transiently resistant to phage infection due to a lack 

of nutrient availability and a dormant growth phase, without incurring the metabolic 

cost of encoding resistance (Figure 1. D) (Denou et al., 2007). Additionally, this 

mechanism would support the proliferation of both phage and host in the GIT, 

independent of resistance-counter resistance dynamics.  Nutrient availability varies 

significantly along the GIT, which implies that phage-host dynamics in the proximal 

or distal colon may be significantly different to those in fecal samples (Figure 1. C) 

(Maura et al., 2012;Galtier et al., 2017). As the majority of virome studies draw 

conclusions from fecal samples, our current understanding of phage host dynamics in 

the GIT is limited. 

The kill-the-winner ecological model is an extension of lotka-volterra 

dynamics applied to phage-host interactions. This model describes rapid changes of 

diversity and abundance of both phage and their hosts. As the most abundant bacteria 

are killed by their phages, other bacterial taxa will take over the ecological niche and 

be subsequently killed by their phages. In this way high levels of phage-host diversity 

and abundance are maintained (Mirzaei and Maurice, 2017). In ecosystems where 

lotka-volterra or kill-the-winner dynamics can be applied, phage exhibit an 

exclusively predatory relationship on hosts and the microbial biomass is significantly 

below the carrying capacity of the ecosystem (Thingstad, 2000;Avrani et al., 2012). 

However, in the human gut ecosystem microbial biomass approaches the carrying 

capacity of the ecosystem and the virus to microbe ratio (VMR) is low (Shkoporov 

and Hill, 2019). Despite reports of kill-the-winner dynamics in infants(Breitbart et al., 

2008;Lim et al., 2015), this suggests that these models cannot not fully explain phage-

host interactions in the healthy adult gut (Mirzaei and Maurice, 2017). Additionally, 

these dynamics overlook lysogeny and conditions that govern the switch between lytic 

and lysogenic replication cycles. Furthermore, it has been proposed that the gut virome 

is dominated by temperate phage (Reyes et al., 2010) and that compositional changes 

in temperate phage communities are associated with disease states (Norman et al., 

2015). Consequently the mechanisms that determine the switch between lytic and 

lysogenic replication cycles are also central to understanding virome-microbiome 
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dynamics. Recent reports have described phage which can hijack bacterial quorum 

sensing machinery to determine the density and metabolic activity of the bacterial 

population from within the host cell (Silpe and Bassler, 2019). This in turn, could 

dictate whether persisting within in the host genome or excising and entering the lytic 

cycle would favor phage proliferation (Figure 1. A).  In addition, single cell analysis 

of phage-host interactions between the temperate P22 phage and 

Salmonella typhimurium suggested that phage were directly involved in creating 

transiently resistant host subpopulations (Cenens et al., 2016). This allowed for both 

lysogenic and lytic replication without impeding host proliferation. Despite these 

intriguing insights, little is known about the dynamics of temperate to lytic switching 

in the mammalian GIT, highlighting a crucial target for future virome research. 

Ecological models that consider the switch between lytic and lysogenic 

replication such as the piggyback-the-winner model appear to support experimental 

evidence of phage-host dynamics within the mammalian GIT (Knowles et al., 

2016;Silveira and Rohwer, 2016). This model focuses on a lytic to lysogenic switch 

that is host density dependent. Traditionally phage were believed to enter the lysogenic 

cycle in cases of high VMR (i.e. increased phage abundance, decreased host 

abundance) as a means to persist in the environment until host density can support 

lytic replication cycles. However, experimental evidence from coral reef ecosystems 

suggested that phage also entered the lysogenic cycle in high host density situations 

(Knowles et al., 2016). Subsequently, phage can “piggyback” on host success in the 

ecosystem at that particular time. This model has also been proposed for phage-host 

interactions on mucosal surfaces in the GIT. It has been proposed that at the mucosal 

surface, high bacterial colonization and high VMR gives rise to piggyback the winner 

dynamics, whereas deeper mucosal layers may give rise to kill-the-winner dynamics 

due to the lower levels of bacterial colonization and low VMR. This model is also 

supported by reports that rapidly evolving Ig-like domains expressed on phage capsids 

interact with mammalian host mucus glycans. This in turn results in subdiffusive 

motion of phage within mucus and allows them to persist in mucosal layers of the gut 

(Barr et al., 2013;Barr et al., 2015).  

While these models assist in our understanding of how the virome interacts 

with the microbiome and the gut environment, it is also important to consider their 

limitations. Phage-host dynamics can be expected to change both radially and 
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longitudinally within the GIT (Zhao et al., 2019) to reflect physical separation of 

phages and hosts and metabolic changes in the host populations (Figure 1A.). They 

will also be heavily influenced by dietary components and the composition of the 

faecal matrix itself (Vandeputte et al., 2016). To this end, sampling method and sample 

composition must be considered when drawing conclusions from virome data (Figure 

2A.). In the absence of studies of how these dynamics change along the human GIT, 

phage-host interactions must be interpreted as a snapshot of one particular point in 

space and time. 
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Figure 2.  Impact of analysis choices on virome composition. 

Each step of a virome analysis protocol presents different options, each of which may 

affect the final outcome. (1) Sample type. (2) Physical separation of VLPs. (3) 

Amplification of virome DNA can preferentially amplify certain viral taxa (see Figure 

3). (4) Sequencing chemistry, depth of sequencing and read length. (5) Assembly 

programs vary significantly in their ability to assemble virome data (see Figure 3). 

Reporting on the composition of viral sequences with homology to reference databases 

excludes the unknown majority of the virome. Clustering viral sequences by gene 

composition offers a promising alternative to database dependent methods by 

addressing high levels of sequence divergence in viral genomes. 
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Composition of the Gut virome 
The gut virome consists of two elements, the temperate phage located within bacterial 

genomes and the free virions or virus-like particles (VLP). The VLP fraction is 

obtained by applying several physical and enzymatic steps that remove dietary debris 

and prokaryotic and eukaryotic genetic material (Figure 2.B) (Shkoporov et al., 

2018b).  As VLPs represent only a small fraction of the mass of the microbiome, 

virome studies that do not carry out this viral enrichment are limited almost entirely 

to the prophage sequences within bacterial cells (Waller et al., 2014;Ma et al., 2018). 

However, these prophage sequences are in turn under-represented in studies that focus 

on the VLP fraction. In order to understand the virome as a whole, both elements need 

to be analysed in tandem. The majority virome studies focus on one of these elements 

in isolation and as a result the apparent structure and composition of a virome is 

heavily dependent on the physical preparation of virome samples in the laboratory, the 

sequencing strategy, and the bioinformatic methodology employed (Figure 2.). This is 

further complicated by the limited representation of human gut viruses in databases 

and a reliance on phage taxonomic classification systems which do not necessarily 

represent viral biology. Consequently, our understanding of the taxonomic 

composition of the phage populations in the human gut are predictably varied and 

contradictory.  

Taxonomic composition 

Sequence-based analysis suggests the identifiable fraction of the gut virome is 

dominated by small single-stranded DNA (ssDNA) phage of the Microviridae family 

and double-stranded DNA (dsDNA) phage of the order Caudovirales (Breitbart et al., 

2003;Minot et al., 2013;Manrique et al., 2016;McCann et al., 2018;Shkoporov et al., 

2018b). However, bias in extraction methods has also been reported to skew the 

abundance of Microviridae, calling into question their dominance in the virome 

(discussed later) (Kim and Bae, 2011) (Figure 2C.). The Caudovirales are classified 

into three families according to their distinctive virion morphology, consisting of a 

head and a tail structure making them easily distinguishable in microscopy studies. 

Siphoviridae exhibit long (sometimes up to 1µm in length), non-contractile tails, 

Podoviridae exhibit short non-contractile tails, while Myoviridae exhibit a more rigid 

contractile tail composed of distinctive sheath proteins. These phage families have 
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linear genomes, can encode a relatively large gene repertoire (in extreme cases 

containing over 600 genes) and can exhibit both temperate and lytic replication cycles. 

Early sequencing studies of the virome reported changes in Caudovirales community 

composition being associated with disease (Pérez-Brocal et al., 2013;Wagner et al., 

2013;Norman et al., 2015) and high Caudovirales abundance in EM images (Lepage 

et al., 2008;Hoyles et al., 2014). However, reported abundance in EM images could 

also be influenced by the fact that they are more easily identified than other viral taxa. 

Possibly as a result of these observations, Caudovirales composition and abundance 

has become a regular focus of virome studies, where it is used as a proxy for virome 

composition as a whole. However, as known Caudovirales only represent a small 

minority of VLP sequences in the human gut, caution should be taken when 

interpreting these results. 

Due to the current structure-based classification system of Caudovirales, phage 

that exhibit significant functional similarities can be considered members of different 

families due to tail morphology. For example, phages P22 and lambda are classified 

as Podoviridae and Siphoviridae respectively, despite both undergoing the same 

replication cycle, sharing significant similarity in gene sequences and exhibiting 

identical genome organization (i.e. gene order and layout and regulation of 

transcription). Additionally this classification system is not grounded in sequence or 

protein sharing, yet sequence and protein homology are the primary methods of 

identifying Caudovirales in viromes (Reyes et al., 2015;Fernandes et al., 

2019;Moreno-Gallego et al., 2019;Zuo et al., 2019). This classification system is 

therefore limited in its ability to reflect the biological role or interactions of sequences 

classified as Caudovirales. A number of recent studies have also highlighted 

anomalies in Caudovirales taxonomy (Hulo et al., 2015;Bolduc et al., 2017;Barylski 

et al., 2018) and have proposed novel sequence-based methods to restructure the viral 

order (Bolduc et al., 2017). However, these are not without their own challenges, as 

shared genes and gene cassettes have been found to blur the boundaries between 

various dsDNA viruses (Iranzo et al., 2016;Jang et al., 2019), which will be discussed 

in detail later. 

Case study of the most dominant gut phage, crAss  

A prime example of the limitations of focusing on identifiable Caudovirales alone 

when carrying out virome analysis is that of crAssphage, one of the most abundant 
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and successful biological entities of the mammalian gut. First reported in 2014 using 

novel assembly methods (Dutilh et al., 2012;Dutilh et al., 2014), crAss was found to 

be six times more abundant in publically available gut metagenome samples than all 

other phage together. It made up to 90% of VLP sequencing reads and 30% of whole 

metagenomes in certain individuals, yet did not share homology with known reference 

databases (Dutilh et al., 2014). As a result, crAss would have gone entirely unnoticed 

using database-dependent analysis alone. CrAss has since been found to be globally 

distributed, with strains reflecting geographic distribution of human populations 

(Edwards et al., 2019). Intriguingly, the presence of distant relatives to crAss in 

primates may suggest that crAss has coevolved with humans for millions of years from 

ancestors shared with primates, to modern Homo sapiens (Edwards et al., 2019). These 

results highlight the importance of the unknown majority of the virome in human 

health and why it is critical to analyse the virome as a whole. Given the proposed 

ubiquity and dominance of crAss in the human gut it is also possible that the 

abundance of Caudovirales reported by EM studies may in fact reflect members of the 

extended crass-like phage family, which at the time were unknown. 

The characterization of crAss and studying its role in the gut microbiome has 

been hampered by a lack of database representation, unknown host range and until 

recently (Shkoporov et al., 2018a), unsuccessful attempts to form plaques on agar 

overlays. However, its progression from an unknown abundant phage sequence to a 

characterized dominant member of the gut virome provides a useful framework in 

building our understanding of viral dark matter. Its initial discovery was built upon by 

using sensitive protein homology searches to identify an extended family of crAss-

like phage from human gut virome samples (Guerin et al., 2018;Yutin et al., 2018). 

Although sequence similarity across family members was low, protein family-based 

clustering identified conserved capsid proteins and predicted crAss to encode a short 

tail similar to that of the Podoviridae family of Caudovirales (Yutin et al., 2018). 

Subsequently, crAss has also been identified in patients with diarrhoea and in 

Malawian infants (Guerin et al., 2018). Additionally it was found to be shared across 

healthy individuals and was capable of stable engraftment in FMT treatments (Draper 

et al., 2018).However, the host range and mechanism behind crAss ubiquity and 

abundance remained unknown.  
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Through the use of enrichment-based techniques the host for one member of 

the crAss family was confirmed to be Bacteroides intestinalis, a finding previously 

suggested by co-abundance profiling (Dutilh et al., 2014;Shkoporov et al., 2018a). 

This provided new opportunities to study the phage-host interactions of the most 

abundant phage family in the human gut and its role in the microbiome. The ability to 

culture crAss in vitro also led to the description of one of the most intriguing aspects 

of this phage, its ability to coexist with its host at high abundance. This has a profound 

impact on our understanding of how the virome shapes the microbiome, as it appears 

that in crAss-rich individuals the dominant phage populations do not restrict the 

growth and proliferation of their host. Furthermore, it is believed that crAss 

persistence and coexistence with its host is not due to crAss undergoing temperate 

replication, as it does not possess any of the genes typically associated with lysogeny 

(Shkoporov et al., 2018a). Additionally, crAss prophage sequences have never been 

observed in the numerous Bacteroidales genomes available in sequence databases. It 

is possible that crAss replicates in a pseudolysogenic manner, existing as an episome 

within the host cell (Cenens et al., 2016), that it facilitates a chronic infection without 

killing the host cell (Smeal et al., 2017),  or that it can exist in an extracellular carrier 

state (Siringan et al., 2014). The high proportion of resistant host cells in culture (1-

2%) could also suggest that a host cell carrying crAss in a pseudolysogenic state could 

confer resistance from infection as in superinfection exclusion. However, 

experimental evidence suggests crAss replicates in a lytic manner and its abundance 

in the gut is maintained by transiently resistant hosts. As phase variant CPS and 

transient resistance have been found to be central in phage-host dynamics in other 

Bacteroides species (Porter et al., 2019), it is possible that these mechanisms are also 

central to the unusual phage-host dynamics observed in crAss both in vitro and in vivo. 

This theory is supported by the reversion over time of some resistant clones to 

sensitive states (Shkoporov et al., 2018a). Given the abundance of Bacteroides and 

crAss in the human gut, phenotypic heterogeneity across a host populations may be 

the central mechanism to support stable interactions between some lytic phage and 

their hosts in the microbiome. 

Another possible explanation for sustained crAss-host proliferation is the 

recently proposed “Royal Family” ecological model (Breitbart et al., 2018). This 

suggests continuous kill-the-winner dynamics occur at a strain-level rather than at a 
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species or genus-level. In this way, the abundance of both phage and host would 

appear to be stable as fluctuations would occur below the level of detection. 

Subsequently, detailed analysis of strain-level variation between crAss and B. 

intestinalis could provide insights into the importance of this model in the GIT. A 

similar study carried out by De Sordi et al. (De Sordi et al., 2017) supports the “royal 

family model” and gave intriguing insights into its mechanics. This study described a 

point mutation in the tail fibre gene of P10 which is associated with strain-level host 

expansion from E. coli LF82 to E. coli MG1655. Interestingly, this strain-level host 

switching was only observed when phage and both hosts coevolved within the murine 

model and was not observed when the two strains were cultured separately. 

Subsequent experiments revealed that switching required the presence of an 

intermediate host E. coli MEc1. These observations suggest that crAss-host stability 

in the gut could be caused by a wide array of strain-level and phenotypic variation. 

However, as strain-level variation is difficult to observe in vivo and in vitro, novel 

analytical approaches may needed to reveal crAss phage-host dynamics in the GIT.  

The proliferation of both phage and host as is seen in crAss-B. intestinalis 

dynamics could also suggest that the presence of phage could confer an ecological 

advantage to the host. This phenomenon has been regularly reported in the ocean, 

where phage infecting cyanobacteria were found to carry auxiliary metabolic genes 

encoding photosynthetic genes (Sullivan et al., 2006;Hurwitz et al., 2013). Similarly, 

phage-mediated transformation of the host has also been well established in disease 

such as the lysogenic phage encoding shiga toxin (Muniesa et al., 2012) and cholera 

toxin (Waldor and Mekalanos, 1996). It is therefore highly likely that in the dense and 

diverse ecosystem of the gut, extensive horizontal transfer of genes between hosts is 

facilitated by phage infection. In this way the virome may play a crucial role in shaping 

the functional capacity of the microbiome. One report of the presence of significant 

numbers of antibiotic resistance genes in gut virome sequences (Modi et al., 2013) 

was later shown to have probably resulted from bacterial contamination and confirmed 

that examples of phage-encoded antibiotic resistance genes were rare (Enault et al., 

2017). This could be due to the efficiency of phage replication and the fitness cost of 

carrying antibiotic resistance genes. Without the selective pressure of antibiotics, 

viruses that pay the metabolic cost of carrying antibiotic resistance genes could be 

outcompeted (Enault et al., 2017). Additionally, the selective evolutionary pressure of 
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remaining infectious in the face of a constantly adapting host may outweigh the need 

to preserve the host from an antibiotic. The follow up study also highlighted the 

importance of using stringent alignment criteria and validating results when 

classifying sequences or proteins.  Due to the extensive unknown fraction of the 

virome and the difficulty in benchmarking classification criteria, lenient cut-offs can 

often lead to false conclusions of virome composition and function (Roux et al., 

2013;Enault et al., 2017;Sutton et al., 2019b). 

It is tempting to propose that the piggyback-the-winner hypothesis could be 

extended by considering the possible fitness advantages of carrying a prophage over 

and above superinfection exclusion. Such advantages could include carrying a 

virulence factor or providing access to a novel nutrient source (Brüssow et al., 

2004;Obeng et al., 2016). Prophage-encoded fitness advantages have been observed 

in a number of pathogenic bacteria. These include prophage-encoded toxins (Waldor 

and Mekalanos, 1996;Muniesa et al., 2012), alteration of O antigens in Salmonella and 

Shigella (Wright, 1971;Verma et al., 1991) and phage-encoded glycosyl transferase 

operons which drive Salmonella LPS diversity (Davies et al., 2013). Furthermore the 

horizontal transfer of virulence factors through temperate phage was found to be 

increased in gut inflammation (Diard et al., 2017). Additionally, recent observations 

in Staphylococcus aureus prophage (Chen et al., 2018) have described the packaging 

of chromosomal host DNA in phage capsids through a mechanism deemed lateral 

transduction. This mechanism suggests that phage-mediated horizontal gene transfer 

occurs at much higher rates than previously thought and that it plays a role in disease. 

However, the extent to which lateral transduction mediates gene transfer in the gut 

microbiome remains unknown. Examining phage-encoded auxiliary metabolic genes 

and how they shape the functional capacity of the gut microbiome is hindered at a 

large-scale metagenomic level by the complexity of faecal samples themselves. 

Dietary components and the sheer abundance and diversity of bacterial cells in faeces 

make it difficult to completely remove bacterial sequences from virome samples. Use 

of density gradients such as CsCl are reasonably effective at generating viral particles 

devoid of cellular contamination, but will introduce bias in favour of particular viral 

capsid types (Castro-Mejía et al., 2015) and are not feasible for large-scale projects 

due to their associated manual workload.  As a result, background contamination exists 

in the vast majority of virome samples (Roux et al., 2013;Enault et al., 
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2017;Shkoporov et al., 2018b) making it difficult to determine if a gene is of viral or 

bacterial origin. This may be further complicated by potential gene transfer agents 

(GTAs) (Lang and Beatty, 2007) in gut VLP samples. GTAs are defective phage 

virions that exclusively carry fragments of bacterial chromosomal DNA and are used 

by bacteria as a means of HGT.  As a result sequences within GTAs are difficult to 

differentiate from background contamination. However the presence and prevalence 

of GTAs in human gut microbiome remains to be seen. Overall, despite the evidence 

of phage shaping the functional capacity of host communities, it is challenging to 

determine the extent to which phage transfer genes relevant to human health within 

the microbiome. 

Controversy surrounding the core virome 

The widespread geographical distribution and stability of crass-like phage supports 

the concept of a core human virome, which was initially proposed by Manrique et al. 

(Manrique et al., 2016). This was in response to a growing body of evidence that a 

core microbiome played an important role in human health. The study proposed a core 

of 23 viral sequences, one of which being the original crAss genome, which were 

shared across more than 50% of samples from an independent cohort of 62 healthy 

individuals. However, these findings were in stark contrast to the well-established 

belief that the human gut virome is highly individual-specific at a sequence level 

(Shkoporov et al., 2018b;Clooney et al., 2019;Moreno-Gallego et al., 2019;Shkoporov 

et al., 2019). This disparity is largely due to the criteria used to define the presence of 

a viral sequence in a sample. If a single sequencing read from an individual could align 

to a particular viral assembly, the assembly was deemed to be present. This lenient 

criteria does not account for the modular nature and extensive gene sharing that occurs 

across dsDNA viral genomes (Minot et al., 2012;Iranzo et al., 2016;Bolduc et al., 

2017). Thus, it would not be possible to differentiate the true presence of a viral 

sequence in a sample from the presence of a shared gene between two unrelated phage. 

This in turn, would lead to an inflated number of viral sequences being shared across 

individuals.  However, the concept of a core virome has received support from a recent 

study with adult monozygotic twins, in which 18 contigs were found to be present in 

all individuals (n=42) (Moreno-Gallego et al., 2019). Here, more stringent read 

recruitment criteria were applied to differentiate shared genes from the true presence 

of a viral sequence in a sample. Interestingly more than half of the viral assemblies 
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identified across all individuals were homologous to crAss. It should be noted 

however, that these assemblies may also represent fragments of the same phage 

genome or family.  

In contrast to these findings and to the proposed global distribution of crAss 

phage in human populations, the compilation of a large-scale gut virome database 

called into question the existence of a core human gut virome at a sequence level 

(Gregory et al., 2019). By examining VLP metagenomes from 572 individuals, this 

study proposed that a core human gut virome does not exist. Recently, Shkoporov et 

al., too made observations which support these findings by examining the virome of 

ten individuals across a 12-month period (Shkoporov et al., 2019). Here, a personal 

persistent virome (PPV) was observed that was composed of viral sequences detected 

in at least six of the 12 monthly time points. In accordance with previous longitudinal 

studies (Reyes et al., 2010;Minot et al., 2013), some viral sequences were present at 

nearly all time points within an individual. However, the virome was also highly 

individual-specific and viral sequences were not shared across the PPV of all 

individuals which supports the findings of Gregory et al. (Gregory et al., 2019). This 

high level of inter-individuality in the gut virome hampers our understanding of the 

virome in disease as it is difficult to detect common viral signals within or between 

cohorts. While it is likely that the individuality of the virome is driven by infection 

and resistance dynamics, the level of taxonomic resolution at which the virome is 

studied is also a contributory factor (Clooney et al., 2019). Sequence-based virome 

studies are carried out at the level of metagenomic assembly due to the absence of 

universal marker genes, limited database representation and established taxonomic 

organization. This represents species or strain-level resolution and is in contrast to the 

majority of bacterial metagenomics studies, which tend to be analysed at higher 

taxonomic ranks such as genus or family. It is possible to find patterns across virome 

cohorts using a minor subset of known viral sequences and by excluding unknown 

sequences (Norman et al., 2015;Monaco et al., 2016;Zhao et al., 2017;Zuo et al., 

2019). However, it is not known if these subsets represent the dynamics of the virome 

as a whole. To this end, a number of clustering programs have been developed that 

group viral sequences based on shared protein families (Minot et al., 2012;Bolduc et 

al., 2017) such as vContact2 (Bolduc et al., 2017). This is a similar approach to that 

which was used to establish the extended crAss family despite low levels of nucleotide 
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similarity between family members (Guerin et al., 2018;Yutin et al., 2018). In this 

way, protein-based clustering of the virome can reveal compositional patterns across 

individuals that were not visible at a nucleotide level. Furthermore, this approach 

allows for both the known and unknown components of the virome to be included in 

analysis giving new perspectives to the virome in health and disease.  

Applying this protein family clustering approach (Jang et al., 2019) to the same 

longitudinal cohort can give new insights into the existence and composition of a core 

gut virome across individuals. This phylogenetic core was composed primarily of 

crAss and Microviridae and was not identifiable at a nucleotide level. Intriguingly, 

this core was not composed of temperate phage which is in contrast to observations in 

previous reports (Reyes et al., 2010). Furthermore, temperate phage were found to 

make up a minor subset of the core virome both within and between individuals. These 

findings suggest that mechanisms other than lysogenic replication are responsible for 

long term stability of the virome within healthy individuals. Moreover, they are in 

accordance with the global distribution and persistence of crAss in the human gut and 

ecological models such as the “royal family model”. Upon clustering the stable 

fraction of individual viromes (PPV) the largest and most interconnected viral cluster 

as associated with known Caudovirales sequences. This is in accordance with previous 

observations (Minot et al., 2012;Bolduc et al., 2017) and reflects extensive shared 

genetic content across this order. It is also likely that this extensive gene sharing 

influenced previous database-dependent reports of temperate phage and Caudovirales 

dominance in the human gut virome. Furthermore, it highlights the importance of 

considering shared genes and gene cassettes when setting alignment criteria. 
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Gut virome in disease 
Given the extensive evidence that phage can shape the composition and function of 

bacterial communities, the virome of the human gut has been studied in a number of 

diseases. However, as with the concept of the core virome, findings have been 

somewhat contradictory and any potential role for the virome in shaping the 

microbiome in disease remains elusive. Studies have reported gut phage populations 

were not significantly altered in diseases such as colorectal cancer and HIV-associated 

AIDS (Monaco et al., 2016;Hannigan et al., 2018), despite established associations 

between the gut microbiome and these diseases (Wirbel et al., 2019) (Dinh et al., 

2014). This contradicts the established view that the virome and microbiome are 

closely linked but is more likely to reflect limitations of different analysis methods. 

These limitations include lenient alignment criteria to reference databases and the 

exclusion of viral dark matter from analysis. Furthermore, reports of changes in phage 

populations associated with diseases are limited to changes in the composition of 

known Caudovirales (Norman et al., 2015;Zhao et al., 2017;Ma et al., 2018;Fernandes 

et al., 2019). Given the limitations of Caudovirales taxonomy and the challenges 

presented by extensive gene sharing across the order, these findings provide little 

insight into any role of the virome in disease. 

An intervention study by Gogokhia et al. (Gogokhia et al., 2019) sought to target 

cancer associated bacteria adherent invasive Escherichia coli and Fusobacterium 

nucleatum with lytic phage in a germ-free mouse model. However, a direct interaction 

between the mammalian immune system and phage virions resulted in an exacerbated 

colitic reaction. The authors also proposed that phage DNA plays a central role in 

phage interaction with the mammalian immune system as empty phage capsids did not 

induce an immune response. Similarly an in vitro study using Staphylococcus aureus 

and Pseudomonas aeruginosa phage observed a production of both pro and anti-

inflammatory cytokines from peripheral blood mononuclear cells following 

endocytosis of purified phage virions (Van Belleghem et al., 2017). These 

observations are supported by the proposed ability of phage virions to cross the 

mammalian epithelial barrier in vitro via peptide sequences expressed on the capsid 

surface (Ivanenkov and Menon, 2000;Nguyen et al., 2017). In this way it is possible 

that phage communities in the human gut shape the gut microbiome indirectly through 

interactions with the mammalian immune system. This concept of phage translocation 



  

28 

 

and interaction with mammalian immune system has also been discussed in a number 

of reviews and perspective pieces as follows (Górski et al., 2006;Górski et al., 

2017;Łusiak-Szelachowska et al., 2017;Górski et al., 2018). Through the induction of 

a pro or anti-inflammatory response, phage could facilitate conditions that would favor 

a particular host or replication cycle. It is also possible that proposed phage–immune 

system interactions are driven by bacterial populations to facilitate infection or 

persistence in the human body. This was first demonstrated by lysogenic Pf phage 

which triggered maladaptive viral pattern recognition receptors and facilitated the 

chronic infection of Pseudomonas aeruginosa in murine and human cells (Sweere et 

al., 2019). This was also the first reported case of a directly pathogenic effect of phage 

in bacterial infection and demonstrated that phage do not need to directly encode 

virulence factors to impact the virulence of their host. 

Faecal microbiota transplantation 

FMT (faecal microbiota transplantation) is an emerging and experimental therapy that 

aims to restore healthy gut function through infusion of a faecal slurry from a healthy 

individual to the colon, cecum or duodenum of the recipient. It has been shown to be 

very effective in the treatment of recurrent Clostridium difficile infection (CDI) with 

donor bacteria colonizing recipients for up to a year (Jalanka et al., 2016) and reported 

success rates of 80–90% (Cammarota et al., 2014). The first evidence that the virome 

had potential as a tool to shape the microbiome and may play a role in the efficacy of 

FMT treatment was reported by Ott et al (Ott et al., 2017). In this study, patients with 

relapsing CDI received faecal filtrates from healthy donors that resulted in CDI 

symptoms being eliminated for up to 6 months. Furthermore recipient phage 

populations were substantially altered, resembling those of the donor for a minimum 

of six weeks. Surprisingly, Lactococcus phage were reported to dominate both donor 

and recipient virome, despite Lactococcus spp. representing only a minor fraction of 

the gut microbiome. This could reflect a dominance of lactococcal phage in the donor 

and recipient, implying lactococcal phage play an important role in homeostasis in 

CDI. However, phage sequence databases are dominated by those which are 

industrially relevant and cultivable, which includes lactococcal phage (Moineau and 

Lévesque, 2005). As a result, unknown sequences are statistically more likely to align 

to lactococcal phage and other cultivable or industrially relevant sequences when 

lenient alignment criteria are used. Thus, the dominance of lactococcal phage in the 
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virome of FFT recipients is likely to be yet another artefact of database-dependent 

analysis methods. It should also be noted that, in accordance with the majority of 

database dependent virome studies, lactococcal phage are members of the order 

Caudovirales. This supports the concept that Caudovirales dominance reported at an 

order and family level in the gut virome could be driven by gene modules shared with 

Caudovirales in reference databases.  However, the resemblance of the donor virome 

to that of the recipient suggests that, regardless of classification limitations, the virome 

plays a significant role in the maintenance of homeostasis in the gut. A subsequent 

study by Draper et al. (Draper et al., 2018) also reported the stable engraftment of 

donor phage populations in recipients for up to 12 months. In accordance with 

observations at a bacterial level (Jalanka et al., 2016;Wilson et al., 2019) successful 

phage engraftment was also dependent on specific donor recipient pairings. It should 

be noted that the role of other elements present in the filtrate (i.e. chromosomal DNA, 

plasmids, bacterial cellular components and signalling molecules) remains unknown 

and could also play a role in the restoration of healthy gut function in CDI. With 

conditions such as ulcerative colitis (UC) that are characterized by more subtle 

microbiome changes than CDI, successful FMT treatment (i.e. remission and mucosal 

healing) was not associated with changes in the phage population (Conceição-Neto et 

al., 2018). This is in contrast to reports of alterations in bacterial diversity following 

FMT in UC (Vaughn et al., 2016). Additionally, changes in the diversity of phage 

populations between healthy and UC cohorts were not observed (Conceição-Neto et 

al., 2018). These observations were in contrast with previous IBD virome studies, 

which reported differences in phage alpha diversity between healthy and UC cohorts 

(Norman et al., 2015;Fernandes et al., 2019). 

Inflammatory bowel disease 

Inflammatory bowel disease is a prevalent chronic disorder of the gastrointestinal tract 

with both genetic and environmental risk factors (Ng et al., 2017). The composition 

of gut bacteria and their interaction with the host immune system are believed to be 

central to its pathology, yet the aetiology of the disease remains poorly understood. 

Given the evidence that the virome can interact directly with the host immune system 

and shape the composition and function of the microbiome, both faecal and mucosal 

phage communities have been studied in IBD. Current understanding of phage 

populations in IBD has focused on VLPs, proposing that disease-specific patterns of 
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Caudovirales are linked to Crohn’s disease (CD) and ulcerative colitis (UC). 

Furthermore, these changes in VLP composition have been reported not to reflect 

alterations of the bacterial community. However, the details of these compositional 

changes vary between studies (Lepage et al., 2008;Pérez-Brocal et al., 2013;Wagner 

et al., 2013;Norman et al., 2015;Pérez-Brocal et al., 2015;Zuo et al., 2019) . 

Early IBD virome studies using the Roche 454 sequencing platform were 

limited by sequencing depth.  These studies observed lower diversity and greater 

variation in the faecal VLP communities of patients with CD relative to healthy 

samples (Pérez-Brocal et al., 2013). The same group performed another sequence 

based analysis of the faecal and mucosal VLP community of CD and observed greater 

viral load and diversity in the faeces than mucosa of all individuals (Pérez-Brocal et 

al., 2015). Additionally, virome alpha diversity was reported to be significantly lower 

in disease. However, in contrast to their previous study, it was also reported that both 

healthy and CD cohorts were dominated by Microviridae rather than Caudovirales. 

Another study that analysed the first mucosal virome in paediatric CD(Wagner et al., 

2013) proposed a dominance of Caudovirales phage overall and detected a single viral 

sequence in colonic mucosal samples from patients with CD. While this may suggest 

an extreme dominance of this virus in the mucosa of paediatric CD it more likely 

reflects insufficient sequencing depth resulting from low biomass samples and should 

be treated with caution.  

 As sequencing technology progressed, researchers were granted more detailed 

insights into the virome in IBD. However these insights contradicted previous findings 

and highlight the impact of sequencing platform on results. This could also suggest 

that our understanding of the virome in disease will continue to change as sequencing 

technology progresses. Illumina-based studies reported disease-specific increases in 

Caudovirales alpha diversity in the VLP viromes of UC and CD compared to healthy 

controls in adults (Norman et al., 2015)and children (Fernandes et al., 2019). 

Intriguingly, these alterations were also reported not to reflect changes in the bacterial 

community (bacteriome). Conversely, decreased alpha diversity was observed in 

Caudovirales families from the mucosal VLP virome of UC relative to healthy 

controls (Zuo et al., 2019). This supports the idea that viral communities and 

ecological models differ at different spatial locations within the gut. Additionally, it 

suggests that phage of the order Caudovirales play a central role shaping the 
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microbiome in IBD. However, as with other studies of the virome in disease, these 

findings are limited to minor fractions of the dataset and offer little by way of insight 

into the role of phage in IBD. 

To expand our understanding of the virome in IBD beyond the limitations of 

databases, we (Clooney et al.) applied the whole-virome analysis (Clooney et al., 

2019) protocol discussed earlier to the keystone IBD virome dataset published by 

Norman et al. (Norman et al., 2015;Clooney et al., 2019). In this way, it was possible 

to gain the first insights into the composition viral dark matter in this disease. Contrary 

to the original findings of the study, alterations in the whole virome mirrored those of 

the bacteriome, and differences in overall virome alpha diversity were not seen at a 

sequence level. In accordance with current understanding the gut virome, high levels 

of inter-individuality were observed, and were likely to conceal any patterns in virome 

composition across individuals.  Subsequently, we followed the protocol established 

in Shkoporov et al. (Shkoporov et al., 2019) to cluster viral sequences according to 

gene content. This revealed a core of primarily lytic phage in healthy individuals and 

supported observations of Shkoporov et al. (Shkoporov et al., 2019). However, this 

healthy core was also found to be absent in patients with IBD where it appeared to be 

replaced by a community of temperate phage. The majority (six) of the eight viral 

clusters which made up the healthy core virome in this analysis did not share 

homology to known viral sequences further highlighting the biological signals that 

may be missed when relying on database-dependent methods. Interestingly, one of 

these healthy core virome clusters was identified as crAss. This supports previous 

observations of its ubiquity in healthy human populations, low rates of detection in 

unhealthy individuals and its role in the core healthy human virome.  

One possibility is that in the inflamed gut, environmental stresses from the 

human immune response such as antibodies and reactive oxygen species, leads to 

increased induction of the prophage present in the bacterial microbiome. The 

physiology of bacterial cells and the composition of the bacterial community 

influences whether integrated prophage enter the lytic or lysogenic replication cycle 

(Figure 1.A) (Casjens and Hendrix, 2015;Silpe and Bassler, 2019). It is therefore likely 

that temperate virome would react to environmental stress and resulting changes in the 

host community. This increased lytic replication and subsequent death of bacterial 

hosts would correspond with the observed reduction in bacterial alpha diversity 
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associated with IBD. It would also correspond with the observed increase in in free 

phage virions (Lepage et al., 2008) and temperate VLPs in disease (Clooney et al., 

2019). Additionally, the resulting increase of bacterial cell wall components and debris 

available to interact with the human immune system could perpetuate an inflammatory 

response. In accordance with in vitro reports, it is also possible that increased cell wall 

permeability associated with inflammation allows for increased phage translocation 

(Nguyen et al., 2017) and interaction with the host immune system (Górski et al., 

2012;Van Belleghem et al., 2017;Gogokhia et al., 2019). The observations of 

(Clooney et al., 2019) provide a novel theoretical, mechanistic rationale for the 

interaction of the whole virome and the microbiome in disease, beyond taxonomic 

assignment and compositional patterns of the known minority. Additionally, they 

provide the first comprehensive evidence to support the mechanisms that had been 

previously proposed by Norman et al (Norman et al., 2015). 

The extent to which the switch from temperate to lytic replication cycles and 

the composition of the core virome shape the gut microbiome and influence human 

health and disease remains speculative. However, the analysis approach outlined 

by(Clooney et al., 2019) paves the way to a better understanding of how the interplay 

between the microbiome and the virome reflects or influences human health and 

disease. By allowing the detection of biological signals across the entire virome it is 

now possible to identify viral signals associated with disease which had been 

previously undetected. The WVA approach is also supported by the methods used to 

characterize the crAss-like family (Guerin et al., 2018;Shkoporov et al., 2018a;Yutin 

et al., 2018). CrAss has progressed from an unknown viral sequencing anomaly to 

providing insights into the composition and function of the healthy human gut virome. 

In turn, the methods used in this progression provide a framework to characterize 

unknown but biologically relevant sequences identified by WVA. 

It should be noted, that although many virome studies tend to report the 

dominance and composition of known Caudovirales, this provides little insight into 

the biological impact of these phages or how they shape the gut ecosystem.  

Caudovirales dominate reference databases, exhibit extensive gene sharing across 

families and orders and feature temperate phage genera (King et al., 2011;Iranzo et 

al., 2016;Jang et al., 2019). It is therefore likely that database-dependent methods of 

virome analysis classify unknown dsDNA virus sequences as known Caudovirales 
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due to shared genes or gene cassettes and lenient detection criteria. As the 

representation of gut virome sequences in databases improves with efforts such as 

those carried out by Gregory et al.(Gregory et al., 2019) and the characterization of 

crAssphage (Guerin et al., 2018;Shkoporov et al., 2018a), database-dependent analysis 

methods may be able to better reflect the composition and dynamics of the virome. 

However, as extensive gene sharing remains a central part of dsDNA viral genomes it 

is essential that stringent alignment criteria are used to differentiate shared functional 

modules from the presence of a particular virus (Roux et al., 2016;Roux et al., 2017), 

regardless of the database used. Additionally, it is crucial that these alignment methods 

and their findings are validated to avoid misleading conclusions as to virome 

composition or function (Roux et al., 2013;Enault et al., 2017;Ott et al., 2017;Sutton 

et al., 2019b).  
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Addressing the current challenges of virome research 
As has been discussed, studying phage of the human gut microbiome is made 

challenging by the composition of the sample (usually a faecal specimen) (Figure 2.A). 

In order to enrich for the VLP fraction of the virome, extensive mechanical, chemical 

and enzymatic processing is required to remove cellular DNA and dietary components 

(Figure 2.B) (Castro-Mejía et al., 2015;Shkoporov et al., 2018b). Unfortunately, this 

results in particularly low DNA yields that can complicate the generation of 

sequencing libraries. This challenge is more pronounced in mucosal virome studies 

where DNA yields are lower again (Hannigan et al., 2015;Hannigan et al., 2018). As 

a result, all but one (Manrique et al., 2016) virome study to date have depended on 

multiple displacement amplification (MDA) of viral DNA to reach sufficient 

quantities to sequence. As with all metagenomics, it is crucial to find the balance 

between sequencing chemistry, depth of sequencing and read length. These factors 

have profound impacts on the final virome sequences available for downstream 

analysis. This was highlighted by the differences in virome alpha diversity reported 

by 454 pyrosequencing, when compared to deeper sequencing on the Illumina 

platform as previously discussed. Short read platforms such as the Illumina HiSeq are 

a means to perform deep sequencing of the virome with low error rates and relatively 

low input DNA requirements. However, these libraries can also lead to fragmented 

assemblies and poor recovery of viral genomes (Sutton et al., 2019a). Long read 

sequencing offers a promising solution to this assembly challenge, as it is possible to 

sequence entire viral genomes on a single read (Supplementary table 1.). This 

overcomes hypervariable sequences and repeat regions in viral genomes which 

hamper assembly (Warwick-Dugdale et al., 2019). Currently long read sequencing 

platforms also require very large quantities of un-fragmented DNA, which can be 

challenging acquire from virome samples. As a result, the initial DNA yield and the 

amplification step directly influence the sequencing chemistry, read depth and read 

length which can be used with virome sequences (Figure 2.D). The MDA step has also 

been reported to introduce considerable bias into the composition of the resulting 

virome which must be considered when drawing conclusions from data (Figure 3.A) 

(Yilmaz et al., 2010;Probst et al., 2015). Studies have also reported MDA 

preferentially amplifies small circular ssDNA viruses, which include the family 

Microviridae (Figure 2.C) (Kim and Bae, 2011). This could call into question both the 

reported abundance and ubiquity of this family across individuals. Although it is 
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difficult to quantify the extent to which preferential amplification occurs, recent meta-

analysis of gut virome studies suggested Microviridae may be 10-fold lower in 

abundance than previously thought (Gregory et al., 2019). It is believed that priming 

biases of the random hexamers used in the MDA reaction do not prime equally across 

all genomes, making quantitative interpretation of virome data difficult.  
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Figure 3.  Examples of how virome composition is influenced by key steps in 

analysis.  

(A) Three samples were subjected to identical filtration and DNA extraction steps. 

One set was amplified and prepared for sequencing using the Illumina TruSeq library 

kit while another set of unamplified samples were prepared using the Accel 1S Plus 

kit. Both sets were sequenced on the Illumina HiSeq platform. Differently treated 

samples differ in terms of final composition, represented in bar plots. Each colour 

represents the relative abundance of a unique viral contig in each sample. Abundance 

does not reach 100% in the unamplified sample as the higher level of richness also 

hampered assembly (adapted from (Shkoporov et al., 2019)). (B) Impact of assembly 

software on final virome composition. A faecal samples was spiked with Q33 107 

PFU ml-1, extracted and sequenced. These sequences were assembled using 16 

assembly programs. Only one assembler identified the genome in a single contig of 

the correct length. Five assemblers completely failed to assemble the genome and a 

further five generated fragmented assemblies. (Sutton et al., 2019a).  
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MDA bias can also have a significant impact on qualitative analysis of the gut 

virome. As the concentration of the DNA template also impacts the products of an 

MDA reaction, initial log-fold differences in the abundance of viral sequences are 

exaggerated by MDA (Zhang et al., 2006;Woyke et al., 2009). This results in extremes 

of both high and low read coverage and uneven representation of the initial 

metagenome. As high-abundance sequences sequester sequencing resources, low-

abundance sequences can be insufficiently covered (García-López et al., 2015). These 

coverage extremes have profound impacts on a number of steps in bioinformatic 

pipelines, but in particular metagenomic assembly (García-López et al., 2015;Sutton 

et al., 2019a). A recent comparison of all assemblers used in virome studies to date 

observed that both high and low-coverage sequences resulted in fragmented 

assemblies and recovered only small proportions of viral genomes (Sutton et al., 

2019a). Furthermore, samples were spiked with an abundant (107 plaque-forming units 

ml-1) exogenous lactococcal phage Q33. These samples underwent identical extraction 

amplification and sequencing and resulting viromes were then assembled using all 

assembly methods which had been reported in virome studies at the time (16). Ten of 

the assemblers either failed to recover or significantly fragmented the Q33 genome 

and only one assembler recovered the genome at the correct length (Figure 3.B) 

(Sutton et al., 2019a). These results suggest that numerous and potentially biologically 

relevant viral sequences may be not only be skewed in abundance but also excluded 

by current virome analysis protocols. This also means that we see the virome through 

the lens of the extraction protocol before any decision has been made to use database-

dependent or independent methods (Figure 2.).  

As with many microbiome studies, conclusions from virome studies are primarily 

drawn from relative rather than absolute abundances of sequences. As has been 

discussed, these abundances are often skewed by MDA bias. This ambiguity 

highlights the need for quantitative analysis protocols in virome studies as was 

recently described (Shkoporov et al., 2018b;Clooney et al., 2019;Shkoporov et al., 

2019). These studies reported significant differences in the overall viral load between 

individuals. This total viral load was also correlated negatively with viral alpha 

diversity within the sample and the presence of abundant non-temperate phage such 

as Microviridae and crAss. These results suggest that high viral load is associated with 

a low number of abundant phage, which consequently mask underlying temperate 
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phage diversity. This also suggests the maintenance of high-abundance non-temperate 

phage may be closely linked to the health status of the gut. Subsequently, this may act 

as a useful biomarker for disease and give insight into the phage-host dynamics related 

to microbiome stability and disease status. 
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Future Prospects and Conclusions 
Sequence-based analysis of the bacteriophage in the human gut has revolutionized our 

view of the gut virome and its relationship with the microbiome. However, this new 

insight has also revealed how little we know about this relationship. Our current 

understanding is founded predominantly on extending our knowledge generated in 

reductionist phage-host studies in vitro, or by large scale metagenomic studies of the 

VLP fraction. While these in vitro studies give detailed insights into the mechanics of 

individual phage-host interactions, the prevalence of these interactions in the gut 

ecosystem remains speculative. Additionally, numerous studies have also reported that 

these interactions can change dramatically in the gut (De Sordi et al., 2017;Gogokhia 

et al., 2019). Large-scale metagenomic studies suggest that the virome and the 

microbiome are closely linked, but these studies tend to give broad overviews of 

subsets of the virome and lack details on the host-phage interactions. This leads to 

significant gaps in our understanding of how phage-host dynamics in vitro differ from 

phage-host dynamics occurring in the gut. 

Application of similar analysis methods across studies (i.e. MDA, alignment 

to reference databases, reports on Caudovirales alpha diversity) allows for comparison 

across samples and studies. However, many virome studies present inconclusive or 

contradictory results that hinder the progression of the field. Arguably the overreliance 

on these analysis methods is largely to blame for the gaps in our understanding of the 

virome. This is also supported by recent observations that methodology had greater 

impact on the conclusions drawn from virome studies than health or disease status 

(Gregory et al., 2019). As conclusions are drawn from minor fractions of data and as 

detection criteria do not take into account phage biology and evolutionary history, we 

must pose the question: is the gut virome field built on unstable foundations? With 

this in mind, due caution must be used when interpreting the findings of virome data. 

As virome data is particularly sensitive to methodological bias, conclusions must be 

considered in the context of the analysis methods used (Figure 2, Supplementary table 

1.). These limitations highlight the need for radically new approaches to studying the 

virome if we are to understand its role in shaping the microbiome in health and disease.  

Developments in sequencing library kits such as the Swift Biosciences Accel 

1S Plus kit or extraction protocols like the linker amplified displacement LADs (Roux 

et al., 2016), offer potential  solutions to creating unbiased sequencing libraries from 
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low-input DNA yields. Through the removal of MDA bias and spiking known 

concentrations of exogenous phage, (Shkoporov et al., 2018b) it may be possible to 

gain new insights into the true composition and absolute abundance of the virome. As 

has been discussed at length, the sensitivity of virome data to methodological bias 

highlights the critical need for extensive optimization and validation of all steps of 

virome analysis protocols, from wet-lab extraction protocols (Roux et al., 2016;Roux 

et al., 2017;Shkoporov et al., 2018b) to bioinformatic pipelines (García-López et al., 

2015;Hesse et al., 2017;Vollmers et al., 2017;Sutton et al., 2019a). However, 

standardization and consistency must not be at the cost of developing new methods.  

Furthermore, when characterizing viral sequences it is crucial to use stringent 

detection criteria to minimize the impact of spurious alignments and the influence of 

gene sharing across dsDNA viruses.  

Significant progress has been made in increasing the representation of gut 

phage in reference databases and there is a growing consensus that viral taxonomy 

will soon move towards sequence-based taxonomy (Paez-Espino et al., 

2016;Simmonds et al., 2017;Aiewsakun et al., 2018;Eloe-Fadrosh, 2019;Gregory et 

al., 2019). However, proposed protocols to add metagenomic sequences to current 

taxonomic systems have not yet been accepted (Simmonds and Aiewsakun, 2018). 

Given the dominance of unknown sequences in virome data it is therefore crucial to 

accept the current limitations of phage taxonomy.  Rather than force the virome to fit 

current taxonomic systems, we propose that future studies should allow the virome to 

reveal its own targets for downstream characterization. Subsequently, we have 

outlined a method to analyse the virome in its entirety with our WVA protocol. 

Furthermore we have described a framework to characterize unknown but biologically 

relevant viral sequences that may be identified using WVA. In this way it may be 

possible to address the gaps in our understanding of phage-host dynamics in the human 

gut, and see existing datasets in a new light. 
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 To what extent the phage of the human gut shape the microbiome will dictate 

whether it will be possible to use phage as a therapeutic tool in the future. There are 

significant gaps in our understanding of phage-host interactions which need to be 

addressed before we can reach any conclusions on the usefulness of phage as a 

biotherapeutic. By increasing our understanding of phage-host interactions in the gut, 

it may be possible to pave the way for therapeutic applications of phage in the human 

body. However, the limited insights we have been granted to date of phage-host 

interactions have also highlighted some significant hurdles facing phage therapy. 

Early evidence that the virome could play a role in the success of FMT (Ott et al., 

2017;Draper et al., 2018) suggests there may be a future in using the virome to shape 

the microbiome in disease. To date, the majority of phage intervention studies are 

based on single phage-host pairs (or cocktails containing limited numbers of phage) 

in vitro which have been shown to be significantly different to phage-host dynamics 

in vivo (De Sordi et al., 2017). For example, phage have been found to switch hosts 

and interact directly with mammalian immune cells in vivo, which has serious 

implications for the future of phage therapy (Górski et al., 2012;Gogokhia et al., 2019). 

Additionally the phage-mediated transfer of host virulence factors (Waldor and 

Mekalanos, 1996;Friman et al., 2011;Muniesa et al., 2012;Scanlan et al., 2015) as well 

as direct pathogenesis of phage capsids (Sweere et al., 2019) suggests phage could be 

a potential risk in therapeutic settings. These challenges are confounded with 

regulatory issues (Brüssow, 2019) and additional gaps in our understanding of the 

pharmacodynamics of phage in mammalian tissue. Having the potential to directly 

interact with the immune system (Ivanenkov and Menon, 2000;Barr et al., 2013;Barr 

et al., 2015;Nguyen et al., 2017) given their larger size relative to other biological 

therapeutic agents makes phage a more complex therapeutic agent than any that have 

preceded them. However, in light of the increasing incidence of bacterial pathogens 

which are resistant to antibiotics, and given the promising results of some existing 

phage therapy trials (Wright et al., 2009;Chan et al., 2018;LaVergne et al., 

2018;Garrett, 2019), overcoming these challenges is critically important. Similarly the 

gaps in our understanding of how phage shape bacterial communities will need to be 

addressed if phages are to have a role in avoiding future global health issues. 
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Abstract 
The viral component of microbial communities play a vital role in driving bacterial 

diversity, facilitating nutrient turnover and shaping community composition. Despite 

their importance, the vast majority of viral sequences are poorly annotated and share 

little or no homology to reference databases. As a result, investigation of the viral 

metagenome (virome) relies heavily on de novo assembly of short sequencing reads 

to recover compositional and functional information.  Metagenomic assembly is 

particularly challenging for virome data, often resulting in fragmented assemblies and 

poor recovery of viral community members. Despite the essential role of assembly in 

virome analysis and difficulties posed by these data, current assembly comparisons 

have been limited to subsections of virome studies or bacterial datasets. This study 

presents the most comprehensive virome assembly comparison to date, featuring 16 

metagenomic assembly approaches which have featured in human virome studies. 

Assemblers were assessed using four independent virome datasets, namely; simulated 

reads, two mock communities, viromes spiked with a known phage and human gut 

viromes. Assembly performance varied significantly across all test datasets, with 

SPAdes (meta) performing consistently well. Performance of MIRA and VICUNA 

varied, highlighting the importance of using a range of datasets when comparing 

assembly programs. It was also found that while some assemblers addressed the 

challenges of virome data better than others, all assemblers had limitations. Low read 

coverage and genomic repeats resulted in assemblies with poor genome recovery, high 

degrees of fragmentation and low accuracy contigs across all assemblers. These 

limitations must be considered when setting thresholds for downstream analysis and 

when drawing conclusions from virome data. 
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Introduction 

The rapid evolution of metagenomics and high throughput sequencing technologies 

has revolutionised the study of microbial communities, giving new insights into the 

role and identity of the uncultivated microbes which account for the majority of 

metagenomic sequences (Solden et al., 2016). However, the majority of microbial 

sequencing efforts have focused on the characterisation of prokaryotic microbes. Viral 

metagenomes (viromes) are dominated by novel sequences, often with up to 90% of 

sequences sharing little to no homology to reference databases (Aggarwala et al., 

2017).  Bacteriophage, the most abundant members of viral communities, play a key 

role in the shaping the composition of microbial communities and facilitate horizontal 

gene transfer (Paul, 2008). Viromes have been shown to play a role in global 

geochemical cycles (Breitbart, 2011) and have been studied in varied ecosystems 

including the ocean (Hurwitz and Sullivan, 2013). Viromes of the human body are of 

particular interest, where they have been linked to disease status (Norman et al., 2015), 

maintaining human health (Manrique et al., 2016) and shaping the gut microbiome in 

early life (Lim et al., 2015;McCann et al., 2018).  Due to the predominance of 

uncharacterised viral sequences “viral dark matter”; (Roux et al., 2015), and the lack 

of a universal marker gene, virome studies rely on database independent analysis 

methods and depend heavily on de novo assembly to resolve viral genomes from 

metagenomic sequencing reads.  

Metagenomic assemblers typically use de Bruijn graph (DBG) approaches to 

address the complexity and size of metagenomic datasets in an accurate and efficient 

manner. Microbial metagenomes pose significant challenges to DBG assembly when 

compared to single genome assemblies often complicating the DBG and leading to 

fragmentation and/or misassembly (Olson et al., 2017). These challenges include 

uneven sequencing coverage of organisms within the metagenome, the presence of 

conserved regions across different species, repeat regions within genomes and the 

introduction of false k-mers by both closely related genomes at differing abundances 

and sequencing errors at high read coverage. This hampers the use of coverage 

statistics to resolve repeat regions between and within genomes (Olson et al., 2017). 

A wide array of metagenomic assembly programs have been employed, each 

addressing aspects of metagenomic challenges to varying degrees. However, many of 

these programs have been designed and optimised for bacterial metagenomes, which 
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share many assembly challenges of viromes but to a lesser degree. Virome data is 

characterised by high proportions of repeat regions within viral genomes (Minot et al., 

2012), hypervariable genomic regions associated with host interaction (Warwick-

Dugdale et al., 2018) and high mutation rates which lead to increased metagenomic 

complexity and strain variation (Roux et al., 2017). Low DNA yields also limit read 

coverage and often require a multiple displacement amplification (MDA) step which 

has been shown to preferentially amplify small single stranded DNA viruses (Kim and 

Bae, 2011). Extremes in read coverage caused by MDA bias and dominant viral taxa 

such as crAssphage, which can make up large proportions of human gut viromes 

(Dutilh et al., 2014), sequester sequencing resources and result in insufficient coverage 

of low abundance viruses. These challenges result in fragmented virome assemblies 

(García-López et al., 2015), limiting their use in downstream analysis. Despite 

benchmarks of bacterial metagenomes having highlighted failings and benefits of 

particular assembly programs, many poorly performing assemblers have featured in 

virome studies (Foulongne et al., 2012;Hannigan et al., 2015;Guo et al., 2017). 

 Accurate comparison of metagenomic assemblers is complicated by the 

unknown composition of metagenomic datasets and the limited applicability of 

general assembly statistics such as N50 (Deng et al., 2015;Vollmers et al., 2017).  To 

address this, the accuracy and efficacy of metagenomic assembly programs is often 

evaluated using simulated datasets and mock communities of known composition. 

Although these simulated datasets are undergoing constant improvements (Sczyrba et 

al., 2017;Fritz et al., 2018), they have focused primarily on bacterial metagenomes and 

remain limited in their ability to accurately replicate the challenges of true 

metagenomes. While some virome-specific assembly benchmarks have been 

performed, many have been limited to a small number of assemblers, 454 data or 

subsections of virome studies and have exclusively used simulated data (Aguirre de 

Cárcer et al., 2014;Smits et al., 2014;Vázquez-Castellanos et al., 2014;García-López 

et al., 2015;Hesse et al., 2017;Roux et al., 2017). 

Here we expand upon previous studies and present a detailed investigation of 

assembly software for virome analysis which compares all those previously used in 

human virome studies to date, as well as other popular or more recently published 

assemblers (Table 1). We compare assembly efficacy and accuracy using simulated 

viromes, mock viral communities and human gut viromes spiked with a known 
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exogenous bacteriophage. Furthermore we confirm these findings using human 

virome data from published datasets and assess computational parameters such as 

runtime and RAM usage. We also investigate in detail the impact of sequencing 

coverage and genomic repeats on assembly performance and highlight important 

considerations for future virome studies. Together these data comprise most 

comprehensive virome assembly benchmark to date.   

Methods 

Each assembler with the exception of Geneious and CLC was run as per manual with 

default parameters (unless stated) using a Lenovo x3650 M5 server with an intel Xeon 

processor E5-2690 v3 and 512Gb RAM running Ubuntu 14.04.5. Geneious assembly 

approach mirrored that used in (Manrique et al., 2016) by generating consensus 

sequences from the assemblies of both MIRA and Vicuna. CLC and Geneious were 

run on a 64-bit windows 10 computer with an i5-4690 CPU and 16 GB of RAM.  

Data sources 

Sequencing reads from mock communities A and B featured in (Roux et al., 2016), 

Simulated Virome dataset featured in (Hesse et al., 2017),  reads used to compare the 

impact of sequencing depth on time and RAM usage featured in (Manrique et al., 

2016) and human viromes spiked with 107 PFU of Lactococcal phage Q33 (Mahony 

et al., 2013) and originated from (Shkoporov et al., 2018) . 

Read Pre-processing 

Raw read quality was assessed with FastQC v0.11.5 and sequencing adapters were 

removed with cutadapt v1.9.1 (Martin, 2011) for the mock, Spiked and healthy gut 

virome data sets. Trimming and filtering was carried out with Trimmomatic v0.36 

(Bolger et al., 2014)  using parameters specific to each dataset. A sliding window size 

of 4 with a minimum Phred score of 30 and a minimum length of 60bp was used with 

reads from both mock communities. The leading 15bp and trailing 60bp were removed 

from “Healthy human gut phageome” reads and a sliding window of 4bp with a 

minimum phred score of 20 was applied. The leading 10bp and trailing 100bp were 

removed from the Q33 spiked virome reads and a sliding window size of 4bp with a 

minimum Phred score of 30. Filtered reads were through a minimum length filter of 

60bp. 
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Analysis methods 

Quality filtered reads from the Q33 spiked dataset consisted of 3 individual viromes 

which were pooled and subsequently assembled. Contigs were aligned to the published 

Q33 using Blastn with an e-value cut-off of 1e-20. Top hit alignments to the Q33 

genome with a minimum alignment length of 800 bases and which shared 95% identity 

were included in further analysis using QUAST (v. 4.4) (Gurevich et al., 2013) with 

“--unique mapping” flag. Further comparison and visualisation of Q33 assemblies was 

carried out using Mauve (v. 20150226, build 10) (Darling et al., 2010). 

Alignment and comparison of assemblies from mock and simulated data sets 

to reference genomes was carried using MetaQUAST (v. 4.4) (Mikheenko et al., 2015) 

with “--unique mapping” flag and default parameters (minimum contig length of 

500bp, minimum alignment length of 65bp, minimum identity threshold of 95%). 

Correlations were carried out using Spearman method and plots were generated using 

the package ggplot2 (v 3.0.0) package in R (v.3.4.3).  These correlations were 

validated using a linear model in R base library. For data which was not normally 

distributed, log transformation was carried out. 

Reads from the “healthy human gut phageome” were analysed to compare the 

overall assembler efficiency and the impact of sequencing depth. Reads were 

randomly subset in pairs (both the forward and reverse read of a pair were retained) to 

different depths using an in-house python script. Samples were subset in increments 

of 300,000 reads to their respective maximum depth (2.7, 3.5, 3 and 3.3 million reads). 

GNU time was utilised to measure the maximum RAM and length of time for each 

assembly to reach completion. All assemblers were run using 5 threads where possible 

with the exception of CLC, Geneious, Ray Meta, Velvet and Vicuna. Ray Meta and 

Velvet were run with 10, 1 thread(s) respectively. Ray Meta failed to run with 5 while 

Velvet ran with 1 core despite 5 being allocated. Vicuna was also allocated 5 threads 

however used upwards of 20. MetaVelvet was run, but after 7 days had failed to reach 

completion and was therefore removed from the subsequent analysis of these metrics. 

Contig statistics and filtering (contigs greater than 1kb retained) were performed using 

the assembly-stats script (v1.0.1) from the Pathogen Informatics group at the 

Wellcome Sanger Institute (https://github.com/sanger-pathogens/assembly-stats).  
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Software Link 
Versio

n used 
Reference 

ABySS  http://www.bcgsc.ca/downloads/abyss/ 

v2.0.2 

 

(Simpson et al., 2009) 

CLC 
https://www.qiagenbioinformatics.com/produ

cts/clc-assembly-cell/ 
v5.0.5 

https://www.qiagenbioinformatics.

com/ 

Geneious 
https://www.geneious.com/features/assembly-

mapping/ 

v11.0.

3 

(Kearse et al., 2012) 

 

IDBA UD 
https://i.cs.hku.hk/~alse/hkubrg/projects/idba_

ud 
v1.1.1 

(Peng et al., 2012) 

 

MEGAHIT https://github.com/voutcn/megahit 
v1.1.1

-2 
(Li et al., 2016) 

MetaVelvet https://metavelvet.dna.bio.keio.ac.jp/ 
v1.2.0

2 

(Namiki et al., 2012) 

 

MIRA 
http://www.chevreux.org/mira_downloads.ht

ml 

v4.0.2 

 

(García-López et al., 2015) 

 

Ray Meta http://denovoassembler.sourceforge.net/ v2.3.0 

(Boisvert et al., 2012) 

 

SOAPdenov

o2 
http://soap.genomics.org.cn/soapdenovo.html v2.04 (Luo et al., 2012) 

SPAdes http://cab.spbu.ru/software/spades/ 
v3.10.

0 
(Bankevich et al., 2012) 

SPAdes 

meta 

http://cab.spbu.ru/software/spades/ (variation 

of SPAdes applied with flag) 

v3.10.

0 
(Nurk et al., 2017) 

Velvet https://www.ebi.ac.uk/~zerbino/velvet/ 
v1.2.1

0 
 (Zerbino and Birney, 2008) 

VICUNA https://github.com/broadinstitute/mvicuna v1.3 (Vázquez-Castellanos et al., 2014) 

Table 1: A list of assemblers used in this study 
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Results 

Simulated virome dataset 

Normalised genome abundance of 572 members of a published simulated community 

(Figure. 1A) (Hesse et al., 2017) and the degree of fragmentation, was assessed by 

aligning the resulting contigs from each assembler to the reference genomes (Figure. 

1B). MetaVelvet was not included in this analysis as it failed to reach completion after 

seven days. Approximately half of the genomes in the community featured an average 

recovered genome fraction less than 75% and exhibited higher degrees of 

fragmentation (>10 contigs per genome on average) across all assemblers. For 87 of 

the 572 genomes there was an average recovered genome fraction of less than 20% 

across all assemblers (the low recovered genome fraction of VICUNA was excluded 

as an outlier). Of these genomes, 84 were present at low abundance (lowest 40% of all 

abundances normalised to genome length). The remaining three genomes were present 

at higher normalised abundances (50 – 80th percentile) but featured the some of the 

highest proportions of genomic repeats (70th-90th percentile). 

  Normalised genome abundance within the community had a strong positive 

correlation with recovered genome fraction across all assemblers (Supplementary 

Table 1, Additional file 5) and was verified using a linear model (Supplementary Table 

2, Additional file 5), with the exception of SOAPdenovo2, which was negative.  

Normalised abundance also correlated negatively with the degree of fragmentation 

(number of contigs) across all assemblers except Velvet which was positively 

correlated and Geneious which was not significant (Supplementary Table1, Additional 

file 5). None of the genomes in the lower 30th percentile of normalised abundance 

featured an average recovered genome fraction greater than 75%, further exemplifying 

the impact of low sequencing coverage. 
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  Figure 1: Relationship between percentage of each genome recovered (genome 

fraction), the number of contigs required for each combination of genome and 

assembler and the abundance and proportion of repeats for each genome. (A 

and B) Genomes are ordered by their average genome fraction across all 

assemblers from high to low along the x-axis. (A main) Relative abundance, 

normalized by genome length is plotted along y-axis with upper limit of 0.75% 

and colour of bars determined by proportion of repeat regions in each genome. 

Blue bars represent genomes with a high proportion of genomic repeats (4th 

quartile of all genomes), red represents all other genomes below this quartile. 

(A insert) Expanded view of (A) without an upper limit of y value. (B) 

Percentage genome recovered is plotted along the y axis. Points are coloured 

by assembler with shape of the point is denoting number of contigs generated 

by each assembler for each genome. 
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However high abundance did not consistently improve genome recovery and of the 

172 genomes in the top 30% of normalised abundance, 20 featured an average genome 

fraction below 50%. The distance of the log transformed (due to extremes in values) 

normalised abundances from the mean was negatively correlated with recovered 

genome fraction across all assemblers (correlation coefficient: -0.42, p-value < 2.2e-

16). Of 171 genomes in the 40th – 60th percentile of normalised abundance 29 featured 

an average genome fraction below 50%. This indicates factors other than abundance 

may hamper genome recovery. MIRA and Geneious both recovered a greater fraction 

of low abundance genomes with fewer contigs than other assemblers. However, MIRA 

assemblies of 13 of the most abundant genomes in the community (highest 10%) 

exhibited the highest degree of fragmentation in the study, generating between 401 

and 2983 contigs per genome. 

The proportion of inverted repeats, palindromic repeats, tandem repeats and a 

total proportion of genomic repeats was calculated for each genome. The total 

percentage of repeat regions predicted in each genome was positively correlated with 

the degree of fragmentation observed in each assembly across all assemblers with the 

exception of Ray Meta (Supplementary Table 3, Additional file 5), and negatively 

correlated with recovered genome fraction across all assemblers except ABySS (k-mer 

63/127), Geneious, and SOAPdenovo2. When this relationship between repeat regions 

and the recovered genome fraction was assessed using a linear model, correlations 

were significant for  CLC, MIRA, Ray Meta, Velvet, and all parameters of SPAdes 

(Supplementary Table 2, Additional file 5). Both the proportion of repeat regions in a 

genome and the relative abundance of that genome contribute to the variation in 

recovered genome fraction, though each explain a separate aspect of this variation. No 

interaction was found between these two metrics. 

VICUNA, Ray Meta, SOAPdenovo2, Geneious, ABySS (both k-mer sizes) 

and Velvet recovered under 50% of the total genome fraction (all genomes in the 

community). VICUNA produced just four contigs in total with high levels of 

mismatches (174 per 100kb on average) which could possibly be linked to the format 

of the artificial reads as this was not observed in real sequencing data.  The five 

assemblers which recovered the highest genome fraction overall were SPAdes 

(default), MEGAHIT, SPAdes (single cell), SPAdes (single cell + careful) and CLC. 

All assemblers achieving a minimum average genome fraction of 50% were subjected 
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to a ranking system (Supplementary Table 4, Additional file 5). To compare both 

recovery and fragmentation assemblers were ordered from best to worst based on 

genome recovery and number of aligned contigs. The average rank resulted in Spades 

(default) performing best, recovering 72.2% overall genome sequences with 8230 

contigs. The remaining top five assemblers of this combined rank were SPAdes (meta) 

68.2% with 7419 contigs, SPAdes (single cell) 68.9% with 9506 contigs, CLC 68.6% 

with 9152 contigs and MEGAHIT 69.6% with 10083 contigs. The number of 

assemblies which recovered greater than 90% of the target genome in one single contig 

was compared (Figure. 2). SPAdes (default) performed best, recovering 210, SPAdes 

(meta), SPAdes (single cell + careful), CLC, and SPAdes (single cell) each recovered 

179, 168, 162 and 160 genomes respectively. 

The accuracy of assemblies was assessed by calculating the average count of 

indels, mismatches, and misassemblies per 100kb across all genomes.  These counts 

were normalised to the number of genomes each assembler recovered with a minimum 

genome fraction of 50%. These were ranked according to their performance in all three 

metrics (Supplementary Table 4, Additional file 5), with assemblies from Velvet 

having the lowest overall counts followed by ABySS, IDBA UD, MEGAHIT and Ray 

Meta. With the exception of Ray Meta and SOAPdenovo2, the number of mismatches 

per 100kb was negatively correlated with both genome abundance and recovered 

genome fraction across all assemblers (Supplementary Table 1, Additional file 5).  

 The rate of false positive (no alignment to reference genomes) and false 

negative (recovered genome fraction of 0%) contigs assembled allowed for the 

determination of sensitivity. A number of assemblers had a sensitivity greater than 

97%, however each returned greater than 7,000 contigs, inferring a high degree of 

fragmentation (Table 2). MIRA assembled (partial or complete) 559 of the genomes 

with a false positive count of just four. However, this was achieved from more than 

27,000 contigs. ABySS (both k-mer sizes), Geneious, Ray Meta and Velvet returned 

very few false positives but failed to detect many of the genomes present. SPAdes 

(meta) performed best with 558 of the 572 genomes detected and only five false 

positives resulting from 7419 contigs. 
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False 

Positives 

False 

Negative 

True 

Positives 

No. of 

contigs 

returned* 

Sensitivity 

ABSS (k-mer 63) 0 111 461 7957 80.59 

ABySS (k-mer 127) 1 123 449 7732 78.50 

CLC 34 5 567 9152 99.13 

Geneious 9 190 382 958 66.78 

IDBA UD 25 9 563 8999 98.43 

MEGAHIT 21 8 564 10083 98.60 

MetaVelvet N/A N/A N/A N/A N/A 

MIRA 4 13 559 27600 97.73 

Ray Meta 0 213 359 4224 62.76 

SOAPdenovo2 536 116 456 11548 79.72 

SPAdes 29 3 569 8230 99.48 

SPAdes meta 5 14 558 7419 97.55 

SPAdes sc 38 7 565 9506 98.78 

SPAdes sc careful 40 6 566 9724 98.95 

Velvet 1 65 507 6343 88.64 

VICUNA 0 558 14 4 2.45 

    
*572 in community 

Table 2: The number of false positive, false negative contigs generated by each 

assembler for the Simulated community, together with the sensitivity rates 
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Mock community dataset 

Two mock viral communities were used to investigate the impact of high and low 

abundance ssDNA viruses on assembly performance. Mock A (Table 3a) contained 

12 viral genomes, 10 of which were at equal abundance (9.82% of the total 

community) and two ssDNA genomes (NC_001330 and NC_001422) at low 

abundance (0.92%). Analysis of this community showed that although some 

assemblers, namely CLC, Geneious, SPAdes (single cell) and VICUNA, detected all 

12 genomes, this was at the expense of a large number of false positives (1143, 53, 

1513 and 4969 respectively). Velvet and MetaVelvet generated no false positives, but 

failed to assemble three genomes, while ABySS (for both k-mers) generated a large 

number of false positives and failed to assemble four and six genomes, respectively. 

IDBA UD and Ray Meta outperformed the other assemblers with an equal number of 

contigs to genomes (12), followed by MEGAHIT, SPAdes (default) and SPAdes 

(meta) with 13, 14 and 14. Mock B (Table 3b) also contained 12 genomes but with a 

higher abundance of ssDNA genomes NC_001330 and NC_001422 (32.47%). 

VICUNA assemblies of Mock B improved upon those from Mock A as no false 

positives were generated, while the false positive rate in the MIRA assembler 

increased to 94 from none in Mock A. IDBA UD performed best followed by SPAdes 

(default), Ray Meta, MEGAHIT and SPAdes (meta) based on sensitivity and number 

of contigs, while ABySS (both k-mer sizes) and SOAPdenovo2 had the lowest 

sensitivity. Despite being a relatively simple community consisting of 12 members, 

not all assemblers were able to recover all members (Supplementary Table 5-6, 

Additional file 5). A greater number of assemblers (six) failed to assemble all members 

of Mock B than Mock A (four). ABySS(k-mer 63), ABySS(k-mer 127), Velvet and 

MetaVelvet failed to assemble 6, 4, 3 and 3 genomes respectively, in Mock A and 6, 

4 ,1 and 1 genomes, respectively in Mock B. In addition, MIRA and SOAPdenovo2 

failed to assemble 1 and 2 genomes respectively in Mock B.  
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A) 
     

 

 

False 

Positives 

False 

Negative 

True 

Positive 

No. of contigs 

returned* 
Sensitivity 

ABySS (k-mer 

63) 
52 4 8 61 66.67 

ABySS (k-mer 

127) 
50 6 6 56 50.00 

CLC 1143 0 12 1299 100.00 

Geneious 53 0 12 65 100.00 

IDBA UD 0 0 12 12 100.00 

MEGAHIT 0 0 12 13 100.00 

MetaVelvet 0 3 9 26 75.00 

MIRA 0 0 12 89 100.00 

Ray Meta 0 0 12 12 100.00 

SOAPdenovo2 2 0 12 23 100.00 

SPAdes 0 0 12 14 100.00 

SPAdes meta 0 0 12 14 100.00 

SPAdes sc 1513 0 12 1527 100.00 

SPAdes sc 

careful 
0 0 12 15 100.00 

Velvet 0 3 9 26 75.00 

VICUNA 4969 0 12 5385 100.00 

    *12 in community 
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B) 
     

 
False 

Positive 

False 

Negative 

True 

Positives 

No. of contigs 

returned* 
Sensitivity 

ABySS (k-mer 63) 60 4 8 69 66.67 

ABySS (k-mer 127) 132 6 6 139 50.00 

CLC 450 0 12 505 100.00 

Geneious 14 0 12 30 100.00 

IDBA UD 0 0 12 12 100.00 

MEGAHIT 0 0 12 14 100.00 

MetaVelvet 0 1 11 24 91.67 

MIRA 94 1 11 157 91.67 

Ray Meta 0 0 12 13 100.00 

SOAPdenovo2 2 2 10 27 83.33 

SPAdes 0 0 12 13 100.00 

SPAdes meta 0 0 12 14 100.00 

SPAdes sc 593 0 12 607 100.00 

SPAdes sc careful 0 0 12 14 100.00 

Velvet 0 1 11 24 91.67 

VICUNA 0 0 12 15 100.00 

    *12 in community 

Table 3: The number of false positive, false negative contigs generated by each 

assembler for a) Mock community A (overleaf ) and b) Mock community B) along 

with the sensitivity rates for each 
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 All but three VICUNA assemblies in Mock A exhibited a high level of 

fragmentation, generating 34.7 ± 35 (mean ± standard deviation) contigs per genome. 

Fragmentation was also seen in MIRA assemblies to a lesser degree with 7.4 ± 10 

(mean ± standard deviation) contigs per genome on average. There was a high rate of 

fragmentation in CLC with one community member generating 144 contigs for 

genome KF302035. Average recovered genome fraction of 85.4 ± 6.4 % was skewed 

by ABySS (k-mer 63), ABySS (k-mer 127), Velvet, MetaVelvet, SOAPdenovo2, and 

VICUNA which recovered on average 49.5%, 66.6%, 73.8%, 73.8%, 29.7% and 

76.6%, respectively. All other assemblers recovered over 99% of each genome in the 

community (Supplementary Figure 1).  

Closer inspection of the two ssDNA genomes present at lower relative 

abundance highlighted significant differences in the average number of indels across 

all assemblies of the NC_001330 and NC_001422 genomes versus other members of 

the community (p-value = 0.037). These genomes exhibited an average of 41.7 ± 18.5 

and 9.4 ± 20.4 indels per 100kb, while all other genomes featured an average of 7.8 ± 

18.9 indels per 100kb. The low abundant ssDNA genomes NC_001330 and 

NC_001422 also featured the highest average mismatches per 100kb at 148.7 ± 3 and 

302.5 ± 10.7, respectively (Supplementary Figure 1).   

The degree of fragmentation observed by VICUNA and MIRA in Mock B was 

lower than in Mock A with a mean of 1.3 ± 0.89 and 5.3 ± 7.7 contigs per genome, 

respectively. CLC fragmented genome KF302035 in Mock B (44 contigs), but to a 

lesser degree than Mock A (144 contigs). MEGAHIT, which recovered at least 98% 

of all genomes in Mock A, also recovered over 98% of all genomes in Mock B except 

for the ssDNA genome NC_001422, of which 56.5% was recovered in two contigs. 

The majority of assemblies exhibited 147.9 ± 0 and 297 ± 1 mismatches per 100kb for 

NC_001330 and NC_001422 (high abundance ssDNA), respectively, identical values 

to those measured in Mock A. Velvet and MetaVelvet were exceptions with 184.2 and 

860.2 for genome NC_001422 and NC_001330. A similar pattern of high values 

across a narrow range was also observed with the number of indels, with 49.3 to 32.9 

present in all assemblies NC_001330. Genome NC_001422 featured 18.57 indels 

across all SPAdes assemblies (all parameters) and 860.2 across both Velvet and 
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Metavelvet assemblies. All other assemblers which successfully recovered this 

genome did not feature any indels (Supplementary Figure 1). 

Q33 

Five assemblers failed to generate contigs which met alignment thresholds and were 

subsequently excluded from further analysis - namely ABySS (k-mer 63), ABySS (k-

mer 127), SOAPdenovo2, Velvet and MetaVelvet. All remaining assemblers 

recovered over 90% of the spiked Q33 genome with the exception of MIRA (8.5%). 

Six assemblers recovered over 99% of the Q33 genome in a single contig - SPAdes 

(meta) 99.74%, MEGAHIT (99.6%), VICUNA (99.6%), Ray meta (99.6%), CLC 

(99.5%) and Geneious (99.1) (Figure. 3). However, only MEGAHIT assembled the 

Q33 genome with a contig equal in length to the genome itself. SPAdes (meta) and 

CLC generated assemblies shorter than the reference genome by 86 and 141 bases. 

VICUNA (723), Geneious (1765), and Ray Meta (9884) each generated assemblies 

longer than the reference genome. SPAdes (default) SPAdes (single cell), IDBA UD 

and SPAdes (single cell + careful) each assembled Q33 in 2, 3, 4, 5 and 5 contigs, 

respectively. Ray Meta and VICUNA assemblies had the lowest number of 

mismatches and indels per 100kb, however Ray Meta exhibited the highest rate of 

misassemblies (2 relocations, 1 inversion). All assemblers featured a minimum of one 

local misassembly with the exception of SPAdes (meta) did not feature any. The six 

best assemblies of the Q33 genome and the genome itself are syntenic (although 

occasionally on the reverse strand) and the start and end point were not conserved 

(Figure .3). 
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Read depth analysis (Time and RAM) 

Assemblers were compared for practicality by measuring the time to reach completion 

and maximum RAM usage via four published healthy human gut viromes (Manrique 

et al., 2016) and various sequencing depths . It must be noted that all assembly tasks 

were allocated five threads, however specifying the number of threads did not change 

the number of threads used by certain programs. MetaVelvet was not included in this 

analysis as it failed to reach completion after running for seven days. CLC and 

Geneious were performed on a desktop computer and therefore excluded from time 

and RAM analysis. Run time is dependent upon the number of reads and this is largely 

linear in scale with more reads leading to an increased assembly time (Figure. 4a). 

MIRA and Vicuna (Figure. 4a insert) were the slowest with MIRA taking over 15 

times longer than the other software to assemble 3.5 million reads.  SOAPdenovo2 

had the shortest completion time followed by IBDA UD and Velvet. Most assemblers 

were consistent across samples (observed via error bars) with the exception of MIRA 

and Ray Meta. MIRA, Vicuna and Velvet (Figure. 4b insert) had the highest max RAM 

usage while the lowest was Ray Meta, IDBA UD and SPAdes (meta) (Figure. 4b). The 

majority of assemblers observed a linear scale pattern similar to that of run time.  

Read depth analysis N50 and Longest contig length 

For both the N50 (Figure. 4c) and the longest contig length (Figure. 4d), there was a 

large amount of variation between samples for the majority of assemblers. The longest 

contig length showed a large increase at the final sequencing depth. Particular 

assemblers, namely SPAdes (default), SPAdes (meta), MEGAHIT and ABySS (k-mer 

127), produced longer contigs as the sequence depth was increased.  
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 Figure 4. A) Time, measured in seconds, for each assembly to reach completion 

successfully for each read subset. B) The maximum RAM, measured in MB, used 

for each assembly for each read subset.  
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Discussion 

Many bacterial metagenomic assembly comparisons have highlighted that the choice 

of assembler has a significant impact on downstream analysis and the accuracy of the 

reconstructed metagenome (Mavromatis et al., 2007;Lindgreen et al., 2016;Greenwald 

et al., 2017;Vollmers et al., 2017). We have found this also to be true for viral 

metagenomes, where accurate and complete assembly are of particular importance 

given the lack of viral representation in reference databases. Virome studies depend 

heavily on the assembly step and possess many features which are challenging to 

successful assembly. In this study we compared the performance of those assemblers 

used to date in human viral metagenomics studies using datasets of known and 

unknown composition and varying complexity. These included a Q33 spiked virome, 

mock virome communities, a simulated virome and the “Healthy human gut 

phageome” (Manrique et al., 2016). Each dataset provided unique attributes allowing 

for comparison of assembly performance on a number of levels. The combination of 

artificial and real viromes used in this study allows for the comparison of various 

aspects of assembly performance across a range of datasets rather than depending on 

simulated viromes alone, as is commonly carried out in assembly comparisons 

(Mavromatis et al., 2007;Fritz et al., 2018) .  

The Simulated dataset featured 572 viral genomes at various relative 

abundances as published by Vázquez-Castellanos and colleagues (Vázquez-

Castellanos et al., 2014). Fragmented assemblies of individual genomes within 

microbial communities hamper downstream analysis and limit the conclusions which 

can be drawn from metagenomic data such as taxonomic and functional profiles 

(Florea et al., 2011). Consequently, the percentage genome recovery and degree of 

fragmentation was assessed across each assembler, with SPAdes (default, meta and 

single cell) each performing well. VICUNA performed very poorly, recovering only 

four contigs with high numbers of mismatches and misassemblies, despite having 

performed well with other datasets and being designed to address challenges of 

heterogeneous viral populations (Yang et al., 2012). This failure may reflect the 

computational challenges relating to the format of the simulated reads, as benchmarks 

carried out within the VICUNA study itself only include actual sequencing reads 

(Yang et al., 2012). However, similar poor performance has been previously observed 

in virome assembly comparison using VICUNA and 454 reads (Vázquez-Castellanos 



  

87 

 

et al., 2014). For those assemblers which could recover greater than 90% of the 

reference genome in a single contig, SPAdes (default) outperformed SPAdes (meta). 

This may be explained by a lack of strain variants in the dataset and the fact that 

SPAdes (meta) was optimised to combine strain variants of each species to form 

consensus sequences. 

 A subset of genomes were poorly recovered (<20% genome fraction) by 

nearly all assemblers. This observation indicates that there are challenging aspects of 

viral genomes and metagenomes which cannot be overcome with current assembly 

strategies. The strong positive correlations between the relative abundance and 

genome fraction suggest that a low abundance threshold applies to virome assembly, 

below which assemblies will consist of small fractions of the viral genome, and in 

most cases be highly fragmented.  This detrimental impact of low coverage has been 

well established in previous assembly comparison studies (García-López et al., 

2015;Roux et al., 2017;Fritz et al., 2018). Highly abundant genomes also caused 

similar recovery and fragmentation issues across all assemblers, which is of particular 

importance due to the prevalence of extremely high abundance genomes in viral data 

(crAssphage, certain ssDNA viruses). As both abundance extremes are common in 

virome data, their impact must be considered when designing virome studies (i.e. 

sequencing depth). As relative abundance alone did not fully explain the variation in 

genome fraction recovered, the role of genomic repeats (a well-established assembly 

challenge (Acuña-Amador et al., 2018) was also investigated. However, genomic 

repeats could explain the variation in genome fraction recovered to a lesser degree 

than relative abundance, suggesting other factors contribute to poor genome recovery. 

 Compositional differences between final assemblies and viromes themselves 

must be taken into account when drawing conclusions about virome composition and 

setting parameters for downstream analysis. Challenges such as genomic content and 

strain variation are not currently addressed in human virome assembly strategies and 

impact the reconstruction of certain members of a virome. Hybrid sequencing, which 

uses both long and short reads to resolve genomic regions associated with poor 

assembly (Warwick-Dugdale et al., 2018) is a promising new technology which could 

address current virome assembly challenges. Library preparation methods which may 

reduce the bias introduced by MDA steps include using Swift Biosciences 1S Plus kit 

(Roux et al., 2016) and/or increasing overall sequencing depth or read length to 
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improve recovery of lowly abundant viral genomes will be key. Furthermore, utilizing 

an assembler which can robustly deal with ultra-high coverage genomes (> 1000x 

coverage) is an important but often not appreciated aspect of virome assembly 

analysis. While promising, these potential solutions highlight a requirement for 

ongoing optimisation and extermination of virome analysis protocols. 

 Performance of some assemblers in this study was hampered by high coverage 

sequences (primarily overlap consensus assemblers). VICUNA assemblies exhibited 

the highest degree of fragmentation of all assemblers with Mock A, despite having 

resolved both high abundance ssDNA genomes of Mock B to a single contig. MIRA 

also exhibited a high degree of fragmentation with high abundance genomes in both 

simulated and mock datasets. However, MIRA was least affected by low abundance 

reads, recovering a greater genome fraction of low abundance genomes than other 

assemblers with fewer contigs. Performance of assemblers hampered  by high 

coverage sequences in viromes may potentially be improved by sub-setting reads 

similar to the assembly approach used by SLICEMBLER (Mirebrahim et al., 2015). 

Multi-assembler approaches such as the use of Geneious to generate consensus 

sequences from separate assemblers have been developed (Koren et al., 2014;Schürch 

et al., 2014;Deng et al., 2015) but have not been included in human virome studies 

using short reads. MIRA assemblies of the Q33 genome and some low abundance 

genomes in the Simulated dataset were improved using Geneious, resolving greater 

genome fractions with fewer contigs (despite Geneious recovering a lower genome 

fraction of the Simulated dataset overall). It is possible that using these approaches 

could address issues facing each assembler, i.e. combine the assemblies of SPAdes 

(meta) which performs well across all 4 datasets but struggles to recover low abundant 

genomes, with MIRA assemblies which are less affected by low abundance but has 

difficulty resolving genomes of higher abundance. Comparison of multi-assembler 

approaches and combinations of various assemblers was not within the scope of this 

study, but should not be ruled out as a potential method of improving virome assembly 

in cases where composition could be assessed and obvious assembly challenges were 

known to be present. 

Across all analysis methods in this study, SPAdes (meta) performed 

consistently well and would be our recommendation. It performed best in the 
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Simulated data based on false positives, true positives and false negatives, best 

assembled the Q33 genome (recovery, fragmentation, misassemblies and genome 

size) and performed well with both mock communities in recovering all members 

accurately in one or two contigs. SPAdes (meta) RAM usage was low and did not 

increase to the same degree as other assemblers with increasing sequencing depth. 

This recommendation is in agreement with previous comparisons (Vollmers et al., 

2017) which also suggested using SPAdes (meta) due to its ability to accurately 

assemble members of bacterial metagenomes. SPAdes (meta) is less able to accurately 

reconstruct micro-diversity as it generates a consensus assembly of “strain–contigs” 

in a metagenome, which means it is better equipped to address the high mutation rates 

observed in virome data (Nurk et al., 2017). This recommendation is also concurrent 

with a previous study (Roux et al., 2017) which found IDBA UD, MEGAHIT and 

SPAdes (meta) to perform equally well when assessed using 14 simulated viromes. 

However, we found that SPAdes (meta) outperformed IDBA UD and MEGAHIT in 

the Q33 spiked dataset, RAM usage in relation to increasing sequencing depth, and in 

its ability to recover members of the Simulated virome in a single contig.  This 

recommendation contradicts two previous assembly comparisons which found CLC 

(Hesse et al., 2017) and Velvet (White, Wang et al. 2017) to be best suited to virome 

data. However, SPAdes (meta) was not included in either study. Though SPAdes 

(meta) was out performed by MIRA in the assembly of low abundance genomes in the 

Simulated dataset, MIRA has limited application to large datasets. MEGAHIT also 

performed well across all datasets performing well in relation to recovery, 

fragmentation and accuracy, but encountered some recovery issues in mock datasets 

and minor accuracy issues with the Q33 genome. 

The higher levels of accuracy (low mismatch indel and misassembly counts) 

of assemblers which performed poorly in other metrics namely (velvet and ABySS (k-

mer 63), highlights the trade-off between accuracy and contiguity observed in previous 

assembly studies (Gritsenko et al., 2012;Lin and Liao, 2013). However, both IDBA-

UD and MEGAHIT performed well for accuracy, genome recovery and 

fragmentation. These assemblers may be worth considering if strain level detail is of 

particular importance. The mock A and B datasets were used to assess the impact of 

amplification bias on assembly performance.  All ssDNA assemblies featured an equal 

minimum number of mismatches across both Mock A and B. This may be caused by 
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challenges in the genomes themselves hampering accurate assembly, but is more likely 

to reflect strain variation between genome sequence featured in the original 

publication and the genome of the phage used in the community itself. 

The Q33 spiked virome consisted of pooled reads from three healthy human 

faecal samples, each of which having been spiked with 107 PFU ml-1 of lactococcal 

phage Q33 prior to virome extraction. This allowed for assembly comparison of one 

abundant member of a challenging viral community. Despite the high relative 

abundance of the Q33 genome, only 6 assemblers could recover over 90% of the 

genome in a single contig, of these SPAdes (meta) and MEGAHIT reconstructed the 

Q33 genome accurately without the introduction foreign or chimeric DNA. It was also 

noted that the genome synteny was conserved across these six assemblies. This may 

reflect circularization of the linear Q33 genome during DNA extraction as the presence 

of cos sites has been previously predicted (Mahony et al., 2013). 

 The longest contigs of each assembler were only detected at the highest 

sequencing depths and varied across assemblers, which may indicate that high 

coverage is necessary to recover the largest viral genomes in a community. However, 

it is also possible that these long contigs may reflect misassemblies and duplication 

events caused by read errors at high sequencing depths which must be considered 

when analysing high coverage data. At almost all sequencing depths Geneious, 

Vicuna, Ray Meta and ABySS (k-mer 127) exhibited the highest N50 values, despite 

performing poorly in other metrics. This further highlights the limitation of using N50 

alone as a metric of metagenomic assembly (Vollmers et al., 2017). 

 A further important consideration when performing any metagenomic 

assembly is practicality; size of dataset, computational resources, bioinformatic 

resources, and how much hands-on time is required from the end user. Both CLC and 

Geneious are available as a GUI (albeit requiring a licence fee) which widens their 

audience to researchers with limited command-line experience (CLC can also be run 

using the windows command line). However, this limits their practicality for large 

scale virome studies as they are limited to the computational power of desktop 

computers and are not suited to the assembly of large numbers of samples. Despite the 

limitations of computational power, CLC performed well in all datasets in terms of 

genome recovery and fragmentation. Of the freely available open source assemblers, 
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MIRA and VICUNA are the least efficient in terms of RAM usage and assembly time, 

reflecting limitations of the overlap consensus approach to assembly. This limits their 

applicability to large virome datasets, and further increases the time required to carry 

out the Geneious assembly approach which requires the output of both assemblers. 

Despite the long runtime, VICUNA did not adhere to the number of cores specified, 

instead using all available cores.  All other assemblers had a similar time requirements 

(with the exception of SOAPdenovo2 which performed poorly across all datasets). Of 

the assemblers which consistently performed well in terms of accuracy, genome 

fraction recovered and fragmentation, SPAdes (meta) was most efficient in terms of 

RAM usage, which did not increase to the same degree as other assemblers with 

increasing sequencing depth. MIRA stood out in terms of impracticality by generating 

by far the largest intermediate files of any assembler, requiring several gigabytes of 

storage space for intermediate files. 

The combination of results from four datasets facilitates accurate comparison 

of assemblers as the limitations of each individual dataset vary.  Application of Phi29 

MDA to amplify virome DNA to sufficient quantities for sequencing can introduce 

significant bias and skew the original composition of the virome, making quantitative 

viromics difficult (Kim and Bae, 2011;Roux et al., 2016). As a result, it is likely that 

true diversity of viral metagenomes is not being accurately captured using current 

virome extraction methods. However, as these procedures move away from steps 

known to introduce bias, greater diversity will be observed. In this sense, the level of 

complexity of the Q33 dataset, which pooled three independent human viromes, 

provides a useful testbed for metagenomic assemblers in future virome studies as 

extraction methods improve. Additionally, Q33 was not present in the viromes prior 

to spiking, assemblers were not challenged by the presence of native strain variations 

of Q33 genome.  In this study, assemblers were compared without individual 

optimisation to the specific dataset. Feasibility dictates that, this “straight out of the 

box” approach to assembly is used by almost all metagenomic assembly comparisons. 

Additionally, as the true composition of metagenomes is unknown, any impact of 

parameter optimisation must be estimated from general assembly statistics such as 

N50 and longest contig which have been highlighted to be of limited usefulness 

(Aguirre de Cárcer et al., 2014;Vollmers et al., 2017). Any parameter optimisation 

performed in the study (i.e. ABySS k-mer lengths, SPAdes careful vs. single cell) 
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reflected parameters used in published virome studies and were not analysed in greater 

depth.  While it is possible that parameter optimisation could improve individual 

assemblers we believe that the differences in assembly algorithms are the primary 

drivers of assembly performance. 

This study describes the impact of a crucial analysis step on virome 

characterisation and highlights the need for a standardised analysis protocol across 

future virome studies. Such a protocol would allow for comparison across studies and 

facilitate accurate meta and cross analyses. This will be crucial should virome 

sequencing be utilised in diagnostic and clinical settings. However, it must be noted 

that any workflow will be somewhat limited biased to the detection of particular viral 

taxa. Consequently, studies (e.g. identifying novel viruses) may benefit from 

implementing multiple assembly approaches due to the large number of factors, both 

technical (read length, quality, paired-end information etc.) and biological (genetic 

complexity, evenness etc.) which impact virome assembly. 
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Conclusions 

Of all assembly programs used in human virome studies, SPAdes (meta) addressed 

the challenges of virome data most effectively. However, all assemblers have 

limitations and are hampered by aspects of virome data. Low read coverage and high 

genomic repeats lead to assemblies with low recovered genome fraction and a higher 

degree of fragmentation, with the assemblies themselves being less accurate. This 

pattern was seen across all assemblers used in this study.  

 As assembler choice has significant implications for virome composition and 

the conclusions which can be drawn from a dataset, assemblers which performed 

poorly in this study (i.e. low genome recovery or accuracy and high degree of 

fragmentation) highlight a potential untapped resource in the sequence data of 

previously conducted virome studies. It is highly likely that many viral sequences were 

poorly assembled and reanalysis using a more effective assembler may yield new 

insights. Researchers conducting meta-analysis of virome sequencing studies should 

take particular care when evaluating viral assemblies from different assembly 

programs. Design of future virome studies should carefully consider the impact of 

sequencing depth, as extremes in read coverage will prevent the assembly and 

detection of viral genomes at both high and low abundance. 

  

Abbreviations/Glossary 

The following terms; Genome fraction, N50, number of contigs, misassemblies, local 

misassemblies,   are defined by QUAST (Mikheenko et al., 2015) 

Genome fraction “is the total number of aligned bases in the reference, divided by the 

genome size. A base in the reference genome is counted as aligned if there is at least 

one contig with at least one alignment to this base. Contigs from repeat regions may 

map to multiple places, and thus may be counted multiple times in this quantity.” 

N50 “is the contig length such that using longer or equal length contigs produces half 

(50%) of the bases of the assembly. Usually there is no value that produces exactly 

50%, so the technical definition is the maximum length x such that using contigs of 

length at least x accounts for at least 50% of the total assembly length.” 

Number of contigs “is the total number of contigs in the assembly.” 
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Misassemblies “is the number of positions in the assembled contigs where the left 

flanking sequence aligns over 1 kbp away from the right flanking sequence on the 

reference (relocation) or they overlap on more than 1 kbp (relocation) or flanking 

sequences align on different strands (inversion) or different chromosomes 

(translocation).” 

Local misassemblies “A local misassembly has two or more distinct alignments 

covering the breakpoint, the gap between left and right flanking sequences is less than 

1 kbp and the left and right flanking sequences both are on the same strand of the same 

chromosome of the reference genome.” 
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Data availability 

The Sequencing reads which support this study are available from the following links. 

Mock communities A and B are available at:  

http://datacommons.cyverse.org/browse/iplant/home/shared/iVirus/DNA_Viromes_l

ibrary_comparison .  

Simulated virome reads are available at: 

https://figshare.com/articles/Simulated_virome_datasest_for_assembly_and_annotati

on_tests/5151163 

Reads used to compare the impact of sequencing depth on time and RAM usage are 

available from the NCBI SRA; http://www.ncbi.nlm.nih.gov/sra under the accession 

numbers SAMN04415496 to SAMN04415499  

Reads from human viromes spiked with 107 PFU of Lactococcal phage Q33 phage are 

available at http://www.ncbi.nlm.nih.gov/sra under the accession numbers 

SRX3240741, SRX3240716, SRX3240715 

Supplementary material 

Supplementary tables 1-6 are available from at the following link 

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-

5/MediaObjects/40168_2019_626_MOESM5_ESM.xlsx 

Table S1. Spearman correlation values from the relationships of indel, mismatch and 

misassembly counts, recovered genome fraction, abundance and total proportion of 

genomic repeats within the simulated virome. *GF–recovered genome fraction.  

Table S2. Linear modelling correlation values comparing recovered genome fraction, 

total proportion of genomic repeats and abundance for the Simulated virome.  

Table S3. Spearman correlation values from the relationships of inverted, tandem, 

palindromic and total repeats, abundance and the number of contigs generated by each 

assembler for the Simulated virome.  

Table S4. (A) Ranking table comparing recovered genome fraction and contig 

numbers for assemblers which recovered at least 50% of the total genome fraction. (B) 

Ranking table of indel, mismatch and misassembly counts per 100 kb, normalised to 

the number of genomes recovered to at least 50%.  

Table S5. Number of aligned and unaligned contigs generated by each assembler for 

mock community A.  
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Table S6. Number of aligned and unaligned contigs generated by each assembler for 

mock community B. 

MetaQUAST outputs for each dataset are available at the following links 

Simulated virome  

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-

5/MediaObjects/40168_2019_626_MOESM1_ESM.html 

Mock virome A.                                                                                                   

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-

5/MediaObjects/40168_2019_626_MOESM2_ESM.html 

Mock virome B. 

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-

5/MediaObjects/40168_2019_626_MOESM3_ESM.html 

Q33-spiked virome 

https://static-content.springer.com/esm/art%3A10.1186%2Fs40168-019-0626-

5/MediaObjects/40168_2019_626_MOESM4_ESM.html 
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Whole-virome analysis sheds light 

on viral dark matter in 

inflammatory bowel disease 
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Abstract 
The human gut virome is thought to significantly impact the microbiome and human 

health. However, most virome analyses have been performed on a limited fraction of 

known viruses. Using whole-virome analysis on a published keystone inflammatory 

bowel disease (IBD) cohort and an in-house ulcerative colitis data set, we shed light 

on the composition of the human gut virome in IBD beyond this identifiable minority. 

We observe IBD-specific changes to the virome and increased numbers of temperate 

phage sequences in individuals with Crohn’s disease. Unlike prior database-dependent 

methods, no changes in viral richness were observed. Among IBD subjects, the 

changes in virome composition reflected alterations in bacterial composition. 

Furthermore, incorporating both bacteriome and virome composition offered greater 

classification power between health and disease. This approach to analysing whole-

virome across cohorts highlights significant IBD signals, which may be crucial for 

developing future biomarkers and therapeutics. 

 

Introduction  
The virome is likely to be one of the major forces shaping the human gut microbiome, 

but is perhaps its least understood component. The virome is dominated by 

bacteriophage (phage) which play vital roles in many microbial communities by 

driving diversity, aiding nutrient turnover (Weitz et al., 2015) and facilitating 

horizontal gene transfer (Canchaya et al., 2003). Understanding the role of 

bacteriophages in microbial community structures will be essential if we are to 

understand or control the alterations in human gut microbiome composition and 

diversity associated with many diseases, including Inflammatory Bowel Disease 

(IBD) (Gevers et al., 2014;Halfvarson et al., 2017), obesity (Le Chatelier et al., 2013) 

and diabetes (Forslund et al., 2015).  

Many gut bacteria (and potential phage hosts) remain difficult to culture 

(Forster et al., 2019), which means that analysing the virome depends heavily on 

metagenomic sequencing and bioinformatic approaches. However, a lack of universal 

marker genes on phage (similar to 16S rRNA in bacteria) and a subsequent lack of 

taxonomic information due to poorly populated databases (Krishnamurthy and Wang, 

2017) means that database-independent methods are required and that virome analysis 

must be carried out at the level of metagenomic assembly or individual viral genomes. 
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Early metagenomic studies highlighted the novelty and diversity of the human gut 

virome, but were able to classify only a minor fraction (2%) of sequenced DNA (Minot 

et al., 2011). Improvements in high throughput sequencing technologies have allowed 

the virome to be analysed in unprecedented detail with studies sequencing up to 50 

million reads per sample (Zuo et al., 2019). It has been confirmed that the virome is 

incredibly diverse, that the majority do not align to known sequences in databases (i.e. 

viral dark matter)(Roux et al., 2015b), and that composition is highly unique to 

individuals (Reyes et al., 2010;Moreno-Gallego et al., 2019;Shkoporov et al., 2019).  

Inflammatory Bowel Disease, including Crohn’s disease (CD) and ulcerative 

colitis (UC), is a chronic disorder of the intestinal tract resulting in periods of flare and 

remission.  Although the aetiology of IBD remains unclear, it appears to be 

multifactorial and has been repeatedly associated with alterations in the human gut 

microbiome. These include decreased bacterial diversity and a reduced abundance of 

certain Firmicutes and Bacteroides. There is an emerging body of data providing 

evidence that the gut virome is altered in IBD (Norman et al., 2015;Fernandes et al., 

2019;Zuo et al., 2019) with increased overall virome diversity, and an increased 

relative abundance of the family Caudovirales. Yet nearly all findings have been 

drawn from compositional changes of the identifiable fraction of the virome, which 

can be as little as 15% of the data  (Norman et al., 2015). This limits the overall 

understanding of the virome and hampers the identification of potential disease 

biomarkers. 

A database independent analysis method is essential if we are to fully 

characterise changes in the gut virome in health and disease. This approach begins 

with metagenomic assembly of short reads to resolve viral genomes and subsequent 

alignment of reads to these assemblies to determine their relative abundance. Spurious 

alignments to repeat and conserved regions are removed from further analysis by using 

a breadth of coverage filter (Roux et al., 2017).  However, at this level of resolution 

the virome exhibits enormous diversity and interpersonal variation (Reyes et al., 

2010), obscuring any patterns in the virome across individuals and cohorts. As part of 

this study, we reanalysed a previously published keystone data set (Norman et al., 

2015) consisting of subjects with CD, UC and healthy controls. We overcame strain-

level resolution using protein homology and MCL (Markov Cluster Algorithm) to 

group viral sequences into putative higher taxonomic ranks. In this way it was possible 
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to describe compositional changes across the entire virome in health and disease, 

beyond the known minority. We propose that a core virome in healthy individuals 

shifts towards a community that is less stable and dominated by temperate phage and 

IBD. We show that virome alterations mimic those of the bacteriome and that when 

used together, they offer an improved method for classifying IBD patients from 

healthy subjects. We also validated our results using a longitudinal cohort of patients 

with UC in both active and inactive states of disease. This analysis approach supports 

future virome studies by providing insight into changes in composition across the 

entire data set. By comparing the whole-virome composition of other published 

datasets, it may also reveal further disease-specific alterations that had been previously 

obscured. For details of the analysis methods used in this study, see (STAR Methods). 

Results 

Data sets 

 We reanalysed a previously published dataset of healthy and IBD gut viromes 

(Norman et al., 2015). The data set comprised of 165 virome samples from 130 

subjects, which consisted of 61 healthy controls, 27 subjects with CD and 42 with UC. 

Of these, six samples were known to be collected during CD flare, eight in CD 

remission, 13 in UC flare and 20 in UC remission. To expand upon these findings, we 

explored a second data set of longitudinal samples for 40 subjects with UC, focusing 

on the impact of disease on gut virome composition. The cohort was part of the 

PURSUIT-M phase 3 clinical trial (STAR Methods). This data set was generated in-

house and consisted of samples from periods of flare (82) and remission (31). For this 

data set, disease activity was determined by Mayo score. For all subjects, initial 

samples were taken during a period of flare (week 0). Two further time points were 

taken for each subject at weeks 6 and 30. For both data sets, 16S rRNA gene 

sequencing data was also obtained and performed on 149 (data set 1) and 109 (data set 

2) samples.  

Clustering is required to overcome virome individuality and allow cohort 

comparisons 

Initially, virome analysis was performed on the Norman data set by aligning quality 

filtered reads to the final set of virus-like sequences (VLS, see STAR Methods), made 

non-redundant at 90% identity over 90% of length. This resulted in a mean of 80.38% 
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(± 29.29%) quality filtered reads per sample being used in the final analysis. As VLS 

represent groups of highly related viral genomes (whole or partial), analysis was 

carried out at a strain or species level. This was reflected in the extremely high levels 

of individuality amongst subjects. It was also observed that the individuals themselves 

were the primary drivers of separation and longitudinal samples grouped together 

(Fig.1A). This individual specificity masked compositional differences of the virome 

and each of the cohorts (control, CD and UC) showed little divergence.  PC-axes 1 

and 2 described very little of the variation (4.85% and 3.59%), suggesting that disease-

specific changes in virome composition were not visible at the level of VLS (patterns 

of β-diversity were reproducible across various metrics, data not shown).  

Lower taxonomic resolution (i.e. a higher taxonomic rank) was required to 

overcome this high level of interpersonal variation and identify compositional changes 

in the virome associated with disease. This was achieved by clustering VLS based on 

protein-coding gene sharing networks (Bin Jang et al., 2019) (see STAR Methods). 

The VLS clustered into 472 Viral Clusters (VCs) of >2 members with 2,382 singletons 

remaining, henceforward referred to as a VC with 1 member. The resulting VCs 

formed a new count table and a VC-based analysis of β-diversity was carried out 

(Figure. 1B). Samples largely grouped per condition with noticeable increases in the 

eigenvalues to 10.36% and 5.58% variation explained for PC-axes 1 and 2, 

respectively, meaning the biological signals that drove separation between samples 

were considerably stronger. However, it should be noted that samples with true 

deviation from the main cohort (such as subjects N208 and N56) remained distinctive, 

suggesting that the clustering process retains true compositional differences. To 

further determine if clustering VLS could overcome the masking effect of inter-

individual variation, the relative abundances of shared and unique VLS and VCs were 

plotted for control subjects (Figure. 1C). 
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 At a VLS level, inter-individual variation was represented by a high proportion of 

sequences unique to a given subject (relative abundance 14% ± 8%). Furthermore, 

sequences that were shared across 30% individuals made up a minor proportion of the 

virome (relative abundance 1.7% ± 4%) and no VLS was shared across 50% or more 

of individuals. In contrast, inter-individuality was far less evident at a VC level and 

the proportion of VCs unique to an individual was lower (relative abundance 1.3% ± 

3%). Shared VCs also made up a substantially larger proportion of the virome with a 

relative abundance of 15% ± 6% per subject shared across 30% of the cohort, 7.1% ± 

6.6% across 50% and 0.7% ± 1.4% across 70%. Furthermore, a total of eight VCs 

were shared across 30% of CD and UC cohorts (Figure. 1D). Analysis was continued 

at a VC level as these shared features made it possible to compare viromes across and 

between cohorts. 

Analysis of viral clusters reveals IBD specific alterations in the gut virome  

In the Norman et al. data set, β-diversity PCoA (Spearman distances) yielded the 

greatest degree of separation between the viromes of CD patients (relapse/remission) 

and healthy controls (PERMANOVA, p = 0.0023/0.0032, respectively) followed by 

UC relapse/remission (PERMANOVA, p = 0.002/0.0023) (Figure. 2A). Variations 

observed between disease states of each condition, were not significant, which may be 

due to small sample sizes (PERMANOVA, p > 0.05). PCoA without the division of 

relapse/remission status showed CD and UC β-diversity significantly differed from 

healthy controls (PERMANOVA, p = 0.0002 and 0.0002; Figure. S1A). The healthy 

cohort also had the greatest similarity across subjects, having the lowest pairwise 

distances between points (Figure. S1B), which supports the previous observations of 

shared VCs across individuals (Figure. 1D). This core virome (defined as presence 

across >50% of subjects) in the healthy cohort was composed of two VCs (vc2 and 

vc7) shared across >70% of subjects and six (vc1, vc10, vc23, vc25, vc32, vc39) across 

>50%. vc1 was classified as temperate Siphoviridae with CRISPR hits to various 

Firmicutes and Parascardovia (phylum - Actinobacteria) and vc10 was classified as 

a crAss-like phage (Guerin et al., 2018). However, the majority of these VCs were 

unclassified (i.e. did not cluster with known viral genomes). This highlights the 

important biological signals which are often overlooked by database-dependent 

analysis methods.  
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S. Figure. 1 (related to Figure2, Figure3): A) VC PCoA using Spearman distances 

comparing the 3 cohorts CD, UC and controls. B) Distances between points in each 

cohort for the VC spearman PCoA (Wilcoxon test). C) 16S PCoA using unweighted 

UniFrac distances comparing the 3 cohorts. D) Distances between points in each cohort 

for the 16S unweighted UniFrac PCoA (Wilcoxon test). 
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Core VC’s were not found across UC subjects and just one VC (vc32 unclassified, 

CRISPR hits to Bacteroides dorei) was found across > 50% of CD subjects. 

 Significant differences had been observed in the richness of both Caudovirales 

and the virome overall between health and disease in the original analysis (Norman et 

al., 2015). Contrary to those previous findings, there were no significant differences 

in virome richness across the cohorts or disease states when VC count tables were used 

(Wilcoxon test, CD flare vs remission, p = 0.31, UC flare vs remission p = 0.96, CD 

vs healthy p = 0.12, UC vs healthy p = 0.83, Figure. 2B). The Shannon diversity metric 

also did not yield a significant difference (Wilcoxon test, CD vs. healthy p = 0.38, UC 

vs healthy p = 0.25, UC vs. CD p = 0.76, Figure. S2A-2B). When only VCs classified 

as the order Caudovirales were considered (Figure. 2C), a significant increase in 

richness was observed in CD versus healthy only (Wilcoxon test, p = 0.024). This 

suggests that changes in the composition of identifiable fraction of the virome may not 

reflect the virome as a whole. Furthermore, although Anelloviridae were detected in 

our reanalysis of this dataset, significant differences in abundance were not observed 

across control CD or UC cohorts, contradictory to previous findings (Wilcoxon test, p 

> 0.05). 

 Differential abundance analysis identified 37 VCs which were increased in CD 

relative to controls and 34 increased in UC relative to controls. Importantly, of these 

VCs increased in disease, over 80% appeared to be temperate (30 of the 37 VCs 

increased in CD and 28 of the 34 VCs increased in UC). Furthermore, temperate VCs 

made up just 32% and 24% of VCs increased in controls relative CD and UC, 

respectively. Further investigation of temperate VC abundance in each cohort 

indicated that temperate VCs recruited significantly more reads from CD subjects than 

healthy controls (Wilcoxon test, p = 0.012, Figure. 2D). The temperate/virulent switch 

was also reflected in the taxonomic classification of VCs which were most 

differentially abundant. VCs that were increased in healthy cohorts were classified as 

the predominantly lytic Microviridae (two) and crAss (one) (Figure. 2E, Figure. 2F). 

Similarly, VCs increased in disease were classified as Siphoviridae (nine in CD, eight 

in UC) and Myoviridae (one in CD, two in UC), which feature a number of known 

temperate species. These findings also support the increased Caudovirales richness 

observed in CD.  
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S. Figure. 2 (related to Figure2, Figure3): α-diversity of patients with IBD versus 

healthy controls. A) Observed VCs, B) Shannon diversity of VCs, C) Chao1 diversity of 

16S counts, D) Shannon diversity of 16S counts (Wilcoxon test), 
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Furthermore, of the 17 Siphoviridae VCs increased in IBD relative to healthy (nine in 

CD, eight in UC), 15 were classified as temperate and had CRISPR hits to Firmicutes. 

These observations correspond with the reduced Firmicutes abundance observed in 

IBD (Frank et al., 2007) and further support evidence that increased temperate phage 

abundance is linked to disease. Induction of Firmicutes prophage in the IBD virome 

would explain the observed reduction in host abundance and increased temperate 

Firmicutes phage virions. Many of the most differentially abundant clusters were 

taxonomically unassigned and represent viral dark matter (49 VCs increased in control 

vs. CD, 25 VCs increased in control vs. CD, Tables S1, S2).  

 The bacteriome also differs between patients with IBD and controls. Bacterial 

β-diversity assessed through 16S rRNA gene fragment sequencing showed CD 

(relapse/remission) samples grouping furthest from controls (PERMANOVA, p = 

0.0065/0.0332) followed by UC (relapse/remission) (PERMANOVA, p = 

0.018/0.001) (Figure. 3A), which was reflected in the virome composition. 

Interestingly, and in contrast to the virome, the largest degree of variation amongst 

samples was observed in the control cohort. Furthermore, the CD cohort exhibited the 

smallest distances between points (Figure. S1C/D). 

 Decreased α-diversity was observed in the IBD cohorts versus healthy controls 

with the largest differences observed in CD flare (Wilcoxon test, p = 0.012) and 

remission (Wilcoxon test, p = 0.018) along with UC Flare (Wilcoxon test, p = 0.051) 

(Figure. 3B). Due to the small sample sizes this analysis was also repeated without the 

division of disease status and using various metrics (Figure. S2C-D). For both Chao1 

diversity (Wilcoxon test, CD vs healthy p = 1.8e−10, UC vs healthy p = 1.6e-4) and 

Shannon diversity (Wilcoxon test, CD vs healthy p = 4.8e-10, UC vs healthy p = 3.3e-

4), the healthy cohort was significantly higher than both IBD cohorts, while UC was 

also significantly increased when compared to CD (Wilcoxon test, Chao1 CD vs UC, 

p = 8.3e-4, Shannon CD vs UC, p = 9.7e-3).  
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 A large number of taxa were found to be differentially abundant between 

control and CD (Figure. 3C) and control versus UC (Figure. 3D). A total of 113 RSVs 

(Ribosomal Sequence Variants) were decreased in CD versus controls while only 17 

were increased. Similarly, 69 were increased in control vs UC and only 21 

significantly increased in UC (Tables S3, S4). Many of the taxa increased in controls 

versus both IBD cohorts (such as the genus Faecalibacterium) were in accordance 

with previous reports (Gevers et al., 2014;Machiels et al., 2014;García-López et al., 

2015;Pascal et al., 2017;Lopez-Siles et al., 2018). The most differentially abundant 

RSVs increased in IBD (such as Fusobacterium and Veillonella in CD, or Clostridium 

sensu stricto and Lachnospiraceae family in UC) were also in accordance with the 

literature (Willing et al., 2010;Joossens et al., 2011;Strauss et al., 2011;Gevers et al., 

2014;Pascal et al., 2017).  

Correlations between PCoA and abundance counts reveal key drivers of gut 

microbiome composition 

The drivers of significant shifts in β-diversity were assessed through correlations 

between principal coordinates and the relative abundances of VCs (for the virome) 

and RSVs (for the bacteriome). There were 25 VCs significantly correlated to PC-axes 

1 and/or 2 (Spearman, p < 0.05, Figure 4A, Table S5). Dependent upon the correlation 

coefficient, the associations could further be broken down into four quadrants and 

largely supported differential abundance data. In quadrant 1 (top left), towards 

subjects with IBD, there were 18 significant correlations, which comprised of 

Siphoviridae and Myoviridae VCs, as well as some heterogeneous and unclassified 

VCs. In quadrant 3 (bottom left), one Myoviridae and 1 unclassified VC were 

significantly correlated towards subjects with IBD. VCs classed as Microviridae, 

crAss-like phages and two unclassified VCs were significantly correlated towards the 

healthy controls (quadrant 4, bottom right). This provides further evidence that a shift 

from a lytic core of crAss-like phage and Microviridae to one of primarily temperate 

phage may be associated with IBD.  
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Figure. 4: (overleaf) Drivers of PCoA separation (Norman et al. data set) for A) the 

virome (spearman distances) and B) 16S unweighted UniFrac. VC and RSV 

abundances were correlated, using Spearman correlations, with PC-axes 1 and 2. Only 

significant spearman correlations with a rho of greater than 0.35 or -0.35 were graphed 

for the virome or ± .5 for the 16S (or a maximum of the top 6 for each quadrant). Red 

arrows indicate unclassified VCs/RSVs. The length of the arrow represents the degree 

of correlation to the PC-axes. 
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There were 76 bacterial RSVs significantly correlated towards controls (quadrant 1) 

(Figure. 4B, Table S5). The highest correlation coefficient corresponded to RSVs 

assigned to the phylum Firmicutes, family Ruminococcaceae or genus Alistipes. 

Quadrant 3 correlations, also towards controls, contained 46 RSVs including Alistipes 

indistinctus and the order Clostridiales. For Quadrant 4, towards IBD subjects, four 

RSVs were significantly correlated including Ruminococcus gnavus and 

Flavonifractor plautii.  

 Procrustes analysis revealed significant associations between bacterial and 

viral community composition (procuste.randtest, correlation coefificient of 0.714 p = 

0.001, Fig.S3). However, overall VC α-diversity did not significantly correlate with 

observed bacterial richness (Spearman, p = 0.58, Figure. S2E), although there was 

significant weak correlation with bacterial Shannon diversity (Spearman, p = 0.038, ρ 

= 0.194) (Figure S2F). It is possible that this reflects an underlying biological signal 

which is being masked by temporal variation in phage-host dynamics across the 

various VCs and RSVs.  

Alterations in virome composition are less distinct between UC activity states 

Differences in disease states (flare and remission) were investigated using a second 

cohort of 40 subjects with UC, sampled longitudinally resulting in 113 virome and 

109 16S rRNA amplicon samples (bacteriome). β-diversity analysis of virome 

composition using VCs (Figure. 5A) did not show significant separation between flare 

and remission (PERMANOVA, p = 0.17), despite one uncharacterised VC correlating 

to the PC coordinates (vc40). In bacteriome analysis, the shift between flare and 

remission in β-diversity was significant (PERMANOVA, p = 0.022) and 14 RSVs 

correlated to PC-axes 1 or 2 (Spearman, p > 0.05, Figure. 5B, Table S6). Those which 

correlated towards UC remission (quadrant 1) included Faecalibacterium prausnitzii, 

Dorea longicatena and Coprococcus comes. An RSV classified as Ruminococcus 

gnavus was the only one correlated towards UC flare. This agrees with recent reports 

that genes involved in oxidative stress responses in Ruminococcus gnavus strains may 

confer facilitate colonisation of the inflamed gut (Hall et al., 2017).  
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The virome and bacteriome composition were correlated with each other in Procrustes 

analysis in agreement with the above results (procuste.randtest, correlation coefficient 

of 0.906, p = 0.001, Figure. S4).   

 Although the median α-diversity was higher in the virome for UC flare (Figure. 

5C) and UC remission for the bacteriome (Figure. 5D), these values were not 

significant for either Chao1 or Shannon diversity metrics, in agreement with the results 

obtained above for the Norman et al. data set (Wilcoxon test, p > 0.05). Viral load was 

estimated by spiking a known concentration of lactococcal Q33 phage and was found 

to be negatively correlated with viral α-diversity (Spearman, ρ = -0.415, p = 0.009, 

Figure. S5A). Viral diversity was also investigated over time and in relation to disease 

status (Figure. S5B) and although there were fluctuations in the time series, there was 

no observable trend with disease status and a comparison did not and a comparison 

did not yield significant differences (Spearman, p = 0.383).  

Virome stability across the UC cohort was assessed by identifying VCs present 

in all 3 time points of subjects, similar to the methods used in (Shkoporov et al., 2019). 

One key VC (vc39) was present in all three time points of 37% of individuals (13 out 

of 35) and was the most shared VC across the stable fraction of individuals’ viromes. 

Of the individuals which featured vc39 in all 3 time points, 84% (11 out of 13) also 

featured RSVs classified as Lachnospiraceae in all time points supporting previous 

CRISPR host prediction. Lachnospiraceae was also one of the most stable bacterial 

families across the cohort, being present in all timepoints of 82% of all individuals. 

However, there was no significant difference between the numbers of stable VCs per 

individual (i.e.  VCs present in all 3 time points) and remission status (Wilcoxon test, 

p = 0.738).  
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Two crAss-like phages were increased in subjects in remission when compared to flare 

along with two Siphoviridae, one Microviridae and seven unclassified phage (Figure. 

5E, Table S7). Conversely there were 39 VCs increased in flare. These included two 

Anelloviridae, one Myoviridae, ten Siphoviridae and 24 unclassified. Bacteroides and 

Dialister were the only RSVs increased in remission while seven RSVs were increased 

in flare including Enterococcus, Prevotella and Streptococcus (Figure. 5F, Table S8). 

These findings suggest that the changes in virome composition between flare and 

remission in UC reflect those of the bacteriome and are more subtle than those 

observed between UC and healthy cohorts. 

 

Virome composition aids the classification between Health and Disease   

The ability of the virome and bacteriome composition to differentiate between patients 

with IBD and healthy controls was tested through machine learning. Sample sizes were 

increased by combining CD and UC samples to form a composite IBD cohort. The 

virome alone (Figure. 6A) yielded an accuracy of 0.769 (p = 0.032) and four of the 

top five contributors (based on gain) (vc39, vc23, vc38 and vc45) were increased in 

controls versus both IBD states. All five of these clusters were unclassified, 

highlighting the importance of including viral dark matter in virome analysis pipelines. 

The top two contributing VCs had CRISPR protospacer alignments to 

Lachnospiraceae (vc39) and Parabacteroides (vc23) while the remaining two had 

alignments to Bacteroides (vc32 and vc38).  Given the association of Bacteroides 

species with healthy mammalian gut (Delday et al., 2018), these findings further 

support evidence that the healthy virome closely reflects the healthy bacteriome. The 

bacteriome alone had a greater predictive power than the virome (accuracy: 0.824, p 

= 0.008) with an RSV classified as Ruminococcaceae contributing the largest gain 

followed by a Clostridiales and Odoribacter splanchnicus (Figure. 6B). The virome 

and the 16S data were combined and the predictive power was again measured (Figure. 

6C). The accuracy increased to 0.853 (p = 0.0026) with the virome contributing five 

of the top 20 most important features. Of these, four had CRISPR protospacers to 

bacteria including the order Clostridiales, the family Lachnospiraceae, genera 

Pseudoflavonifractor, Clostridium and Johnsonella along with Fusobacterium and 

Bacteroides (Figure. 7).  
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Differences between CD and healthy proved to be the main predictors of disease with 

11 VCs/RSVs being decreased in CD alone and one increased when compared to 

controls.  

 ROC curve analysis was performed as a second measure of accuracy of each 

model (Figure. 6D). The AUC (area under the curve) of the virome alone was 78.31%, 

a decrease compared to bacteriome which yielded an AUC of 89.72%. However, the 

virome and 16S combined had the largest AUC with 94.79%, successfully predicting 

all 16 patients with IBD and only misclassifying five controls as UC.  

Key VCs revealed by the analysis of IBD viromes 

Through various approaches of virome analysis ten key VCs consistently emerged. A 

key VC was defined as any which was core in one cohort and largely absent from 

another and/or significantly correlated in the PCoA axes and differentially abundant 

between the cohorts. vc23, vc39 and vc10 were present in the healthy core and largely 

absent from the subjects with CD (7, 14 and 26%, respectively) and UC (12, 14 and 

40%, respectively). These three VCs were all in the top seven importance factors in 

the machine learning, while vc39 and vc23 were in the top two. vc23, although 

unclassified, contained CRISPR protospacers to Parabacteroides, while vc39, also 

unclassified, had hits to undefined Lachnospiraceae (Figure. S6). vc10, a crAss-like 

phage, did not have any CRISPR protospacer alignments. Intriguingly, None of these 

three key VCs associated with the core virome in healthy individuals featured genes 

associated with lysogeny, which supports our previous observations and those made 

in recent studies (Shkoporov et al., 2019).  Additionally, hosts predicted for these VCs 

have been found to be depleted in IBD (i.e. Lachnospiraceae, Parabacteroides)  

(Frank et al., 2007;Kverka et al., 2011) or have been shown to reduce the symptoms 

of inflammation in the mammalian gut (Parabacteroides)(Kverka et al., 2011). This 

supports the idea that the virome and bacteriome are closely linked and that in lytic 

populations, phage abundance reflects that of the host (Shkoporov et al., 2018a). 
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 Six of the remaining seven key VCs (vc17, vc13, vc5, vc15, vc9 and vc22) 

were significantly correlated to the PC-axes and were at significantly increased 

abundance in CD and/or UC compared to healthy controls. vc13, vc15, vc17, all 

classified as Siphoviridae, had CRISPR protospacer hits to a number of genera of the 

phylum Firmicutes, including Blautia, Coprobacillus, Peptoniphilus, Ruminococcus, 

Enterococcus, Lactobacillus, Streptococcus and Clostridium (Figure. S6). vc5, vc9, 

vc22, classified as Myoviridae, contained CRISPR protospacers to Firmicutes genera 

Clostridium, Coprobacillus, Enterococcus, Lactobacillus, Johnsonella, Roseburia, 

Ruminococcus, Veillonella and Flavonifractor along with the Proteobacteria 

Parasutterella (Figure. S6).  All six of these key VCs featured genes associated with 

lysogeny which provides compelling evidence that IBD is associated with a shift from 

predominantly lytic virome to that dominated by temperate phage. Furthermore, these 

VCs also had predicted hosts which are found to be elevated in IBD (Enterococcus, 

Ruminococcus,  Streptococcus, Veilonella, Parasutterella) (Ricanek et al., 

2012;Gevers et al., 2014;Zhou et al., 2016;Hall et al., 2017;Pascal et al., 2017) , or are 

thought to play an important immunomodulatory role in the gut, by producing short-

chain fatty acids (Roseburia, Blautia) (Zhang et al., 2012;Li et al., 2018;Qing et al., 

2019). The remaining key VC was classified as Microviridae (vc101) and was 

increased in control and UC relative CD. This may reflect the subtle changes between 

CD and UC which were observed throughout the study. It did not have CRISPR 

protospacer alignments, nor genes associated with lysogeny.  

With the exception of two VCs (vc17, vc101), strong, significant correlations 

were not observed between key VCs and RSVs in the Norman et al. data set 

(Spearman, p > 0.05). These findings contradict those of the Procrustes analysis, and 

further suggest that temporal fluctuations in the abundance of phage-host populations 

across individuals may mask underlying signals. Despite this, vc17 exhibited a strong 

positive correlation with an RSV classified as Gammaproteobacteria (Spearman, ρ = 

0.51, p = 9.7e-9), and vc101 exhibited a strong positive correlation with three RSVs 

classified as Firmicutes (ρ ≈ 0.52-0.6, p < 1e-08), one as Bacterioidetes (ρ = 0.52, p = 

2.6e-9), and one Fusobacteria (ρ = 0.51, p = 5.6e-9). In the longitudinal UC cohort, 

again the only strong, significant correlation was observed between vc101 and an RSV 

classified as Bacteroidetes (ρ = 0.61, p = 1.3e-12).  It is possible that a uniform signal 

across individuals is masked by inverse positive and negative relationships of phage 
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host pairs in different replication cycles. Although little is known about phage-host 

dynamics in the gut, it has been suggested that factors such as host population density 

(Silpe and Bassler, 2019), phase-variation (Turkington et al., 2019), host switching 

(De Sordi et al., 2017), and the biogeography of the gut itself (Maura et al., 2012;Zhao 

et al., 2019) significantly influence these dynamics and may therefore mask patterns 

in the abundance of specific phage-host pairs. 

Discussion 
Here we performed whole-virome analysis on two IBD virome data sets; a keystone 

published data set (Norman et al., 2015) and an in-house UC cohort which investigated 

subjects longitudinally through periods of flare and remission. We apply an analysis 

approach to the gut virome, which interrogates both known and unknown sequences 

and provides insights into viral dark matter in human health and disease. By applying 

shared genes network approach (Bin Jang et al., 2019) and replacing individual VLS 

with viral clusters, it is possible to reveal compositional patterns in the virome across 

individuals that had been previously masked by high inter-individual variation.  

This comprehensive virome analysis revealed a core virome in healthy subjects 

that did not exhibit identifiable temperate features. This supports recent reports of a 

stable, predominantly lytic core virome observed in healthy individuals (Shkoporov et 

al., 2019). The healthy core virome was found to be absent in IBD and appeared to be 

replaced by an individual-specific shift towards induced temperate phage. This 

suggests that a stable core of predominantly virulent or pseudolysogenic viruses is 

associated with the maintenance of a healthy human gut. These observations also 

suggest that environmental stresses associated with  the inflamed gut, such as reactive 

oxygen species (Rigottier-Gois, 2013), cause a reservoir of integrated prophage to 

enter the lytic cycle. This would correspond with the reduction in bacterial α-diversity 

and counts (Vandeputte et al., 2017) and an increase in the relative abundance of 

Caudovirales associated with IBD. Additionally, large scale prophage induction and 

cell lysis would lead to increased levels of pro-inflammatory bacterial debris available 

to interact with local innate immune receptors and mucosa-associated lymphoid tissue. 

These observations are also supported by reports of integrated prophage directly using 

host physiology and population density to influence the switch from lysogenic to lytic 

replication (Casjens and Hendrix, 2015;Silpe and Bassler, 2019). In this way the 

temperate virome can respond to environmental stress and changes in the host 
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population, such as those observed in IBD. Given these observations, we theorise that 

a switch from lysogenic to lytic replication cycles is linked to an increase in the relative 

abundance of temperate VLPs in disease. Furthermore, we propose that conditions in 

the inflamed gut do not support the maintenance of a stable, predominantly virulent 

core virome.   

We identified ten key VCs that were consistently associated with healthy or 

IBD cohorts which also provide compelling evidence that a core gut virome of 

predominantly virulent phages is closely associated with human health. None of the 

three key VCs associated with the core virome in healthy individuals featured genes 

associated with lysogeny. Additionally, all but one (vc101) of the seven key VCs 

associated with IBD did these feature these genes. Furthermore, nearly all of the 

predicted hosts for these key VCs play have been associated with IBD. Key VCs found 

in the healthy core had predicted hosts found to be significantly reduced in IBD, or are 

thought to attenuate the symptoms of inflammation. Similarly, many key VCs 

associated with disease also had predicted hosts which are significantly increased in 

IBD (Enterococcus, Ruminococcus,  Streptococcus, Veilonella, Parasutterella) 

(Ricanek et al., 2012;Gevers et al., 2014;Zhou et al., 2016;Hall et al., 2017;Pascal et 

al., 2017), or are believed to interact with the mammalian immune system (Roseburia, 

Blautia) (Zhang et al., 2012;Li et al., 2018;Qing et al., 2019). 

The reduced abundance or absence of a core virome of IBD subjects compared 

to healthy controls was previously described (Manrique et al., 2016) using the Norman 

et al. data set. A core of 23 bacteriophages was reported, contradictory to what we 

observed pre-clustering. We suspect that is due to the lenient criteria used by the 

authors to define the presence of a contig – a view shared by a recent publication 

(Gregory et al., 2019). In this study, we employed a breadth of coverage filter (Roux 

et al., 2017) of >75% on the basis that if a VLS was truly present, it would recruit 

reads across the whole genome, thus removing spurious read alignments to repeats and 

regions conserved across broadly different viral genomes. 

  Whole-virome analysis did not reveal differences between the viral richness of 

the subjects with IBD and healthy controls, a finding contradictory to previous 

analysis of this data set (Norman et al., 2015). This implies a virome dominated by 

temperate phage in disease replaces rather than adds to, the shared lytic core in healthy 
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controls. This in turn could reflect an absence of hosts for the lytic core virome, 

supported by a reduction in bacterial α-diversity in disease. It is also possible that 

rather than being replaced, the lytic core has fallen below the detection threshold of 

the analysis method, overshadowed by an induced lysogenic fraction in disease. This 

issue could be exaggerated by multiple displacement amplification (MDA) as it known 

to skew the abundance of dominant sequences in metagenomes (Parras-Molto et al., 

2018). It is also important to note that an absolute decline of virulent phage following 

the reduction of their host abundance in disease would in turn lead to a relative increase 

in temperate phage. These findings highlight the need for future virome studies to 

quantify total viral load as done previously (Shkoporov et al., 2018b) or to use MDA-

free library preparation methods to definitively conclude whether a healthy core 

virome is replaced or supplemented by induced prophage in disease. 

Replicating the work of Norman and colleagues (Norman et al., 2015), we 

assessed the richness of VCs classified as Caudovirales. In agreement with previous 

observations Caudovirales diversity was increased in the CD cohort. However, we did 

not observe significant changes in the whole-virome diversity between UC and healthy 

controls. It is possible that changes in the identifiable subsets of the virome do not 

reflect the virome as a whole.  There was no alteration in viral load between disease 

status in UC, however there was an inverse relationship between viral load and 

diversity. This suggests that higher viral loads are a result of a dominance of a 

particular phage or phages rather than the detection of new members.  

It has been previously reported that the human gut virome exhibits high levels 

of inter-individual variation (Reyes et al., 2010;Minot et al., 2011;Shkoporov et al., 

2019) which is exacerbated by the need to analyse the virome at an assembly level 

resulting in analysis being carried out at a strain level. Unlike the bacteriome analysis, 

which is typically performed at higher taxonomic ranks such as family and genus, viral 

taxonomy does not have a similar defined structure which makes comparisons of 

cohorts very difficult. Strain-level resolution hampers cohort comparisons due to a 

lack of shared sequences across subjects in the data set thereby masking compositional 

patterns occurring at higher taxonomic ranks across cohorts. Our initial analysis was 

carried out using VLS (virus-like sequences made non-redundant at 90% identity over 

90% of the length), but this level of resolution did not reveal shared signals across 

cohorts. We overcame this issue by clustering viral genomes based on their protein-
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coding gene content using vConTACT2 (Bin Jang et al., 2019). This  gene network 

clustering approach revealed shared virome features while retaining relevant 

biological signals across the cohort (as seen by VCs across subjects), increased the 

variation explained in the β-diversity and decreased the abundance of unique viral VCs 

per subject across the data set. Viral clustering also enabled the detection of a core 

virome in healthy subjects, consisting of eight VCs across >50% of the cohort. This 

proved to be a key differentiator between health and disease throughout the analysis. 

Many of these core VCs were differentially abundant in health and disease and were 

primary drivers of cohort separation and machine learning predictions. In β-diversity 

analysis, IBD subjects shifted significantly away from healthy controls thus providing 

evidence of compositional differences in the gut viromes.  Drivers of these separations 

were associated with temperate phage such as clusters of Myoviridae and Siphoviridae 

in IBD and clusters of Microviridae and crAss-like phages in healthy subjects which 

are predominantly non-temperate. 

Alterations in the bacteriome agreed with previous observations. However, the 

current study provides evidence that alterations in the whole human gut virome in IBD 

occur in conjunction with changes in the bacteriome. Although it is not possible from 

a cross-sectional study to know whether the virome alters the bacteriome or vice-versa, 

the viral/bacterial data sets were shown to be complementary. Although the 

bacteriome was more accurate in classifying subjects with IBD from controls, the 

addition of the virome improved upon this classification to over 94% AUC and to over 

85% accuracy. We acknowledge that this current model is not designed to be used for 

diagnosis but does provide evidence that alterations in the gut microbiota are present 

in both the bacteriome and the virome. Studies building the fundamental 

understanding of interactions between the virome and bacteriome in disease, as 

conducted here, are a crucial foundation to the future of virome-based tools to shape 

the microbiome. 

 Alterations in both the virome and bacteriome were more severe in CD patients 

relative to UC, which may reflect the severity of the condition relative to UC. The CD 

virome was furthest from healthy controls, was the least stable, and exhibited the 

greatest number of differential abundant VCs and RSVs relative to healthy controls. 

The CD cohort had the least bacterial variability across the cohort which may also be 

linked to having the lowest bacterial diversity. Interestingly, CD had a significantly 



  

142 

 

higher diversity of Caudovirales and an increased number of reads aligned to 

temperate VCs when compared to healthy controls. This again supports the idea that 

shift from lysogenic to lytic replication cycles may drive a change in the bacteriome 

linked with CD. We did not observe any differences in Caudovirales diversity between 

UC and controls along with UC flare versus UC remission in either of our data sets 

contradictory to Zuo and colleagues (Zuo et al., 2019). This may be due to the analysis 

protocols, whole-virome versus database-dependent, or the sample type, faecal vs 

mucosa. It is likely that bacterial-phage dynamics at the mucosal surface in disease are 

significantly different to that of faecal samples as previously seen in bacterial profiles 

(Gevers et al., 2014). Furthermore, we did not detect any giant viruses such as 

Mimivirus or C. ericina virus in our UC cohorts as was suggested by Zuo and 

colleagues and believe their previous detection may have been a result of the analysis 

pipeline chosen in that study (Sutton et al., 2019a). 

 Virome compositional changes between UC and control cohorts were more 

pronounced than changes observed between flare and remission in UC. This finding, 

in conjunction with the overall comparison between UC, CD and healthy controls, 

suggests the virome is not only less perturbed between healthy and UC, but also 

between flare and remission. This may reflect the disease severity of UC relative to 

CD or suggest that these conditions interact with the host in different ways. Variation 

in disease location, severity and risk factors such as the potential paradoxical 

relationship between CD and UC with smoking (Berkowitz et al., 2018), have 

previously alluded to differences in disease aetiologies. It is possible that virome 

changes between disease states are more subtle than those between health and IBD. 

However, as the virome changes in CD relative to healthy were more exaggerated than 

those seen in UC, it is possible that disease status in CD is reflected more significantly 

in the virome. 

 There are a number of future improvements that can be undertaken to expand 

upon our current findings. Increased sample sizes, particularly for disease state, would 

increase our ability to detect any potential alterations between flare and remission. 

Given that diet is a key factor in shaping the microbiota (Singh et al., 2017), inclusion 

of food frequency questionnaires would be beneficial, as many subjects with IBD 

undergo significant diet alterations. Furthermore, as many subjects with IBD are on 

various medications, detailed medical and medication history (Maier et al., 2018) 
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would likely give deeper insight into this data set. Unfortunately, we did not have 

access to extensive metadata, including household controls, which can assist in 

statistical analysis and allow the exploration of environmental effects. Certain analysis 

and figures were limited by missing information at the time of sampling, particularly 

information relating to disease activity status (i.e. flare or remission). It has also been 

shown that faecal water content (Bristol stool chart) has been associated with bacterial 

composition (Vandeputte et al., 2016). Future virome studies would benefit from the 

inclusion of water content data in samples. Strain-level variation is believed to play an 

important role in phage-host dynamics, particularly when explaining proliferation of 

both virulent phage and hosts in an environment (Breitbart et al., 2018;Shkoporov et 

al., 2019). Consequently, these dynamics may play an important role in the 

maintenance of the healthy core virome. However, despite allowing for the 

identification of compositional patterns across individuals, analysis at a VC level also 

masks these strain-level dynamics. The DNA in these samples was subjected to an 

MDA amplification step which has been known to skew overall abundance values 

(Parras-Molto et al., 2018). More modern shotgun DNA library kits remove the need 

for amplification and should give a more reliable indication of diversity (Roux et al., 

2016). It is also possible that we have excluded some valid viral sequences in our 

efforts to prevent contamination and conversely, despite our best efforts we may have 

also erroneously included some bacterial contigs. This is ongoing work which will be 

improved upon when more hallmark viral genes are identified and prediction software 

become available.  

This study uses a whole-virome analysis approach to give detailed insights into 

the function of the gut virome and its potential role in IBD. We confirm previously 

reported disease-specific alterations in the IBD virome but, in contrast to previous 

findings, did not see changes in overall viral alpha diversity. However, we did find 

evidence to suggest that a predominantly virulent core virome is linked to healthy gut 

and shift from lysogenic to lytic replication in the temperate phage population may be 

linked to IBD. It should be noted however, that it is not yet possible to conclude if 

virome composition reflects or shapes the structure of the bacteriome in the human 

gut. This whole-virome analysis approach identified compositional changes across the 

entire human gut virome associated with health and disease. These findings are a 

significant step towards identifying targets for further wet-lab characterisation and 
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future virome biomarkers. This analysis approach also facilitates the comparison of 

whole viromes across cohorts in diseases other than IBD and highlights how we can 

benefit from a fuller understanding of the role of the microbiome in human health. 
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Methods 

Faecal samples (Longitudinal UC data set) 

Faecal samples from the PURSUIT-M (NCT00488631) phase 3 trial were provided 

by Janssen Biotech. This was a multicentre, placebo-controlled, double-blind, 

randomized-withdrawal study conducted at 251 centres between September 2007 and 

October 2011. The institutional review board or ethics committee at each site approved 

the protocol, and patients provided written informed consent. The study cohort 

consisted of 40 UC subjects with active disease at baseline, and varying disease states 

throughout the study. Disease activity was determined by Mayo score, an index based 

on rectal bleeding, stool frequency, physician’s global assessment and endoscopic 

findings. The cohort, of which 23 male, had a mean age of 39.55 (±16.60) and mean 

BMI of 23.74 (±4.46), while 31 were Caucasian and 9 non-Caucasian. Participants 

who had a partial/total colectomy or an ostomy, signs of latent or active granulomatous 

infection, or signs/symptoms of malignancy were excluded from this study.  All 

subjects were taking golimumab at baseline and a full medical and medication history 

of all participants in the PURSUIT-M trial are found at 

https://clinicaltrials.gov/ct2/show/results/NCT00488631. 
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Extraction of faecal VLP DNA, library preparation and sequencing  

(Longitudinal UC data set) 

Extraction of faecal VLP DNA from the longitudinal UC data set cohort samples, 

subsequent library preparation and sequencing were performed as described by 

Shkoporov et al. (Shkoporov et al., 2018b;Shkoporov et al., 2019) with the following 

modifications: All samples were spiked with the lactococcal Q33 (Mahony et al., 

2013) into the faecal homogenate at 106 pfu/ml, which allowed for quantification of 

the total bacteriophage loads in faecal samples. Shotgun library preparation was 

carried out using TruSeq Nano DNA HT Library Prep Kit (Illumina) following reverse 

transcription of the samples with ThermoFisher Scientific SuperScript IV First Strand 

Synthesis System and multiple displacement amplification (MDA) with the Illustra 

GenomiPhi V2 kit (GE Healthcare). Libraries were normalised as per the standard 

manufacturer’s protocol. Ready-to-load libraries were sequenced using 2 × 150 bp 

paired-end chemistry on an Illumina HiSeq 4000 platform (Illumina, San Diego, 

California) at GATC Biotech AG, Germany. 

Extraction of total faecal DNA for 16S rRNA amplicon sequencing 

(Longitudinal UC data set) 

Extraction of total faecal DNA from the longitudinal UC data set cohort samples, 

subsequent library preparation and sequencing were performed as described by 

Shkoporov et al., 2018 (Shkoporov et al., 2018b). Ready-to-load libraries were 

sequenced using a proprietary modified protocol using 2 × 300 bp paired-end 

chemistry on an Illumina HiSeq platform (Illumina, San Diego, California) at GATC 

Biotech AG, Germany. 

 

Bioinformatic viral processing 

Norman et al., data set 

Raw sequence (2,199,754 ± 983,529 per sample) quality was assessed using FASTQC 

and filtered utilising Trimmomatic (Bolger et al., 2014) using the following 

parameters; SLIDINGWINDOW: 4:20, MINLEN: 60 HEADCROP 15; CROP 225. 

Human reads were removed using Kraken (v.0.10.5) (Wood and Salzberg, 2014) and 

version 38 of the human genome, which resulted in a mean of 1,130,518 ± 436,424 

sequences per sample. SPAdes meta (Nurk et al., 2017) with default parameters, was 
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chosen to assemble the reads into contigs per sample, based on a recent virome 

assembly comparison (Sutton et al., 2019b) Assemblies were subsequently pooled and 

retained if longer than 1kb. Redundancy was removed with 90% identity over 90% of 

the length (of the shorter) retaining the longest contig in each case. This was calculated 

by carrying out an all vs all BLASTn and parsing resulting alignments with an in-

house script, as described in (Shkoporov et al., 2018b;Shkoporov et al., 2019). Briefly, 

all local alignments between two sequences above an e-value threshold of 1e-5 were 

summed, removing overlaps between alignments. The length of the combined local 

alignments was then given as a percentage of the length shorter sequence.  Bacterial 

contamination was removed by using an extensive set of inclusion criteria to select 

viral sequences only. Briefly, contigs were required to fulfil one of the following 

criteria; 1) Categories 1-6 from VirSorter when run with default parameters and 

Refseqdb (--db 1 ) (Roux et al., 2015a) positive, 2) circular, 3) a minimum of 2 pVogs 

with at least 3 per 1kb (Grazziotin et al., 2017), 4) BLASTn alignment to an in-house 

crAssphage database (e-value threshold: 1e-10) (Guerin et al., 2018), 5) greater than 

3kb with no BLASTn alignments to the NT database (January ‘19) (e-value threshold: 

1e-10), 6) BLASTn alignments to viral RefSeq database (v.89) (e-value threshold: 1e-

10), and 7) less than 3 ribosomal proteins as predicted using the COG database (Tatusov 

et al., 2000). HMMscan was used to search the pVOGs hmm profile database using 

predicted protein sequences on VLS with and e-value filter of 1e-5, retaining the top 

hit in each case. 

 Quality filtered reads were subsequently aligned to the reference set of viral 

sequences (n = 7,605) using bowtie2 (Langmead and Salzberg, 2012). Using 

SAMtools (Li et al., 2009), a count table was generated and finally a 75% breadth of 

coverage filter was employed to exclude any spurious bowtie2 alignments being 

identified as true viral hits. Any viral sequences which did not feature a recruited read 

coverage of at least 1 over 75% of the total sequence length were set to 0. These criteria 

yielded a final database of 7,582 viruses like sequences.  

Longitudinal UC data set 

The same processing as described above was performed for the longitudinal UC data 

set cohort where 2,523,262 ± 1,289,619 raw reads were quality filtered (Trimmomatic: 

SLIDINGWINDOW: 4:20, MINLEN: 60 HEADCROP 15; CROP 135 (fwd), 120 

(rev)) and assembled yielding 8,089 VLS in the final count table. VLS classified as 
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the spiked exogenous Q33 phage and the internal Illumina control PhiX were excluded 

from further analysis. Subsequent clustering lead to 484 clusters of > 2 members and 

4,521 of 1 member.  

Clustering and Taxonomy 

Protein sequences were predicted using Prodigal (n=121,021) (Hyatt et al., 2010) and 

subsequently clustered using vConTACT2 (Bin Jang et al., 2019) using a pc-inflation 

and vc-inflation of 1.5, pcs-mode set to MCL and all other parameters set to default. 

This resulted in 472 viral clusters of ≥2 members and 2,382 singletons, hereby referred 

to as a viral cluster (VC) with 1 member. A cluster count table was generated by 

summing all the counts from the previous table in each cluster. Taxonomic 

classification was assigned to a cluster using vConTACT2 and a custom database of 

viral genomes formed from the concatenation of the taxonomically classified portion 

of the NCBI's Viral RefSeq (v.89) and the JGI's IMG-VR (downloaded 9 January 

2019). The resulting clusters were classified to family-level based on the presence of 

reference genomes within. Clusters containing genomes from multiple families, were 

termed "heterogeneous", and may arise from disagreement between protein-based 

phylogeny and current taxonomic classification discussed further by Bolduc et al. 

CRISPR protospacers were predicted from the human microbiome project bacterial 

reference genomes (The Human Microbiome Jumpstart Reference Strains Consortium 

2010) using PILRCR (Edgar, 2007). These were aligned to VLS using blastn (-task 

“blastn-short”) and formatted with blastn_formatter. (The top alignments with an e-

value score <1e-5 to each VLS was retained in each case). A VC was deemed 

temperate if it contained VLS with alignments to pVOGs featuring annotated integrase 

genes or site specific recombinase genes. These pVOGs were identified through string 

matching “specific recombinase” or “integrase” within the functional annotations of 

each pVOG. This yielded 28 pVOGs in total. 

(VOG0221,VOG0275,VOG0286,VOG0303,VOG0375,VOG0559,VOG0944,VOG1

0948,VOG2142,VOG2405,VOG2773,VOG2780,VOG3344,VOG3995,VOG4609,V

OG4650,VOG4942,VOG5508,VOG5717,VOG6225,VOG6237,VOG6282,VOG646

6,VOG7017,VOG7518,VOG8218,VOG8244,VOG9501). 

Bioinformatic 16S processing - Norman et al. data set 

Read quality was assessed on the raw reads (68,146 ± 32,196) using FastQC before 

and after quality filtering using Trimmomatic under the following parameters; 
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HEADCROP:15 CROP:235 SLIDINGWINDOW:4:20 MINLEN:30. The trimmed 

reads of the Norman et al. 16S data set were then processed using DADA2 (Callahan 

et al., 2016) (v1.10.1). To do this, reads were quality filtered further (truncLen=230, 

maxEE=1.4, truncQ=11), before dereplication and de novo chimera removal (method 

= "consensus"). 16S reads published in this study were processed using the same 

method (truncLen=c(180,100), maxEE=1.4, truncQ=2) and the resulting sequence 

tables of both data sets merged in DADA2. Chimeras were removed de novo from the 

combined data sets (method="consensus"), followed by a round of reference based 

chimera removal using UCHIME (Edgar et al., 2011) (v4.2) against the ChimeraSlayer 

Gold database. Resulting non-chimeric RSVs were sorted by length, with all RSVs 

having a minimum length of 200 bp and a maximum of 260bp retained. The final count 

table resulted in a mean of 41,060 ± 17,131 counts per sample. Classification of 

retained RSVs was achieved using mothur (Schloss et al., 2009) (v1.38.0, bootstrap 

>=80), while SPINGO (Allard et al., 2015) (v1.3, bootstrap >= 0.8, similarity >=0.5) 

was used for species-level classification. The RDP v11.4 database was used in both 

instances.  

Longitudinal UC data set  

The same methods are above were employed to process the 16S raw data from the UC 

longitudinal data set. There were 382,602 ± 181,911 raw reads and the following 

Trimmomatic parameters were applied: HEADCROP:20 SLIDINGWINDOW:4:20 

CROP:210 MINLEN:50, resulting in a mean of 76,619 ± 40,278 counts in the final 

count table per sample after being subjected to the bioinformatics pipeline.  

Quantification and Statistical Analysis 

All statistics and figure generation was performed in R (v.3.5.1). α and β-diversity was 

calculated using phyloseq (v.1.26) while differential abundance was carried out using 

DESeq2 (v.1.22.1). DESeq2 performs an internal normalization, in which a geometric 

mean is calculated for each sequence across all samples. Counts for a sequence in each 

sample are then divided by this mean. The median of these ratios in a sample becomes 

the size factor for that sample. This procedure corrects for library size and composition 

bias within samples.    P-values are determined using the Wald test and adjusted with 

Benjamini-Hochberg. For further details see 

https://bioconductor.org/packages/release/bioc/manuals/DESeq2/man/DESeq2.pdf.  

All correlations except the relative abundance of key VCs and RSVs were carried were 
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performed with the cor.test from the stats R package (v3.6.1) using the spearman 

method. Correlations between the relative abundance of key VCs and RSVs were 

carried out using rcorr from the Hmisc R package (v.4.2-0) with Spearman method. 

PERMANOVA was carried out using Adonis from the vegan R package (v.2.5-3) to 

investigate for significance in the β-diversity and measure the degree of variation 

explained. Procrustes coordinates and significance was generated using procuste and 

procuste.randtest also from the vegan library. Machine learning was carried out in R 

using the XgBoost package (0.71.2). In each case the model was trained on 70% of 

the data and results refer to the remaining 30% of the data which was used to test the 

performance of the model. Parameters were optimised for each model using 5-fold 

cross validation employing an n.round of 1000 across 200 iterations. ROC curves and 

accuracy were performed using the R library ROCR (v.1.0-7). Feature importance was 

based on the gain values (i.e. relative contribution of the feature to the model), with 

increasing gain referring to increased importance for generating a prediction.  

Tests for significance between groups for α-diversity, Caudovirales abundance, 

temperate VC abundance, and virome stability in relation to remission status, were 

performed using a Wilcoxon test. For all statistical tests significance was defined as 

less than 0.05 and all adjustments (where required) was using the Benjamini-hochberg 

method and one sample was chosen at random per subject. All figures were generated 

using ggplot2 (v.3.1.0).  

Data Availability 

The longitudinal UC data set 16S and virome reads are available on the SRA under 

the following accession number: PRJNA552448 (16S) PRJNA552463 (virome). Raw 

sequencing reads (virome and 16S) for the Norman et al., 2015 cohort were 

downloaded from the EMBL-EBI database using a the accession number PRJEB7772 

as stated in the original publication (Norman et al., 2015). 
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Abstract 

The human gut virome is a largely unsolved piece of the gut microbiome puzzle. To 

date, our understanding of this community is founded in sequence based studies using 

short read libraries, DNA samples amplified using multiple displacement 

amplification (MDA) and de novo bioinformatic approaches. While it is known that 

MDA introduces bias and hampers downstream processing steps such as assembly and 

diversity estimates, the impact of sequencing approaches on the virome has not been 

fully characterised. Recent developments in long-read sequencing platforms such as 

the Oxford Nanopore MinIon and Pacific Biosciences Sequel are promising solutions 

to some of the assembly challenges of virome data, yet to date they have not been used 

to our knowledge in virome studies. Here we characterise the impact of sequencing 

approach on virome data and describe the use of long read sequencing in the human 

gut virome. We report significant limitations in the ability of amplified short read 

libraries to represent the human gut virome, and propose the use of alternative 

sequencing approaches as a means to address these limitations. 

Introduction 

The virome is a particularly challenging microbial community to study, primarily 

because it heavily depends on sequence-based analysis approaches, and de novo 

assembly tools (Clooney et al., 2019;Shkoporov et al., 2019;Sutton et al., 2019a). 

Early virome analysis was founded on platforms such as the IonTorrent (Abeles et al., 

2014) or 454 pyrosequenceing (Wagner et al., 2013)which gave the first insights into 

virome composition, but was limited by sequencing depth. The field then progressed 

to high-throughput short-read platforms such as the Illumina HiSeq or Miseq (Minot 

et al., 2013;Norman et al., 2015;Kang et al., 2017), and it is these platforms which laid 

the foundation of our current understanding of the virome. The relatively affordable 

cost and sequencing depth of these platforms allow for large-scale multi-cohort studies 

(Norman et al., 2015) and intensive deep-sequencing of individuals within these 

cohorts (Zuo et al., 2019). However, they are also limited in their ability to address 

some of the challenges associated with virome data and are known to introduce 

significant bias to the composition of virome samples (Kim and Bae, 2011;Roux et al., 

2016). Owing to the dominance of unknown sequences (viral dark matter) in virome 
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samples most studies depend on de novo assembly of these short sequencing reads to 

resolve viral contigs or genomes in a given sample. However, as discussed extensively 

(Hesse et al., 2017;Sutton et al., 2019a;Sutton and Hill, 2019) assemblers vary 

significantly in their ability to overcome the challenges of virome data (e.g. genomic 

features such as repeats and extremes in coverage) and even the best performing 

assembly programs are unable to recover all members of a viral community. As short 

read assemblers must balance the trade-off between contiguity and accuracy the 

resulting contigs and scaffolds are a consensus of multiple closely related strains (Nurk 

et al., 2017). However, in viromes where multiple strains are abundant and diverse this 

often leads to fragmented assemblies or failure to assemble the hypervariable regions 

of the genome which often relate to host interaction (Warwick-Dugdale et al., 2019). 

To make matters worse, these regions are often flanked by repeats and/or areas of low 

coverage which further hamper assembly, which often excludes them from 

downstream analysis (Warwick-Dugdale et al., 2019). 

To our knowledge, only one virome study to date has been carried out on the 

Oxford Nanopore (ONT) MinIon platform and none have been carried out on the 

Pacific Biosciences Sequel. That study used the VirIon protocol and the Oxford 

Nanopore (ONT) MinIon platform to analyse a marine virome (Warwick-Dugdale et 

al., 2019). Dugdale et al. could scaffold hypervariable regions of abundant 

Pelagibacter phage which had proven difficult to assemble using short reads alone. 

These hypervariable regions were associated with host interaction and highlighted the 

potential benefits of long read sequencing in virome studies. Currently, long read 

sequencing has not yet been applied to the human virome, despite this ecosystem 

presenting similar assembly challenges and potentially playing an important role in 

shaping the composition of the gut microbiome. 

Long-read sequencing offers a number of potential benefits over traditional 

short read sequencing and may provide solutions to some of the assembly challenges 

faced by virome analysis. Given that long-read platforms can potentially sequence 

entire viral genomes in a single read, or make up significant fractions of even the 

longest phage genomes (e.g. 127.4 kb read on the PacBio Sequel platform, Table 2.) 

they offer an opportunity to reduce our reliance on the assembly step and its associated 

challenges. Alternatively they can be used to resolve regions which present challenges 

to short read assembly such as repeats or regions of varied coverage. However, long-



  

162 

 

read metagenomic sequencing has been primarily carried out on low diversity samples 

or mock communities (Tsai et al., 2016;Driscoll et al., 2017;Nicholls et al., 

2019;Sevim et al., 2019;Somerville et al., 2019) and its use in complex metagenomes 

is relatively rare (Slaby et al., 2017;Warwick-Dugdale et al., 2019). Therefore its 

efficacy and practicality in resolving these complex metagenomes remains to be 

determined (Olson et al., 2017). Significant improvements have also been made with 

the accuracy and depth of long-read sequencing platforms which had both been 

limitations when compared to the high accuracy and depth of sequencing offered by 

high-throughput short-read platforms. These have been highlighted by recent 

benchmark studies using the ONT PromethION and GridION which generated 150-

153Gbp and 14-16Gbp, respectively (Nicholls et al., 2019) and in this study that 

generated 10.7 Gbp using the PacBio Sequel platform.  

However, long-read sequencing platforms also present a number of challenges 

which is likely to explain their limited used in metagenomics and viromics. These 

platforms currently require several micrograms of input DNA as opposed to 

nanograms required by some for short read libraries such as the Accel 1S Plus library. 

Given that DNA yields of the human gut virome tend to be low (e.g often < 500ng 

(Shkoporov et al., 2018b)) this poses a serious problem. As a result, viromes must be 

amplified using either MDA or other amplification methods which introduce 

significant bias to the composition of the virome (discussed below). Furthermore 

Nanopore and PacBio reads exhibit high indel error rates relative to short read 

sequences (5-10%) (Weirather et al., 2017) which cause problems with downstream 

ORF prediction software. Indels can shift reading frames to introduce artificial stop 

codons  and so viral genes can seem truncated (Watson and Warr, 2019). As many 

viral prediction methods such as VirSorter (Roux et al., 2015a) or alignment to the 

pVOGS database (Grazziotin et al., 2016) depend on accurate ORF calling to identify 

viral sequences, these high error rates hamper an already limited ability to identify 

viral community members. For this reason long-reads are often used in combination 

with, rather than replacing, accurate short reads for metagenomic sequencing (Sevim 

et al., 2019;Warwick-Dugdale et al., 2019). Programs such as FMLRC (Wang et al., 

2018) and Plion (Walker et al., 2014) use the accuracy of short reads to correct high 

error rates in long-reads. Another challenging aspect of using long read sequencing in 

metagenomics and in particular in viromics, is its novelty and the consequence that 
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relatively few bioinformatic tools are available that are compatible with metagenomes. 

The majority of assembly and error correction tools for long reads require the user to 

input estimated depth of coverage (Koren et al., 2017), which in the case of 

metagenomes is unavailable, or require higher coverage than is feasible with viromes. 

Furthermore very few benchmarking studies of long-read metagenomics have been 

performed (Nicholls et al., 2019;Sevim et al., 2019).  This means that the few tools 

which are compatible with long read metagenomics have not been extensively 

validated and their impact on the final community composition is unknown.  

Here we present a pilot study in which virome samples from four individuals 

were sequenced using multiple sequencing platforms and library prep methods (Table 

1). These included the ONT Minion, and two separate library prep methods for the 

illumin HiSeq platform, one that used MDA amplification (Illumina TruSeq) and one 

which did not (Swift Biosciences Accel 1S Plus). These sequencing approaches were 

supplemented by one extremely deep long-read sequencing run for one of the four 

viromes using the PacBio Sequel platform to yield 10.7 Gbp across 976,772 reads. To 

our knowledge this is the first time the PacBio platform has been used on a virome 

sample and is the deepest published PacBio run to be carried out on the human 

microbiome to date. As with the ONT MinIon runs, the PacBio run was analysed 

individually as corrected reads and in combination with TruSeq reads using two hybrid 

assembly methods. These viromes were analysed on an individual basis using two 

combinations of the platforms (i.e. hybrid assembly) and the platforms individually to 

characterize the elements of the virome which are missed by TruSeq approaches alone. 

This is particularly important in the virome as MDA short-read sequencing such as the 

TruSeq approach form the foundation of the majority of gut virome research. 

Furthermore the impact of sequencing platform and library prep on virome 

composition has yet to be fully characterised, despite recent evidence to suggest choice 

of virome analysis methods have significant impacts on the conclusions drawn from 

virome studies (Sutton et al., 2019a) and can be more pronounced than health or 

disease status (Gregory et al., 2019).  

With the exception of the Swift Biosciences Accel 1S Plus library on the 

illumina HiSeq platform all viromes were amplified using MDA. While MDA is a 

crucial step to generating sufficient quantities of high molecular weight required for 

sequencing libraries, particularly those used in long-read platforms, it is also known 
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to introduce significant bias and is to skew the composition of virome samples (Lasken 

and Stockwell, 2007;Kim and Bae, 2011;Sabina and Leamon, 2015;Roux et al., 

2016;Roux et al., 2017). This bias can occur in a number of ways that are of particular 

importance to virome samples. “Selection bias” refers to preferential amplification of 

certain templates in a multi-template pool, such as that of a metagenome or virome. 

MDA primer binding is sensitive to GC content of the priming region as high GC 

content regions cause problems with denaturation and primer annealing resulting in 

underrepresentation of high-GC regions (Ishii and Fukui, 2001). As Phi29 polymerase 

is not capable of strand switching, it also tends to underrepresent sequences near the 

beginning and end of templates(Sabina and Leamon, 2015). This also means that as 

the number of termini in templates increases, as is the case in fragmented or multiple 

short genomes such as those seen in viromes, the degree of underrepresentation also 

increases (Lage et al., 2003). As MDA reactions preferentially amplify small circular 

ssDNA genomes such as those in the family Microviridae their abundance in the 

sample can be greatly overrepresented (Dean et al., 2002;Kim and Bae, 2011). 

Furthermore, initial log-fold differences in coverage in virome sequences (Dutilh et 

al., 2014;Shkoporov et al., 2018a) are exaggerated by MDA resulting in extremes in 

both high and low coverage, which hamper downstream assembly and diversity 

estimates (Sutton et al., 2019a). The low initial yield of faecal virome samples is the 

primary reason MDA is required to generate sufficient DNA for library prep protocols. 

However this initial low yield further contributes to the bias introduced by MDA 

reactions. In low yield samples a small number of early amplification reactions can 

often determine the composition of the final amplification products (Blainey, 2013) . 

This results in a stochastic loss of template information referred to as “drift bias” 

(Sabina and Leamon, 2015).  

Another significant challenge of MDA amplified virome samples which 

became particularly evident in the viromes sequenced on long read platforms was 

chimeric MDA artefacts. The formation of chimeras or rearrangements which are 

absent in the template DNA, is closely linked to the strand displacement ability of 

Phi29 polymerase (the MDA used in this study) (Lasken and Stockwell, 2007) (Supp. 

Figure. 1). The highly-branched amplification products of MDA can form a number 

of intermediate secondary structures. DNA strands extending from an initial template 

can become displaced and are available to prime on a separate template creating 
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chimeric amplification products. The mechanism proposed by Lasken and Stockwell 

(Lasken and Stockwell, 2007) suggests that 3’ termini displaced by branch migration 

are available to reanneal with nearby 5’ strands that have been displaced by the Phi29 

polymerase itself. This results in deletion of part of the template sequence and 

sequences directly flanking this region becoming joined in an inverted orientation. As 

these amplification products are often sheared as part of a short read library 

preparation and assembled in downstream processing, they are less evident in short 

read viromes. However, when MDA is used to generate long read libraries, these 

chimeric sequences remain intact and can cause serious problems with downstream 

analysis. 
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 Due to the large input requirements of long read libraries and the low DNA 

yields associated with faecal virome samples, initial attempts to avoid MDA by 

pooling multiple extractions of each sample did not to yield sufficient DNA for each 

of the library prep methods. Additionally, in order to examine the effect of the library 

prep methods and sequencing platform on the final virome it was crucial that identical 

DNA samples were used for each approach. For these reasons pooled DNA extracts 

from each sample were amplified using Phi29 MDA (illustra GenomiPhi V2 DNA 

Amplification Kit, GE Healthcare Life Sciences). However, in an effort to minimize 

the impact of drift bias (discussed above) three individual MDA reactions were pooled 

for each sample as described by Raghunathan et al. (Raghunathan et al., 2005). This 

pooled amplification product was used for all sequencing approaches except the Swift 

Biosciences Accel 1S Plus library, which used the unamplified pooled virome from 

each sample, allowing for comparison of this amplification bias across both short-read 

Illumina platforms. It should be noted that the previously discussed VirION pipeline 

(Warwick-Dugdale et al., 2019) does not use MDA, and may have avoided some of 

the MDA-associated issues encountered by this study. However, with all amplification 

protocols, the Long-Read Linker-Amplified Shotgun Library (LASL) approach 

(Duhaime et al., 2012) used in the VirION protocol is known to introduce its own bias 

to the resulting virome (e.g omission of ssDNA viruses (Kim and Bae, 2011)) but this 

bias has not been characterised to the same extent as that of MDA.  

While there was significant overlap between analysis approaches, almost all 

approaches gave novel insights into the virome composition, which built upon what 

would be detected by the standard Truseq analysis. We report numerous cases where 

alternative sequencing approaches resolved large viral genomes which would have 

otherwise been fragmented by TruSeq assemblies. Furthermore, we observed 

instances where long-read and unamplified short-read sequencing approaches detected 

viral sequences which had been missed entirely by TruSeq approaches. However, a 

number of issues which are particularly pronounced in long-read sequencing 

approaches were also observed and are crucial considerations for future long read 

virome pipelines 
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Methods 

Sample recruitment. 

Faecal samples were donated by four healthy volunteers who had previously featured 

in the longitudinal study by Shkoporov et al. (Shkoporov et al., 2019). Donors that had 

been consistently low crAssphage and which had consistently high diversity across 

the previous longitudinal study were selected as these viromes can be some of the most 

challenging to assemble using short-read approaches. Furthermore viromes of crAss-

rich individuals can be dominated up to 90% by crAssphage (Dutilh et al., 2012;Guerin 

et al., 2018;Shkoporov et al., 2018a) and have been successfully sequenced using 

short-read platforms. Therefore they may not benefit from the addition of long-reads 

to the same degree as more diverse viromes. 

Faecal virome extraction 

As mentioned above, in an effort to maximize DNA yield from each sample and to 

avoid downstream MDA steps, multiple faecal virome extractions were carried out on 

each sample using an up-scaled version of a previously described protocol outlined 

(Shkoporov et al., 2018b). Briefly eight 2.5g aliquots of each faecal sample were 

processed for each round of extraction. These were resuspended in 20ml SM buffer 

and homogenised by vortexing for five minutes. A further 25ml of SM buffer was 

added to each aliquot and was chilled on ice for five minutes. The aliquots were then 

centrifuged at 4,700 rpm in a swing bucket rotor for ten minutes at 4 °C, supernantants 

transferred to new tubes and centrifugation repeated. Supernatants were then filtered 

twice through a 0.45um pore diameter filter, with the second filtrate of each aliquot 

pooled into a sterile 500ml bottle. 44g (10% w/v) of polyethylene glycol (PEG) -8000 

was dissolved in the faecal filtrates and placed on ice overnight. Pooled filtrates were 

decanted into 45ml volumes and spun at 4,700 rpm in a swing bucket rotor for 20min 

at 4 °C. Supernatant was decanted and the pellet was left to dry inverted. Pellets were 

resuspended in 1ml SM buffer and the remaining steps in the protocol carried out as 

outlined by Shkoporov et al. (Shkoporov et al., 2018b). Depending on the quantity of 

the initial sample, this extraction protocol was carried out 11, 7, 4 and 8 times for 

samples 919, 922, 923 and 925 respectively. The resulting viral DNA extracts were 

pooled using the Zymo research “DNA Clean and Concentrator” and eluted in into 

40ul of elution buffer. Despite maximizing the starting material and pooling and 
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concentrating multiple DNA extracts per sample, the final DNA yields were 

insufficient to generate unamplified sequencing libraries for all platforms.  

Virome DNA amplification, library preparation and sequencing 

Consequently, three 1ul aliquots of each sample were amplified using Phi29-based 

MDA (illustra GenomiPhi V2 DNA Amplification kit) and subsequently pooled per 

sample to reduce the impact of “drift bias” as discussed above. Despite the modified 

extraction protocol not yielding sufficient DNA to create all required sequencing 

libraries, having a larger amount of starting material for each amplification reaction 

will have reduced the impact of “drift bias” as previously discussed. The resulting 

pooled amplification products for each of the four samples were prepared for 

sequencing as follows.  

TruSeq libraries were prepared with the Illumina TruSeq Nano DNA HT 

Library Prep Kit and the Accel-NGs libraries were prepared with the Swift 

Biosciences Accel 1S Plus kit as per the methods described by Shkoporov et al. 

(Shkoporov et al., 2019). Both libraries were normalised as per the manufacturer’s 

protocol and sequenced on the were sequenced using 2 × 150 bp paired-end chemistry 

on an Illumina HiSeq 2500 platform (Eurofins Genomics Germany).  

ONT libraries were prepared with the Oxford Nanopore Rapid Barcoding 

Sequencing kit (SQK-RBK004) as per the manufacturer’s protocol, eluting with 

nuclease free water which had been pre-warmed to 65 °C. ONT libraries sequenced 

on the MinIon platform using a v.9.4.1 flowcell at APC Microbiome Ireland.  

PacBio library preparation and sequencing was performed by our collaborators 

(Trevor Lawley and Ana Zhu) at the Wellcome Sanger institute. The library was 

prepared according to the BluePippin Size-Selection System for a 7kb fragment size 

and was followed by a phenol DNA extraction protocol. The final library was 

sequenced using the PacBio Sequel platform. 
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Read processing and assembly 

Short-reads  

Short-read quality was assessed using FastQC v0.11.5. Adapter removal was carried 

out with cutadapt v1.9.1(Martin, 2011) and trimming and removal of low quality reads 

was carried out using Trimmomatic v0.36 (Bolger et al., 2014) with the following 

parameters SLIDINGWINDOW:4:20 MINLEN:60 HEADCROP:10. High-quality 

reads from each sample and sequencing library were assembled separately using 

SPAdes v3.11.1 (Nurk et al., 2017)in metagenomic mode and default parameters, 

based on the findings of our recent assembly comparison for virome data (Sutton et 

al., 2019a). Assemblies were then size filtered to 1kb. Redundancy was then removed 

within samples and sequencing approach as described below. 

Oxford Nanopore read processing and error correction 

Nanopore reads were basecalled with Albacore (v2.2.7) and filtered by NanoFilt 

v2.2.0 with the following parameters -q 8 -l 1000 --headcrop 50. Porechop v0.2.3 was 

used to remove terminal adapters and split reads containing middle adapters. Trimmed 

quality filtered reads were then size filtered to 1kb. Nanopore reads were then error 

corrected using the trimmed high-quality TruSeq reads from the same sample using 

FMLRC v1.0.0. (Wang et al., 2018) (i.e. sample 919 TruSeq reads were used for the 

error correction of 919 Nanopore reads).  

PacBio read processing and assembly 

PacBio subreads were converted from bam to fastq and as with the Nanopore reads, 

corrected using high-quality TruSeq reads from the same sample using FMLRC v1.0.0 

(Wang et al., 2018). However due to the number and size of the corrected PacBio reads 

(10.1 Gigabases over 9.75 x 105 reads) and the computational limitations of our server, 

corrected PacBio reads were size filtered to 20kb. This brought the number of reads to 

a similar level to those in the corrected Nanopore libraries while maximising the length 

of the retained sequences. Redundancy within the error corrected, size filtered PacBio 

reads was then removed on a per sample basis as described below. 

Removal of long-read sequencing artefacts 

Both Nanopore and PacBio reads featured sequencing artefacts which needed 

additional filtering steps to remove. These included long palindromic repeats or 

regions of repeated single or double nucleotides (e.g AAAA or ATAT). These 



  

171 

 

repeated single and double nucleotide repeats are likely to be errors in either base-

calling software, or the sequencing platform itself. Palindromic repeats (Supp Figure. 

1) are likely to be the result of MDA chimeras as described above and were identified 

by finding reads which aligned back onto themselves. This involved carrying out an 

all vs all BLASTn, filtering for self-hits and flagging long-reads which had aligned 

within themselves with an identity of at least 98%, where the query start was not the 

same as the subject start, that the self-hit was over 1kb and made up at least 5% of the 

total length.  

Long-reads which featured extended single and double nucleotide repeats were 

flagged by calculating the nucleotide frequency within the reads. If reads were 

dominated by only two or three nucleotides which made up an equal percentage of the 

total nucleotides, they were removed. Similarly if any nucleotide made up more than 

80% of all nucleotides in a given a long-read, the read was removed. It was particularly 

important to remove these sequences as they would have caused issues in downstream 

redundancy removal and identification of viral sequences. Both of these steps are 

based around BLAST nucleotide alignments which masks low complexity regions 

such as single and double nucleotide repeats, preventing alignment. Furthermore, 

while long palindromic repeats may be duplicates of legitimate viral sequences (Supp. 

Figure 2.), they would also be twice the length of any non-chimeric instance instances 

of the sequence. This would have made the legitimate instance of the sequence 

redundant and retained the chimera. Following error correction, artefact removal and 

size filtering, redundancy within Nanopore and PacBio reads was removed within 

samples and sequencing approach as described below. 

Hybrid Assembly 

Hybrid assembly was carried out on a per sample basis using high-quality TruSeq 

reads and corrected Nanopore reads. For the sample which was also sequenced on the 

PacBio platform (919), hybrid assembly was also carried out using high-quality 

TruSeq reads and corrected, size-filtered PacBio reads. Both SPAdes v3.11.1 (Nurk et 

al., 2017) (using the --meta and the --nanopore or --pacbio flag in each case) and 

OPERA-MS v0.8.2 (Bertrand et al., 2019) (using the --no-ref-clustering --no-strain-

clustering flags) were used as a means to compare hybrid assembly options across 

each sample. Redundancy was then removed within samples and assembly method as 

described below. 
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Sequence redundancy removal 

Redundancy was removed within each sample and sequencing approach individually 

(e.g. the 919 corrected Nanopore reads and within the 919 Nanopore Hybrid 

assemblies were treated as individual samples and redundancy was removed within 

each independently). Redundancy was removed at 90% identity across 90% of the 

length of the shorter sequence, retaining the longer sequence in each case. In cases 

where sequences are equal in length, one representative was kept at random as per the 

method outlined previously ((Shkoporov et al., 2018b;Clooney et al., 2019;Shkoporov 

et al., 2019)).  This involved carrying out an “all versus all” BLASTn and parsing 

resulting alignments with an in-house script. In summary, all local alignments between 

two sequences above an identity threshold of 90% and an e-value threshold of 1e-5 

were summed, removing overlaps between consecutive alignments. The length of the 

combined local alignments was then given as a percentage of the length shorter 

sequence. This was then filtered to retain the longer sequence, should the summed 

alignments make up 90% of the length of the shorter sequence.  

Prediction of viral sequences in assemblies and corrected long-reads 

Open reading frames (ORFs) were predicted in the assemblies and corrected long 

reads of each sequencing approach using Prodigal v2.6.3 (Hyatt et al., 2010) in 

metagenomic mode. Viral sequences within each sequencing approach and sample 

were identified using the criteria outlined by Clooney, Sutton et al. and Shkoporov et 

al.(Clooney et al., 2019;Shkoporov et al., 2019). In summary, sequenced which met 

any one of the following criteria were deemed viral and retained for further 

analysis;  1) Categories 1-6 from VirSorter (Roux et al., 2015a)when run with default 

parameters and Refseqdb (–db 1) (virsorter ref), 2) circular, 3) a minimum of two 

pVogs with at least 3 per 1kb (pvogs ref) 4) BLASTn alignment to an in-house 

crAssphage database (e-value threshold: 1e-10)(Guerin et al., 2018), 5) greater than 3kb 

having no BLASTn alignments to the NT database (January ‘19) (e-value threshold: 

1e-10), 6) BLASTn alignments to viral RefSeq database (v.89) (e-value threshold: 1e-

10). HMMscan from HMMER v3.1b2  was used to search the pVOGs (Grazziotin et 

al., 2016) HMM profile database using predicted protein sequences on assemblies and 

corrected long-reads with an e-value filter of 1e-5, retaining the top hit in each case. 

Two additional filters were applied to sequences that were flagged as “viral dark 

matter” (i.e. criterion 5 described above) to ensure nonsense sequencing artefacts were 
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not being incorrectly classified as viral. First, dark-matter sequences that were masked 

by the built-in low-complexity filter in BLASTn “DUST” (R. L. Tatusov and D. J. 

Lipman, unpublished NCBI/Toolkit) were removed from the dataset. Second, the 

length distribution of ORFs in dark-matter sequences was calculated and sequences 

with a coding density below 1 ORF kb-1 were also removed. This cut-off is slightly 

more lenient than those referenced in the literature (1.4 ORF kb-1) (Mahmoudabadi 

and Phillips, 2018) to reflect the loss of viral genomes which use alternative genetic 

codes, such as members of the crAss family (Guerin et al., 2018) and possible 

megaphage with below-average coding densities (Devoto et al., 2019). 

 Generating the Multi-Platform Virome (MPV). 

The non-redundant, virus like sequences (VLS) from each of these sequencing 

approaches were pooled within each sample to make a single multi-platform virome 

(MPV) per individual. This consisted of VLS from Corrected Nanopore reads, TruSeq 

assemblies, Accel-NGS assemblies, SPAdes hybrid assemblies (Nanopore and 

TruSeq) and OPERA-MS hybrid assemblies (Nanopore and TruSeq) pooled within 

each of the four samples (919, 922, 923 and 925). The MPV of 919 which included 

the additional corrected PacBio reads, SPAdes hybrid assemblies (PacBio and TruSeq) 

and OPERA-MS hybrid assemblies (PacBio and TruSeq) was named PB_919 and was 

analysed independently to sample 919, giving 5 samples in total (919, 922, 923 , 925 

and PB_919). 

The MPV was made non-redundant within each sample to investigate if TruSeq VLS 

could be extended by alternative sequencing approaches, or if VLS had been missed 

entirely by the TruSeq approach and were only present in alternative approaches. This 

redundancy removal step differed from the step described above by keeping the 

TruSeq assembly in each case where the sequences were redundant, but equal in 

length. In this way a TruSeq assembly was only made redundant when it was extended 

by another sequencing approach and not when it had performed equally well, allowing 

for a fairer comparison.  

Examining the breakdown of the MPV 

From this non-redundant MPV (NR-MPV) it was possible to examine the contribution 

of each sequencing approach to the final virome, which was counted and then plotted 

in R using ggplot2. Next was to investigate whether a given VLS from a given 
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sequencing approach had been included in the NR-MPV because it had resolved or 

extended a TruSeq assembly, or if it had been missed by the TruSeq reads themselves. 

This was done by mapping the high-quality TruSeq reads from each sample back to 

the NR-MPV using Bowtie2 v2.3.4.1 (Langmead and Salzberg, 2012) and calculating 

the breadth of coverage of each sequence using mpileup feature of samtools v1.7 (Li 

et al., 2009). However, when given two equally suitable alignment targets for a given 

read, bowtie2 will chose one target sequence at random, which could potentially 

reduce the breadth of coverage of a given sequence artificially. To minimize the 

impact of this issue across sequencing approaches within each sample, high-quality 

TruSeq reads were aligned to the VLS of each sequencing approach in the NR-MPV 

separately (i.e. 919 TruSeq reads vs. NR-VLS from Accel NGS in sample 919 and 

then vs. NR-VLS from corrected Nanopore reads in 919). From here it was possible 

to calculate the proportion of each sequencing approach in the NR-MPV which had 

been successfully sequenced by TruSeq reads and had therefore extended or resolved 

TruSeq assemblies. Subsequently, it was also possible to identify the proportion of 

each sequencing approach in the NR-MPV which had been omitted by the TruSeq 

reads entirely. Within each sequencing approach, VLS were broken down into 3 

categories based on the breadth of coverage thresholds as previously described (Roux 

et al., 2017;Clooney et al., 2019;Shkoporov et al., 2019). These were; VLS with 

coverage >75% of the total length (i.e. successfully detected by TruSeq reads), 

between 75% and 30% (i.e. may have been partially detected, but would not pass the 

breadth of coverage thresholds described in the literature) and <30% (i.e. has been 

very poorly sequenced by TruSeq reads or missed entirely). 

Validating non-TruSeq VLS and their long-term detection 

 Each of the four samples in this study had featured in a previous study which used the 

TruSeq approach across 12 monthly timepoints (Shkoporov et al., 2019). This made it 

possible to validate and examine the longitudinal stability the VLS generated by non-

TruSeq approaches. Monthly timepoints (12) from each of the four samples were 

trimmed and quality filtered as per the parameters and methods described by 

Shkoporov et al. (Shkoporov et al., 2019) and aligned to each sequencing approach 

within the NR-MPV separately as described above. In this way it was possible to 

validate VLS from other sequencing approaches which had been missed by TruSeq 
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reads in this study, and to determine their rate of detection across one year within the 

same individual. 

Visualising VLS of interest. 

The aforementioned processing steps have been designed for large scale sequence 

analysis and have been based around sequences passing particular thresholds. While 

this facilitates large-scale sequence processing and can reveal overall patterns across 

the dataset, artefacts of the analysis methods can go unnoticed and skew findings 

(Sutton et al., 2019b;Sutton and Hill, 2019). For this reason, a selection of VLS from 

the NR-MPV of each sample were characterised and visualised in detail. VLS selected 

for visualisation included the longest VLS in the entire dataset, VLS which were 

poorly detected by TruSeq reads in this study but were detected in other longitudinal 

samples and VLS which resolved multiple fragmented TruSeq assemblies, despite 

having been sequenced fully by TruSeq reads. 

VLS were annotated by aligning predicted protein sequences to the pVOGs 

(Grazziotin et al., 2016) database as described above. This approach has been found 

to give a greater number of functional annotations than automated tools such as 

RASTtk using default settings, which is likely due to use of HMM-based alignments 

which are more sensitive to distant protein homologies such as those seen in viral 

genomes (Karplus et al., 1998). The pVOGs hmm profile database features multiple 

functional annotations within each pVOG, which makes it difficult to assign a single 

function to a given query protein. By filtering annotations within each pVOG it was 

possible to generate a single “most common” annotation. This was done by counting 

the occurrences of all non-hypothetical annotations and assigning the function of the 

entire pVOG to that which was most common. However, as there are discrepancies 

within the naming scheme of pVOG functions. (e.g. predicted hypothetical protein, 

predicted gene product1), assigned functions were first curated manually. Using this 

tidied pVOG function database (featuring one function per pVOG), it was possible to 

carry out large-scale annotation of VLS sequences. In-house scripts were used assign 

function to each VLS protein using the top pVOG hit (HMMscan as described above) 

and convert this modified HMMscan output to GFF and GBK formats. TruSeq read 

coverage from both this study and longitudinal samples was then converted from 

samtools mpileup output (as described above) to a csv file giving the depth of aligned 

reads at each nt position in the genome. For particularly large VLS depth was averaged 
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across each 100nt. From here it was possible to visualise annotated VLS and TruSeq 

read recruitment using GView(Petkau et al., 2010). Alignments between selected VLS 

and TruSeq assemblies were visualised using BRIG v0.95 (Alikhan et al., 2011)and 

were added to the centre of existing selected VLS plots with Adobe Illustrator CS5. 

tRNA sequences were predicted on VLS using ARAGORN v1.2.38 (Laslett and 

Canback, 2004) and aligned to Bacterial RefSeq (v.89) and NT using BLASTn. 

CRISPR protospacers were predicted from the 3,055 draft and complete bacterial 

genome assemblies in the Human Microbiome Project (HMP) database using PILR-

CR v1.06 (Edgar, 2007), size filtered to between 20 and 70 nt long and aligned to VLS 

using “blastn-short” mode preset, e-value < 10−5. 

Results 

Read and final assembly counts 

TruSeq libraries produced on average 2.7 x106 (± 1.43 x106, mean ± std.dev) high-

quality reads across the four samples (4.7 x 106,  2.9 x 106 , 6.9 x 105 and 2.4 x 106  

across samples 919, 922, 923, and 925 respectively). Accel-NGS libraries produced 

less high-quality reads on average at 1.9 x106 ± 5.5 x 105  (1.6 x 106, 2.7 x 106, 2.1 x 

106, and 1.2 x 106  across 919, 922, 923, and 925 respectively). Counts, and length 

statistics for the sequencing approaches used in the study (e.g. short-read assemblies, 

corrected Long reads and hybrid assemblies) are outlined in Table 2 (intermediate files 

highlighted in blue). Table 2 is sorted by sample and for comparability, Supplementary 

Table 1 is the same data in Table 2 but sorted by sequencing approach. Significant 

redundancy (see methods) was observed in the corrected long reads of both platforms 

(Table 2, intermediate files) with 88±4% of corrected Nanopore reads over 1kb (5.13 

± 1.1 x 104, reads on average) and 78% of corrected PacBio reads over 20Kb (5 x 104) 

being made redundant. Despite this redundancy, there were on average 7.2 (±4) times 

more non-redundant corrected Nanopore reads and 19 (±16) times more corrected 

PacBio reads than all short-read and hybrid assemblies across all samples. Excluding 

the Corrected PacBio reads (as they had been size filtered to >20kb) the Accel-NGS 

library had the longest N50 across all samples (23.8kb) and the corrected Nanopore 

reads had the lowest (6kb). Fluctuations in total length and counts of long 

reads/assemblies across samples were consistent across platforms (i.e. subject 922 

consistently generated the most long reads/assemblies and 923 the least) suggesting 
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that discrepancies in DNA samples themselves (i.e. quantity, fragmentation, diversity 

etc.) impact all sequencing and assembly approaches.  

 

Table 2. Counts, and assembly statistics for each sequencing and assembly approach 

sorted per sample. Intermediate files highlighted in blue were not included in 

downstream analysis and are included for reference purposes only. 

 

  Supp.Table 1. Counts, and assembly statistics for each sequencing and 

assembly approach as per table 2. sorted per sequencing approach. 
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In the short read libraries the average N50 value relative to the number of 

quality filtered reads was slightly higher in the Accel-NGS library, with 1.36 x 10-2  in 

the Accel-NGS relative to 9.82 x 10-3 in the TruSeq. This suggests that independent 

of the size of the libraries, 50% of the total length  of Accel -NGS assemblies was 

contained in longer contigs than those of the TruSeq. The longest sequence generated 

across all approaches and samples (483.4kb) was a SPAdes hybrid assembly using 

Nanopore and TruSeq reads in sample 919. This is interesting because relative to 

Nanopore reads, there were almost twice as many PacBio reads (1.88), the minimum 

length of PacBio reads in sample 919 was 20 times longer and the longest PacBio read 

was 70.5 kb longer than the longest Nanopore read. Despite these differences in counts 

and size, the 483.4kb contig was not assembled using either of the hybrid assemblers 

and PacBio reads. This may have been caused by the inappropriate removal of PacBio 

reads during read processing steps that were necessary to scaffold this contig, 

discrepancies in the error profile of Nanopore and PacBio reads, or biases within the 

methods used to prepare both libraries. 

Composition of the non-redundant multiplatform virome (NR-MPV)  

Pooling all VLS from each sequencing approach per sample and removing redundancy 

made it possible to examine the cases where TruSeq assembly had been improved 

upon by other sequencing approaches or where they had detected VLS which were 

missed by TruSeq (Figure 1). For comparability, final non-redundant VLS information 

as per Table 2 was presented for the MPV (Table 3). Maximum and minimum values 

of non-redundant VLS are highlighted across sequencing approaches per (e.g. total 

and mean length, counts, longest and N50, 70 and 90 values). Importantly, all 

sequencing approaches contributed to the final NR-MPV albeit with some approaches 

contributing considerably more than others (i.e. 923 Corrected Nanopore contributing 

603 NR-VLS and TRuSeq assemblies only 11). Furthermore, TruSeq assemblies made 

up a relatively small proportion of the VLPs in the NR-MPV of each sample. This 

suggests that standard TruSeq approaches to virome analysis fail to represent the 

virome in its entirety and that a more detailed view of the virome is achievable through 

the addition of long-read sequencing and alternative methods of preparing short read 

libraries. 
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 Additionally, despite having been sequenced on the same platform, Accel-

NGS sequences contributed considerably more VLS to the NR-MPV of certain 

samples than the TruSeq and more VLS on average across all samples (98.4 ± 74 

Accel-NGS VLS vs. 94 ± 53 TruSeq VLS). Furthermore, when the number of VLS 

contributed by each short read library prep method was normalised by read count, 

Accel- NGS still contributed 1.5 times more VLS per read on average in each NR-

MPV (5.5x10-5 ± 2.07 x10-5 Accel-NGS VLS/HQread vs. 3.6 ± 1.31 x10-5  TruSeq 

VLS/HQread). This suggests that the differences in the numbers of VLS contributed 

by each short read to the NR-MPV were not caused by differences in sequencing depth 

alone. This also suggests that even within a given short read platform, the library prep 

methods and use of MDA have critical impacts on the final virome composition. 

Furthermore this highlights the importance of considering the limitations of any single 

sequencing approach when interpreting results of virome studies, as currently all but 

one (Warwick-Dugdale et al., 2019) have been carried out using a single approach. 

Across all samples, corrected long-reads contribute the greatest number and 

total length of NR-VLS (corrected Nanopore reads in samples 919, 922, 923 and 925. 

Corrected PacBio reads in sample PB_919) Figure 2. Hybrid OPERA-MS assemblies 

using Nanopore and TruSeq reads contributed the least number and total length of 

VLS in each NR-VLS. This would suggest (somewhat counter-intuitively) that 

corrected long reads are more capable of detecting viral sequences than hybrid 

assemblies. This may reflect the novelty of metagenomic hybrid assembly and a need 

for optimisation in the face of challenging metagenomes such as the virome. It may 

also reflect high error rates in the long reads which hamper hybrid assembly, uneven 

coverage within template sequences or bias in library prep methods and platforms 

themselves skewing the amount of shared sequences between long and short read 

platforms. However, in agreement with the final read and assembly stats of Table 2, 

the longest VLS in each sample originated from either Accel-NGS assemblies or 

hybrid assemblies using Nanopore and TruSeq reads and not the corrected long reads 

themselves. These observations suggest that in order to maximise the data provided 

by long-read sequencing both the corrected long-reads themselves and hybrid 

assemblies should both be included in the final non-redundant dataset. 
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TruSeq read recruitment and breadth of coverage (BOC) 

In order to investigate whether VLS from non-TruSeq sequencing approaches had 

been included in the NR-MPV because they had resolved or extended a TruSeq 

assembly, or if it had been missed, TruSeq reads from each sample were aligned to the 

NR-MPV and coverage broken into three thresholds (see methods). Table 4 represents 

the VLS counts in Table 3, with each sequencing approach broken down in to coverage 

thresholds for the five NR-MPVs (919, 922, 923, 925 and PB_919) (Figure 1.).  
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Table 4. VLS counts in each NR-MPV broken down by sequencing approach and 

breadth of coverage (BOC) categories. The sequencing approach identifier alone (i.e. 

ACC, see Table 1. for identifier information) represents the number of VLS from that 

approach which passed BOC detection criteria (BOC > 75%). “lt75” represents those 

with a BOC between 30% and 75% and “lt30” represents VLS which had a TruSeq 

BOC < 30%.  
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Figure 1. Composition of the NR-MPV across all samples. Note that the scale for 

samples 919, 922, 923, and 925 is different to that of PB_919 (highlighted by the 

dashed line). Each sequencing approach is broken down into (BOC) categories (lighter 

to darker shading within each colour), see Table 4. and “TruSeq read recruitment and 

breadth of coverage (BOC)” above. 
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TruSeq coverage patterns were consistent across all samples and sequencing 

approaches, with on average 25±5 % of corrected Nanopore VLS with a breadth of 

coverage (BOC) of >75%, 33±3% with a BOC between 75% and 30% and 43±4% a 

BOC less than 30%. This suggests that the vast majority of corrected Nanopore reads 

would not pass the BOC filter of 75% as used in the literature and would be deemed 

absent from the TruSeq library. This also suggests that despite the same amplification 

product having been sequenced on both platforms roughly one third of Nanopore reads 

will pass viral inclusion criteria and yet will have been missed entirely by TruSeq 

libraries. A similar but far more extreme pattern was observed with the Corrected 

PacBio reads with 5.7% of corrected PacBio VLS with a BOC of >75%, 20.4% with 

a BOC between 75% and 30% and the outstanding majority of 73.8% with a BOC less 

than 30%.  

Of the Nanopore hybrid assemblies (both SPAdes and OPERA-MS) in the NR-

MPV, 94±5% had a BOC >75% and none were below 30%, suggesting short reads 

play a central role in these hybrid assemblies (Table 4.). This would also give greater 

confidence to the VLS generated by these approaches, having originated from two 

independent sequencing platforms and library prep methods. However, should the 

corrected Nanopore VLS represent genuine viral sequences which have been missed 

by the TruSeq approach, these sequences will be excluded from this assembly 

approach. Hybrid assemblies of the PacBio and TruSeq reads appear to make greater 

use of the PacBio reads that were not shared by TruSeq libraries. 62% of hybrid 

assemblies using PacBio and TruSeq (both SPAdes and OPERA-MS) had a BOC 

>75%, 35% of assemblies had a BOC between 75% and 30% and 3% of assemblies 

had a BOC below 30% (Table 4.).  

The majority of VLS generated by the Accel-NGS approach appear to have 

also been sequenced using TruSeq (i.e. 71 ±13% of Accel-NGS with a BOC >75%) 

25±9% of Accel-NGS VLS fell below the 75% BOC threshold and in three of the four 

samples a small minority of Accel-NGS VLS were missed by the TruSeq library 

entirely (7±4% within samples 922,923 and 925). Therefore the Accel-NGS reads 

supplement TruSeqs viromes through improved detection of VLS, but predominantly 

as a result of improved assembly.  
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 Viral inclusion criteria 

Each NR-MPV was broken down into the viral inclusion criteria used to identify VLS 

(Figure 2, Supp. Table 2) as a means to explore and validate the compositional patterns 

seen in the NR-MPV.  

Across all five NR-MPVs the majority of sequences were deemed viral because they 

were flagged as “dark matter” (i.e. were greater than 3kb long and did not feature 

BLASTn alignments to the NT database, see methods). Alignment to the pVOGS 

database and VirSorter also contributed a considerable number of VLS, although 

significantly less than the “dark matter” criteria. The “dark matter” category also 

recruited the largest amount of TruSeq contigs (174 across all four samples). 

Interestingly the majority (94±5%) of corrected Nanopore reads and 78% of PacBio 

reads with poor coverage (less than 30 % BOC) in each sample also fell into this dark 

matter category and which could potentially question their validity as genuine VLS 

(see discussion). However, corrected long reads with poor coverage also featured in 

other more stringent viral categories, such as aligning to an in-house crAss database 

(32 corrected Nanopore reads in sample 923), being virsorter positive, (1116 corrected 

PacBio reads in sample PB_919) and aligning to the pVOGS database with minimum 

of 2 pVogs and at least 3 per 1kb (118 corrected PacBio reads in sample PB_919). 

This would suggest that corrected long reads do represent legitimate viral sequences 

which are missed by short read platforms and that they are an important addition to a 

virome analysis pipeline. 

Recruitment of Longitudinal TruSeq viromes to the NR-MPV 

The samples used in this study were donated in February 2018, 15 months after the 

last time-point of the longitudinal study (November 2015 to November 

2016)(Shkoporov et al., 2019). In concurrence with the high levels of virome stability 

observed in the longitudinal study, many of the VLS in each NR-MPV were also 

detected in multiple longitudinal timepoints despite the 15 month gap between 

sampling. The BOC values for many of these VLS fluctuated above and below 

detection thresholds. (i.e. BOC >75%) over time which is also in concurrence with the 

previous longitudinal study, and  referred to a transiently detected virome (TDV). 
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Figure 3. Composition of the NR-MPV across all samples as with Figure 1. White 

arrows and figures denote the number of corrected long reads which went from one 

BOC category when recruiting TruSeq reads in this study, to another category when 

recruiting TruSeq reads from another longtitudinal TruSeq library. (e.g. 19 Corrected 

Nanopore reads with a BOC below 30% using TruSeq reads from this study reached 

a BOC >75% in at least one longitudinal timepoint, and 143 reached a BOC between 

30% and 75% in at least one timepoint. 
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To validate the VLS generated by non-TruSeq platforms and investigate if they 

could be detected long-term within individuals, TruSeq viromes from each individual 

across these 12 monthly time-points were aligned to each NR-MPV. If the coverage 

of a corrected long-read VLS changed from one detection threshold to another, or 

passed the BOC filter in a separate TruSeq library from the same individual, it would 

support the viral predictions within these approaches (Figure 3.). However in the 

majority of cases, the BOC did not increase to the point where reads would cross these 

BOC thresholds (i.e. from BOC below 30% to between 30% and 75%). Across all 

samples, 25±13% of corrected Nanopore VLS with a BOC between 75% and 30% (i.e. 

may be present in the TruSeq library but would not pass a BOC filter) exhibited a BOC 

greater than 75% in at least one longitudinal time-point from that individual. 

Furthermore, 23±9% of corrected Nanopore VLS with a BOC below 30% (i.e. appear 

to have been missed by TruSeq sequencing) yielded a BOC greater than 30% in at 

least one longitudinal time-point from that individual. 

However, very few Nanopore VLS with A BOC below 30% passed the BOC 

filter in other longitudinal time-points (i.e. 7±6% went from BOC <30% to >75 in the 

longitudinal samples). However, even Nanopore VLS which passed BOC filters in the 

NR-MPV did not always remain above detection limits across longitudinal samples, 

with 37±16% of corrected Nanopore VLS with a BOC >75% falling below 75% in all 

12 longitudinal samples. These results validate some the VLS predicted from corrected 

Nanopore reads which had been missed by TruSeq and suggest that TruSeq libraries 

fluctuate in their ability to detect certain viral sequences. Furthermore these patterns 

were considerably different across the corrected PacBio VLS with only 1% of VLS 

with a BOC below 75% reaching more than 75% in at least one longitudinal sample, 

7% of VLS with a BOC below 30% reaching between 30% and 75%. VLS with a BOC 

below 30% did not reach detection limits of >75% BOC in at any one longitudinal 

sample. Similar to the corrected Nanopore VLS, 43% of corrected PacBio VLS which 

passed the BOC filter, and were deemed to be present in the TruSeq library of this 

study, did not pass the filter in any of the other 12 longitudinal samples. 
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Visualisation of particular VLS. 

Results to this point have given a broad overview of trends within the MPV of each 

sample, the contribution of each sequencing approach to our final view of the virome 

and how they compare to the TruSeq libraries and assemblies. These trends were 

validated by plotting annotated genome maps of a selection of VLPs from alternative 

sequencing approaches in the NR-MPV and determining how they recruited TruSeq 

reads and assemblies. Detailed validation at the level of individual VLS is crucial in 

large scale virome pipelines with numerous analysis steps, as each step can introduce 

bias or analysis artefacts which skew findings (i.e. palindromic VLS outlined in 

methods). Table 5 describes the BOC values for each of the 12 longitudinal TruSeq 

libraries across the nine Genome maps plotted Figure 4 A – H.  
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 Figure 4 A. Is the genome map of a linear VLS from a hybrid SPAdes assembly 

using Nanopore and truSeq reads (the linear sequence is presented as circular to 

maximise space for annotation labels). This 483kb VLS was the longest across all 

samples and platforms, was the longest sequence overall (Tables 2 and 3), and is 

among the largest phage genomes in sequence databases. As was discussed above in 

“Read and final assembly counts” it is intriguing that the longest sequence did not 

involve a PacBio read, despite the increased sequencing depth and minimum read 

length of the PacBio library relative to those of the Nanopore. This sequence did not 

align to the viral RefSeq database but did share a 2kb region (at 72-74% identity) with 

Clostridium and Longibaculum species. However, top alignments of predicted tRNA 

sequences all aligned to Prevotella species, a finding which was supported by CRISPR 

protospacer predictions. tRNA and CRISPR host predictions and the sheer size of the 

VLS are supported by recent reports megaphage infecting Prevotella species (Devoto 

et al., 2019) and suggest it could be somewhat related to Lac Phage. However, 

BLASTn alignments to Lac Phage genomes did not yield any results. Given the lack 

of nucleotide homology shared across other recently discovered phage families such 

as the extended crAssphage family (Guerin et al., 2018) these findings are not entirely 

surprising. Future characterisation may be possible using techniques which are better 

suited to distant homology, such as those outlined by Guerin et al. and Yutin et al. 

(Guerin et al., 2018;Yutin et al., 2018) to investigate a possible relationship to the Lac 

Phage family. Despite having recruited TruSeq reads across the entire length of the 

sequence (BOC 100%), TruSeq assemblies were unable to resolve the VLS, 

generating 3 scaffolds which made up ~ 75% of the genome, and failed to generate 

assemblies which could span a region between ~ 130kb and ~260kb and pass viral 

inclusion criteria. It is possible that this gap in TruSeq assemblies represents 

hypervariable or low coverage regions associated with host interaction as described 

by Warwick-Dugdale et al.(Warwick-Dugdale et al., 2019) and highlight the benefits 

of combined long and short read sequencing approaches for the virome. This VLS 

fluctuated above and below the threshold of detection across longitudinal TruSeq 

libraries, with a BOC >75% in 3/12 timepoints and a BOC <30% in 4/12 timepoints 

and being missed entirely in one timepoint (BOC 0%). This extreme fluctuation in the 

level of detection may be linked to fluctuations in abundance (i.e. shifts in lytic or 

lysogenic replication or predator/prey dynamics) which become exaggerated by MDA 

selection bias and drift bias (see discussion). 
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Figure 4.A. (overleaf) Gview plot of the longest VLS generated by this study (hybrid 

assembly Nanopore + TruSeq). The VLS is linear and has been circularised for 

plotting purposes (black intersecting line highlights beginning and end of sequence). 

Outer to inner rings are as follows; Forward (blue) and reverse (red) CDS annotated 

with pVOGs, GC skew (Blue/Purple), max (green) and min (red) longitudinal read 

coverage, TruSeq read coverage from this study, TruSeq assemblies from this study.
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Figure 4 B. is a genome map for the longest VLS which featured PacBio reads, 

and similar to Figure 4 A was linear and fully covered by TruSeq reads generated in 

this study (BOC 100%). In contrast to Figure 4 A, this VLS shared homology to 

multiple TruSeq assemblies across the entirety of its length and made all four TruSeq 

assemblies redundant (90% identity across 90% of the TruSeq length). This VLS also 

fluctuated in and out of the threshold of detection across longitudinal TruSeq libraries 

(four time-points below BOC 30%, four time-points above BOC 75%). Annotation 

and host predictions were somewhat contradictory and inconclusive. Top CRISPR 

protospacer predictions aligned to Fusobacterium species and contradicted tRNA 

predictions which aligned to Bacillus and Staphylococcus species. There were no hits 

to Viral Refseq and the longest alignments (>4kb, 74-75% ID) to NT were to the class 

Mollicutes. Both of these VLS highlight the benefits of using long reads to improve 

the assembly of viral sequences which were detected but fragmented using TruSeq 

libraries alone. 
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 Figure 4 C represents the longest circular (which could be taken as a strong 

proxy for being complete) VLS across all sequencing approaches and samples. 

Interestingly, this originated from the Accel-NGS library and did not feature in the 

long-reads from either platform.  As with the previous examples, this VLS exhibited 

a BOC of 100% with TruSeq reads but was resolved in six separate TruSeq assemblies 

across the entirety of its length. Furthermore, this VLS fluctuated fluctuated in and out 

of the threshold of detection across longitudinal samples, albeit with a greater number 

of high coverage cases (seven time-points with a BOC above 90%). This VLS did not 

align to Viral RefSeq and had one short (80% ID across 1.5kb) with Anaerostipes 

hadrus (order Clostridia) when aligned to NT. Predicted tRNAs did not have any 

alignments to either NT or bacterial RefSeq, CRISPR protospacers had top hits to 

Lachnoanaerobaculum, another genus within the order Clostridia. This VLS 

highlights the impact of MDA and library prep on final Virome assemblies and 

suggests that virome analysis pipelines can also be improved without changing 

sequencing platform. 
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 In Figure 4. A-C. TruSeq approaches could detect but not fully assemble VLS 

from alternative sequencing approaches. Figure 4. D-F. represent cases which appear 

to have been missed by the TruSeq libraries entirely (BOC < 30%) in this study but 

passed the threshold of detection in longitudinal timepoints (BOC >75%). This 

validates these VLS and highlights how alternative sequencing approaches not only 

improve truSeq assembly but can detect sequences which are missed by TruSeq. 

Figure 4. D. depicts a linear Accel-NGS VLS and is the longest (9.2kb) VLS with a 

BOC 28% of Truseq reads in this study and BOC >75% in at least one longitudinal 

TruSeq library. However, in half of the longitudinal timepoints (6/ 12) BOC remained 

below 30%, reaching above 90% in two timepoints. This case highlights the potential 

impact of MDA and library prep in the detection limits of TruSeq libraries. This VLS 

did not feature alignments to either viral RefSeq or NT, did not feature predicted 

tRNAs and had a top CRISPR protospacer alignment to Bacteroides dorei.  
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Figure 4.D. Accel-NGS VLS plotted as per Figure 4.A. Poor Coverage by 

TruSeq reads in this study (orange) and fluctuation from full coverage 

(green) to poor covergage (red) in longitudinal samples. 

 

Figure 4.E. Corected Nanopore read plotted as per Figure 4.A. This 

sequence shared significant homology with crAssphage, but did not feature 

alignments to the pVOGs database. TruSeq read coverage in red, green and 

orange as before  

Figure 4.F. Gview plot of Corected Nanopore read. Plots (top to bottom) GC 

skew (blue/purple), Truseq read coverage from this study (orange). The 

remaining 10 plots are longitudinal TruSeq read coverage (timepoints 1-10) 

highlighting high BOC 
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 In Contrast to Figure 4 D, which depicted an unamplified sample, Figure 4 E 

represents a VLS from the same MDA amplification as that sequenced in the TruSeq 

library. However this VLS was also entirely missed by the TruSeq library in this study 

and detected in multiple (3/12) longitudinal TruSeq libraries from the same individual. 

This sequence appears to be a fragment of a crAssphage genome as it shares multiple 

(albeit partial, longest 4.6 kb with 88% identity) alignments to prototypical 

crAssphage in both NT and viral RefSeq databases. It did not feature predicted tRNAs 

and had top CRISPR protospacer alignments to Fusobacterium nucleatum. This 

suggests that the limitations in TruSeq detection may not be due to MDA and that 

ubiquitous members of the viral community such as crAssphage may be undetected as 

a result of library prep methods and sequencing platforms. By underrepresenting 

potentially shared viral sequences, this also suggests that sequencing approaches 

themselves could exaggerate the high levels of inter-individuality which hamper 

virome analysis. Similar to Figure 4 E, the VLS depicted in Figure 4 F also originated 

from the same amplification product as that which was sequenced on the TruSeq 

library, was missed entirely in the TruSeq library of this study, but featured regularly 

in every other time-point within that individual. However, this sequence was entirely 

unknown and did not feature alignments to any databases, CRISPR spacers or tRNA 

hits. This sequence represents the numerous long read sequences which did not feature 

in TruSeq libraries, or reference databases, but did appear throughout multiple time-

points, suggesting that these occurrences may be more numerous than we are able to 

characterise, due to limitations in databases, and aligning to databases which are 

themselves based on short read sequencing.  

The VLS depicted in Figs 4 A-F are clear examples of alternative sequencing 

approaches improving either the assembly or detection of viral sequences in TruSeq 

libraries. In contrast, Figure 4 G is an example of Corrected Nanopore VLS which are 

harder to validate and suggest that sequencing artefacts can be carried through to final 

VLS by both TruSeq and/or Corrected Nanopore approaches. However, it is difficult 

to validate one approach over another. The VLS in Figure 4 G represents a linear 

corrected Nanopore read which was fully represented in the corresponding TruSeq 

library in this study (BOC 78%). However, this VLS could not be validated with 

longitudinal TruSeq reads as it did not recruit reads from any longitudinal time-points.  
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Figure 4.G.1 Gview plot of Corected Nanopore read. Plots (top to bottom) Forward 

and reverse CDS (red/blue), GC skew (blue/purple), Truseq read coverage from this 

study (orange), no longitudinal reads were recruited. Red box highlights gap in the 

corrected read with no TruSeq coverage 

Figure 4.G.2 Gview plot TruSeq assembly which shared significant homology with 

the Nanopore read in Figure 4.G.1. The VLS is linear and has been circularised for 

plotting purposes(black intersecting line highlights beginning and end of sequence). 

Plots (Outer to inner ring) Forward and reverse CDS (red/blue), GC skew 

(blue/purple), Truseq read coverage from this study (orange), alignment to corrected 

Nanopore read in Figure 4.G.1 (pink). Note no gap is present in TruSeq assembly and 

all CDS are in the same orientation. 

Figure 4.G.3 Mauve alignment highlighting the alignment gap in the corrected 

Nanopore read and the inversion between the two sequences. 
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 This VLS was VirSorter positive and passed pVOGs viral inclusion criteria 

(Table 5.) which could suggest that it is a legitimate viral sequences which was 

consistently below the limits of detection for the 12 longitudinal timepoints and only 

reached levels of detection in the 15 months between the study sampling dates. 

Alternatively, this VLS may have been newly acquired between the two studies. 

Examining the alignment of TruSeq reads and assemblies to this VLS in highlighted 

some unusual behaviour making the sequence difficult to validate.  The VLS in Figure 

4 G1 is the Corrected Nanopore read (abbreviated read ID “NPCor_d9212”) with 

positive and negative CDS in red and blue and TruSeq read recruitment in orange as 

before. TruSeq reads do not align to a 2.5kb region between (5.5kb-8kb, red box) 

which also did not recruit known pVOGs and centred on a shift in GC skew. Having 

been included in the final NR-MPV of sample 923 this sequence was not made 

redundant by other sequences (90% ID over 90% length).This VLS also did not make 

any TruSeq assemblies redundant. However, it did align almost entirely to an 8kb 

region within much longer (54.3 kb) TruSeq VLS (Figure 4. G.2) between the regions 

of 43 and 51kb (pink bar, inner ring). In agreement with the TruSeq read recruitment, 

the 2.5kb region was not present in the longer TruSeq assembly. This gap was long 

enough (relative to the Corrected Nanopore read) for the redundancy step to deem 

these sequences sufficiently different to both be kept in the final NR-MPV. For this 

reason, the origin and validity of this gap is crucial to determining whether the 

Corrected Nanopore read is a more accurate representation of this VLS by including 

regions which TruSeq reads had missed, or if it introduced sequencing anomalies 

which are inflating its length and potentially skewing the representation of corrected 

long-reads in the final NR-MPV. 

Figure 4 G3 depicts a mauve alignment of this region highlighting the gap in 

the Corrected Nanopore VLS which was absent in the TruSeq assembly. Furthermore 

this Mauve alignment highlights an inversion of the region downstream of this gap in 

the corrected Nanopore read (i.e. major capsid and tail proteins on the Nanopore read 

are in the opposite orientation to the portal protein VOG4556, but are in the same 

orientation on the TruSeq assembly).  As described in the introduction, MDA steps 

that are often required to generate sufficient quantities of virome DNA for sequencing 

libraries can introduce a number of biases, including the introduction of chimeras 

(Lasken and Stockwell, 2007). Given the inversion seen here, it is possible that the 
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Nanopore read has carried a chimeric repeat through to the final VLS and by inflating 

the length of the original template sequence, has been incorrectly retained in the final 

NR-MPV. However, as the same amplified DNA sample was sequenced on both 

TruSeq and NanoPore platforms this would also suggest that Nanopore reads are more 

susceptible to carrying chimeric repeats from MDA than the corresponding TruSeq 

reads and assemblies. Contrary to this, the current proposed mechanism for the 

introduction of chimeric inversions in MDA reactions, suggest that a region of the 

template sequence is deleted and flanking regions are recombined in an inverted 

orientation. Given that the corrected Nanopore read contains a sequence which is 

absent in the TruSeq assembly,  this would suggest that the inversion and deletion 

event may have occurred in the TruSeq assembly and that the Corrected Nanopore 

read represents the template sequence more accurately.  

In this study, both of these cases are equally likely and cannot be resolved. It 

is therefore difficult to say if Figure 4 G1 represents a case where Corrected Nanopore 

reads have overcome an MDA artefact and given a more accurate representation of 

the VLS, or if they are more prone to falling victim to MDA artefacts and must be 

treated with caution.  

Discussion 

The human gut virome represents one of the biggest gaps in our understanding of 

human gut microbiome and poses unique analysis challenges. It is heavily dependent 

on sequence-based analysis methods and de novo bioinformatic tools which introduce 

bias and skew the composition viral community members. The majority of our current 

understanding of the virome is based on amplified short read libraries. While this 

technique has been shown to introduce bias, it is not fully known how this bias impacts 

the final virome composition. As far as we are aware this study is the first to explore 

long read sequencing in the gut virome and investigate the limitations of MDA Short 

read sequencing.  We explore five combinations of sequencing approach and library 

prep methods including corrected long reads, hybrid assemblies and short read 

assemblies with and without MDA amplification. By pooling the VLS generated by 

each approach per individual and removing redundancy it was possible to compare the 

contribution of each approach to the final “consensus virome” or NR-MPV. As 
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amplified short read libraries (TruSeq in this study) are the foundation of current 

virome research, comparisons were performed relative to this approach. 

The majority of VLS in the pooled “consensus virome” originated from 

alternative sequencing approaches meaning that they either extended or scaffolded 

existing TruSeq assemblies, or generated entirely new VLS which had been missed by 

TruSeq assemblies and/or sequencing reads. Both of these cases occurred across all 

samples and we describe examples where alternative sequencing approaches improved 

both the detection and assembly of TruSeq libraries. This highlights the impact of 

sequencing approach on the viral sequences available for downstream analysis.  

The NR-MPV for each sample was dominated by corrected long reads with 

poor TruSeq read coverage meaning that the long read platforms generated a large 

number of VLS which did not feature in TruSeq libraries, despite identical MDA 

amplified DNA samples having been sequenced with both approaches. This implies 

that either long-read platforms generate large amounts of invalid sequences or that 

bias within the long read and TruSeq library prep methods skew the composition of 

the sample in entirely different directions. Furthermore, as the Accel NGS library 

generated fewer VLS with poor TruSeq coverage than the long-read platforms. This 

suggests that the choice of platform (i.e. NanoPore vs. PacBio vs. HiSeq) has a greater 

impact on the final virome composition than the impact of MDA within platforms. 

We validated the VLS which would have otherwise been fragmented or 

undetected using longitudinal samples from each individual and tracked their levels of 

detection across time. Many VLS fluctuated above and below the thresholds of 

detection across time which we suggest may reflect fluctuations in abundance that are 

exaggerated by MDA bias. However we also report the long-term detection (across 27 

months in total) of a number of these VLS, in agreement with the previous longitudinal 

virome study (Shkoporov et al., 2019). It has also been established that there is an 

abundance threshold with short read libraries, below which all current assembly 

programs struggle with genome recovery and fragmentation (Sutton et al., 2019a). By 

visualising and annotating a selection of these VLS it was possible to further validate 

and describe in detail instances where alternative sequencing approaches addressed 

limitations in TruSeq detection and assembly. However, in some cases, the 

discrepancies between short and long read VLS are difficult to explain. We propose 
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that these discrepancies are closely linked to MDA artefacts, but it is not clear whether 

short or long reads are more capable of overcoming these artefacts. Below we discuss 

the finer details of the findings in the context of the analysis methods, their 

implications for past and future virome studies and the future prospects of this 

analysis. 

Detection thresholds, drift bias of MDA samples and long-term stability 

In concurrence with the original longitudinal study, high coverage VLS in this study 

were often found at multiple time-points. However, defining detection is difficult on 

at a read level. Previous studies which defined detection using a single read (Manrique 

et al., 2016) were called into scrutiny (Clooney et al., 2019;Gregory et al., 

2019;Shkoporov et al., 2019) as this criteria does not account for shared sequences 

(i.e. repeats or gene cassettes) across distantly related viral families (Iranzo et al., 

2016). Additionally, even VLS which stand out in a given sample as a result of having 

recruited high numbers of reads and that may even be differentially abundant across 

cohorts (Zuo et al., 2019) can be the result of spurious read alignments (Sutton et al., 

2019b). In these cases, recruited reads are stacked over short regions of the genome 

rather than evenly distributed and also represent spurious shared sequences rather than 

confirming the existence of the VLS in a given sample. For this reason, breadth of 

coverage filters have been recommended by a number of virome studies as a means to 

differentiate spurious read alignments from shared VLS (Roux et al., 2017;Clooney et 

al., 2019). However, the application of rigid filters such as 75% have limitations and 

ultimately determine what is defined as present or absent in a sample. Consequently, 

this study analysed a spectrum of breadth of coverage (BOC) values across the dataset 

as a means to infer the presence or absence of a VLS in a given TruSeq library rather 

than stating it outright. All of the VLS examined in detail (Table 5, Figure 4 A-G) 

fluctuated above and below the rigid detection threshold of BOC 75% which has 

featured in previous studies, which is in agreement with the “transiently detected 

virome” in the original longitudinal study (Shkoporov et al., 2019). However, given 

the detection limitations of amplified TruSeq libraries highlighted by this study, it is 

likely that aspects of this “transient detection” are linked to the sequencing approach 

itself. This also means that the human gut virome may well exhibit an even greater 

degree of longitudinal stability than we had previously thought. It is possible that this 

transient detection is linked to fluctuations in abundance viral community members 
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(i.e. predator prey dynamics, or shifts in the lysogenic/ lytic replication cycles of 

temperate phage). These initial differences in abundance are in turn, exaggerated by 

MDA “drift bias” as amplification products generated early in the MDA reaction 

eventually dominate the final sample. When paired with bias within the TruSeq library 

prep or the platform itself this could lead to VLS which had been present at low 

abundance being underrepresented or excluded from the sequencing entirely. 

The limited ability of amplified short read libraries to fully represent the 

virome, as highlighted in this study, also has significant implications for the high levels 

of inter-individual variation associated with virome data. High levels of inter-

individual variation complicate virome analyses, as without shared features across 

cohorts, it is not possible to identify patterns in the virome associated with features of 

the cohort (i.e. health vs. disease) (Clooney et al., 2019). This is individuality is 

believed to be linked to rapid evolutionary rates in viral communities (Minot et al., 

2013) and the assembly or strain level of resolution at which virome studies are carried 

out (Clooney et al., 2019;Sutton et al., 2019a). However, similar to the fluctuation in 

longitudinal detection within individuals as discussed above, the results of this study 

suggests that high levels of inter individuality may be exaggerated by the detection 

limits of amplified short read sequencing libraries themselves. Similar to the 

longitudinal stability, this implies that greater numbers of viral sequences may be 

shared across individuals than had previously been thought. The observations of this 

study suggest that alternative sequencing approaches are capable of addressing these 

detection issues. This makes alternative sequencing approaches a promising means of 

increasing the number of shared viral sequences across individuals in future virome 

studies and complementary to cluster-based methods of lowering inter-individual 

variation(Clooney et al., 2019).  

Corrected long-reads with low levels of TruSeq coverage 

The long-read error correction program used in this study (FMLRC) (Wang et al., 

2018) uses a kmer-based correction method to create de Bruijn graphs from both long 

and short read datasets. An FM-index is then used represent all de Bruijn graphs and 

used to generate a consensus sequence. This means that although long read correction 

does not depend directly on the recruitment of TruSeq reads, it would be impacted by 

the amount of shared sequences between the two libraries. Subsequently, long-reads 

which were poorly sequenced in TruSeq libraries are likely to have been corrected to 
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a lower degree than those which were fully represented. The majority of these long 

reads with poor TruSeq coverage were also classified as “dark matter”, meaning they 

did not share nucleotide homology with reference databases. It is possible that this 

“dark matter” dominance in corrected long-reads with poor TruSeq coverage is linked 

to uncorrected long-read errors (Myers, 2014) that prevents successful alignment to 

databases. Furthermore, if long reads were insufficiently corrected the high error 

profile may have hampered the BLASTn-based alignments which were used 

throughout the study to remove redundancy and predict viral sequences. If BLASTn 

could not find sufficient redundancy within each long read library or between long 

read VLS and those generated by other approaches, the long-read representation in the 

NR-MPV would have been artificially inflated.  

However, the databases to which these corrected long reads were aligned have 

also been founded primarily on short read sequencing. Furthermore these databases 

are known to represent extremely minor fractions of the virome as a whole (Roux et 

al., 2015b). Therefore, it is also possible that these long “dark matter” reads represent 

legitimate undiscovered viral sequences that are undetected by TruSeq reads (i.e. the 

‘unknown unknowns’ of the virome). This lack of detection which could be caused by 

low abundance or genomic features of the VLS themselves which are negatively 

selected by amplified short read libraries. That considered, not all low-coverage 

corrected long reads were “dark matter” as highlighted by Figure 4 D. This corrected 

Nanopore VLS represented a fragment of a crAssphage, an important member of the 

gut virome which had not been detected by the TruSeq library, despite the same 

amplified DNA sample having been sequenced on both TruSeq and Nanopore 

platforms. Due to the relative novelty of these long-read platforms and their use in 

metagenomics, we do not know the full extent their of detection limits relative to 

amplified short read libraries and vice versa. Pilot studies such as this are key to 

building and understanding of how these technologies could improve our view of the 

virome, despite often generating as many questions as they seem to answer. 

Future Prospects and limitations 

In this study comparisons were made primarily to TruSeq libraries as they represented 

the amplified short read libraries which make up the majority of virome research. 

These libraries were shown to underrepresent aspects of the virome and were 
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outperformed (i.e. total VLS counts and other assembly stats) by unamplified short 

read libraries using the Accel-NGS library prep. However, as both TruSeq and Long-

read libraries used identical MDA-amplified DNA samples, TruSeq reads were also 

used in the error correction and hybrid assembly steps. If the Accel-NGS library prep 

kit could avoid some of the detection limits of the TruSeq it is possible that long-read 

error correction and hybrid assembly could be improved by correcting and performing 

hybrid assemblies with the Accel NGS library. 

Given the improved levels of assembly and detection observed in the Accel-

NGS approach relative to the TruSeq, it is a promising alternative to virome analysis 

pipelines. However, as this study sought to compare alternative sequencing 

approaches to amplified short read libraries it highlights sequences which were 

elongated or scaffolded TruSeq assemblies, or were undetected in TruSeq libraries. 

The extent to which these alternative platforms missed VLS successfully sequenced 

and assembled is therefore not known. This is an obvious direction for future iterations 

of this study and is particularly important for future studies which may use the Accel-

NGS as a replacement to the TruSeq library prep rather than to supplement it as was 

carried out here.  

During the long-read processing, reads which featured palindromic repeats 

were removed. However, as these sequences may represent legitimate VLS which 

became chimeric due to MDA it would be more accurate to identify the repeat region 

and split the palindrome and remove redundancy of the entire library. One program 

has been designed to address this issue (Warris et al., 2018) and will be included in 

future iterations of this study as currently the long reads may not be being used to their 

full extent. Despite this limitation, we feel that the main findings of the study would 

remain consistent although potentially increasing the number of corrected long-read 

VLS that would likely exaggerate the current findings. Similarly, an aggressive size 

filter was applied to the PacBio reads due to the sheer size of the dataset and 

computational limitations. Future iterations of this study could benefit from cloud 

computing facilities in order to make use of this dataset in its entirety.  
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Conclusions 

Here we present what we believe to be the first long-read sequencing study of 

the human gut virome and comparison of sequencing and assembly approaches. We 

highlight limitations in the ability of amplified short read libraries to accurately 

represent the human gut virome and advocate the use of long-read sequencing and 

alternative library prep methods as a means to address these challenges. This study 

highlights the need to consider the impact of sequencing approach when interpreting 

results from virome studies and has considerable implications for our current 

understanding of the human gut virome. We propose that amplified short read 

sequencing approaches mask the detection of viral sequences and may therefore 

exaggerate the levels of inter-individual variation associated with the virome. 

Furthermore, we suggest the virome may be more stable within individuals than had 

been previously thought and that transient detection is also exaggerated by the choice 

of sequencing approach. We propose that long-read sequencing and alternative library 

prep methods have an important role in virome analysis and can resolve members of 

the viral community which would have been fragmented or undetected using standard 

amplified short reads libraries. 
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Thesis Summary 
The phages and bacteria of the human microbiome are two sides of the same 

coin and the composition of each community is intrinsically linked to the other. 

Understanding the forces which shape the human gut microbiome is key to 

understanding its role in the maintenance of human health, yet arguably the most 

important of these forces, the human gut virome, remains almost entirely unknown. 

The majority of current virome research is built on nearly two decades of sequence-

based studies. These have given us new insights into this missing part of the 

microbiome puzzle but it appears we have only scratched the surface and the virome 

remains dominated by unknown sequences encoding as yet unknown functions. This 

unknown majority is also one of the biggest challenges of virome data, as it not only 

determines which analysis approaches are possible, but also makes these approaches 

very difficult to validate. As a result, virome data is particularly sensitive to 

methodological artefacts and the final conclusions which are drawn from virome 

studies can depend heavily on the analysis approach used.  

Chapter One of this thesis discussed major findings in the gut virome field and 

highlighted a number of inconsistencies. We recommend that virome researchers 

consider and acknowledge the distortion every particular method may have on a given 

result and report it accordingly. Too often virome studies take results at face value and 

draw incorrect biological conclusions. Doing so leads to the propagation of certain 

analytical methods and could lead to bias in arriving at expected findings. A prime 

example is the frequent report of changes in alpha diversity of known Caudovirales in 

a number of diseases, which remains a regular feature of more recent virome studies. 

While it is possible that this reflects an underlying biological signal, it gives very little 

insight into the role of the virome in disease as discussed at length in Chapter One. 

This repetition of limited analysis methods and results which give little insight into 

the composition and function of the human gut virome highlights a real need for 

studies which validate analysis pipelines and develop new approaches. For these 

reasons, the work presented in this thesis is of critical importance to the progression 

of the virome field and understanding its role in the microbiome. 

This thesis sought to validate some of the major steps in sequence-based 

virome analysis pipelines from the choice of sequencing platform and assembler, to 

how the resulting data is analysed. Interestingly and somewhat alarmingly every step 
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that we analysed had a significant impact on the final output, highlighting the fragility 

of our understanding of the gut virome. While the challenges of virome data may be 

exaggerated relative to other metagenomes (dominance of unknown sequences, 

extremes in high and low sequencing coverage etc.) they are not unique to virome 

datasets. This suggests that many of the challenges and limitations of viral 

metagenomes in this thesis may highlight limitations of microbial metagenomics in 

general.  

Chapter Two highlighted a central part of every virome analysis pipeline, the 

assembly step. As virome studies are dominated by unknown sequences, alignment of 

sequencing reads to sequence databases gives a very limited view of virome 

composition. As a result, almost all sequence-based virome studies assemble 

sequencing reads to reconstruct the genomes of the viral community. This also means 

that assembly performance ultimately determines the amount of sequencing data 

which can be used in a given virome study. We compared the performance of all short-

read assembly programs used in virome studies to date and found that the choice of 

assembler significantly varied the composition of the final virome. Furthermore, 

extremes in both high and low coverage resulted in fragmented assemblies and poor 

genome recovery. Given that these extremes are common in virome datasets, the limits 

of assembly must be considered before drawing conclusions. Furthermore, the poor 

performance of some assemblers suggests that not only should they be avoided in 

future virome studies, but that the findings of studies that had used them originally 

should be treated with caution. Furthermore, studies which had used poor assemblers 

present unique opportunities to gain new insight into the virome simply by re-

assembling and reanalysing existing data. 

In Chapter Three, we performed exactly that. Current understanding of the gut 

virome in IBD was based primarily in the findings and methods of one keystone study 

by Norman et al. (Norman et al., 2015). In that study, disease-specific differences in 

viral richness had been reported between CD, UC and healthy cohorts. However, these 

findings were based on a minor subset of identifiable Caudovirales. This database-

dependent analysis approach has been since used by many subsequent virome studies 

and the findings and methods are regularly referred to and replicated. We sought to 

develop a database-independent analysis approach using this dataset to investigate if 

the patterns seen across the identifiable minority were truly representative of the 
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whole-virome. This whole-virome analysis approach not only highlighted the 

limitations of database-dependent approaches but gave new insights into the 

microbiome in IBD. However, by including the entire dataset and not just the 

identifiable minority, we encountered issues with high levels of inter-individual 

variation that masked any compositional changes across cohorts. This was addressed 

by clustering viral sequences at a gene-level to increase the number of shared 

sequences across cohorts. By doing so, we observed a healthy core virome of virulent 

phage which was absent in disease. Furthermore, this healthy core appeared to be 

replaced by an individual-specific shift towards temperate phage in disease. This 

provided the first functional insight into the gut virome in inflammatory bowel disease 

and new insights into viral dark matter in the gut. This study also highlighted the 

importance of maximising the data used in a given study and how by changing the 

analysis approach we can drastically change our understanding of the human gut 

virome. 

 Chapter Four of this thesis went to the very core of a sequence-based study and 

examined both sequencing platforms and library prep methods. We performed a pilot 

study using long and short read sequencing and as with the previous chapters 

highlighted the sensitivity of virome studies to methodological bias. Our current 

understanding of the human gut virome is built on a foundation of MDA amplified 

short-read sequencing and while MDA is known to skew the composition of DNA 

samples, it has not been fully characterised in the virome. Somewhat alarmingly, we 

observed significant limitations in the ability of these amplified short-read libraries to 

fully recover the human gut virome. This has serious implications for how we perform 

virome studies, and the conclusions we have drawn from them to-date. However, we 

also see promise in alternative sequencing approaches (i.e. alternative library prep and 

long-read platforms) as a means of addressing these issues and suggest that future 

virome studies would benefit from the addition of these approaches. 
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These four chapters provide an important resource to virome researchers by 

highlighting the importance of considering the analysis approach when drawing 

conclusions from virome data. We describe some of the limitations of previous 

approaches and suggest that the findings presented by studies using these methods 

should be treated with caution. Furthermore, these studies are promising candidates 

for reanalysis, which as shown in Chapter Three, can provide useful insight into the 

structure and function of the virome. The contents of this thesis will hopefully 

contribute to future virome studies by validating existing sequence-based tools and 

describing new approaches to analyse the virome. As Melvin James “Sy” Oliver said 

in 1939, “'tain't what you do, it's the way that you do it”. Perhaps he too was 

considering the impact of analysis methods in virome studies in the future?  
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Appendix 1 

Giant oversights in the human 

virome 
Thomas DS Sutton, Adam G Clooney, Colin Hill 

 

This letter has been published as the following: 

Sutton, T.D.S., Clooney, A.G., and Hill, C. (2019a). Giant oversights in the human 

gut virome. Gut. doi:10.1136/gutjnl-2019-319067. 

In response to following publication by Zuo et al. 

Zuo, T., Lu, X.-J., Zhang, Y., Cheung, C.P., Lam, S., Zhang, F. et al. (2019). Gut 

mucosal virome alterations in ulcerative colitis. Gut, gutjnl-2018-318131. 
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We read with interest the paper “Gut mucosal virome alterations in ulcerative colitis” 

by Zuo et al.(Zuo et al., 2019) which used deep sequencing to identify gut mucosal 

virome alterations in individuals with ulcerative colitis (UC). One of many interesting 

findings reported by the authors was the detection of giant viruses infecting algae and 

amoeba (Mimivirus and Chrysochromulina ericina virus).  The authors suggested an 

association with the geographical distribution of individuals and concluded that they 

were more abundant in UC patients than controls. We reanalysed the data and propose 

that issues related to the virome analysis pipeline led to the incorrect identification of 

these viruses.  

Firstly, the DNA extraction method states that 0.22 µm filters were used to 

remove bacterial and eukaryotic cells, followed by chemical and enzymatic 

degradation of DNA unprotected by viral capsids. Mimivirus has capsid with a 

diameter of 0.5 µm, surrounded by a 0.125 µm thick layer of closely packed fibres 

(Klose et al., 2010), making its presence in the final DNA extract extremely unlikely.  

Secondly, we aligned sequencing reads provided by the authors to a database 

of all representative Mimivirus and C. ericina virus sequences present in the UniProt 

TrEMBL database (228 as of April 2019; see supplementary methods). Mimivirus 

sequences recruited at most 82 reads from any given sample, all of which aligned to 

short “AT” repeats covering less than 400 nt of the 1.2 Mb reference sequence (Figure 

1A).  C. ericina virus recruited significantly more reads on average (934; max 8,205), 

but again all reads aligned to three short intergenic “AT” repeats at coordinates 91099-

91267, 260723-260745 and 267717-267744. Individual samples covered, at most, 

0.02% of the genome. 

The annotation of viral assemblies as Mimivirus and C. ericina virus highlights 

an issue in the taxonomic assignment method used in this (and other) virome studies. 

We used the assembled sequencing reads to repeat the Zuo et al. method by predicting 

open reading frames from viral contigs, aligning them to the UniProt TrEMBL 

database to assign viral taxonomy to each ORF and finally using a voting system to 

assign a consensus taxonomy across the contig.  
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Figure 1. (overleaf) (A) Graphical representation of Moumouvirus displaying GC 

skew (green/yellow), reverse strand CDS (red) forward strand CDS (blue) and 

alignments of all classified Mimivirus contigs to Moumouvirus genome (pink). (B) 

Details of alignments highlighted in (A) with percentage identity, alignment length, 

query contig length, percentage of query contig aligning to the reference, start and end 

coordinates of the alignment to the reference genome and reference annotation at these 

coordinates. (C) Graphical representation of C. ericina virus as was plotted for (A) 

with alignments of all classified Phycodnaviridae contigs (pink). (D) Details of 

alignments highlighted in (C) as was described for (B). 
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The only alignments of contigs classified as Mimivirus and C. ericina virus to 

the Mimivirus and C. ericina virus database were short (4.3% of the query contig 

length on average), low identity hits to proteins such as heat-shock protein and t-RNA 

synthetase (Figure 1 A-D), which are conserved across domains of life (Fujishima and 

Kanai, 2014) (Feder and Hofmann, 1999). When aligned to the NT database these 

same contigs displayed high identity and often full length alignments to bacterial and 

fungal sequences and none to C. ericina or Mimivirus genomes. We appreciate that 

these viruses encode similar heat-shock and DNA metabolism genes, but we believe 

the observed alignments reflect distant similarities between proteins conserved across 

all domains of life. There were no alignments to any genes unique to viruses such as 

the major capsid protein.  We conclude that there is no evidence for the presence of 

Mimivirus or C. ericina virus in the human mucosal virome and any suggestion of an 

association with ulcerative colitis should be treated with caution.  

The authors also found PhiX174 (incorrectly assigned to the order 

Caudovirales) to be significantly increased in subjects with UC, but it should also be 

noted that PhiX174microvirus is an internal control used in Illumina sequencing and 

is a common contaminant of microbial sequencing studies (Mukherjee et al., 2015) 

(Zaheer et al., 2018). The published protocol did not describe any steps to remove 

Phix174 sequencing controls and so it is possible that the presence and differential 

abundance of Phix174 is a result of sequencing artefacts rather than biological 

changes. 

Supplementary materials and methods 

All nucleotide sequences associated with all C. ericina virus and Mimivirus 

UniProtKB/TrEMBL taxon IDs were downloaded from GenBank to form a database 

consisting of all full length and genomic fragments (n=228) with C. ericina virus and 

Mimivirus genes in the UniProt TrEMBL database. In order to maximise the chances 

of detection, all relevant entries were added to this database, including those which 

were partial or not yet reviewed. This database was used to recruit reads which were 

downloaded from the accession numbers provided in the paper (PRJNA504921 and 

PRJNA506811) and quality filtered with Trimmomatic v0.36 (Bolger et al., 2014) and 

the following parameters (HEADCROP:20 CROP:120 SLIDINGWINDOW:4:20 

MINLEN:20). Read alignments were carried out using Bowtie2 v2.1.0 (Langmead and 
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Salzberg, 2012) and corresponding read recruitment and coverage statistics were 

calculated using SAMtools v0.1.19 (Li et al., 2009). Regions which featured a read 

coverage greater than 1 were extracted and investigated in detail using EMBOSS 

v6.6.0.0 extractseq (Rice et al., 2000).  

Trimmed high quality reads were assembled using SPAdes v3.10.0 (Nurk et 

al., 2017) metagenomic mode. Assemblies were clustered at 95% as outlined in 

(Shkoporov et al., 2018) and open reading frames predicted using Prodigal 

v2.6.3.(Hyatt et al., 2010) We appreciate that our choice of assembly software differs 

from those outlined in the materials and methods of Zuo et al., however, based on a 

recent assembly comparison (Sutton et al., 2019) we observed significant 

improvements in SPAdes meta contiguity over IDBA with virome data and felt it 

would maximise the detection of giant virus genomes. We also use Prodigal opposed 

to Glimmer as was outlined in Zuo et al., as its accuracy has been found to be superior 

according to ORF caller benchmarking studies (Tripp et al., 2015).  

Taxonomic assignment was carried out as described in Zuo et al., by aligning 

predicted ORFs to a database of all sequences in the UniProtKB/TrEMBL with viral 

taxonomic assignments, using Blastx (e-value < 1e-5). Contigs with one ORF per 10Kb 

were excluded and best hit viral taxonomy was applied to each ORF. Contigs were 

then classified based on the majority taxonomic assignment across all ORFs, or 

labelled “unclassified” if a majority was not found. All contigs annotated as 

Phycodnaviridae (n=686) and Mimivirus (n=111) were aligned to the aforementioned 

C. ericina virus and Mimivirus database and the NT (March 2019) database using 

Blastn (e-value < 1e-5) –task Blastn as a means to maximise the likelihood of high-

quality alignments. Blastn alone did not yield any alignments. Alignments of these 

contigs were visualised using Gview (Petkau et al., 2010), using C. ericina virus 

(Accession no. NC_028094.1) and Moumouvirus (Accession no. JX962719.1) 

genomes as references and plotting alignment coordinates as the outermost ring. 

Moumouvirus was used to represent all Mimivirus alignments as it recruited the 

greatest number of Mimivirus-classified contigs from the dataset. 
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Appendix 2 
 

Minor contributions were made to the following papers (front pages attached) as 

follows 

Shkoporov, A.N., Clooney, A.G., Sutton, T.D.S., Ryan, F.J., Daly, K.M., Nolan, J.A. 

et al. (2019). The Human Gut Virome Is Highly Diverse, Stable, and Individual 

Specific. Cell Host & Microbe 26, 527-541.e525.  

Assisted the design and implementation of the analysis approach and assisted 

in drafting and editing of the final manuscript. Carried out read processing and 

assembly of the whole community metagenomic samples and analysed 

virome-bacteriome interactions. 

Guerin, E., Shkoporov, A., Stockdale, S.R., Clooney, A.G., Ryan, F.J., Sutton, T.D.S. 

et al. (2018). Biology and Taxonomy of crAss-like Bacteriophages, the Most 

Abundant Virus in the Human Gut. Cell Host & Microbe 24, 653-664.e656.  

Assisted in the design and implementation of analysis approaches and 

reviewed the final manuscript. Carried out read processing, metadata 

processing and assembly for the Norman et al. dataset which was used to 

investigate crAss families across studies. 

Fitzgerald, C.B., Shkoporov, A.N., Sutton, T.D.S., Chaplin, A.V., Velayudhan, V., 

Ross, R.P. et al. (2018). Comparative analysis of Faecalibacterium prausnitzii 

genomes shows a high level of genome plasticity and warrants separation into new 

species-level taxa. BMC genomics 19, 931. 

Investigated prophage regions within Faecalibacterium prausnitzii genomes 

by recruiting induced VLP reads to the host genomes and characterising the 

coverage patterns near predicted prophage coordinates. 

Shkoporov, A.N., Ryan, F.J., Draper, L.A., Forde, A., Stockdale, S.R., Daly, K.M. 

McDonnell, S.A., Sutton T.D.S, et al. (2018). Reproducible protocols for 

metagenomic analysis of human faecal phageomes. Microbiome 6, 68 

Developed the script used to remove redundancy across virome assemblies 

which has featured in all subsequent virome studies from the group. 
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