:COl

Title Comparative preferences induction methods for conversational
recommenders
Authors Trabelsi, Walid;Wilson, Nic;Bridge, Derek G.

Publication date

2013-11

Original Citation

TRABELSI, W., WILSON, N. & BRIDGE, D. G. 2013. Comparative
preferences induction methods for conversational
recommenders. In: PERNEY, P., PIRLOT, M. & TSOUKIAS, A. (eds.)
Algorithmic Decision Theory. Bruxelles, Belgium, 13-15 Nov.
Berlin Heidelberg: Springer, pp. 363-374

Type of publication

Conference item

Link to publisher’s
version

10.1007/978-3-642-41575-3_28

Rights

© Springer-Verlag Berlin Heidelberg 2013. The
final publication is available at Springer via http://
dx.doi.org/10.1007/978-3-642-41575-3_28

Download date

2024-04-25 06:23:50

[tem downloaded
from

https://hdl.handle.net/10468/1404

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh

https://hdl.handle.net/10468/1404

Comparative Preferences Induction Methods for
Conversational Recommenders

Walid Trabelsi’? and Nic Wilson! and Derek Bridge?

1 Cork Constraint Computation Centre
w.trabelsi@4c.ucc.ie, n.wilson@4c.ucc.ie
2 Department of Computer Science,
University College Cork, Ireland
d.bridge@cs.ucc.ie

Abstract. In an era of overwhelming choices, recommender systems aim
at recommending the most suitable items to the user. Preference han-
dling is one of the core issues in the design of recommender systems and
so it is important for them to catch and model the user’s preferences as
accurately as possible. In previous work, comparative preferences-based
patterns were developed to handle preferences deduced by the system.
These patterns assume there are only two values for each feature. How-
ever, real-world features can be multi-valued. In this paper, we develop
preference induction methods which aim at capturing several preference
nuances from the user feedback when features have more than two values.
We prove the efficiency of the proposed methods through an experimen-
tal study.

1 Introduction

Choosing the right or the best option is often a demanding and challenging task
for the user when there are many available alternatives (e.g., a customer in an
online retailer). Recommender systems aim at recommending the most suitable
items to the user. However, the recommended items proposed by the system may
not match the users’ needs as recommender systems might miss on the users’
preferences (see, e.g., [1]). One approach which ensures that the system is kept
aware of the user needs is to establish a conversation between the user and the
system by means of conversational recommender systems.

Preference handling is one of the core issues in the design of recommender
systems and so it is important for them to catch and model the user’s prefer-
ences as accurately as possible. In fact, preferences aim at offering the user the
ability to express her relative or absolute satisfaction when faced with a choice
between different options. One of the major approaches in today’s recommender
systems is utility functions which assign a numerical score to each data item [2].
A second major approach is the relational preference structures [3] as the user
may wish to state simple comparisons. She may want to make no explicit quan-
tification of preference or utility, leaving the preference purely qualitative. This
could be the case for example in a travel problem, where there is a large number

of possible attributes involving times, transportation means and locations that
vary from one user to another. In such a case, the user may want to say that she
likes to travel to a country during the summer in that country, with all other
attributes being equal. The user will then avoid having to communicate an accu-
rate numerical model. It has also been claimed that the qualitative specification
of preferences is more general than the quantitative one, as not all preference
relations can be expressed by scoring functions [4].

In this paper, we look for elaborate and generic comparative preferences-
based induction methods that we can prove to be efficient in practice with con-
versational recommender systems that suggest multi-valued feature products to
the user.

The rest of the paper is organized as follows. In Section 2, we give an overview
of conversational recommender systems and how preferences are handled in these
systems. Then, Section 3 describes the framework of preference dominance that
will be used in this paper. The conversational recommender system we are using
is detailed in Section 4. A fundamental step in the process of recommending
for conversational recommender system is preferences induction. We introduce a
number of preference induction methods in Section 5. We performed experimen-
tations which allowed us to assess the efficiency of these methods with regards to
the obtained results which we discussed in Section 6. In Section 7, we conclude
the paper with possible extensions of the proposed approaches.

2 Related Work

2.1 Conversational recommender systems

Generally speaking, people do not state their preferences up-front because ini-
tially they only have a vague idea of the product they would like to have [5].
Usually, criteria about the product the customer would like to purchase are
specified during the dialogue with the seller. This is still the case even for knowl-
edgable customers in the domains where expert users need to be assisted because
available products dynamically change. A distinctive example is the list of special
offers (e.g., flight tickets) which change frequently.

Conversational recommender systems [5] recognise that their users may be
willing and able to provide more information on their constraints and prefer-
ences, over a dialogue. The main difference with the single-shot recommenda-
tion scenario is that in the case where the user is not satisfied she can revise her
request.

2.2 Preference Handling in Conversational Recommender Systems

The acquisition of preferences is a central challenge in interactive systems like
recommender systems [6]. There are two major approaches in today’s recom-
mender systems: utility functions [2] and relational preference structures [3]. A
utility function assigns a numerical score to each item. Relational preference

structures link pairs of items through the notions of “is preferred to” and “is
equally preferable as” thus leading to qualitative preference orderings. Typi-
cally, the task of the recent online conversational recommenders is to elicit the
customer requirements, while interacting with her, in a personalized way.

Critiquing [7] is an interaction model that allows users to build their prefer-
ences by examining or reviewing examples shown to her by the system. The user
feedback employed in conversational recommender systems was also studied in
[8] through two comparison-based recommendation approaches: More Like This
(MLT) and Partial More Like This (PMLT). Their role is to induce preferences
when the user reacts to the recommended items. They both generate preference
statements stating the preference of features that mark the selected item over
those that characterize the rejected items during an interaction stage. Informa-
tion Recommendation [9] is a recommendation approach that aims at suggesting
to the user how to reformulate her queries to a product catalogue in order to
find the products that maximize her utility. In [9], the authors showed that, by
observing the queries selected by the user among those suggested, the system
can make inferences on the true user utility function and eliminate from the
set of suggested queries those with an inferior utility. Authors in [10] proposed a
novel use of the formalism of preference elicitation in [9]. They invoked compara-
tive preferences-based patterns to handle the preferences deduced by the system.
These patterns assume there are only two values for each feature. However, real-
world features can be multiple-valued. In this paper, we investigate preference
induction methods which can handle the user preferences in a conversational
recommender for products with multiple-valued features.

3 CP-Tree-Based Dominance

Products in online databases need to be compared by pairs, through dominance
testing, to find out which options are dominated and to eliminate them con-
sequently . In this paper, dominance testing is based on some structure called
cp-trees which were introduced in [11].

3.1 Description of a CP-Tree

A cp-tree is a directed rooted tree. Associated with each node N in the tree is
a set of variables Yx. Let v be the maximum number of variables in Yx. The
cp-tree represents a form of lexicographic order where the importance ordering
on nodes and their assignments depends on more important nodes and their
assignments.

Ezample 1. Let V= {X,Y, Z} be aset of variables whose domains are as follows.
X ={z1,22}, Y = {yl,y2} and Z = {21, 22} respectively. Figure 1 represents
an example of a cp-tree with v = 1. Each node in the cp-tree depicted in Figure
1 is labeled with a variable. The root is labeled by X as the most important
variable. Each node is also associated with a preference ordering of the values of
the variable. We can see the total pre-order of the outcomes below the cp-tree.

X1y2Z2 2 X1y2Z1 2 X1Y1Z1 2 X1Y1Z2 2 X2y1Z2 = X2y2Z2 > X2y1Z1 2 X2Y271

Fig. 1. A cp-tree o, along with its associated ordering =, on outcomes, with v = 1
(i-e., with at most one variable associated with a node)

3.2 CP-Tree-Based Dominance

Let I" be a set of comparative preference statements. Let > be the associated
preference relation of I" on outcomes. Let o and 3 be two outcomes. The following
definition is based on [11].

Definition 1. « dominates § if and only if all possible cp-trees (every cp-tree
represents a total pre-order) that satisfy I', prefer a over 8. In other words,
«a =r B holds if every cp-tree o that extends all preferences in I' has a come

before [3.

In this paper, we are using a dominance testing as stated in Definition 1 and
which can check, in polynomial time, whether « = 5.

4 The Case Study: A “Select and Get More Products”
Conversational Recommender System

The product search, which needs a filter-based retrieval, can take place in tan-
dem with preference elicitation. This motivates our present work which suggests
a conversational recommender system that guides the user towards her target
through a simple conversation during which the system can deduce different
forms of comparative preferences from the user feedback.

4.1 The Advisor

The advisor helps the user identify a suitable product to purchase among the
relatively large set of available products. The proposed system in this paper can
be regarded as an instance of a kind of system in which the user is repeatedly
shown products and criticises one or more of the shown products, until she finds
a product that she is keen to have. During the interaction with the user, the

advisor infers preference relations from the user’s selections at each step. The
selected potential products that are shown to the user are meant to best match
these preference relations.

The user’s preferences are stored in a kind of user model which is progressively
updated by the system as the dialogue continues. Having that user model, the
system starts to be able to determine whether certain products dominate others
and to suggest to the user those that are not dominated. Dominance is computed
as described in Section 3.2. The advisor asks little from the user who will only
select one of the products shown to her. This will steer the user smoothly towards
her target.

4.2 Products

We assume that the products are modeled with a collection of n multi-valued
features V' = {F1,..., F,,}. The features are intended to relate to a set of prod-
ucts that the user is interested in choosing between. For example, if the product
is a hotel, one feature might be the size of a swimming pool in the hotel (e.g.,
the swimming pool can be small, medium or large).

4.3 Dialogue

Let {2 be the global set of products. Let K (i.e., 9) be the maximum number of
products shown to the user in each step of the dialogue.

Initially, the user is shown the first non-dominated products retrieved
from (2 and selects a product P. The interaction between the user and the
recommender system proceeds as follows:

— The recommender system analyzes the current product P and induces some
constraints on the user’s preferences with particular regard to differences
between P and the products the user might have selected. The nature of the
induced preferences depends on the induction method used.

— From the second step of the dialogue, the system computes X non-dominated
products among the remaining products. In fact, the system keeps retriev-
ing products from those remaining in the database and not yet checked by
the system then pruning the dominated ones until finding a set of K non-
dominated products or there are no more products remaining in (2. The
system adds the product that the user selected in the previous step of the
dialogue to the set of non-dominated products already computed. Since I is
set to 9 in these experiments, the user is shown 10 products. If the number
of products remaining in the database is less than I then we select the non-
dominated among the remaining products and we show them to the user
with the product chosen in the previous step.

— The user selects a product which becomes the new current product P.

The sequence of steps stated above is repeated until the user is satisfied with
P (by either choosing the same product a number of times (set to 3) or she gets
the most preferred product with regards to her true preferences) or the set of
remaining products in {2 is empty.

5 Induction of Constraints on Preferences Within the
System

Each time the user reviews a product, the recommender system, described in
Section 4 induces some of the user’s preferences. There are several induction
methods that specify patterns of preference statements that can be induced
from the user’s selection. In this section, we discuss a number of these methods.

5.1 Constraint Language

Let V be a set of variables. Wilson [11] presented comparative preference theories
which involve preference statements ¢ of the form p > ¢||T where p and g are the
respective assignments to sets of variables P and @), and T is a set of variables
(PCV,Q CVand T C V). Such a statement expresses a preference for an
assignment p over another assignment ¢ with variables T" held constant. We are
specifically using Wilson’s preference language to allow the system to handle the
preferences induced from the user selection.

5.2 Preferences Deduction Within the System

This section explains what the system induces when it observes the product that
the user selects and the remaining products that were shown but not selected
by the user. We adopt approaches which are based on comparative preference
and partially inspired from MLT and PMLT approaches briefly described in
Section 2.2. We have derived three patterns of preference statements that the
system can induce when the user makes her selection. Let V = {Fy,..., F,}
be a set of n variables that represent features. Let C' and R be two products.
The combinations of feature values in the two products are denoted as follows.
C={fF ... fY and R={ff ... fE} where f¢ and fF are the two respective
values that C' and R have for the feature F; (i={1,...,n}).

When the user chooses a product C and rejects another product R among
a set of K non-dominated products that are shown to her, the system induces
preference statements whose form depends on the following inference methods.

— Basic: A straightforward kind of preference to be induced is to express
the preference of the features values combination included in C' over the
combination of values included in R. Thus, we model the following preference
statement fC ... fC > fE...fE 0.

— Lex-Basic: Lexicographic preference models are regarded as simple and
reasonably intuitive preference representations, and so lexicographic order-
ing can be well-understood by humans that use it to make preference deci-
sions [12]. This is why we adopt a lexicographic model of the Basic format
described above. This pattern allows the system to induce unconditional
preference statements with regards to Basic.

Let U C V be the set of features for which C' and R have the same values
(i.e., C and R agree on U). Let S C V be the set of features for which C
and R have different values. The combinations of features values of C and
R can be represented by assignments us and us’ respectively, with u is the
assignment to U (i.e., u € U), and s and s’ are the respective assignments
to S of C and R which differ on each feature: s(F') # s'(F) for all F € S.
Instead of stating the preference of us over us’ as in Basic (i.e., us > us’||0),
the idea is to induce a preference statement saying partial assignment s is
preferred over partial assignment s’ with all remaining features in V' (i.e.,
features not in S) being equal. Then, the induced preference statement can
be written as s > §'||U, the corresponding unconditional statement.

— Every-Selected-Value: We induce the preference statements f& > fZ||V'\
{F;}, for every value fC assigned to feature F} in the chosen product C and
for any value f1 assigned to feature F; in a rejected product R.

This states the superiority of every feature value taken by the chosen product
C (i.e., f¢) over any other value (of the same feature) that appears at least
in one rejected product R (i.e., f7).

— Cond-Selected-Value: We induce the preference statements f;C > RV \

{F;}. fic represents every value assigned to feature F; in the chosen product
C without being present in any rejected product R. ff represents every
value assigned to feature F; in a rejected product R.

This states the superiority of every feature value f¢ taken by the chosen
product C, and which does not appear in any rejected product R, over any
other possible value f (of the same feature) that appears at least in one
rejected product R. The difference with Every-Selected- Value form is that the
preferred feature value f¢ needs to be present in the chosen product C' and
it should not appear in any rejected product R while Every-Selected- Value
involves all feature values in C.

Let @, &15, Prsy and Pogy be the sets of preference statements induced
by the system with Basic, Lex-Basic, Every-Selected-Value and Cond-
Selected-Value respectively. We shall notice that any cp-tree that satisfies
@, p will also satisfy @5 as preference statements in @5 imply statements in
@p. We also notice that the set of preference statements in @cgy is included
in @pgy. Thus, all cp-trees that agree with statements in ®ggy also agree with
statements in @c gy . The set of cp-trees S, that satisfy @p is likely to be larger
than the set of models S, .. This can explain a weaker inference for Basic with
regards to Lex-Basic. The set of models that agree with statements in @ggy
will necessarily be smaller than the set of models satisfying ®cgy as Ppsy C
®cgy. Thus, this will probably make the dominance relation based on ®ggy
stronger than the dominance relation based on @cgy .

Ezample 2. Let V = {Fy, Fy, F3} be a set of features whose domains are as
follows. Fy = {f, f2. [}, Fo = {f2, 3}, F5 = {f3, /3. f3, f3}. Let us assume

that the user is initially shown the three following products: fi fsf2, f2fsf3
and f2f3 f+. Then, the user chooses f7fif3. The system will induce prefer-
ences in a format that depends on which among the methods introduced above
is used. For Basic, the system induces the set of statements &1 = f2f1f3 >
L3200, f21313 > f2f5f+ ||0. For Lex-Basic, the system induces the set of
statements @5 = {f213 > fi f3|| {F2}, f3 > fi||{F1, F»}. For Every-Selected-
Value, the system induces the set of statements @3 = {fZ > fL|[{Fz, F3}, f3 >
F2{Fy, B2}, f3 > fA|{F1, Fy}. For Cond-Selected-Value, the system induces
the set of statements &, = f3 > f2||{F1, Fa}, f3 > f3|[{F1, Fo}.

Let us suppose now that the system wants to show other undominated prod-
ucts to the user who is not yet satisfied with her selection. The system has three
other products in the database and it will check whether they are dominated.
Let a = f2f2f3 and B = fi f3f+ be two of them.

For Basic, a %4, § as we can identify cp-trees which satisfy preference
statements in @; and prefer 8 over a. An example illustrating this is a cp-tree
o with root node associated with variable F5 (and value ordering e.g., such that
f3 = f3), and associated with value f3 is a child node with variable F; and local
ordering such that f{ = fZ.

For Lex-Basic, a =5, 0 as all cp-trees that satisfy preference statements in
&, have nodes F; with a local ordering such that fZ =, fi, and nodes F3 with
a local ordering such that f3 =p, fi and f$ =g, fa. All these cp-trees prefer «
over (3 as any product that has f? and f3 as values for F; and Fj respectively
will be preferred over any product that has f{ and fi for F} and Fj respectively.
For Every-Selected-Value, with a similar justification as o =4, 8, a =g, B.

For Cond-Selected-Value, « %4, [as there exist cp-trees which satisfy @4
but prefer 8 over a.. The cp-tree o described above is an illustrative example.

6 Experimentation and Results

This section describes experiments to assess the inference methods presented
in Section 5.2. By these experiments we aim at showing the applicability and
efficiency of these methods since this is the first time it is applied in the context
of recommender system with multi-valued features. These experiments illustrate
how a recommender system can exploit the expressiveness of comparative pref-
erences and their relatively fast preference dominance engine.

6.1 Experiment Design

We report experiments with simulated users. The ultimate evaluation and vali-
dation of the preference dominance approaches for conversational recommender
systems should be performed online. However, experiments with real users can-
not be used to extensively test alternative newly-deployed interaction control
algorithms. Indeed,a number of researchers pointed out the limitations of off-
line experiments and their evaluation mechanisms, whereas others argued that

off-line experiments are attractive because they allow comparing a wide range
of approaches at an affordable cost [13].

We make assumptions concerning the behaviour of users. For a simulated
user to make choices about which among the recommended products is the best
one for her to have, she must be assigned a set of true preferences. The user’s
true preferences are represented either in the weights vector model by randomly
generating weights vectors over product features or in the cp-tree model by
randomly generating cp-trees over product features. The weights are related to
product features; they are randomly selected real numbers in the interval [0,1].
The cp-trees representing the user’s true preferences have the same structure as
the cp-tree described in Section 3.1.

We have generated random products with n (e.g., 10) variables having three
values each. Four recommenders use the four induction methods while other four
recommenders consider four combinations of these approaches. For each pairing
of a user with a recommender system, we ran 1,000 simulated dialogues. In
total then, we are reporting results for 8 ways of inducing the user’s preferences
X 2 ways of representing the user’s true preferences x 1,000 dialogues, which
is 16,000 runs of the system. Experiments were run as a single thread on Dual
Quad Core Xeon CPU, running Linux 2.6.25 x64, with overall 11.76 GB of RAM,
and processor speed 2.66 GHz.

6.2 Pruning

The recommender system considered in this work will keep only those products
which are not dominated regarding the user’s preferences collected so far during
the dialogue between the user and the system. In the experiments, we compare
the pruning rates achieved by the eight recommender systems. As mentioned in
Section 4.3, in each step of the dialogue, the goal of the system is to show a
(predefined) number of non-dominated products to the user. Thus, the system
selects K non-dominated products from a subset of £ products among those
remaining in the global set of products and not yet retrieved by the system. The
pruning rate is defined as the proportion of K in L.

6.3 Discussion of Results

The capability of pruning dominated combinations of features is an important
success key of a conversational recommender system. But, the pruning capac-
ity is not sufficient to make a conversational recommender system prevail over
another. For instance, when the system prunes a large number of products, the
user-system dialogue could be longer and the user might take more time to meet
her target. Therefore, several factors might determine how good a conversational
recommender system is. These factors include the pruning rate (Pruning), the
running time (Time), the dialogue length (Steps) and the shortfall (Fall). The
running time records, in milliseconds (ms), the time spent in checking the dom-
inance of the products. The shortfall expresses how far is the preference of the
product the user ended up with from the best product (in the database) the

user could have obtained (in percentage). Table 1 and Table 2 give the results
of the experiments with the true preferences of the simulated users represented
as weights vectors and cp-trees respectively. The measures shown are averaged
over 1, 000 dialogues.

Table 1. Averages (over 1,000) of the pruning rates, the computation time, the number
of steps per dialogue and the shortfalls for each induction method and each combination
of induction methods (users as weights vectors)

Induction methods Pruning (%)| Time (ms)|Steps|Fall (%)
Basic 3.03 0.017 6.06 | 0.068
Lex-Basic 27.73 0.03 5.59 | 0.064
Every-Selected-Value 55.09 0.027 4.94| 0.052
Cond-Selected-Value 0.42 0.008 6.1 | 0.069
Basic + Every-Selected-Value 55.09 0.036 4.94| 0.052
Basic + Cond-Selected-Value 5.17 0.018 6 0.069
Lex-Basic + Every-Selected-Value 55.09 0.049 4.94| 0.052
Lex-Basic + Cond-Selected-Value 30.42 0.033 5.52 | 0.065

Table 1 shows that, the amount of pruning increases as the preference state-
ments induced become less conservative (from Basic to Every-Selected-Value).
For example, pruning goes from 3.03% Basic to 55.09% FEvery-Selected- Value.
Lez-Basic has also significantly improved its pruning rate with regards to Basic
(27.73% versus 3.03%) after unconditioning the preference statements that were
conditional in Basic. The exception to this is Cond-Selected- Value case (0.42%)
which is probably due to the fact that the system induces much less preference in-
formation about the user. In fact, experiments have shown that one feature value
that is seen in the chosen product is likely to be in at least one of the rejected prod-
ucts which makes the system refrain from inducing a preference statement that
involves that feature value when Cond-Selected-Value is adopted. Thus, Cond-
Selected- Value implies preference statements that would be satisfied by a quite
large set of models which makes the inference weaker. Cond-Selected- Value has
the smallest pruning rate with no positive effect on the shortfall. Every-Selected-
Value distinguishes itself by having the best pruning capability (55.09%) and the
shortest dialogue (4.94) that did not prevent it from having the best shortfall
(0.052%).

When combined with a more conservative method as Basic or Lez-Basic,
Every-Selected- Value takes longer period of time (0.036ms and 0.049ms versus
0.027ms) even though the pruning and the dialogue length are still the same. We
can also see the running time is increasing with the pruning rate. In fact, this con-
versational recommender system keeps retrieving products from the database and
trying to gather a predefined number of undominated products. A high pruning
rate usually indicates that the number of products retrieved is quite large. This
involves more pairwise comparisons between products and so takes more time.

Table 2 gives the results of the experiments with the true preferences of the
simulated users represented as cp-trees. The measures shown are averaged over
1,000 dialogues. A look at Table 2 shows that we can infer similar conclusions
to the deductions made from results in Table 1. We can see that all the pruning
rates are higher than the pruning percentages in Table 1 as well as the shortfall
percentages. These differences can be explained by the nature of the user’s true
preferences and the way the user satisfaction is computed for both preference
models (i.e., weights vectors and cp-trees). The shortfalls are all very small. It
may be that Basic has the smallest shortfall (i.e., 0.187) in the second setting
because it is the most cautious, i.e., it makes the weakest assumptions on the
preferences.

Table 2. Averages (over 1,000) of the pruning rates, the computation time, the number
of steps per dialogue and the shortfalls for each induction method and each combination
of induction methods (users as cp-trees)

Induction methods Pruning (%)| Time (ms)| Steps |Fall (%)
Basic 18.68 0.049 9.558 | 0.187
Lex-Basic 64.83 0.045 5.482 | 0.642
Every-Selected-Value 74.74 0.039 4.383 | 0.646
Cond-Selected-Value 1.28 0.015 |11.211] 0.640
Basic + Every-Selected-Value 74.74 0.048 4.383 | 0.646
Basic + Cond-Selected-Value 21.18 0.052 9.52 | 0.642
Lex-Basic + Every-Selected-Value 74.74 0.064 4.383 | 0.646
Lex-Basic + Cond-Selected-Value 65.19 0.046 5.435 | 0.641

7 Conclusions and Perspectives

Recommender systems are gaining momentum in the e-commerce applications
market to face the “information overload” problem. This progressively reveals an
increasing need to enable those recommender systems with suitable preference
formalisms and dominance engines that can efficiently handle and reason with the
user preferences while conversing with her (see, e.g., [10]). We specify new prefer-
ence induction methods based on a recently developed preference language (i.e.,
comparative preference theories). We implemented these methods for a conversa-
tional recommender system to handle the user’s preferences when recommending
multi-valued feature products. We showed that these methods allow the system
to capture preference nuances and various forms of preferences without giving up
the attractive computational properties of the preference dominance relation.

As a continuation of this work, we will consider similar preference induction
methods to be integrated with different critiquing-based recommender systems.
Extending the conclusion to a more general scope, in the future, we intend to look
for more elaborate and intuitive preference elicitation formalisms that we can prove

to be efficient in practice with conversational recommenders. These formalisms will
adapt with the different dialogue strategies the conversational recommenders go
through. They can be part of an intelligent query selection strategy to drive the
elicitation process in the recommenders.

Acknowledgements

This material is partly supported by the Science Foundation Ireland under Grant
No. 08/P1/I1912.

References

10.

11.

12.

13.

. Zaslow, J.: If tivo thinks you are gay, here’s how to set it straight. The Wall Street

Journal (2002)

Fishburn, P.C.: Lexicographic orders, utilities, and decision rules: A survey. Man-
agement Science 20(11) (1974) 1442-1471

Oztiirk, M., Tsoukias, A., Vincke, P.: Preference modelling. In Bosi, G., Brafman,
R.I., Chomicki, J., Kielling, W., eds.: Preferences. Volume 04271 of Dagstuhl Sem-
inar Proceedings., IBFI, Schloss Dagstuhl, Germany (2004)

Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition
and application of preferences in database systems. ACM Transactions on Database
Systems 36(3) (2011) 19

Bridge, D.G., Géker, M.H., McGinty, L., Smyth, B.: Case-based recommender
systems. The Knowledge Engineering Review 20(3) (2005) 315-320

Chen, L., Pu, P.: Survey of preference elicitation methods. In: Technical Report
1C/200467. (2004)

McGinty, L., Reilly, J.: On the evolution of critiquing recommenders. In Ricci,
F., Rokach, L., Shapira, B., Kantor, P.B., eds.: Recommender Systems Handbook.
Springer (2011) 419-453

McGinty, L., Smyth, B.: Comparison-based recommendation. In Craw, S., Preece,
A.D., eds.: ECCBR. Volume 2416 of Lecture Notes in Computer Science., Springer
(2002) 575-589

Bridge, D.G., Ricci, F.: Supporting product selection with query editing recom-
mendations. In Konstan, J.A., Riedl, J., Smyth, B., eds.: RecSys, ACM (2007)
65-72

Trabelsi, W., Wilson, N., Bridge, D.G., Ricci, F.: Preference dominance reasoning
for conversational recommender systems: a comparison between a comparative
preferences and a sum of weights approach. International Journal on Artificial
Intelligence Tools 20(4) (2011) 591-616

Wilson, N.: Efficient inference for expressive comparative preference languages. In
Boutilier, C., ed.: IJCAI (2009) 961-966

Yaman, F., Walsh, T.J., Littman, M.L., desJardins, M.: Democratic approximation
of lexicographic preference models. Artificial Intelligence 175(7-8) (2011) 1290-
1307

Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Recom-
mender Systems Handbook. (2011) 257-297

