
Title Semiring induced valuation algebras: Exact and approximate local
computation algorithms

Authors Kohlas, Juerg;Wilson, Nic

Publication date 2008-07

Original Citation Kohlas, J. and Wilson, N.; (2008) 'Semiring induced valuation
algebras: Exact and approximate local computation algorithms'.
Artificial Intelligence, 172 (11):1360-1399. doi:http://
dx.doi.org/10.1016/j.artint.2008.03.003,

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://www.sciencedirect.com/science/article/pii/
S0004370208000428 - 10.1016/j.artint.2008.03.003

Rights © 2008 Elsevier B.V. NOTICE: this is the author’s version of a
work that was accepted for publication in Artificial Intelligence.
Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and
other quality control mechanisms may not be reflected in this
document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently
published in Artificial Intelligence, Vol 172, Issue 11, 2008. DOI:
http://dx.doi.org/10.1016/j.artint.2008.03.003,

Download date 2024-03-29 11:37:42

Item downloaded
from

https://hdl.handle.net/10468/1116

https://hdl.handle.net/10468/1116

Semiring Induced Valuation Algebras:

Exact and Approximate Local Computation

Algorithms

J. Kohlas 1

Department of Informatics, University of Fribourg, Switzerland

N. Wilson 2

Cork Constraint Computation Centre, Department of Computer Science, Ireland

Abstract

Local computation in join trees or acyclic hypertrees has been shown to be linked
to a particular algebraic structure, called valuation algebra. There are many mod-
els of this algebraic structure ranging from probability theory to numerical analy-
sis, relational databases and various classical and non-classical logics. It turns out
that many interesting models of valuation algebras may be derived from semiring
valued mappings. In this paper we study how valuation algebras are induced by
semirings and how the structure of the valuation algebra is related to the algebraic
structure of the semiring. In particular, c-semirings with idempotent multiplication
induce idempotent valuation algebras and therefore permit particularly efficient ar-
chitectures for local computation. Also important are semirings whose multiplicative
semigroup is embedded in a union of groups. They induce valuation algebras with a
partially defined division. For these valuation algebras, the well-known architectures
for Bayesian networks apply. We also extend the general computational framework
to allow derivation of bounds and approximations, for when exact computation is
not feasible.

Key words: Semirings, Local Computation, Join Tree Decompositions, Soft
Constraints, Uncertainty, Valuation Networks, Valuation Algebras

Email addresses: juerg.kohlas@unifr.ch (J. Kohlas), n.wilson@4c.ucc.ie
(N. Wilson).

URL: http://diuf.unifr.ch/tcs/juerg.kohlas (J. Kohlas).
1 Research supported by grant No. 2100–042927.95 of the Swiss National Founda-
tion for Research.
2 This material is based partly upon works supported by the Science Foundation
Ireland under grant No. 00/PI.1/C075 and grant No. 05/IN/I886.

Preprint submitted to Elsevier Science 4 March 2008

1 Introduction

Many different formalisms from artificial intelligence, including constraint sys-
tems, probabilistic networks, systems of possibility measures or belief func-
tions, from database theory, from logic, statistics and from numerical analysis
exhibit a common structure permitting local computation, i.e. computation on
acyclic hypertrees, or join trees. This algebraic structure has first been isolated
in an abstract setting and related to local computation in Shenoy and Shafer
(1990), see also Shafer (1991); Kohlas and Shenoy (2000). It has been further
extended and studied in detail in Kohlas (2003). The algebraic structure has
been called a valuation algebra in Kohlas (2003).

In a valuation algebra, each piece of information φ, called a valuation, has
an associated set s of variables; φ gives information about variables s. For
example, in a constraint satisfaction problem or relational database φ may
express a relation on s, saying which assignments of these variables are feasi-
ble. Alternatively, in a soft constraints system it may express preferences for
different assignments, or in a system for reasoning with uncertainty such as
possibility theory or Bayesian networks, it may express degrees of uncertainty
of the different assignments to variables s.

It is assumed that we have a way of combining valuations, through an oper-
ation ⊗, which gives their combined effect; the combination operator is as-
sociative and commutative. If ψ is another valuation on variables t then the
combination φ⊗ψ is a valuation on variables s∪ t, since φ and ψ together say
something about variables s ∪ t.

Valuation algebras also assume another operation, called projection or marginal-
isation, which focuses information onto a smaller set of variables. Suppose u
is a subset of s. Then φ↓u represents what valuation φ tells us about u. If, for
example, φ is a probability distribution or potential, then φ↓u is the marginal
on u. Alternatively, if φ represents a binary constraint relating variables X1

and X2 then it tells us which assignments to {X1, X2} are possible, and φ↓{X1}

tells us which assignments to X1 are possible.

The inputs of many important computational reasoning problems can be ex-
pressed as a collection of valuations φ1, . . . , φk (in an appropriate valuation
algebra), where the associated sets of variables are all fairly small. The com-
bination of these gives us the combined effect of all our information. For ex-
ample, in a constraint satisfaction problem, the combination represents all the
solutions, and in a relational database, the combination is the join of all the
relations. In a Bayesian network, the combination represents the full prob-
ability distribution over all the variables. It will very often be infeasible to
represent this whole combination directly, since involves all the variables, for

2

which there are an exponential number of assignments. Typically we are in-
terested in what the information tells us about certain small sets of variables.
So, for particular sets u, we want to compute the projection of the whole com-
bination to u. This is known as the projection problem. Direct computation
is very often not feasible. For a single set u, an approach based on sequential
variable elimination can be used to compute the associated marginal. For the
computation for several sets u, faster methods have been developed based on
use of an appropriate join tree, that is, a tree whose nodes are associated with
sets of variables which satisfy the running intersection property: that if vari-
able X is associated with two nodes then it is associated with every node in
the path between the two nodes.

Such join tree algorithms for computing several marginals have two parts:
an inward phase where information is passed iteratively from the leaves to a
chosen root node; and an outward phase where information is distributed out
again, iteratively from the root to all the nodes. As discussed below (and in
more detail in Kohlas (2003)) there are a number of different variations on
this local computational architecture.

It turns out that many important examples of valuation algebras can be in-
duced by valuations taking values in a semiring. This has first been proposed
in the domain of constraint systems, where classical crisp constraints are gen-
eralized to fuzzy constraints, weighted constraints and partially satisfied con-
straints Bistarelli et al. (1997, 1999). But probability potentials as used in
Bayesian networks Lauritzen and Spiegelhalter (1988) belong also to the same
class of valuations, as do relational systems Beeri et al. (1981); Maier (1983).
Possibility potentials and Spohn potentials Spohn (1988) provide further ex-
amples of valuations based on semirings. Other instances and applications of
semiring-induced valuation algebras are described in Aji and McEliece (2000).

In the second section we introduce semirings and give several examples which
are related to important valuation algebras. A semiring consists of a set A
with two operations on it, conventionally labelled + and ×, both of which
we assume to be associative and commutative; it is also assumed that × dis-
tributes over +. An example is the non-negative real numbers under addition
and multiplication. A valuation on variables s in the induced valuation algebra
is a function which assigns a non-negative real number to each assignment to
variables s. Combination is based on pointwise multiplication, and marginali-
sation involves summation over the values of variables being eliminated. This
semiring induced valuation algebra is therefore that of probability potentials,
used for reasoning with Bayesian networks.

Any semiring induces a valuation algebra in just the same way, as shown in
Section 3, which also discusses local computation based on these semirings.

3

In this paper we study valuation algebras induced by semirings in some detail.
In particular, we want to know how the structure of a valuation algebra is con-
ditioned by the structure of the inducing semiring. These are important ques-
tions for practical purposes: Valuation algebras provide the structure needed
for local computation architectures.

There exist particularly efficient architectures which use some form of divi-
sion in the valuation algebra Lauritzen and Spiegelhalter (1988); Jensen et al.
(1990). It is therefore important to know, what properties of the inducing
semiring guarantee the existence of a concept of division in the induced valua-
tion algebra and thus the usability of the corresponding architecture for local
computation Kohlas and Shenoy (2000); Kohlas (2003). Further, idempotent
valuation algebras, so-called information algebras, have interesting properties
and allow particularly simple local computation architectures. Therefore it is
important to know which semirings lead to idempotent valuation algebras.
Idempotent valuation algebras and their corresponding computational struc-
ture are analysed in Section 4, and in Section 5 we study semirings which
induce valuation algebras with division and discuss their local computation
architectures. This study helps to extend computational schemes, well known
in probability networks and relational algebra, to more general structures and
to develop generic architectures for local computation Pouly (2006).

It may well happen that, for a problem of interest, exact local computation is
not feasible. For certain important systems of valuations, it has been demon-
strated, e.g., in Dechter and Rish (2003), how the local computations can be
approximated using the ‘mini-buckets’ and ‘mini-clustering’ techniques. We
show in Section 6 how this kind of technique can be applied very generally
to valuation algebras, in particular, those induced by a semiring; we focus
especially on computing upper and lower bounds. We also consider the use of
constraint propagation for improving the efficiency of local computation.

Provisional versions of parts of this work appear in Kohlas (2004) and Wilson
(2004).

2 Semirings

This section defines different kinds of semirings which are relevant to valua-
tion algebras of interest in areas of automated reasoning, such as uncertain
reasoning and constraint-based reasoning.

Semirings are algebraic structures composed of two operations. So, let A be
a set with two binary operations + and × defined in it. We call a tuple
A = 〈A,+,×〉 a semiring, if both operations + and × are commutative and

4

associative, and if × distributes over +. Elsewhere this is often called a com-
mutative semiring. If there is an element 0 ∈ A such that 0 + a = a + 0 = a
and 0× a = a× 0 = 0 for all a ∈ A, then A is called a semiring with zero ele-
ment. In this case the zero element 0 is clearly unique. A zero element can be
adjoined to any semiring. Let 〈A,+,×〉 be a semiring. Add an extra element
0 to A and extend + and × to A∪{0} by, for all a ∈ A, a+0 = 0+a = a and
a× 0 = 0× a = 0. Then it is easy to verify that 〈A∪ {0},+,×〉 is a semiring.

Similarly, an element 1 ∈ A is said to be a unit element, if 1× a = a× 1 = a
for all a ∈ A. There can be at most one unit element 1 in a semiring. Note
that if in these cases A is a group under the operation +, then A is a ring. If
furthermore A− {0} is a group under the operation ×, then A is a field.

The associativity of + allows us to write expressions like a1 + a2 + · · ·+ an or∑
i ai, and in particular, if I = I1∪ . . .∪In, where the Ij are finite and disjoint,

then commutativity and associativity entail that

n∑
j=1

∑
i∈Ij

ai =
∑
i∈I

ai.

If A is a semiring with zero element and if

a+ b = 0 implies a = b = 0,

then A is called positive. In the same way, the associativity of × permits to
write expressions like a1 × a2 × · · · an or

∏
i ai.

If the operation + is idempotent, i.e. a+a = a for all a ∈ A, then the semiring
A = 〈A,+,×〉 can be extended to include a unit element as follows: For each
a ∈ A define a new element a1 such that a 6= b implies a1 6= b1. Let then
A′ = A ∪ A1, where A1 = {a1 : a ∈ A}. Define +′ as follows, when a and b
are arbitrary elements of A: a +′ b = a + b, and a +′ b1, a1 +′ b and a1 +′ b1
are all defined to be (a+ b)1. Further define ×′ as follows: a×′ b = a× b and
a ×′ b1 and a1 ×′ b are both defined to be (a × b) + a and a1 ×′ b1 is defined
to be (a1×′ b) +′ a1. The system A′ = 〈A′,+′,×′〉 is then a semiring with unit
element 01; and +′ is also idempotent.

Let A = 〈A,+,×〉 be a semiring. We define a relation �A on A (abbreviated
to � in this section) by: a � b, if and only if, either a = b or there exists a
c ∈ A such that a + c = b. If A has a zero element, then the last condition
covers the first one, since we may take c = 0.

Proposition 1 For any semiring A = 〈A,+,×〉, the associated relation �
satisfies the following properties:

5

(1) Relation � is a pre-order, i.e., it is reflexive and transitive;
(2) a � b and a′ � b′ imply a+ a′ � b+ b′ and a× a′ � b× b′;
(3) if, for all i = 1 . . . , n, ai � bi, then

∑n
i=1 ai �

∑n
i=1 bi and

∏n
i=1 ai �∏n

i=1 bi;
(4) for all a, b ∈ A, a � a+ b and if a has a zero element 0 then 0 � a;
(5) if a+ a = a and b+ b = b, then a � b if, and only if, a+ b = b.

Proof.

(1) Clearly � is reflexive. Suppose that a � b and b � c. Thus, there exist d
and e such that a + d = b and b + e = c, hence a + (d + e) = c. This proves
that a � c.

(2) Suppose a � b and a′ � b′, i.e. there exist c and c′ with a + c = b and
a′+c′ = b′. Then a+a′+(c+c′) = b+b′, hence a+a′ � b+b′ as required. For the
second part it is sufficient to show that a � b implies a× a′ � b× a′ since this
can be applied twice using commutativity of× to get the result. Suppose a � b,
so that there exists c with a+c = b. Then b×a′ = (a+c)×a′ = (a×a′)+(c×a′)
which implies that a× a′ � b× a′.

(3) follows by repeated application of (2).

(4) follows, since 0 + a = a.

(5) If a+ b = b, then by definition a � b. Conversely, if a � b, and there exists
a c with a+ c = b. Then a+ b+ c = b+ b = b. Hence a+ b = a+ a+ b+ c =
a+ b+ c = b as required. ut

Often the operation + is assumed to be idempotent, i.e. ∀a ∈ A we have
a+ a = a. Note that idempotency of + is implied by idempotency of the unit,
since if 1 + 1 = 1 then a+ a = a× (1 + 1) = a× 1 = a. If A has a zero and a
unit element and if furthermore for all a ∈ A,

a+ 1 = 1,

(and hence + is idempotent) then we call A a c-semiring Bistarelli et al. (1999)
(“c” standing for constraint) Bistarelli et al. (1997). This is a special kind of
commutative dioid Baccelli et al. (1992). According to Proposition 1 (4) the
preorder �A becomes a partial order ≤A (abbreviated to ≤) in A defined in
the following way:

a ≤A b if, and only if, a+ b = b.

The intended meaning of this order in applications is often that b is preferred
over a, or that b is “better” than a. We refer to the examples below. The

6

following lemma summarizes a few elementary, but important properties of
this order.

Lemma 1 Let A be a c-semiring

(1) ∀a ∈ A we have 0 ≤ a ≤ 1;
(2) ∀a, b ∈ A we have a ≤ a+ b and a× b ≤ a;
(3) a ≤ a′ and b ≤ b′ imply a+ b ≤ a′ + b′ and a× b ≤ a′ × b′;
(4) a× b = a implies a ≤ b;
(5) a+ b = sup{a, b};
(6) A is positive.

Proof. (1) This follows from 0 + a = a and from a+ 1 = 1.

(2) First we have a+(a+ b) = (a+a)+ b = a+ b by idempotency. Further, by
the distributive law, a+ (a× b) = (a× 1) + (a× b) = a× (1 + b) = a× 1 = a
since b ≤ 1 by (1).

(3) By assumption we have a + a′ = a′ and b + b′ = b′. Hence we obtain that
(a + b) + (a′ + b′) = (a + a′) + (b + b′) = a′ + b′ and also, by distributivity
(a× b)+(a′× b) = (a+a′)× b = a′× b. So we see that a× b ≤ a′× b. But then
it follows also that a′ × b ≤ a′ × b′ and hence, by transitivity a× b ≤ a′ × b′.

(4) We have a+ b = (a× b) + b = (a+ 1)× b = 1× b = b.

(5) By (2) a, b ≤ a + b. Let c be another upper bound of a and b, a ≤ c and
b ≤ c. Then by (3) a+ b ≤ c+ c = c. Thus a+ b is the least upper bound.

(6) Suppose a + b = 0. Then 0 ≤ a ≤ a + b = 0 (see Proposition 1). By
transitivity of the order we get thus 0 ≤ a ≤ 0, hence from the antisymmetry
of the partial order ≤ it follows that a = 0. Similarly b = 0 can be derived.

ut

Our definition of c-semiring is equivalent to that given in Bistarelli et al.
(1999), and that given in later papers such as Bistarelli et al. (2004). The
definition of c-semiring in Bistarelli et al. (1997) is somewhat stronger since it
assumes that summation is defined over infinite sets. Most of the properties
proved in Bistarelli et al. (1997) hold also for the slightly weaker definition of
c-semiring, in particular properties in Lemma 1.

One result from Bistarelli et al. (1997) which does not hold for the weaker
definition of c-semiring is Theorem 9 of Bistarelli et al. (1997), stating that
a c-semiring is a complete lattice; with the definition used in this paper, a
c-semiring is not necessarily a lattice, as shown by the following example.

Consider the set A of all finite unions of closed discs (i.e., circles and their

7

interiors) in R2, together with the empty set and the whole set R2, and
including also discs of radius zero, i.e., points. For a, b ⊆ R2 define a +
b = a ∪ b, and define (cf. Example 4.17 of Baccelli et al. (1992)) a × b =
{x ∈ R2 : x = y + z, y ∈ a, z ∈ b}, so that a × ∅ = ∅ for all a ∈ S. It can be
shown that + and × are commutative and associative and for all a, b, c ⊆ R2,
(a + b) × c = (a × c) + (b × c), i.e. × distributes over +. A is clearly closed
under +. It is also closed under ×: this follows using the fact that if a and b
are discs then a× b is also a disc; this can be seen, for example, by translating
both discs to have centre at the origin; disc a × b has radius equal to the
sum of the radii of a and b. The distributive property then implies that A is
closed under ×. Hence 〈A,+,×〉 is a semiring with zero element ∅ and unit
element R2. For all a ∈ A, a + R2 = R2, so 〈A,+,×〉 is a c-semiring (with
the above definition). Consider any pair a and b of overlapping discs, where
neither contains the other. It can be seen that their intersection a ∩ b is not
in A (e.g., by considering the curvature at a point on the boundary of a ∩ b).
Element c ∈ A is a lower bound for a and b if and only if c is a subset of a∩ b.
But a and b have no greatest lower bound in A. In fact, for any lower bound c
in A, one can construct a strictly greater lower bound in A by taking c∪ {x},
where point x is an element of (a ∩ b)− c. Therefore A is not a lattice.

We shall also consider c-semirings where the operation × is idempotent too,
i.e. a× a = a for all a ∈ A. Then a ≤ b if a× b = a defines also a partial order
in A. According to Lemma 1 it is identical to the order ≤A.

Theorem 10 of Bistarelli et al. (1997) shows that a c-semiring (in their sense)
with idempotent × is a distributive lattice. The following simple result states
that this holds also for the definition of c-semiring used here. (However, un-
like c-semirings defined in Bistarelli et al. (1997), it need not be a complete
distributive lattice. Consider for example the c-semiring of rational numbers
in the interval [0, 1] with + being max and × being min.)

Theorem 1 (cf. Theorem 10 of Bistarelli et al. (1997)). If A is a c-semiring,
and × idempotent, then A is a distributive lattice and a× b = inf{a, b}.

Proof. Since sup{a, b} = a + b exists, it remains only to prove that a × b =
inf{a, b}, as distributivity is guaranteed in the semiring. In fact, by Lemma 1
(2) a × b ≤ a, b. Assume c ≤ a, b. Then, by Lemma 1 (3), c = c × c ≤ a × b
which shows that a× b is the largest lower bound. ut

There are many instances of semirings. We look now at a variety of examples
of semirings to get a sense of the different systems of practical and theoretical
interest covered by these algebraic structures.

Example 1 Arithmetic semirings. Take for A the set of nonnegative real
numbers R+ ∪ {0} with + and × designating the usual addition and multi-
plication. This is clearly a semiring with the number 0 as zero element and

8

the number 1 as unit element. The semiring is positive too. The order � is in
this case the usual total order between numbers. This semiring is needed for
defining probability potentials as used in probabilistic networks, e.g. Bayesian
networks, etc. (see Section 3). We could also consider the field of reals, integers
or natural numbers. For example, ordinary addition and multiplication on the
non-negative integers N ∪ {0} yield also a positive semiring. 	

Example 2 Boolean Semiring. Here we take A = {0, 1} (with the intention
that 0 designates “false” and 1 “true”). Define then operation + as a + b =
max{a, b} and a×b = min{a, b}. Operation + represents then the logical “or”
(disjunction) and × the logical “and” (conjunction). This is a semiring with
zero element 0 and unit element 1. Further, both + as well as × are idempotent
operations. In addition, we have 0+1 = 1. Therefore, A is a c-semiring. In fact,
this semiring is used to describe (crisp) constraint systems and the relational
algebra (see Section 3). 	

Example 3 Bottleneck Algebra. We may also take max for the + operation
and min for the × operation on the set of real numbers R augmented with
+∞ and −∞. Then −∞ is the 0-element and +∞ the unity. This algebra is
a c-semiring and in fact a distributive lattice. It is called bottleneck algebra
Cechlárová and Plávka (1996). 	

Example 4 Distributive Lattices. We have seen that a c-semiring with ×
idempotent is a distributive lattice (Theorem 1). Conversely, every distributive
lattice is clearly a semiring with joins for + and meets for ×-operations (or
inversely). Both operations are idempotent. If the lattice has a bottom element
⊥ then this is the zero element of the semiring. If it has also a top element
>, then this is the unit element. In this case the semiring is a c-semiring.
This example generalizes the Boolean semiring above. The bottleneck algebra,
Example 3, is also an example of a distributive lattice. But distributive lattices
can be more generally used to express qualitative degrees of membership of
elements to fuzzy sets. Further, Boolean algebras are distributive lattices.
Elements of Boolean algebras can also describe assumptions to be satisfied for
membership to certain sets. This will be discussed in Example 12 in Section
3. 	

Example 5 (max /min,+) Semirings. We consider here A to consist of all
nonnegative integers N ∪ {0,+∞}. We take min as the + operation: a + b =
min{a, b}, whereas × is the usual addition with the convention that a+∞ =
∞. Both operations are commutative and associative. The distributive law
holds too,

a+ min{b, c} = min{a+ b, a+ c}.

The operation min is idempotent, ∞ is the zero element, the integer 0 is the

9

unit element, and we have

min{a, 0} = 0.

This shows that we have again a c-semiring. It is also called the tropical semir-
ing. This structure has been used in Spohn (1988) to define a dynamic theory
of graded belief states based on ordinal numbers, see Section 3. It arises also
in the context of applying dynamic programming to minimizing a sum of func-
tions Shafer and Shenoy (1988); Kohlas (2003), and applies to weighted and
partially satisfied constraints Bistarelli et al. (1999). Instead of min for the
+-operation we can also take max. Further we may take for A also the reals
R or nonnegative reals R+ ∪{0} with or without +∞ or −∞ adjoined. These
(min,+) or (max,+) semirings have many applications in networks, graph
optimization, queuing systems and discrete event systems Kolokoltsov and
Maslov (1997); they can also be used (by taking the logarithms of the proba-
bilities) for computing the most probable complete assignment to a Bayesian
network, and hence for finding the most probable explanation Pearl (1988).
	

Example 6 t-Norms. Triangular norms (t-norms) were originally introduced
in the context of probabilistic metric spaces Menger (1942); Schweizer and
Sklar (1960). They are simply binary operations on the unit interval A = [0, 1]
which are commutative and associative, have the number 1 as unit element
and are, in addition nondecreasing in both arguments:

(1) ∀a, b, c ∈ [0, 1] we have T (a, b) = T (b, a) and T (a, T (b, c)) = T (T (a, b), c).
(2) a ≤ a′ and b ≤ b′ imply T (a, b) ≤ T (a′, b′).
(3) ∀a ∈ [0, 1] we have T (a, 1) = T (1, a) = a and T (a, 0) = T (0, a) = 0.

We may define the operation × on the unit interval by a t-norm and + as
max. Both operations are commutative and associative. That the distributive
law holds can be concluded from the following consideration:

T (a, b), T (a, c) ≤ max{T (a, b), T (a, c)},

hence

T (a,max{b, c}) ≤ max{T (a, b), T (a, c)}.

But we have also, by the monotonicity of the t-norm,

T (a,max{b, c}) ≥ T (a, b), T (a, c),

hence

10

T (a,max{b, c}) ≥ max{T (a, b), T (a, c)}.

This shows that

a× (b+ c) = T (a,max{b, c}) = max{T (a, b), T (a, c)} = (a× b) + (a× c).

The operation + is idempotent and has the number 0 as zero element. Further,
we have for all a ∈ A, a+ 1 = 1, so A is a c-semiring.

The following are typical t-norms:

(1) Minimum t-norm: T (a, b) = min{a, b}.
(2) Product t-norm: T (a, b) = a · b.
(3) Lukasiewicz t-norm: T (a, b) = max{a+ b− 1, 0}.
(4) Drastic product: T (a, 1) = T (1, a) = a whereas T (a, b) = 0 in all other

cases.

In the first case the t-norm is idempotent. So the c-semiring induces a com-
plete, distributive lattice. This is not the case for the other examples. We shall
see later (Section 5) that different t-norms distinguish themselves also in other
important aspects.

We note that distributivity depends only on the monotonicity of the t-norm,
but not on 1 being the unit element. We may more generally require that any
other element e ∈ [0, 1] is the unit element. Then we obtain a uninorm Yager
and Rybalov (1996) and we still have a semiring, albeit no more necessarily
a c-semiring. Further, instead of max for the + operation we may take any
other commutative, associative and nondecreasing binary operation, i.e. any
uninorm. If its unit element is the number 0, then the uninorm is called a
t-conorm. Then the semiring has 1 as its zero element. We refer to De Baets
(1996); Klement et al. (2000) for more information on uninorms and t-norms.
The concepts of t-norms and t-conorms are important in possibility theory
and fuzzy set theory. 	

Example 7 Multi-dimensional semiring. Let A be a semiring with operations
+ and ×. We define in An operations + and × as follows

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),

(a1, . . . , an)× (b1, . . . , bn) = (a1 × b1, . . . , an × bn).

Clearly, these operations inherit associativity, commutativity and distributiv-
ity from the operations in A. So An becomes itself a semiring. Also if + in A
is idempotent, then so is + in An. The same is true for the operation ×. If A
has a zero element 0, then (0, . . . , 0) is the zero element in An. If 1 is a unit

11

element in A, then (1, . . . , 1) becomes the unit element in An. Thus if A is a
c-semiring, then so is An. 	

3 Valuation Algebra Induced by a Semiring

The examples in the last section show the richness of semirings. In this section
we describe how an algebraic structure, called valuation algebra, is induced
by semiring-valued mappings. A wide variety of important reasoning prob-
lems can be expressed in terms of such a valuation algebra, and they can be
solved by local computations based on a join tree decomposition. Frameworks
similar to semiring-induced valuation algebras have been described in Aji and
McEliece (2000) (which also describes a number of important applications
of the techniques), and in Chang (2005); Chang and Mackworth (2005); the
framework of Kask et al. (2005) can also be viewed in this way.

3.1 A-Valuations

Consider variables X, Y, For each variable X let ΩX be the finite set of
possible values of X called frame of X. We assume that at least one frame
ΩX contains at least two elements. Sets of variables are designated by lower-
case letters like x, y, . . . , r, s, t, These sets are also always finite. For a set
s of variables let Ωs denote the Cartesian product of the frames ΩX for the
variables in s,

Ωs =
∏
X∈s

ΩX .

The elements of Ωs are called tuples or configurations with domain s. 3 which
we call a ‘frame’.) We use lower-case, bold-face letters such as x,y, . . . to
denote tuples. It is convenient to include the case where s is empty. We adopt
the convention that the frame for the empty set of variables consists of a single
tuple, denoted by �, such that Ω∅ = {�}. If x is a tuple with domain s and

3 Note that the terminology of valuation algebras differs from that used in the con-
straint satisfaction and constraint optimisation literature, and also the relational
database literature. The frame of a variable in valuation algebra terminology corre-
sponds to the domain of a variable in the constraints literature or in the relational
database literature; if, for example, a valuation is a constraint (as in Example 10),
then the domain of the valuation is the scope of the constraint; if the valuation is
a relation then the domain of the valuation is the relation type. A tuple or config-
uration is an assignment to a set of variables.

12

t ⊆ s, then x↓t denotes the projection of x to the subdomain t. In particular,
we have x↓∅ = �. Sometimes, in order to emphasize the decomposition of a
tuple x into components belonging to two disjoint subsets t and s− t of s, we
write x = (x↓t,x↓s−t).

Consider a set A with operations + and ×, where + is assumed to be commu-
tative and associative, and write A as the triple 〈A,+,×〉. An A-valuation φ
with domain s associates a value in A with each configuration x ∈ Ωs: φ is a
function from Ωs to A. We denote the set of all valuations with domain s by
Φs. Consider a non-empty set of variables r and let then

Φ =
⋃
s⊆r

Φs

be the set of all A-valuations. D denotes the lattice of subsets of the set of
variables r, i.e. D = P(r) (the powerset of r). For any valuation φ ∈ Φ we
define the labeling function d : Φ → D where d(φ) denotes the domain of the
valuation φ (i.e. d(φ) = s, if φ ∈ Φs).

We use now the operations + and × in A to define two operations in the pair
(Φ, D):

(1) Combination: ⊗ : Φ× Φ → Φ defined for x ∈ Ωd(φ)∪d(ψ) by

φ⊗ ψ(x) = φ(x↓d(φ))× ψ(x↓d(ψ)).

(2) Projection: ↓: Φ×D → Φ defined for all φ ∈ Φ and t ⊆ d(φ) for x ∈ Ωt

by

φ↓t(x) =
∑

z∈Ωd(φ):z
↓t=x

φ(z).

The defining equation for projection can also be written in the following way,
if we decompose the tuples z of domain s = d(φ) into subtuples x belonging
to domain t and subtuples y belonging to domain s− t, z = (x,y),

φ↓t(x) =
∑

y∈Ωs−t

φ(x,y).

Note that

φ↓d(φ) = φ.

We remark that projection is also sometimes called marginalization (motivated
by applications to probability theory). Further projection could have been
defined for arbitrary sets t simply by putting

13

φ↓t := φ↓t∩d(φ).

Finally projection can also be used to define the operation of variable elimi-
nation for any variable X,

φ−X := φ↓d(φ)−{X}.

The following axioms have been shown to be sufficient to perform local com-
putation based on a join tree decomposition of valuations Shenoy and Shafer
(1990). The present form of the axioms for a system (Φ, D) has been intro-
duced in Kohlas and Shenoy (2000); Kohlas (2003). In Schneuwly et al. (2004)
it has been shown that these axioms are also sufficient for local computation
based on a covering join tree of a factorization of valuations.

(1) Semigroup. Φ is associative and commutative under combination ⊗.
(2) Labelling. ∀φ, ψ ∈ Φ we have that d(φ⊗ ψ) = d(φ) ∪ d(ψ).
(3) Marginalization. ∀φ ∈ Φ and s ⊆ d(φ) we have d(φ↓s) = s.
(4) Transitivity. ∀φ ∈ Φ and t ⊆ s ⊆ d(φ) we have

(φ↓s)↓t = φ↓t.

(5) Combination. ∀φ, ψ ∈ Φ and d(φ) ⊆ s ⊆ d(φ) ∪ d(ψ) we have

(φ⊗ ψ)↓s = φ⊗ ψ↓s∩d(ψ).

A system (Φ, D) satisfying these axioms is called a valuation algebra.

The following theorem is a basic result connecting the properties of systems of
A-valuations with the properties of A. It implies that a system of A-valuations
forms a valuation algebra if A is a semiring. Conversely if a system of A-
valuations forms a valuation algebra, and A has an additive identity element
0, thenAmust be a semiring. This theorem also implies the following converse:
if A is such that any system of A-valuations forms a valuation algebra then
A is a semiring. Almost all of the standard examples of valuation algebras
can be expressed as A-valuations, an exception being Dempster-Shafer belief
functions. In particular, each formalism covered by the framework in Kask
et al. (2005) is a system of A-valuations for a semiring A (see their Definitions
3.1 and 3.3 and Theorem 4.4).

Part (2) and the first part of (3) generalise Theorems 18 and 19 (respectively)
of Bistarelli et al. (1997), and corresponding standard results for probability
potentials.

Theorem 2 Consider a system of A-valuations (Φ, D), with combination and
projection, as defined above.

14

(1) Φ is a commutative semigroup if, and only if, A operation × is commu-
tative and associative.

(2) Projection is transitive.
(3) If A operation × distributes over + then the combination property (5.)

holds. Conversely, if the combination property holds, and there exists an
additive identity 0 in A then × distributes over +. Also, if the combi-
nation property holds, and there exists a variable whose frame contains
exactly two elements, then × distributes over +.

Proof. (1) The commutativity of the combination follows directly from the
commutativity of the × operation in the semiring A and the definition of
combination. As for the associativity we have, assuming that φ, ψ and η are
valuations with domains s, t and u

(φ⊗ (ψ ⊗ η))(x)

=φ(x↓s)× (ψ ⊗ η)(x↓t∪u)

=φ(x↓s)×
(
ψ((x↓t∪u)↓t)× η((x↓t∪u)↓u)

)
=φ(x↓s)× ψ(x↓t)× η(x↓u)

The same result we obtain in exactly the same way for ((φ⊗ψ)⊗ η)(x). Thus
associativity holds.

Conversely, assume that Φ is a commutative semigroup, and let a, b, c ∈ A.
Consider valuations φ(x) = a, ψ(x) = b and η(x) = c for all configurations x of
s. Then commutativity of ⊗ implies commutativity of ×: a×b = φ(x)×ψ(x) =
φ⊗ψ(x) = ψ⊗φ(x) = ψ(x)×φ(x) = b×a. Associativity of × follows similarly
from associativity of ⊗.

(2) Transitivity of projection means simply that we can sum out variables in
two steps. That is, if t ⊆ s ⊆ d(φ) = u, then, for all x ∈ Ωt,

(φ↓s)↓t(x) =
∑

y∈Ωs−t

φ↓s(x,y) =
∑

y∈Ωs−t

∑
z∈Ωu−s

φ(x,y, z)

=
∑

(y,z)∈Ωu−t

φ(x,y, z) = φ↓t(x).

(3) The combination property also follows easily if × distributes over +. Sup-
pose that φ has domain t and ψ domain u and x ∈ Ωs, where t ⊆ s ⊆ t ∪ u,
so that (t ∪ s)− s = u− s. Then we have for x ∈ Ωs

(φ⊗ ψ)↓s(x) =
∑

y∈Ωt∪u−s

(φ⊗ ψ)(x,y) =
∑

y∈Ωu−s

(
φ(x↓t)× ψ(x↓s∩u,y)

)

15

=φ(x↓t)×
∑

y∈Ωu−s

ψ(x↓s∩u,y) = φ(x↓t)× ψ↓s∩u(x↓s∩u)

= (φ⊗ ψ↓s∩u)(x) (3.1)

Conversely, assume that the combination property holds in (Φ, D) and consider
any triple of values a, b, c in A. Let Y be any variable whose frame contains
at least two elements y1 and y2. Define valuation ψ with d(ψ) = {Y } by
ψ(y1) = b, ψ(y2) = c and ψ(y) = 0 for all other y ∈ ΩY . Define φ by d(φ) = ∅
and φ(�) = a.

(φ⊗ ψ)↓s(�) =
∑
y∈ΩY

(φ(�)× ψ(y)) = (a× b) + (a× c).

On the other hand, the left hand side of this equation equals, by the Combi-
nation property in (Φ, D),

(φ⊗ ψ↓s∩u)(�) = φ(�)×
∑
y∈ΩY

ψ(y) = a× (b+ c).

This shows that (a × b) + (a × c) = a × (b + c) for any triple a, b, c; hence
distributivity holds in A. The same argument also works, even without a zero
element in A, if there exists some variable Y whose frame has precisely two
elements. ut

If A is a semiring, then property (1) of Theorem 2 means that the semigroup
axiom is satisfied, property (2) assures the transitivity axiom and property (3)
the combination axiom. The labelling axiom and the marginalization axiom
are satisfied by definition of combination and marginalization of A-valuations.
This shows that the system of A-valuations (Φ, D) is a valuation algebra, if
A is a semiring.

This implies that local computation is possible with A-valuations for solution
of the following problem:

Definition 1 Projection Problem. Given a set of valuations φ1, . . . , φn and a
set of domains sj ⊆ r, compute

(φ1 ⊗ · · · ⊗ φn)
↓sj , (3.2)

for j = 1, . . . ,m.

The graphical structure that underlies local computation is the join tree, i.e.
a tree whose nodes i are labelled with a domain λ(i) such that, if node k lies
on the path from node i to node j, then

16

λ(k) ⊇ λ(i) ∩ λ(j).

This condition is called running intersection property.

If the domains d(φi) of the projection problem form a join tree, and each sj is a
subset of some d(φi), then the projection problem can be solved by a sequence
of combinations and projections which take place only on the domains of
the join tree nodes, i.e. on the domains d(φi), and never on bigger domains
Shenoy and Shafer (1990); Shafer and Shenoy (1988); Shafer (1991); Kohlas
and Shenoy (2000); Kohlas (2003); Kask et al. (2005). (One wants, where
possible, to generate a join tree with no large nodes and therefore a tree
decomposition with small treewidth Bodlaender (1993); see for example, Amir
(2001); Gogate and Dechter (2004) and the survey paper Bodlaender (2006)
for approaches to this problem.)

A less strong condition for local computation has been worked out in Schneuwly
et al. (2004) and states that the domains d(φi) must only be covered by some
join tree node. If the valuation algebra (Φ, D) has neutral elements, these
factors can easily be extended to the corresponding node domains. However,
not all A-valuation algebras have neutral elements (see examples below) and
even if they exist, the proposed extension of the valuations to the join tree
domains is not always efficient. In Schneuwly et al. (2004) it is shown that
this extension is not necessary: local computation is possible even in valuation
algebras without neutral elements. This is due to the fact, that one can adjoin
a neutral element e∅, such that

φ⊗ e∅ = φ

for all elements φ of the valuation algebra, if such an element does not already
exist in the algebra. We describe below this modification of the Shenoy-Shafer
propagation scheme.

Consider a projection problem (3.2) and assume that there is a join tree J =
(V,E) whose nodes are labelled by λ(k), k = 1, . . . , |V |, such that for each
i = 1, . . . , n, there is a k such that d(φi) ⊆ λ(k) and also, for each j =
1, . . . ,m, there is a h such that sj ⊆ λ(h). Then J is called a covering join
tree for the family of projection problems. We define an assignment mapping
a : {1, . . . , n} → {1, . . . , |V |} such that d(φi) ⊆ λ(a(i)) and define ψk =⊗

i:a(i)=k φi. If there is no i assigned to k, then define ψk = e∅. We have then

φ =
n⊗
i=1

φi =
u⊗
k=1

ψk (3.3)

and d(ψk) ⊆ λ(k), for k = 1, . . . , u.

According to Shenoy and Shafer (1990) messages µk→j are then computed

17

between neighboring nodes of the join tree. In Schneuwly et al. (2004) these
messages are defined in a covering join tree as follows, if ne(k) denotes the set
of neighbor nodes of k in the join tree:

µk→j =

ψk ⊗ ⊗
i∈ne(k),i6=j

µi→k

↓ωk→j∩λ(j)

,

where

ωk→j = d(ψk) ∪
⋃

i∈ne(k),i6=j
d(µi→k).

These messages can be computed sequentially, starting from the leaves of the
join tree. The marginals of the factorization with respect to all nodes of the
covering join are then obtained as

φ↓λ(k) = ψk ⊗
⊗

i∈ne(k)
µi→k. (3.4)

Example 8 Figure 3.1 illustrates a complete run of the Shenoy-Shafer archi-
tecture by presenting domains ωi→j and messages µi→j for each step. The fac-
tors which are distributed over the nodes of the covering join tree have domains
d(ψ1) = {A,B}, d(ψ2) = {C}, d(ψ3) = {A,B,C} and d(ψ4) = {A,C,D}.
Note that at the end for each node k combination (3.4) must be executed. 	

This procedure involves redundant computations, if the nodes in the join tree
have more than three neighbors. Therefore Shenoy (1997) proposes a variant
of the method, where the join tree is transformed into a binary join tree, i.e. a
join tree whose nodes have at most three neighbors (the join tree in figure 3.1
is a binary join tree). Since all the target domains sj are subsets of some λ(k),
finally all marginals of the projection problem are computed by local compu-
tations only, i.e. computations involving combinations and marginalizations
only on domains λ(k) of the join tree.

To complete the discussion of general semiring-induced valuation algebras, we
add some remarks on some additional properties, which are of some impor-
tance.

If the semiring A which induces the valuation algebra (Φ, D) has a unit element
1, then we have for every domain s a valuation es(x) = 1 for all x ∈ Ωs. This
is the neutral valuation in the semigroup Φs defined by the combination, i.e.
for all φ ∈ Φs we have es⊗φ = φ⊗ es = φ. These neutral elements satisfy the
following property:

18

1

{A,B}

2

{C}

3

{A,B,C}

{A,C,D}

1

4

2

3

5

6

ψ1 ψ2

ψ3

ψ4

4

ωi→j Message content:

1 ω1→3 = d(ψ1) µ1→3 = ψ
↓ω1→3∩λ(3)
1

2 ω2→3 = d(ψ2) µ2→3 = ψ
↓ω2→3∩λ(3)
2

3 ω3→4 = d(ψ3) ∪ d(µ1→3) ∪ d(µ2→3) µ3→4 = (ψ3 ⊗ µ1→3 ⊗ µ2→3)↓ω3→4∩λ(4)

4 ω4→3 = d(ψ4) µ4→3 = ψ
↓ω4→3∩λ(3)
4

5 ω3→1 = d(ψ3) ∪ d(µ4→3) ∪ d(µ2→3) µ3→1 = (ψ3 ⊗ µ4→3 ⊗ µ2→3)↓ω3→1∩λ(1)

6 ω3→2 = d(ψ3) ∪ d(µ4→3) ∪ d(µ1→3) µ3→2 = (ψ3 ⊗ µ4→3 ⊗ µ1→3)↓ω3→2∩λ(2)

Fig. 3.1. A complete run of the Shenoy–Shafer architecture.

Theorem 3 [Neutrality] If the semiring A inducing the valuation algebra
(Φ, D) has a unit element, then, for all s, t ⊆ r, we have

es ⊗ et = es∪t.

Proof. We have by definition for all x ∈ Ωs∪t

(es ⊗ et)(x) = es(x
↓s)× et(x

↓t) = 1× 1 = 1.

ut

In general it is not true that the projection of the neutral valuation es to some
subdomain t ⊆ s is still the neutral element et. A counter example is provided
by probability potentials (see Example 9 below). In this example we have

e↓ts (x) =
∑

y∈Ωs−t

es(x,y) = |Ωs−t|

19

since es(x,y) = 1. In the case of c-semirings however neutral elements project
to neutral elements. This important property is called stability.

Theorem 4 [Stability] The valuation algebra (Φ, D), induced by the semiring
A with unit is stable, i.e. for all s and t ⊆ s ⊆ r it holds that

e↓ts = et,

if the addition operation + in the semiring is idempotent.

Proof. Assume that + is idempotent. Let x ∈ Ωt. Then we obtain

e↓ts (x) =
∑

y∈Ωs−t

es(x,y) =
∑

y∈Ωs−t

1 = 1. (3.5)

This shows that e↓ts = et. ut

Stability is important because it permits to extend valuations from a given
domain to a superdomain and more generally to transport valuations from
domains to other domains Shafer (1991); Kohlas (2003). This means that in the
case of c-semirings, valuations can be regarded as generalized constraints which
can be extended to larger domains and even to the domain of all variables.
More precisely, if φ is a valuation with domain s and s ⊆ t ⊆ r, then

φ↑t
def
= et ⊗ φ

is a valuation on domain t by the labelling property (Theorem 2). Using the
combination property of Theorem 2 and stability we find that

(φ↑t)↓s = (et ⊗ φ)↓s = e↓st ⊗ φ = es ⊗ φ = φ.

So we are entitled to call φ↑ts a vacuous extension of φ, since we do not change
its content. We may then more generally transport any valuation φ with do-
main s to any other domain t by

φ→t = (φ↑s∪t)↓t.

In this case we may say that two valuations φ and ψ with domains s and t
represent the same constraint, if

φ→t = ψ and ψ→s = φ.

20

In this sense, φ and φ↑r represent the same constraint. Therefore, we may treat
all constraints on the level of the set r of all variables. In particular, it can
easily be proved that

(φ1 ⊗ · · · ⊗ φk)
↑r = φ↑r1 ⊗ · · · ⊗ φ↑rk .

So, stability is important if we want to consider valuations as generalized
constraints, e.g. soft constraints or fuzzy constraints. We refer to Kohlas (2003)
for a discussion of stability and its consequences.

If the semiring A inducing the valuation algebra (Φ, D) has a null element, then
this introduces also null (i.e. absorbing) elements with respect to combination
in Φs. In fact, define for all x ∈ Ωs

zs(x) = 0.

Then, if φ is a valuation with domain s, we have

(zs ⊗ φ)(x) = zs(x)× φ(x) = 0.

Thus, we see that zs ⊗ φ = zs for all φ ∈ Φs, i.e. zs is the null (or absorbing)
element in Φs. Intuitively, we might expect, that a valuation φ with domain
s, which projects to the null valuation in a domain t ⊆ s, must itself be a
null element. This is however not automatically the case. For example, if we
consider the semiring of real numbers, then we may have

0 = φ↓t(x) =
∑

y∈Ωs−t

φ(x,y)

without necessarily φ(x,y) = 0 for all tuples. However, this can not happen,
if the the semiring is positive.

Theorem 5 (Nullity) If the positive semiring A with null element induces
the valuation algebra (Φ, D) then, for all s and t ⊆ s ⊆ r

φ↓t = zt

implies φ = zs.

Proof. Let x ∈ Ωt. Then,

0 = φ↓t(x) =
∑

y∈Ωs−t

φ(x,y)

21

implies by the positivity of the semiring that φ(x,y) = 0 for all tuples. ut

A null valuation represents generally contradiction. If, for example in a c-
semiring induced valuation algebra we have φ⊗ψ = zs∪t, then the two general
constraints are contradictory, they have no “common” (non-zero) configura-
tions. In particular, if the projection problem with respect to the empty set
yields the null element

(φ1 ⊗ · · · ⊗ φn)
↓∅ = z∅

then this means that the set of generalized constraints φ1, . . . , φn is totally
contradictory, i.e. not satisfiable. So, null elements play an important role.

3.2 Examples of Semiring-Induced Valuation Algebras

Example 9 Probability Potentials. If we take for A the semiring of nonneg-
ative real numbers (see Example 1 in Section 2), then the corresponding val-
uations are called probability potentials. They are used in the inference from
probability networks, especially Bayesian networks, Lauritzen and Spiegelhal-
ter (1988); Shafer (1996). In fact they represent, up to normalization, discrete
probability densities and families of conditional probability densities. The com-
bination is point-wise multiplication which models the computation of mul-
tidimensional densities from prior densities and conditional densities, as for
example p(x,y) = p(x|y) ·p(y). Projection corresponds to the usual marginal-
ization operation in probability theory. Essentially the projection problem
consists in computing a marginal of some factorized probability distribution.
This is the basic problem for example in Bayesian networks. We refer to Kohlas
(2003) for a discussion of the use of these valuations for inference in proba-
bilistic networks. If the usual addition is replaced by the max operator, then
the resulting valuation algebra serves to compute maximum likelihood or most
probable values and configurations (see Example 15 below). 	

Example 10 Relational or Constraint Systems (CSPs). If we use the Boolean
semiring of Example 2 from Section 2, then a valuation φ over domain s defines
a relation over domain s, i.e. a set of tuples, by

Rφ = {x ∈ Ωs : φ(x) = 1}.

This relation can also be considered as a (crisp) constraint on the variables in
s. Combination of two valuations φ and ψ with domains s and t corresponds
then to the natural join of the corresponding relations,

22

Rφ⊗ψ = Rφ ./ Rψ = {x ∈ Ωs∪t : x↓s ∈ Rφ,x
↓t ∈ Rψ}.

Projection corresponds to the ordinary projection of relations,

Rφ↓t = πt(Rφ) = {x↓t : x ∈ Rφ}.

This gives us a subset of relational algebra, which is useful in query processing
for relational databases and for constraint solving. The projection problem
formulated in terms of a set of constraints consists in computing the set of
tuples in s which can be extended to tuples satisfying all constraints. If the
projection is to the empty set, then the problem is to find out whether the
constraints have a solution (i.e. φ↓∅ = 1) or not (i.e. φ↓∅ = 0). 	

Example 11 Propositional Logic. This is a variant of the previous example,
where we consider only binary or Boolean variables X. Tuples x are then
Boolean vectors. Valuations φ(x) ∈ {0, 1} represent then constraints, which
may have been defined by formulae of propositional logic. The projection
problem

(φ1 ⊗ · · · ⊗ φn)
↓∅

is then the problem to decide whether the set of propositional formulae defining
the valuations φ1, . . . , φn is satisfiable or not. We refer to Kohlas et al. (1999)
for a discussion of local computation in propositional logic. Further, Mengin
and Wilson (1999) study local computation for logic in general. 	

Example 12 Set-Based Constraints. We may generalize the example above
and replace {0, 1} by a more general Boolean algebra A. This would then be
an instance of a c-semiring which is a distributive lattice (see Example 4 in
Section 2). In particular the subsets of a set generate a c-semiring. Let D be
a finite set. Define A = 〈2D,∩,∪〉 with null element ∅ and unit D so that A
is the set of subsets of D. The ordering � equals ⊆.

As an example, consider k binary variables ai, i = 1, . . . , k, each taking val-
ues in {0, 1}. The vector a of all binary variables takes value in {0, 1}k. Let
then A = P({0, 1}k), the power set of {0, 1}k. A valuation φ(x) can then be
considered as a statement that x might be an acceptable tuple, if a ∈ φ(x).
The variables ai are considered as unknown assumptions, which may hold or
not. If then, for example, c ⊆ Ωs and we define φ(x) = Ac ⊆ A, if x ∈ c,
and φ(x) = A otherwise, then this valuation defines an assumption-based con-
straint : If assumption Ac holds, then x must belong to constraint c, otherwise
x is free. Combination of two (or more) of such assumption-based constraints
φ1 and φ2, corresponding to constraints c1 and c2, gives a new assumption-
based constraint, where for example φ(x) = Ac1 ∩ Ac2 means that x belongs
to c1 ∩ c2, whereas φ(x) = Ac1 means that x belongs to c1 (it may or may

23

not belong to c2). This is related to assumption-based reasoning De Kleer and
Brown (1986) which may be enriched with a probabilistic structure on the
set of assumptions, which then leads to probabilistic argumentation systems
Haenni et al. (2000). Of course, the simple Boolean semiring of the previous
example is a special case of this more general example. 	

Example 13 Counting Solutions of a CSP. Here a semiringA = 〈N∪{0},+,×〉
with null element 0 and unit 1 is used. As in Example 10 a configuration x
is a solution of a CSP if φ(x) = 1. But now φ↓∅(�) =

∑
x∈Ωr

φ(x) equals the
number of of solutions of the CSP. The value of φ↓{X}(x), for example, will
give the number of solutions satisfying the assignment X = x. 	

Example 14 Possibilistic Constraints or Fuzzy Sets. If we take the semiring
A with a t-norm for multiplication and max for addition (see Example 6 in
Section 2), then a valuation φ(x) is also called a possibilistic distribution, or
a possibilistic constraint or also a fuzzy set. The t-norm is used to compute
intersections of fuzzy sets or possibilistic constraints. And the max-operator
serves to compute projections of fuzzy sets or constraints. More generally,
any t-conorm could also be used for projection. This is related to the soft
constraints in Schiex (1992). 	

Example 15 Optimization, Weighted CSPs. Consider the (max /min,+)-semiring
of reals (see Example 5 in Section 2). Suppose that we have, say, n valuations
over domains s1, . . . , sn such that s1 ∪ · · · ∪ sn = r. If we combine them and
project the combination to the empty domain, then we have, for x ∈ Ω,

(φ1 ⊗ · · · ⊗ φn)
↓∅(�) = max

x
(φ1(x

↓s1) + . . .+ φn(x
↓sn)).

This projection problem is an optimization problem, which can be solved by
local computation Shenoy (1996). If multiplication is ordinary multiplication,
instead of +, then the projection problem corresponds to the maximization of
probability in a Bayesian network. 	

These examples illustrate a number of quite different systems, which all rep-
resent different problems. As explained above, the projection problem in all
these instances can be solved by the same generic local computation proce-
dure. However there are structural differences between these examples which
can in some cases be exploited to design alternative, and often more efficient
local computation architectures. This will be discussed in the following Section
4 and Section 5.

24

4 Idempotent Valuation Algebras

This section considers the special case of idempotent valuation algebras. We
derive sufficient conditions for a semiring to induce an idempotent valuation
algebra which allows computation to be performed using an especially efficient
computational architecture.

4.1 Idempotency

A valuation algebra (Φ, D) is called idempotent, if the following additional
property holds: For all φ ∈ Φ and t ⊆ d(φ) we have

φ⊗ φ↓t = φ.

This is a property we would like to have, if a valuation φ is to be interpreted as
a piece of information in a strict sense. An information combined with a piece
of itself should give nothing new. The existence of neutral elements es for all
domains s, representing vacuous information relative to a domain s, is usually
also required. Further focusing, i.e. projection, of vacuous information should
yield a vacuous information; hence stability should also hold. So, formally, an
information algebra is a valuation algebra

(1) with neutral elements satisfying neutrality (Theorem 3),
(2) satisfying stability (Theorem 4),
(3) satisfying idempotency.

Important examples of information algebras are relational or ordinary con-
straint systems and systems related to logic (propositional, predicate logic
and others).

The idempotency property must hold in particular for t = d(φ) = s so that
we must have for all tuples x ∈ Ωs

φ(x) = (φ⊗ φ)(x) = φ(x)× φ(x).

This implies that the × operation of the semiring must be idempotent. As we
have seen for the stability, the idempotency of the + operation, is a sufficient
condition. Thus, a sufficient condition for semiring A to induce an idempotent,
stable valuation algebra is that A is a c-semiring with idempotent multiplica-
tion ×. By Theorem 1 the semiring A is then a distributive lattice, + is the
supremum and × the infimum.

25

The question is, whether A being a distributive lattice is also sufficient for
the induced valuation algebra to be idempotent. The answer is affirmative. In
fact, we see that for all x ∈ Ωs, since × corresponds to the infimum,

(φ⊗ φ↓t)(x) = φ(x)× φ↓t(x↓t) ≤ φ(x).

On the other hand, we find that for x ∈ Ωt and y ∈ Ωs−t,

(φ⊗ φ↓t)(x,y) =φ(x,y)×
∑

y′∈Ωs−t

φ(x,y′)

≥φ(x,y)× φ(x,y) = φ(x,y)

since φ(x,y) is a term of the sum. We see that indeed for all x ∈ Ωs

(φ⊗ φ↓t)(x) = φ(x).

Thus idempotency holds. If the lattice has a top element >, then clearly
neutral elements es(x) = > exists for all sets of variables s and they satisfy
neutrality (Theorem 3) and stability (Theorem 4).

We have proven the following theorem.

Theorem 6 The valuation algebra induced by a semiring A is an information
algebra (i.e. a stable and idempotent valuation algebra) if the semiring A is a
distributive lattice with a top element.

Information algebras (Φ, D) have many interesting properties, for a detailed
account see Kohlas (2003). Idempotency allows for example to define a partial
order in Φ, similar as in A, by

φ ≥ ψ, if φ⊗ ψ = ψ.

This is a partial order 4 . Clearly φ ≥ ψ implies t = d(φ) ⊆ d(ψ) = s and for
all x ∈ Ωs, we have

φ(x↓t)× ψ(x) = ψ(x),

hence φ(x↓t) ≥A ψ(x). So the information order is induced by the order in the
underlying lattice A.

4 In Kohlas (2003), the order is defined the other way round, φ ≤ ψ, meaning that
φ is less informative than ψ if its combination with ψ does not change the latter.
More interesting, however, is a variant of this order, which applies to domain-free
valuations, see Kohlas (2003).

26

There are many examples of information algebras, induced by semirings. They
include relational systems or CSPs, propositional logic, valuation algebras in-
duced by distributive lattices, etc.

4.2 Local Computation in Information Algebras

Most important however, from a computational point of view, is that idempo-
tency allows to simplify considerably the architectures for the solution of the
projection problem. The point is, that division becomes trivial in idempotent
valuation algebras (see Section 5), such that architectures for local computa-
tion as proposed for Bayesian networks Lauritzen and Spiegelhalter (1988);
Jensen et al. (1990) can be considerably simplified Kohlas (2003). Here the
corresponding local computation architecture is only sketched; for proofs we
refer to Kohlas (2003); Schneuwly et al. (2004).

Consider a projection problem (3.2) and assume that there is join tree J
whose nodes are labeled by λ(k), k = 1, . . . , u. Let then ψk be the valuations
associated to the nodes k such that (see (3.3))

φ =
n⊗
i=1

φi =
u⊗
k=1

ψk

and d(ψk) ⊆ λ(k), for k = 1, . . . , u.

The marginals φ↓λ(k) may then be computed for all k = 1, . . . , u by a local
computation scheme as follows: An arbitrary node of the join tree, say u, is
selected as root node. All edges are directed towards the root and the nodes
are numbered such that j < i if node i is on the path from node j to the
root node u. The neighbor of node k towards the root node will be denoted by
ch(k). For each node i of the join tree we store two associated items denoted
by χi and ωi. To initiate the algorithm we assign for k = 1, . . . , u,

χk =: ψk, ωk =: d(ψk).

Then, in a first phase, for k = 1, . . . , u, repeat the following steps: Send mes-
sage

µk→ch(k) = χ
↓ωk∩λ(ch(k))
k

to its neighbor ch(k). In the node ch(k) combine the incoming message with
its storage content

27

χch(k) =: χch(k) ⊗ µk→ch(k),

and update also

ωch(k) =: ωch(k) ∪ (ωk ∩ λ(ch(k))) .

This is also called collect algorithm.

In a second phase repeat, for k = u−1, . . . , 1, the following steps: Send message

µch(k)→k = χ
↓λ(ch(k))∩λ(k)
ch(k)

from the child ch(k) of k back to k. In the receiving node k combine the
incoming message with the stored valuation

χk =: χk ⊗ µch(k)→k.

The second phase is also called distribute algorithm. For the proof of the
following theorem we refer to Kohlas (2003); Schneuwly et al. (2004):

Theorem 7 In the second phase, the stored valuation χk at node k when
sending messages to its outward neighbors is equal to the marginal φ↓λ(k).

Example 16 Reconsider the join tree in the figure 3.1 previously used in
example 8 and let φ = ψ1⊗ψ2⊗ψ3⊗ψ4. For the idempotent architecture we
determine:

Message content: χ

1 µ1→3 = χ
↓ω1→3∩λ(3)
1 = ψ

↓ω1→3∩λ(3)
1 χ3 =: χ3 ⊗ µ1→3 = ψ3 ⊗ µ1→3

2 µ2→3 = χ
↓ω2→3∩λ(3)
2 = ψ

↓ω2→3∩λ(3)
2 χ3 =: χ3 ⊗ µ2→3

3 µ3→4 = χ
↓ω3→4∩λ(4)
3 χ4 =: χ4 ⊗ µ3→4 = ψ4 ⊗ µ3→4 = φ↓λ(4)

4 µ4→3 = χ
↓λ(4)∩λ(3)
4 = φ↓λ(4)∩λ(3) χ3 =: χ3 ⊗ µ4→3 = φ↓λ(3)

5 µ3→1 = χ
↓λ(3)∩λ(1)
3 = φ↓λ(3)∩λ(1) χ1 =: χ1 ⊗ µ3→1 = ψ1 ⊗ µ3→1 = φ↓λ(1)

6 µ3→2 = χ
↓λ(3)∩λ(2)
3 = φ↓λ(3)∩λ(2) χ2 =: χ2 ⊗ µ3→2 = ψ2 ⊗ µ3→2 = φ↓λ(2)

Note that the messages of the collect algorithm (steps 1–3) correspond exactly
to the messages of the first three steps of the Shenoy-Shafer architecture in
example 8. For the computation of χ in steps 3–6 we apply theorem 7. It
is important to note that in difference to the Shenoy-Shafer architecture, a
message cache is not needed, since the computation of the messages during
the distribute algorithm does not refer to the messages of the collect algorithm.

	

28

Since the target domains sj, for which that marginal φ↓sj are desired, are
contained in the domains λ(k), it follows that these marginals can all be
obtained by local computation in the covering join tree J .

5 Division in Valuation Algebras

There are efficient architectures for local computation which make use of some
concept of division. One advantage of these architectures with respect to the
Shenoy-Shafer architecture is that they, like the idempotent architecture, do
not become less efficient if the join tree is not binary. These architectures have
been developed for probabilistic networks Lauritzen and Spiegelhalter (1988);
Jensen et al. (1990). But they can be applied to other systems provided that
they share some properties with probabilistic systems. The essential point is
that valuations must have some kind of inverses Lauritzen and Jensen (1997).
However, this alone is not sufficient, the inverses must also satisfy some con-
sistency conditions relative to marginalization Kohlas (2003). In this section
we want to examine exactly what conditions the semiring A has to satisfy in
order to induce a valuation algebra which allows local computation with one
of these architectures. In fact, in Kohlas (2003) regular and separative val-
uation algebras were shown to allow architectures with division as proposed
in Lauritzen and Spiegelhalter (1988); Jensen et al. (1990). The question is,
what kind of semirings induce valuation algebras with an appropriate concept
of division.

The problem can be solved by studying how to introduce division 5 into semir-
ings, or more generally, into the commutative semigroup of multiplication of
a semiring. This is a well studied problem in semigroup theory. The simplest
case is the one of a regular semigroup, which decomposes into a union of dis-
joint groups Croisot (1953). We show in Section 5.1 that corresponding regular
semirings induce regular valuation algebras, i.e. valuation algebras which de-
compose also into a disjoint union of groups. This is identified as a first case
where the local computation architectures with division generalized from prob-
ability theory work. Two further cases are considered: cancellative algebras in
Section 5.2, and separative semirings leading to separative valuation algebras
in Section 5.3.

5 This problem is also considered briefly in Chang (2005); Chang and Mackworth
(2005), where they suggest adding the condition that multiplication is invertible; as
we show here, much weaker conditions are sufficient.

29

5.1 Regular Algebras

A semigroup A with an operation × is called regular, if for all a ∈ A there is
an element b ∈ A such that

a× b× a = a.

The theory of regular semigroups as semigroups with inverses has been devel-
oped in Croisot (1953) and we summarize the results as far as we need them
here. Two elements a and b of A are called inverses, if

a× b× a = a, and b× a× b = b.

In a regular semigroup, any element a has a unique inverse, which we denote
by a−1. Further, for any element a ∈ A the element a × a−1 is idempotent.
These idempotent elements in A play an important role. First, if f1 and f2 ∈ A
are idempotent elements, then f1 × f2 is idempotent. There is a partial order
between idempotent elements of A defined by f1 ≤I f2 if, and only if f1×f2 =
f1. And f1 × f2 is the largest lower bound of f1 and f2. Let a×A denote the
set of all elements a × b, b ∈ A. Then, in a regular semigroup A there exists
for all elements a a unique idempotent element f such that a× A = f × A.

The relation a ≡ b if, and only if a× A = b× A is an equivalence relation on
A, a so-called Green relation. And furthermore, if a1 ≡ b1 and a2 ≡ b2, then
a1×a2 ≡ b1× b2, i.e. it is a congruence in the semigroup A. Let [a] denote the
congruence class containing a. Then [a] is a commutative group with × as the
group operation, a−1 the inverse of a and the unique idempotent f[a] in the
congruence class [a] as the unit element. Thus, we have that

A =
⋃
a∈A

[a]

is the union of a disjoint family of groups. We remark that we may partially
order these groups by defining [a] ≤I [b] if, and only if f[a] ≤I f[b]. The group
[a] is also called the support of a.

If A is a semiring, we call it regular, if it is regular as a semigroup under the
operation ×. We have introduced the notion of a positive semiring in Section
2. For regular semirings we strengthen this notion and call the semiring A
positive if, and only if, for all a, b ∈ A we have that [a] ≤I [a + b]. Note that
in any case, if a regular semiring A has a zero element, then 0 is idempotent
and [0] = {0}. Hence, if A is positive in the new sense, then a+ b = 0 implies
a = 0. Therefore, A is positive in the former sense too.

30

Here follow a few examples.

Example 17 Arithmetic-Semirings. Consider the set of reals R with ordinary
addition and multiplication for + and× (i.e. the field of reals). This is a regular
semiring. In this case A − {0} is a group, with 1 as the unit element. {0} is
itself a one-element group. So we have the decomposition of A into these two
groups:

A = {0} ∪ (A− {0})

It holds that [0] ≤I [a] for a 6= 0. This holds still, if we restrict A to the
nonnegative real numbers R+ ∪ {0}. However, the semiring of all reals is not
positive. The semiring of nonnegative reals R ∪ {0} on the other hand is
positive. This is the case of probability potentials. The arithmetic semiring on
the integers N or the non-negative integers N ∪ {0} is not regular. 	

Example 18 t-Norms. Most of the t-norms are not regular. The Lukasziewicz
t-norm for example is clearly not regular. The product t-norm however is reg-
ular, as the previous example shows. The min-t norm is also regular, because
it is idempotent (see Example 20 below). 	

Example 19 Multidimensional Semiring of Real Numbers. We refer to Ex-
ample 7 in Section 2. If the semiring A is regular, then the multidimensional
semiring An is clearly also regular. Let A for example be the semiring of reals
with the usual operations of addition and multiplication. The idempotents in
the semiring An are then the vectors consisting only of components 0 and 1.
If we define the support of such a vector f to be the set of variables supp(f),
for which the components equal 1, then we have f1 ≤I f2 if, and only if,
supp(f1) ⊆ supp(f2). We may identify the support [a] with supp(fa). The in-
verse of an element (a1, . . . , an) is the element (a−1

1 , . . . , a−1
n), where, as before,

the inverse of 0 is 0. The regular semiring An is positive if, and only if, the
regular semiring A is positive. We have here with An an example of a semiring
which decomposes into more than two groups, in fact into 2n groups. 	

Example 20 Idempotent Semirings. If A is a semiring with an idempotent
operation ×, then A is trivially regular: Each element is an idempotent, hence
an inverse of itself. Thus, each element forms for itself a trivial group. If A is
also a c-semiring, then the order ≤I is identical to the order ≤A. Then A is
also positive and the induced information algebra is regular. 	

We show now, how a regular, positive semiring A induces a regular valuation
algebra Kohlas (2003). A valuation algebra (Φ, D) is called regular Kohlas
(2003), if for all φ ∈ Φ and t ⊆ d(φ) there exists a valuation χ with domain t
such that

31

φ⊗ φ↓t ⊗ χ = φ. (5.1)

Note that this implies that Φ is regular as the semigroup of combination (pro-
vided that φ↓d(φ) = φ). However, the definition (5.1) of regularity also involves
the projection operation, which is essential, if we want to use architectures of
local computation with division Kohlas (2003).

Clearly, a necessary condition for a semiring-induced valuation algebra to be
regular, is that the underlying semiring is regular. This is however not suffi-
cient. We claim that a regular, positive semiring induces a regular valuation
algebra.

Theorem 8 Let (Φ, D) be the valuation algebra, induced by a regular, positive
semiring A. Then (Φ, D) is regular.

Proof. Suppose d(φ) = s. Take any x ∈ Ωt. Define

χ(x) = (φ↓t(x))−1.

Then we have for any x ∈ Ωs

(φ⊗ φ↓t ⊗ χ)(x) =φ(x)× φ↓t(x↓t)× χ(x↓t)

=φ(x)× φ↓t(x↓t)× (φ↓t(x↓t))−1

=φ(x)× fφ↓t

We use the abbreviations fφ and fφ↓t for f[φ(x)] and f[φ↓t(x↓t)]. Thanks to the
positivity of A we have [φ(x)] ≤I [φ↓t(x↓t)], hence for all x ∈ Ωs we have
fφ ≤I fφ↓t and therefore

φ(x)× fφ↓t = (φ(x)× fφ)× fφ↓t

=φ(x)× (fφ × fφ↓t)

=φ(x)× fφ
=φ(x).

This shows that (5.1) holds. ut

The examples of positive regular semirings presented above induce thus regular
valuation algebras. They include probability potentials and possibility poten-
tials with multiplication as the t-norm. For regular valuation algebras we can
use the Lauritzen-Spiegelhalter architecture (LS-architecture) Lauritzen and
Spiegelhalter (1988) as well as the HUGIN-architecture Jensen et al. (1990)
(see Section 5.4). However regularity is not necessary for the applicability of
these architectures, there are less restrictive properties which allow for these
architectures.

32

5.2 Cancellative Algebras

There are important examples, where A is not regular. For example, consider
the (max,+) semiring on the nonnegative integers (see Example 5 in Section
2); this is not regular, since there is no nonnegative integer b such that a +
b+ a = a. However, the negative integer b = −a would serve as a solution for
this equation. The arithmetic semirings on integers are not regular either, but
again, inverses for all integers exist, as rational numbers. In these examples,
the commutative multiplicative semigroup of the semiring must be embedded
into larger groups.

The first example can be generalized as follows: A semigroup A is called can-
cellative, if

a× b = a× c

always implies b = c Clifford and Preston (1967). Such a semigroup can be
embedded into a group G in the following way: We consider pairs (a, b) with
a, b ∈ A and define

(a, b) = (c, d) if a× d = b× c.

Multiplication between such pairs is then defined by

(a, b)× (c, d) = (a× c, b× d).

This is well defined and multiplication is clearly commutative and associative.
The unit e of multiplication is given by pairs (a, a). Then we have

(a, b)× (b, a) = (a× b, a× b) = e.

So (a, b) and (b, a) are inverses and the set G of pairs (a, b) is a group. The
semigroup A is embedded into G by the mapping a 7→ (a × a, a). If A itself
has a unit element 1, then 1 7→ (1, 1) = e. In the following we consider A as a
subset of the group G.

We call a semiring cancellative, if the semigroup of A under the operation ×
is cancellative.

Example 21 Tropical Semirings. If multiplication is defined by addition as
in the tropical (max /min,+) semirings on nonnegative integers N+ ∪ {0},
then the semiring is cancellative, since a + b = a + c always implies b = c.
This holds also for non-negative reals R+ ∪ {0}. To a pair of numbers a, b

33

we assign the difference a − b, which is no more necessarily in the semiring.
Clearly, the additive semigroup is embedded into the group G of all integers.
The (max,+)-semiring on all integers or reals is already itself a group under
addition. 	

Example 22 Positive Arithmetic Semirings. The semiring of (strictly) pos-
itive integers or reals with the ordinary addition and multiplication is can-
cellative. In the case of reals the multiplicative semigroup is already itself a
group and we have A = G. This is because A is not only cancellative, but also
regular. Note however that the semirings on the nonnegative integers and real
numbers are no more cancellative. 	

A valuation algebra (Φ, D) is called cancellative if, for all s ∈ D, the semigroup
Φs is cancellative. When the valuation algebra is induced by a cancellative
semiring, then, if for all x ∈ Ωs, φ(x) × ψ(x) = φ(x) × η(x) it follows for all
x ∈ Ωs, ψ(x) = η(x), so that the valuation algebra (Φ, D) is cancellative. The
converse can be shown by considering valuations with empty domain. Hence,
if (Φ, D) is induced by a semiring, then it is cancellative if, and only if, the
semiring is cancellative.

In this case Φs is embedded into a group Gs and this is in fact the group of
valuations φ : Ωs → G. The inverse of φ is defined by

φ−1(x) = (φ(x))−1

for all x ∈ Ωs. The unit element of group Gs is defined by

es(x) = e ∈ G

for all x ∈ Ωs. If e belongs to A, then e = 1 is the unit of the semiring A. So
we see that Φ, as a semigroup, is embedded into the disjoint union of groups

⋃
s∈D

Gs.

If A has a unit element, then es belongs to Φ, otherwise it is outside Φ. Also
the inverses φ−1 in general do not belong to Φ. We note that

es ⊗ et(x) = es(x
↓s)× et(x

↓t) = e× e = e = es∪t(x).

This implies that for any φ with d(φ) = s and t ⊆ s we have

φ⊗ et = φ⊗ es ⊗ et = φ⊗ es = φ.

34

This condition, together with the existence of inverse valuations outside Φ is
sufficient to permit the use of the LS- and the HUGIN architectures for local
computation in a valuation algebra induced by a cancellative semiring, see
Section 5.4 Kohlas (2003); Schneuwly et al. (2004).

5.3 Separative Semirings

Above we noted that the arithmetic semiring on non-negative integers N∪{0}
is neither cancellative, nor regular. Yet it is possible to embed it into a union of
disjoint groups, i.e the group {0} and the multiplicative group of the positive
rational numbers. This indicates that there are more general cases of com-
mutative semigroups which can be embedded into a union of disjoint groups
Tamura and Kimura (1954); Clifford and Preston (1967). The corresponding
semirings may under some additional conditions generate valuation algebras
which still allow the use of the architectures with division.

In fact, it is known from semigroup theory Tamura and Kimura (1954); Hewitt
and Zuckermann (1956); Clifford and Preston (1967) that a commutative semi-
group can be embedded into a semigroup which is a union of disjoint groups
if, and only if, it is separative. This means (expressed by the ×-operation of a
semiring A), that for all a, b ∈ A,

a× b = a× a = b× b

implies a = b. Now, if (Φ, D) is the valuation algebra, induced by the semiring
A, then its semigroup is separative if, and only if, the semiring is separative.
So this semigroup can then also be embedded into a semigroup which is the
union of disjoint groups. But this is not sufficient for the application of local
computation architectures with division Kohlas (2003). We need an additional
condition, which links separativity to marginalization (or to the +-operation
in the underlying semiring). The reason is that in local computation with
division, inverses are used to divide marginals φ↓t of a valuation φ out of it at
some time and later the marginal is again multiplied into it. So, essentially,
the combination of a marginal with its inverse gives a neutral element f of
some group, which must also be neutral with respect to φ, though φ is not in
the same group in general,

φ⊗ (φ↓t)−1 ⊗ φ↓t = φ⊗ f = φ.

This is what the additional condition must guarantee.

In this section we develop the corresponding theory, which covers the two
preceding structures (Sections 5.1 and 5.2) as special cases. So let {Gα : α ∈

35

Y } be a family of disjoint groups, whose union

G =
⋃
α∈Y

Gα

is a semigroup and assume that the multiplicative semigroup of the semiring
A = 〈A,+,×〉 is embedded into it. This means, that there is an injective
mapping h : A → G such that h(a× b) = h(a)× h(b), where on the left × is
the multiplication in A and on the right the semigroup operation in G. This is
the situation we may assume if the multiplicative semigroup of A is separative.
For clarity, we identify each element a of A with its image h(a) in G, i.e. we
assume without loss of generality that A ⊆ G.

There is a unique unit element fα in each group Gα. This is an idempotent
element, fα× fα = fα. Let f be an idempotent element in G. Then f belongs
to some group Gα and f × f = f × fα which implies f = fα. So the unit
elements of the groups Gα are the only idempotent elements in G. Thus, if
the semiring possesses a unit element, then it will be the unit element of some
group. Now, fα × fβ is also an idempotent element, hence fα × fβ = fγ for
some γ ∈ Y . We define α ≤ β if

fα × fβ = fα.

This relation is clearly reflexive, antisymmetric and transitive, i.e. it is a partial
order between the elements of Y . Now, if fα × fβ = fγ, then it follows that
γ ≤ α, β. Let δ ∈ Y be any other lower bound of α and β, i.e., such that
fα× fδ = fδ and fβ × fδ = fδ. Then, fγ × fδ = fα× fβ × fδ = fα× fδ = fδ. So
δ ≤ γ, hence γ is the greatest lower bound of α and β, so we write γ = α∧ β.
We have thus

fα × fβ = fα∧β.

The family Y of groups forms therefore a semilattice, i.e. a partially ordered
set where the infimum exists between any pair of elements.

We denote the inverse element of an element a in some group Gα by a−1.
Then a×a−1 = fα. Suppose b in some group Gβ. Then (a× b)× (a−1× b−1) =
fα×fβ = fα∧β. Therefore (a×b)−1 = a−1×b−1. Suppose now that a×b ∈ Gγ.
Then (a × b)−1 ∈ Gγ and (a × b) × (a × b)−1 = fγ. But as we have seen
fγ = fα∧β, hence γ = α ∧ β and a× b ∈ Gα∧β.

We define a ≡ b in A if a and b belong to the same group Gα. This is an
equivalence relation in A. Assume that a ≡ a′ and b ≡ b′. Then a× b ≡ a′× b′
and the relation is a ×-congruence in A. This implies that the equivalence

36

classes [a] of this equivalence relation in A are semigroups. Thus A decomposes
into a family of disjoint semigroups,

A =
⋃
a∈A

[a].

The partial order of Y carries over to equivalence classes [a]. In fact, we have
[a] ≤ [b] if and only if [a × b] = [a] and, for all a, b ∈ A also [a × b] =
[a] ∧ [b]. Thus, the semigroups [a] form a semilattice, isomorph to Y . We call
the equivalence class [a] of a the support of a.

Reflexivity a ≡ a implies that a × a ≡ a. So, a and a × a have the same
support, i.e. [a] = [a×a]. We introduce now an additional requirement, which
generalizes this relation, and which links the decomposition of the multiplica-
tive semigroup of a semiring to the +-operation of the semiring. We call a
semiring A = 〈A,+,×〉 separative, if its multiplicative semigroup is separa-
tive and, in addition, there is an embedding into a union of groups, such that
for all a, b ∈ A,

[a] ≤ [a+ b]. (5.2)

This is a kind of strengthening of positivity. In fact, if A has a zero element,
then (5.2) implies that [0] ≤ [a] for all elements a of A. Also, if a � b (see
Section 2) then from condition (5.2) we conclude that [a] ≤ [b].

Let’s illustrate these results by some examples. In particular, it must be
stressed that the embedding of a semigroup into an union of disjoint groups
is not necessarily unique, as the second example shows.

Example 23 Regular and Cancellative Semirings. A cancellative semiring
(Section 5.2) is clearly separative, since cancellativity implies that from a×a =
a× b it follows that a = b. Condition (5.2) is trivially satisfied, since there is
only one support. A regular positive semiring (Section 5.1) is also separative,
since regularity implies that any element a ∈ A has an inverse in A and hence
from a × a = a × b = b × b it follows that a and b are in the same group,
[a] = [b], of the decomposition of the semiring, and then, multiplying with the
inverse of a (or b) it follows that a = f[a]×b = b. Condition (5.2) is required for
regular semirings too (see Section 5.1). So regular and cancellative semirings
are particular cases of separative semirings. In the first case the multiplica-
tive semiring decomposes not only into a semilattice of semigroups, but into
a semilattice of groups, in the second case the semigroup is embedded into a
group. 	

Example 24 Arithmetic Semirings. Some of the arithmetic semirings (see
Example 1) are regular or even cancellative. But consider the arithmetic semir-

37

ing on nonnegative integers N∪{0}. It is neither cancellative nor regular. But
it is separative. It decomposes into the semiring {0} and the arithmetic semir-
ing of natural numbers N. The first is already a (trivial) group, the second
is embedded into the multiplicative group of positive rational numbers. And
their union, the nonnegative rational numbers form a multiplicative semiring
too. The partial order between the two groups is {0} ≤ N. Condition (5.2)
holds too. So this arithmetic semiring is separative.

There is an alternative embedding of the multiplicative semigroup. Consider
finite sets of prime numbers. For any such set of prime numbers, the natu-
ral numbers which factor exactly into those prime numbers form a semigroup
which can be embedded into a group. The partial order between these semi-
groups is defined by set inclusion. However, with this decomposition condition
(5.2) is not satisfied. For example 2 + 3 = 5, but [2] 6≤ [5] since {2} is not a
subset of {5}. 	

Example 25 Nonnegative Semirings. In many cases a semiringA = 〈A,+,×〉
with zero element decomposes into two multiplicative semirings {0} and A−
{0}. If the latter is cancellative, then the semiring is separative. It is then em-
bedded into the semiring which is the union of the group {0} and the group
G into which A − {0} is embedded. In fact {0} ∪ G is a semigroup, since
we may define 0 × g = 0 for all g ∈ G. The partial order between groups is
{0} ≤ A− {0}. Further, since 0 + b = b for all b ∈ A condition (5.2) is clearly
satisfied. The previous example belongs to this class of separative semirings.
But we may in an arithmetic semiring for example replace addition by the
max operator and then it remains a separative semiring. 	

Example 26 Multidimensional Semirings. Consider a multi-dimensional semir-
ing (Example 7) 〈An,+,×〉 whose component semiring A = 〈A,+,×〉 is sepa-
rative. Clearly the multi-dimension multiplicative semigroup is separative too.
If A is embedded into a union of disjoint groups Gα, then the multiplicative
semigroup of An is embedded into the union of the disjoint cartesian product
of groups Gα

Gα1,...,αn = Gα1 × · · · ×Gαn .

The idempotent elements of these groups are fα1,...,αn = (fα1 , . . . , fαn). It fol-
lows that (α1, . . . , αn) ≤ (β1, . . . , βn) if, and only if, αi ≤ βi for all i = 1, . . . , n.
In the same way [(a1, . . . , an)] ≤ [(b1, . . . , bn)] if [ai] ≤ [bi] for all i. It follows
immediately that condition (5.2) is satisfied in the multidimensional semiring,
if it is in A. 	

If a semiring A is cancellative then it has no zero element (unless A = {0}). (If
the semiring has a zero element 0 then let a = b = 0, and let c be an arbitrary
element of the semiring. The above cancellative property for semigroups im-

38

plies that c = 0.) In particular, c-semirings are not cancellative. It is therefore
natural to consider a weaker cancellation property, see Bistarelli and Gadducci
(2006): let us say that A is weakly cancellative if for any a, b, c ∈ A, if a 6= 0
and a × b = a × c then b = c. This property implies that if a × b = 0 then
either a = 0 or b = 0. If a semiring is weakly cancellative then it is separative.
For suppose a× a = a× b = b× b; if a = 0 then b× b = 0 and so b = 0 = a.
Otherwise, if a 6= 0 then a× a = a× b which implies a = b.

A separative semiring satisfies: if a 6= 0 then a × a 6= 0. Consider A =
{0, 1, 2, . . . , k}, (for some k ≥ 2) with the semiring addition operation being
minimum, and the semiring multiplication being integer addition, truncated
to keep the result at most k. The value k is the zero element of the semiring
and the value 0 is the unit element. This is an important semiring for reason-
ing with weighted constraints Larrosa and Schiex (2004), where the k arises
from the weight of the best solution found so far. It is not separative: consider,
for example, a = k and b = k − 1.

More generally, consider a totally ordered c-semiring (which corresponds to a
valuation structure, used for valued CSPs Bistarelli et al. (1999)), where there
exists an idempotent element a and a non-idempotent element b with b > a
and such that there is no element between a and b. Then b > b×b ≥ a×a = a
and so a× a = a× b = b× b, implying that such a semiring is not separative.
Because of this, many fair valuation structures Cooper and Schiex (2004),
when viewed as totally ordered semirings, are not separative.

The use of kinds of division in semirings for soft constraints has been studied
in Bistarelli and Gadducci (2006); Cooper and Schiex (2004).

Let now A = 〈A,+,×〉 be a separative semiring and (Φ, D) a valuation al-
gebra induced by this semiring. Then the combination semigroup of Φ is also
separative, i.e.

φ⊗ ψ = φ⊗ φ = ψ ⊗ ψ

implies φ = ψ. So, this semigroup can also be embedded into a semigroup
which is a union of disjoint groups. In fact, the decomposition which is for our
purposes of interest is the particular one induced by the decomposition of the
underlying semiring A.

The decomposition of A induces a congruence in the combination semigroup
of Φ as follows:

φ ≡ ψ

if

39

(1) d(φ) = d(ψ),
(2) for all x ∈ Ωd(φ), φ(x) ≡ ψ(x).

This is clearly an equivalence relation on Φ. Assume that φ ≡ ψ and φ ≡ η
and d(φ) = d(ψ) = d(η) = s. Then it follows that d(φ ⊗ ψ) = d(φ ⊗ η) = s
and for all x ∈ Ωs also that φ(x) × ψ(x) ≡ φ(x) × η(x). So this equivalence
is also a combination congruence in Φ. It follows then that the equivalence
classes [φ] are subsemigroups of the combination semigroup of Φ.

For any valuation φ with d(φ) = s define the mapping sp[φ] : Ωs → Y , where
Y is the semilattice of the group decomposition of the separative semiring A,
by

sp[φ](x) = α, if φ(x) ∈ Gα.

Note that this mapping is well defined, since sp[φ] = sp[ψ], if [φ] = [ψ]. We
define for a valuation φ with d(φ) = s

G[φ] = {g : Ωs → G : ∀x ∈ Ωs g(x) ∈ Gsp[φ](x)}.

It follows that G[φ] is a group, and the semigroup [φ] is embedded in it. The
unit element f[φ] of group G[φ] is given by f[φ](x) = fsp[φ](x). The inverse of φ

is defined by φ−1(x) = (φ(x))−1. This induces also the partial order [φ] ≤ [ψ]
if f[φ](x) ≤ f[ψ](x) for all x ∈ Ωs or [φ⊗ψ] = [φ]. In fact, this is a semilattice,
i.e. f[φ⊗ψ] = f[φ] ∧ f[ψ]. The union of these groups

G∗ =
⋃
φ∈Φ

G[φ]

is a semigroup. In fact, if g1 ∈ G[φ] and g2 ∈ G[ψ], then g1 ⊗ g2 is defined for
x ∈ Ωs∪t, if d(φ) = s and d(ψ) = t by

g1 ⊗ g2(x) = g1(x
↓s)× g2(x

↓t)

and belongs to G[φ⊗ψ].

We have the equivalence φ ⊗ φ ≡ φ because [φ] is a semigroup. But, due to
the separativity of the underlying semiring A it follows for any t ⊆ d(φ) and
also for all x ∈ Ωs,

[φ(x)] ≤ [φ↓t(x↓t)].

This means that [φ] ≤ [φ↓t] or also

40

φ↓t ⊗ φ ≡ φ. (5.3)

This condition guarantees that

φ⊗ (φ↓t)−1 ⊗ φ↓t = φ⊗ f[φ↓t] = φ (5.4)

because, for any neutral element f[ψ] such that [φ] ≤ [ψ] we have that f[ψ]⊗φ =
φ (see Kohlas (2003)).

This in turn is, what is needed for the local computation architectures with
division to be applicable Kohlas (2003). A valuation algebra (Φ, D) which
has a combination congruence which satisfies this condition and such that
the equivalence classes [φ] are cancellative semigroups are called separative
valuation algebras in Kohlas (2003).

Let’s illustrate these results by the important example of nonnegative semir-
ings.

Example 27 Valuation Algebra Induced by a Nonnegative Semiring. Accord-
ing to Example 25 a nonnegative semiring A = 〈A,+,×〉 is embedded into a
union of groups {0}∪G, where group G contains the positive part A−{0} of
the semiring A. If (Φ, D) is the valuation algebra induced by such a semiring,
then we define the support supp(φ) of a valuation φ with domain d(φ) = s as

supp(φ) = {x ∈ Ωs : φ(x) 6= 0}.

Then, in this particular case, the congruence φ ≡ ψ holds exactly if the two
valuations have the same support, i.e. supp(φ) = supp(ψ) and the equivalence
class [φ] contains all valuations with the same domain as φ and the same
support. In the case of arithmetic nonnegative semirings it becomes clear,
that in such an equivalence class we can define the inverse of a valuation φ as

φ−1(x) =
1

φ−1(x)
, if x ∈ supp(φ),

and φ−1(x) = 0 otherwise. This defines the group G[φ]. The partial order
between classes [φ] or groups G[φ] is defined by inclusion of supports: [φ] ≤ [ψ]
if supp(φ) ⊆ supp(ψ). 	

5.4 Local Computation With Division

As claimed above, for all the semiring-induced valuation algebras with division
as defined by the division in the underlying separative semiring, the local

41

computation architectures proposed for probability potentials such as the LS-
and the HUGIN-architectures can be applied.

In the LS-architecture, first the collect algorithm is executed as in the archi-
tecture for idempotent valuation algebras, except that in node i, the node
content χi is divided by the outgoing message to ch(i). So, in node i we store

χi =: χi ⊗ (χ
↓si∩sch(i)

i)−1,

After the collect algorithm, a distribute algorithm follows exactly as in the
idempotent architecture. For a proof of the correctness of this architecture in
valuation algebras with division as described in the previous sections we refer
to Kohlas (2003). The idempotent architecture for local computation (Section
4.2) is a special case of the LS-architecture, since in information algebras each
element is its own inverse.

The HUGIN architecture is a variant of the LS-algorithm in which between all
nodes i and ch(i) of the join tree an additional node, the so-called separator
is introduced. The collect algorithm is as originally, except that the message
µi→ch(i) is stored in the separator. After the collect algorithm a distribute phase
follows, where each node i, starting with the root node m sends messages out
as in the idempotent architecture. However the message is sent to the separator
nodes, where it is divided by the inverse of the content of the separator,

µch(i)→i ⊗ (µi→ch(i))
−1.

This message arrives then at node i, where it is combined with the node
content χi. The difference with LS-architecture is that division occurs on the
smaller domain si∩ sch(i) of the separator, instead of on the domain si. This is
an advantage. In the distribute phase, if a node k is ready to send a message, it
stores χk = φ↓λ(k). We refer again to Kohlas (2003); Schneuwly et al. (2004) for
a proof of correctness of this architecture for regular and separative valuation
algebras.

Example 28 Reconsider the join tree in the figure 3.1 previously used in
examples 8 and 16. Figure 5.1 illustrates a complete run of the HUGIN archi-
tecture with φ = ψ1 ⊗ ψ2 ⊗ ψ3 ⊗ ψ4. The collect algorithm corresponds again
to the first three steps of the Shenoy-Shafer architecture, but every message
is stored in a separator node represented as diamond in the figure. Steps 3–6
use the correctness of the algorithm in the computation of χ. 	

It should be stressed that in both architectures the inverses used in the compu-
tation may be elements outside the valuation algebra, whereas the final results
in all nodes of the join tree belong to the algebra. Moreover, the division allows

42

1

{A,B}

2

{C}

3

{A,B,C}

{A,C,D}

1

4

2

3

5

6

ψ1 ψ2

ψ3

ψ4

{A, C}

{A, B} {C}

4

For the collect algorithm the messages are:

Message to separator: Message from separator: χ

1 χ
↓ω1→3∩λ(3)
1 = ψ

↓ω1→3∩λ(3)
1 µ1→3 = ψ

↓ω1→3∩λ(3)
1 χ3 =: χ3 ⊗ µ1→3 = ψ3 ⊗ µ1→3

2 χ
↓ω2→3∩λ(3)
2 = ψ

↓ω2→3∩λ(3)
2 µ2→3 = ψ

↓ω2→3∩λ(3)
2 χ3 =: χ3 ⊗ µ2→3

3 χ
↓ω3→4∩λ(4)
3 µ3→4 = χ

↓ω3→4∩λ(4)
3 χ4 =: χ4 ⊗ µ3→4 = ψ4 ⊗ µ3→4 = φ↓λ(4)

In the distribute phase, we have then:

Message to separator: Message from separator: χ

4 χ
↓λ(4)∩λ(3)
4 = φ↓λ(4)∩λ(3) µ4→3 = φ↓λ(4)∩λ(3) ⊗ (µ3→4)−1 χ3 =: χ3 ⊗ µ4→3 = φ↓λ(3)

5 χ
↓λ(3)∩λ(1)
3 = φ↓λ(3)∩λ(1) µ3→1 = φ↓λ(3)∩λ(1) ⊗ (µ1→3)−1 χ1 =: χ1 ⊗ µ3→1 = φ↓λ(1)

6 χ
↓λ(3)∩λ(2)
3 = φ↓λ(3)∩λ(2) µ3→2 = φ↓λ(3)∩λ(2) ⊗ (µ2→3)−1 χ2 =: χ2 ⊗ µ3→2 = φ↓λ(2)

Fig. 5.1. A complete run of the HUGIN architecture.

to define concepts like “conditional valuations” generalizing conditional prob-
abilities. Then even in the original factorization of an element of the valuation
algebra, the factors need not necessarily be elements of the algebra and yet
the local computation architectures return the correct marginals. This per-
mits a generalization of Bayesian networks to more general structures than
probability potentials. For details we refer to Kohlas (2003).

6 Propagating Upper and Lower Bounds

A problem with the join tree based computational schemes (including fusion
and bucket elimination) is that the propagation will tend not to be feasible
unless all the sets of variables associated with the nodes in the join tree are
small. However, for a given problem, we may well not be able to find such
a join tree; in particular, by definition, there exists no such join tree unless

43

the induced width (treewidth) Dechter and Pearl (1987); Bodlaender (1993);
Kask et al. (2005) is small.

In this section we consider how to compute upper and lower bounds of val-
uations. In particular, we consider how to adapt the general join tree propa-
gation algorithm (see Section 3.1) to efficiently compute bounds for the pro-
jection problem; the key to the efficiency is avoiding having to perform the
hardest combinations, such as those involving large number of variables. The
mini-buckets and mini-clustering techniques of Dechter et al. Dechter (1997);
Dechter and Rish (2003); Kask and Dechter (1999a,b); Dechter et al. (2001);
Mateescu et al. (2002), have been developed for approximations and bounds
of this kind for a number of important problems: belief updating, most prob-
able explanation and combinatorial optimisation for weighted constraints. We
show how this kind of algorithmic approach can be made much more general,
so that it can be applied for general semiring-induced valuation algebras 6 and
other valuation algebras.

Upper bounds are important for an optimisation problem, when using a branch-
and-bound algorithm. For example, consider the problem of finding a maxi-
mum assignment to a collection M of A-valuations where A is a (max,+)
semiring (Example 5) i.e., with the semiring addition as max and the semir-
ing multiplication being +. (The application of the mini-clustering approach
for (almost) this semiring, and within a branch-and-bound framework, has
been described in Dechter et al. (2001)). We generate a search tree where each
node of the tree is associated with (i) an assignment z ∈ Ωt to some set t
of variables, and (ii) a multiset M ′ of valuations, which is M with variables
t instantiated to z. (

⊗
M)↓∅ is the value of the maximum assignment, and

(
⊗
M ′)↓∅ is the value of the maximum assignment which extends z. Let b be

the value of the best solution found so far; suppose we have an efficient algo-
rithm which generates an upper bound a for (

⊗
M ′)↓∅. If b 6≺ a then we know

that z cannot be extended to an assignment with value better than b, and so
we can backtrack at this node (given that we are looking for a single maximal
assignment). This generalises to other semirings with idempotent addition,
including only partially ordered semirings.

Furthermore, upper and/or lower bounds may be sufficient to answer a partic-
ular query. In a problem where the variables are decision variables, an upper
bound may be sufficiently low to imply that no decision is adequate. In another
situation a lower bound may be sufficiently high to imply that it is possible to
make a good choice, so it may be worth investing in more computation time

6 Independently, Chang and Mackworth have suggested a special form of this kind
of approximation for semiring-induced valuation algebras; see Chang (2005) and
Section 6.1 of Chang and Mackworth (2005). They also consider other approxima-
tion methods, as does Aji and McEliece (2000).

44

to find such a choice.

A somewhat different approach to approximation is given in Haenni (2004),
which has the advantage of enabling one to keep a careful control on the com-
putation time. This is based on the usual join tree message passing algorithms,
but where a combination on a node is approximated to keep the computation
of the combination within a set time limit. For probability potentials (Haenni
(2004), Section 5.5.1) this approximate combination can be performed by pro-
cessing tuples of the product set sequentially, and implicitly assigning zeros
to tuples which are not reached before the time limit; (an analogous approach
is also suggested for Dempster-Shafer belief potentials). A significant disad-
vantage of this is that, if the product frame (associated with a node in the
join tree) is very large then there are a very large number of tuples to process;
there will typically then be time to process only a tiny fraction of these, which
will tend to lead to a very poor approximation of the individual combination,
and also of the overall result. However, it would be interesting to explore the
potential for combining the resource-bounding ideas in Haenni (2004) with
the generalised mini-clustering approach developed here.

In Section 6.1 we construct the upper and lower bounds framework for the
general case of valuation algebras, and give the associated propagation algo-
rithm in Section 6.2. The join tree propagation algorithms involve repeated
application of combination followed by projection i.e., computations of the
form (

⊗
M)↓u. Mini-buckets/clustering algorithms and our extended algo-

rithms approximate such marginalized combinations; they produce a multi-
set M ′ of valuations whose combination is an approximation of the message
(
⊗
M)↓u. (An important feature of these algorithms is that we do not need

then to combine together the valuations M ′: instead these will form the inputs
for approximations of further messages.) In Section 6.3 we consider the case
of semiring-induced valuations. Section 6.4 discusses the same kind of algo-
rithm for other types of approximation. Another important consideration for
the efficiency of the propagation algorithm is the number of non-zero elements
of the input valuations, since having few non-zero elements makes a combina-
tion much faster. In Section 6.5, it is shown how one can use a pre-processing
step of constraint propagation to potentially decrease the number of non-zero
tuples in the input valuations. This idea is taken a step further in Section 6.6,
where it is shown how, for certain types of query, one can increase the number
of zeros in the input valuations without changing the answer.

6.1 Bounding the Projection of a Combination

In this section we extend valuation algebras by adding an associated ordering,
and we consider the problem of constructing upper and lower bounds of the

45

projection of a combination of valuations. (Our definition of ordered valuation
algebra is slightly different to the one given in Haenni (2004).)

Ordered valuation algebras

(Φ, D,�) is said to be an ordered valuation algebra (with neutral elements) if

(i) (Φ, D) is a valuation algebra;
(ii) for each set of variables s, there exists an identity element es (so that for

each φ ∈ Φ, φ⊗ed(φ) = φ) and for any sets of variables s and t, es⊗et = es∪t;
(iii) the relation � is a pre-order on Φ (i.e., a reflexive and transitive relation)

which only orders valuations with the same domain, i.e., φ � ψ implies
d(φ) = d(ψ); furthermore, projection and combination both respect �, that
is, for arbitrary φ, ψ, χ ∈ Φ, if φ � ψ then

(a) φ↓u � ψ↓u for any u ⊆ d(φ) = d(ψ); and
(b) φ⊗ χ � ψ ⊗ χ.

This last property implies that if φi � ψi for all i = 1, . . . , k, then φ1⊗· · ·⊗φk �
ψ1 ⊗ · · · ⊗ ψk.

If φ � ψ, we say that φ is a lower bound for ψ [with respect to �], and that
ψ is an upper bound for φ.

The propagation algorithms involve sequences of combinations and projec-
tions. Because projection and combination both respect �, if at any point we
replace any valuation by an upper bound of it, the result will be an upper
bound of the correct result. Similarly with lower bounds.

We can extend the notion of upper and lower bounds to valuations with smaller
domains. Suppose u = d(φ) ⊆ d(ψ). We say φ is a u-lower bound for ψ
if φ ⊗ ed(ψ)−d(φ) � ψ. Similarly, we say that φ is a u-upper bound for ψ if
ψ � φ⊗ ed(ψ)−d(φ).

Least upper bounds and greatest lower bounds can be defined in the obvious
way: for valuations φ and ψ with d(φ) = u ⊆ d(ψ), we say that φ is a least
u-upper bound of ψ if (i) φ is a u-upper bound of ψ, and (ii) φ � θ for any
u-upper bound θ of ψ. If � is a partial order then there can be at most one
least u-upper bound. We define greatest u-lower bounds analogously.

A valuation φ is a lower bound for a valuation ψ if and only if it is a d(ψ)-lower
bound for ψ (and similarly for upper bounds) since φ⊗ e∅ = φ⊗ ed(φ) ⊗ e∅ =
φ⊗ ed(φ) = φ, so φ � ψ ⇐⇒ φ⊗ e∅ � ψ. The properties for neutral elements
also imply that for any valuation φ and set of variables q, φ⊗ eq = φ⊗ eq−d(φ).
This is because φ⊗ed(φ)∩q = φ⊗ed(φ)⊗ed(φ)∩q = φ⊗ed(φ) = φ; so φ⊗eq−d(φ) =
φ⊗ed(φ)∩q⊗eq−d(φ) = φ⊗eq. In particular, this implies that if u = d(φ) ⊆ d(ψ)

46

then: φ is a u-lower bound for ψ if and only if φ ⊗ ed(ψ) � ψ; similarly for
u-upper bounds.

The fusion algorithm (bucket elimination) and join tree propagation algo-
rithms Shenoy and Shafer (1990); Shenoy (1992); Dechter (1999); Kohlas
(2003); Kask et al. (2005) involve repeated application of: combination of
a multiset M of valuations followed by projection to a set of variables u, i.e.,
(
⊗
M)↓u. If M involves too many variables this may be infeasible. The key

to mini-buckets and mini-clustering bounding techniques is to generate upper
and lower bounds for (

⊗
M)↓u which involve only feasible combinations. The

fundamental result is the following, showing that (
⊗
M)↓u can be bounded

above (and, similarly, below) by the combination of a multiset of valuations
derived from M but only involving variables in u.

Proposition 2 For i = 0, . . . , k, let φi be a valuation in an ordered valuation
algebra (Φ, D,�), let s = d(φ0) ∪ · · · ∪ d(φk), the set of variables involved in
these valuations, let u be a subset of s, and let t = s − (u ∪ d(φ0)). For each
i = 1, . . . , k, let τi be a u∩ d(φi)-lower bound for φi, and let θi be a u∩ d(φi)-
upper bound for φi. Then φ

↓u∩d(φ0)
0 ⊗ τ1 ⊗ · · · ⊗ τk ⊗ e↓∅t is a lower bound for

(φ0 ⊗ · · · ⊗ φk)
↓u and φ

↓u∩d(φ0)
0 ⊗ θ1 ⊗ · · · ⊗ θk ⊗ e↓∅t is an upper bound.

In Section 6.3, we give general ways of constructing the lower bound functions
τi and the upper bound functions θi for semiring-induced valuation algebras.
For example, under appropriate conditions, θi can be obtained by projecting φi
(see Lemma 2), generalising the approximations used for the MPE problem in
Dechter and Rish (2003), page 116, and for discrete optimisation; furthermore,
defining θi using pointwise max (see Section 6.3.2) generalises the mini-bucket
approximation for belief updating in Dechter and Rish (2003), page 120.

Proof. For each i = 1, . . . , k, by definition, τi⊗ed(φi)−u � φi, so, since projection
respects �, and by commutativity and associativity of combination,

φ0 ⊗ ed(φ1)−u ⊗ · · · ⊗ ed(φk)−u ⊗ τ1 ⊗ · · · ⊗ τk

is a lower bound for φ0⊗· · ·⊗φk. By the assumed property of neutral elements,
ed(φ1)−u ⊗ · · · ⊗ ed(φk)−u equals e(d(φ1)∪···∪d(φk))−u, and so, by the property of
neutral elements shown above,

φ0 ⊗ ed(φ1)−u ⊗ · · · ⊗ ed(φk)−u = φ0 ⊗ et,

since t = (d(φ1) ∪ · · · ∪ d(φk))− u− d(φ0). Hence φ0 ⊗ et ⊗ τ1 ⊗ · · · ⊗ τk is a
lower bound for φ0 ⊗ · · · ⊗ φk. Since � respects projection, this implies that

(φ0 ⊗ et ⊗ τ1 ⊗ · · · ⊗ τk)
↓u � (φ0 ⊗ · · · ⊗ φk)

↓u.

47

Write u0 = u ∩ d(φ0). Since t ∩ u = ∅, we have (d(φ0) ∪ t) ∩ u = u0. The
combination axiom implies that

(φ0 ⊗ et ⊗ τ1 ⊗ · · · ⊗ τk)
↓u = (φ0 ⊗ et)

↓u0 ⊗ τ1 ⊗ · · · ⊗ τk,

since τ1, . . . , τk only involve variables in u. Because φ0 and et do not involve
any common variables, the combination axiom and transitivity axiom imply
that (φ0 ⊗ et)

↓u0 = φ↓u0
0 ⊗ e↓u0∩t

t ; in more detail:

(φ0 ⊗ et)
↓u0 = ((φ0 ⊗ et)

↓u0∪t)↓u0 = (φ↓u0
0 ⊗ et)

↓u0 = φ↓u0
0 ⊗ e↓u0∩t

t ,

which equals φ↓u0
0 ⊗ e↓∅t . Therefore φ

↓u∩d(φ0)
0 ⊗ τ1 ⊗ · · · ⊗ τk ⊗ e↓∅t is a lower

bound for (φ0 ⊗ · · · ⊗ φk)
↓u.

The upper bound result is proved in exactly the same way. ut

Consider the situation where each φi can be written as τi ⊗ ed(φi)−u, where
d(τi) = d(φi) ∩ u (in this case φi really only depends on variables in u). Then
a similar argument as that used in the above proof can be used to prove that
φ
↓u∩d(φ0)
0 ⊗ τ1⊗ · · · ⊗ τk⊗ e↓∅t is actually equal to (φ0⊗ · · · ⊗φk)↓u. This shows

that the e↓∅t terms are in general necessary.

However, in applying Proposition 2, we will often be able to ensure that d(φ0)
contains all variables being eliminated, i.e., d(φ0) ⊇ s−u and hence t = ∅ and

e↓∅t = e∅. For any ψ, we have ψ ⊗ e∅ = ψ so then φ
↓u∩d(φ0)
0 ⊗ τ1 ⊗ · · · ⊗ τk is

a lower bound for (φ0 ⊗ · · · ⊗ φk)
↓u and φ

↓u∩d(φ0)
0 ⊗ θ1 ⊗ · · · ⊗ θk is an upper

bound. In particular when applying this to approximate the result of the fusion
algorithm (bucket elimination), the set s− u of eliminated variables is always
just a singleton {X}; it can be assumed that there exists some valuation which

involves variable X, and so the e↓∅t terms disappear. Similarly, if the valuation
algebra is stable then the terms e↓∅t disappear also, since then e↓∅t = e∅.

Approximating (
⊗
M)↓u without performing expensive combinations

Let M be a multiset of valuations, and let u a subset of the variables involved.
We will give a procedure that produces a multiset M ′ of valuations whose com-
bination is a lower bound for (

⊗
M)↓u; similarly, a procedure for generating an

upper bound; furthermore we can restrict the combinations used in the pro-
cedures to ensure that only feasible combinations of valuations are involved.
These procedures form the basis of the propagation algorithm in Section 6.2.
An important point is that, except in the final step in the propagation algo-
rithm, the approximating multisets M ′ will not need to be combined; instead
the combination of M ′ and other multisets will be again approximated.

Proposition 2 already gives a way of approximating a marginalized combina-

48

tion (
⊗
M)↓u (and it does this without performing any combinations). How-

ever, we can typically improve the approximations by combining some of the
valuations first, but still only performing feasible combinations.

We assume functions UB and LB, where for valuation φ and set of variables
u ⊆ d(φ), the valuation UB(φ, u) is a u-upper bound for φ and LB(φ, u) is a u-
lower bound for φ. (Methods of generating UB and LB for different formalisms
are derived in Section 6.3.2.) We also assume function Partition(Input :
M,B; Output : M0,M1, . . . ,Mk) which takes multiset M and non-negative
number B as inputs, and produces multisets M0,M1, . . . ,Mk which partition
M , and are such that the size (see below) of each Mi is at most B. It is
assumed that the implementation of the functions UB, LB and Partition do
not involve any combinations of valuations.

The size of a non-empty multiset M of valuations is intended to be a quickly-
evaluated measure of how hard it is to combine together the valuations M (see
also the notion of weight functions in Pouly and Kohlas (2005)). The size of
M is assumed to be a non-negative real number (though one could generalise
it to a partially ordered scale if one wished; this would allow easy generalisa-
tion of the pair of parameters (i,m) used in the mini-buckets approximations
Dechter and Rish (2003)). The only further property we assume of size is
that if M is a singleton then the size of M is 0; this is because then com-
bining M requires no work. size can be defined in various ways. Let M be
a multiset of valuations which contains at least two valuations. One defini-
tion is to say that size of M is |d(M)| = |⋃φ∈M d(φ)|, i.e., the total number
of variables involved in M . In this case the parameter B used below in e.g.,
UpperBound(M,u,B) corresponds to the parameter i used in the mini-buckets
approximations such as mbe-bel-max (i,m) Dechter and Rish (2003), page 121.
We allow other definitions of size because the number of variables is not the
only factor in the complexity of a combination. Another natural definition of
size of M is |Ωd(M)|, the cardinality of the frame associated with the combi-
nation of the valuations in M , as this gives an upper bound on the complexity
of the combination. Other definitions are possible for semiring valuations, for
example, that take into account the number of non-zero values in the valu-
ations (which is also very relevant to the computational efficiency for such
valuations).

Let M be a multiset of valuations, let u be a subset of the variables involved
in M , and let B be a non-negative real number. LowerBound(M,u,B), which
we define by the algorithm below, is a function that returns a multiset of
valuations; we will show that the combination of the returned multiset is a
lower bound for (

⊗
M)↓u. Multiset M is partitioned into multisets which are

of sufficiently small size (no more than B), and each multiset is combined.
Lower bounds for the results of these combinations are chosen which involve
only variables in u.

49

Function LowerBound(M,u,B)

begin
Partition(Input : M,B; Output : M0,M1, . . . ,Mk).
For each i = 0, . . . , k, let φi =

⊗
φ∈Mi

φ.
Let t = d(φ1) ∪ · · · ∪ d(φk)− (u ∪ d(φ0)).

Return multiset {e↓∅t , φ
↓u∩d(φ0)
0 , LB(φ1, u ∩ d(φ1)), . . . , LB(φk, u ∩ d(φk))}.

end

The algorithm for LowerBound(M,u,B) involves performing combinations,
but each combination is of a multiset of size at most B.

Function UpperBound(M,u,B) is defined in an exactly analogous manner (and
in practice the functions LowerBound and UpperBound might be combined):

Function UpperBound(M,u,B)

begin
Partition(Input : M,B; Output : M0,M1, . . . ,Mk).
For each i = 0, . . . , k, let φi =

⊗
φ∈Mi

φ.
Let t = d(φ1) ∪ · · · ∪ d(φk)− (u ∪ d(φ0)).

Return multiset {e↓∅t , φ
↓u∩d(φ0)
0 , UB(φ1, u ∩ d(φ1)), . . . , UB(φk, u ∩ d(φk))}.

end

These procedures produce correct bounds on the projection of the combina-
tion, irrespective of the choice of functions Partition, LB and UB. Further-
more, the computations only require combinations of multisets of size at most
B.

Proposition 3 Whatever choices are made for functions Partition, LB and
UB, the valuation

⊗
LowerBound(M,u,B) (the combination of all the elements

in the multiset LowerBound(M,u,B)) is a lower bound for (
⊗
M)↓u and the

valuation
⊗

UpperBound(M,u,B) is an upper bound for (
⊗
M)↓u. Further-

more, the computations of LowerBound(M,u,B) and UpperBound(M,u,B) do
not involve the combination of any multiset of valuations of size more than
B.

Proof. By Proposition 2,
⊗

LowerBound(M,u,B) is a lower bound for (φ0 ⊗
· · · ⊗ φk)

↓u, which is equal to (
⊗
M)↓u since M0, . . . ,Mk is a partition of M .

Similarly,
⊗

UpperBound(M,u,B) is an upper bound for (
⊗
M)↓u. The last

part follows by the definition of Partition. ut

Choosing the function Partition. It is always possible to choose a valid
function Partition; even in the extreme case of B = 0 we can choose each
Mi to be a singleton. However, the choice of partition will affect the closeness
of the approximations. Ideally we would like, where possible, to choose each

50

Mi so that its combination φi does not depend very much on variables not in
u.

If the upper bound B on size is chosen sufficiently large then we can choose
Partition to always return a single multiset, so k = 0 and M0 = M . In
this case, the propagation algorithm in Section 6.2 (for both lower and upper
bounds) reduces essentially to the exact computation.

Choosing the functions LB and UB. Section 6.3 shows how we can gen-
erate these functions for semiring-induced valuation algebras. If possible, we
would like to choose LB(φ, u) to be a least u-upper bound of φ, and UB(φ, u) to
be a greatest u-lower bound of φ. As we will see, these exist in many situations.

6.2 Propagation Algorithm for Upper and Lower Bounds

Section 3.1 described a propagation algorithm for the projection problem
(equation 3.2) based on the Shenoy-Shafer architecture. In this section we
show how this can be modified to generate upper and lower bounds. We are
given valuations φ1, . . . , φn and a set of target domains sl, l = 1, . . . ,m, and we
wish to compute upper and lower bounds for (φ1⊗· · ·⊗φn)↓sl for l = 1, . . . ,m.
A value B is chosen globally; the computation ensures that we do not have to
compute a combination of a multiset of valuations of size more than B. The
propagation is based on repeated use of functions LowerBound and UpperBound

described in Section 6.1.

We focus on the general projection problem; but if we just wish to compute
bounds for a single set s1 then we can choose a root of the join tree whose
associated variables contain s1, and we only need send messages towards the
root (as in the collect algorithm Kohlas (2003)). The mini-buckets algorithm,
approximating fusion or bucket elimination, can be considered as a special case
of this, where the join tree is generated from a variable elimination sequence.

Let sl be any of the target domains. We require that sl is small enough in order
for us to be able to perform arbitrary combinations of valuations with domain
sl. The reason for this is that at the very last stage of the computation, we
combine valuations with domain sl (or smaller). Formally, we assume that if
d(ψ) ⊆ sl for all ψ ∈M , then the size of M is at most B. For example, if we
use the first suggested definition of size, then it is assumed that B is at least
as large as the cardinality of any target set of variables sl.

Let L(k) be the multiset of input valuations associated with node k, so that,
with the notation of Section 3.1, L(k) = {φi : a(i) = k}.

51

As in Dechter et al. (2001); Mateescu et al. (2002), each message for the
approximate propagations will be a multiset of valuations rather than a single
valuation. We will inductively define message µk→j, message µlower

k→j and message
µupper
k→j for each pair k and j of neighbouring nodes. Formally, we could consider

that the induction is on: the length of a longest path, from k to a leaf node,
which doesn’t pass through j (where a path is not allowed to double back on
itself).

Assume, by induction, that we have defined messages µi→k and µupper
i→k and

µlower
i→k for all neighbours i 6= j of k. (This includes the induction base case as

well, i.e., when k is a leaf node, since leaf nodes only have one neighbour.)

Let Mk→j = L(k)∪{µi→k : i ∈ ne(k), i 6= j}, consisting of all input valuations
associated with node k, and all messages coming into k from directions other
than j. Let uk→j = ωk→j ∩ λ(j) (where ωk→j is the set of variables involved in
valuations in Mk→j, and λ(j) is the set of variables associated with node j).
As in Section 3.1 we define the message µk→j to be (

⊗
Mk→j)

↓uk→j .

Analogously, let

M lower
k→j = L(k) ∪

⋃
i∈ne(k),i6=j

µlower
i→k ,

and let

Mupper
k→j = L(k) ∪

⋃
i∈ne(k),i6=j

µupper
i→k .

We define µlower
k→j to be LowerBound(M lower

k→j , uk→j, B) and define

µupper
k→j = UpperBound(Mupper

k→j , uk→j, B).

Next we define the multisets of valuations associated finally with each node
k. Let Mk = L(k) ∪ {µi→k : i ∈ ne(k)}. Analogously, let Mk

lower = L(k) ∪⋃
i∈ne(k) µ

lower
i→k and Mk

upper = L(k) ∪ ⋃
i∈ne(k) µ

upper
i→k .

Let sl be any target set of variables; we choose (using some fixed deterministic
method) k to be a node with λ(k) ⊇ sl. The valuation φllower is defined to be⊗

(LowerBound(Mk
lower, sl, B))

and φlupper is defined to be

⊗
(UpperBound(Mk

upper, sl, B)).

The results of Schneuwly et al. (2004) (see Section 3.1), imply that (φ1⊗· · ·⊗
φn)

↓λ(k) =
⊗
Mk, and hence (φ1⊗ · · ·⊗φn)↓sl = (

⊗
Mk)↓sl by the transitivity

[of projection] axiom.

52

The lower bound computation involves modifying the exact computation by
successively replacing valuations by lower bounds (or rather by multisets of
valuations whose combination is a lower bound). The exact computation in-
volves sequences of combinations and projections, and combination and pro-
jection respect �, which leads to the final results being correct bounds:

Theorem 9 With the above definitions, for all l = 1, . . . ,m, valuation φllower

is a lower bound for (φ1 ⊗ · · · ⊗ φn)
↓sl and φlupper is an upper bound. Further-

more, the computation of these bounds does not involve combining multisets
of valuations of size more than B.

Proof. We first prove by induction that, for any neighbouring nodes j and k,⊗
µlower
k→j is a lower bound for message µk→j and

⊗
µupper
k→j is an upper bound

for µk→j.

Assume by induction that for all neighbours i 6= j of k, valuation
⊗
µlower
i→k is a

lower bound for message µi→k and
⊗
µupper
i→k is an upper bound (this includes

the base case of the induction, since leaf nodes only have one neighbour).
Then, since combination respects �, valuation

⊗
M lower

k→j is a lower bound
for

⊗
Mk→j, and, because projection respects �, valuation (

⊗
M lower

k→j)↓uk→j

is a lower bound for µk→j = (
⊗
Mk→j)

↓uk→j . By Proposition 3, we have⊗
LowerBound(M lower

k→j , uk→j, B) � (
⊗
M lower

k→j)↓uk→j , and so, by transitivity of
�, we have

⊗
µlower
k→j is a lower bound for µk→j. In just the same way, we have

that
⊗
µupper
k→j is an upper bound for µk→j. This completes the induction.

Let sl be any target set of variables, and let k be the chosen node with λ(k) ⊇
sl. Because combination and projection respect �, the first part implies that
(
⊗
Mk

lower)
↓sl � (

⊗
Mk)↓sl � (

⊗
Mk

upper)
↓sl . Using Proposition 3 we then have

that

φllower =
⊗

(LowerBound(Mk
lower, sl, B)) � (φ1 ⊗ · · · ⊗ φn)

↓sl

and

(φ1 ⊗ · · · ⊗ φn)
↓sl �

⊗
(UpperBound(Mk

upper, sl, B)) = φlupper.

The computations involve repeated use of functions LowerBound and UpperBound,
each of which does not involve the combination of any multiset of valuations
of size more than B, followed by, for each target set sl, a final combination
of valuations involving variables sl. By the assumption on sl and B, the size

of such combinations is also no more than B.

ut

53

6.3 Application for Semiring-Induced Valuation Algebras

In this section we discuss how to generate the lower and upper bound functions
LB and UB when the ordered valuation algebra is generated by a semiring with
an ordering on it. This enables us to use the bounds propagation algorithms
from the previous section for semiring-induced valuation algebras.

6.3.1 Orderings on semirings and on semiring-induced valuation algebras

Often we will wish to use some relation � to order the elements of a semiring,
where a � bmight indicate, for example, that b is a greater degree of preference
than a. Such a relation � on A will always be assumed to be a pre-order, i.e.,
a reflexive and transitive relation.

We say that relation � satisfies:

+ is monotone over � if for all a, b, c ∈ A, a � b implies a+ c � b+ c.
× is monotone over � if for all a, b, c ∈ A, a � b implies a× c � b× c.

Let ≡ be the equivalence relation corresponding to �, so that a ≡ b if and only
if a � b and b � a. Given that + and × are monotone over �, if it is helpful
computationally, we can replace semiring A by the quotient semiring A/≡
consisting of the set of equivalence classes of A, and replace each A-valuation
by the corresponding A/≡-valuation. This will lead to equivalent upper and
lower bounds, since if a ≡ b then a � c ⇐⇒ b � c, and also c � a ⇐⇒
c � b.

In many situations the natural ordering relation is �A given by a �A b if and
only if there exists c ∈ A with a+ c = b. As shown by Proposition 1 in Section
2, operations + and × are monotone over �A, and 0 � a for all a ∈ A.

We can extend any pre-order � on A to a relation on semiring-induced valua-
tions. We define relation � on A-valuations, by φ � ψ if φ and ψ involve the
same set of variables s (i.e., d(φ) = d(ψ) = s) and for all x ∈ Ωs, φ(x) � ψ(x).

Proposition 4 Let A = 〈A,+,×〉 be a semiring. Let � be pre-order on A.

(i) If � is a partial order then so is the associated relation � on A-valuations.
(ii) If × is monotone over � then combination of A-valuations respects �.
(iii) If + is monotone over � then projection A-valuations respects �.

Proof. Let φ, ψ and χ be A-valuations with φ � ψ. Let s = d(φ) and so
d(ψ) = s, and let t = d(χ). For all x ∈ Ωs, φ(x) � ψ(x).

(i) Suppose � on A is a partial order, and that ψ � φ. To prove that relation

54

� on A-valuations is a partial order we just need to show that φ = ψ. For any
x ∈ Ωs, we have φ(x) � ψ(x) � φ(x) and so φ(x) = ψ(x), since � on A is a
partial order. This implies that φ = ψ.

(ii) For any x ∈ Ωs∪t, (φ ⊗ χ)(x) = φ(x↓s) × χ(x↓t) � ψ(x↓s) × χ(x↓t) (since
× is monotone over �) which equals (ψ⊗ χ)(x), showing that φ⊗ χ � ψ⊗ χ
as required.

(iii) Suppose u ⊆ s and let y be an element of Ωu. Since + is monotone over
�,

φ↓u(y) =
∑

{φ(x) : x ∈ Ωs, x↓u = y} �
∑

{ψ(x) : x ∈ Ωs, x↓u = y},

which equals ψ↓u(y), showing that φ↓u � ψ↓u. Hence projection respects �.
ut

Consider a semiring A = 〈A,+,×〉 with a unit element 1, and where + and
× are both monotone over pre-order �. For set of variables u, the neutral
element eu is the valuation which is uniformly equal to 1, i.e., for all x ∈ Ωu,
eu(x) = 1. By Theorem 2 and Proposition 4, A-valuations based on ordering
� form an ordered valuation algebra. Therefore the results and algorithms of
Sections 6.1 and 6.2 apply. We show below how the upper and lower bound
functions LB and UB can be generated.

6.3.2 Generating upper and lower bound functions LB and UB

For any relation � on A it’s easy to generate upper and lower bounds of
a valuation φ which involve less variables. Suppose u is a proper subset of
s = d(φ). We can define u-lower and u-upper bounds τ and θ as follows:
for each assignment x ∈ Ωu we define τ(x) to be some lower bound of [each
element of] the set {φ(xy) : y ∈ Ωs−u} and θ(x) to be some upper bound.

Proposition 5 Let φ, τ and θ be A-valuations, and suppose u = d(τ) =
d(θ) ⊆ d(φ) = s. Then τ is a u-lower bound for φ if and only if for all
x ∈ Ωu, τ(x) is a lower bound for {φ(xy) : y ∈ Ωs−u} (i.e., for all y ∈ Ωs−u,
τ(x) � φ(xy)). Furthermore, τ is a greatest u-lower bound for φ if and only
if for all x ∈ Ωu, τ(x) is a greatest lower bound for {φ(xy) : y ∈ Ωs−u}.

Similarly, θ is a u-upper bound for φ if and only if for all x ∈ Ωu, θ(x) is a
upper bound for {φ(xy) : y ∈ Ωs−u}. θ is a least u-upper bound for φ if and
only if for all x ∈ Ωu, θ(x) is a least upper bound for {φ(xy) : y ∈ Ωs−u}.

Proof. By definition, τ is a u-lower bound for φ if and only if τ ⊗ es−u � φ,
which is if and only if for all z ∈ Ωs, (τ ⊗ es−u)(z) � φ(z), i.e., τ(z↓u) � φ(z).
This is if and only if for all x ∈ Ωu and y ∈ Ωs−u, τ(x) � φ(xy). Hence τ is

55

a u-lower bound for φ if and only if for all x ∈ Ωu, τ(x) is a lower bound for
{φ(xy) : y ∈ Ωs−u}.

Suppose for all x ∈ Ωu, τ(x) is a greatest lower bound for {φ(xy) : y ∈ Ωs−u},
and let χ be any u-lower bound for φ. Then for all x ∈ Ωu, χ(x) is a lower
bound for {φ(xy) : y ∈ Ωs−u}, so χ(x) � τ(x); hence χ � τ , showing that τ
is a greatest u-lower bound for φ.

To prove the converse, suppose τ is a u-lower bound for φ and that there exists
x0 ∈ Ωu such that τ(x0) is not a greatest lower bound for {φ(x0y) : y ∈ Ωs−u}.
It is sufficient to show that then τ is not a greatest u-lower bound for φ. There
exists a lower bound a for {φ(x0y) : y ∈ Ωs−u} such that a 6� τ(x0). Define
τ ′ by τ ′(x0) = a, and for x 6= x0, let τ ′(x) = τ(x). Then, by the first part, τ ′ is
a u-lower bound for φ; however, τ ′ 6� τ which implies that τ is not a greatest
u-lower bound for φ.

The u-upper bound results follow similarly. ut

When � is a lattice one can define least u-upper bounds and greatest u-lower
bounds in a simple canonical way.

Least upper bounds and greatest lower bounds when � defines a
lattice. Suppose that A is a lattice under the ordering �. Then any finite
subset B of A has a least upper bound, which we write as supB, and a
greatest lower bound, inf B. In particular when � is a total order, sup is
max with respect to � and inf is min. For any A-valuation φ : Ωs → A,
and any subset u of s we can define valuations φ⇓u and φ�u both on set of
variables u, as follows: for x ∈ Ωu, let φ⇓u(x) = sup {φ(z) : z ∈ Ωs, z

↓u = x},
and φ�u(x) = inf {φ(z) : z ∈ Ωs, z

↓u = x}. Then, by Proposition 5, φ⇓u is the
least u-upper bound of φ and φ�u is the greatest u-lower bound of φ. Hence
we can define the lower bound function LB used in the propagation algorithms
by LB(φ, u) = φ�u, and define the upper bound function UB by UB(φ, u) = φ⇓u.

This covers most of the examples in the paper. The ordering used in each
example is �A; probability potentials (Examples 1/9), used for inference in
Bayesian networks, is based on a semiring with a total order, and so we can
define LB and UB in this simple way (as in the definition used for mini-bucket
approximation for belief updating Dechter and Rish (2003)); similarly, for any
c-semiring which is totally ordered e.g., Examples 2, 3, 5, and 6; furthermore,
any c-semiring with idempotent multiplication generates a distributive lattice
(Example 4).

The following result implies that we could define in very general circumstances
UB(φ, u) to be φ↓u (though it may not be a close upper bound). However, if

56

addition is idempotent, as in c-semirings, for example, it will be a least u-upper
bound.

Lemma 2 Let φ be a valuation and let u be a subset of d(φ). Then φ↓u is a
u-upper bound for φ with respect to �A. If addition is idempotent then φ↓u is
a least u-upper bound for φ with respect to �A.

Let � be a pre-order such that addition is monotone with respect to �, and
suppose that 0 is a lower bound for φ(z) for each z ∈ Ωd(φ). Then φ↓u is a
u-upper bound for φ with respect to �. If also addition is idempotent then φ↓u

is a least u-upper bound for φ with respect to �.

This upper bound generalises that used in the mini-bucket approximation for
MPE (most probable explanation) in Dechter and Rish (2003), page 116. See
also Chang (2005) and Chang and Mackworth (2005) (Section 6.1) which uses
an approximation of a similar form.

Proof. We prove the second half of the lemma; the first half follows from the
second half since addition is monotone with respect to �A, and for all a ∈ A,
0 �A a.

Suppose 0 is a lower bound of finite sub-multiset G of A. For any a ∈ G, 0 is a
lower bound for

∑ {G− {a}}, so a is a lower bound for
∑
G, since addition is

monotone with respect to �. This implies that
∑
G is an upper bound for G.

If also addition is idempotent then consider any upper bound b for G. Since
addition is monotone with respect to �, we have

∑
a∈G a �

∑
a∈G b = b. Hence

if addition is idempotent then
∑
G is a least upper bound for G.

Let s = d(φ) and let x be any element of the frame Ωu. Then φ↓u(x) equals∑ {φ(xy) : y ∈ Ωs−u}, so, by the above argument, φ↓u(x) is an upper bound
for {φ(xy) : y ∈ Ωs−u}, and is a least upper bound if addition is idempotent.
Therefore by Proposition 5, φ↓u is a u-upper bound for φ, which is a least
u-upper bound if addition is idempotent. ut

6.3.3 Computational Efficiency of the Propagation

We analyse the computational efficiency of computing the bounds, as described
in Section 6.2, for semiring-induced valuations. We focus only on the efficiency
of computing the lower approximations; almost identical analysis can be used
for the upper approximations (generating the same upper bounds on the num-
ber of operations required). So, as in Theorem 9, we wish to compute, for all
l = 1, . . . ,m, the lower bound φllower for (φ1⊗· · ·⊗φn)↓sl . Let v be the number
of variables involved, i.e., v = |d(φ1) ∪ · · · ∪ d(φn)|. The algorithm involves a
join tree embedding. We can always construct, by variable elimination (as in
fusion/bucket elimination), a join tree with at most v nodes. So let us assume

57

that the join tree has at most v nodes.

To simplify, we assume that the order � on the semiring is a lattice ordering,
which covers most of the examples in the paper; this kind of analysis can be
extended to more general cases.

We analyse computational efficiency in terms of the number of semiring basic
operations. This is defined to be one of the following binary operations on the
semiring: multiplication, addition, or computing the greatest lower bound (or
the least upper bound) of a pair of elements in the semiring. The computa-
tional efficiency clearly depends on the choice of the function size. We first
consider the case where size of a multiset M of valuations is defined to be
the cardinality of the associated frame, i.e., |Ωd(M)|, where d(M) is the set of
variables involved in some valuation in M .

Consider a valuation ψ. Suppose that the cardinality of its associated frame
is at most B i.e., |Ωd(ψ)| ≤ B. Let u be any subset of d(ψ). Computing (all
the values of) ψ↓u requires a total of less than B basic operations (additions).
Similarly, computing (all the values of) the function LB(ψ, u) requires less than
B basic operations (binary greatest lower bounds), where LB is defined as in
the lattices paragraph in Section 6.3.2.

Consider a multiset M of valuations, where M contains p valuations and
size(M) ≤ B, i.e., the cardinality of the associated product set is at most B.
The computation of the combination of M involves less than (p − 1)B basic
operations (multiplications).

The term e↓∅t involved in the LowerBound function needs no computation if
addition is idempotent, since it is then equal to 1. Otherwise, e↓∅t can be written
as

∏
X∈t e

↓∅
{X}, where e↓∅{X} is equal to

∑
ω∈ΩX

1. We pre-compute e↓∅{X} for each
variable X of interest (the cost of this pre-computation is at worst the number

of variables times the mean domain size). Computing e↓∅t then involves less
than |t| additional basic operations (multiplications).

6.3.3.1 Computations for LowerBound function We will assume that
the Partition function does not involve any basic operations. By the previous
remarks, computing φi for all i = 0, . . . k involves less than

∑k
i=0(|Mi|−1)B =

B(|M |−(k+1)) basic operations. Computing e↓∅t involves less than |d(M)| ba-

sic operations. Computing the valuations φ
↓u∩d(φ0)
0 , LB(φ1, u∩d(φ1)), . . . , LB(φk, u∩

d(φk)) involves less than (k+1)B additional basic operations. Hence computing
the LowerBound function involves less than B|M | + |d(M)| basic operations.
Usually the second term will be much smaller than the first.

Let n∗ be the maximum value of |M | over all the applications of LowerBound

58

in the algorithm, and let v∗ be the maximum value of |d(M)|, the number of
variables involved.

In computing the lower bound φllower for all l = 1, . . . ,m, the procedure
LowerBound is applied in both directions for each edge in the join tree; it
is then applied once for each target set. So LowerBound is applied less than
2|V | + m times where |V | is the number of nodes in the join tree, and m is
the number of target sets, and hence, by our assumption, less than 2v + m
times. Therefore the number of basic operations in all the applications of the
LowerBound function is less than (m+2v)(Bn∗ + v∗); the pre-processing adds
another small term D̄v which is linear in the number v of variables, where D̄
is the mean domain (frame) size of the v variables.

The final stage of the algorithm involves, for each l = 1, . . . ,m, a combination
of a multiset of valuations whose domains are included in sl; this last part
involves less than a total of Bm(n∗ − 1) basic operations. Hence overall the
number of operations required is less than (m+ 2v)(Bn∗ + v∗) +Bmn∗ + D̄v.
A crude upper bound for n∗ is n, the number of input valuations (n∗ will tend
to be much smaller than n unless B is very small), and, similarly v∗ ≤ v, so an
overall upper bound on the number of operations required is (m + 2v)(Bn +
v) + Bmn + D̄v, which is low order polynomial. In particular, for classes of
problems where m and n grow linearly with respect to the number of variables
v, and D̄ is bounded, then this is O(v2), since B is a constant.

Suppose instead we define size of multiset M to be the number of variables
involved inM ; letD be an upper bound on the size of the frame of any variable
involved. The number of operations is then less than (m + 2v)(DBn + v) +
DBmn+Dv, which is again low order polynomial, since B is a constant.

6.4 Approximations rather than bounds

The lower and upper approximations defined above will in certain situations
be sufficient to answer queries. However, they will not necessarily be close
approximations. One can often get closer to the exact answers by using other
approximations, based on replacing the bound function LB (or UB) by an ap-
proximating function AP.

Let φ be a valuation with d(φ) ⊇ u. We let AP(φ, u) be some valuation θ with
d(θ) = u such that θ ⊗ ed(φ) in some sense approximates φ. The propagation
algorithm can then be used with function AP replacing LB in the lower bound
propagation, to give approximations.

If the ordered valuation algebra was generated by a semiring A and ordering
relation �, then the approximation can be made pointwise. In particular if

59

� is a total order then for each x ∈ Ωu we can set AP(φ, u)(x) to be some
intermediate value (or some “average” value) of {φ(xy) : y ∈ Ωd(φ)−u}, as op-
posed to LB which takes the minimum value, and UB which uses the maximum
value. For example, for the case of probability potentials we could use the
mean value as suggested in Dechter and Rish (2003), page 120, i.e., we define
AP(φ, u)(x) to be the mean value of {φ(xy) : y ∈ Ωd(φ)−u}.

6.5 Using Propagation of Constraints

From a collection of semiring-induced valuations one can generate constraints
based on the zeros. These can be used to deduce new constraints which may
increase the number of zeros of the input valuations; in particular, this may
allow us to eliminate elements of the frame of a variable. The number of non-
zero elements in the valuations is relevant to the computational efficiency of
the propagation algorithms in Section 3.1 and Section 6.2; for example, if valu-
ation φ has p non-zero tuples, and ψ has q, then the number of multiplications
required in computing φ⊗ψ is at most pq. This pre-processing step can some-
times greatly improve the efficiency, especially if many elements of frames are
eliminated. This idea is related to the notion of shrinking in Bistarelli et al.
(2003).

6.5.1 Generating Implied Constraints

A constraint R on set of variables u is a subset of Ωu; we say that d(R) = u.
Given A-valuation φ, define Rφ to be the constraint on variables d(φ) given
by x ∈ Rφ if and only if φ(x) 6= 0. Constraint Rφ gives the non-zero tuples
of φ. Implied constraints give partial information about the zeros. Let R be
a constraint on variables u ⊆ d(φ). Constraint R is said to be an implied
constraint of φ if the following condition holds, for any z ∈ Ωd(φ): φ(z) 6= 0 ⇒
z↓u ∈ R (or equivalently: z ∈ Rφ ⇒ z↓u ∈ R). So the complement of R gives
zeros of φ: if z↓u /∈ R then φ(z) = 0. R is said to be an implied constraint of
multiset {φ1, . . . , φn} if it is an implied constraint of φ1 ⊗ · · · ⊗ φn. We also
say that {φ1, . . . , φn} implies R.

Let C be a set of constraints involving variables s, and let R be a constraint
on variables u ⊆ s. We say that C implies R if z↓u ∈ R holds for all z ∈ Ωs

which are solutions of the Constraint Satisfaction Problem C, i.e., such that
z↓d(R

′) ∈ R′ for all R′ ∈ C.

Proposition 6 Let M be a multiset of A-valuations.

(i) M implies Rφ for each φ ∈M .

60

(ii) Suppose that C is a set of implied constraints of M , and that C implies R.
Then M implies R.

(iii) If {Rφ : φ ∈M} implies constraint R then M implies R.
(iv) Suppose now that A has no zero divisors, i.e., a × b is non-zero for all

non-zero a, b ∈ A. Then {Rφ : φ ∈M} implies R if and only if M implies
R.

Proof. Let ψ =
⊗
M and let s = d(ψ).

(i) Let z ∈ Ωs. For any φ ∈ M , if z↓u /∈ Rφ then φ(z↓u) = 0 so ψ(z) = 0,
showing that Rφ is an implied constraint of ψ and hence of M .

(ii) Let u = d(R), the set of variables of constraint R. By definition, u ⊆ s. Let
z be any element of Ωs such that ψ(z) 6= 0. Then for all R′ ∈ C, z↓d(R

′) ∈ R′

since ψ implies R′, and so z↓u ∈ R, showing that M implies R.

(iii) follows immediately from (i) and (ii).

(iv) We need to show the converse of (iii). Suppose M implies R and that z ∈
Ωs is such that for all φ ∈ M , z↓d(φ) ∈ Rφ. Then for all φ ∈ M , φ(z↓d(φ)) 6= 0,
so ψ(z) =

∏
φ∈M φ(z↓d(φ)) is non-zero. Since R is an implied constraint of ψ,

z↓d(R) ∈ R, showing that {Rφ : φ ∈M} implies R. ut

Part (i) of this proposition shows that, given input set of valuations M , we can
initialise the set of implied constraints to {Rφ : φ ∈M}. (Part (iv) of Propo-
sition 6 shows that if A has no zero divisors, any implied constraint of M is an
implied constraint of {Rφ : φ ∈M}.) We can apply a propagation algorithm
to generate more implied constraints from {Rφ : φ ∈M}; for example, we
can use the upper bound approach of Sections 6.1, 6.2 and 6.3 applied to the
initial set of constraints (or, similarly, a mini-clustering approach); we could
also use arc consistency or e.g., path consistency to generate new constraints.
By part (iii) of Proposition 6, the new constraints will be implied constraints
of M .

6.5.2 Using implied constraints

The following result shows how we can amend an input set of semiring-induced
valuations by a set of implied constraints, increasing the number of zero values,
but without changing the combination of the valuations.

Proposition 7 Let A be a semiring and let C be a set of implied constraints
of multiset of A-valuations {φ1, . . . , φn}. For i = 1, . . . , n, let φ′i be given
by defining φ′i(x), for each x ∈ Ωd(φi), as follows: if there exists an implied
constraint R ∈ C with d(R) ⊆ d(φi) and x↓d(R) /∈ R then let φ′i(x) = 0;

61

otherwise define φ′i(x) = φi(x). Then

φ1 ⊗ · · · ⊗ φn = φ′1 ⊗ · · · ⊗ φ′n.

Proof. For i = 1, . . . , n, let si = d(φi) and let s = d(φ1) ∪ · · · ∪ d(φn). Let z
be an element of the frame Ωs. We need to show that (φ1 ⊗ · · · ⊗ φn)(z) =
(φ′1⊗· · ·⊗φ′n)(z). Clearly this holds if for all i = 1, . . . , n, φi(z

↓si) = φ′i(z
↓si). So

suppose there exists i ∈ {1, . . . , n} with φi(z
↓si) 6= φ′i(z

↓si). Then by definition
φ′i(z

↓si) = 0 so (φ′1⊗ · · · ⊗ φ′n)(z) = 0. Also, there exists an implied constraint
R ∈ C on variables u ⊆ si with z↓u /∈ R. Since R is an implied constraint,
(φ1 ⊗ · · · ⊗ φn)(z) = 0 and so equals (φ′1 ⊗ · · · ⊗ φ′n)(z) as required. ut

The implied constraints tell us that some tuples can be set to have zero value;
φ′i is obtained from φi by setting such tuples to zero. The point of replac-
ing the elements φi by φ′i is to make them easier to combine; the complexity
of a combination is related to the number of non-zero tuples; decreasing the
number of non-zero tuples can thus make the computations faster, potentially
very substantially so if strong constraints can be deduced. An additional ad-
vantage is that the upper bounds generated in a join tree propagation upper
approximation (Sections 6.2 and 6.3) will sometimes be made tighter by this
pre-processing.

6.6 Setting some semiring values to 0

Let A = 〈A,+,×〉 be a semiring with zero element 0 and unit element 1. Let
� be a pre-order on A such that + and × are monotone over �, and such that
0 � a for every element a ∈ A.

The element 0 is a lower bound for every element a ∈ A in the semiring. So a
particular case of a lower bound of an A-valuation is when we replace certain
semiring values used in the input valuations by 0. This has computational
advantages, as the efficiency of the computation is somewhat related to the
number of non-zero values in the input valuations, and constraints propagation
approaches can be used, as discussed in Section 6.5. We will consider the effect
of choosing a subset P (63 0) of the semiring A, and replacing semiring values
in the input valuations which are not in P by 0. With appropriate semiring and
choice of P , it can be shown that this does not affect the answer to certain
kinds of queries. This is related to the notion of sinking in Bistarelli et al.
(2003).

Consider φ = φ1 ⊗ · · · ⊗ φn. Let s = d(φ) and for i = 1, . . . , n let si = d(φi).
DefineQ = {φi(xi) : i = 1, . . . , n, xi ∈ Ωsi

} to be the set of all semiring values
taken by any of the input valuations. Define Q× to be closure of Q under the

62

× operation.

We consider input A-valuations and subset P of A satisfying the following
condition:

(∗) If a, b ∈ Q× and a× b ∈ P then a, b ∈ P .

Condition (∗) implies that if elements ai of Q×, for i = 1, . . . , n are such that
their product

∏n
i=1 ai is in P then ai is in P for all i = 1, . . . , n, . Hence we

have for all x ∈ Ωs, if φ(x) is in P then φi(x) is in P for all i = 1, . . . , n.

Condition (∗) is satisfied if Q and P satisfy the pair of conditions (i) if a ∈ Q
then a � 1, and (ii) if a ∈ P and a � b � 1 then b ∈ P .

An important special case is when, for some a ∈ A, P equals P�a which is de-
fined to be {b ∈ A : b � a}, or, similarly, when P equals P 6�a = {b ∈ A : b 6� a}.
In either case, condition (∗) is satisfied as long as (i) is satisfied, i.e., the input
semiring values are all bounded above by 1.

Consider P satisfying (∗). Define φPi by φPi (xi) = φi(xi) if φi(xi) ∈ P ;
otherwise φPi (xi) = 0. Let φ′ = φP1 ⊗ · · · ⊗ φPn . By the above remarks, if
φ(x) ∈ P then φ′(x) = φ(x). Also, if φ′(x) ∈ P then for all i, φPi (x↓si) 6= 0 so
φPi (x↓si) = φi(x

↓si) and so φ′(x) = φ(x). We also have φ(x) ∈ P if and only if
φ′(x) ∈ P . So if φ(x) ∈ P (or φ′(x) ∈ P) then φ′(x) = φ(x).

Suppose we are interested in finding complete assignments x whose combined
semiring value is in P ; for example, if we are only interested in x whose
semiring value has a lower bound of a, we could use P = P�a. The above
argument shows that we can use φ′ instead of φ, without changing the result.
This can sometimes greatly improve efficiency, as the components of φ′ can
have many fewer non-zero values than those of φ. As in Section 6.5 we can
propagate the constraints associated with each φPi .

Consider now the case where A is a c-semiring, with � = �A defined by a � b
if and only if a + b = b. We consider P of the form P 6�a = {b ∈ A : b 6� a},
for some a ∈ A; this is for a situation where semiring value a (or worse) is not
considered significant. P always satisfies (∗). If φ(x) /∈ P then 0 � φ(x) � a.
The results above imply that for any x ∈ Ωs, φ

′(x) � φ(x) � φ′(x) + a, which
leads to: for any y ∈ Ωu, (φ′)↓u(y) � φ↓u(y) � (φ′)↓u(y) + a, giving bounds
on φ↓u. If (φ′)↓u(y) � a then we have equality: (φ′)↓u(y) = φ↓u(y).

If additionally, � is a total order and φ↓u(y) ∈ P then φ↓u(y) = (φ′)↓u(y).
Also, φ↓u(y) ∈ P if and only if (φ′)↓u(y) ∈ P . Hence if we want to compute
projections of combinations ofA-valuations then we can use the reduced repre-
sentation φ′ (only keeping input semiring values � a) if we are only interested
in partial tuples with (output) semiring values in P (i.e., values more than a).
This case of A based on a totally ordered c-semiring covers several interesting

63

systems see Schiex et al. (1995); Bistarelli et al. (1999) and Examples 3, 5 and
6.

7 Conclusion

Semirings are important algebraic structures which induce valuation algebras
and permit thus the application of different architectures for local compu-
tation. Such semirings can be used to define soft constraints or to generate
different uncertainty calculi. In any of these cases inference consists of the
solution of the projection problem. A straightforward solution of this problem
is in general not feasible, because the domains of the valuations to be treated
become much too large and both computing time as well as space require-
ment grow exponentially. However, the fusion algorithm allows one to limit
the domains in which the operations of combination and projection have to
be executed to often much smaller dimensions. This may make an otherwise
unfeasible computation very fast, in fact, linear in the size of the largest frame
to be treated—which is exponential only in the largest node domain size in
the join tree, in contrast with a naive algorithm which is exponential in the
number of variables.

The fusion algorithm is the base for different derived architectures for local
computation. Idempotent semirings lead to idempotent valuation algebras,
so-called information algebras. For these algebras the particularly simple and
efficient idempotent architecture can be used. In many other cases a notion
of division exists in the semiring and can be exported to the induced valu-
ation algebra. Then efficient architectures originally designed for probability
networks that use a concept of division can be used.

For situations where the domains of the valuations are such that exact com-
putation is still not feasible, upper and lower bounds can be efficiently derived
for a broad class of formalisms, using a modification of the propagation algo-
rithms. These can be used, for example, within a branch and bound algorithm
for optimization.

The knowledge of these generic architectures which apply to a multitude of
inference problems in very different contexts and formalisms should be part
of the tool box of any designer of inference or reasoning systems. It can be
useful to solve complex problems, which in the worst case demand an infeasible
amount of computation and space.

Acknowledgment

64

We are very grateful to Marc Pouly, for his comments and proof reading,
and to Cesar Schneuwly for his help, especially with the running propagation
example.

References

Aji, S. M., McEliece, R. J., 2000. The generalized distributive law. IEEE
Transactions on Information Theory 46 (2), 325–343.

Amir, E., 2001. Efficient approximation for triangulation of minimum
treewidth. In: Proceedings of the 17th Conference on Uncertainty in Ar-
tificial Intelligence. pp. 7–15.

Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P., 1992. Synchronization
and Linearity: An Algebra for Discrete Event Systems. Wiley.

Beeri, C., Fagin, R., Maier, D., Mendelzon, A., Ullman, J., Yannakakis, M.,
1981. Properties of acyclic database schemes. In: ACM Symposium on The-
ory of Computing. ACM Press, New York, NY, USA, pp. 355–362.

Bistarelli, S., Fruewirth, T., Marthe, M., Rossi, F., 2004. Soft constraint propa-
gation and solving in constraint handling rules. Computational Intelligence,
Special Issues on Preferences in AI and CP.

Bistarelli, S., Fung, S. K. L., Lee, J. H. M., Leung, H., 2003. A local search
framework for semiring-based constraint satisfaction problems. In: Proc.
CP2003 Workshop on Soft Constraints (Soft-2003).

Bistarelli, S., Gadducci, F., 2006. Enhancing constraints manipulation in
semiring-based formalisms. In: Proc. 17th European Conference on Arti-
ficial Intelligence (ECAI 2006). pp. 63–67.

Bistarelli, S., Montanari, U., Rossi, F., 1997. Semiring-based constraint satis-
faction and optimization optimisation. Journal of the ACM 44, 201–236.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.,
1999. Semiring-based CSPs and Valued CSPs: Frameworks, properties and
comparison. CONSTRAINTS: An international journal 4 (3).

Bodlaender, H. L., 1993. A tourist guide through treewidth. Acta Cybern.
11 (1-2), 1–22.

Bodlaender, H. L., 2006. Treewidth: Characterizations, applications, and com-
putations. In: Fomin, F. V. (Ed.), WG. Vol. 4271 of Lecture Notes in Com-
puter Science. Springer, pp. 1–14.

Cechlárová, K., Plávka, J., 1996. Linear independence in bottleneck algebras.
Fuzzy Sets Syst. 77 (3), 337–348.

Chang, L., 2005. Semiring-based unifying framework for constraint-based in-
ference. Master’s thesis, University of British Columbia.

Chang, L., Mackworth, A. K., 2005. Generalized constraint-based infer-
ence. Tech. Rep. TR-2005-10, Dept. of Computer Science, Univ. of British
Columbia.

65

Clifford, A. H., Preston, G. B., 1967. Algebraic Theory of Semigroups. Amer-
ican Mathematical Society, Providence, Rhode Island.

Cooper, M., Schiex, T., 2004. Arc consistency for soft constraints. Artificial
Intelligence 154 (1–2), 199–227.

Croisot, R., 1953. Demi-groupes inversifs et demi-groupes réunions de demi-
groupes simples. Ann. Sci. Ecole norm. Sup. 79 (3), 361–379.

De Baets, B., 1996. Idempotent uninorms. European J. Op. Res. 118 (631-
642).

De Kleer, J., Brown, J., 1986. Theories of causal ordering. Artif. Intell. 29,
33–61.

Dechter, R., 1997. Mini-buckets: A general scheme for generating approxi-
mations in automated reasoning. In: Proc. Fifteenth International Joint
Conference of Artificial Intelligence (IJCAI97). pp. 1297–1303.

Dechter, R., 1999. Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence 113 (1–2), 41–85.

Dechter, R., Kask, K., Larrosa, J., 2001. A general scheme for multiple lower
bound computation in constraint optimization. In: Proc. CP2001. pp. 346–
360.

Dechter, R., Pearl, J., 1987. Network-based heuristics for constraint satisfac-
tion problems. Artificial Intelligence 34 (1), 1–38.

Dechter, R., Rish, I., 2003. Mini-buckets: A general scheme for bounded infer-
ence. J. ACM 50 (2), 107–153.

Gogate, V., Dechter, R., 2004. A complete anytime algorithm for treewidth. In:
Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence
UAI-04. pp. 201–208.

Haenni, R., 2004. Ordered valuation algebras: a generic framework for approx-
imating inference. International Journal of Approximate Reasoning 37 (1),
1–41.

Haenni, R., Kohlas, J., Lehmann, N., 2000. Probabilistic argumentation sys-
tems. In: Kohlas, J., Moral, S. (Eds.), Handbook of Defeasible Reasoning
and Uncertainty Management Systems, Volume 5: Algorithms for Uncer-
tainty and Defeasible Reasoning. Kluwer, Dordrecht, pp. 221–287.
URL http://diuf.unifr.ch/tcs/publications/ps/hkl2000.pdf

Hewitt, E., Zuckermann, H., 1956. The l1-algebra of a commutative semigroup.
Trans. Amer. Math. Soc 83, 70–97.

Jensen, F., Lauritzen, S., Olesen, K., 1990. Bayesian updating in causal prob-
abilistic networks by local computations. Comp. Stat. Q. 4, 269–282.

Kask, K., Dechter, R., 1999a. Branch and bound with mini-bucket heuristics.
In: Proc. International Joint Conference on Artificial Intelligence (IJCAI99).
pp. 426–433.

Kask, K., Dechter, R., 1999b. Mini-bucket heuristics for improved search. In:
Proc. UAI99. pp. 314–323.

Kask, K., Dechter, R., Larrosa, J., Dechter., A., 2005. Unifying cluster-tree de-
compositions for reasoning in graphical models. Artificial Intelligence 166 (1-
2), 165–193.

66

Klement, E., Mesiar, R., Pap, E., 2000. Triangular norms. Trends in Logic
Kluwer Academic Publ. Dordrecht.

Kohlas, J., 2003. Information Algebras: Generic Structures for Inference.
Springer-Verlag.

Kohlas, J., 2004. Valuation algebras induced by semirings. Tech. Rep. 04-03,
Department of Informatics, University of Fribourg.
URL http://diuf.unifr.ch/tcs/publications/ps/kohlas2004a.pdf

Kohlas, J., Haenni, R., Moral, S., 1999. Propositional information systems.
Journal of Logic and Computation 9 (5), 651–681.
URL http://diuf.unifr.ch/tcs/publications/ps/kmh99.pdf

Kohlas, J., Shenoy, P., 2000. Computation in valuation algebras. In: Kohlas,
J., Moral, S. (Eds.), Handbook of Defeasible Reasoning and Uncertainty
Management Systems, Volume 5: Algorithms for Uncertainty and Defeasible
Reasoning. Kluwer, Dordrecht, pp. 5–40.

Kolokoltsov, V., Maslov, V., 1997. Idempotent analysis and its applications.
Kluwer Academic Publ. Dordrecht.

Larrosa, J., Schiex, T., 2004. Solving weighted CSP by maintaining arc con-
sistency. Artificial Intelligence 159, 1–26.

Lauritzen, S., Jensen, F., 1997. Local computation with valuations from a
commutative semigroup. Annals of Mathematics and Artificial Intelligence
21 (1), 51–70.

Lauritzen, S., Spiegelhalter, D., 1988. Local computations with probabilities
on graphical structures and their application to expert systems. J. of Royal
Stat. Soc. 50 (2), 157–224.

Maier, D., 1983. The Theory of Relational Databases. Pitman, London.
Mateescu, R., Dechter, R., Kask, K., 2002. Tree approximation for belief up-

dating. In: Proc. AAAI-2002. pp. 553–559.
Menger, K., 1942. Statistical metrics. Proceedings of the National Academy

of Sciences 28, 535–537.
Mengin, J., Wilson, N., 1999. Logical deduction using the local computa-

tion framework. In: Hunter, A., Parsons, S. (Eds.), European Conf. EC-
SQARU’99, London. Lecture Notes in Artif. Intell. Springer, pp. 386–396.

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc.

Pouly, M., 2006. Nenok 1.1 user guide. Tech. Rep. 06-02, Department of In-
formatics, University of Fribourg.

Pouly, M., Kohlas, J., 2005. Minimizing communication costs of distributed
local computation. Tech. rep., Department of Informatics, University of Fri-
bourg.

Schiex, T., 1992. Possibilistic constraint satisfaction problems or “how to han-
dle soft constraints?”. In: Dubois, D., Wellman, M. P., D’Ambrosio, B.,
Smets, P. (Eds.), Uncertainty in Artificial Intelligence: Proc. of the Eighth
Conference. Kaufmann, San Mateo, CA, pp. 268–275.

Schiex, T., Fargier, H., Verfaillie, G., 1995. Valued constraint satisfaction prob-
lems: hard and easy problems. In: Proc. IJCAI-95. pp. 631–637.

67

Schneuwly, C., Pouly, M., Kohlas, J., 2004. Local computation in covering
join trees. Tech. Rep. 04-16, Department of Informatics, University of
Fribourg.
URL http://diuf.unifr.ch/tcs/publications/ps/schneuwlypoulykohlas04.pdf

Schweizer, B., Sklar, A., 1960. Statistical metric spaces. Pacific J. Math. 10,
313–334.

Shafer, G., 1991. An axiomatic study of computation in hypertrees. Working
Paper 232, School of Business, University of Kansas.

Shafer, G., 1996. Probabilistic Expert Systems. No. 67 in CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, PA.

Shafer, G., Shenoy, P., 1988. Local computation in hypertrees. Tech. Rep. 201,
School of Business, University of Kansas, Lawrence.

Shenoy, P., 1992. Valuation-based systems: A framework for managing uncer-
tainty in expert systems. In: Zadeh, L., Kacprzyk, J. (Eds.), Fuzzy Logic
for the Management of Uncertainty. John Wiley & Sons, pp. 83–104.

Shenoy, P., 1996. Axioms for dynamic programming. In: Gammerman, A.
(Ed.), Computational Learning and Probabilistic Reasoning. Wiley, Chich-
ester, UK, pp. 259–275.

Shenoy, P. P., 1997. Binary join trees for computing marginals in the shenoy-
shafer architecture. International Journal of Approximate Reasoning 17,
239–263.
URL citeseer.ist.psu.edu/article/shenoy97binary.html

Shenoy, P. P., Shafer, G., 1990. Axioms for probability and belief-function
proagation. In: Shachter, R. D., Levitt, T. S., Kanal, L. N., Lemmer, J. F.
(Eds.), Uncertainty in Artificial Intelligence 4. Vol. 9 of Machine intelligence
and pattern recognition. Elsevier, Amsterdam, pp. 169–198.

Spohn, W., 1988. Ordinal conditional functions: A dynamic theory of epistemic
states. In: Harper, W., Skyrms, B. (Eds.), Causation in Decision, Belief
Change, and Statistics. Vol. 2. Dordrecht, Netherlands, pp. 105–134.

Tamura, T., Kimura, N., 1954. On decompositions of a commutative semi-
group. Kodai Math. Sem. Rep., 109–112.

Wilson, N., 2004. Bounds and pre-processing for local computation of semir-
ing valuations. In: Kohlas, J., Mengin, J., Wilson, N. (Eds.), ECAI’2004,
Workshop 22: Local computation for logics and uncertainty. pp. 53–56.

Yager, R., Rybalov, A., 1996. Uninorm aggregation operators. Fuzzy Sets Syst.
80, 111–120.

68

