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Abstract 

Carbon dioxide hydrogenation to CO via the reverse water gas shift (RWGS) reaction is one 

route to integrate CO2 utilization into the chemical industry. TiO2 supported Cu catalysts are 

known to be active for RWGS, but Cu is shown here to behave differently on TiO2 nanotubes 

(TiNT) vs TiO2 nanoparticles (TiNP). Whereas nanoparticle supports give low rates that are 

hardly changed by added Cu, the nanotube supports yield much higher activity and three distinct 

behaviors as the Cu surface density increases. At low surface densities (0.3 Cu/nm2), active Cu-

O-Ti sites are created that have low apparent activation energies. At high surface densities (6 

Cu/nm2), Cu nanoparticles on TiNT are formed, and reaction barriers are lowered when both Cu 

and TiNT surfaces are accessible. At intermediate surface densities, metallic Cu domains are 

engulfed by a TiOx overlayer formed during H2 pretreatment, akin to those formed by classical 

strong metal support interactions (SMSI). These reduced layers are markedly more active for 

RWGS than the initial TiNT surfaces, but have similar activation barriers, which are higher than 

those for which both Cu and TiNP surfaces are exposed. These catalytic findings are supported 

by computational modeling, in situ IR, UV-visible, and X-ray absorption spectroscopies, and 

they provide insight into an important reaction for CO2 utilization. 
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Introduction 

Conversion of CO2 to feedstock chemicals is a key step in remaking the value chain and creating 

carbon neutral cycles in the chemical industry[1,2] The water gas shift and reverse water gas 

shift (RWGS) reactions (CO + H2 2 + H2) are well-known and widely utilized in industry 

to adjust the ratios of CO and H2 in syngas for the Fischer-Tropsch process[3,4]. RWGS is 

endothermic and thermodynamically favored at elevated temperature[5], making it an inevitable 

reaction during any CO2 hydrogenation process. For example, Rodriguez et al. found that RWGS 

and methanol synthesis have similar apparent activation energies on a Cu/CeOx catalyst[6]. 

Cu catalysts are considered as among the more promising catalysts for RWGS since CO, the 

product, does not interact strongly with metallic Cu[7]. TiO2 supported Cu catalysts have been 

reported to catalyze the conversion of CO2 to CO, methane and methanol[8-11]. A potential 

complicating factor in understanding these materials is the requirement to activate the catalysts 

in H2 to form metallic or low oxidation state Cu species[12-23], create oxygen vacancies or 

undercoordinated Ti sites on TiO2[22,23], and to remove carbonaceous species[15]. Although 

metal nanoparticles on TiO2 and other reducible supports are well known to reconstruct in 

reducing environments[24-26], the potential role of the surface reconstruction of Cu/TiO2 

catalysts in CO2 conversion reactions is not well understood. 

TiO2 nanotubes (TiNT), with their unique morphology[27,28], have been shown to preferentially 

adsorb and activate CO2 with the aid of photo-induced electrons[29,30]. In initiating this study, 

we hypothesized that using TiNT as supports for copper would result in improved behavior in 

RWGS, as compared to Cu supported on conventional TiO2 nanopowder (TiNP) In testing this 

hypothesis, we indeed observed increased activity, but we also observed a complex dependence 

of the rate on the Cu surface density on the TiNT support that demanded further investigation. 
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Our analysis with in situ IR, UV-vis, and X-ray absorption spectroscopies together with DFT 

calculations lead to the conclusion that surface reconstruction is responsible for the pattern of 

activity of these materials. 

 

Experimental  

TiO2 nanotubes (TiNT) were prepared by reconstructing anatase TiO2 (Sigma, 99.7%, <25 nm 

particle size) using a hydrothermal method[31]. The TiNT materials were calcined in a flow of 

air at 450 °C for 5 hours. Cu/TiNP and Cu/TiNT were prepared by incipient wetness 

impregnation of Cu(NO3)2 3H2O (Sigma, 99.999%) on TiO2 nanopowder (TiNP) and TiNT 

following a previously described procedure[32], and finally calcined in a flow of air at 450 °C 

for 4 hours. This latter step is expected to collapse the nanotubes somewhat[31], reducing surface 

areas while retaining the surface termination. The Cu catalysts were prepared with nominal 

surface densities of 0.3 Cu/nm2, 1.5 Cu/nm2, 3 Cu/nm2 and 6 Cu/nm2. The latter is denoted, for 

example, 6Cu/TiNT. Measured Cu loadings and other physical properties are given in Table 1.  

Nitrogen adsorption-desorption isotherms were collected using a Micromeritics ASAP 2010 

instrument. The elemental compositions of Cu and Ti were determined by a Thermo iCAP 7600 

ICP-OES. Raman spectra were collected using a HORIBA LabRAM HR Evolution Confocal 

Raman with a 785 nm excitation laser. X-ray diffraction (XRD) data were collected using a 

Rigaku Ultima X-ray diffractometer. Temperature Programmed Reduction (TPR) data were 

collected using 10% H2/N2 as the reductant in an Altamira AMI-200 reactor system over a 

temperature range of 40  340 °C. In situ DRIFTS experiments averaged 64 scans at 4 cm-1 

resolution from a Nicolet 6700 FTIR spectrometer equipped with a Harrick Praying Mantis 

diffuse reflectance accessory and an MCT detector. 
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In situ UV-visible spectra were collected with a Shimadzu UV-3600 spectrometer equipped with 

a Harrick Praying Mantis diffuse reflectance accessory. The Harrick cell was slightly modified 

by putting the tip of a thermocouple just under the sample surface, and close to the spot at which 

spectra were recorded, in order to accurately measure the surface temperature. Barium sulfate 

(Sigma, 99.998%) was used as the baseline reference for all samples. The sample in the cell was 

pretreated at 300 °C in Ar for 30 minutes before any further treatment. In situ experiments were 

performed using H2 (Airgas, 99.999%) and CO2 (Airgas, 99.999%) at a flow rate of 20 ml/min at 

300 °C. 

High-resolution transmission electron micrographs were obtained on a JEOL 2100F TEM 

operating at 200 kV. The samples were dispersed in ethanol and drop-casted on a holey carbon-

coated Cu grid for imaging. 

Periodic plane wave DFT calculations were carried out on anatase TiO2 modified with Cu as a 

model for the 0.3 Cu-TiNT system. These were performed using the VASP5.2 code[33,34] with 

a kinetic energy cut-off of 400 eV. The core-valence interaction was described using the 

projector augmented wave (PAW) potentials[35,36], with 4 valence electrons for Ti, 6 for O and 

11 for Cu. The Perdew-Wang (PW91) approximation to the exchange-correlation functional was 

used[37]. The TiO2 anatase (001) substrate was modelled as an 18 atomic layer slab, with a 

(4 ) surface supercell expansion (a = 15.324 Å, b = 15.329 Å) and a vacuum gap of 12 Å. 

This surface was chosen since the anatase (001) facet is characteristic of TiNT and partially 

collapsed TiNT[27] -point sampling was used and 

the convergence criteria for the energy and forces were  eV and  eV. , respectively. 

All calculations were spin polarized and there were no symmetry restraints applied. Hubbard U 

corrections were implemented, with U(Ti) = 4.5 eV and U(Cu) = 7 eV, to consistently describe 
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the partially filled Cu 3d states, particularly where Cu2+ and reduced Ti3+ cations are 

possible[38,39]. Cation oxidation states were determined from Bader charge analysis and spin 

mangetisations. To model the different surface modifications, we considered the adsorption and 

relaxation of a Cu atom and a CuO moiety on anatase (001) and the impact on reducibility and 

CO2 adsorption. To this end, different adsorption sites for Cu and CuO were examined and the 

most stable are shown in the Results and Discussion section.  

Catalytic measurements were conducted in a packed-bed tubular stainless-steel reactor (0.25 inch 

diameter) using 0.1 g catalyst mixed with 0.1 g quartz sand with the same particle size. The 

catalysts were crushed to particles below 105 microns in order to avoid intraparticle mass 

transfer limitations. The feed gas mixtures of CO2 (Airgas, 99.999%), H2 (Airgas, 99.999%) and 

He (Airgas, 99.999%) were supplied by mass flow controllers. In each experiment, the catalyst in 

the reactor was reduced in H2 at 340 °C for 2 hours prior to reacting with 3 MPa of mixtures of 

CO2 and H2 for 3 hours at temperatures of 200 °C, 235 °C, 270 °C, 305 °C and 340 °C. Each 

Cu/TiNP catalyst was tested twice, and each Cu/TiNT catalyst was tested three times. The 

products were monitored with an online Shimadzu GC-2010, equipped with a Rt-U-BOND 

column, a Rt-sieve 5A PLOT column, and a TCD detector. CO was the only detected product in 

all cases. Conversions are kept to <10% of equilibrium yield for all trials to ensure differential 

conversion and to minimize the need to correct rates for the approach to equilibrium. 

Results and Discussion 

RWGS kinetics were examined in a flow reactor, and CO production rates over the various 

catalysts are compared in Figure 1. Figure 1 only shows a single loading for Cu/TiNP because 

loading did not have a significant impact on either CO generation rates (30-65 µmol CO gcat
-1 

min-1 at 340 ºC) or the apparent activation energies (~100 kJ/mol; Figure S1 and Table S1). 
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However, for Cu/TiNT, the CO production rates were much higher than those over Cu/TiNP and 

depended significantly on the loading of Cu (50-900 µmol CO gcat
-1 min-1 at 340 ºC) when going 

from ~5% of a monolayer (0.3 Cu/nm2) to approximately monolayer loading (6 Cu/nm2). Rates 

normalized per total Cu loading are given in Figure S2, where 0.3Cu/TiNT shows slightly higher 

activity than the other Cu/TiNT catalysts, which are similar to each other. Because TiNT has 

non-negligible activity of its own (Figure 1) and because the nature of the active site is not 

immediately known, the discussion is based on rates per gram of total catalyst. The data in 

Figure 1 also reveal catalysts with three distinct apparent activation energies (Table 1). Catalysts 

TiNT, 1.5Cu/TiNT, and 3Cu/TiNT have barriers of ~102 kJ/mol, while that of 6Cu/TiNT is only 

81 kJ/mol. The apparent barrier for 0.3 Cu/TiNT is lower still at 65 kJ/mol. 

 

Figure 1. Arrhenius plots for the reverse water gas shift over (a) 1.5Cu/TiNP as a representative 
nanoparticle (TiNP) supported catalyst, (b) TiNT, (c) 0.3Cu/TiNT, (d) 1.5Cu/TiNT, (e) 
3Cu/TiNT, and (f) 6Cu/TiNT. Reaction conditions: 3 MPa, H2/CO2 = 1/1 (v/v), WHSV = 36000 
ml gcat.

-1h-1 
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Table 1. Cu/TiNT properties and catalytic performance 

Materiala Surface 
Area (m2/g) 

Pore 
Volume 
(cm3/g) 

Cu Loading 
(wt%) 

Surface 
Density 

(Cu/nm2) 

Apparent 
Activation 

Energyb (kJ/mol) 
TiNT 155 0.57 - - 105 

0.3Cu/TiNT 119 0.53 0.4 0.2 65 

1.5Cu/TiNT 110 0.51 2.7 1.7 102 

3Cu/TiNT 101 0.50 4.5 2.8 98 

6Cu/TiNT 94 0.44 9.1 5.6 81 
a See supporting information Figure S1 and Table S1 for physical properties and apparent 
barriers over TiNP-based materials. 
b From the slopes of Figure 1. Values ± 5 kJ/mol  
 
 
Raman spectra of the as-prepared Cu/TiNT materials are shown in Figure S3. Antase[40] TiO2 is 

present in all samples as expected, and crystalline CuO[41] is observed in the 1.5Cu/TiNT, 

3Cu/TiNT and 6Cu/TiNT samples.  

Normalized TPR profiles of the as-synthesized Cu/TiNT catalysts are plotted from 40 °C to 

340 °C in Figure 2, and the first reduction peak decreased in temperature as the Cu loading 

increased from 1.5 Cu/nm2 to 6 Cu/nm2 (Figures 2b  2d, marked by red arrows). A similar trend 

has been reported by other researchers[42], and is attributed to the decrease in the portion of 

strongly-coordinated Cu on TiO2 as CuO dispersion decreases. Most of the reduction occurred in 

a characteristic two-step fashion between 160 - 300 °C, where crystalline CuO supported on 

TiO2 typically reduces[42-45]. 0.3 Cu/TiNT is an outlier for this trend, with a relatively low-

temperature reduction event. We recently studied very highly dispersed, non-crystalline CuO, 

such as found in the 0.3 Cu/TiNT (~5% of a monolayer) sample, and observed that the samples 

became more reducible as loading decreased.[46] This was ascribed to Cu sites being located in 

highly reactive defects found in very small amounts on support surfaces.  
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Figure 2. H2-TPR profiles of (a) 0.3Cu/TiNT, (b) 1.5Cu/TiNT, (c) 3Cu/TiNT, and (d) 6Cu/TiNT. 
Signals are nomalized to the maximum intensity feature. Arrows mark the first reduction event. 
H2 consumption above 300°C in (a) arises from the TiNT support itself and becomes 
proportionally less significant with increasing Cu loading.  
 
Because of its easy reducibility and low apparent barrier to CO2 hydrogenation, the structure and 

reducibility of the species likely present on the surface of the 0.3Cu/TiNT sample were examined 

in detail with first principles density functional theory simulations. Figure 3a shows a model 

structure for this low Cu coverage material, which is composed of an isolated CuO species 

adsorbed on the anatase (001) surface, the highest energy surface of TiO2 and the preferred 
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orientation in TiNT [27]. This 0.3Cu/TiNT surface has exclusively Cu2+ and Ti4+ surface species. 

Removal of an O atom from the structure in Figure 3a, to simulate autothermal reduction, 

requires 1.94 eV, and it produces Ti3+ and Cu+ in a typical O-Cu-O dumbbell structure (Figures 

3b and 3c). In contrast, the removal of an O atom to form two Ti3+ cations and a Cu2+ cation is 

less stable. In turn, these energies are much lower than the calculated cost of 3.37 eV to remove 

an O atom from the unmodified anatase (001) surface and generate two Ti3+ species within the 

same computational geometry. Hydrogenation of the surface to give a surface-bound H2O is 

significantly exothermic by 1.84 eV (Figures 3d and 3e), but as before, this gives a Ti3+ and Cu+ 

in a similar structure. See Figure S4 and accompanying text for further details of these 

calculations. Thus, reduction of CuO-modified anatase (001) is more favourable than the bare 

anatase (001) and in addition always produces a Cu+ and a Ti3+ cation, rather than only activating 

nearby Ti-O-Ti sites. These Cu+/Ti3+ sites resulting from H2 reduction are then models of 

potential sites for CO2 adsorption and activation at Ti-O-Cu interfaces. 

 

Figure 3. (a) Atomic structure of a CuO species modifying anatase (001) (b) and (c): atomic 
structure of CuO-modified anatase (001) after removal of the most stable reducing oxygen 
vacancy. (d) and (e): atomic structure of CuO-modified anatase (001) after formation of water by 
H2 adsorption. (b)/(c) and (d)/(e) show two views of each structure. In this and all figures, Ti is 
represented by grey spheres, oxygen by red spheres, Cu by brown spheres and H by white 
spheres. 
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In situ diffuse reflectance UV-visible spectroscopy provides additional information about the 

speciation of Cu on the surface under reducing pretreatments and with exposure to reactants. In 

the top panels of Figure 4, the as-synthesized catalysts were heated to 300 °C under continuous 

flow of Ar, and the initial spectra were acquired. The gas was switched to H2 (20 ml/min), and 

their absorption edges red shifted over 10 minutes due to the reduction of Cu and the TiNT 

support[47, 48]. The characteristic absorption band for metallic Cu nanoparticles, at around 600 

nm[49], is discernible for the 1.5Cu/TiNT, 3Cu/TiNT and 6Cu/TiNT samples, but is not for 

0.3Cu/TiNT. The assignment of metallic nanoparticles of Cu on these three surfaces is also 

supported by ex situ XRD patterns of the freshly reduced materials (Figure S5) and by TEM of 

the reduced surfaces (Figure S6). No nanoparticles or crystalline Cu were discernable on the 0.3 

Cu/TiNT sample. When the H2-treated materials were subsequently purged in He and then 

exposed to CO2 (20 mL/min) at 300 °C, the absorption bands of the lowest and highest-loaded 

samples, 0.3Cu/TiNT and 6Cu/TiNT, were blue shifted back to their original state within 5 

minutes, indicating the re-oxidation of Cu by CO2. In contrast, the absorption bands from 

metallic Cu on the reduced 1.5Cu/TiNT and 3Cu/TiNT samples were much less changed, even 

after 30 minutes exposure to CO2 at 300 °C. At 300 °C and atmospheric pressure, CO2 is known 

to dissociatively adsorb on - and consequently oxidize - metallic Cu surfaces[50-52]. Therefore, 

the re-oxidation of Cu on 0.3Cu/TiNT and 6Cu/TiNT indicates Cu atoms accessible to CO2, 

whereas the persistence of metallic Cu in 1.5Cu/TiNT and 3Cu/TiNT indicates the Cu on those 

samples is inaccessible to CO2. 
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Figure 4. In situ UV-Vis spectra of (a) 0.3Cu/TiNT, (b) 1.5Cu/TiNT, (c) 3Cu/TiNT and (d) 
6Cu/TiNT at 300 °C. The arrows indicate the increase in time under a continuous flow of H2 (top 
panels) and, subsequently, CO2 (bottom panels) 
 
 
The vibrational modes of surface carbonates derived from CO2 chemisorption were next used to 

probe the TiNT surfaces. Similar to the in situ UV-visible studies, the samples were heated to 

300 °C under a continuous flow of Ar, reduced in H2 at 300 °C for 30 minutes, purged in Ar for 

60 minutes, and background spectra were collected. CO2 was allowed to flow over the samples 

for 15 minutes and the gas was then switched back to Ar to purge the cell of gaseous CO2. 

Figure 5 shows the spectra recorded at 5 minutes after the gas flow was switched back to Ar. 

The spectrum obtained on adsorption of CO2 on TiO2 nanoparticles (TiNP) is shown in Figure 5a, 

where the absorption at 1225 cm-1 is attributed to bicarbonate[53], and 1658 cm-1 is assigned to 

the bending mode of water. Both bidentate (1318 cm-1) and monodentate carbonate (1447 and 
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1379 cm-1) species are observed on TiNP. As a result, CO2 adsorbed on TiNP has strong IR 

absorption from 1800 to 1500 cm-1, owing to the convoluted spectra of bidentate and 

monodentate carbonate species. However, the spectrum of CO2 adsorbed on TiNT (Figure 5b) is 

dominated by features assigned to water (1616 cm-1)[54,55] and monodenteate carbonate (1521, 

1426, and 1374 cm-1)[56].  

 

Figure 5. IR spectra of CO2 adsorption on the reduced surfaces of (a) TiO2 nanoparticles (TiNP), 
(b) TiNT, (c) 0.3Cu/TiNT, (d) 1.5Cu/TiNT, (e) 3Cu/TiNT, and (f) 6Cu/TiNT. Samples were 
heated to 300 °C under flowing Ar, then H2, then CO2. See main text for full experimental 
conditions. 
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The spectrum of 0.3Cu/TiNT (Figure 5c) does not differ significantly from that of TiNT, as 

expected from the low amounts of Cu present, but one monodentate carbonate peak is red-shifted 

from 1521 cm-1 on TiNT to 1517 cm-1 on 0.3Cu/TiNT and another blue shifts from 1426 cm-1 on 

TiNT to 1435 cm-1. These shifts suggest that the monodentate carbonate species were adsorbed 

on Cu-O-Ti sites of 0.3Cu/TiNT and on Ti-O-Ti sites of TiNT.  

Three strong, well-resolved absorption bands at 1635, 1551 (1542), and 1324 (1326) cm-1, are 

seen with the 1.5Cu/TiNT and 3Cu/TiNT samples (Figures 5d and 5e), The absorption at 1635 

cm-1 is assigned to the bending mode of surface water and is blue-shifted relative to that on 

0.3Cu/TiNT or TiNT. This shift is usually attributed to an increase in the concentration of 

water[57,58]. The latter two bands were identified in our previous study[29] as a bidentate 

carbonate on TiO2. For the highest loaded 6Cu/TiNT (Figure 5f), the IR spectrum more strongly 

resembles that of low-loading 0.3Cu/TiNT than it does the intermediate loading samples, and the 

features at 1526 cm-1 and 1423 cm-1 are analogously assigned as monodentate carbonates.  

We have also investigated CO2 adsorption on the reduced surfaces of our computational model 

of 0.3Cu/TiNT, which shows a number of possible interactions that are consistent with this 

vibrational spectrum, but which depend on the nature of the oxygen vacancy initially formed. 

There are three different favorable interaction configurations of CO2 with reduced 0.3Cu/TiNT, 

with computed CO2 adsorption energies of -0.25 eV, -1.04 eV, and -2.50 eV. The two strongest 

adsorption modes shown in Figure 6. Here, the CO2 adsorbs in an activated form, where C-O 

bonds elongate and form carbonate-like structures. In all the adsorption geometries, at least one 

C-O bond forms between the Cu and Ti atoms, again highlighting the key role of the Cu-O-Ti 

interface at this low coverage of Cu. No significant charge is transferred between the Cu and Ti 
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surface atoms and the CO2, consistent with initial formation of a carbonate and indicating that 

the initial reduction of C and re-oxidation of Cu/Ti does not occur spontaneously. This is 

expected from the overall endothermicity of the RWGS reaction. A more detailed discussion of 

adsorption geometries is given in Figure S7 and accompanying text. While we observe that the 

strength of the interaction with CO2 and that the final structure of the complex between Cu and 

adsorbed CO2 depend on which O atom is removed during the initial reduction step, a critical 

result is that CO2 adsorption is always preferentially found at the Cu-O-Ti interface. Further 

studies should addres the role of exposed Cu in larger nanoparticles. 

 
Figure 6. Side and top views of two possible carbonate-like adsorption modes of CO2 with 
models of the reduced surface of 0.3Cu/TiNT (from Figure 3c). Colour coding is the same as 
Figure 3, with carbon shown by the grey sphere. 
 
 
We explain the different CO2 adsorption features on the high/low vs. intermediate loadings of 

Cu/TiNT catalysts by surface reconstructions akin to a strong metal support interaction 

(SMSI)[59]. In reducing atmospheres around or above 300 °C, TiO2 supports are well known to 

form a non-crystalline, reduced form of SMSI overlayers on supported metals[26,60]. As 
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illustrated in Scheme 1, we propose that SMSI overlayers on 1.5Cu/TiNT and 3Cu/TiNT totally 

encapsulate the Cu nanoparticle surface after pretreatment in H2. This prevents the re-oxidation 

of Cu by CO2 in the in situ UV-visible experiments, and leads to the surface being dominated by 

a reconstructed TiOx surface distinct from that found on the original TiNT, explaining the 

changes in the IR spectra. Highly reactive defect sites (e.g. O vacancies) will be more numerous 

on the SMSI surface than on the bare TiNT surface, explaining the increase in rate absent a 

change in activation barrier. In contrast, SMSI overlayers do not appear to have completely 

engulfed the Cu nanoparticles in 6Cu/TiNT, and the exposed interfaces allow the Cu 

nanoparticles and TiOx SMSI to re-oxidize during in situ UV-visible spectroscopy. The inability 

to form a complete SMSI layer is presumably related to the Cu nanoparticle size, rather than the 

surface coverage, because TEM (Figure S6) shows ample free TiNT surface and because the 

DRIFTS spectra of TiNT and 6 Cu/TiNT under CO2 are similar. Finally, the 0.3Cu/TiNT lacks 

large Cu nanoparticles (Figure S6), which precludes, by definition, the formation of SMSI 

overlayers. Therefore, the IR spectra of CO2 adsorbed on the surfaces of H2-treated TiNT, 

0.3Cu/TiNT and 6Cu/TiNT are all similar and dominated by monodentate carbonate adsorbed at 

oxidized surfaces similar to those of the original TiNT. Under reaction conditions, these different 

surfaces (TiNT vs. Cu-O-Ti vs. nanoparticle Cu-TiNT) would lead to different active sites (e.g. 

O vacancies) at or near the interface, giving rise to the different apparent observed activation 

barriers.  

 



 

 16 

 

Scheme 1. Surface reconstruction on Cu/TiNT with different Cu loadings. On 0.3Cu/TiNT, 
oxygen vancancies are created during H2 treatment and healed by CO2 and elevated temperature 
See Figures 3 and 6 for DFT simulations of such sites. On 1.5Cu/TiNT and 3Cu/TiNT, SMSI 
overlayers with large numbers of potential RWGS active sites are formed on Cu during H2 
treatment but they prevent Cu from interacting with CO2 and reoxidizing. On 6Cu/TiNT, 
overlayers only partially coat Cu during H2 treatment and Cu remains accesible to CO2. 
 
 
After forming the surface carbonates in the procedures corresponding to Figure 5 and purging the 

cell with Ar, the samples were re-exposed to H2 to follow the RWGS reaction and the evolution 

of new surface species. An example set of spectra for 0.3 Cu/TiNT under sequential Ar, H2 and 

Ar flows are shown in Figure 7, along with the time dependent intensities at 1517 cm-1 

(monodentate carbonate) and 1616 cm-1 (water). The monodentate carbonate species was rapidly 

depleted under H2, while surface water was produced at roughly the same rate as the depletion of 

the monodentate carbonate species. Typical species formed during carbonate 

hydrogenation[61,62] such as formate (~1580 cm-1)[63], and carboxylate (~1670 cm-1)[64], were 
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not observed. As such, we can propose that the surface monodentate carbonate is the immediate 

precursor to CO formation.  

This correlation between the depletion of surface carbonate and the formation of water was only 

observed on 0.3Cu/TiNT. On 1.5Cu/TiNT (Figure 8) and 3Cu/TiNT (Figure S8), both carbonate 

and water slowly decreased under H2 and Ar flow. That is likely because the bidentate carbonate 

species on SMSI surface was converted to monodentate carbonate[29], which was readily 

depleted in H2, and further reduction of the SMSI overlayers was unfavorable. Interestingly, the 

intensities of carbonate on both 6Cu/TiNT (Figure S9) and TiNT (Figure S10) remain nearly 

unchanged, while the increase of surface adsorbed water under H2 is attributed to the reaction of 

H2 with surface oxygen. 

 
Figure 7. Left: IR spectra of CO2 adsorbed 0.3Cu/TiNT under sequential flows of (a) Ar (30 
min), (b) H2 (5 min) and (c) Ar (30 min). Right: The plots of intensities at 1517 and 1616 cm-1 
versus time. 
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Figure 8. Left: IR spectra of CO2 adsorbed 1.5Cu/TiNT under sequential flows of (a) Ar (30 
min), (b) H2 (5 min) and (c) Ar (30 min). Right: The plots of intensities at 1551 and 1635 cm-1 
versus time. 
 
Conclusion 

It is generally accepted that surface reconstruction plays an important role in creating the active 

sites of a catalyst. Phenomena such as SMSI are well known in catalysis and extensively studied 

for supported metals such as Pt[65-67], Pd[68,69], and Au[70]. A SMSI-like overlayer was 

recently implicated in the catalytic activity of Rh for CO2 hydrogenation[25]. In the present 

study, significant changes in apparent activation energy for RWGS were observed as the metal 

surface density changed for Cu/TiNT catalysts. Specifically, we propose that materials with 

exposed Cu and TiNT surfaces, either in 0.3Cu/TiNT or 6Cu/TiNT, create catalysts with lower 

energy barriers than on 1.5Cu/TiNT and 3Cu/TiNT, where Cu is inaccessible to the reactants as a 

result of SMSI. While unfortunately preventing formation of the lowest-barrier sites, the TiOx 

created by the SMSI does remain catalytically active. These sites have the same apparent barrier 

as those in the original TiNT, but appear to be far more numerous. Active sites like O vacancies 

are presumably rare on the bare titania surfaces, but it is known that thin oxide overlayers have 

different structures than do the bulk oxides. [71] The increase in activity for all Cu/TiNT samples 

vs. Cu/TiNP is also likely related to the creation of more O vacancies on the highly-strained and 
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preferentially anatase 001 surfaces of TiNT. [27-31] In situ UV-visible and IR spectroscopy 

show that such SMSI overlayers can form on top of Cu domains after exposure to H2 at 300 °C. 

When CO2 interacts with reduced 1.5Cu/TiNT and 3Cu/TiNT, where the metallic Cu surface is 

blocked by the SMSI overlayers, bidentate carbonate species are formed. However, when CO2 

interacts with the reduced 0.3Cu/TiNT, Cu assists TiO2 in CO2 activation, as supported by DFT 

calculations. The difference in the activation barriers between 0.3Cu/TiNT and 1.5Cu/TiNT or 

3Cu/TiNT suggests an active site may be created at the Cu-O-Ti sites in 0.3Cu/TiNT. The altered 

actiation barriers indicate that Cu and TiNT surfaces are both involved in CO2 activation over 6 

Cu/TiNT. The exact mechanisms will require further investigation in all cases. This study 

provides insights for creating effective supported metal catalysts for CO2 activation and 

conversion.  
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