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Compliant universal joints have been widely used in many applications such as precision transmission mecha-
nisms and continuum robots. However, their nonlinear spatial analysis in terms of load-displacement relations is
less investigated in the compliant mechanisms community, which are needed to show the physical insight into
constraint behavior of the universal joint. In addition, the design of existing compliant universal joints is not
robust to withstand buckling under applied compression loads. This paper aims to address these problems and
starts from presenting a novel anti-buckling universal joint consisting of two inversion-based symmetric cross-
spring pivots (IS-CSPs). Two nonlinear spatial models of the IS-CSP and of anti-buckling universal joint are
proposed, resorting to two single-sheet closed-form kinetostatic models as the first step, respectively. Then center
shifts, primary rotations, and load-dependent stiffness are parametrically studied under different loading con-
ditions over a load and displacement range of practical interest, namely, point loads, cable-force actuations, and
varying loading positions. The modeling results of these performance characteristics are shown to be accurate
using nonlinear finite element analysis. In addition, preliminary experimental tests are carried out to investigate
the manufacturability of the prototype and verify the nonlinear spatial models. Finally, this paper presents and
models two new bi-directional anti-buckling universal joints, each with two IS-CSPs and two non-inversion-based

symmetric cross-spring pivots (NIS-CSPs).

1. Introduction

Complaint universal joints are a class of compliant mechanisms and
have drawn increasing attentions in extensive applications. They have
many merits such as ease of fabrication, friction-free, no backlash,
minimal assembly, and high precision [1]. They usually consist of four
elastic sheets. Dong et al. [2-4] and Palmieri et al. [5] introduced new
compliant universal joints utilizing four short rods or sheets in a
compact configuration. These universal joints are applied to form a
continuum arm robot or are used as a precision transmission mecha-
nism. Bilancia et al. [6] designed a compliant universal joint incorpo-
rating four long crossing compressive sheets, i.e., a joint composed of
two non-inversion-based symmetric cross-spring pivots (NIS-CSPs). This
universal joint has been employed as a contact-aided compliant wrist. In
our previous work [7], we presented a bidirectional anti-buckling uni-
versal joint composed of four short sheets, and analytically analyzed the
kinetostatic characteristics of the joint in a linear manner.

The interest of this paper lies in the design of a new anti-buckling
universal joint using four long crossing tensile sheets, i.e., composed
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of two inversion-based symmetric cross-spring pivots (IS-CSPs) [8]. The
anti-buckling robustness of the new universal joint is hopefully to
benefit the stiffness of a compliant continuum robot. Compliant con-
tinuum robots are generally formed with compliant revolute or universal
joints consisting of compressive flexures and actuated by cables [2,4,
9-13], where the cable forces only exert compression forces to the joints.
The joint’s stiffness can decrease with the cable forces and its control-
lable range is small [14-16]. Buckling can easily occur if the cable force
is more than the critical load [17,18].

A single elastic flexure or compliant mechanism can be analyzed
using many modeling tools, for example, the beam constraint model
(BCM) [19-23], the principle of virtual work [24-27],
pseudo-rigid-body model (PRBM) [28-37], numerical approaches [6,38,
39], and commercial software based finite element analysis (FEA)
[40-43]. The BCM is a closed-form model that can insightfully capture
nonlinearities of a single beam within a practical range of loads and
displacements [44]. The principle of virtual work is easier to use than
the well-known free body diagrams because the mathematical
complexity is reduced, i.e., the unknown variables are decreased by less
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Fig. 1. (Color online) Two compact designs of anti-buckling universal joints: (a) an anti-buckling universal joint with an internal middle loop, (b) the explored view
of Fig. 1(a), (c) an anti-buckling universal joint with an external middle loop, and (d) the explored view of Fig. 1(c). A motion stage, a middle loop, a base, and four
compliant sheets in the anti-buckling universal joint are shown in red, green, blue, and grey, respectively.

considering internal forces [27]. The PRBM can quickly test design
concepts [44,45], but it is not suitable to be applied in complicated
loading conditions. The numerical approaches, with the elliptical nu-
merical integration as an example, usually take longer in computation
time than the analytical/closed-form methods [46], and cannot offer
any parametric insights. In this paper, our analysis will be based on the
BCM and commercial software based FEA verification.

Concerning the nonlinear spatial analysis of a single wire flexure,
Hao et al. [47] applied the principle of superposition and the BCM to
derive a nonlinear spatial closed-form model under a small-angle
assumption. The nonlinear spatial closed-form model of a sheet can be
obtained based on Hao’s work, despite the 3D rotational sequence of the
sheet and the couplings among several deformation directions during
the modeling are neglected for practical interest. Sen [27] used the
principle of virtual work to derive a nonlinear spatial closed-form model
of a sheet. This model captures the 3D rotational sequence and the
nonlinear couplings between the bending, axial, and torsional di-
rections. The nonlinear spatial closed-form model of a symmetric
cross-section slender beam and a rectangular cross-section slender beam
were reported in [48] and [49], respectively. However, the two
nonlinear spatial closed-form models are both not suitable for modeling
a sheet in spatial deformation. Based on those advances [27,47-49], Bai
et al. [50] developed a nonlinear spatial closed-form model of a sheet
with the rotational sequence of the sheet being taken into account,
where the ratios of the length to width and width to thickness are rec-
ommended to be both larger than 10 to ensure accurate modeling. In the
nonlinear spatial analysis in [47,50], the relationship, between the
rotational angles of each sheet and those of the resulting compliant
mechanism in terms of rotational sequences, is not explored, which is
one of the difficulties in nonlinear spatial modeling of compliant
mechanisms. The kinetostatic characteristics of a NIS-CSP [1,51-61]
have been widely studied using nonlinear planar analysis, such as the
center shift and rotational stiffness. Assuming in-plane motions only,
researchers have derived the geometric conditions that can lead to the
smallest possible center shift as shown [52,62]. However, the planar
analysis conclusions are not valid in the spatial analysis due to
out-of-plane motions. In this work, the center shift and other kinetostaic
characteristics of an IS-CSP are analyzed using a nonlinear spatial
model, which contributes to the nonlinear spatial model of the resulting
compliant universal joint. This paper specifically addresses these
modeling gaps and derives two nonlinear spatial models of the new
anti-buckling universal joint, employing two types of nonlinear spatial
closed-form models of a single sheet as proposed in [47,50].

We briefly summarize several motivations of this paper as follows:

(1) There is a gap in the design of a new compliant universal joint
with anti-buckling robustness under applied compression loads,
which can be used as the compositional unit of a continuum
robot.

(2) Nonlinear spatial modeling of compliant universal joints
composed of cross-spring pivots remains an open issue, which
will be comprehensively tackled in this paper using two modeling
methods. The mathematical relationship, between the rotational
angles of each sheet and those of the resulting compliant mech-
anism in terms of rotational sequences, will be built in particular.

(3) From a practical loading point of view, three different loading
conditions, including the point loads, cable-force actuations, and
varying loading positions, should all be investigated for several
targeted performance characteristics of the proposed compliant
universal joint such as center shifts, primary rotations, and load-
dependent stiffness.

This paper is organized as below. Section 2 describes the anti-
buckling universal joint incorporating four long tensile sheets. In Sec-
tion 3, two types of nonlinear spatial models of the IS-CSP and the anti-
buckling universal joint are derived. Using the presented nonlinear
models, center shifts, primary rotations and load-dependent effects of an
IS-CSP and of an anti-buckling universal joint are analyzed in Sections 4
and 5, respectively, under three kinds of loading conditions, which are
also obtained by FEA models. At the end of Section 5, the anti-buckling
ability and experimental results of the anti-buckling universal are dis-
cussed. Section 6 describes two new bi-directional anti-buckling uni-
versal joints. Conclusions are finally drawn in Section 7.

2. Design of an anti-buckling universal joint

As shown in Fig. 1(a), an anti-buckling universal joint consists of
three rigid parts, including a motion stage, an internal middle loop, and
a fixed base, which are serially and compactly connected by two IS-CSPs.
Each IS-CSP includes two long crossing sheets. By an inversion
arrangement of two sheets, compressive forces exerted on the motion
stage of the IS-CSP will lead to tensile axial forces on each sheet to
achieve anti-buckling robustness. The Xj-axis and Zj-axis denote the
primary rotational axes of the universal joint. The intersection of the two
primary rotational axes is the nominal rotational center of the universal
joint. The Yj-axis is along the axial direction of the universal joint. Ro-
tations about the X;j and Z;-axes are the degrees of freedom (DoF), and
other directions are the degrees of constraint (DoC). Similarly, another
compact design has an external middle loop as shown in Fig. 1(c). The
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Fig. 2. The description of a single sheet i. The shadow lines denote a fixed end.

explored views of the two compact designs are visible in Figs. 1(b) and
(d), respectively. Note that the four long tensile sheets should be ar-
ranged as illustrated in Figs. 1(a) or (c), in order to reduce the unwanted
rotation about the Yj-axis.

Compared with the anti-buckling universal joint with four short
sheets in [7], the proposed design has merits mainly in three aspects: (a)
it has a larger motion range due to the use of long sheets; (b) it has more
geometric parameters to facilitate design optimizations such as a mini-
mal center shift; and (c) it can lead to certain desired nonlinear per-
formance characteristics such as load-dependent stiffness.

3. Normalized nonlinear spatial models

In this section, we revisit two types of normalized nonlinear spatial
models of a single sheet, which are reported in [47] and [50], respec-
tively. The normalized nonlinear spatial models of an IS-CSP and an
anti-buckling universal joint are derived accordingly. The right-handed
coordinate system and right-handed rule are used throughout this paper.

3.1. Single sheet model

The two compositional sheets of an IS-CSP are numbered as sheet 1
and sheet 2, respectively. The local coordinate system of a sheet is
denoted as 0;-x;y;z; with its origin located at the free end, 0; i =1 or 2). A
sheet with a local coordinate system o;-x;y;z; at the center of the free end
is depicted in Fig. 2. L, T, and U denote the length, thickness, and width
of each sheet along the x;, y;, and z;-axes, respectively.

Throughout this paper, we use capital symbols to denote dimensional
parameters and use lower-case symbols to denote normalized (dimen-
sionless) ones if not specified otherwise. All translational displacements
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and length parameters are divided by the footprint L4. Lq is equal to L for
an IS-CSP, and L4 is equal to the diagonal length of the universal joint’s
middle loop. Forces and moments are divided by EIZ/Ld2 and EI,/Lq,
respectively, where I, denotes the cross-section moment of inertia about
the zi-axis and is expressed as UT3/12; E is Young’s Modulus of the
material. For sheet i (i = 1 or 2), we use l,, t, and u to denote the
normalized length, thickness, and width, where I, = L/Lg; u = U/Lg; t =
T/Lg; use fxi, fyi fzi, Mxi, Myi, and m,; to denote normalized loads acting at
o; with respect to 0;-X;yiz;; use dy, dy;, dz; 6xi, Oy, and 6 to denote
normalized displacements and rotations of the tensile sheet i acting at o;
with respect to 0;-X;yiz;.

We use Nonlinear Method I (NM I) and Nonlinear Method II (NM II)
to denote the two nonlinear spatial (kinetostatic) models of a single
sheet, as reported in [47] and [50], respectively (See details in Appen-
dices A and B), and therefore the nonlinear spatial models of the
resulting compliant mechanism. In NM II, the sheet rotates about the
fixed local coordinate systems 0;-x;y;z; in a rotational sequence of the y;,
z;, and x;-axes. R; denotes the rotational matrix of a tensile sheet as
written in Eq. (1).

Ri = in(gxi)Rzi(gzi)Ryi (Hyi) (1)

where, Ry, Ry;, and Ry denote the rotational matrices rotating about the
X;, Vi, and z;-axes, respectively, which are formulated as Eq. (2).

1 0 0
Ry(fy) = |0 cosfy —sinby; |;
10 sinfy  cosby; |
[ cosBy; 0 sindy ]
R;(0:)=| 0 1 0 |; 2
| —sinfy; 0 cosOy; |

cosf,; —sind,; O
R, (0,) = | sinf,; cosd,; O
0 0 1

3.2. IS-CSP model

An IS-CSP is actuated by point loads acting at Os along with loading
from four cables as described in Fig. 3. Os-X;YsZs denotes the global
mobile coordinate system of an IS-CSP, which is located at the motion

® Z, 2,2, 2, (n=1,..., 0r 4)
Y
f)'sl}mys
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s m.
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Ly Fees ’
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(b) Rigid motion stage of the IS-CSP

Fig. 3. (Color online) The description of an IS-CSP: (a) the global and local coordinate systems shown in a front view, and (b) the positions of four cables (B,) on the
IS-CSP shown in a top view. Four coordinates are drawn in red and normalized loads are in blue.
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Table 1
The expressions of fgn, fyn, fz8n in a deformed condition.

n 1 2 3 4
fxen faisiny, —fazsinyz 0 0
fan —faicosy1 —fa2c0sy2 —fascosys —faacosy4
famn 0 0 —fassinys fassinys

stage with the Yg-axis passing through the rotational center in a non-
deformed condition. The origin Os denotes the loading position of the
IS-CSP. Two local coordinate systems locate at points S; and Sy, where S;
and S, denote free ends of two tensile sheets in a non-deformed condi-
tion, respectively. A cable is fixed on point B, (n = 1-3, or 4) of the IS-
CSP, and op,-XpnYBnZpn denotes a local coordinate system at point By,. The
directions of the three axes of op,-XpnYBnZpn are the same as those of Os-
XsYsZs. The axes’ directions of Os-XsYsZs, 0i-X;yizi and Opp-XpnYBnZBn
remain constant over the motion of the IS-CSP.

The independent normalized parameters to define the IS-CSP include
a, 4, I, and h. I; is a normalized horizontal distance from the free end of a
sheet to the rotational center, as shown in Fig. 3(b), where [y = Ly/Lq4. The
first three items are normalized geometric parameters. h relates to the
loading position with a positive or negative sign. When the loading
position is above the free ends of the two sheets, h is positive; otherwise,
h is negative. The absolute value of h is equal to H/L4, where H denotes
the dimensional vertical distance between the free end of the sheet and
the loading position. We use fxs, fys, fzs, Mxs, Mys, and m,s to denote the
normalized loads acting at Os with respect to Og-XsYsZs; use dys, dys, dzs,
Oxs Oys, and 6, to denote the normalized displacements and rotations of
the motion stage at O with respect to Os-XsYsZs; use feapn to denote the
constant positive normalized cable force along a cable; use fa, to denote
the normalized force to bend the IS-CSP; use fyn, fyBn fzBn to denote fan
components of the IS-CSP acting at point B, with respect to Os-X;YsZsin a
deformed condition.

The rotational matrix of the IS-CSP’s motion stage with respect to Og-
XsYsZs is denoted by Rg, whose rotational sequence is determined as Eq.
3.

Rs = Rxs (gxs)st (ezs)Rys (Hys) (3)

where, Rys, Rys and R,s denote the rotational matrices rotating about the
X, Y5, and Zs-axes, respectively, which are shown as Eq. (4).

1 0 0
Rxs (gxs) =10 COSGXS - Singxs ;
10 sinfy  cosOy |
[ cosfy, 0 sinfy |
Ry, (6),) = 0 1 0 | 4
| —sinfy; 0 cosOy, |
cosl,, —sinf,; 0
Ry (0,) = | sinf,, cosf,, 0O
0 0 1

To model the IS-CSP, given four independent parameters (a, 4, Is and
h), six loading inputs with respect to Os-XsYsZs (fs, fys, fzs, Mxs Mys and
mys) and four cable forces (fap1 through feap4), the six unknown outputs
of the IS-CSP’s motion stage (dxs, dys, dzs, Oxs, Oys, and 65) are solved by
using the two single sheet models (Section 3.1), load-equilibrium con-
dition, and compatibility condition of the IS-CSP.

Step 1: The load-equilibrium condition of the IS-CSP’s motion stage
with six loading inputs acting at Og and four cable forces in a deformed
condition is shown in Eq. (5) (See details in [47]).
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.f;(s ,f;(Bn ,f;(i
;ys 4 ?Bn ) ?i
Jzs T zBn _ T T zi
o |+ ; D" | 70" | = le Dy Res" | ()
My 0 my;
My 0 My

where, i = 1 or 2; n = 1-3, or 4; Dy, denotes a 6 x 6 normalized
translational matrix for point B,, and is expressed as Eq. (6);

*

0 B,(3,1) -B,(2,1)
| EPE -B," (3,1 B, (1,1
Dy = | SR (1,1 ©
Bn (271) 7Bn (171) 0
03><3 I3><3

B, denotes the normalized coordinate of point B, with respect to Os-
XsYsZs in a non-deformed condition, respectively; B,* denotes the
normalized coordinate of point B, with respect to Os-XsYsZs after mo-
tions of the motion stage, B,,* = RyB,, and B,, = [xpn, YBn, 28] T Note that
when we derive B,,*, B,* should be equal to the result of RsB, plus the
center shift of the IS-CSP. However, the center shift of the IS-CSP is
neglected here because it is about 10* times smaller than RgB,,. In the
following sections, all the coordinates of other points in a deformed
condition do not include the contribution from the center shift due to the
same reason; I3, 3 denotes an identity matrix. 03,3 denotes a zero matrix;
Dps; denotes a 6 x 6 normalized translational matrix for point S;, and is
elaborated as Eq. (7);

0 (3,1 =S'(2,1)
| £ -S"(3,1 0 S (1,1
Dy — | * (€Y * (L1 e
Si(2,1) =S (L,1) 0
03><3 I3><3

S; denotes the coordinates of point S; with respect to Os-X;YsZs in a non-
deformed condition and is represented as follows: S; = [Alsina, —h, L7,
Sy = [—Alssina, —h,—L] T; S;* denotes the normalized coordinate of point
S; with respect to Os-X;YsZs after motions of the motion stage, and S;* =
RsS;; R, denotes a 6 x 6 rotational matrix about the z;-axis, which is
shown as Eq. (8);

R,(B) 03
03><3 Rzi(ﬂi)

R.i(f;) = 8)

R;i (#;) denotes a rotation by f; about the z;-axis in the 0;-x;y;z; coordinate
system of a tensile single sheet, which is given as Eq. (9);

cosp; —sinp; 0O

R,(B;) = | sing;, cosp, O|[;
0 0 1 (©)

py=mn/2—aand f, =1/2 +a

fxBn fyBn fzBn can be derived from feap, in a deformed condition referring
to the method in [55], as shown in Table 1.

In Table 1, fa, is calculated as Eq. (10) by using the Euler-Eytelwein
formula in [63]. y, is the angle between fa, and fcapn as derived in Eqs.
(11) and (12).

fAu = f;abn /eM” (1 0)

where, y is a friction coefficient.

Yo = arctan(|xA” —xp,+|/ |y, —yA,,|)7 whenn =1 or 2 an

7, = arctan(|za, — zs,+|/|[ye,* — ¥a,|), when n =3 or 4 12)
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where, A, = [Xan, Yans zan]T denotes the normalized coordinate of point
Ap with respect to Os-XsYsZs; Bn* = [XBn* YBn* Zpn*] can be obtained in
Eq. (5).

Step 2: The translational compatibility condition of the IS-CSP is
described as Eq. (13) (derivation details can be seen in Ref. [47]).

dy; dys
dy[ = Rzi (/),l)(RSSl - SA) + dys (13)
d,i dys

where, i = 1 or 2 and Ry; (f;) refers to Eq. (9).

The rotational compatibility condition of the IS-CSP is derived as Eq.
(14), which also means the relationship, between the rotational angles of
0;-X;yizi (i = 1 or 2) and those of Os-X;YsZs in the IS-CSP. Appendix C
details a generalized relationship between the rotational angles of a
local coordinate system and those of a global coordinate system in
consideration of rotational sequences in a parallel mechanism.

R; = R,(#)RR, () 14

As R; can be expressed by 6ys, Oys, and 6,5 using Eq. (14) and the
rotational sequence of R; is given as Eq. (1), 6y, 6y, and 6 can be
expressed with 6ys, fys, and 65 as formulated in Eq. (15).

B R;(3,2)\
0, = arctan(Ri(z’z)),
Ri(1,3)\.
Oy = arctan(Ri(Ll)), (1s)
—R;(1,2
0,, = arctan (1L,2)

Ri(1,1)° + Ry(1,3)’

where, R; (j, k) denotes the entry at row j and column k of R;.
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3.3. Anti-buckling universal joint model

An anti-buckling universal joint is driven by loads acting at O; and
four cables as described in Fig. 4(a) through (c). The independent
normalized parameters to define an anti-buckling universal joint include
a, A, 1y, hy, and h. [; denotes the normalized radius of the anti-buckling
universal joint, and h; denotes the normalized height of the middle
loop, where Iy = Ly/Lg; hy = Hy/La; La = (4L +H;?)"% 05-X;Y,Z; de-
notes the global mobile coordinate system of the anti-buckling universal
joint and Oy denotes the loading position. A cable is fixed on point Q, (n
= 1-3, or 4) of the anti-buckling universal. Ognr-XonyonZon denotes a
local coordinate system of the anti-buckling universal joint located at
point Q. The directions of the three axes of 0gs-XQnyonZon are the same
as those of O;-X;Y;Z;. In Fig. 4(d), we use IS-CSP-1 to denote the IS-CSP
connecting the base and the middle loop, and use IS-CSP-2 to denote the
IS-CSP connecting the middle loop and the motion stage. Og-Xs;YsiZsi
denotes the local coordinate system of the IS-CSP-i (i = 1 or 2). Oy and Og;
are at the same position in a non-deformed condition. Og3-Xs3Ys3Zs3 is
introduced to assist the derivation of the relationship between the
rotational angles of a local coordinate system and those of a global co-
ordinate system with consideration of rotational sequences in a serial
mechanism, the Xg3-axis of which is always perpendicular to the motion
stage in deformation. Appendix D derives this relationship using a
quaternion method. The axes’ directions of O;-X;Y;Z;, Osi-XsiYsiZsi and
0Qn-XQnyonZon Temain constant over the motion of the anti-buckling
universal joint.

We use Rg; to denote the rotation matrix of the IS-CSP-i with respect
to Og-XiYsiZsi (i = 1 or 2), whose rotational sequence is the same as Eq.
(3); use dysj, dysi, dzsi; Oxsix Oysi> and O, to denote the normalized dis-
placements and rotations of the IS-CSP-i with respect to Og-X;YsiZsi; use
By, and Byy, (n = 1-3, or 4) to denote the normalized coordinates of cable
positions of the IS-CSP-1 and the IS-CSP-2 with respect to Og-X;YsiZsis
respectively; use R; to denote the rotational matrix of the anti-buckling

® 7,24, (n=1,...,4)

— 2/ —

® Y, Y, (=1 or2),y,, (n=1,...or 4)
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Fig. 4. (Color online) The description of an anti-buckling universal joint: (a) the global coordinate system O;-X;Y;Z; and normalized geometric parameters in a front
view, (b) the positions and local coordinate systems of four cables Q, in a top view, (c) the free ends of four sheets and pully positions in a top view, and (d) the

schematic diagram used for deriving R; expressed by R;.
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universal joint’s motion stage with respect to O;-X;Y;Z;, which can be
expressed by Ry [64] and the corresponding derivations are shown as
Egs. (16) through (21).

In Fig. 4(d), the normalized displacements of the IS-CSP-2 with
respect to Ogp-Xs2Ys2Zso can be described by those with respect to Og;-
Xs1Ys1Zs1, as shown in Eq. (16).

dxsl ] dxszﬁ
dyi | = Ry|dy | and
dzsl i dzsz’Y
dxsZ* ] dxsZ

% T
dy' | = Ryo (5) dyo |, s0 (16)
dst* d dst
dxsl ) dxsZ

T

dysl = RisY>2* (E) dysZ
dys | d

where, Og*-Xs2*Ys2*Zgo* is the resulting coordinate system when Og;-
Xs1Ys1Zs1 rotates by Rg; about the three axes of Og;-Xg1Ys1Zs1; dxs2*,
dys2*, dys2* denote the normalized displacements of the IS-CSP-2 with
respect to Osp*-X52*Ys2*Zsa*; Rysa+(n/2) denotes a rotation by n/2 about
the Zsy*-axis in the Og*-Xs2*Ys2*Zso* coordinate system, which is
expressed as Eq. (17).

cos(n/2) O sin(n/2)
Ry (3) = 0 T a7
—sin(x/2) 0 cos(n/2)

Then the normalized displacements of the anti-buckling universal
joint’s motion stage with respect to Og3-Xs3Ys3Zs3 can be expressed by
those with respect to O2-X2Y2Z5, as shown in Eq. (18).

1 %

dxsZ dxs3
dyo = Rg|dy |and
dst i dug ¥
dsz* ] dx53
. T
dy = Ryg+ ( - z) dys |, O (18)
dzsg * J dzs3
dxsZ 1 dxs3
T
dysZ = RSZRY53* ( - E) dys3
dys | dys3

where, Os3*-Xs3*Ys3*Zs3* is the resulting coordinate system that Oso-
Xs2Ys2Zso rotate by Rgp about the three axes of Os2-Xs2Ys2Zs2; dxs3, dys3,
dzs3, and dys3*, dys3*, dzs3* denote the normalized displacements of the
motion stage with respect to Og3-Xs3Ys3Zs3 and Og3*-X3*Ys3*Zs3™,
respectively; Rys3«(—n/2) denotes a rotation by —n/2 about the Ys3*-axis
in the O43*-Xs3*Ys3*Zs3* coordinate system, and is given as Eq. (19).

cos(—m/2) 0O sin(—m/2)
Ry (= 3) = 0 1 0 19
—sin( —x/2) 0 cos(—m/2)

Finally combining Eqs. (16) and (18), the normalized displacements
of the anti-buckling universal joint’s motion stage with respect to Ogs-
Xs3Ys3Zg3 can be expressed by those with respect to Og-Xs1Ys1Zs1 as
shown in Eq. (20).

dxsl dxs3

ts T
dys1 | = R Rygr <E> Ry Ry« ( - E) dys (20)
dzsl d253
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R; can be expressed by Ry; as derived in Eq. (21), which is the rotational
compatibility condition of the anti-buckling universal joint. We also use
a quaternion method to derive Eq. (21) as shown in Appendix D.

R; = Ry Ryo: (1 / 2)RoRyg+( — 1/ 2) (21)

We use fyJ, fy, fz3, MxJ, Myy, Mgy, dyy, dyy, g3, Oxy, Oy, and 6,5 to denote
the normalized loads, normalized displacements and rotations of an
anti-buckling universal joint acting at O; with respect to O;-X;Y;Zj,
respectively; use fcabsn to denote the constant positive normalized cable
force along a cable; use faj, to denote the normalized force to bend the
anti-buckling universal joint; use fyxon fyon, and fon to denote fas,
components of the anti-buckling universal joint acting at Q, with respect
to 0y-X;Y;Z; in a deformed condition.

To model the anti-buckling universal joint, the IS-CSP-1 and IS-CSP-2
are regarded as two basic units. Given the geometric parameters (a, 4, I,
hy, and h), six loading inputs with respect to 0;-X;Y;Z; (fys, fys, fz3> MxJ,
myy, and myy) and four cable forces (fcapy1 through feaps4), the six outputs
of the anti-buckling universal joint’s motion stage dyj, dyj, dzy, 6xJ, Oy,
and 6,5 can be solved by using the nonlinear spatial models of the two IS-
CSPs, load-equilibrium condition, and compatibility condition of the
anti-buckling universal joint.

Step 1: The nonlinear spatial models of the IS-CSP-1 and IS-CSP-2.

The nonlinear spatial model of the IS-CSP-1 is given in Section 3.2
and Ry is replaced with Rg;. We use points S3 and S4 to denote two
mobile sheet ends of the IS-CSP-2. Then we use S3 and S, to denote the
normalized coordinates of points S3 and S4 with respect to Oga-Xs2Ys2Zs2
before the motion of the motion stage, and use S3*, and S4* to denote
those after the motion of the motion stage. Due to the special arrange-
ments of the IS-CSP-2 as detailed in Section 2, the coordinates of the two
sheets’ free ends in the IS-CSP-2 are different from those of the IS-CSP-1
as depicted in Fig. 4(c). S3 = [Alysina, —h, 117, S4 = [—Alsina, —h, I,]7,
S3* = Ry2S3, and S4* = RyS4. We can obtain the nonlinear spatial model
of the IS-CSP-2 by replacing R with Ryo; replacing S; and Sy with S3 and
S4in Eq. (13), respectively; replacing S;* and Sy* with Sg* and S4* in Eq.
(5), respectively.

Step 2: The load-equilibrium condition of the anti-buckling universal
joint in a deformed condition is listed in Eqs. (22) and (23), when six
point loads act at Oy with four cable forces exerted. Note that we do not
take the center shift of the anti-buckling universal joint into consider-
ation because it has less effect on the results in a small-angle rotation.

fo f;csl f;(sl f;(sz
.fy] .f;/sl .fysl fysZ
fzJ — fle ; fzsl — Rsl RY52* (E) fst (22)
myy Miys Miysi 2 Mys2
Myy My My Mys>
myy M1 Mys) Mys2

where, i = 1 or 2; fysi, fysis fasi- Mxsi Mysi> and mys; denote the normalized
loads acting at Og; of the IS-CSP-i with respect to Og-Xs;YsiZs;.

fabin | Sxan

S | = | Sy |5

S - Srn (23)
SiBim Jxan

SyBun = (RyRyp(n/2)”" Jyan

szun i szn

where, n = 1-3, or 4; fipm, fyBm fzBin and fxgmm, fyBim f7Bmn denote fasn
components with respect to Og1-X §1Ys51Z51 and Ogo-X 52Ys0Zso acting at
point B, of the IS-CSP-1 and the IS-CSP-2, respectively; fxon, fyom fzon can
be obtained with given f.,pj, With respect to O;-X;Y;Z; in a deformed
condition as shown in Table 2.

In Table 2, fas, is derived as Eq. (24). oy, is the angle between fa;, and
feabin as derived in Egs. (25) and (26).
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Table 2
The expressions of fyon, fyon, and fyon in a deformed condition.

n 1 2 3 4
fxan fansinoy —fasosine 0 0
nyn —fas1€0801 —fay2€0s02 —fay3c0s03 —fa34c0s04
faon 0 0 —faj3sinos fasasinoy

Fain = feabin /€ (24)
o, = arctan(!xA" —xq,+|/ Vo, — ya, |), whenn =1 or 2 (25)
0, = arctan(‘zA" — 20,/ 1ya,* — Ya. |)7 when n =3 or 4 (26)

where, Q, = [Xon, Yonr zQ,,]T denotes the normalized coordinate of point
Qn with respect to O5-X;Y;Z5; Qn* = [Xon* Yon® ani-]T denotes the
normalized coordinates of point Q, with respect to O;-X;Y;Z; after
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motion of the motion stage, and Q,* = RjQp.
Step 3: The translational compatibility condition of the anti-buckling
universal joint is shown in Eq. (27).

de dxsl T dxsZ
dy | = [dysi | + Ry Rygx (5) dys»
d7.l dzs] dst

R; can be expressed with rotations of the IS-CSP-1 and the IS-CSP-2
as derived in Eq. (21). If we determine the rotational sequences of Ry as
described in Eq. (28), the rotational compatibility condition of the anti-
buckling universal joint is shown in Eq. (30).

(27)

R; = Ry (64)Ry (0.1)Rys (61) (28)

where, Ryj, Ryj, and Ry denote the rotational matrices rotating about
the Xj, Yy, and Zj-axes, respectively, as represented in Eq. (29).

Material Selecting
* Linear elastic material: Selected.
* Elastic sheets: Al 6082, £=69 (GPa), p=2700 (kg/m?), v=0.33.
* Remaining parts: Rigid domains.

Constraints
* Fixed constraint: Base.

* Loading position: Motion stage.

Loads

* Loading type: Moments and point forces.
* Loading values and directions: Detailed at the beginning of each simulation.

Elastic sheets:
*  Mesh type : Cuboids built by selecting ‘Swept’.

Remaining parts:

Meshing

* Element size: Selecting ‘extremely fine’, and max and min sizes are 8x10>m and 8x10-3 m, respectively.

* Mesh type: Tetrahedrons built by selecting ‘Free tetrahedral’.
 Element size: Selecting ‘extra fine’, and max and min sizes are 1.4 x102m and 6x10*m, respectively.

¢ Tolerance factor:0.1.

Solving
* Geometric nonlinearity: Selected.
» Stationary Solver: Automatic Newton method.
*  Maximum number of iterations: 300.

Post-Process

* Center shifts and rotations: Evaluated by selecting ‘Global Evaluation’ of the motion stage.
* Point displacements: Obtained by selecting ‘Point Evaluation’ of the point.

Fig. 5. The flowchart of simulating an FEA model in COMSOL 5.0.
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NM I results: — ¢=30° — o=45° — a=60

NMII results: - - - g =30°- - - q=45°

a=60° FEAresults: A ¢=30° 0 a=45°0 a=60°
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x1073

Fig. 6. (Color online) The effects of 1 and « on the center shift and rotations of the IS-CSP with an in-plane-load condition: (a) dyx. (Max Diffs: NM I: 5.4%; NM II:
3.9%), (b) dy. (Max Diffs at A = 0.5: NM I: 8.2%; NM II: 7.9%), (c) d,. (Max Diffs: NM I: 4.5%; NM II: 4.4%), (d) 0xs (Max Diffs: NM I: 4.3%; NM II: 3.3%), (e) 6y, (Max
Diffs: NM I: 5.4% when 4 < 0.5; NM II: 5.1%), and (f) 6,5 (Max Diffs: NM I: 5.4%; NM II: 5.2%). NM I, NM II, and FEA are shown as solid lines, dotted lines, and marks,
respectively. The results of @ = 30°, 45°, and 60° are shown in blue, black, and orange, respectively. Max Diff denotes the maximum difference between the NM I (or

NM II) results and FEA results throughout this paper.

1 0 0
Ry(0x)= |0 cosby —sinby |;
|0 sinfy  cosfy |
[ cosfy; 0 sinfy ]
Ry (0y) = 0o 1 0 |; (29)
| —sinfy; 0 cosOy |
cosf,y; —sind,; 0O
R;(0,) = | sinf;  cosf; O
0 0 1
—_ RJ(3ﬂ2) .
Oy = arctan(RJ(Zz) ;
RJ(173)>
0, = arctan ;
. (RJ(Ll) ’ (30)
—Ry(1,2
6, = arctan 1(1,2)

R(1,1) + Ry(1,3)

4. Analysis of an IS-CSP

In this section, the NM I and NM II results are compared with the
nonlinear FEA results of an IS-CSP, in terms of center shifts, primary
rotations, nominal stiffness, and load-dependent effects. To minimize
the parasitic motions of an IS-CSP, the ratio of width to thickness of each
sheet should be at least 20 (see details in Appendix E). L, U, and T of each
sheet are constant at 150 (mm), 15 (mm), and 0.75 (mm), respectively.
Ls is fixed at 37.5 (mm) and Lq = L. We use Fxs, Fys, Fy5, Mys, Mys, and My
to denote the actual loads acting at Os with respect to Os-X;YsZs. An FEA
model of the IS-CSP is built-in COMSOL 5.0, and its simulation set up is
elaborated in Fig. 5.

4.1. Center shifts and rotations

Based on point S; in Fig. 3, the center-shift equations of an IS-CSP
have been derived in [8] applying the nonlinear planar analysis. The
center-shift equations of an IS-CSP in the nonlinear spatial analysis can
be derived similarly, as shown in Eq. (31).

dye dy AM,sina M,sina
de | =R/ () | dyi | — | Ry | —Mycosa | — | —Al,cosa 31D
d7c d7] ls ls

where, dyc, dyc, and d,. denote the normalized center shift of an IS-CSP
along with the X, Y;, and Zs-axes, respectively; Ry and Ry refer to
Egs. (3) and (9), respectively.

The effects of 2 and a on the center shift of a NIS-CSP have been
summarized using the nonlinear planar analysis [62]. When 1 is equal to
0.8727 or 0.1273 and « takes a large value, the center shift is the
smallest. However, the effects of 4 and a on the center shift of a
cross-spring pivot in the nonlinear spatial analysis are different from
those in the nonlinear planar analysis, especially for the values of 2 and a
of the smallest center shift. Three types of loading conditions act on the
IS-CSP to explore the effects of 1 and @ on the center shift, including
in-plane loads, three moments, and cable forces. In Appendix F, the
corresponding FEA simulation figures under each loading condition are
shown in Figs. F.1 through F.3.

4.1.1. Loading conditions: in-plane loads

Fys, Fys and My are constant at 0.1 (N), —0.15 (N), and 0.025 (N+m)
acting at the rotational center of the IS-CSP, respectively. h = Al,cosa. a
is equal to 30°, 45° or 60° and A ranges from 0.05 to 0.95 with a step of
0.05. Fig. 6 depicts the results of the two nonlinear spatial models as
compared to those of the FEA model.

When 4 = 0.5, |dx| and |d,c| have the smallest values, and |dyc| has
the largest value. When 1 is close to 0.1 or 0.9, |dy| has the smallest
value. |dy| decreases with the increase of a significantly but |dy| in-
creases with a. a has less effect on d,.. When 1 = 0.4 or 0.6 and a = 45°,
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NM I results: — ¢=30° — a=45° — a=60° NMII results: - - - ¢=30°--- a=45°  q=60° FEAresults: A a=30° 0 a=45°0 a=60° ‘
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Fig. 7. (Color online) The effects of 1 and a on the center shift and rotations of the IS-CSP when three moments exerted: (a) dy. (Max Diffs: NM I: 5.4%; NM II: 5.3%),
(b) dy. (Max Diffs at 4 = 0.5: NM I: 13.0%; NM II: 12.5%), (c) d,. (Max Diffs: NM I: 4.3%; NM II: 3.4%), (d) 6ys (Max Diffs: NM I: 4.9%; NM II: 3.5%), (e) 6y, (Max Diffs:
NM I of a = 45° or 60°: 6.5% when 1 < 0.5; NM II: 5.2%), and (f) 6,; (Max Diffs: NM I: 4.6%; NM II: 4.2%).

Table 3
The normalized coordinates of B, and A, with respect to Os-XsYsZs. (Numbers
unit: mm).

n 1 2 3 4

B, [-100/Lg4, O, 017 [100/Lg, O, 01" [0, O, 100/Ld]T [0, O, —100/Ld]T

A, [-50/L4, —15/ [50/Lg, —15/ [0, —15/Lg, 50/ [0, —15/Lg,
La, 01" Ly, 017 La" —50/Lq]"

the IS-CSP has relatively small values of |dyc| and |d,|, and avoids
reaching the maximum value of |dy.|. |6xs| increases with a considerably
when a > 45° |6ys| under A ranging from 0.5 to 0.6 is smaller than |6ys|
under other A. |y| decreases slightly with the increase of a and 6y, is not
affected by a. |6ys| and |6,s| always have the largest value at 2 = 0.5. The
differences of 6ys between NM I and FEA results are large when 4 > 0.5.
The NM I and NM II results are mutually agreed in a great extent for all
motions except for 6ys. Especially, the results of dy. (or d, 6,) obtained
using NM I completely coincide with those using NM II.

4.1.2. Loading conditions: three moments

Mys, Mys and My are constant at 0.005 (N-m), 0.002 (N-m), and 0.03
(Nem) acting at the rotational center of the IS-CSP, respectively. h =
Alycosa. a is equal to 30°, 45° or 60° and A ranges from 0.05 to 0.95 with
a step of 0.05. The NM I, NM II, and FEA results are compared in Fig. 7.
The effects of 1 and @ on the center shift under the three-moments
condition are almost the same as those under an in-plane-loads condi-
tion. The differences of fys between NM I and FEA results are large,
especially for fys under a = 30°. The NM I and NM II results for all
motions are close to each other except for fys.

4.1.3. Loading conditions: cable forces

The motion stage is driven by four cable forces at points B; through
B4. By and A, are determined in Table 3 and Lgq = L. The loading position
h = — tsina/2. [fxs, fys, fzs, Mys, Mys, mzs]T = 0gx1 in Eq. (5). Fcap1 ranges
from 0.2 (N) to 0.8 (N) with a step of 0.05 (N), Fcab2, Feabs and Feapg are
fixed at 0.1 (N), 0.2 (N) and 0.05 (N), respectively. We take y = 0.1, 1 =

0.4, and a = 30°, 45° or 60° of an IS-CSP as examples.

The center shift and rotations employing the NM I and NM II are
compared with those of the FEA model in Fig. 8. |dx| under a = 30°
increases with f.,p1 more noticeable than the case under @ = 45° or 60°
This observation is also valid for |d,c|, |0xc| and |0,c|. The NM Iand NM II
results are still very close except for 6ys, and the maximum difference
between the NM II and FEA results is smaller than that between the NM I
and FEA results. The NM II and FEA results of the IS-CSP at F.;p; = 0.8
(N) are listed in Table G.1 of Appendix G.

4.2. Nominal stiffness

The nominal translational and rotational stiffness along or about the
X5, Ys, Zs-axes are denoted by Knom.-fxs-dxss Knom-mxs-xss Knom-fys-dyss
knom-mys-gys» knom-fzs-dzs» and Knom-mzs-62s, respectively. When a small fys (or
a small mys) acts on the rotational center of an IS-CSP, knom-fxs-dxs = fxs/
dxs (knom-mxs-0xs = Mxs/Oxs)- Nominal stiffness along or about the Y and
Zs-axes can be obtained similarly. Fig. 9 illustrates the effects of 1 and a
on the six nominal stiffness.

As seen in Fig. 9(a) and (b), 4 has less effect on the nominal stiffness
related to the Xs-axis. knom.fxs-dxs increases with a while knom.mxs-gxs de-
creases. In Fig. 9(c) and (d), both 4 and a influence the nominal stiffness
related to the Ys-axis. knom.fys-dys decreases with a while kyom-mys-ays in-
creases. In Fig. 9(e) and (f), a has less effect on the nominal stiffness
related to the Zs-axis. knom-fys-dys has the largest value when 1 = 0.5 while
knom-mys-oys has the smallest value. When 1 is constant, if a = 45°,
knom-mxs-oxs is €qual to knom-mys-ys- If @ { 45°, knom.mxs-oxs is larger than
knom-mys-oys- If @ ) 45°, knom-mxs-oxs i 1ess than knom.mys-ays-

4.3. Load-dependent stiffness

When 1 is constant at 0.5 and a takes 30°, 45° or 60°, we analyze the
load-dependent effects of the IS-CSP, including the effects of axial forces
on the rotational stiffness and the effects of rotations on the bearing
stiffness.
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Fig. 8. (Color online) The results comparison of NM I, NM II and FEA models when four cables forces drive the IS-CSP: (a) dyx. (Max Diffs: NM I: 5.0% when fcap1 <
0.2; NM II: 3.3%), (b) dy. (Max Diffs: NM I: 7.3%; NM II: 7.0%), (c) d,. (Max Diffs: NM I: 7.4%; NM II: 5.3%), (d) 6ys (Max Diffs: NM I: 5.4%; NM IL: 2.8%), (e) 6ys (Max
Diffs: NM I: 3.8% when a = 45° or 60°; NM II: 5.8%), and (f) 6,; (Max Diffs: NM I: 3.0%; NM II: 3.1%).

knom-ﬁ(s-dxs

(b)

nom-fzs-dzs

x10*

knom-fys-dys

Fig. 9. (Color online) The effects of 1 and a on the nominal stiffness of the IS-CSP using NM II: (a) Knom-fxs-dxss (D) Knom-mxs-oxs» (€) Knom-fys-dyss (d) Knom-mys-oys» (€)

knom-fzs-dzsa and (f) knom-mzs-st-

4.3.1. Rotational stiffness

In the nonlinear planar analysis of an IS-CSP, the effects of the axial
forces on the rotational stiffness due to a pure moment are summarized
in our previous work [8], which also can be employed for an IS-CSP in
the nonlinear spatial analysis. We use kp;s.¢;5 to denote the normalized
rotational stiffness due to a pure bending normalized moment. Ay, is an
expression of geometric parameters (i.e., A and @) and loading positions
(i.e., h), which is used for controlling kj;s.¢.s by regulating 4, a, and
h. A = Amgeo + h, where Apge, is the value of Ay, due to the contribution
of geometric parameters, and equals la[—2(9/12 — 94+1)/(15cosa)—A
cosal. kmzs.gzs increases with fys if Anfys > 0, decreases with fys if Afys <
0, and keeps constant if A, = 0.

M,s ranges from 0 to 0.08 (Nem) with a step of 0.005(N.m).

10

According to the normalized nonlinear spatial models of an IS-CSP, a
force of 0.5 (N) corresponds to a bending moment of 0.08 (N-m). Fys
takes relatively large values to clearly indicate the load-dependent ef-
fects, including 0, —2 (N), —3(N), and —4 (N). We use two different
loading positions to verify this, including the rotational center (i.e., h =
Alacosa) and the position where k5 9,s remains almost constant (i.e., h
= _Amgeo)-

Fig. 10 depicts the results of kpys.g,5, where the maximum difference
of kmzs-g2s between the NM I (or NM II) and FEA results is less than 5.1%.
We define y = |(Kmys.g,s under Fys = 0) — (kmzs-0z under other Fyo)| / |
(Kmzs-0,s under Fyg = 0)| x 100%. In Fig. 10(a), @ = 30°, h = Al,cosa and
Ap = 0.192, leading to that y is 12%, 18%, and 25% if Fys = —2 (N), —3
(N), and —4 (N), respectively. It is shown that ky;s.9,s decreases with the
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Fig. 10. (Color online) The effects of axial forces on kys.0,s: When the loading position is the rotational center (h = Al,cosa): (a) a = 30°, (b) @ = 45°, and (c) a = 60°
When the loading position is h = —Apgeo: (d) @ = 30°, (e) @ = 45°, and (f) a = 60°

Table 4

Values of A, and y of the IS-CSP when a, h and Fy, take different values.

Table 4. When h = Alcosa with a varying, kp,s.g,s decreases by a large
percent when Ay, has a large absolute value. The values of kp;s.9,5 Ob-
tained using the NM II and FEA models with different a, h, and Fys are

h = Al,cosa h = —Amgeo also provided in Table G.2 of Appendix G.
a Am yif wif y if a An y if y if y if
Fys Fys Fys Fys = Fys = Fys = 4.3.2. Bearirlg Stifﬁless

:(I\;)z :(1\53 :(I\;)“ (;\12) (;I?; (;I‘; We use kfys.gys and kgys.azs to denote the normalized translational
%) ) ) %) @) ) stiffness of an IS-CSP due to fys and f, respectively. M, ranges from 0 to
0.04 (Nem) with a step of 0.005 (Nem). kgys.qys under each My is
0% 0192 12 18 x5 500 0.23 032 058 calculated through applying a series of Fy;, where Fys ranges from 0.1 (N)

45°  0.236 15 23 31 45° 0 0.54 0.77 1.44 . oy ys- ’
60° 0333 21 39 43 60° 0 098 142  2.69 to 0.11 (N) with a step of 0.002 (N) acting at the rotational center. ks dzs

can be similarly derived. kfys.gys and k.45 are illustrated in Fig. 11(a)
and (b), respectively. kfys.qys decreases with the increase of 6,5 and «

increase of axial forces significantly. However, in Fig. 10(d), @ = 30°, h
= —Amgeo and Ay, = 0, leading to that y is up to 0.98%. It is shown that
axial forces slightly influence kp;s.9,s- We can draw similar conclusions
when a = 45° or 60° The various values of Ay, and y are all listed in

remarkably while k.45 is less influenced by 6,5 and a. The effects of a
on kyys.dys and kyzs.gzs are the same as those of knom.fys-dys and knom-fzs-dzs s
depicted in Fig. 11(c) and (e), respectively.

NM I results: — ¢ =30° — =45 — a=60"° NMII results: - - - ¢=30°- - - ¢ =45°

a=60° FEAresults: A a=30° 0 a=45°0 a=60"

12000 9700 |
A
9000 9500 :
2 g
> 6000 3 9300 1
8 e
3000 9100
0 8900 | ‘ ‘
0 0.03 0.06 0.09 0 0.03 0.06 0.09
@) Os (b) O,

Fig. 11. (Color online) The effects of 6,; and a on the bearing stiffness of an IS-CSP: () kpys.qys (Max Diffs: NM I: 3.0%; NM II: 3.8%), and (b) kgs.4,s (Max Diffs: NM I:

1.9%; NM 1II: 2.6%).
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Table 5

The dimensional coordinates of the four points in the FEA model with respect to
0,-X5Y5Z;5 (Axo, Avo, Azo, Axas Ava, Aza, Axbs Ayb, Azb, Axes Aye, and Az are the
dimensional displacements of the four points obtained from the FEA model after
motions, Unit: mm).

Non-deformed Oy a b c
condition

Dimensional [0, 0, 01" [1, 0,017 [0, 1,01" [o, 0,117
coordinates
Deformed 0;* a* b* c*

condition

Dimensional [Axo, Avo, [1+Axa, Avya, [Axp, 1+Ayp, [Axe, Aye,

coordinates Azol” Azal” Azp)T 1+Az"

5. Analysis of an anti-buckling universal joint

In this section, the NM I and NM II results of an anti-buckling uni-
versal joint are compared with the nonlinear FEA results, including the
center shifts, rotations, and the load-dependent effects. L, U, and T of
each sheet are 150 (mm), 15 (mm), and 0.75 (mm), respectively. H; as
labelled in Fig. 4 is 198 (mm). Lq of the anti-buckling universal joint is
equal to (4L2+H;%)12. We use Fyy, Fy3, Fz3, Myj, Myj, and My, to denote
the actual loads acting at Oy with respect to O;-X;Y;Z;. In the FEA model,
the settings are the same as those in Fig. 5. The corresponding FEA
simulation figures are shown in Figs. F.4 and F.5 of Appendix F.

5.1. Center shifts and rotations

We use dycj, dycj, and dycy to denote the normalized center shift of the
anti-buckling universal joint with respect to O;-X;Y;Zy in Fig. 4. The
normalized center shift of the anti-buckling universal joint is equal to the
result of adding two IS-CSPs’ center shifts with respect to O;-X;Y;Z;, as
shown in Eq. (32).

dch dxcl T dch
dyc] = dycl + Ry Ry <§) dch (32)
dZC] dzc] dch
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where, dyc;, dyci, and d,¢; denote the normalized center shift of the IS-
CSP-i with respect to O;-X;Y;Zj; Rs1 and Rygo+ refer to Egs. (3) and (17),
respectively.

The FEA rotations of the anti-buckling universal joint are calculated
by using the coordinate transformation method of four points, including
Oy, and three points on the Xj, Yj, and Zj-axes, respectively. The
dimensional coordinates of the four points in a non-deformed or
deformed condition of the FEA model are shown in Table 5, where a, b,
and c denote the three points in the FEA model along the X;, Y;, and Z;-
axes in a non-deformed condition, respectively; O;*, a*, b*, and c*
denote the three points after motions of the motion stage; corresponding
bold symbols of the four points denote the dimensional coordinates with
respect to Oy- X;Y;Z;. Ry of the FEA model can be obtained by solving
Eq. (33). Then the rotations of the FEA model can be solved by
substituting Ry into Eq. (30).

Oy a =R;0a;0; b =R;Ob; 05 ¢ = R;O05¢c

(33)

— 5 % " . — 3 *
where, Oja =a— 0;; Oya =a — O;;0b=b—05; O;j b =b —
_—

. — P * *
OJ;OJC:Cf()J;OJC =cC 70].

5.1.1. Loading conditions: three moments and a compressive axial force

Fyj, Myj, My;, and My are fixed at —0.1 (N), 0.02 (N-m), 0.01 (N-m),
and 0.025 (N.m), respectively, acting at the rotational center of the anti-
buckling universal joint (i.e., h = Alycosa). In this simulation, Ly = 270
(mm), Lqg = 575.16 (mm), A ranges from 0.1 to 0.9 with a step of 0.1 and
a takes 30°, 45° or 60° The NM I, NM II, and FEA results are visible in
Fig. 12.

When 1 = 0.5, |dyj| and |d,cs| have the smallest values but |dyc;| has
the largest value. When 1 is close to 0.1 or 0.9, |dy;| has the smallest
value. |dys| and |d,s| decrease with the increase of a while |dycs| in-
creases. When a > 45°, a has less effect on |dycj| and |dycy|. Therefore,
the anti-buckling universal joint under 2 = 0.4 or 0.6 and a = 45°, has
relatively small values of |dxcy| and |d,cy|, and prevents reaching the
maximum value of |dch|. As observed in Fig. 12(d) to (f), rotations are
influenced by 4 remarkably and have the largest values when 1 = 0.5,

‘NMI results: — ¢ =30° — ¢ =45° —

- a=60° NMII results: - - - ¢=30°- - - ¢ =45°

a=60° FEAresults: A ¢=30° 0 a=45"0 a=60°

%104

x10-4

0.4
A

06 0.8 1 0

©

0.2

0.4

%104

8.5

06 08 1 0 04 06

A

08 1
A

Fig. 12. (Color online) The effects of 4 and « on the center shift and rotations of the anti-buckling universal joint when three moments and a compressive axial force
exerted: (a) dycy (Max Diffs: NM I: 5.4%; NM II: 1.9%), (b) dyc; (Max Diffs: NM I: 10.9%; NM II: 6.3%), (c) d,c; (Max Diffs: NM I: 5.0%; NM II: 4.6%), (d) 6x; (Max Diffs:
NM I: 4.8%; NM II: 4.9%), (e) 0yy (Max Diffs: NM I: 6.8%; NM II: 6.7%), and (f) 6,; (Max Diffs: NM I: 4.5%; NM II: 4.6%).
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NMI results: — L, =130mm — L, =170 mm —— L, =270 mm NMII results: =~ - L, =130mm --- L, =170 mm L, =270 mm
FEAresults: A L,=130mm O L., =170mm O L =270 mm
x107* -4 4
08 = 10 08 %10
2 -12
§ 1 S
= ~ -1.6
0 -2
-1 24 -1.2
0 0.01 0.02 0.03 0 0.01 0.02 0.03 0 0.01 0.02 0.03
(@ M,; (N'm) () M,y (N-m) (© M,y (N-m)

Fig. 13. (Color online) The effects of Ly on the center shift of the anti-buckling universal joint: (a) dy.; (Max Diffs: NM I: 5.1%; NM II: 3.3%), (b) dycy (Max Diffs: NM I:

2.1%; NM II: 1.3%), and (c) d,c; (Max Diffs: NM I: 4.5%; NM II: 4.4%).

Table 6
The normalized coordinates of Q, and A, with respect to O;-X;Y;Z;. (The
number unit: mm).

n 1 2 3 4

Q. [-180/Lg,0,0]"
A, [-50/L4, —15/
Ly, 01"

[0, 0, —180/L4q]"
[0, —15/Lg,
—~50/Lq]"

[0, 0, 180/L4]"
[0, —15/Lq, 50/
Lql"

[180/Lg, 0, 01"
[50/Lg, —15/
Ly, 01"

and they are almost not affected by a.

On the other hand, we analyze the effect of the anti-buckling uni-
versal joint’s radius (Ly) on the center shift. Ly takes 130 (mm), 170
(mm) or 270 (mm), 1 = 0.4, and a = 45° Lq is equal to 326.81 (mm),
393.45 (mm) and 575.16 (mm), respectively. Fys = — 0.1 (N), Mys = 0.02
(Nem), and M, ranges from 0.002 (N+m) to 0.024 (N.m) with a step of
0.002 (Nem) acting on the rotational center. The center shift increases
with the increase of Lj, as described in Fig. 13. Note that we use Mg
rather than myg to depict Fig. 13 because m,s varies with L.

5.1.2. Loading conditions: cable forces

The anti-buckling universal joint is driven by four cables at Q;
through Q4. We determine Q,, and A, as listed in Table 6. By, and By, are
with respect to Os1-Xs1Ys1Zs1 and Oge-Xs2Ys2Zso, respectively, and their
expressions are the same as Q. The loading position is h = —tsina/2.
[fxas fya, fz3, mxy, My, mZJ]T = 0gx1. Fcabs1 ranges from 0.2 (N) to 0.8 (N)
with a step of 0.05 (N). Feaby2, Feabss, and Feapga are constant at 0.1 (N),
0.5 (N) and 0.05 (N), respectively. We take Ly = 140 (mm), Lq = 342.9
(mm), 4 = 0.1, A = 0.4, and a = 30°, 45° or 60° as examples. The NM I,
NM II, and FEA results are compared in Fig. 14.

Except for dy.j, the normalized displacements and rotations under a
= 30° always have larger absolute values than those under a = 45° or
60° When a = 30°, the differences of dy; between the NM I and FEA
results are relatively large. However, the differences of dy.; between NM
I (or NM II) and FEA results are small under other a values. The NM II
and FEA results of an anti-buckling universal joint under F,p51 = 0.8 (N)
are provided in Table G.1 of Appendix G.

NM I results: — a=30° — a=45° — a=60° NMII results: - - - ¢ =30°--- a=45°  ¢=60° FEAresults: A a=30° 0 ¢=45°0 a=60°
-4 -4 -4
10 x10 05 x10 x10
7
g 4
1
-2
0.5 1 1.5 2 2.5 3
(@) Jeavnt
-2
sq <10
S e
48 “ L4080 a8 8aaan 1
—- ‘-*-—-——-—_—\
%*4.2 0000000000000 1
36 -
! 0000 o5
3
0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
(d) Jeabit (e) Jeavnt ® Jeabnt

Fig. 14. (Color online) The NM I, NM II and FEA results of the anti-buckling universal joint with four cable forces: (a) dy.y (Max Diffs: NM I: 6.8%; NM II: 6.2%), (b)
dycy (Max Diffs: NM I: 10.3%; NM IL: 2.3%), (c) d,cy (Max Diff: NM I: 5.5%; NM II: 1.1%), (d) 6x; (Max Diff: NM I: 2.8%; NM IL: 2.7%), (e) 0y; (Max Diff: NM I: 5.9%;

NM II: 7.2%), and (f) 6,5 (Max Diff: NM I: 3.3%; NM II: 3.7%).
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Table 7
Ap, and y; of the anti-buckling universal joint when @, h, and Fy; take different values.
h = Al,cosa h = —Amngeo
a Am yyif Fyy = -1 (N) yyif Fyy = —1.5 (N) s if Fyy = —2 (N) a  An yyif Fyy = —1 (N) yy if Fyy = —1.5 (N) yy if Fyy = —2 (N)
(%) (%) (%) (%) (%) (%)
30° 0.084 7 8 12 30° 0 0.35 0.43 0.49
45° 0.103 11 14 21 45° 0 0.85 1.20 1.76
60° 0.146 16 20 32 60° 0 1.65 2.38 3.78
NM I results: — ¢ =30° — a=45° — a=60° NMII results: -~ - ¢=30°--- a=45° -~ ¢ =60° FEAresults: A a=30° 0 ¢ =45°0 a=60°
5500 12000 800 o
TR
4500 9000 -
3 3
T 3500 N 6000
S RS -y S
2500 3000
1500 — e 0 0
0 0.03 0.06 0.09 0 0.03 0.06 0.09 0 0.03 0.06 0.09
@ 0,y (b) 0, © 0,

Fig. 15. (Color online) The bearing stiffness decreases with rotations about the Z;-axis: (a) kg ;.qy; (Max Diffs: NM I: 3.5%; NM II: 2.5%), (b) kf,;.4,y (Max Diffs: NM I:

0.9%; NM II: 1.4%), and (c) kpmyj.gys (Max Diffs: NM I: 4.9%; NM II: 3.4%).

|+ Traditional universal joint —e— Anti-buckling universal joint

x10°

4

(®)

3
d, *(=107%)

yJ

()

Fig. 16. The axial loading comparison between a traditional universal joint and an anti-buckling universal joint: (a) the normalized axial stiffness-displacement
relations from FEA models, (b) the total displacement of the traditional universal joint with the middle loop hidden at dy; = —2.9 x 10~* (the scale factor of the
3D-plot deformation in COMSOL is 10 here for a clear sheet deformation), and (c) the total displacement of the anti-buckling universal joint with the base hidden at

dyy = —2.9 x 107

5.2. Load-dependent stiffness

In this section, Ly and 4 are constant at 140 (mm) and 0.5, respec-
tively, and a takes 30°, 45° or 60° We use the normalized rotational
stiffness due to m,; (denoted by kpzy.925) as an example. The analysis of
the rotational stiffness about the X;-axis can be derived similarly.

5.2.1. Rotational stiffness

M,; ranges from 0 to 0.048 (N-m) with a step of 0.004 (N.m). Fy;
takes 0, —1 (N), —1.5 (N), or —2 (N). Similar to Section 4.3.1, we use
to denote the change rate of kpj.9,5, Where yy = |(kmnzy.0,5 under Fyy = 0)
— (kmzy.6.5 under other Fyy)| / |(kmz-g25 under Fyy = 0)| x 100%. The
various values of A, and y; are summarized in Table 7, which can lead
to the same conclusion in Section 4.3.1, and kmzj.9,; can also be
controlled by regulating geometric parameters and loading conditions of
an anti-buckling universal joint. The maximum difference of k.02
between the NM I (or NM II) and FEA results is less than 4.9%. The
values of ky;3.9,5 of NM II and FEA models under different values of a, h,
and Fy;y are also provided in Table G.3 of Appendix G.
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5.2.2. Bearing stiffness

We use kfyy.dys and kfyy.gz5 to denote the normalized translational
stiffness only due to fy; and f,j, respectively, and use kpyy.gys to denote
the normalized rotational stiffness only due to my;. The loading condi-
tions for calculating kfy;.dyy and kf,;.4.y are the same as those of Section
4.3.2, and My; ranges from 0.01 (N.m) to 0.011 (N+m) with a step of
0.002 (N-m) for calculating knyy.gyJ.

The NM I, NM II, and FEA results can be seen in Fig. 15. 6,5 has less
effect on kgyy.ays and kgyy.dzg. Kfyy.gys increases with a while kg g,y de-
creases with a. Compared to kpyjy.gyy under a small a, kpyj.eys under a
large a has a large initial value and decreases quickly with the increase
of 6,5. kmys.9yy under a small o decreases slowly with 6,5, and the small
initial value can be increased by enlarging the sheet width (See details in
Appendix E).

5.3. Buckling analysis
The traditional universal joint is composed of two NIS-CSPs arranged

in series. In contrast to the traditional universal joint, the anti-buckling
universal joint improves the buckling in two aspects when compressive
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Fig. 17. (Color online) The prototype of the anti-buckling universal joint: (a) the top view, and (b) the front view.

Table 8
Parameters of the anti-buckling universal joint.

C17200 Beryllium Copper Yield stress: 172 (MPa); Young’s modulus:
125 (GPa); Poisson’s ratio: 0.3; density:

8250 kg/m?>.

Geometric parameters (Length unit: Ly
mm) 55

Hy L U T A a
38 25 16 03 0.4 /4

axial forces are exerted, including first-order buckling in the rotational
direction and second-order buckling in the axial (bearing) direction (i.e.,
Y axis).

From the analysis of Sections 4.3.1 and 5.2.1, the effects of axial
forces on the rotational stiffness (related to first-order buckling) of the
universal joint due to a pure moment are almost the same as those of a
planar cross-spring pivot as reported in [8]. We can have the similar
findings that the anti-buckling universal joint has more geometric design
options to avoid first-order buckling in the rotational direction.

We utilize nonlinear FEA to simulate the second-order buckling in
the axial direction of the two universal joints including an anti-buckling
and traditional universal joint. The two universal joints have the same
geometric parameters (Ly = 140 mm, H; = 198 mm, L = 150 mm, U =
15 mm, T = 0.75 mm, 1 = 0.4, @ = 45°) and loading conditions at the
motion-stage center. A series of compressive prescribed axial displace-
ments are applied at the motion-stage center of each universal joint,
ranging from —0.005 (mm) to —0.1 (mm) with a step of —0.005 (mm),
and only the axial displacements are allowed during this simulation. The
normalized axial stiffness-displacement relations are plotted as shown in
Fig. 16(a). The traditional universal joint suffers from the second-order
buckling after a critical axial force/displacement while the anti-buckling
universal joint can always maintain a high axial stiffness. The FEA de-
formations of the two universal joints are shown in Fig. 16(b) and (c),
respectively. If the anti-buckling universal joint is tensioned for a
different purpose, the sheets of the anti-buckling universal joint can
suffer from the second-order buckling in the axial direction, which in-
spires us to design two novel universal joints as discussed in Section 6.
We can also manipulate a wire beam to connect the motion stage and the
base in the anti-buckling universal joint as did in [7], to prevent the
second-order buckling in bi-direction.

5.4. Fabrication and experiment

In this section, we fabricate a prototype of the anti-buckling

15

universal joint and evaluate its rotational stiffness and load-dependent
stiffness. Here, the load-dependent stiffness is referred to the effect of
axial compressive forces on its rotational stiffness.

5.4.1. Fabrication

We select a tough PLA as the material of the rigid parts (i.e., a motion
stage, a middle loop and a base), and use C17200 Beryllium Copper as
the material of four elastic sheets. The tough PLA is quite light and rigid,
and therefore the gravities of the motion stage and middle loop can be
neglected during the analysis. The rigid parts were fabricated by the
Ultimaker extended 3D printer, and the infill density was set to be 80%
to make the rigid parts were robust enough but cost effective. The
prototype is then made by assembly as shown in Fig. 17, where the
elastic sheets are connected to the rigid parts by using an Araldite Rapid
Adhesive. The dominant parameters of the prototype are shown in
Table 8.

5.4.2. Test methods and results

In Fig. 17(a), point 1 and Oy denote the two loading positions on the
motion stage. The distance between point 1 and Oy is denoted by L, that
is assigned to 45 (mm). A TA. Hd plus Texture static test system is
employed to test the rotational stiffness. This system can exert a series of
prescribed compressive displacements at point 1 (denoted by Ay) and
collect the corresponding reaction forces (denoted by F;). A load cell of 5
(kg) is selected with a force resolution of 0.1 (g). The normalized mo-
ments and rotations about the Zj-axis can be calculated using Eqs. (34)
and (35) [7], respectively.

my = fil; (34
where, I, = L;/Lq and f, = F,Lq%/(EL).
0,5 = arctan (Ay /L,) (35)

The base of the prototype is fixed on the platform of the TA. Hd plus
Texture system. Ay is set to range from 0 to 1 (mm) with the loading
speed of the probe of 0.02 (mm/s). Four different add-on masses are
stuck at Oy individually, as shown in Fig. 17(b), including 0, 60 (g), 80
(g), and 100 (g). The total experimental time is 1 (mm) / 0.02 (mm/s) =
50 (s). We calculated the average normalized moment and rotations
every 3 (s) from 8 (s) to 46 (s) because the F;-Ay relations have no large
fluctuations starting from 10 (s) onwards as recorded by the TA. Hd plus
Texture system. The myj-0,5 relations using the NM II results and the
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NMII results: —-—0g - 60g ——80g ——-100g Experimentalresults: ~0g = 60g =80g -<100g ‘
0.24 x x 0.24
0.18 - 0.18 - 1
N N
S 0.12 <012
0.06 - 0.06 - ]
=
O 0 1 J
0.003 0.009 0.015 0.021 0.003 0.009 0.015 0.021
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Fig. 18. (Color online) m,;-0,; comparison: (a) the NM II results, and (b) the experimental results with deviations.

Table 9
The average normalized rotational stiffness of the anti-buckling universal joint
under different add-on masses.

Add-on mass (g) Experimental results NM II results Max differences (%)

0 11.10 10.35 7.3
60 10.13 9.58 5.8
80 9.73 9.20 5.8
100 9.32 8.90 4.7

experimental results are depicted in Fig. 18(a) and (b), respectively.
Their minimum and maximum differences are 0.2% and 7.5%, respec-
tively. The rotational stiffness slightly decreases with the increase of the
add-on masses, which validates the conclusion of Section 5.2.1. The
average rotational stiffness under each loading condition is summarized
in Table 9.

6. Design and analysis of bi-directional anti-buckling universal

joints

In this section, two novel bi-directional anti-buckling universal joints
are designed, and each design includes four tensile sheets and four
compressive sheets. The main difference between the two designs is the
number of middle loops. Design I has a middle loop and design II has two
middle loops. We only consider six loading scenarios acting at the
rotational center for each design and present the nonlinear spatial model
with verification by the FEA models. For each design, L, U, and T are still
fixed at 150 (mm), 15 (mm), 0.75 (mm), respectively; 1 = 0.5; a = n/4;
Ly, Hj, and Ly equal 140 (mm), 198 (mm), and 180 (mm), respectively.
Here, Ly is the outer radius of designs I or II. Lq is equal to (4LN>+H, Jz)l/ 2,
Opr-Xp1YpiZpr and Opy-XpnYpuZpn denote the global coordinate systems
of design I and II, respectively. The FEA rotational results of the two
designs are also calculated by the coordinate transformation method,
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Fig. 19. (Color online) The description of design I: (a) the view through the Xp;Yp; plane and the explored views, (b) the schematic diagram of design I, and (c) the
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Fig. 20. (Color online) The NM II and FEA results of design I when three moments act at Opy: (a) dxp; (Max Diff: 6.7%), dyp; (Max Diff: 5.0%), d,p; (Max Diff: 6.7%),
(b) Oxp1 (Max Diff: 1.9%), 6yp; (Max Diff: 3.7%), 6,p; (Max Diff: 1.8%), and (c) the total displacement of the FEA model with the base hidden under M,p; = 0.07 (N-m).
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Fig. 21. (Color online) The description of design II: (a) the view through the XpyYpy plane and the explored views, and (b) the schematic diagram of design II.
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Fig. 22. (Color online) The NM II and FEA results of design II when three moments act at Opy: (a) dypn (Max Diff: 3.9%), dypy (Max Diff: 6.4%), d,py (Max Diff:
3.1%), (b) Oxpn (Max Diff: 1.8%), 6ypy (Max Diff: 3.6%), 6,pi (Max Diff: 1.8%), and (c) the total displacement of the FEA model with the base hidden and the yellow

mid-loop hidden under M,p;; = 0.07 (Nem).

which is already detailed at the beginning of Section 5.1.

6.1. Design I

The description of design I can be seen in Fig. 19(a), which includes
two bi-directional anti-buckling cross-spring pivots (BA-CSPs) arranged
in series. We use BA-CSP-1 to denote the BA-CSP connecting the base
and the middle loop, and use BA-CSP-2 to denote the BA-CSP connecting
the middle loop and the motion stage. A BA-CSP consists of an IS-CSP
and a NIS-CSP arranged in a parallel arrangement. Under a compres-
sive form on the mechanism, the inner four sheets of design I are under
tensile forces and the outer four sheets of design I are under compressive
forces. Fig. 19(b) shows the schematic diagram of design I. Sy and Sy
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denote the free ends of the two compressive sheets of the BA-CSP-1 as
depicted in Fig. 19(c).

Each BA-CSP is regarded as a basic unit of design I. The nonlinear
spatial model of design I can be modeled as the two BA-CSPs connected
in a serial arrangement, which can be derived easily by replacing the
nonlinear spatial model of the IS-CSP-i in an anti-buckling universal
joint in Section 3.3 with the nonlinear spatial model of the BA-CSP-i (i =
1 or 2). Similar to the derivation in Section 3.3, Oy-X;YsiZsi can denote
the local coordinate system of the BA-CSP-i.

The nonlinear spatial model of the BA-CSP-1 of design I is derived
based on Egs. (36) through (41). The translational compatibility con-
dition of the BA-CSP-1 is described in Egs. (36) and (37).
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dxi dstAl

dyi | = R, (B;)(RparSi —S;) + dyspal (36)
d/i dysBA]

dXNi dstA]

dyni | = Roni(8:) (RspaiSni — Sni) + dya 37)
dzN[ dszAl

where, i = 1 or 2; Rsga; denotes a rotational matrix of the BA-CSP-1 with
respect to Os1-Xs1Ys1Zs1 and the rotational sequence is determined to be
the same as Eq. (3); Ry (fp) is already shown in Eq. (9) and S; can be
found in Eq. (7); dxni dyni and d,; denote the normalized displacements
of the compressive sheets with respect to Os1-Xs1Ys1Zs1; dxsa1, dysBal,
dysBA1, OxsBal, Oyseal, and O,a1 denote the normalized displacements
and rotations of the BA-CSP-1 with respect to Og1-Xs1 Ys1Zs1, respectively;
Sni denotes the normalized coordinates of point Sy; with respect to Og;-
Xa1Ys1Zs1 of the motion stage; Sni [—Alsina, —hy, —IN] T Sno
[Alysina, —hy, In]T, and Iy = Ly/Lq; Ryni (57 denotes a rotation by &; about
the z;-axis in the 0;-X;y;z; coordinate system of a compressive single sheet,
which is expressed as Eq. (38).

cosd; —sing; 0
RN = sind; cosd; O
(38)
0 0 1
6§ = -m/2—aand §,=-1/2+a

The rotational compatibility condition of the BA-CSP-1 is derived in
Egs. (39) and (40).

R, =R, (ﬁ[)RsBAlR;l B (39)

Ry = RzNi(lSi)RsBAlR;IJ,' (6:) (40)
where, i = 1 or 2; Ry; denotes a rotational matrix of a compressive sheet,
the rotational sequence of which is the same as Eq. (1).

The load-equilibrium condition of the BA-CSP-1 is derived in Eq.
(41).

JxsBal S Sini
f ysBAI 2 .f yi 2 f yNi
JasBal T 1| fu T T| foni
= E Dysi Ry + > Dpni Ron (41)
MxsBAL P My = MxNi
MyspA1 ny; myN;
MzsBAL my; M;Ni

where, i = 1 or 2; fyspa1, fysats fzsBA1, MxsBA1, MysBa1, and myspa1 denote
the normalized loads of the BA-CSP-1 with respect to Og-Xs1Ys1Zs1; fxNis
fyNo fano Mxng Myni, and mgy; denote the normalized loads of a
compressive sheet; Dps; and S; are expressed the same as Eq. (7) except
for §;* = Repa1S;; Dpni denotes a 6 x 6 translational matrix for point Sy;,
which is defined as Eq. (42).

0 8;1(37 1) 7S;!:(2~ 1)
L, —Su -
DpNi = 3x3 §N1(371) ko SNz(LI) (42)
SNi(27 1) _SNi(lv 1) 0
03><3 I3><3

Sni* denotes the normalized coordinates of point Sy; with respect to
Os1-Xs1Ys1Zs1 after motions of the motion stage, and equal Syi*=
Rpa1Sni; Rzzni denotes a 6 x 6 rotational matrix about the z;-axis, which
is formulated as Eq. (43) and R,y; (8;) refers to Eq. (38).

Rni(6:)
03 x3

03><3

RzzNi (61) R (5 )
zNi \Ui

(43)

In Fig. 19(c), Sjand Sy; (j = 3 or 4) denote the free ends of tensile and
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compressive sheets of the BA-CSP-2. S; and Sy; (j = 3 or 4) denote
normalized coordinates of S; and Sy; with respect to Os2-Xs2Ys2Zs2,
respectively. The nonlinear spatial model of the BA-CSP-2 can also be
derived similarly by replacing dxspa1, dysa1, dzsBA1, OxsBA1, OysBAl, OzsBAL,
fxsBAls fysBAls fzsBA1, MxsBA1, Mysea1, and myspa with those of the BA-CSP-
2 in Egs. (36) through (41); replacing S; and S, with S3 and S4 in Eq.
(36), respectively; replacing Sy; and Syz with Sys and Sng4 in Eq. (37),
respectively; replacing Rgpa; with Rgppo in Egs. (36) through (40);
replacing $;* and Sp* with S3* and S4* in Eq. (41), respectively;
replacing Sn1* and Syo* with Sys* and Sy4* in Eq. (41), respectively; S3
= [sing, —h, —K1"; S4 = [—ilssina, —h, L17; S3* = RepaSs; S4* =
Rgpa2Ss; Sns = [—Alasing, —hy, In1"; Sng = [Alasing, —hy, —In1"; Sns* =
RsBa2SN3; Sna™ = Rspa2Sna-

We use dypy, dypi, dzp1, and Oxpy, Oypr, O.p1 to denote the normalized
displacements and rotations of design I with respect to Op-Xp;YpiZpr;
use mypy, Mypy, and m,py to denote the normalized moments of design I
with respect to Op-Xp;YpiZp;. The loading position is the rotational
center of design I, h = Alycosa and hy = —Al,cosa. When Myp; and Mypy
are constant at 0.02 (Nem) and 0.01 (Nem), respectively, M,p; ranges
from 0.02 (Nem) to 0.07 (Nem) with a step of 0.005 (N+m), the NM II
and FEA results are shown in Fig. 20(a) and (b). dypy is much larger than
dxp1 and d,p;, which increases greatly with the increase of m,q;. When
M,p; = 0.07 (N+m), the FEA simulation picture of design I is described as
Fig. 20(c).

6.2. Design II

The description of design II is shown in Fig. 21(a), including a
traditional universal joint and an anti-buckling universal joint in a
parallel arrangement. The outer four sheets of design II are under
compressive forces, which forms a traditional universal joint. The inner
four sheets of design II are under tensile forces, which forms an anti-
buckling universal joint. Four tensile sheets and four compressive
sheets are connected to the green and yellow middle loops, respectively.
The schematic diagram of design II is visible in Fig. 21(b).

The anti-buckling universal joint and traditional universal joint are
regarded as two basic units of design II. The nonlinear spatial model of
the anti-buckling universal joint is given in Section 3.3. The nonlinear
spatial model of a traditional universal joint can be modeled by
replacing the nonlinear spatial models of the IS-CSPs with those of NIS-
CSPs in Section 3.3. We use NIS-CSP-1 to denote the NIS-CSP connecting
the base and the yellow middle loop, and use NIS-CSP-2 to denote the
NIS-CSP connecting the yellow middle loop and the motion stage. The
nonlinear spatial model of the NIS-CSP-1 is derived based on Egs. (44)
through (46). The description of the NIS-CSP-1 (or NIS-CSP-2) of the
traditional universal joint is shown in Fig. 21(b). Similar to the deriva-
tion in Section 3.3, Og-X;;YsiZsi can denote a local coordinate system of
the NIS-CSP-i. The translational and rotational compatibility conditions
of the NIS-CSP-1 are derived as Eqgs. (44) and (45), respectively.

dux; dysni
dyni | = Roxi(8:) (Rua Sni — Swi) + | dysni “9
d7Ni dzle

Ry = RzN[(lSz)RNisZI\}i(‘SI) o)

where, i = 1 or 2; Ry, denotes a rotational matrix of the NIS-CSP-i with
respect to Og-X;YsiZs; in a certain rotational sequence; dysn1, dysn1, dzsN1,
OxsN1, OBysn1, and G5sn1 denote the normalized displacements and rota-
tions of the NIS-CSP-1 with respect to Og1-Xs1Ys1Zs1; Roni (67) refers to
Eq. (38).

The load-equilibrium condition of the NIS-CSP-1 is derived in Eq.
(46).
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fstl f;&Ni
Jysni Jyni
Jasni 2 T | foni
S zIN\t
AN = Do Ry (46)
MxsN1 pa MxN;
MysN1 MyNi
MyN1 myN;

where, i = 1 or 2; fysN1, fysN1> fzsN1> MxsN1, Mysn1, and mgsny denote the
normalized loads of the NIS-CSP-1 with respect to Og1-Xs1Ys1Zs1; Dpni
and Ry,y; are already derived as Eqgs. (42) and (43), respectively.

The nonlinear spatial model of the NIS-CSP-2 can be formulated
similarly by repladng dstl, dyles dzley astl, eyle, gzle, szNl’ fyle,
fzsN1, MxsN1, Mysn1, and mysny with those of the NIS-CSP-2 in Egs. (44)
through (46); replacing Sy; and Syz with Sys and Sy in Eq. (44),
respectively; replacing Rys; with Ryse in Egs. (44) and (45); replacing
Sn1* and Syo* with Syz*and Sn4* in Eq. (46), respectively; Sn1, Sn2, Sns,
and Sy4 are the same to those in Section 6.1; Sy1* = Rns1Sn1; Sno2™ =
Ryis1Sn2; Sn3* = Rns2Sn3; Sna™ = Rns2Sns-

Finally, the translational and rotational compatibility conditions, the
load-equilibrium condition of design II are derived in Egs. (47) through
(49).

dy = dux = dpr;

dy = dyx = dypr; (47)
dy = dyn=dpn

O = Oun =0

gyJ = 0yJN = lgyDn; (48)
0y = Oux =0

Sion = fu SN

fipn = Sy + A (49)
Mxp = My + MyN
where, dypn, dypn, dzpr Oxpir, Oypi, and €;pyr denote the normalized dis-

placements and rotations of design II with respect to Opy-XpnYpnZpis;
Oyn-XynYynZyn denote the global coordinate system of the traditional
universal joint, whose definition is the same as Oj-X;Y;Z;y; dxn, dyin,
dzyN OxNs Oyin, and 6,5y denote the normalized displacements and ro-
tations of the traditional universal joint with respect to OyN-XynYINZiN;
Sxans fyans fzan MyN, Mygn, and myyy denote the normalized loads of the
traditional universal joint with respect to OyN-XyNYJNZJN; MxDIL MyDIL,
and m,py; denote the normalized moments of design II with respect to
Opn-XpnYpuZpir-

The loading conditions are the same as those in Section 6.1, and the
NM II and FEA results are illustrated in Fig. 22(a) and (b). Contrasted to
the results of design I, the normalized center shift of design II is larger,
but their rotations are close under the same loading condition. When
M_pi = 0.07 (N.m), the FEA simulation figure of design II is depicted as
Fig. 22(c).

7. Conclusions

A new compliant anti-buckling universal joint composed of two
inversion-based symmetric cross-spring pivots (IS-CSPs) has been
presented in this paper, which is robust to avoid buckling under
compressive forces. This paper has particularly derived the gener-
alized relationship, between three rotational angles of each sheet and
those of the resulting compliant parallel (or serial) mechanism in
terms of rotational sequences, and introduced the nonlinear spatial
analysis of compliant mechanisms using the beam constraint model
(BCM). Two nonlinear spatial models (NM I and NM II) of an IS-CSP
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and of an anti-buckling universal joint have been derived under
different loading conditions including point loads cable forces, by
utilizing two single-sheet models. The center shifts, rotations, load-
dependent rotational and bearing stiffness of the anti-buckling
joint have been analyzed using the NM I and NM II, and also simu-
lated by the nonlinear FEA. A prototype of the anti-buckling uni-
versal joint has been fabricated and experimentally tested. Two new
bi-directional anti-buckling universal joints were also designed, and
their nonlinear spatial models were derived using NM II. The main
results are summarized below.

The proposed two nonlinear spatial models (NM I and NM II) have an
acceptable accuracy. The maximum differences between NM I (or
NM II) and nonlinear FEA results are less than 7.4% except those of
axial displacements and torsional rotations. The NM I and NM II
results can describe the spatial performance characteristics in a
similar way. In contrast to NM I, NM II is less simple but more ac-
curate, of which the rotational sequences and coupling nonlinearities
are included.

The anti-buckling universal joint is similar to an IS-CSP in terms of
the effects of their geometric parameters and loading conditions on
their center shifts, rotations, and load-dependent rotational stiffness.
The anti-buckling universal joint can address the buckling issue in
two aspects under a series of compressive forces. The possibility of
increasing its rotational stiffness is high and its axial (bearing)
stiffness can always maintain a high value without a second-order
buckling.

Experiments on the load-dependent rotational stiffness of the anti-
buckling universal joint confirm the accuracy of the proposed
nonlinear spatial models. The maximum difference between NM II
and experimental results is 7.5%.

In the analysis of the two new bi-directional anti-buckling universal
joints in terms of center shifts and rotations, the maximum difference
between NM II and FEA results is 6.7%.

In the future, the performance characteristics of the two new bi-
directional anti-buckling universal joints will be fully analyzed.
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Appendix A

The nonlinear spatial (kinetostatic) model of a single sheet using NM I is derived as Egs. (A.1) through (A.4).

A 2 ~3/5  1/20 1 [dy/l, 1/700  —1/14001 [ dy:/1,
Si_ st dy/l 0, +fallldyi/l, 0 + =3/5 1720 11 di/la
, ~hig e/ ]L/zo _1/15H o | (ufle 6] ~1/1400 11/6300 | | 6, | [/ ’0”][1/2/0 —1//15H—9y,l
1/700  —1/1400 [ dyi/ls
+hilildufla ’ayf]{—umoo 11/6300} {—9”} @D
Ll | 112 =61 dy/l, 6/5  —1/10] [dy/l,
L’i;ila:| - {76 4 }{ yati }Jrfx[lz{*l/lo 2/15 }{ yﬁ”‘ } “2
Ll | o120 —6][da/l o[ 6/5  —1/10][dy/l
[ R | g RO I e [ =
O = 0.5my(1+ V)l +0.5(1+v) [12(n — Ddyidyi / 2+ (67 +0.1f2)Oydyi / I + (6 +0.1ful2) 0dyi ] 1] (A4

where, i = 1 or 2; y = U/T; v is the Poisson’s ratio.
Appendix B

The nonlinear spatial (kinetostatic) model of a single sheet using NM II is shown as Egs. (B.1) through (B.4).

dyi /1
di  ful? 2
7=/l 0 04](Hx /24 fuliHs) | 6, (B.1)
a a
gx[
il dy /1, dyi /1, dyi 1,
2 2 24 214 3 272
myl, | =Hy| 6, |+ (fx[laHZ + ful Hs + my[laH4) 0, | + (i L Hs + fu [, He + frumyl,H7 4 my; laHs) 0, (B.2)
myil, O O 0.
foill dyi/la
dz[ r 1 m ilar
= ful? (5 +71@> - yz + [fil2 myly flP)C | mgla | = [dyi/l. 6 0x](H3/2)| 6y
Sl Oxi
(B.3)
dy/1,
*[dyi/la 0, 0] (ﬂil§H6 + myilaH7/2 +fxifzil:C2 JfoimyilZCB) O,
O
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) fzili dyi/lﬂ
il . X
Oy = —‘%+my,‘lar + [full myuly ful2]Ca|myly | = [dy/ls 04 604](Hi/2+Ho)| 0,
il Oyi
f (B.4)
dyi/l
*[dyi/la 0, 9xi](ﬁiI§H7/2+myilaHs + fuifiliCs +fximyilzcﬁ) 0,
Hxi

where, i = 1 or 2; Iy denotes the cross-section moment of inertia about the y;-axis, which is expressed as I, = TU%/ 12; k = 10(1 + v)/(12411v); ky =
UTL?/I,; ki = GJ/(EL); ks = GUTL?/(EL); r = I,/Iy; Hy through Ho, C; through Cs, and J are formulated as Eqgs. (B.5) through (B.7), respectively.

12 -6 0 6/5 —1/10 0 0 0 0 0 0 -1 ~1/700  1/1400 0
H = |-6 4 0|:H,=|-1/10 2/15 O0|;H;=1]0 0 —1/6|:H,=|0 0 1 |;Hs=|1/1400 11/6300 0 |;
0 0 k 0 0 0 0 —1/6 0 10 0 0 0 0
. (B.5)
—3/35  1/105 0 1/5  —1/30 0 ~1/5 1/10 0 000
1 1 1
He = [1/105 —13/1260 0 |:Hy=r|=1/30 1/15 0[iHy=1|1/10 ~2/15 0|sHy=]0 0 0
t t t
0 0 ~1/180 | 0 0 0 0 0 0 010
415 +14  245¢ 46 40r +14  30r+1
0 0 /15 12600k, 50400k, 700k, 600k,
C = 0 0 52 /48 |;C, = | 245r+6 235r+38 :Cy=| 30r+1 410r + 33 ;
LP)1s SP/as 0 50400k 12600k 600k, 50400k,
0 0 0 0 0 0
- (B.6)
35r+1 403r +7 4r+1 190r + 3
0 0 57°/48 700k, 4200k, 350k, 2100k,
a=1 o 0 /6 |;Cs=|403r+7  835r+103 _|;Co=| 190r+3 175r+22
sP/48 —rPJ6 0 4200k, 25200k, 2100k, 6300k
0 0 0 0 0 0
273U (116707 +29.497 + 30.97° + 100.977 + 30.38 + 29.41 )
TAT 1702\ P + 25915 + 41.581p + 90.4312 + 41,745 + 25.21 :

Appendix C

The relationship between the rotational angles of a local coordinate system and those of a global coordinate system with consideration of rotational
sequences in a parallel mechanism is derived as followed.

Assume a vector in a 3D space (denoted by &), which is transformed into another vector (denoted by 7) after specialized rotations. °¢ denotes the
vector € expressed in the global coordinate system Os-XsY,Zs, and & denotes the vector & expressed in the local coordinate system oj-x;yizi. Then we can
describe the relation between € and t with respect to 0;-x;yizi and Os-XsYsZs, as derived in Egs. (C.1) and (C.2), respectively.

i~ R (c.n
‘T =RE (C.2)
where, R; and R denote the rotational matrices in a certain rotational sequence with respect to o0;-xjy;z; and Os-XYsZs, respectively.

The relationship between 0;-x;y;z; and Os-X;YZs can be derived in Eq. (C.3).
iy vzl =Relx, vy z)" (C.3)
where, R, is a rotational matrix describing that when o;-x;y;z; rotating about the x;, y; and z;-axes in a certain rotational sequence, and the directions of

X;, ¥i, and z;-axes are the same as those of the X;, Ys, and Zs-axes.
Therefore, we have the relationships between '€ and %, 't and °t using Eq. (C.3), as shown in Eqgs. (C.4) and (C.5), respectively.

't =R, 9

i1 =R,'r (c5
Substituting Eq. (C.5) into Eq. (C.1), we have Eq. (C.6).

Rt = R/¢ (C.6)
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Substituting Egs. (C.2) and (C.4) into Eq. (C.6), we have Eq. (C.7).
R,R, = RR, (c.7)

Therefore, a generalized relationship between the rotational angles of 0;-x;y;z; and those of Os-X;YZs with consideration of rotational sequences in
a parallel mechanism is formulated as Eq. (C.8).

R; =R,RR 'or R, =R_'RiR, c.®

In Section 3.2, the directions of 01-x1y121 are the same as those of Os-X;YZs when 01-x1y121 rotates about the z;-axis by n/2—a. The relationship of
the rotational angles between 01-x1y121 and Og-X;YsZs can be derived as Eq. (C.9), which is the same as Eq. (14).

R =R, (n/2—-a)RR,/(x/2—q) (C.9)

Appendix D

The relationship between the rotational angles of a local coordinate system and those of a global coordinate system with consideration of rotational
sequences in a resulting mechanism is derived by a quaternion method.

We use R; and R; to denote the rotational matrices with respect to the local and the global coordinate systems, respectively. R; and R can be
expressed in a quaternion method, denoted by Q; and Qs, as shown in Egs. (D.1) and (D.2), respectively.

Qi = [gi0, Gi1- 92, Gi3) = [c0s(6; / 2), usin(6; / 2), uyisin(6; / 2), uzsin(6; / 2)] (D.1)

Q, = (450,951, G52, Gs3) = [cos(é‘S /2), uxssin(6s / 2), uyssin(0; / 2), uyssin(6; /2)] (D.2)

where, Q; describes the local coordinate system rotating by 6; about a unit vector u; = [uy;, uyi, Uzl Similarly, Qs describes the global coordinate
system rotating by 65 about a unit vector us = [uys, uys, T L
A rotation of vector (denoted by V) can be described in Eq. (D.3) by employing a rotational matrix or a quaternion number.

RV =QVQ™' (D.3)

(1) In a parallel mechanism

When R; is given as Eq. (D.4), Qs can be derived by using Egs. (D.5) and (D.6).

Rs = Rxs (axs)st(gzs)Rys (Gys) (D~4)
qso = 05{tr(Rb) + 1}0.5; qs1 = {Rs(?’v 2) 7Rs(27 3)}/(4‘130)’ gs2 = {RS(17 3) - Rs(3 1)}/(4%0)7 gs3 = {Rs(z l) - RS(L 2)}/(4(150) (DS)
Uy = (i, Uys, Uns] = [Gs1, G52, 93] / (B + s +d3)"5 0= 28rctan{ (& + s +d3)" / qso} (D.6)

The direction of us is the same as that of u; by rotating 6, about the unit vector u,, as shown in Eq. (D.7), which describes the relationship of the
rotational angles between a 0;-x;yiz; and the Os-X;YZs in a parallel mechanism.

Q =Q.Q.Q;' (D.7)

where, Q, is a unit quaternion number expressed as [cos6,/2, uyl; uy and 6, are the unit vector and rotational angle determined by Q,, respectively.
Finally, R; can be derived from Q;. If we set R; as Eq. (D.8), three rotational angles of R; with respect to the local coordinate system can be derived as
Eq. (D.9).

R; = Ry (0.)R;i(6,)Ry; (0yi) (D.8)
0,; = arctan <§:8: ii) ; 0y; = arctan (E:Ei: ?;) ;1 0, = arctan —Ri(1,2) (D.9)

Ri(1,1)° + Ri(1,3)

(1) In a serial mechanism

Let us take the anti-buckling universal joint in Section 3.3 as an example, when the rotational matrices of the IS-CSP-1 and the IS-CSP-2 are given
(denoted by Rg; and Rgp), the corresponding quaternion number of the two IS-CSPs can be obtained (denoted by Qs; and Qgz). We use Q; to denote the
quaternion number of the anti-buckling universal joint, which can be expressed by a series of rotations as derived in Eq. (D.10). Qs; rotates by 6y; about
the unit vector of Qy1, the replaced quaternion number rotates by 65 about the unit vector of Qs, and the replaced quaternion number rotates by 6y,
about the unit vector of Qy. Eq. (D.10) is the relationship of rotational angles between the two local coordinate systems (Os1-Xs1Ys1Zs1 and Oso-
Xs2Ys2Zs2) and the global coordinate system (O;-X;Y;Z;) in a serial mechanism. As R; can be obtained by Qj, the three rotational angles of Ry with
respect to the global coordinate system can be derived as Eq. (D.11).
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Q; = Q,1Q,1Q:,Qy, (D.10)

where, Qy1 and Qy> denote the quaternion numbers derived from the rotational matrices Ry;(n/2) and Ry2(—n/2), respectively; Ry; and Ry, are the
rotational matrices rotating about the y-axis.

R.(3.2 R.(1 —Ry(1,2
0Ox :arctan(RJ(;Z)) Oy :arctan(RJ(lvi)) 0, = arctan (12 e
1(2,2) 5(1,1) R;(1,1)* + Ry(1,3)

Appendix E

The normalized linear model of an IS-CSP is formulated as below.
The normalized scaler of an IS-CSP is equal to the length of a sheet, i.e., [, = 1. A single sheet and an IS-CSP are described in Figs. 2 and 3 of Section
3.2. The linear normalized model of a single sheet with respect to 0;-X;Y;Z; can be derived as Eq. (E.1) [65].

Csheet [fx, fyi L oma omy mzi]T: [dxi dy; di Oy Oy ‘9zi}T (E.1)

where, i = 1 or 2; cgheet is derived as Eq. (E.2).

-F/120 0 0 0 0 -
0 1/3 0 0 0 1/2
0 0 (t/u)?/3 0 —@t/u?/2 0
e 0/ (1+7v)/2 0 / 0 2
0 0 —(t/u} / 2 0 (t/u 0
Lo 12 0 0 0 1

The normalized coordinates of the free ends of the two sheets with respect to Os-X;YsZs are S; = [4sina, —h, L1T, Sy = [—Jsina, —h,—L]",
respectively. The normalized translational matrix (denoted by Dg;) in a non-deformed condition is derived as Eq. (E.3).
0 S:(3,1)  —Si(2,1)
L, —Si(3,1 0 Si(1,1
D= | ° S LD L (i=1or2) (E.3)
S:(2,1)  —Si(1,1) 0

03><3 I3><3

The normalized compliance of the IS-CSP with respect to Os-X;YZ; is derived as Eq. (E.4).

1
2

Cis—csp = (Z DgiRI,-ksheetRziDSi> (E.4)
P

where, Kgheet denotes the normalized stiffness matrix of a single sheet, and Kgheet = Csheet 1 Ryi (By) refers to Eq. (9).

300 -

250

200 -

150 -

5.csp(6,6)/€15.c5p(5,5)

100

50~

016

T o
0.018 — =
0.016 —
0.014 0.012 —

Um) 001 0.l

0-
0.02
L (m)

Fig. E.1. The effects of L, U, and T on ¢;s.csp(6,6)/ €is.csp(5,5).
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The torsional compliance of an IS-CSP is about axial direction, i.e., ¢is.csp(5,5) in Eq. (E.4). The DoF-compliance of an IS-CSP is about the rotational
axis, i.e., ¢is.csp(6,6) in Eq. (E.4). The torsional compliance should usually be small for less twisting. When L, T, and U are constant, ¢s.csp(5,5)
decreases with the increase of « in Fig. 9(d) of Section 4.2. Therefore, cjs.csp(5,5) of @ = 30° has the largest value when a takes 30°, 45° or 60° As A
influences lightly on ciscsp(5,5), we take 2 = 0.5 as an example.

When a = 30°, the closed-form equation of ¢is.csp(6,6)/cis.csp(5,5) is derived as Eq. (E.5). When L ranges from 100 (mm) to 150 (mm), U ranges
from 10 (mm) to 20 (mm), and T takes four different values, the effects of L, U, and T on this ratio is shown in Fig. E.1. The ratio increases with the
increase of U significantly and decreases with the increase of T, and L has less effect on the ratio. When L = 150 (mm) and a = 30°, U should be at least
15 (mm) to keep the ratio greater than 100 for less twisting.

cis_csp(6,6)  0.4(8.459L*T2 + 1.875U2L* 4 2.820T* 4 750.625U°T?) E5)
es-cse(5,5) (312 + 1) 17 ’
Appendix F

Some corresponding figures of the simulation in Sections 4.1 and 5.1 are shown as below
In Section 4.1, some corresponding FEA simulation figures of each loading condition are shown in Figs. F.1 through F.3.

(1) The loads are applied on the rotational center through the rigid rod as shown in Fig. F.1(a). In the in-plane loads’ condition, when a=30°, A=
0.1, 0.2 or 0.3, the FEA simulation figures of an IS-CSP are shown in Fig. F.1.

(2) In the three-moment condition, when a=45°, A= 0.7, 0.8 or 0.9, the FEA simulation figures of an IS-CSP are shown in Fig. F.2.

(3) In the cable-force condition, when A= 0.4, a=30°, 45° or 60°, the FEA simulation figures of an IS-CSP are shown in Fig. F.3.

In Section 5.1, the FEA simulation figures are shown in Figs. F.4 and F.5, and the base is hidden here for a clear sheet deformation.

e Volume: Total displacement {m})

Volume: Total displacement (m)

Volume: Total displacement (m)

8
15
6
Rigid domains Loading position: 4 o
ot rotational center O, 5
2
‘ 0 0
(a) (b) ©

Fig. F.1. The FEA simulation of an IS-CSP with in-plane loads: (a) 4 = 0.1, (b) 4 = 0.2, and (c) 4 = 0.3.

Ll Volume: Total displacement {m) Volume: Total displacement (m)

Volume: Total displacement (m)

x107 x10°* x10™*

35

(b)

Fig. F.2. The FEA simulation of an IS-CSP with three moments: (a) 4 = 0.7, (b) 2 = 0.8, and (c) 2 = 0.9.
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Volume: Total displacement (m) * Volume: Total displacement {m) e Volume: Total displacement {m) °
x10”

6

5

a

3

2

1

0

Fig. F.3. The FEA simulation of an IS-CSP with cable forces: (a) a = 30°, (b) @ = 45°, and (c) a = 60°

Volume: Total displacement (m) N Volume: Total displacement (m) ’ Volume: Total displacement (m) °
X107 x10 x10?

(@

()

20

©

Fig. F.4. The FEA simulation of an anti-buckling universal joint under three moments and a compressive axial force: (a) 4 = 0.1, (b) 4 = 0.5, and (c) 4 = 0.9.

Volume: Total displacement (m) b Volume: Total displacement (m) bt Volume: Total displacement (m) g
%1073 %107 x107

. 6 45

40

6 5 35

. e 5 4 30

‘ [/ | ) 25

\ 3 ’ 20

o ___A_-! L 2 15

. B 2 10

1 1 5

(a) o | 0 (©) 0

Fig. F.5. The FEA simulation of an anti-buckling universal joint driven by cable forces: (a) a = 30°, (b) a = 45°, and (c) @ = 60°

(1) In the three moments and a compressive axial force condition, the compressive axial force acts at the rotational center by the rigid rod as shown
in Fig. F.4(a). When a = 60°, 2 = 0.1, 0.5 or 0.9, the FEA simulation figures of an anti-buckling universal joint are shown in Fig. F.4.

(2) In the cable-force condition, when 4 = 0.4, @ = 30°, 45° or 60°, the FEA simulation figures of an anti-buckling universal joint are shown in
Fig. F.5.
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The results for Figs. 8 and 14 at Fp1=0.8 (N), Tables 4 and 7are detailed as below.
We mainly discussed the rotations and load-dependent effects of an IS-CSP and an anti-buckling universal joint in this paper. Fcap1 (O Feapg1) ranges
from 0.2 (N) to 0.8 (N), and the differences of normalized displacements and rotations between the NM II and FEA results are very small under F,p,1 (or

Feabs1) = 0.8 (N). Their results are provided in Table G.1.

Table G.1
The NM II and FEA results of an IS-CSP and an anti-buckling universal joint under Fcap1 (Or Feaps1) = 0.8 (N).
Joint type a Results dys x 10°° dys x 107* dps x 107° Ogs x 107* Oys x 107° O x 1072
IS-CSP 30° NM I 1.99 —-5.71 2.13 —-3.96 —7.08 7.97
(R joint) FEA 1.92 -5.29 2.22 -3.85 —7.50 7.73
45° NM II 0.95 —5.61 1.04 —3.06 —6.91 7.07
FEA 0.92 —-5.20 1.13 —-2.99 -7.11 6.85
60° NM II 0.60 —5.74 0.56 -3.16 —8.53 5.91
FEA 0.58 —5.34 0.64 -3.12 —8.66 5.72
Anti-buckling universal joint 30° NM I 8.70 -3.09 —3.67 4.87 3.78 7.52
FEA 8.30 —3.06 -3.67 4.74 3.54 7.24
45° NM II 4.28 -3.30 —1.41 4.21 2.81 6.49
FEA 4.07 -3.29 -1.43 4.10 2.65 6.25
60° NM II 2.75 —3.96 —0.65 3.37 1.84 5.25
FEA 2.59 —4.02 —0.68 3.28 1.73 5.06
Table G.2
Kmzs-02s of an IS-CSP under different compressive axial forces at 0,5 = 0.02 (rad).
h = Al,cosa h = —Amngeo
a Kmzs.ozs if Fys = Kmzs-0zs if Fys = kmzs-ozs if Fys = Kmzs-0zs if Fys = a Kmzs-0zs if Fys = Kmzs-zs if Fys = Kmzs.ozs if Fys = Kmas-0zs if Fys =
o) —2(N) -3(N) —4(N) o) —2(N) -3(N) —4(N)
30° 2.00 1.76 1.64 1.52 30° 2.00 2.00 1.99 1.98
45° 2.00 1.70 1.55 1.41 45° 2.00 1.99 1.98 1.97
60° 2.00 1.58 1.38 1.17 60° 2.00 1.98 1.97 1.95
Table G.3
Kmzj-025 Of an anti-buckling universal joint under different compressive axial forces at 6,; = 0.02 (rad).
h = Al,cosa h = —Amngeo
a kmzj-023 if Fyy = kmz-023 if Fyy = Kmzy-o29 if Fyy = kmzj-023 if Fyy = a kmzj-023 if Fyy = kmz-023 if Fyy = Kmzy-603 if Fyy = kmzj-023 if Fyy =
O(N) —-1(N\) —1.5(N) —2(N) o(N) —1(N) —1.5(N) —2(N)
30° 4.56 4.27 4.11 3.94 30° 4.56 4.54 4.52 4.48
45° 4.55 4.20 4.00 3.78 45° 4.55 4.53 4.50 4.45
60° 4.53 4.05 3.76 3.44 60° 4.53 4.51 4.45 4.37

Appendix H:

Nomenclature in the text is indicated as follows .

Table H.1
Abbreviations.
BA-CSP Bi-directional anti-buckling cross spring pivot.
DoF Degree of Freedom.
DoC Degree of Constraint.
FEA Finite Element Analysis.
IS-CSP Inversion-based Symmetric Cross-Spring Pivot.
NIS-CSP Non-Inversion-based Symmetric Cross-Spring Pivot.
NM I Nonlinear Method L.
NM II Nonlinear Method II.
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Table H.2

Symbols. (i =1or 2 and n =1, 2, 3, or 4 in Table H.2).

Am

Amgeo

L

B, Biin

Dysi
Dpni
Dppn

Ds;

dy, dyc, de
dyeys dycy, dacy
dyi, dyiy dyi
duni dyni doni
dys, dys, dys

dxsi: dyst) dzsi

dstAi; dysBAi) dZSBAi

dxsni dysnis dasni

dys2*, dys2®, dyso*

dys3*, dys3®, dzs3®

dyj, dyj, dyy

dxyNs dyans duan

xDI> yDI, dzDI
d, dy d
dxo, dyDH’ d.pu

E
fxi fyo fai

fxni fyno foni
fsis fysiv fasis

fstAi) fySBAi) fszAi

fxsNis fysni fasni

feabn
feabin

San

An expression for analyzing the load-dependent
effects of an IS-CSP.

The value of Ay, due to the geometric
parameters.

The point of a cable pully.

The normalized coordinate of point Aj.

The cable loading position of an IS-CSP.

The normalized coordinate of B, with respect to
O5-XYZs.

The normalized coordinate of B, relative to Os-
XY Zs after motions of the motion stage.

For modeling the anti-buckling universal joint,
they denote the normalized coordinates of cable
positions of the IS-CSP-1 and IS-CSP-2 with
respect to Og-Xs;YsiZsi, respectively.

The normalized translational matrix of point S;
in a deformed condition.

The normalized translational matrix of point Sy;
in a deformed condition.

The normalized translational matrix of point B,
in a deformed condition.

The normalized translational matrix of point S;
in a non-deformed condition for linear analysis
of an IS-CSP.

Normalized center shift of an IS-CSP with respect
to Og-X;Y<Zs.

Normalized center shift of an anti-buckling
universal joint with respect to O;-X;Y;Z;.
Normalized displacements of a tensile sheet at o;
with respect to 0;-Xyiz;.

Normalized displacements of a compressive
sheet at o; with respect to 0;-X;yz;.

Normalized displacements of an IS-CSP at O
with respect to Os-XYZs.

Normalized displacements of an IS-CSP-i with
respect to Og-Xs;YsiZsi, which is used for
modeling an anti-buckling universal joint.
Normalized displacements of the BA-CSP-i with
respect to Og;-Xs;YsiZsi, Which is used for
modeling design 1.

Normalized displacements of the NIS-CSP-i with
respect to Og-Xs;YsiZsi.

Normalized displacements of IS-CSP-2 of the
anti-buckling universal joint with respect to
052*'X52*Ysz* 52*-

Normalized displacements of the motion stage of
the anti-buckling universal joint with respect to
053*'X53J'(Y53*253*-

Normalized displacements of an anti-buckling
universal joint at the origin O; with respect to
05-X,YyZ5.

Normalized displacements of a traditional
universal joint at the origin O; with respect to
Oyn-XsNYINZyN-

Normalized displacements of design I with
respect to Op;-Xp1YpiZpr.

Normalized displacements of design II with
respect to Opy-XpnYpuZpi-

The Young’s modulus.

Normalized forces of a tensile sheet at o; with
respect to 0;-XyiZi.

Normalized forces of a compressive sheet at o;
with respect to 0;-Xyiz;.

Normalized forces of IS-CSP-i acting at Og; with
respect to Og-Xy;YsiZsi, Which is used for
modeling an anti-buckling universal joint or
design I.

Normalized forces of the BA-CSP-i with respect
to Og;-XsiYsiZsi, which is used for modeling design
I

Normalized forces of the NIS-CSP-i acting at Og
with respect to Os-X,YZs, which is used for
modeling a traditional universal joint.

The normalized constant positive cable forces
along a cable of an IS-CSP.

The normalized constant positive cable forces
along a cable of an anti-buckling universal joint.
The normalized force to bend an IS-CSP.
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fAJn
fxvro fybro fzBn

fom nym szn

fxv fyBin frpin

fxBIIm fyBIIrv szIIn

fxas Fyas fa
foN: nyN: fzJN
Hy

h

hy

I

Iy

& Ka, ke,

Knom-fxs-dxss Knom-fys-dyss
knom-fzs-dzsx

Knom-mxs-oxs Knom-mys-ays»
knom-mzs-tzs>

kmzs'ﬁ)zs

Kpys-dys, Kfzs-das-

ksz -0z

kpys-dyss Kfey-dzss

Kinys-6y3
L

La

Ly

In

My, My, My
MyNi MyNi, MzNi

My, Mysi, My,

MysBAi MysBAib MzsBAi

MxsNi> MysNi> MezsNi

Myyj, Myj, Mzy

MxjN, MygN, MzIN
Mypr, Myp1, MzD1
Mxpi1, Mypir, Mzpi

OiXiyiZi
O5-XsYsZs

The normalized force to bend an anti-buckling
universal joint.

fan components acting at og, of an IS-CSP with
respect to Os-X Y Zs.

Normalized cable-force components acting at
0qn of an anti-buckling universal joint with
respect to O;-X;Y,Z;.

fasn components with respect to Og;-Xs1Ys1Zs; at
point By, of IS-CSP-1, which is used for modeling
the anti-buckling universal joint.

fajn components with respect to Ogsp-Xs2YsoZso at
point By, of IS-CSP-2, which is used for modeling
the anti-buckling universal joint.

Normalized forces of an anti-buckling universal
joint acting at O; with respect to 0;-X;Y,Z;.
Normalized forces of a traditional universal joint
acting at O; with respect to O;-X;Y,Z;.

The height of the middle loop of the anti-
buckling universal joint, design I or design II.
The normalized parameter of an IS-CSP or an
anti-buckling universal joints depends on the
loading position.

The normalized parameter of the NIS-CSP
depends on the loading position.

The cross-section moment of inertia about the z;-
axis of a single sheet.

The cross-section moment of inertia about the y;-
axis of a single sheet.

Parameters for the nonlinear spatial model of a
single sheet applying NM II.

The nominal stiffness along the X, Y5, Zs-axes of
an IS-CSP.

The nominal stiffness about the X, Y, Zs-axes of
an IS-CSP.

Normalized rotational stiffness of an IS-CSP due
to mys.

Normalized translational stiffness of an IS-CSP
due to fys and f,s, respectively.

The normalized rotational stiffness of an anti-
buckling universal joint due to my;.

Normalized translational stiffness of an anti-
buckling universal joint due to fy; and fyj,
respectively.

The normalized rotational stiffness of an anti-
buckling universal joint due to my,;.

The length of a single sheet.

The length normalized scaler.

The radius of the anti-buckling universal joint.
The outer radius of design I and II.

The vertical distance from the free end of a sheet
to the rotational center of an IS-CSP.

The normalized L.

The normalized L.

Normalized moments of a tensile sheet at o; with
respect t0 0;-X;yiZi.

Normalized moments of a compressive sheet at o;
with respect to 0;-Xyiz;.

Normalized moments of an IS-CSP-i acting at Og;
with respect to Og-X;YsiZsi, which is used for
modeling an anti-buckling universal joint.
Normalized moments of the BA-CSP-i with
respect to Og-Xy;YsiZsi, which is used for
modeling the design I.

Normalized moments of the NIS-CSP-i acting at
O, with respect to Os-XYsZs, which is used for
modeling a traditional universal joint.
Normalized moments acting on the motion stage
of the anti-buckling universal joint with respect
to 05-X;Y;Zy.

Normalized moments of a traditional universal
joint acting at O; with respect to O;-X;Y,Z;.
Normalized moments of design I with respect to
Opi-Xp1YpiZpr-

Normalized moments of design II with respect to
Opu-XprYpuZpi-

The local coordinate system of a sheet.

The global mobile coordinate system of an IS-
CSP.

(continued on next page)
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Table H.2 (continued)

Osi-XsiYsilsi

052{('X52*Y52*252*

Os3*-Xs3*Ys3*Zs3*

OBnXBnYBnZBn

Oy- X;Y,Zy
Oun-XnYonZon

0QnXQnYQnZQn

Op1-Xp1YpiZpr, Opu-XpuYpuZpn
Qn

Qn

R;

Ryi

Ry Ryi, Ryi

R, (B)

Roni (60

R,

Ry

Rspai

Rusi

Rys2+(n/2)
Rys3«(—1/2)
r

S1, 82

S3, S4

S1, S
S3, 84

81, So*

S3*, S4*

Sn1, Snz2

S, Sna

Sn1, Sn2

The local coordinate system of the IS-CSP-i (or
BA-CSP-i, NIS-CSP-i), which is used for modeling
an anti-buckling universal joint (or design I,
design II).

The coordinate system after Og;-Xs1 Ys1Zs1
rotating in a certain sequence, which is used for
modeling the anti-buckling universal joint.

The coordinate system after Og»-XsoYs0Zs2
rotating in a certain sequence, which is used for
modeling the anti-buckling universal joint.

The local coordinate system of the IS-CSP at
point B, whose directions are the same as those
of Os-XYsZs.

The global mobile coordinate system of an anti-
buckling universal joint.

The global coordinate system of a traditional
universal joint.

The local coordinate system of the anti-buckling
universal joint at point Q, whose directions are
the same as those of 0;-X;Y;Z;.

Global coordinate systems of design I and II,
respectively.

The cable loading position of an anti-buckling
universal joint.

The normalized coordinate of point Q, relative
to O;-X;Y;Z; after motions of the motion stage.
The rotational matrix of a single tensile sheet
with respect to 0;-Xyiz;.

The rotational matrix of a single compressive
sheet with respect to 0;-X;y;z;.

Rotational matrices of a single tensile sheet
rotating about the x;, y;, and z;-axes.

A rotation by p; about the z;-axis in the o;xy;z;
coordinate system of a tensile single sheet.

A rotation by §; about the z;-axis in the 0;-x;y;z;
coordinate system of a compressive single sheet.
The rotational matrix of the anti-buckling
universal joint’s motion stage with respect to O;-
X,;Y,Z;.

The rotational matrix of an IS-CSP-i with respect
to Ogi-Xs;YsiZsi, which is used for modeling the
anti-buckling universal joint.

A rotational matrix of the BA-CSP-i with respect
to Osi-XiYsiZsi, which is used for modeling the
design L.

A rotational matrix of the NIS-CSP-i with respect
to Og-XsiYsiZsi, which is used for modeling design
1L

A rotation by 1/2 about the Zg;*-axis in the Ogp*-
Xs2*Ys2*Zso* coordinate system.

A rotation by —n/2 about the Zs3*-axis in the
Os3*-Xs3*Ys3%Zs3* coordinate system.

The ratio of I, to Iy.

Tensile sheets’ free ends of pivot 1 with respect
to Og1-Xs1Ys1Zs1, where the pivot 1 includes the
IS-CSP-1 and the BA-CSP-1.

Tensile sheets’ free ends of pivot 2 with respect
to Os2-Xs2Ys2Zs2, where the pivot 2 includes the
IS-CSP-2 and the BA-CSP-2.

Normalized coordinates of S; and S, with respect
to Os1-Xs1Ys1Zs1, respectively.

Normalized coordinates of S3 and S4 with respect
to Oga-Xs2Ys2Zso, respectively.

Normalized coordinates of S; and S, after
motions with respect to Og-Xs1Ys1Zs1,
respectively.

Normalized coordinates of S3 and S, after
motions with respect to Ogy-Xs2Ys2Zso,
respectively.

Compressive sheets’ free ends of pivot 1 with
respect to Og;-Xs1 Ys1Zs1, where the pivot 1
includes the NIS-CSP-1 and the BA-CSP-1.
Compressive sheets’ free ends of pivot 2 with
respect to Oso-Xs2Ys2Zs2, where the pivot 2
includes the NIS-CSP-2 and the BA-CSP-2.
Normalized coordinates of Sy; and Sy, with
respect to Og;-Xs1Ys1Zs1, respectively.
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Sn3, Sna Normalized coordinates of Sy3 and Sy4 with
respect to Ogp-Xs2Ys2Zso, respectively.

Sn1¥, Sno* Normalized coordinates of Sy; and Sy after
motions with respect to Og;-Xs1Ys1Zs1,
respectively.

Sn3*, Sna™ Normalized coordinates of Sy3 and Sy4 after

motions with respect to Osz-Xs2Ys2Zs2,
respectively.

T The thickness of a sheet.
t The normalized thickness of a sheet.
U The width of a sheet.
u The normalized width of a sheet.
v The Poisson’s ratio.
n The ratio of U to T.
O Oyip Oy Rotations of a tensile sheet with respect to o;-
XiYiZi-

Oxni Oyni Ooni Rotations of a compressive sheet with respect to
OiXyiZi-

Oxs, Oy, Oss Rotations of an IS-CSP with respect to Os-X,YZs.

Oxsiv Oysi Ossi Rotations of an IS-CSP-i with respect to Og;-
X,iYsiZsi, which is used for modeling an anti-
buckling universal joint.

OxsBai Oyssai OzsBAi Rotations of the BA-CSP-i with respect to Og-

XsiYsiZsi, which is used for modeling the design I.

OxsNis OysNi> OzsNi Rotations of the NIS-CSP-i with respect to Og;-

XsiYsiZsi.

Oxy, Oy, Oz Rotations of an anti-buckling universal joint

with respect to 0;-X;Y,Z;.

OxiNs Oyan, Ozan Rotations of a traditional universal joint at the

origin O; with respect to O;-X;Y;Z;.

Oxp1, Oyp1, G701 Rotations of design I with respect to Opj-

XprYpiZpr
Oxpus, Oypir, Ozpm Rotations of design II with respect to Opy-
XpuYpnZpir-

a, A Geometric parameters.

u Friction coefficient.

Yn The angle between f, and feabn Of an IS-CSP.

On The angle between fa, and feabsn of an anti-

buckling universal joint.

73 Change rate of kp;s.g;s Of an IS-CSP.

Wy Change rate of kp;j.9,5 Of an anti-buckling

universal joint.
Axo, Ayo, Azo, Axa, Aya, Aza, Displacements of points Oy, a, b, and ¢ obtained
Axb, Ayb, Azb, Axe, Aye, Aze from the FEA model in an anti-buckling
universal joint.
* Results after motions.
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