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Abstract 

Radiomics has shown potential in disease diagnosis but the feasibility for non-small cell lung carcinoma (NSCLC) subtypes 

classification is unclear. This study aims to explore the diagnosis value of texture and colour features from Positron Emission 

Tomography Computed Tomography (PET-CT) images in differentiation of NSCLC subtypes: adenocarcinoma (ADC) and 

squamous cell carcinoma (SqCC). Two patient cohorts were retrospectively collected into a dataset of 341 FDG PET-CT 

images of NSCLC tumours (125 ADC, 174 SqCC and 42 cases with unknown subtype). Quantification of texture and colour 

features was performed using freehand region of interests. The relation between extracted features and commonly used 

parameters, such as age, gender, tumour size and standard uptake value (SUVmax), was explored. To classify NSCLC 

subtypes, Support Vector Machine (SVM) algorithm was applied on these features and the classification performance was 

evaluated by receiver operating characteristic (ROC) curve analysis. There was a significant difference between ADC and 

SqCC subtype in texture and colour features (P<0.05). It showed that imaging features were significantly correlated to both 

SUVmax and tumour diameter (P<0.05). When evaluating classification performance, features combining texture and colour 

got an AUC of 0.89 (95% CI, 0.78 to 1.00), colour features got an AUC of 0.85 (95% CI, 0.71 to 0.99) and texture features 

got an AUC of 0.68 (95% CI, 0.48 to 0.88). Delong’s test showed that AUC for features combining texture and colour was 

higher than that for texture features only (P=0.010), but not significantly different from that for colour features only 

(P=0.328). HSV colour features got a similar performance to RGB colour features (P=0.473). The colour features are 

promising in the refinement of the NSCLC subtype differentiation and the features combining texture and colour of PET-CT 

images could result in better classification performance. 

Keywords: Radiomics; Positron Emission Tomography Computed Tomography; Carcinoma, Non-Small-Cell Lung; 

Diagnostic Imaging; Colour 
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1. Introduction 

Non-small cell lung carcinoma (NSCLC), the most 

common type of lung cancer, is one of serious diseases 

causing death for both men and women. NSCLC accounted 

for approximately 80-85% of lung cancer and the 5-year 

survival rate is less than 20% [1, 2]. NSCLC consists of 

two major histological subtypes: adenocarcinoma (ADC, 

40-50%) and squamous cell carcinoma (SqCC, 20-30%). 

The two subtypes of NSCLC have their own tissue 

characteristics, anatomical location and glucose 

metabolism [3, 4], and it indicates that different optimal 

therapy strategies should be adopted respectively for the 

two subtypes of NSCLC to improve clinical outcomes. 

Before the establishment of targeted therapy, accurate 

histological subtype of tumours should be verified [5, 6]. 

In clinical, NSCLC subtypes are confirmed according to 

the histopathological analysis of tumour tissues by biopsy. 

However, these procedures are invasive and the risk in real 

practice can always exist. Other approaches using genomic 

and proteomic technologies have been developed, but these 

methods may be inefficient for tumour classification 

because of spatial and temporal heterogeneity of tumours 

[7]. Recently, radiomics has made up for these deficiencies 

mentioned above. Radiomics is a method that converts 

imaging data into a high dimensional feature space using a 

large number of automatically extracted data-

characterization algorithms [8]. Different from the 

aforementioned approaches, radiomics is developed as 

prognostic or predictive biomarker to explore objective and 

precise quantitative imaging descriptors for disease 

classification and diagnosis [9].  

With more advanced image capturing devices, more 

intuitive information could be obtained from medical 

images [10]. Multimodality images, including FDG PET-

CT images that combine morphological information and 

metabolic information, can be a powerful tool in disease 

diagnosis based on radiomics[11]. Currently, there is an 

increasing interest in using FDG PET-CT images to 

quantify tumour tracer uptake heterogeneity and predict 

treatment outcomes [12, 13]. 

 Texture features are the most frequently used radiomics 

that demonstrate association with many clinically relevant 

factors, like neoplasms histologic type[14,15], 

pathological stage[14,16], treatment prognosis[17] and 

prediction of tumor distant metastasis [18]. Wu [19] 

extracted 440 radiomic features, including tumour shape, 

tumour size, intensity statistics and texture features from 

CT images, and observed that 53 of them significantly 

correlated to tumour histology. Liu[20] found that CT pixel 

distribution and texture as appearing on CT images of 

peripheral lung adenocarcinomas can capture useful 

information regarding tumour phenotype.  

Besides texture features, it is also possible to utilize colour 

information contained in images for disease diagnosis. Colour 

is the characteristic of human visual perception described 

through colour categories and can be quantified by different 

methods or colour spaces, similar to human colour perception. 

RGB colour space and HSV colour space are commonly used 

in image analysis. Studies have shown that good diagnosis 

results can be achieved by using colour features from RGB 

(Red, Green, Blue) or HSV (Hue, Saturation, Value) colour 

spaces[21,22]. David[23] extracted colour features from 

tongue images and described the relationship between tongue 

colour features and diseases. Fons can der Sommen[24] 

extracted texture and colour features from endoscopic images 

and verified the usefulness of colour features for early 

neoplasia detection in Barrett’s esophagus. Therefore, as a 

non-invasive and cost-effective way for disease diagnosis and 

classification, radiomics, to some extent, is playing an 

important role in determining optimal treatment strategies and 

promoting the development of personalized medicine. 

Studies on the association between radiomic features and 

diseases have been done [25, 26], but the clinical significance 

of radiomics for NSCLC histology subtypes classification is 

still unclear [13], especially with more advanced medical 

images, such as merged FDG PET-CT images. The study was 

done to explore the diagnosis value and clinical significance 

of texture and colour features from merged FDG PET-CT 

images in differentiation of NSCLC subtypes, namely ADC 

and SqCC, so that a high value to the medical decision-support 

could be made. 

 

2. Materials and methods 

2.1 Subjects and 18F-FDG PET-CT Imaging 

Two patient cohorts were retrospectively collected into 

a data set of 341 merged FDG PET-CT images of NSCLC 

tumours, consisting of 125 ADC, 174 SqCC and 42 cases 

with unknown subtype. All slices containing nodule lesions 

of each tumor were used in the experiment and one slice 

was regarded as a case. Pathologic confirmation of tumour 

was done by surgical resection. The two cohorts were from 

Xuanwu Hospital Capital Medical University in China 

(140 images) and Cork University Hospital in Ireland 

(CUH) (201 images) from October 2012 to March 2016 

respectively. In both cohorts, patients underwent clinical 

FDG PET-CT scanning prior to treatment. The CUH 

cohort was from a study reported by Nicola Marie Hughes 

and Wolsztynski et al. [27], which consider the use of PET 

for assessment of patient survival focusing on potential for 

enhanced staging of NSCLC patients. We used the 299 

cases of confirmed histological subtype with their 

information such as age, gender and tumour size to assess 

the feasibility of texture and colour features in 
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discriminating NSCLC subtypes. The remaining 42 cases 

were used to explore the association between imaging 

features and traditional diagnostic factors such as tumour 

size, SUVmax (standard uptake value). All images in our 

study met the following criteria: the NSCLC was 

histologically confirmed; the lesions in images were of 

clear visibility. A sample of the merged PET-CT image 

enrolled in our study was shown in Figure 1. 

 
Figure 1  A sample of merged PET/CT image showing a 

cancerous tumor in the left lung 

 

For each cohort, all acquisitions were based on the 

corresponding institutional protocols. Patients in Xuanwu 

Hospital Capital Medical University underwent whole 

body 18F-FDG PET-CT scan on a UNITED IMAGING 

uMI S-96R system after 6h of fasting time. Each patient 

was injected with FDG (range 3.70-5.56 Mbq/ kg) 

intravenously 60 minutes before the acquisition. CT data 

were acquired first (120 kV and 180 mA, no contrast 

enhancement) and PET images were subsequently 

reconstructed in the system using the ordered-subset 

expectation maximization (OSEM) algorithm with 3 

iterations and a 3 mm full-width at half-maximum 

Gaussian post-filtering. The CT and PET images were 

systematically merged automatically in the system. All 

patients from Cork University Hospital underwent 

standard18F- FDG PET-CT scan on a GE Discovery VCT 

system following their institutional protocol. Low dose 

computed tomograghic scan was performed for attenuation 

correction of PET emission data. Subsequently, PET 

acquisition started with the delay time of 60 minutes from 

intravenous injection of 18F-FDG (range 340-400 Mbq). 

The CT and PET images were also systematically merged 

automatically in this system. The time delay between 

injection and acquisition was same for both of the two 

cohorts and it would not affect SUVmax related outcomes. 

The study was approved by the institutional review board 

in Xuanwu Hospital Capital Medical University. Informed 

consent was waived because of retrospective design of the 

study. 

Images included into our study were collected from a 

UNITED IMAGING uMI S-96R system and a GE Discovery 

VCT system. A comparison experiment between the two 

sources of images would be performed to see if there is any 

significant difference on imaging features between them. 

2.2 Image analysis 

In our study, all image analysis were performed based on 

merged PET-CT images from the PET-CT acquisition. 

Texture analysis and colour analysis were adopted to quantify 

image features. First, image preprocessing was carried out. All 

lesions were delineated manually around cross-sectional area 

as region of interest (ROI) from merged PET-CT images by 

an experienced radiologist who was not blinded to the 

radiological findings and pathology. These hand-free ROIs 

were refined by avoiding necrosis, hemorrhage and cystic 

areas. After the image preprocessing was finished, 

quantification of texture and colour features was carried out. 

These extracted image features would be used to explore the 

correlation with other commonly used factors for tumour 

diagnosis, such as tumour size and SUVmax. Finally, support 

vector machine classifiers (SVM) would be built based on 

these image features to discriminate different subtypes of 

NSCLC. The pathology results were the golden standard for 

the classification. The image preprocessing and image feature 

extraction were implemented with Matlab software (The 

MathWorks, Natick, Massachusetts, Inc).  

2.2.1 Texture features.  In our study, texture features 

were calculated for ROIs from merged PET-CT images. 

Gray-level Co-occurrence matrix (GLCM) based texture 

parameters, which calculate how often a pixel of intensity i 

co-occur to another pixel of intensity j with pre-defined 

relationship of certain distance and direction [28], are 

commonly used in image analysis. In our study, GLCM was 

adopted to calculate texture parameters regarding four 

orientations (0°, 45°, 90°, and 135°) and distance of 1 pixel 

after images were quantized to 16 grey levels. The selected 

features were entropy, energy, inverse different moment 

(IDM) and correlation. All these features were the most 

representative and robust among all texture features [29]. 

The mean and standard deviation of the four features were 

calculated and finally eight texture features including entropy 

mean, entropy standard deviation, energy mean, energy 

standard deviation, IDM mean, IDM standard deviation, 

correlation mean, correlation standard deviation were 

adopted in our study. To improve our classification, the 

Gray-level Difference Statistics (GLDS) [30], the Gray-

Gradient Co-occurrence Matrix (GGCM) [31] were also 
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calculated in our study in addition to GLCM. Mean, Entropy, 

Variance and Contrast were calculated by GLDS algorithm. 

From the GGCM, the following 15 features were included in 

our analysis: little gradient dominance, large gradient 

dominance, gray heterogeneity, gradient heterogeneity, 

energy, gray average, gradient average, gray mean square 

error, gradient mean square error, correlation, gray entropy, 

gray entropy, hybrid entropy, inertia and inverse difference 

moment. The classification performance of these texture 

features would be compared.  

2.2.2 Colour features.  Colour characteristics have been 

shown to significantly improve tumour classification and 

segmentation [32]. To acquire merged PET/CT images, the 

colour overlay technique was applied that the grayscale CT 

image and grayscale PET image are converted to colour 

images by colour table [33]. In our study, colour features 

were calculated for ROIs from merged PET-CT images. In 

this paper, we considered two colour spaces: RGB and HSV. 

RGB is the most popular colour representation, describing 

the red, green and blue intensity values in images [34]. In 

addition to RGB colour space, HSV colour space is also 

commonly used, representing colours by three channels of 

colour: hue (H), saturation (S) and value (V) [35]. The 

method of colour space conversion to HSV from RGB is 

described comprehensively in previous studies [36]. 

The mean and variance of an image of size 𝑛 ∗ 𝑚 are most 

commonly used features for RGB colour components 

defined as following equations [37], where 𝑋𝑖𝑗 is the pixel 

value of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. 

𝑚𝑒𝑎𝑛 = ∑ ∑ 𝑋𝑖𝑗/𝑚𝑛 

𝑗=1𝑖=1

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑛𝑚
∑ ∑(𝑋𝑖𝑗 − 𝑚𝑒𝑎𝑛)2

𝑚

𝑗=1

𝑛

𝑖=1

 

   The colour histogram represents the colour distribution 

and forms the feature vectors for an image. Before the 

colour histogram is generated, the colour quantification 

need to be done. The colour space are divided into several 

small ranges and each interval is regarded as a bin. The 

colour histogram can be calculated through counting pixels 

in each bin.  

To describe RGB colour characteristics, the colour 

characteristics of images were described by three colour 

histograms with 256 bins for R, G and B channels 

respectively. Colour features obtained for images included: 

average red, green and blue pixel (R, G and B) values, the 

variance of red, green and blue pixel (R, G and B) values. 

In HSV colour space, H is an angle relative to Red axis 

varying between 0º and 360º, S is the depth or purity of the 

colour ranging from 0 to 1. V represents the brightness 

ranging from 0 to 1 [38, 39]. Unlike RGB colour analysis, 

the non-uniform quantization of colour channels was applied. 

The non-uniform quantization, dividing the colour space into 

the subordinate colour spaces with a non-uniform interval on 

the each axis constructing the colour space, can reflect well 

substantial characteristics of the colour space [40]. In our 

study, colour image was transformed from RGB space to 

HSV space at first and then non-uniform quantization of the 

H, S and V channels was made. The hue (H) channel was 

divided into 7 bins and the component range can be 

described as [0 º, 22 º] ∪ (330 º, 360 º], (22 º, 45 º], (45 º, 

70º], (70 º, 155 º], (155 º, 186 º], (186 º, 278 º], (278 º, 330 

º]. Saturation (S) was divided into 2 bins and the component 

range can be described as [0, 0.65], (0.65, 1]. The brightness 

(V) was divided into 2 bins with component ranges [0, 0.5] 

and (0.5, 1]. According to the above quantization, the 3 

colour components (H, S, and V) were combined into one 

dimensional feature vector [41]: 𝐿 = 𝐻𝑄𝑆𝑄𝑉 + 𝑆𝑄𝑆 + 𝑉, 

where 𝑄𝑆 and 𝑄𝑉 were the quantization divisions of S and V 

components. The final feature vector could be described as: 

𝐿 = 4 ∗ 𝐻 + 2 ∗ 𝑆 + 𝑉. According to this equation, the 

vector L ranged from 0 to 27. Hence, the one-dimensional 

histogram with 28 bins was obtained. These 28 pixel 

frequencies were adopted as HSV colour features after 

normalization.  

2.3 Statistical analysis 

First, the comparison experiment between GE and United 

images was performed to compare if there were significant 

difference of texture and colour features between these two 

machines from two cohorts in our study. Data mining 

method: PCA (Principal Component Analysis) was applied 

to make the comparison. The PCA score plots were drawn to 

compare these two machines. The statistical difference of 

components was explored by a two-sided Wilcoxon rank-

sum test. 

For descriptive analysis, texture features and RGB colour 

features were expressed as mean ± SD; HSV colour features 

were reported as median (P25-P75). Categorical variables 

were provided as frequencies (percentage). A two-sided 

Wilcoxon rank-sum test was applied to make a comparison 

between ADC and SqCC on image features. Correlations 

between imaging features and other radiomic features such as 

SUVmax, tumour size, were evaluated using Spearman rho. 

For visualizing the pairwise correlation between image 

features, as well as its relationship to other radiomic features, 

heatmap was generated. A P value of 0.05 was regarded as a 

threshold for a certain statistical significance. 
Discriminatory analysis was conducted using a machine 

learning algorithm called Support Vector Machine (SVM) 

to evaluate the predictive ability for cancer subtypes. The 

Radial Basis Function (RBF) kernel was used because of its 

better performance than other less complex linear functions 
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[32, 42]. The classification error was estimated using ten 

fold cross validation method by dividing the data into ten, 

nine for training and one for testing. The models with the 

best test accuracy was selected by applying ten-fold cross 

validation method ten times. 

The detection performance of our models were then 

evaluated for testing data and whole dataset by ROC 

analysis respectively. The ROC curve was created by 

plotting the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold settings. The TPR 

defined how many correct positive results occur among all 

positive samples available during the test. FPR defined how 

many incorrect positive results occur among all negative 

samples available during the test. In ROC analysis, the 

pathological result of NSCLC subtypes was taken as the 

dependent factor, and the positive predictive probability 

calculated from SVM classifiers was used to predict 

NSCLC subtypes.  

All statistical analyses in our study were done with SAS 

version 9.4 (SAS Institute Inc). The heatmap was generated 

using ‘heatmap.2’ function in ‘gplots’ package by R 

software (http://www.r- project.org/). The SVM algorithm 

and ROC analysis were implemented with ‘e1071’ package 

and ‘pROC’ package in R software respectively. 

3. Results 

3.1 Comparison between the two sources of imaging  

The difference of imaging features between the two 

machines was explored for ADC subtype and SqCC 

subtype separately. The cumulative proportion of the first 

two components is 52.63% and 54.71% for ADC and SqCC 

respectively. The cumulative proportion of the first three 

components is 60.79% and 62.29% for ADC and SqCC 

respectively. The cumulative proportion of the first twenty-

five components can reach over 99% for both ADC 

(99.39%) and SqCC (99.01%). 

The two dimensional PCA score plots were drawn using 

the first two components. To compare more intuitively, the 

three dimensional PCA score plots were drawn by using the 

first three components. The smaller the spatial distribution 

difference, the more similar the data is. From Figure 2 (a), 

Figure 2 (b), we can see that there are many dots 

overlapped for the two machines, which means that there is 

no significant difference between the two machines. The 

statistical difference for these components calculated from 

PCA was explored by Wilcoxon rank-sum test (Table1). It 

can be seen that most components have no significant 

difference between the two machines (P<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (a) The PCA score plots of imaging features for 

ADC in two machines 

 

 

 

 

 

 

 

 

 

 

Figure 2 (b) The PCA score plots of imaging features for 

SqCC in two machines 

 

Table 1 Comparison of Feature Components of the Two 

Machines for ADC and SqCC  

 ADC  SqCC 

  Z P  Z P 

Comp.1 -4.131 0.000*  -0.211 0.833 

Comp.2 -6.410 0.000*  -7.491 0.000* 

Comp.3 -5.056 0.000*  -6.188 0.000* 

Comp.4 -2.758 0.006*  -2.377 0.017* 

Comp.5 -0.540 0.590  -2.562 0.010* 

Comp.6 -0.609 0.542  -0.026 0.979 

Comp.7 -1.848 0.065  -0.913 0.362 

Comp.8 -0.050 0.960  -0.545 0.586 

Comp.9 -3.062 0.002*  -1.122 0.262 

Comp.10 -3.912 0.000*  -0.438 0.661 

Comp.11 -1.709 0.088  -0.070 0.944 

Comp.12 -0.270 0.787  -1.236 0.217 

Comp.13 -0.340 0.734  -1.077 0.281 

Comp.14 -1.609 0.108  -0.153 0.878 

Comp.15 -1.234 0.217  -1.005 0.315 
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Comp.16 -0.315 0.753  -0.655 0.513 

Comp.17 -0.250 0.803  -2.243 0.025 

Comp.18 -0.145 0.885  -0.411 0.681 

Comp.19 -1.019 0.308  -0.229 0.819 

Comp.20 -0.599 0.549  -0.232 0.817 

Comp.21 -2.278 0.023*  -0.950 0.342 

Comp.22 -0.250 0.803  -0.734 0.463 

Comp.23 -1.289 0.197  -0.610 0.542 

Comp.24 -0.984 0.325  -0.150 0.881 

Comp.25 -0.155 0.877  -1.160 0.246 

3.2 Characteristic description of NSCLC cases 

Among the 341 cases (age, 68.44 ± 9.51 years; male, 244 

(71.55%)) included, there were 125 ADC cases, 174 SqCC 

cases and 42 cases with unknown subtype. The tumour size 

of ADC was 2.53±1.23 cm (range, 1.80~ 3.00 cm), tumour 

size of SqCC was 4.21±1.72 cm (range, 3.00~5.00 cm) and 

unknown subtype was 2.92 ± 1.60 cm (range, 1.80~ 3.55 

cm). Comparison between ADC and SqCC groups was done 

and there was a significant difference for age, gender and 

tumour size between the two groups (P<0.05) as was showed 

in Table 2. 

 

Table 2 Characteristic Description of NSCLC Cases 

 Overall 

(N=341) 

ADC (N=125) SqCC (N=174) Unknown (N=42) Z or χ2 a P 

Age b (years) 68.44 ± 9.51 70.36 ± 8.93 67.68 ± 9.94 65.91 ± 8.46 2.415 0.016* 

Gender n (%)     16.050 <0.0001* 

Male 244 (71.55) 75 (60.00) 141 (81.03) 28 (66.67)   

Female 97 (28.45) 50 (40.00) 33 (18.97) 14 (33.33)   

Tumour size b (cm) 

    mean± SD 3.03 ± 1.58 2.53 ± 1.23 4.21 ± 1.72 2.92 ± 1.60 2.586 0.010* 

median (P25-P75) 2.80(1.80~3.60) 2.55(1.80~3.00) 4.00(3.00~5.00) 2.70(1.80~3.55)   

SUVmax b(g/ml) - - - 8.57 ± 4.46 - - 

a Age and tumour size comparison between ADC and SqCC groups were conducted by Wilcoxon rank-sum test and gender 

comparison was done by chi-square test.  
b Age, Gender and Tumour size (centimeter) were described as mean ± SD. 

* P<0.05, statistical significantly different between ADC and SqCC. 

 

3.3 Comparison between image features of ADC and 

SqCC 

To find out that whether there was a significant 

difference between the two subtypes of NSCLC in texture 

and colour features, comparison was carried out between 

ADC and SqCC. There was a significant difference 

between ADC and  

SqCC on image features as shown in Table 3, including 2 

GLCM texture features (energy mean, Z=2.078, P=0.037; 

IDM standard deviation, Z=3.139, P=0.002), 8 GGCM  

texture features (P<0.05, respectively) and 6 colour 

features from HSV space (P<0.05, respectively).  The 

colour histograms of the red, green and blue colour 

components were plotted respectively in Figure 3 to  

 

 

describe colour distribution in ADC and SqCC. The 

histograms showed that the red, green and blue colour 

components were more concentrated on lower pixel levels 

for ADC while they were more concentrated on higher 

pixel levels for SqCC, but the mean and variance of these 

three colour components did not show significant 

difference between ADC and SqCC (Table 3).  

 

3.4 Selection of texture features 

To select texture features, Support Vector Machine 

classifiers were built for GLCM features, GLDS features, 

GGCM features and GLCM+GLDS+GGCM features 

respectively. The ten-fold cross validation method was 
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applied to validate the models. The performance of these 

four classifiers for one-fold test dataset were shown in 

Table 4.  

It showed that the best performance was obtained by 

GLCM texture features with an accuracy of 76.00%, AUC 

of 0.76 (95% CI, 0.56-0.95). The classification result got 

worse when all texture features were included into the 

experiment by Delong’s test (D=-2.61, P=0.014). The 

GLDS features seemed to have a good performance,  so 

another model established by combining GLCM and 

GLDS features was also established. This model got an 

accuracy of 67.00% and AUC of 0.54 (95% CI, 0.30-0.77) 

with no significant difference with the GLCM model 

(D=1.45, P=0.148). 

Considering the classification performance and 

overfitting, only GLCM features were applied to the 

following analysis. 

 

 

Table 3 Comparison of Image Features between Histological Subtypes  

 
ADC  SqCC  

Z P 
(N=125) (N=174) 

energy_mean a 0.70±0.19 0.66±0.17 2.08  0.038* 

energy_std a 0.009±0.004 0.010±0.004 -0.48  0.633 

entropy_mean 0.77±0.42 0.83±0.37 -1.65  0.100 

entropy_std 0.036±0.016 0.038±0.018 -0.77  0.441 

IDM_mean -28.28±78.93 -30.61±85.59 -1.76  0.079 

IDM_std 0.48±2.12 0.37±1.26 3.14  0.002* 

correlation_mean 0.95±0.03 0.95±0.02 0.83  0.409 

correlation_std 0.010±0.005 0.011±0.005 -0.69  0.489 

Mean 0.04±0.02 0.04±0.02 -0.98  0.329 

Contrast 1792.49±770.56 1869.89±780.22 -0.74  0.459 

Variance 0.71±0.18 0.68±0.16 1.88  0.060 

Entropy 1.28±0.69 1.40±0.62 -1.75  0.082 

Little gradient dominance 0.88±0.08 0.87±0.08 1.49  0.137 

Large gradient dominance 1.62±0.85 1.66±0.82 -0.61  0.543 

Gray heterogeneity 1405.28±994.57 1688.80±953.44 -3.23  0.0013* 

Gradient heterogeneity 1617.06±1215.51 2083.54±1589.35 -3.54  0.0004* 

Energy 0.67±0.21 0.62±0.19 2.15  0.032* 

Gray average 28.51±23.62 33.81±23.27 -2.66  0.008* 

Gradient average 1.62±0.85 1.66±0.82 -0.61  0.543 

Gray mean square error 57.83±22.23 63.97±23.01 -2.56  0.010* 

Gradient mean square error 5.50±1.25 5.54±2.21 -0.36  0.716 

Correlation 91.37±44.53 88.76±45.00 0.49  0.621 

Gray entropy 0.43±0.28 0.48±0.25 -1.89  0.059 

Gradient entropy 0.28±0.16 0.31±0.14 -1.54  0.123 
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Hybrid entropy 0.59±0.39 0.64±0.35 -2.01  0.044* 

Inertia 4938.41±5117.70 6033.41±5283.75 -2.61  0.009* 

Inverse difference moment 0.80±0.14 0.77±0.13 2.16  0.031* 

red_mean b 64.98±41.10 69.57±48.18 -0.66  0.513 

red_var b 46.15±25.10 49.64±23.14 -1.18  0.239 

green_mean 83.88±41.99 90.17±50.75 -0.44  0.659 

green_var 56.63±21.24 56.35±20.64 0.11  0.915 

blue_mean 135.75±35.32 134.79±41.01 0.96  0.337 

blue_var 49.62±18.27 52.01±19.77 -1.49  0.137 

Feature1c 0.000 (0.000-0.003) 0.0002(0.0000-0.0032) -1.23  0.220 

Feature2 0.00 (0.0000-0.12) 0.0000 (0.0000-0.0006) 0.97  0.330 

Feature3 0.00 (0.00-0.00) 0.00 (0.00-0.00) -0.36  0.716 

Feature4 0.000 (0.000-0.001) 0.000 (0.000-0.006) -2.46  0.014* 

Feature5 0.00 (0.000-0.05) 0.000 (0.000-0.008) 1.27  0.203 

Feature7 0.04 (0.00-0.12) 0.09 (0.00-0.15) -2.52  0.012* 

Feature9 0.000 (0.000-0.002) 0.000 (0.000-0.003) -1.13  0.258 

Feature10 0.00 (0.00-0.00) 0.00 (0.00-0.00) -0.84  0.401 

Feature11 0.00 (0.00-0.07) 0.03 (0.00-0.11) -3.55  0.0004* 

Feature12 0.00 (0.00-0.03) 0.00 (0.00-0.02) -0.51  0.610 

Feature13 0.00 (0.00-0.06) 0.02 (0.00-0.07) -2.23  0.026* 

Feature17 0.00 (0.00-0.00) 0.0000 (0.0000-0.0003) -2.11  0.035* 

Feature18 0.00 (0.00-0.00) 0.00 (0.00-0.00) -1.18  0.237 

Feature19 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.98  0.326 

Feature20 0 0.00 (0.00-0.00) -0.84  0.401 

Feature21 0.000 (0.000-0.003) 0.0002(0.0000-0.0032) -1.23  0.220 

Feature26 0.00 (0.0000-0.12) 0.0000 (0.0000-0.0006) 0.97  0.330 

Feature27 0.00 (0.00-0.00) 0.00 (0.00-0.00) -0.36  0.716 

Feature28 0.000 (0.000-0.001) 0.000 (0.000-0.006) -2.46  0.014* 

a energy_mean refers to the mean of energy, energy_std means standard deviation of energy, the same for other texture 

features.  
b red_mean refers to the mean of pixel counts for red channel, red_var means the variance of pixel counts for red  

channel, the same for the other two channels.  
c Feature1- Feature28 refers to the normalized pixel counts for 28 bins of the HSV feature vector histogram respectively. 

* P<0.05, statistically significant. 

Feature6, feature8, feature14-16, feature22-25 in HSV features were deleted because their values were all 0.00 for all cases. 
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Figure 3 (a) The average colour histogram of the R, G and 

B components of 125 ADC images 

 

Figure 3 (b) The average colour histogram of the R, G and 

B components of 174 SqCC images. 

Table 4 Evaluation of Classification Performance with 

Different Features on Test Data 

Feature Acc (%) 
AUC 

 (95% CI) 
Thr* Sen* Spe* 

GLCM 0.76 0.76 (0.56-0.95) 0.54 0.83 0.75 

GLDS 0.61 0.53 (0.30-0.76) 0.61 1.00 0.17 

GGCM 0.60 0.50 (0.50-0.50) - 1.00 0.00 

GLCM+

GLDS 
0.67 0.54 (0.30-0.77) 0.57 0.52 0.67 

All 

texture 
0.60 0.50 (0.50-0.50) - 1.00 0.00 

*Thre means threshold, Sen means Sensitivity and Spe 

means Specificity. 

 

3.5 Pairwise correlation between imaging features, as 

well as other traditional radiomic features 

To explore the pairwise correlation between imaging 

features, heatmap was plotted in Figure 4. The relation 

between imaging features and other two factors (SUVmax, 

tumour size) that were always taken into account when 

radiologists make the diagnosis[43] were also shown in Figure 

3. We can see that most of the features associated with each 

other. To determine the significance of correlation between 

imaging features and the two traditional radiomic features, the 

Spearman’s ρ correlation coefficients were computed. As the 

Table 5 shown, there were 12 imaging features correlated to 

SUVmax significantly (P<0.05, respectively), with |ρ| ranging 

from 0.307 to 0.528. There were 12 imaging features 

correlated to tumour size (P<0.05, respectively), with |ρ| 

ranging from 0.312 to 0.412. The 2 GLCM texture features 

and 6 HSV color features that had significant difference 

between ADC and SqCC shown in Table 3 were correlated to 

SUVmax or tumour size significantly. Among the 17 features 

showing significantly association with SUVmax or tumour 

size, 7 features appeared as significantly correlated to both of 

them, including 3 texture features (energy mean, IDM mean, 

IDM standard deviation ) and 4 colour features (red mean, 

green mean and 2 HSV colour features).   

 

 

 
 

Figure 4 Pairwise correlation between imaging features, as 

well as its relationship to SUVmax and tumor size 
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Table 5 Correlation between Image Features and SUVmax, Tumour Size 

Image features Correlation to SUVmax  Correlation to tumour diameter 

 ρ P  ρ P 

energy_mean a -0.325 0.036*  -0.357 0.020* 

energy_std -0.041 0.796  -0.135 0.394 

entropy_mean 0.190 0.229  0.239 0.127 

entropy_std -0.019 0.904  -0.003 0.987 

IDM_mean 0.511 0.001*  0.312 0.045* 

IDM_std -0.469 0.002*  -0.329 0.033* 

correlation_mean 0.071 0.655  0.089 0.575 

correlation_std -0.035 0.825  -0.092 0.561 

red_mean b 0.354 0.021*  0.336 0.029* 

red_var 0.009 0.957  -0.159 0.315 

green_mean 0.357 0.020*  0.372 0.015* 

green_var -0.010 0.949  -0.156 0.322 

blue_mean 0.220 0.161  0.376 0.014* 

blue_var -0.096 0.545  -0.263 0.093 

Feature1c -0.138 0.382  -0.331 0.033* 

Feature2 -0.314 0.043*  -0.351 0.022* 

Feature3 -0.149 0.345  0.095 0.551 

Feature4 0.094 0.552  0.075 0.635 

Feature5 -0.141 0.374  0.117 0.459 

Feature7 0.470 0.002*  0.332 0.032* 

Feature9 0.375 0.014*  0.164 0.300 

Feature10 0.528 0.000*  0.167 0.290 

Feature11 0.167 0.291  0.283 0.069 

Feature12 0.307 0.048*  0.242 0.123 

Feature13 0.203 0.197  0.181 0.253 

Feature17 0.258 0.099  0.168 0.288 

Feature18 0.383 0.012*  0.198 0.209 

Feature19 0.106 0.505  0.358 0.020* 

Feature20 0.069 0.663  0.147 0.351 
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Feature21 0.132 0.404  0.354 0.021* 

Feature26 0.310 0.046*  0.145 0.359 

Feature27 0.212 0.177  0.412 0.007* 

Feature28 0.110 0.490  0.226 0.151 

a energy_mean refers to the mean of energy, energy_std means standard deviation of energy, the same for other texture 

features.  
b red_mean refers to the mean of pixel counts for red channel, red_var means the variance of pixel counts for red channel, the 

same for the other two channels. 
c Feature1- Feature28 refers to the normalized pixel counts for 28 bins of the HSV feature vector histogram respectively. 

* P<0.05, statistically significant. 

Feature6, feature8, feature14-16, feature22-25 in HSV features were deleted because their values were all 0.00 for all cases. 

 

3.6 Classification performance 

To classify NSCLC subtypes, Support Vector Machine 

classifiers were built for features combining texture 

(GLCM texture features) and colour features (RGB+HSV), 

only texture features, only colour features respectively with 

confirmed pathological result as golden standard. The 

model with the best test accuracy was selected by applying 

ten-fold cross validation method ten times. The 

classification performance of these models for testing data 

by ROC analysis was shown in Table 6. From Table 6, we 

can see that the best classification performance for test 

dataset was obtained by using features combining texture 

and colour with accuracy of 80.00%, AUC of 0.89 (95% 

CI, 0.78 to 1.00), sensitivity of 0.73 and specificity of 1.00. 

When only the colour features (RGB+HSV) were applied 

for classification, we got the accuracy of 70.00%, AUC of 

0.85 (95% CI, 0.71 to 0.99), sensitivity of 0.77 and 

specificity of 1.00. When only GLCM texture features 

were applied, we got the accuracy of 70.00%, AUC of 0.68 

(95% CI, 0.48 to 0.88), sensitivity of 0.36 and specificity 

of 1.00. Delong’s test for ROC curves comparison was 

done and it was found that the AUC for features combining 

texture and colour was higher than that for texture features 

only (Z=2.57, P= 0.010), but not significantly different 

from that for colour features only (Z=0.98, P= 0.328). HSV 

colour features (AUC, 0.64; 95%CI, 0.36 to 0.91) got a 

similar performance to RGB colour features (AUC, 0.52; 

95% CI, 0.28 to 0.77) (P=0.450). 

The models were also applied on our whole dataset. The 

classification performance was shown in Table 7. The ROC 

curves using all the data were drawn on Figure 5 and Figure 

6. It was found that the classification performance based on 

all the data was better than that based on test dataset and there 

was a significant difference between the AUC of RGB color 

and AUC of HSV color. The cut-off value threshold(s) 

corresponding to the best sum of sensitivity+ specificity was 

adopted. 

Figure 5 ROC curves of classification results with texture or 

colour parameters.   

Figure 6 AUC comparison between RGB and HSV colour  
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Table 6 Evaluation of Classification Performance with Different Features on One-fold Test Dataset 

Feature Accuracy (%) AUC (95% CI) Threshold Sensitivity Specificity 

GLCM +RGB+HSV 80.00 0.89 (0.78-1.00) 0.55 0.73 1.00 

RGB+HSV 70.00 0.85 (0.71-0.99) 0.56 0.77 1.00 

GLCM 70.00 0.68 (0.48-0.88) 0.63 0.36 1.00 

HSV  70.00 0.64 (0.36-0.91) 0.58 0.68 0.75 

RGB  73.33 0.52 (0.28-0.77) 0.57 0.86 0.25 

 

Table 7 Evaluation of Classification Performance with Different Features on Whole Dataset 

Feature Accuracy (%) AUC (95% CI) Threshold Sensitivity Specificity 

GLCM +RGB+HSV 98.00 1.00 (0.99-1.00) 0.50 0.99 0.96 

RGB+HSV 97.00 0.99 (0.97-1.00) 0.57 0.99 0.96 

GLCM 70.00 0.72 (0.66-0.78) 0.60 0.84 0.50 

HSV  63.00 0.67 (0.61-0.73) 0.58 0.73 0.58 

RGB  96.00 1.00 (0.99-1.00) 0.58 0.94 0.99 

4. Discussion 

Personalized medicine, providing optimal treatment for 

an individual patient to promote health and to prolong the 

lifetime, has been capturing more and more attention in 

medical field [44]. However, the establishment of targeted 

therapy usually depends on confirmed histological subtypes 

of tumours by biopsy [7]. To avoid the risk in real practice 

of these invasive procedures, new approaches should be 

developed. Related studies have shown that SUVmax is 

correlated with lung adenocarcinoma subtypes, Ki-67 

expression, EGFR mutation and Alk rearrangement [45-47] 

though there are also negative results in other studies [48]. 

The measurement of SUVmax and other commonly used 

factors in lung carcinoma diagnosis such as metabolic 

tumour volume are non-invasive, but these indicators are 

inefficient because of their neglect of the relationship of 

two or more voxels. Radiomics, as biomarkers of medical 

imaging, has overcome above disadvantages and it is 

promising in clinical practice because of its non-invasive 

characteristic and routine employment in clinical. It has 

become possible that imaging features could be applied for 

disease diagnosis and prognosis [49-52]. For example, Lee 

and Cui [53] have confirmed the prognostic value of the 

pleural contact index, an imaging marker, on large-scale, 

multiple independent stage I NSCLC cohorts with gene 

expression data. 

Studies have shown that colour may be a good image 

traits in addition to texture [21-24], but to the best of our 

knowledge, no study has used colour features of medical 

images for detecting NSCLC so far. In our study, RGB 

colour space features and HSV colour space features were 

quantified from merged PET-CT images. For RGB colour 

space, histograms with 256 bins were generated for Red, 

Green and Blue channels respectively. The pixel counts 

(mean, variance) were described for each colour channel 

according to the colour histograms, and the red mean, red 

variance, green mean, green variance, blue mean, blue 

variance were adopted as the RGB colour features in our 

study. For HSV colour features, the non-uniform 

quantization of the H, S, and V channels was made. The 

hue (H) channel was divided into 7 divisions, saturation (S) 

was divided into 2 divisions, and the brightness (V) was 

divided into 2 divisions. According to the above 

quantization, the three colour components (H, S, and V) 

were combined into one dimensional feature vector L with 

a 28-bin colour histogram. The pixel counts for these 28 

bins were adopted as HSV colour features after 

normalization. 

Studies have indicated that radiomics probes biologic 

mechanisms because significant association has been 

found between imaging features and gene-expression 

patterns [7, 54]. However, the clinical application of 

visual representation is still controversial because of its 
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unclear association with other radiomic data such as 

metabolic information and morphological characteristics 

of lesions, so the correlation between them should be 

verified. In our study, we evaluated the correlation 

between texture features, colour features and other 

commonly used diagnostic factors such as SUVmax and 

nodule size [55-57] to evaluate clinical significance of 

these features. The moderate association was found 

between them and it indicated the practical value of these 

features for characterizing tumours. It was interesting to 

observe that the discriminative features for differentiation 

between ADC and SqCC were all correlated to SUVmax 

or tumour size, which verified the positive relation 

between medical imaging traits and traditional radiomic 

data.  

In our study, we also compared age and gender 

difference between the two groups because previous 

studies have found that SqCC presented a higher 

proportion of men, a higher age than ADC patients [58], 

which indicated that age and gender were relevant factors 

to tumor subtypes. In our study, it was verified that there 

was a significant difference in age and gender distribution 

for NSCLC subtypes.  

Some previous studies have shown that combining 

texture and colour features could result in better detection 

performance in esophageal cancer [32, 52]. We conducted 

our experiment on NSCLC with texture and colour 

features to see if it could achieve good classification 

results. Our study showed that features combining texture 

and colour performed best with AUC of 0.89 (95% CI, 

0.78 to 1.00), colour features got an AUC of 0.85 (95% 

CI, 0.71 to 0.99) and texture features got an AUC of 0.68 

(95% CI, 0.48 to 0.88). It verified the hypothesis that 

colour features play a key role in discriminating NSCLC 

subtypes [59].  

Our study has some limitations. The sample size in our 

study was not large. However, the samples were collected 

from two independent cohorts and it could reduce 

selection bias and avoid over-fitting. It may be helpful for 

the versatile application of the results because two sources 

of images would better represent the imaging variation 

expected in clinical practice [60]. Besides, the regions of 

interest were drawn manually. In later research, 

automated method should be applied to eliminate intra- 

and inter-observer variation.  

In summary, the positive relationship between texture 

features, colour features and other factors such as 

SUVmax and tumour size has been verified. The colour 

features are promising in NSCLC subtype differentiation 

and the features combining texture and colour of PET-CT 

images could result in better classification performance. 
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