| Title | Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review | | |-----------------------------|--|--| | Authors | Kornev, Vladimir A.;Grebenik, Ekaterina A.;Solovieva, Anna
B.;Dmitriev, Ruslan I.;Timashev, Peter S. | | | Publication date | 2018-01-01 | | | Original Citation | Kornev, V.A., Grebenik, E.A., Solovieva, A.B., Dmitriev, R.I. and Timashev, P.S., 2018. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Computational and structural biotechnology journal. 16, 488-502 DOI:10.1016/j.csbj.2018.10.011 | | | Type of publication | Article (peer-reviewed) | | | Link to publisher's version | https://www.sciencedirect.com/science/article/pii/
S2001037018300977?via%3Dihub - 10.1016/j.csbj.2018.10.011 | | | Rights | © 2018 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology https://creativecommons.org/licenses/by/4.0/ | | | Download date | 2024-05-13 20:17:03 | | | Item downloaded from | https://hdl.handle.net/10468/8287 | | ## Appendix A. Supplementary data **Table S1.** Inherent characteristics of hyaluronic acid (HA) as a candidate for hydrogel-based brain tissue regeneration. | Positive findings | Negative findings | |--|---| | natural component of the CNS (biocompatible) [23,25,41,44,46] immunoneutral [32,65] biodegradable [32] highly porous [34,44] stimulates neuronal viability and differentiation of NS/PCs, NPCs, and iPS-NPCs in vitro [32,41,42,49] stimulates neurite outgrowth of HNPCs in vitro [40] promotes neuronal differentiation of hiPS-NPCs in vivo [14,47] holds antigliosis and anti-inflammatory effects in vivo [45,46] supports survival and proliferation of C17.2 and ReNcell in vivo [65] shields transplanted cells from host immune response in vivo [14,65] HA-PLGA co-gel provides functional improvement in vivo [46] does not influence gel stiffness in co-gels [55] superior to Matrigel in terms of neurite outgrowth in SH-SY5Y cell line in vitro [38] HA-modified alginate supports greater cell viability and neuronal differentiation of ESCs and NSCs and neurite extension when compared to unmodified alginate [78] HA is a shear-thinning agent in co-gels [96] | poor adhesiveness [32,34,36,49] does not interact with integrins [23,35] does not support hiPS- NPCs viability in vivo [14] requires modifications to reduce the biodegradation rate [23,34,35,49] requires another component (e.g. collagen) for stabilization [49] swelling [93] | NS/PCs – neural stem/progenitor cells – a heterogeneous cell population; NPCs – neural progenitor cells; iPS-NPCs – induced pluripotent stem cell-derived neural progenitor cells; hiPS-NPCs – human induced pluripotent stem cell-derived neural progenitor cells; C17.2 – a mouse immortalized NSC line; ReNcell – human immortalized NPC line; PLGA – poly(lactic-co-glycolic acid); SH-SY5Y – human neuroblastoma cell line; ESCs – embryonic stem cells; NSCs – neural stem cells **Table S2.** Inherent characteristics of collagen type I as a candidate for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |---|---| | biocompatible [48,62–64] non-toxic[64] biodegradable [48] non-immunogenic [21,63–65] (though negated by Itosaka <i>et al.</i> [113]) self-healing <i>in situ</i> [64] reduces micro- and astrogliosis <i>in vivo</i> [64,66] gels under physiological conditions [49] supports differentiation of BMSCs towards neuronal lineage [59] retains and stabilizes HA [49,63] supports viability, proliferation, and differentiation of embryonic, postnatal, and adult NS/PCs when mixed with HA [49,63] supports neurite outgrowth [53,58,60,157] | does not naturally occur in mammalian brain tissue, except subventricular zone [49,61] has no measurable effect on NSC's viability [57,152] decreases in volume post gelation both <i>in vitro</i> and <i>in vivo</i> [64] increases stiffness in co-gels [55,59] inferior to Matrigel and self-assembling peptides in terms of NSCs survival and differentiation [61] inferior to Matrigel in terms of neural differentiation and neurite growth in hESCs experiments <i>in vitro</i> [107] inferior to Matrigel in terms of NSCs viability, differentiation, and migration <i>in vitro</i> [61] | BMSCs – bone marrow-derived stem cells; hESCs – human embryonic stem cells Table S3. Inherent characteristics of alginate as a candidate for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |---|---| | non-toxic [68,71–73,78,91] biocompatible [78] non-inflammatory [78] shields NSCs from host immune response [78] neuro-protective [73,75] stimulates structural and functional maturation of | does not naturally occur in mammalian brain tissue [67,68] poorly recovers after shear stress [77] hardly injectable [77] non-degradable [68] degradation products decrease NPCs | | NSCs, glial cells [74,75] supports NSCs viability and proliferation [71,74,78] promotes self-healing when used as a cross-linker for the chitosan-based hydrogel [91] chitosan-alginate co-gel supports viability and neuronal differentiation of NSCs [91] alginate-poly(γ-glutamic acid) ICC scaffolds are highly porous, non-cytotoxic to iPS-NPCs and promote their neuronal differentiation [76] | proliferation [68] insufficient porosity [68,74] requires modifications to provide cell attachment and survival [74,78] supports worse NSCs spheroids proliferation and differentiation when compared to chitosan-based hydrogel [77] requires cross-linking to prevent diffusion <i>in vivo</i> [78] | Table S4. Inherent characteristics of chitosan as a candidate for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |--|--| | thermally cross-linkable [84] highly porous [85,86,90] biodegradable [85] non-immunogenic [83] non-toxic to NSCs [77,91] cell-adhesive for cervical ganglion neurons and embryonic cortical neurons [82,85] decreases stiffness in chitosan-agarose co-gel [82] suits for drug delivery systems [89] favors NSC spheroids' proliferation and differentiation [77] improves functional recovery in zebrafish embryos when injected with neurosphere NSCs [77] chitosan-alginate co-gel supports viability and neuronal differentiation of NSCs [91] | long gelling time [84,89] can induce cationic cytotoxicity [90] requires modifications to support cell viability and neurite outgrowth [84,85] requires modifications for self-healing [77,89,91] | **Table S5.** Inherent characteristics of methylcellulose- and HAMC- as candidates for hydrogel-based tissue regeneration | Positive findings | | Negative findings | |--|---|---| | gelling at physiological temperatures [15] injectable [15,93,94,97,101,103] biodegradable [103] exhibit anti-inflammatory [93,97–100,103] and antiastrogliosis effects [98–100,103] non-toxic [97,103] applicable to drug delivery systems [92,93,95–100] support viability of NS/PCs [94] improve the solubility of sparingly soluble drugs [92] methylcellulose reduces swelling in co-gels [93,94,103] methylcellulose is self-healing [96,103] HAMC prevents cell sedimentation and aggregation [94,102] HAMC promotes NSC viability and penetration into host brain <i>in vivo</i> [102] | • | methylcellulose exhibits low
hydrophilicity unless blended
with HA or modified [92]
barely functionalizable
backbone [96] | Table S6. Inherent characteristics of Matrigel as a candidate for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |---|---| | contains growth factors and adhesive proteins [15,20,22,26,104] injectable [15] porous [180] physiological stiffness [106] growth factor-reduced form exhibits an anti- inflammatory effect, supports ES-NPCs viability and neuronal differentiation, and promotes host cell proliferation in vivo [109] promotes NS/PCs maturation and functionality in MCAO model [112] superior to collagen I in terms of neuronal differentiation and neurite growth in hESCs experiments in vitro [107] growth factor reduced form is superior to RADA16-I in terms of viability, migration, and maturation of ES- NPCs in vitro [109] superior to collagen I in terms of NSCs viability, neuronal differentiation, and migration in vitro [61] supports viability and maturation of spiral ganglion neurons in vitro [111] applicable for modification of porous PEG scaffold to promote rat neurons' neurite outgrowth [156] | unstandardized composition [15,66,105,109] immunogenic [15] solidifies at room temperature [108] inferior to salmon fibrin in terms of stimulating neurite growth of cortical and spinal neurons <i>in vitro</i> [106] inferior to RADA16-I in terms of NSCs survival and neuronal differentiation <i>in vitro</i> [108] inferior to RADA16-I hydrogel in terms of NSCs viability <i>in vitro</i> [61] inferior to HA in terms of neurite outgrowth in SH-SY5Y cell line <i>in vitro</i> [38] increases stiffness in co-gels [110] | ES-NPCs – embryonic stem cell-derived neural progenitor cells; MCAO – middle cerebral artery occlusion; RADA16-I – a 16-mer peptide consisting of four RADA (arginine, alanine, aspartate, alanine) tetramers, also known as PuraMatrix; PEG – poly(ethylene glycol) ## Additional citation: [180] Balachandran NTL and HL and NMS and K. Fabrication of a matrigel—collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Biomed Mater 2017;12:45013. **Table S7.** Inherent characteristics of fibrin as a candidate for hydrogel-based brain tissue regeneration | Positive fir | ings Negative findings | | |---|--|-----------------| | easily tunable mechanical proper porous [121] biodegradable [15,119,121] injectable [15,113,122] bioactive (contains RGD peptide non-toxic [120] can be produced from patient's of [113] advantageous drug delivery platter promotes neuronal differentiation glial differentiation of NSCs in vivo [11] supports viability and promotes migration of BMSCs in vivo [11] salmon fibrin is superior to Matrineurite growth of cortical and sp Tisseel fibrin gel is superior to P differentiation in vitro [159] | • requires modifications for proper neuron-glial differentiation of ES-NPo in vitro [118] • inferior to collagen type terms of DRG neurite outgrowth stimulation in vitro [53] and maturation rather than ro [120] euronal differentiation and gel in terms of stimulating all neurons in vitro [106] | r
Cs
I in | $RGD-a\ cell-adhesive\ tripeptide\ (arginine-glycine-aspartate);\ DRG-dorsal\ root\ ganglion$ Table S8. Inherent characteristics of gellan gum as a candidate for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |--|--| | non-toxic [16,129] resistant to acid stress [16] injectable [124,126] in situ gelling [124] porous [127,129] | promotes oligodendrocytal differentiation of NS/PCs in vitro [126] aggregates NS/PCs [126] requires purification from divalent cations prior to injection [127,128] requires modifications to support cell viability, differentiation and neurite outgrowth [127–129] | **Table S9.** Inherent characteristics of self-assembling peptides and proteins as candidates for hydrogel-based brain tissue regeneration | Positive findings | Negative findings | |--|---| | biocompatible at working concentration [61,137,143] biodegradable [130,149] non-immunogenic [61] RADA16-I is porous [137,139,143] RADA16-I is injectable and self-healing [104,148,149] RADA16-I supports NSC migration and differentiation into neurons and astrocytes <i>in vitro</i> [108] Keratin-based hydrogels support NS/PC survival <i>in vitro</i> [136] RADA16-I is an advantageous and easy-tunable drug-delivery system <i>in vitro</i> [137,138] RADA16-I supports NSC viability <i>in vitro</i> [143] and <i>in vivo</i> [149] RADA16-I is mechanically tunable [143] RADA16-I improves viability, differentiation, morphological and functional maturation of ES-NPCs [129] keratin-based hydrogels are highly porous [147] keratins contain internal RGD motifs [147] K_xL_y, R_xL_y and E_xL_y are easily injectable, porous, cause minimal gliosis and inflammation, exhibit no evident toxicity to neurons and induce vascularization <i>in vivo</i> [130] RADA16-I readily integrates with host tissue and reduces microand astrogliosis <i>in vivo</i> [104,148] RADA16-I is superior to Matrigel in terms of NSC survival and differentiation <i>in vitro</i> [108] (though neglected by [109]) RADA16-I is superior to Matrigel in terms of NSC viability <i>in vitro</i> [61] elastin-like proteins support DRG viability <i>in vitro</i> [146] human keratin promotes neurite growth and vascularization of peripheral nerves <i>in vivo</i> [147] RADA16-I promotes neurite outgrowth and supports survival of iPS-NPCs <i>in vivo</i> [104] | RADA16-I is toxic to human NSCs at concentrations above 1% [108] keratins are slowly degradable [147] K_xL_y, R_xL_y and E_xL_y support limited ingrowth of nerve fibers and neuron-supportive astroglia [130] RADA16-I does not promote migration of neurons and oligodendrocytes and does not prevent host cells from apoptosis [148] RADA16-I is inferior to growth factor-reduced Matrigel in terms of viability, migration, and maturation of ES-NPCs in vitro [109] | K_xL_y , R_xL_y , and E_xL_y – diblock copolypeptide hydrogels including combinations of lysine and leucine (K_xL_y) , arginine and leucine (R_xL_y) , and glutamate and leucine (E_xL_y) Table S10. Inherent characteristics of PEG as a candidate for hydrogel-based brain tissue regeneration | | Positive findings | | Negative findings | |---|--|---|--| | • | highly hydrophilic [158] supports neurite extension at low concentrations (PC12 and DRG cells) <i>in vitro</i> [157,160] 4-arm PEG-cross-linked PLL hydrogels are biodegradable and promote viability, proliferation, and neuronal differentiation of NPCs and NSCs <i>in vitro</i> [153,154] PEG-RADA16-I composite supports DRG neurite outgrowth <i>in vitro</i> [161] IGF-1 gradient in PEG-PLGA system directs axonal growth <i>in vitro</i> [163] PLA-b-PEG-b-PLA-based hydrogels attenuate glial response <i>in vivo</i> [165,166] PEG-Si is thixotropic (shear-thinning and self-healing) [162] a PLA-b-PEG-b-PLA triblock-derived hydrogel is | • | poorly porous [156,159] non-degradable [152,157– 159,162,164,165] bioinert [160] photo-encapsulation of primary neurons induces apoptosis [120] poorly supports neuronal differentiation of NPCs <i>in vitro</i> [159] requires modifications to support cell viability and proliferation [152,158] PEG-Si increases glial response <i>in vivo</i> [162] | | | biocompatible and minimally-swelling [166] | | | $PC12-rat\ pheochromocytoma\ cells;\ PLL-poly-L-lysine;\ IGF-1-insulin-like\ growth\ factor\ 1;\ PLA-b-PEG-b-PLA-triblock\ polymer\ built\ of\ poly(lactic\ acid)\ and\ poly(ethylene\ glycol); PEG-Si-a\ thixotropic\ PEG-based\ hydrogel\ with\ dispersed\ silica\ nanoparticles$ **Table S11.** Inherent characteristics of MA- and MAA-based polymers as candidates for hydrogel-based tissue regeneration | Positive findings | Negative findings | |--|---| | pHPMA is highly porous [167] pHEMA can be modified to tune drug release kinetics in vitro [168] sialic acid-modified pHPMA is highly biocompatible, stimulates vascularization, host cell migration, their neuronal differentiation, TH-positive fiber growth, and prevents gliosis in vivo [167] pHEMA integrates with host spinal cord, stimulates neurofilament growth and attenuates glial response in vivo [171] pHPMA-RGD stimulates axonal growth and neuronal migration in vivo [172,174] pHEMA attenuates astrogliotic response and inhibits the synthesis of neuroinhibitory CSPG in vivo [175] PLA-b-pHEMA is non-toxic to spinal motoneurons and allows neurite outgrowth in vitro [170] PLA-b-pHEMA stimulates axonal growth and prevents glial scar formation in vivo [170] | pHEMA and pHPMA are non-degradable [12,16,167,170,175] pHEMA is stiff [168] pHPMA is swelling [167] pHPMA does not prevent glial scarring <i>in vivo</i> [172] pHPMA and pHEMA induce microglial infiltration <i>in vivo</i> [174,175] PLA-b-pHEMA induces microglial and macrophageal response <i>in vivo</i> [170] | pHPMA – poly(N-[2-hydroxypropyl] methacrylamide); pHEMA – poly(2-hydroxyethyl methacrylate); PLA-b-pHEMA – a block copolymer hydrogel built of poly(lactic acid) and poly(2-hydroxyethyl methacrylate); TH – tyrosine hydroxylase (the key dopamine synthesis enzyme)