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Abstract 

The propensity of a range of different sulfoxides and sulfones to cocrystallize with either 1,2- or 1,4-

diiodotetrafluorobenzene, via I∙∙∙O=S halogen bonding, was investigated. Cocrystallization occurred 

exclusively with 1,4-diiodotetrafluorobenzene in either 1:1 or 1:2 stoichiometries of the organohalide 

and the sulfoxide respectively, depending on the sulfoxide used. It was found that the stoichiometry 

observed was not necessarily related to whether the oxygen acts as a single halogen bond donor or if it is 

bifurcated; with I∙∙∙π interactions observed in two of the cocrystals synthesized. Only those cocrystals 

with a 1:2 stoichiometry exhibit C-H∙∙∙O hydrogen bonding in addition to I∙∙∙O=S halogen bonding. 

Examination of the Cambridge Structural Database shows that (i) the I∙∙∙O=S interaction is similar to 

other I∙∙∙O interactions, and (ii) the I∙∙∙π interaction is significant, with the distances in the two cocrystals 

among the shortest known. 

Introduction 

Cocrystals have attracted significant interest as novel crystalline materials, particularly within the 

pharmaceutical industry
1
 due to their potential to alter and optimize the physical properties of an active 

pharmaceutical ingredient. The use of strong hydrogen bonding involving reliable supramolecular 

synthons has recently attracted attention,
2
 and the utilization of weaker, non-covalent, interactions is 

also a developing area.
3
 In addition, screening methodologies have developed to accommodate this 

demand, with neat grinding,
4
 liquid assisted grinding

5
 and sonication

6
 commonly used. 

Halogen atoms are known to form strong, specific and directional interactions, termed halogen bonds, 

which have been exploited in the development of new solid materials.
7
 The strength of a halogen bond is 

dependent on the halogen atom involved; although there is some debate about the extent to which 

fluorocarbons can participate in halogen bonding.
8
 The nature of halogen bonding is greatly influenced 

by the electronic features of the functional group to which the halogen atom is associated.
9
 For example, 

the halogen bond interaction is strengthened upon fluorination of the aryl ring, which is reflected in a 

shortening of the halogen bond distance.
10

  



 

4 

The use of sulfur functional groups as coformers in cocrystallization is relatively understudied, 

although recent work has shown that the potent hydrogen bond acceptor ability of the sulfoxide group 

can be used to form cocrystals with a range of nitrogen functional groups via N-H···O=S hydrogen 

bonds.
11

 However, there are few reports of cocrystallization involving organoiodine interactions with 

sulfur functional groups specifically as a cocrystal former,
12,13

 and a search of the Cambridge Structural 

Database (CSD)
14

 for halogen bonding between iodine atoms and the sulfinyl or sulfonyl functional 

groups, within organic molecules, yielded 142 hits. Multicomponent systems account for 58 of these: 47 

are salts and 11 are DMSO solvates, including a disordered 1:1 DMSO solvate with 1,4-

diiodotetrafluorobenzene.
15

  

We were interested in whether the I∙∙∙O=S synthon could be utilized for cocrystallization, as outlined 

in Scheme 1, and if so, what stoichiometry of the coformers would be most frequently observed? How 

many iodine atoms, or lone pairs on the oxygen atom, would be utilized in cocrystal formation, and 

would these influence the stoichiometry observed? 

 

Scheme 1. Hypothesis under investigation. 

Experimental Section  

Chemicals. The sulfide precursors for compounds (±)-d, (±)-e and h (Figure 1) were synthesized 

according to the literature.
16,17

 Compounds (±)-d, (±)-e and l were synthesized using oxone oxidation.
18 

The literature procedure for the synthesis of (R)-d
19

 was used. Compounds f and h were synthesized as 

described below. All other compounds were purchased from Sigma-Aldrich and used without further 

purification, including m-CPBA, which was >77% purity grade. 
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Thianthrene 5-oxide (f). A solution of m-CPBA (2.72 g, 12.60 mmol) in CH2Cl2 (20 mL) was added 

dropwise over 1 h to a stirred solution of thianthrene (2.16 g, 12.00 mmol) in CH2Cl2 (10 mL) at 0 °C. 

The reaction mixture was stirred for an additional 2 h at 0 °C, washed with saturated NaOH solution 

(1.0 M, 3 x 20 mL) and brine (3 x 20 mL), dried with MgSO4 and concentrated under reduced pressure 

to yield the crude product as a white solid. Purification by column chromatography with hexane:ethyl 

acetate (80:20) gave f as a white solid (2.40 g, 86%), mp 142-143 °C, lit. 143 °C.
20

 Anal. Calcd for 

C12H8OS: C, 62.04; H, 3.47. Found: C, 62.39; H, 3.47. IR (KBr) max/cm
–1

: 1033 (S=O). 
1
H NMR 

(CDCl3, 300 MHz) δ (ppm): 7.43 (2H, ddd, J = 7.6, J = 7.6, J = 1.4 Hz, 2 x ArH), 7.55 (2H, ddd; J = 

7.6, J = 7.6, J = 1.1 Hz, 2 x ArH), 7.63 (2H, dd, J = 7.6, J = 1.1 Hz, 2 x ArH), 7.87 (2H, dd, J = 7.6, J = 

1.4 Hz, 2 x ArH). 

Di(2-phenyl)ethyl sulfoxide (h). A solution of m-CPBA (2.17 g, 15.75 mmol) in CH2Cl2 (20 mL) 

was added dropwise over 1 h to a stirred solution of di(2-phenyl)ethyl sulfide (3.63 g, 15.00 mmol) in 

CH2Cl2 (10 mL) at 0 °C. The reaction mixture was stirred for an additional 2 h at 0 °C, washed with 

saturated NaOH solution (1.0 M, 3 x 20 mL) and brine (3 x 20 mL), dried with MgSO4 and concentrated 

under reduced pressure to yield the crude product as a white solid. Purification by column 

chromatography with hexane:ethyl acetate (80:20) gave h as a white solid (3.34 g, 83%), mp 54-58 °C. 

Anal. Calcd for C14H14OS: C, 74.38; H, 7.02. Found: C, 74.51; H, 6.98. IR (KBr) max/cm
–1

: 1028 

(S=O). 
1
H NMR (CDCl3, 300 MHz) δ (ppm): 2.82–3.17 (8H, m, 4 x CH2), 7.20–7.35 (10H, m, 10 x 

ArH).  

Neat grinding. Screening involving mechanical grinding was employed with subsequent 

crystallization by slow evaporation from solution in all cases - even where grinding and IR indicated 

cocrystallization had not occurred. Screening was performed initially with a 1:1 ratio (0.2 mmol) of the 

coformers. For those experiments involving the sulfoxides, a 1:2 ratio (organohalide:sulfoxide) was also 

investigated. Mechanical grinding experiments were conducted in a Retsch MM400 Mixer mill, 

equipped with two stainless steel 5 mL grinding jars and one 2.5 mm stainless steel grinding ball per jar. 

The mill was operated at a rate of 30 Hz for 30 min. 
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Solution cocrystallization. For cocrystallization from solution, either a 1:1 or 1:2 ratio of the 

organohalide:sulfoxide respectively (0.3 mmol) were mixed together in the solid state, dissolved in 

acetonitrile and allowed to stand at ambient temperature until the solvent had completely evaporated, 

between 3–9 d. The resulting crystalline material was analyzed by PXRD, IR, DSC and, where 

appropriate, single crystal X-ray diffraction. For the cocrystals, 1c, (±)-1d, (±)-1e, 1f and 1h, the 

possibility of polymorphism was investigated by varying the solvent system used. 

1,4-Diiodotetrafluorobenzene:diphenyl sulfoxide 1:1 cocrystal (1c). Solid 1 (0.120 g, 0.30 mmol) 

and solid c (0.060 g, 0.30 mmol) were used. In all cases, needle crystals were obtained in quantitative 

yield, mp 102 – 106 °C. Anal. Calcd for C18H10F4I2OS: C, 35.79; H, 1.67. Found: C, 36.22; H, 1.76. IR 

(KBr) max/cm
-1

: 1026 (S=O). 

1,4-Diiodotetrafluorobenzene:(±)-phenyl 4-tolyl sulfoxide 1:1 cocrystal, α form (α-(±)-1d). Solid 

1 (0.120 g, 0.30 mmol) and solid (±)-d (0.064 g, 0.30 mmol) were used. Crystalline needles were 

obtained from ethanol in quantitative yield, mp 80 – 82 °C. Anal. Calcd for C19H12F4I2OS: C, 36.92; H, 

1.96. Found: C, 36.96; H, 2.27. IR (KBr) max/cm
-1

: 1046 (S=O). 

1,4-Diiodotetrafluorobenzene:(±)-phenyl 4-tolyl sulfoxide 1:1 cocrystal, β form (β-(±)-1d). Solid 

1 (0.120 g, 0.30 mmol) and solid (±)-d (0.064 g, 0.30 mmol) were used. In all cases prismatic crystalline 

blocks were obtained from solutions of acetone, toluene, acetonitrile or ethyl acetate, in quantitative 

yield, mp 60 – 62 °C. Anal. Calcd for C19H12F4I2OS: C, 36.92; H, 1.96. Found: C, 36.85; H, 1.81. IR 

(KBr) max/cm
-1

 1027 (S=O). 

1,4-Diiodotetrafluorobenzene:(±)-phenyl 2-methoxyphenyl sulfoxide 1:1 cocrystal ((±)-1e). Solid 

1 (0.120 g, 0.30 mmol) and solid (±)-e (0.070 g, 0.30 mmol) were used. Needle crystals were obtained in 

quantitative yield, mp 81 – 84 °C. IR (KBr) max/cm
-1

: 1017 (S=O). 

1,4-Diiodotetrafluorobenzene:thianthrene 5-oxide 1:2 cocrystal (1f). Solid 1 (0.120 g, 0.30 mmol) 

and solid f (0.139 g, 0.600 mmol) were used. Crystalline rods were obtained in quantitative yield, mp 
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122 – 124 °C. Anal. Calcd for C30H16F4I2O2S4: C, 41.58; H, 1.86. Found: C, 42.00; H, 1.92. IR (KBr) 

max/cm
-1

: 1031 (S=O). 

1,4-Diiodotetrafluorobenzene:di(2-phenyl)ethyl sulfoxide 1:2 cocrystal (1h). Solid 1 (0.120 g, 

0.30 mmol) and solid h (0.154 g, 0.600 mmol) were used. Using ethyl acetate as solvent led to a mixture 

of 1h with a slight contamination of both starting reagents 1 and h impurities. For all other solvents 

investigated, block crystals were obtained in quantitative yield, mp 72 – 74 °C. Anal. Calcd for 

C38H36F4I2O2S2: C, 49.68; H, 3.95. Found: C, 49.95; H, 3.92. IR (KBr) max/cm
-1

: 1015 (S=O).  

Infrared Spectroscopy. Infrared spectra were recorded on a Perkin-Elmer 1000 spectrometer in the 

range of 4000 to 500 cm
-1

.  

Differential Scanning Calorimetry. Thermal analysis was recorded on a DSC Q1000 instrument. 

Samples (2-6 mg) were crimped in non-hermetic aluminum pans and scanned from 30 - 180 °C at a 

heating rate of 4 °C min
-1

 under a continuously purged dry nitrogen atmosphere.  

Elemental Analysis. Elemental analysis was performed by the Microanalysis Laboratory, University 

College Cork, on a Perkin-Elmer 240 or an Exeter Analytical CE440 elemental analyzer.  

Powder Diffraction. PXRD data were collected using a Stoe Stadi MP diffractometer with Cu Kα1 

radiation (λ = 1.5406 Å) at 40 kV and 40 mA using a linear PSD over the 2θ range  of 3.5 - 45 with a 

step size equal to 0.5° and step time of 60 s.  

Single Crystal Diffraction. Single crystal data for f, h, 1c, α-(±)-1d, β-(±)-1d, (±)-1e, and 1f were 

collected on a Bruker APEX II DUO diffractometer, as previously described.
11b

 A Bruker SMART X2S 

diffractometer
21

 was used for (R)-d and 1h.
 
All calculations and refinement were made using the 

APEX2 software,
22,23

 and all diagrams were prepared using Mercury.
24

 

The detailed crystallographic data and structure refinement parameters for these compounds are 

summarized in Tables 1 and 2. 
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Table 1. Crystallographic Data for the Coformers 

 (R)-d f h 

Formula C13H12OS C12H8OS2 C16H18OS 

MW 216.29 232.32 258.38 

crystal system orthorhombic orthorhombic triclinic 

space group, Z P212121, 4 Fdd2, 8 P-1, 2 

a, Å 5.6947(10) 16.011(3) 5.5050(5) 

b, Å 8.1334(13) 32.093(6) 9.1593(9) 

c, Å 25.063(5) 4.0823(8) 13.5985(13) 

, ° 90 90 83.769(2) 

, ° 90 90 86.622(2) 

, ° 90 90 84.422(2) 

V, Å
3
 1160.8(3) 2097.7(7) 677.57(11) 

Dc gcm
-3

 1.238 1.471 1.266 

, mm
-
 0.249 0.473 0.224 

2θ range, ° 2.63 – 25.46 2.54 – 25.88 1.51 - 28.41 

T, K 300(2) 293(2) 100(2) 

total ref. 9085 2741 16152 

unique ref. 2101 907 3351 

obs. ref., I > 2σ(I) 1688 826 3161 

# parameters 137 73 163 

R1 [I > 2σ(I)] 0.0386 0.0296 0.0297 

wR2 0.1029 0.0685 0.0816 

S 1.064 1.1125 1.063 

Flack 0.00(11) 0.25(11) - 
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Table 2. Crystallographic Data for the Cocrystals 

 1c (1:1) α-(±)-1d (1:1)  β-(±)-1d (1:1)  (±)-1e (1:1) 1f (1:2) 1h (1:2) 

Formula C18H10F4I2OS C19H12F4 I2OS C19H12F4 I2OS C19H12F4I2O2 S C15H8F2IOS C19H18F2IOS 

MW 603.85 618.15 618.15 634.15 433.23 459.29 

crystal system triclinic monoclinic monoclinic Triclinic monoclinic triclinic 

space group, Z P-1, 2 P21/c, 4 P21/c, 4 P-1, 2 P21/c, 4 P-1, 2 

a, Å 10.2726(19) 9.5808(6) 14.198(4) 8.1472(17) 4.1227(7) 5.5989(10) 

b, Å 10.3038(19) 22.0739(15) 5.8227(17) 8.474(2) 27.533(4) 12.993(3) 

c, Å 11.177(2) 9.5433(6) 24.354(5) 15.551(4) 13.440(2) 13.328(3) 

, ° 113.093(4) 90 90 99.470(4) 90 100.050(7) 

, ° 108.007(5) 91.1500(10) 90.205(5) 98.137(8) 97.344(3) 95.129(7) 

, ° 100.815(5) 90 90 94.507(4) 90 95.360 (7) 

V, Å
3
 968.3(3) 2017.9(2) 2013.3(9) 1042.6(4) 1513.1(4) 945.0(3) 

Dc gcm
-3

 2.072 2.035 2.039 2.020 1.902 1.614 

, mm
-
 3.396 3.262 3.270 3.163 2.407 1.826 

2θ range, ° 2.19 – 25.79 1.85 – 27.12 1.67 – 27.20 1.34 – 26.49 1.70 – 26.50 1.56 - 24.99 

T, K 296(2) 296(2) 296(2) 296(2) 296(2) 300(2) 

total ref. 21496 24478 24206 47697 18003 9328 

unique ref. 3704 4440 4452 4275 3101 3311 

obs. ref., I > 2σ(I) 2985 3213 3057 3514 2666 2639 

# parameters 235 245 245 254 190 217 

R1 [I > 2σ(I)] 0.0265 0.0388 0.0330 0.0365 0.0572 0.0415 

wR2 0.0590 0.1025 0.0731 0.0942 0.1492 0.1312 

S 1.066 1.025 1.028 1.032 1.198 1.142 

 

Database Analysis of Iodine···π-ring Interactions. The radial distribution plot (Figure 3) was 

created from a search of the CSD, version 5.32 (November 2010), with the ConQuest 1.13 program.
25

 

The following general search flags were set: R factor of ≤0.10, “3D coordinates determined”, not 

disordered, no ions, no errors, not polymeric and only organic. This search yielded all 1-coordinate 

iodine atoms interacting with an aromatic ring, which were within 7.0 Å to the centroid of the ring, and 
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reported the distance to the centroid r as well as the orthogonal distance between the iodine atom and the 

plane of the aromatic ring h. From h and r, the value of the centroid shift, s (the in-plane distance 

between the centroid of the aromatic ring and the iodine atom) was calculated using Pythagoras’ 

Theorem (r
2
 = h

2
 + s

2
). The radial distribution plot was created by counting hits in bins of size 0.1 Å x 

0.1 Å (h versus s) and scaling the results by 1/4πr
2
, where r was the distance between the centroid and an 

atom at the center of the bin. 

Density Functional Theory Calculations. Density Functional Theory (DFT) calculations were 

carried out using Gaussian09
26

 and the M062X hybrid meta functional.
27

 The 6-31G(d,p) basis set was 

used for all atoms apart from iodine, for which the LANL2DZdp pseudopotential and basis set was 

used
28

 (taken from the EMSL basis set exchange
29

). After geometry optimisation, structures were 

verified to be at a minimum by the absence of an imaginary frequency, and all energies were corrected 

for zero-point error.  The systems containing both coformers were optimised using the counterpoise 

correction to account for basis set superposition error. Wiberg bond orders were calculated using the 

NBO program (as part of Gaussian09).
30

 

Results and Discussion 

Cocrystallization screening investigated 1,4-diiodotetrafluorobenzene, 1, with a range of sulfoxides and 

sulfones, a–l as shown in Figure 1. The 1,2- analogue, 2, was investigated with the sulfoxides a, c, g and 

h. The sulfoxides and sulfones were specifically chosen in order to minimize competing intermolecular 

interactions, and thereby maximize the likelihood of the desired I∙∙∙O=S synthon prevailing. At the 

outset, it was anticipated that cocrystals with either a 1:1 or 1:2 stoichiometry could be possible because 

(i) either one or both iodine atoms are available for halogen bonding and (ii) the lone pairs on each 

oxygen atom allows the oxygen atoms to potentially participate in either a discrete (capping) 

arrangement with the iodine atoms, or a bifurcated arrangement could be adopted.
31 
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Figure 1. The organohalides, 1–2, investigated as coformers with the sulfoxides and sulfones, a-l. 

The initial screening was performed via neat grinding of an equimolar mixture of the two coformers in 

the mill for 30 min at 30 Hz and the material generated was analyzed using PXRD. In addition, the 

individual components were dissolved in a range of solvents and solution crystallization, via slow 

evaporation, was undertaken. The reasons for this were twofold: (i) for comparison with the grinding 

experiments and (ii) in order to obtain crystals suitable for single crystal X-ray diffraction analysis. The 

results of the successful grinding experiments and the solution crystallization experiments, based on 

PXRD data, are presented in Table 3. In all cases the results from the grinding experiments were 

consistent with those obtained from solution crystallization, with cocrystallization being observed for 

five combinations of 1 and the sulfoxide, namely the cocrystals 1c, (±)-1d, (±)-1e, 1f and 1h. There was 

no evidence for cocrystallisation involving 2 or any of the sulfones (i-l) in this study. 
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Table 3. Screening Results for Possible Cocrystal Formation, based on PXRD data. 

coformer grinding CH2Cl2 acetone ethyl acetate ethanol acetonitrile Toluene 

c 1c 1c
 a
 1c

 a
 1c

 b
 1c

 c
 1c

 b
 1c

 d
 

(±)-d (±)-1d
 e
 (±)-1d

 a,e
 (±)-1d

 a,f
 (±)-1d

 b,e
 (±)-1d

 c,f
 (±)-1d

 b,f
 (±)-1d

 d,e
 

(±)-e (±)-1e Not tried (±)-1e
 a
 Not tried (±)-1e

 c
 (±)-1e

  c
 (±)-1e

 d
 

f 1f 
g
 1f

 a
 1f

 a
 1f

 c,h
 1f

 c
 1f

 c
 1f

 i
 

h 1h 
j
 1h

 a
 1h

 a
 1h

 c,k
 1h

 c
 1h

 c
 1h

 l
 

a 
left to stand for 2 d. 

b 
left to stand for 5 d. 

c 
left to stand for 4 d. 

d 
left to stand for 9 d. 

e
 exclusively the 

α-(±)-1d polymorph. 
f
 mixture of α-(±)-1d and β-(±)-1d polymorphs. 

g
 mixture of 1 and f using 1:1 

stoichiometry; 1:2 stoichiometry gave exclusively 1f. 
h
 mixture of 1f and small amount of coformers. 

i 

left to stand for 8 d. 
j
 mixture of 1 and h using 1:1 stoichiometry; 1:2 stoichiometry gave exclusively 1h. 

k
 mixture of 1h and small amount of coformers. 

l 
left to stand for 7 d. 

 

In combination with PXRD, IR and DSC were used to confirm cocrystal formation - as well as to aid 

in the determination of stoichiometric composition. DSC analysis was undertaken on the material 

obtained from the grinding experiments. In addition to the presence of new crystalline material, melting 

events due to 1 were observed in the samples involving f and h that were obtained by grinding, 

indicating the formation of cocrystals containing an excess of the sulfoxide coformer. Table 4 lists the 

melting points and the changes in the (S=O) stretching frequency for those combinations of coformers 

that gave rise to successful cocrystallization. A decrease in the melting point was observed for all 

complexes relative to that of the highest coformer. This is consistent with the major trend found in the 

melting point of cocrystals, whereby the melting point of the cocrystal is between the melting points of 

the two coformers.
32
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Table 4. Melting point, °C, and (S=O), cm
-1

, for cocrystals formed in this work. 

Sulfoxide coformers 
a Cocrystals

 mp, C (S=O), cm
-1

  mp, C (S=O), cm
-1

 

c 70–71 
34

 1037 
34

 1c 102–106 1026 

(±)-d 64–65 
35

 1015 α-(±)-1d 

β-(±)-1d 

80–84 

60–62 

1013 

1028 

(±)-e 98–99 
36

 1032 
36

 (±)-1e 81–84 1017 

f 142–143 
20

 1033 1f 122–124 1031 

h 54–58 1028 1h 72–74 1015 

a
 mp of 1 is 108–110.

33
 

In all cocrystals a bathochromic shift in the S=O stretching frequency relative to that of the sulfoxide 

starting material was observed. There is a red shift seen for 1c, α-(±)-1d, (±)-1e, 1f and 1g relative to the 

starting material, which is due to halogen bonding interactions between the halogen atom and the 

sulfoxide oxygen, leading to a decrease in the sulfoxide bond order and, hence, a decrease in the 

sulfoxide stretching frequency upon complexation. Similar effects have been seen involving hydrogen 

bonding to sulfoxides and sulfonamides.
11,37

 

To investigate the S=O…I interaction further, gas-phase DFT calculations were carried out on two 

coformer pairs, 1 with c, and 1 with e, using the M062X hybrid functional, as well as on the individual 

sulfoxides, Table 5. The calculations indicate a slight increase in the S=O bond length, and a 

corresponding small decrease in the S=O bond order, upon cocrystallization, which is consistent with 

the IR data. The overall interaction energy is quite low for 1 with c, but appreciable for 1 with e. 
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Table 5. Calculated and experimental parameters for two cocrystals, 1c and 1e, and the corresponding 

sulfoxide coformers. 

Coformer c e 

 Calculated Experimental Calculated Experimental 

O···I distance, Å 2.835 2.851(2) 2.820 2.815(4) 

S=O···I angle, ° 119 122.75(14)° 124 124.1(2) 

Interaction Energy, kJ/mol 4.9 - 30.1 - 

S=O in sulfoxide 1.506 1.4953(12) 
38

 1.507 unknown 

S=O in cocrystal 1.517 1.491(3) 1.518 1.483(4) 

S=O bond order in sulfoxide 1.22 - 1.21 - 

S=O bond order in cocrystal 1.17 - 1.17 - 

 

All cocrystals were grown from multiple solvents in order to investigate the potential for 

stoichiometric or polymorphic cocrystals. In all cases the neat grinding and solution crystallization 

matched the theoretical pattern obtained from single crystal analysis, as detailed in the Supporting 

Information. All cocrystals grown from the solution crystallization experiments exhibited a single 

endotherm in the DSC, consistent with the data presented in Table 4.   

The crystal structures of three coformers, (R)-d, f and h, were unknown at the start of this work and so 

these were determined to help with PXRD identification of any possible cocrystals, see Supporting 

Information. There is significant similarity between the structure of the monosulfoxide f and the α form 

of the related bissulfoxide, cis-thianthrene-5,10-dioxide, which is in the CSD with no 3D coordinates 

(refcode: TANTOX).
39

 Consideration of the reduced cell, the microanalysis data and the melting 

points
20,40

 (see Supporting Information) strongly suggest that the unit cell of cis-thianthrene 5,10-

dioxide in the CSD is actually that of the monosulfoxide, f, although the possibility that they are 

(almost) isostructural cannot be ruled out. 

 The crystal structure of the cocrystal 1c shows a 1:1 stoichiometry of the two coformers. As 

anticipated, halogen bonding is observed between the iodine and the oxygen of the sulfoxide group, 
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Table 6. The oxygen atom does not interact in a bifurcated manner, as may be expected from the 1:1 

stoichiometry. Instead, the second iodine atom is involved in I∙∙∙ bonding with the phenyl ring of the 

sulfoxide. Together, these two halogen interactions combine to form discrete 2:2 molecular complexes 

(Figure 2).  

Table 6. Details of the Intermolecular Interactions Observed in the Cocrystals 

Cocrystal Stoichiometry Nature of 

 interaction 

Distance
 a
 

Å 

Angle at I 

° 

Angle at O 

° 

Number of  

donors to O  

1c 1:1 I∙∙∙O 2.851(2) 172.46(7) 122.75(14) 1 

  I∙∙∙ 3.38
 b

   76.00
 c
   

α-(±)-1d 1:1 I∙∙∙O 

I∙∙∙O 

3.096(4) 

2.912(4) 

160.99(16) 

178.10(14) 

139.17(19) 

103.03(17) 

2 

β-(±)-1d 1:1 I∙∙∙O 2.850(3) 172.05(12) 159.79(18) 1 

  I∙∙∙ 3.46
 b

   75.48
 c
   

(±)-1e 1:1 I∙∙∙O 

I∙∙∙I 

2.815(4) 

3.8577(9) 

178.50(15) 

170.27(16) 

124.1(2) 

105.80(12) 
d
 

1 

1f 1:2 I∙∙∙O 

C-H∙∙∙O 

2.857(6) 

2.51 
e 

175.5(3) 

168 
f
 

123.3(4) 2 

1h 1:2 I∙∙∙O 

C-H∙∙∙O 

2.985(3) 

2.47 
g
 

173.71(11) 

154
 f 

119.75(13) 2 

a
 Note that the sum of the van der Waals radii is 3.50 Å.

31 b 
The distance from the I to the plane of the 

benzene ring. 
c
 The angle between the C-I bond and the plane of the benzene ring.

 d
 The angle at the 2

nd
 

I. 
e
 This is the H∙∙∙O distance; the C∙∙∙O distance is 3.421(10) Å. 

f
 The angle subtended at the H. 

g
 This is 

the H∙∙∙O distance; the C∙∙∙O distance is 3.372(4) Å. 

 

 

Figure 2. The 2:2 arrangement of coformers found in 1c. 
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The I···π interactions observed in the structure of 1c are also observed in that of β-(±)-1d, as detailed 

in Table 6. Therefore, a search of the CSD was undertaken and the results analyzed using the method 

described by Bissantz,
41

 who had examined F···π and Cl···π interactions. The results observed for the 

I···π interactions are shown as a radial distribution plot (Figure 3) with the location of the I···π 

interactions from structures 1c and β-(±)-1d highlighted in relation to those found in the CSD. Both 

interactions have among the shortest centroid to iodine distances found for a particular angular location 

from the ring centroid. 

 

Figure 3. Radial distribution plot of I···π interactions in the CSD. The y axis shows the height of the 

iodine atom above the plane of the phenyl ring, while the x axis indicates the distance between the 

iodine atom and the centroid of the phenyl ring, measured in the plane of the ring. The interactions 

observed in the structures of 1c and β-(±)-1d are also included, and are indicated by the arrows. The 

total number of interactions depicted is 6,645 which were obtained from a total of 839 crystal structures. 

 

The cocrystal (±)-1d forms two polymorphs of 1:1 stoichiometry. Crystals grown from ethanol gave 

rise to the α form, α-(±)-1d, in which the iodine forms the intended I∙∙∙O=S interaction, although in this 

case the oxygen is bifurcated between neighboring molecules of 1, resulting in an infinite zigzag chain 
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(Figure 4). The packing in this crystal structure is similar to that seen in the cocrystal between 1 and 

triphenyl phosphine oxide, of which one form is known.
31

 

 

Figure 4. The I∙∙∙O=S interactions present in α-(±)-1d. 

Crystals grown from acetonitrile gave rise to the β form, β-(±)-1d, which displays the anticipated 

I∙∙∙O=S halogen bonding, Table 6. Similar to the crystal structure of 1c, it consists of the oxygen 

interacting with one iodine atom, as well as I∙∙∙ bonding involving the phenyl ring of the sulfoxide 

(Figure 5). However, there is a difference in the overall packing, with the formation of infinite linear 

chains rather than the discrete 2:2 complex seen in 1c. The α polymorph is obtained from solutions of 

CH2Cl2, ethyl acetate, or toluene. A mixture of both polymorphs is initially obtained from acetone, 

acetonitrile or ethanol solutions, as evidenced by DSC and PXRD. The harvested crystals converted to 

the α polymorph after standing at room temperature over a period of two months. It was concluded that 

the β polymorph is metastable with respect to the α polymorph. 
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Figure 5. The I∙∙∙O=S and I∙∙∙ interactions present in β-(±)-1d. 

 

The crystal structure of (±)-1e shows a 1:1 stoichiometry of the two coformer components. The 

asymmetric unit consists of one molecule of (±)-e and two crystallographically unique half molecules of 

1, both located over an inversion center. 

The iodine of one molecule of 1 forms a halogen bonding interaction to the oxygen of the sulfoxide, 

so that the molecule of 1 is capped by two sulfoxide molecules, forming a linear three-molecule motif. 

The other molecule of 1 bridges neighboring motifs via I∙∙∙I halogen bonding (Figure 6). Notably, there 

is no significant interaction with the oxygen of the methoxy group. 

 

Figure 6. The I∙∙∙O=S and I∙∙∙I interactions present in (±)-1e. 

The 1:2 cocrystal 1f crystallizes with 1 located over the inversion center. The anticipated halogen 

bonding between the iodine and the oxygen of the sulfoxide group is observed (Table 6 and Figure 7). 

The oxygen acts in a bifurcated fashion, with additional weak hydrogen bonding to one of the aryl 

protons, forming a zigzag C(6) chain along the c-axis (Figure 8). Thus, the structure consists of chains 

of sulfoxide molecules linked together by the halogen-substituted aromatic molecules (Figure 9). The 

crystal structure of 1f provides further evidence that the crystal structure of f is correct - as it is highly 

unlikely that grinding of the bissulfoxide with 1 would result in a loss of oxygen in forming 1f. This was 
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investigated by grinding the sample of 1f in the absence of 1, which showed no change to the material, 

as evident from DSC, microanalysis and PXRD. Of all the cocrystals formed in this work, 1f is the only 

one that exhibits some instability; in the solid state it decomposes into the two coformers in 

approximately two weeks in ambient conditions. 

 

Figure 7. Halogen interactions in cocrystal, 1f. 

 

Figure 8. The zigzag C(6) hydrogen-bonded chain present in cocrystal, 1f. 

 

Figure 9. The packing in 1f, viewed along the c-axis. 

The crystal structure of 1h is similar to that of 1f as it too has a 1:2 stoichiometry. The molecule of 1 

lies over the inversion center and the sulfoxide acts in a bifurcated manner, exhibiting both halogen 



 

20 

bonding and weak hydrogen bonding (Figure 10). In 1h the protons α to the sulfoxide are involved in 

weak hydrogen bonding, forming C(4) chains in a similar manner to that seen in the structure of the 

parent sulfoxide, h, see Supporting Information. Such interactions have been shown to be structure 

directing in sulfoxides.
42

 The combination of halogen interactions and weak hydrogen bonds result in 

infinite 1D ladders in which the C(4) chains are bridged by the iodine species.  

  

Figure 10. Halogen bonds bridging the sulfoxides in 1h, left, and the C(4) chain between sulfoxides, 

right. 

Examination of the CSD showed that the S=O····I halogen bonding in these cocrystals is similar to 

those found in other crystal structures present in the CSD, Figure 11. 

 

Figure 11. A plot of S=O···I angle versus I···O distance for S=O···I halogen bonding found in these 

cocrystals (red) and the crystal structures deposited in the CSD (blue). 
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Concluding remarks 

Cocrystallization involving I···O=S halogen bonding was successful for five of the nine sulfoxides 

studied, in all cases with the para-substituted organohalide, 1. This may not be surprising; there are 

more reports of 1 being used in halogen bonding studies than 2. For all cocrystals, the I···O 

intermolecular interaction was the dominant interaction in all cases, with a distance range of 2.82 – 

3.09 Å, indicating strong halogen bonding. The length and directionality of the halogen bonds is 

consistent with the literature.
7a

 In all cases the organohalide molecule bridges the sulfoxide molecules. 

Both 1:1 and 1:2 stoichiometries, of 1:sulfoxide respectively, are observed; for the latter case this was 

always seen with a combination of both halogen bonding and weak hydrogen bonding. Despite the 

presence of the robust I···O=S synthon, it was found that it is the weak hydrogen bonding that is 

significant in determining the 3D architectures observed in the solid state. The stoichiometry observed is 

not necessarily related to whether the oxygen acts in a discrete fashion or if it is bifurcated; with I∙∙∙π 

interactions observed in two of the cocrystals examined. 

Two of the sulfoxides that did not cocrystallize with 1, a and b, have melting points just above 

ambient temperature. A third, g, is more interesting for two reasons: firstly, it crystallizes with Z'=2,
11,43 

and compounds with high Z' have been shown to be good coformers;
44

 although this is best used to 

indicate likely candidates for cocrystallization as it is an empirical observation. Secondly, the chemical 

structure of g is closely related to c and h, both of which did form cocrystals. The enantiopure sulfoxide 

(R)-d did not form a cocrystal with 1. 
 

Cocrystallization was not observed with any of the sulfones studied, which, similar to other studies,
11

 

suggests that the increased polarity of the sulfoxide functional group, in comparison with the sulfone 

functional group, is a significant contributor to the strength of the intermolecular interactions that 

promote cocrystal formation. 

In conclusion, cocrystals between 1,4-diiodotetrafluorobenzene and sulfoxides show that I∙∙∙O=S 

halogen bonding is a robust supramolecular synthon and merits further attention. For each of the 

cocrystals formed in this work there were two significant non-covalent interactions present, regardless of 
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the stoichiometry found in the cocrystals. For the 1:1 cocrystals, there were three sets of significant 

intermolecular interactions observed: (i) two I∙∙∙O=S halogen bonds, (ii) one I∙∙∙O=S halogen bond and 

one I∙∙∙π interaction, or (iii) one I∙∙∙O=S halogen bond and one I∙∙∙I interaction. For the 1:2 cocrystals, 

one I∙∙∙O=S halogen bond is seen in conjunction with one weak C-H∙∙∙O hydrogen bond.  
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1,4-Diiodotetrafluorobenzene cocrystallizes with sulfoxides via I∙∙∙O=S halogen bonding, in either 1:1 or 

1:2 stoichiometries of the organohalide and the sulfoxide respectively, depending on the sulfoxide used. 

Two cocrystals exhibit I∙∙∙π interactions and an examination of the Cambridge Structural Database 

shows the I∙∙∙π interaction is significant, with the distances in these two cocrystals among the shortest 

known. 

 


