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ABSTRACT: The combination of two active Li-ion materials (Ge and Sn) can result in 

improved conduction paths and higher capacity retention.  Here we report; for the first time; 

the implementation of Ge1-xSnx alloy nanowires as anode materials for Li-ion batteries.  Ge1-

xSnx alloy nanowires have been successfully grown via vapor-liquid-solid (VLS) technique 

directly on stainless steel current collectors.  Ge1-xSnx (x = 0.048) nanowires were 

predominantly seeded from the Au0.80Ag0.20 catalysts with negligible amount of growth was 

also directly catalysed from stainless steel substrate.   The electrochemical performance of the 

the Ge1-xSnx nanowires as an anode material for Li-ion batteries was investigated via 

galvanostatic cycling and detailed analysis of differential capacity plots.  The nanowire 

electrodes demonstrated an exceptional capacity retention of 93.4 % from the 2nd to the 100th 

charge at a C/5 rate, while maintaining a specific capacity value of ~921 mAh/g after 100 

cycles.  Voltage profiles and differential capacity plots revealed that the Ge1-xSnx nanowires 

behave as an alloying mode anode material, as reduction/oxidation peaks for both Ge and Sn 

were observed, however it is clear that the reversible lithiation of Ge is responsible for the 

majority of the charge stored.  

 

Keywords: Nanowire; GeSn alloy; Li-ion battery;  
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1. Introduction 

Advancement in Li-ion batteries requires the availability of scalable, cost-effective materials 

with high energy density.[1]  Despite its relatively low capacity (372 mAh/g), graphite remains 

to be the most commonly used anode material for Li-ion batteries.[2]  Other group IV materials, 

such as Si, Ge and Sn, exhibit bulk capacities far in excess of those of graphite (3579 mAh/g, 

1620 mAh/g, , 991 mAh/g respectively),[3] however, due to the enormous expansion of bulk 

Ge and Si upon lithiation, leading to the pulverisation of the material, the cycle life, and thus 

retention of the material, is decreased.  Nanowires offer a unique solution to this problem; the 

ability of nanowires to transition from crystalline to amorphous phase while retaining their 

structural integrity make them suitable materials for use in Li-ion batteries.  Hence, the 

manufacturing of group IV nanowires for use as battery materials has been widely explored.[3–

6]  Ge nanowires in particular have been identified for their suitability as anode materials in 

Li-ion batteries.[2,7–10]  Both Sn and Pb-catalysed Ge nanowires have previously been 

reported to demonstrate high capacities when used as an anode material for Li ion batteries[11], 

however there are no reports on the effect of the incorporation of Sn in the Ge nanowire lattice 

on the performance of Li-ion battery. 

 

Ge shows enhanced battery performance over its group IV counterparts, Si and Sn, and 

increased carrier mobility.[12]  However, Ge also demonstrates poor cycling life and capacity 

fading.  With its high electronic conductivities and theoretical capacity, Sn is a good candidate 

for alloying with Ge for energy storage applications.[13]  The combination of two active Li-

ion materials can result in improved conduction paths with higher capacity retention[14] due 

to different level of expansion of Ge and Sn component in the alloy with lithiation.[15]  The 

use of a Ge1-xSnx alloys has previously been shown to enhance the energy storage properties of 
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Ge in nanocrystal and amorphous form.[12–14]  Ge1-xSnx nanocrystals with x = 0.05 showed 

an improvement in capacitance and retention over Ge nanocrystals.[12]  However, the surface 

area of these nanomaterials is too high, leading to significant side reactions.[14]  The open 

continuous channel along the axis of a nanowire, on the other hand, could result in an increase 

in capacity and retention due to a decrease in sidewall reactions.[16]  Further to this, relative 

cost of the Ge anode materials could be also reduced by alloying it with the cheaper and more 

abundant Sn.  Therefore, we report the fabrication of Ge1-xSnx alloy nanowires using AuAg 

alloy nanoparticle catalyst, which are grown directly on stainless steel current collector for use 

as anode materials in Li-ion batteries.  The growth of Ge1-xSnx nanowires directly on the 

stainless steel current collector eliminates the requirement to prepare a conductive slurry of the 

active material with a binder.  The high capacities (> 900 mAh/g after 100 cycles) and 

impressive capacity retention verify the potential of our binder-free Ge1-xSnx nanowire 

electrodes as promising anode materials. 

 

2. Method 

Nanowire fabrication process: For the catalyzation of Ge1-xSnx nanowires in a three phase 

bottom-up growth dodecanethiol-stabilized, phase pure, Au0.80Ag0.20 alloy nanoparticles were 

used.  Colloidal nanoparticles were synthesized by co-reducing a mixture of chloroauric acid 

(HAuCl4) and silver nitrate (AgNO3) in a chloroform/water biphasic solution.[22,24,40,41]  

These metal nanoparticles were deposited o to a stainless steel substrate via spin coating.  A 

metal reaction vessel containing the nanoparticle-coated substrate was then left under vacuum 

at 180 °C for 12 hr to ensure a moisture-free growth atmosphere and the desorption of the 

surfactant molecules from the nanoparticle catalysts. 
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The Ge and Sn sources used were diphenylgermane (DPG) and tetraethyltin (TET) 

respectively.  These precursors were dissolved in anhydrous toluene (10 ml) in an N2 filled 

glove box with typical Ge and Sn precursor volumes of 0.025 ml and 0.0045 ml respectively.  

A solution containing both Ge and Sn precursors was loaded into a Hamilton sample-lock 

syringe inside the nitrogen-filled glovebox. 

 

Au0.80Ag0.20-coated stainless steel substrate was further annealed for 15 min at 440 ºC under a 

flowing H2/Ar atmosphere inside a tube furnace prior to the injection of precursors.  The 

precursor solution was then injected into the metal reaction vessel using a syringe pump at a 

rate of 0.025 ml min-1.  A H2/Ar flow rate of 0.6 sccm was maintained during the entire growth 

period.  Various growth times were employed to determine the growth rate, ranging from 15 – 

120 min. 

 

Characterization of nanowires: Bottom-up grown Ge1-xSnx nanowires were imaged on a FEI 

Helios NanoLab 600i scanning electron microscope (SEM).  All energy-dispersive X-ray 

(EDX) measurements were recorded in high-angle annular dark-field mode in the FEI Helios 

NanoLab 600i operating at 30 kV and 0.69 nA with an attached Oxford X-Max 80 detector.  

Error in the EDX measurements indicates a standard error of 0.5 at. %.  HRTEM imaging was 

performed in Titan Themis transmission electron microscope.  

Characterization of nanowires as anode in Li-ion battery: The electrochemical performance 

of the nanowires is evaluated on the stainless steel substrate which also functions as a current 

collector. As they are grown on the stainless steel they are quite well adhered to the substrate. 

One of the novel aspects of the electrodes is that they do not have to add any additional 

processing steps, for example preparation of a slurry consisting of our nanowires with a 
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conductive additive and a binder. Electrochemical measurements were performed using a 

BioLogic VSP Potentiostat/Galvanostat.  The electrochemical properties of Ge1-xSnx nanowire 

samples were investigated in a half cell configuration against a pure Li counter electrode in a 

two electrode, stainless steel split cell (a coin cell assembly that can be disassembled for post-

mortem analysis).  The electrolyte used consisted of a 1 mol dm-3 solution of lithium 

hexafluorophosphate salt in a 1:1 (v/v) mixture of ethylene carbonate in dimethyl carbonate 

with 3 wt% vinylene carbonate.  The separator used was a glass fiber separator (El-Cell ECC1-

01-0012-A/L, 18 mm diameter, 0.65 mm thickness).  The mass loading for anode samples was 

~ 0.3 mg per 0.5 cm2 and no additional conductive additives or binders were added.  A Mettler 

Toledo XP2U ultra micro balance was used to determine the mass of Ge1-xSnx nanowire 

material on the stainless steel substrates.  Galvanostatic cycling was performed at 0.2 C in a 

potential window of 1.5 – 0.01 V (vs Li/Li+). 

 

3. Results & Discussion 

The direct growth of Ge1-xSnx nanostructures on a stainless steel substrate for use as anode 

material for Li-ion batteries presents a new venture in the growth of Ge1-xSnx nanowires, and 

to our knowledge, this study represents the first reported instance of Ge1-xSnx alloy nanowires 

for use in Li-ion batteries.  Nanowire growth was carried out via a bottom-up method using 

diphenylgermane (DPG) and tetraethytin (TET) as the Ge and Sn sources respectively, and 

Au0.80Ag0.20 nanoparticles as the growth catalysts.[17]  A liquid-injection CVD approach was 

adapted for the growth of nanowires at 440 °C on stainless steel current collector substrate.  A 

scanning electron microscopy (SEM) image of Ge1-xSnx nanowires grown on stainless steel is 

presented in Figure 1(a).  The nanowires have a mean diameter of 75 ± 30 nm.  Low resolution 

STEM imaging (Figure 1(b)) reveals bright contrasted spherical nanoparticles at the tips of the 
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nanowires and negligible tapering of nanowire along their lengths.  Energy dispersive X-ray 

(EDX) analysis of the Ge1-xSnx nanowires revealed an average Sn content of 4.8 ± 2.1 at. %.  

This Sn incorporation was consistent throughout the nanowire body; without considering the 

spherical tip, both radially and axially, as verified by EDX elemental mapping (Figure 1(c)).  

EDX mapping also revealed the formation of a Sn-rich alloy at the tips of the nanowires at a 

growth temperature of 440 °C (Figure 1(c)).  

 

However, the use of a stainless steel substrate did alter the quality of the grown nanowires, in 

terms of morphology and Sn content, compared to Ge1-xSnx nanowires previously grown on Si 

substrates under similar growth constrains [17,18].  These differences could possibly be due to 

the difference in the surface energies of the Si and stainless steel substrates which result in 

different wetting and surface curvatures of the intermediate eutectic liquid (AuAg-Sn-Ge in 

this case) during VLS growth.  Differences in the curvature of the liquid eutectic can readily 

influence the absorption of growth species and growth kinetics at different interfaces (vapor-

liquid, liquid-solid etc.), thus resulting in Ge1-xSnx nanowires with different morphologies. 

Further to this, the incorporation of Sn in Ge is aided by “solute trapping” of Sn impurities 

which could be influenced by the growth kinetics, interfacial geometry and strain at different 

interface.[17,18]  Thus a different Sn incorporation in the GeSn alloy nanowires is observed 

for stainless steel substrates compared to Si growth substrate.  Additionally, the possible 

participation of iron-based catalysts as additional growth promoters[19] from the stainless steel 

substrate may also have resulted in a vapor-solid-solid (VSS)-like nanowire growth regime, 

thus resulting in wider diameter distribution of nanowire (Supporting Info, Figure S1).  The 

large variation in the Sn content (4.8 ± 2.1 at. %.) in the Ge1-xSnx nanowire sample can be 

attributed to the two competing growth regimes present with the participation of two different 
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growth promoters.  Analysis of the catalyst seed at the nanowire tips also revealed two distinct 

compositions, Fe rich Fe/Ge/Sn and Sn rich Au/Ag/Ge/Sn (Figure 1(d) and (e)).  The Ge/Fe 

rich nanowire tips had a composition of approximately 65 at. % Fe and 35 at. % Ge with 

minimal Sn incorporation (~ 3 at. %).  These Fe2Ge catalysed VSS like growth resulted in Sn 

deficient (≈ 1 at.%) Ge1-xSnx nanowires (Figure S2 in Supporting Information).  Alternatively, 

Ge1-xSnx nanowires with Sn rich tips, containing Au and Ag, contained a higher Sn amount (> 

5 at. %).  By analysing the nanowire tips (approximately 50 nanowires), it was found that 

statistically ~ 75 % of the nanowires were seeded by Au/Ag/Sn seed with high Sn.  Fe-seeded 

nanowires accounted for a minority of the Ge1-xSnx nanowires grown.  The lower Sn 

composition (~ 1 at. %) in the Ge1-xSnx nanowires (Supporting Info, Figure S2) seeded directly 

from stainless steel substrate is expected due to the VSS nature of the Fe seeded Ge1-xSnx 

growth; the eutectic temperatures of Fe-Ge[20] and Fe-Sn[21] are far above the growth 

temperature of the Ge1-xSnx nanowires.  As Sn incorporation is likely aided by a solute trapping 

mechanism,[17,22] participation and formation of a Fe-Ge-Sn based stable alloy solid growth 

seeds with very low Sn content does not encourage incorporation and trapping of Sn impurities 

at the seed-nanowire interface.  Interestingly, in the Fe-seeded Ge1-xSnx nanowires, Sn was still 

present in non-trivial amounts in the majority of the nanowires (Supporting Info, Figure S2).  

However, as both of these nanowire types; catalysed from stainless steel and AuAg alloy seeds; 

contribute as anode materials in Li-ion batteries to the overall capacitance and cycle life, both 

types of Ge1-xSnx nanowire were included in the determination of the average Sn composition. 

 

High resolution scanning transmission electron microscopy (HRSTEM) of the Au0.80Ag0.20-

seeded Ge1-xSnx nanowires (x = 0.048) revealed the highly crystalline nature of the nanowires 

with sharp seed/nanowire interfaces (Figure 2).  Figure 2(a) depicts the bright field HRSTEM 

image of a defect free, single crystalline Ge1-xSnx nanowires.  As defect free materials allow 
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for a long life cycles, the structural uniformity of the Ge1-xSnx nanowires is imperative for their 

use as Li ion anode materials.[23]  Fast Fourier Transform (FFT) analysis of the nanowire, with 

<110> zone axis alignment (Figure 2(a) inset), revealed an interplanar spacing (d) of 0.33 nm, 

which is marginally larger than the d value for bulk diamond Ge crystals of 0.326 nm (JCPDS 

04–0545).  The d spacing is expected to increase upon the incorporation of Sn into the Ge host 

lattice due to the difference in the lattice constants of Ge and Sn, which can instigate a lattice 

expansion, and has been previously reported.[22]  The nanowires predominantly displayed a 

<111> growth direction, the most common growth orientation for Ge nanowires with a mean 

diameter above 50 nm[22,24].  Generally, the crystal structure of the Ge1-xSnx alloy nanowires, 

with various Sn incorporations, exhibited a 3C lattice arrangement without any stacking faults 

and twin boundaries.  The interface between the nanowire seed and body was examined and 

can be seen in Figure 2(b).  No apparent tailing or segregation of Sn from the Sn rich seed was 

observed, confirming the sharp junction at the interface as indicated from the EDX elemental 

maps in Figure 1(c).  The interplanar spacing of the nanowire seed (d) was 0.28 nm, confirmed 

by measurement of the lattice spacing for multiple layers. The interplanar spacing and FFT of 

a nanowire seed (Figure 2(b), inset) matches well with tetragonal Sn (JCPDS 04–0673), 

confirming the Sn-rich nature of the nanowire seed.   

 

The electrochemical performance of the Ge1-xSnx nanowires as an anode material for Li-ion 

batteries was investigated via galvanostatic cycling in a half-cell configuration versus Li metal.  

A selection of the charge and discharge voltage profiles obtained from galvanostatic cycling 

using a C/5 rate are shown in Figure 3(a) and (b).  The first charge curve consisted of a sloping 

region from an open circuit voltage (OCV) (3.20 V) to ~ 0.35 V, followed by a long plateau 

from ~0.30 V to the low potential limit of 0.01 V.  The sloping region is associated with the 

formation of a solid-electrolyte interphase (SEI) layer and the irreversible decomposition of 

Page 9 of 24 AUTHOR SUBMITTED MANUSCRIPT - NANO-122713.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



10 

 

the electrolyte on the surface of the Ge1-xSnx nanowires.[25]  The plateau is attributed to the 

alloying of the nanowires with Li.[26]  The first discharge curve consisted of a plateau at ~0.50 

V, corresponding to the dealloying of the Ge1-xSnx nanowires.  The initial charge and discharge 

capacities were ~1716 and 867 mAh/g, respectively, corresponding to an initial Coulombic 

efficiency (ICE) of 50.5 %.  The large initial charge capacity is likely due to the formation of 

an SEI layer on the surface of the nanowires as well as the formation of quasi reversible 

Li2O.[27]  The ICE value obtained for Ge1-xSnx nanowires is comparable to or greater that ICE 

values reported for other Ge nanowire anodes.[7,28]  Low ICE is a persistent issue for alloying 

mode anode materials such as Ge and Si based negative electrode materials however, there are 

some reports demonstrating that the prelithiation of Si nanostructures can improve ICE values.  

Forney et al. prelithiated Si-CNT anodes via mechanical pressing of stabilized lithium metal 

powder onto the working electrode, and demonstrated a significant increase in ICE values.[29]  

The voltage profiles from the 2nd cycle to the 100th cycle are quite consistent, which is 

indicative of a highly reversible process. 

 

Ge1-xSnx nanowires has potential to demonstrate stable capacity retention due to lower volume 

expansion (305%) of Sn compared to Ge (382%).[15]  The specific capacity values obtained 

over 100 cycles at a rate of C/5 and the corresponding coulombic efficiencies are shown in 

Figure 3(c).  The specific capacity after the 2nd charge was ~986 mAh/g and after 100 cycles 

this decreased marginally to ~921 mAh/g, corresponding to an exceptional capacity retention 

of 93.4 %.  The average Coulombic efficiency from the 2nd to the 100th cycle was also 

impressive, having a value of 97.8 %.  Preserving such a high level of capacity after 100 cycles 

clearly validates the viability of Ge1-xSnx nanowires for use as an anode material in practical 

commercial Li-ion cells.  The specific capacity values achieved for the Ge1-xSnx nanowires are 

comparable to[11,30] or greater than[31–34] previously reported values for other Ge based 
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anode materials. Notably, the impressive electrochemical performance of the GeSn nanowires 

was achieved without the need of conductive additives or binders. 

 

In order to better appreciate the charge storage mechanism of the Ge1-xSnx nanowires, which 

results in their impressive capacity retention properties, differential capacity plots from 

galvanostatic charge and discharge curves were calculated.  The initial charge curve consisted 

of a series of plateaus which can be seen more clearly in the differential capacity plot (DCP) 

presented in Figure S3(a).  The DCP for the first charge consisted of 5 peaks in total.  The wide 

band centred at ~1.21 V is associated with the formation of an SEI layer and is only observed 

during the first cycle.[35]  The weak peak present at ~0.74 V may be attributed to the alloying 

of Li with the low amount of Sn (4.8 at. % Sn) which is present in the nanowires.  A reduction 

peak at this potential has previously been reported for Sn-based anode materials.[30]  The 

strong, sharp peak centred at 0.35 V is due to the due to the lithiation of crystalline Ge (c-Ge) 

and is only observed during the first cycle, suggesting that after the initial lithiation of the 

nanowires, they do not return to a fully delithiated crystalline Ge phase.  A similar observation 

for this reduction peak was made by Mullane et al. for Cu-catalysed Ge nanowires.[2]  The 

strong peak at 0.19 V and the weaker shoulder at 0.15 V are due to the initial formation of Li-

Ge alloys in the form of a-Li15Ge4 and c-Li15Ge4, respectively.[30]  A strong, wide, asymmetric 

oxidation peak was observed in the first cathodic scan from 0.35 to 0.55 V, which can be 

deconvoluted into two distinct peaks centred at 0.49 and 0.51 V, as shown in Figure S3(c), 

corresponding to the delithiation of the c-Li15Ge4 and a-Li15Ge4 phases, respectively.[36,37] 

 

The DCP for the 2nd charge consisted of two wide peaks centred at 0.53 and 0.39 V and a sharp 

peak at 0.18 V (Figure S3(d)).  The two broad peaks are associated with the formation of 
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amorphous Li-Ge alloys (a-LixGe → a-Li15Ge4) and the sharp peak is due to the formation of 

c-Li15Ge4.[10,38]  Contour plots, calculated from a series of DCPs from charge and discharge 

voltage profiles, ranging from the 2nd to the 100th cycle are shown in Figure 4.  The reduction 

peaks associated with the formation of the a-Li15Ge4 and c-Li15Ge4 phases, centred at 0.39 and 

0.18 V, remain present during the 100 cycles, as shown in Figure 4a.  This indicates highly 

reversible lithiation/delithiation of Ge1-xSnx nanowires.  The presence of these reduction peaks 

and the consistency of the potentials at which they occur is a major contributing factor to the 

impressive capacity retention of the nanowires from the 2nd cycle onwards.  Initially the 

majority of the charge stored by the Ge1-xSnx nanowires is due to the formation of the c-Li15Ge4 

phase, as indicated by the red area in Figure 4a, however as cycling continues the intensity of 

this reduction peak decreases slightly while the intensity of the reduction peak associated with 

the formation of the a-Li15Ge4 phase remains consistent.  This suggests that with increased 

cycling more of the charge stored is due to the transition from a-LixGe → a-Li15Ge4.  

 

The contour plot calculated from the DCPs for discharge curves is shown in Figure 4d.  The 

asymmetric oxidation peak associated with the delithiation of the c-Li15Ge4 and a-Li15Ge4 

phases remains after 100 cycles, however there is a significant decrease in the intensity after 

the first 30 cycles.  The stacked DCPs in Figures 4e and f indicate that the width of the peak 

increases with increased cycling, which may by associated with decreased charge storage due 

to the formation of the c-Li15Ge4 phase.  Of note, the discharge capacity values presented in 

Figure 4c do not significantly decrease after 30 cycles, hence the widening of this oxidation 

peak with increased cycling does not have a substantial negative influence on the overall charge 

stored.  Initially the majority charge storage mechanism for the Ge1-xSnx nanowires is the 

formation of the c-Li15Ge4 phase, however as cycling continues, less charge is being stored via 

the formation of this phase and more of the overall charge stored is due to the formation of the 
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a-Li15Ge4 phase.  We have previously observed a similar trend for GeO2 inverse opal structured 

anodes, whereby after a number of cycles the preferred charge storage mechanism was the 

formation of the a-Li15Ge4 phase rather than the c-Li15Ge4 phase.[39]  Deformation and 

electrochemical restructuring of nanowire morphology and amorphization of the GeSn 

material; similar to Ge nanowires [30]; was observed after 100 cycles (Figure S4 in Supporting 

Information). Formation of a mesh of active material by agglomeration of individual nanowires 

was observed for phase pure Ge nanowire after 100 cycles. [30] A very similar behavior was 

observed for the GeSn nanowires where a porous network of active material with ligament and 

mesh like morphology is formed after 100 cycles. Actually, compared to the phase pure Ge 

nanowire these GeSn nanowire shows better retention of nanowire morphology with the 

withholding of the cylindrical shape after 100 cycles (Figure S4), though other factors such as 

dimension, cycling rate, anode fabrication method etc. may affect this transformation. 

Retention of the alloy structure is also confirmed from the corresponding EDX mapping 

(Figure S4) with no apparent sign of phase segregation of Ge or Sn in the cycled structure.  

 

4. CONCLUSION 

Ge1-xSnx alloy nanowires were successfully grown directly on stainless steel substrates, current 

collectors for Li-ion battery, thus eliminating the requirement to prepare a conductive slurry of 

the active material with a binder.  Ge1-xSnx nanowires with x ≈ 0.048 were determined to be 

seeded both from the Au0.80Ag0.20 nanoparticle catalyst and from the substrate itself (Fe).  The 

Ge1-xSnx nanowires were single crystalline and defect free prior to lithiation.  The 

electrochemical performance of the the Ge1-xSnx nanowires as an anode material for Li-ion 

batteries was investigated via galvanostatic cycling.  The nanowire electrodes demonstrated an 

exceptional capacity retention of 93.4 % from the 2nd to the 100th charge at a C/5 rate, while 
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maintaining a specific capacity value of ~921 mAh/g after 100 cycles.  Voltage profiles and 

differential capacity plots revealed that the Ge1-xSnx nanowires behaved as a dual alloying mode 

anode material as reduction/oxidation peaks for both Ge and Sn were observed.  However, it 

was clear that the reversible lithiation of Ge was responsible for the majority of the charge 

stored due to the relatively low amount of Sn present within the alloy nanowires (4.8 at. % Sn). 

A future goal would be to find the Sn based group IV binary and ternary (including Si) alloy 

nanomaterials with critical composition as the highly efficient anode material for Li-ion 

battery.  

 

Supporting Information 

The Supporting Information is available from IOP. 

Supporting Information content experimental method, diameter distribution, EDX spectra and 

differential charge curves and STEM images of cycled material. 
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Figure 1: Structural and compositional analysis of Ge1-xSnx nanowires.  SEM and STEM 

images of the Ge1-xSnx nanowires grown on stainless steel reveal a large variation in nanowire 

diameter (a) across the substrate, but a negligible change in diameter due to tapering of single 

nanowires (b) respectively.  (c) EDX elemental mapping of Ge1-xSnx nanowires with x = 0.048.  

Ge is denoted in red and Sn in green.  The nanowire in (c) is AuAg-seeded, clearly apparent 

from the presence of a Sn rich nanowire seed in the elemental map and therefore may have a 

higher than average Sn content (x > 0.048).  Evidence of the two competing growth seeds is 

provided in (d) and (e), with EDX spectra displaying the presence of Fe, and Au and Ag 

respectively. 

Ge Sn

(a) (b)

(c)

(d) (e)
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Figure 2: HAADF HRSTEM analysis of Ge1-xSnx nanowires.  (a) The Ge1-xSnx nanowires are 

single crystalline with no apparent defects or twin boundaries.  The lattice spacing of the 

nanowires is 0.33 nm, confirmed by FFT (inset).  These nanowires are grown along the <111> 

direction.  The sharp interface between the nanowire seed and body is shown in (b); FFT 

provided in the inset.  There is negligible apparent tailing of the Sn rich seed at the growth 

interface.  

(a) (b)

<111>

<220>

0.33 nm
<200>

<101>

0.28 nm
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Figure 3: Electrochemical tests. Charge and discharge voltage profiles for (a) the 1st, 2nd, 5th 

and 10th cycles (b) the 25th, 50th, 75th and 100th cycles for Ge1-xSnx nanowires at C/5 in a 

potential window of 1.5 – 0.01 V (vs Li/Li+).  (c) Specific capacity and Coulombic efficiency 

values obtained for Ge1-xSnx nanowires over 100 cycles. 
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Figure 4: Differential capacity plots. (a) Differential capacity contour plot calculated from 

differential charge curves.  Stacked differential capacity curves demonstrating the reduction 

peak associated with the formation of (b) the c-Li15Ge4 phase and (c) the a-Li15Ge4 phase.  (d) 

Differential capacity contour plot calculated from differential discharge curves.  Stacked 

differential capacity curves demonstrating the oxidation peak associated with the delithiation 

of for Ge1-xSnx nanowires (e) from the 1st to the 30th cycle and (f) from the 31th to the 100th 

cycle. 
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