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metabolism  118 

POX Peroxidase. An active site on the PGH2 synthase enzyme  28 

PP Posterior pituitary  60 

Prodrug A pharmacologically inactive substance that is modified into an active drug in the 

body  20 

PVN Paraventricular nucleus  58 

PXR Pregane X receptor. A nuclear receptor involved in the induction of several CYP450 

isoforms  88 

Q-TOF Quadrupole time-of-flight  210 

RSD Relative standard deviation  228 

SCr Serum creatinine. A breakdown product of muscle tissues used as a marker of renal 

function  151 
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ABSTRACT 

Introduction 

Despite being available for more than 50 years, there is still much to learn about 

paracetamol. Postoperative analgesic regimens that maintain good pain control while 

minimising exposure to opiates are beneficial and paracetamol has had a resurgence in 

this role since an IV formulation came to market. However there is evidence to suggest 

currently licensed doses are sub-therapeutic, especially when administered orally or 

rectally. Higher, unlicensed doses are now being advocated but, prior to this study, there 

was little evidence of their safety in surgical patients. When assessing drug safety in 

surgical patients a number of surgery and patient related factors influence results, and 

these must be considered. 

Methods 

Major and intermediate surgical patients were recruited from two hospitals in Ireland. 

They were administered IV paracetamol at either 9g or 4g daily doses. In addition they 

received daily sub therapeutic doses of four other medicines to indicate the activity of 

their CYP450 enzymes that are involved in paracetamol metabolism. Urine and blood 

samples were collected to determine paracetamol pharmacokinetics, CYP450 activity, 

inflammatory cytokine concentration and for evidence of hepatotoxicity.  

Results 

There were 33 patients that participated in the study. There was no evidence of clinically 

significant hepatotoxicity occurring in any patient during the study period, but there could 

have been changes following this time. Paracetamol disposition was shown to change, 

however half-life remained relatively constant. There were a number of changes to the 

way paracetamol was metabolised following surgery that maintained this rate of 

elimination. 

Conclusion 

Doses of up to 9g per day given to major surgical patients for up to five days 

postoperatively produced no evidence of hepatotoxicity. Further research is warranted to 

determine the clinical utility of these higher doses 
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AIMS AND OBJECTIVES 

Aims 

The overall aim was to examine the safety of unlicensed doses of paracetamol in major 

surgical patients.  

 

Objectives 

The objectives of the research were to: 

1. Measure markers of hepatotoxicity in surgical patients for evidence of change 

arising from paracetamol administration; 

2. Establish IV paracetamol pharmacokinetics and metabolite concentrations from 

plasma and urine samples to assess changes to disposition; and 

3. Measure activity of CYP450 enzymes and inflammatory cytokines to examine for 

an association with paracetamol disposition 
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THESIS STRUCTURE 

This Thesis examines the safety of high doses of paracetamol in major surgical patients. In 

doing so, it presents information concerning the changes in drug metabolism that occur 

around the time of surgery that could be applied to a wide array of drugs. Previous work 

by Kennedy et al (1996) has demonstrated changes to paracetamol’s metabolism as a 

result of surgery. Although the overall clearance of paracetamol, hepatic blood flow and 

the volume of distribution were all unaltered, there was an important change to the way 

paracetamol was metabolised postoperatively, with an increase in the toxic metabolites 

(Kennedy 1996). These toxic metabolites are produced by CYP450 enzymes, which are 

well known as the source of many drug-drug interactions and inter-subject variability. 

Current literature evidences a renewed interest in the role of paracetamol in 

postoperative analgesia, with some groups advocating higher, unlicensed doses. When 

reported alteration to metabolism is considered in light of increased paracetamol doses 

being used in major surgical patients, there is a clear need for further investigation in this 

area. What cannot be determined from the earlier work, and what is lacking in the 

literature, is an understanding of why these changes occur. This is a major focus of this 

project.  

The novel component of this project is to simultaneously assess the effect surgery has on 

paracetamol metabolism and cytochrome P450 activity in order to understand these 

changes better. Increasing the understanding of the role the cytochrome P450 enzymes 

play in the changes to paracetamol metabolism is not only vital to this study, it will also 

provide information relevant to approximately 80% of clinically utilised medicines that 

share one of the cytochromeP450 enzymes involved in paracetamol’s metabolism.  

The context of this project is explained by first defining pain and pain mechanisms and 

the significance of postoperative pain, methods to treat it and paracetamol’s place within 

that treatment (Chapter 1.1). Chapter 1.2 focuses specifically on paracetamol itself, with 

particular emphasis on its metabolic pathway. Surgery is a time of great physiological 

changes which would intuitively be expected to impact on drug metabolism, since the 

liver is a major player in these changes. Chapter 1.3 discusses these changes to drug 

disposition in the surgical patient during this crucial time. Many other patient factors can 

also impact on paracetamol metabolism and these are discussed in Chapter 1.4. The final 

two sections concern the Phase I enzyme system which is responsible for the production 
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of paracetamol’s toxic metabolite. Chapter 1.5 reviews the enzymes of Phase I 

metabolism and Chapter 1.6 covers the means of assessing it. 

The research is then presented and the paracetamol study is then explained. 

Pivotal to the interpretation of the changes to metabolism occurring to patients, was the 

ability to measure the drugs which were being used either therapeutically or as markers 

of enzyme activity. As such, this project involved considerable assay development for 

both paracetamol and its metabolites in plasma and urine and the various parent drugs 

and their metabolites in plasma and urine. Whilst several separate assays could have 

been developed, substantial work resulted in the development of one assay with all 

probes and their metabolites being able to be recovered in one run. Techniques used 

were HPLC and LCMS. 

Physiological responses to surgery were monitored as per usual with the clinical situation, 

but changes in cytokines were measured using ELISA assays and correlated with 

alterations in the metabolite patterns.  

Clinical pharmacists are seen by many as the “Scientist in the High Street”. Pharmacists 

are trained to pull together all the elements of chemistry, pharmaceutics, pharmacology, 

biology and physiology to provide individualised patient care. This Thesis represents the 

development and application of those skills and knowledge to solve a clinical question. It 

involved the development of a novel assay as an instrument to answer part of this 

question which spanned the spectrum of chemistry to the patient. 
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1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 DEFINING PAIN 

The International Association for the Study of Pain (IASP) defines pain as the “unpleasant 

sensory and emotional experience associated with actual or potential tissue damage or 

described in terms of such damage”. Pain is therefore not a stimulus, but an individual 

and subjective perceptual experience (Basbaum et al. 2008). This experience is the final 

product of a complex information-processing network. There are a multitude of genetic, 

psychological, behavioural and social factors that may increase or decrease an individual’s 

response to, and description of, pain (Schaible et al. 2004; Webster 2008). Such factors 

include: previous pain experiences, cultural background, social supports, the meaning and 

consequence of the pain (e.g. if the pain-causing surgery is curative or palliative), the 

degree of control felt over the pain and disease, as well as fear, anxiety or depression 

(Loeser et al. 1999). These will all interact to produce what an individual describes as 

pain. Pain is thus different from nociception, which merely refers to perception of painful 

stimuli by the brain.  

Pain is the most common reason for consultation with a General Practitioner (GP) and is 

the most frequent symptom in hospitals (Loeser et al. 1999). In the acute setting, pain 

normally has a protective function to encourage healing and prevent on-going tissue 

damage. It serves as a rapid warning system to the motor neurons to act to minimise 

detected physical harm and preserve tissue integrity. Those with congenital or acquired 

insensitivity to pain can suffer many various health problems as a result of impairment to 

this warning system (Isselbacher 1994). Regardless of its aetiology, health professionals 

have a duty to help those in pain, not only treating the underlying cause but also using 

effective strategies to rapidly relieve suffering (Aronoff et al. 2005). The IASP and World 

Health Organisation (WHO) state that “the relief of pain should be a human right” (Schug 

et al. 2005). 

Pain can be broadly classified into two main types; acute nociceptive or chronic 

neuropathic. Each has different clinical features. 
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1.1.1.1 NOCICEPTIVE PAIN 

Nociceptive pain is the most common type of pain observed in acute clinical settings. It 

usually has a definable cause (Greene et al. 1993) and is considered the normal response 

to a noxious chemical, thermal or mechanical stimuli that arise from surgery, trauma or 

acute illness (Carr et al. 1999; McCaffery et al. 1999). Nociceptive pain results from the 

stimulation of specialised primary sensory nerve fibres (nociceptors) in the skin, 

periosteum, dental pulp, subcutaneous tissue and joint, visceral and somatic structures. 

This occurs most often from tissue damage and/or inflammation (Isselbacher 1994; 

Australian and New Zealand College of Anaesthetists and Faculty of Pain Management 

2005).  

The stimulation of these nociceptors results in impulses that travel along the peripheral 

nerve, past the sensory cell bodies in the dorsal root ganglion, along the dorsal roots and 

into the spinal cord or brain stem (Figure 1.1-1). Within the spinal cord or brain stem, the 

impulses activate second or third order neurons in the thalamic, limbic and cortical 

structures in the central nervous system (CNS) which is interpreted as pain by a conscious 

brain (Basbaum et al. 2008).  

Nociceptor is 
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Impulse generated
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Figure 1.1-1 Pain transmission pathway (Basbaum et al. 2008) 

Nociceptors require a high level of stimulation to create an impulse, so that they only 

transmit stimuli of noxious intensity (Rang et al. 2000). Mechanical or thermal receptors 

transmit much lower intensity stimuli, reflecting the necessity for subtlety in the type of 

information these receptors convey. Sufficient noxious stimulation causes the membrane 

of the nociceptor to become permeable to sodium ions, causing depolarisation. As other 

ions, such as potassium, efflux from the cell, the cell repolarises as it becomes negative 

again. If sufficient depolarisation and repolarisation occurs, an action potential is created 

and the stimulus is converted into an impulse, which is transmitted along the nociceptive 

fibres that extend from the cell body (Bruton et al. 2006).  

In the absence of any inflammation, acute pain will resolve quickly once the noxious 

stimulus has been removed. However, in the presence of inflammation, nociceptive 
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activity changes. Increased levels of prostaglandins (PG) and other inflammatory 

components, monoamines, cytokines, peptides and other eicosanoids, known collectively 

as the ‘inflammatory soup’, bathe the nociceptor (Kasper et al. 2008). These 

inflammatory mediators can promote intense and on-going stimulation of peripheral 

nociceptors, sustaining the initial response well after the noxious stimulus has been 

removed. This affects existing nociceptors and also activates dormant ones (Carr et al. 

1999). Such prolonged stimulation results in the sensitisation of nociceptors. Peripheral 

and central sensitisation causes the amplification of subsequent pain stimuli (both 

intensity and area of pain) and a lowered pain threshold. The outcome is that a low level 

stimulus, such as movement, touch or heat, becomes sufficient to activate nociceptors 

and result in pain. This is a protective strategy to avoid or minimise further injury and 

promote healing in the area of the injury (Charlton et al. 1999).  

Once generated in the periphery, the impulse is transmitted to the dorsal horn of the 

spinal cord along C or A-δ (delta) fibres. The fibre used for transmission further divides 

nociceptive pain into two groups, somatic or visceral, each with their own distinguishing 

features. Visceral pain involves C fibres, which are unmyelinated, small in diameter and 

slow-conducting, transmit poorly localised, dull, cramping or aching pain, whereas A-δ 

fibres are partially myelinated, large in diameter and fast-conducting and transmit well-

localised, sharp, hot or stinging pain, termed somatic pain (Basbaum et al. 2008). C fibres 

are sensitive to mechanical, thermal and chemical stimuli, whereas A-δ fibres are 

primarily sensitive to mechanical and thermal stimuli. Visceral pain may also have 

associated symptoms such as nausea and sweating. Both somatic and visceral pain may 

be accompanied by other signs of autonomic hyperactivity such as hypertension, 

tachycardia and pallor (Kasper et al. 2008).  

At the end of the C or A-δ nociceptive fibre, the impulse travels across the synaptic cleft 

at the interface (also known as synapse) of the visceral or somatic nociceptors and the 

dorsal horn, at which site all incoming signals from the periphery are integrated into the 

CNS (Carr et al. 1999). Neurotransmitters, such as substance P, adenosine triphosphate 

(ATP) and glutamate are released from the presynaptic nerve and diffuse across the 

synapse, interacting with receptors on the post-synaptic nerve. Similar to impulse 

generation in the periphery, if enough ion exchange occurs, the impulse is recreated in 

the post-synaptic nerve. At this stage endogenous opioids act on the opiate receptors on 

the presynaptic nerve, blocking the release of these neurotransmitters, particularly 
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substance P, and preventing further transmission of the painful signal (Basbaum et al. 

2008), thereby dampening the transmission of incoming signals (Carr et al. 1999).  

Ascending pathways then convey the nociceptive information rostrally to thalamic, limbic 

and cortical structures responsible for affective and sensory discriminative responses 

(Carr et al. 1999). These cephalad structures are involved in the experience and memory 

of pain and suffering. 

The final process of nociception is the changing or inhibiting of pain impulses known as 

modulation. Because this involves neurons originating in the brain stem that descend to 

the dorsal horn of the spinal cord, the pathways of modulation are also known as the 

descending pain system. By releasing substances such as endogenous opioids (encephalin 

and endorphins), serotonin (5HT), noradrenalin, -aminobutyric acid (GABA) and 

neurotensin, these descending fibres can inhibit the transmission of noxious stimuli and 

produce analgesia. This pain modulation is thought to contribute to the wide variation in 

pain experienced amongst a group of individuals given the same noxious stimuli (Loeser 

et al. 2001). 

1.1.1.2 NEUROPATHIC PAIN 

Neuropathic pain is associated with injury or disease of the peripheral or central nervous 

system and can be considered a disease rather than a symptom (Charlton et al. 1999). 

Following such an insult to the nervous system, a number of changes occur, including the 

development of central sensitisation, the reorganisation of synaptic connections in the 

spinal cord, and hyper-excitability of damaged peripheral nerves. This can result in 

normally non-painful stimuli being interpreted as painful, or pain occurring spontaneously 

without any stimulus. Historically, any type of pain was termed chronic pain if it has 

lasted longer than six months although the line has become a lot less clear in recent years 

with increased understanding of pain pathology. As this Thesis is only concerned with 

acute pain, neuropathic pain will not be discussed further. 

1.1.2 BURDEN OF PAIN 

It is difficult to determine if pain is a problem for the general population. While accurate 

statistics from national and international epidemiologic studies are not available, data 

from a variety of sources suggest that annually 15-20% of the population have acute pain 

in the United States and many other industrialized nations, and 25-30% have chronic pain. 
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The appropriate management of pain remains one of the most important pressing issues 

of society in general, and the scientific community and the health professions in 

particular. Millions upon millions of people are afflicted with acute and chronic pain each 

year, and in many patients it is inadequately relieved (Loeser et al. 1999). As a result, pain 

is the most frequent cause of suffering and disability that seriously impairs the quality of 

life for millions of people throughout the world (Loeser et al. 2001).  

1.1.3 POSTOPERATIVE PAIN 

Acute nociceptive pain is a predictable outcome of surgery due to the tissue damage that 

is caused (Millen et al. 2003). Surgical trauma causes the release of bradykinin, 

leukotrienes, histamine, substance P and PGs. These inflammatory cytokines lead to 

sensitisation of nociceptors, transduction from the periphery and the experience of pain 

(see Section 1.1.1.1).  

Maximal postoperative pain occurs for approximately three days following surgery. This 

time period varies widely, with the site and extent of the surgery being among the best 

predictors. Pain then decreases as wound healing and overall patient recovery takes 

place. Epidemiological studies have shown young females are at a higher risk of 

experiencing severe pain postoperatively than other surgical groups, with other factors, 

such as level of pre-existing pain, whether the surgery is curative or palliative and 

previous experiences of postoperative pain, also important contributors, as described in 

Section 1.1.1.1 (Shipton 2005; Macintyre et al. 2007). 

The experience of pain itself is a potent stimulus for the autonomic nervous system. 

Injury causes afferent neural stimuli and activation of the autonomic nervous system, and 

adds to the stress response of endocrine, metabolic and inflammatory activation 

contributing to organ dysfunction (Loeser et al. 1999; Kehlet et al. 2001a). These 

homeostatic responses occur at the injury site (e.g. cytokine release), in the adrenal 

cortex (release of corticosteroids), in the immune system and in widely distributed areas 

of the brain (Loeser et al. 1999). The stress response is detailed further in Section 1.3. 

It is a popular misconception amongst Irish surgical patients that pain after a surgical 

procedure is indicative of healing (Murphy et al. 2007). However, pain is not associated 

with or required for the healing of surgical wounds. There is evidence that poorly 

controlled postoperative pain actually impairs wound healing (McGuire et al. 2006), with 
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many of the immune and neuroendocrine functions critical to wound healing being 

dysregulated by pain. 

1.1.3.1 THE IMPORTANCE OF PAIN CONTROL AFTER SURGERY  

The need for reduction in pain postoperatively is not only a humanitarian necessity but, 

as described in the previous section, leads to better outcomes at both system and patient 

levels.  

At the system level, pain can precipitate or increase the duration of hospital stay (Chung 

1995), increase the cost of healthcare and reduce patient satisfaction (Sharrock et al. 

1995; Strassels et al. 2002; Shang et al. 2003). Prolonged recovery time can also result in 

delays in return to work (both inside and outside of the home) and the subsequent 

economic implications that follow these delays (Joshi et al. 2005). 

At the patient level, inadequate control of postoperative pain causes further preventable 

morbidity, leading to prolonged recovery time and increased risk of complications 

(Beauregard et al. 1998; Iohom et al. 2006). The importance of pain control to surgical 

patients was shown in a survey of 250 surgical patients across the United States, which 

found that patients are more concerned about pain after surgery than whether the 

surgery would actually improve their condition (Apfelbaum et al. 2003). 

Complications that are thought to increase from inadequately controlled pain include: 

decreased vital capacity, chest infection, hypoxia, respiratory failure (Ballantyne et al. 

1998), tachycardia, hypertension, myocardial ischaemia, myocardial infarction, delayed 

gastric emptying, nausea, vomiting (Anderson et al. 1996), neuroendocrine disturbances, 

metabolic disturbances, thrombus formation, insomnia, anxiety and depression 

(Apfelbaum et al. 2003).  

An increasingly prominent postoperative complication, chronic postsurgical pain, can also 

arise from even brief intervals of acute pain. The experience of pain early on in recovery is 

thought to shape the way pain evolves at later stage. Changes in gene expression of 

neurons, the basis of sensitisation, occur within 20 minutes of injury (Crombie et al. 1998; 

Carr et al. 1999; Crombie et al. 1999; Perkins et al. 2000). This can induce long-term 

neuronal remodelling and sensitisation, leading to chronic postsurgical pain (Australian 

and New Zealand College of Anaesthetists and Faculty of Pain Management 2005). Some 

researchers believe acute pain should be viewed as the initiation phase of an extensive, 
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persistent nociceptive and behavioural cascade triggered by tissue injury, and that 

adequate analgesia can prevent this cascade (Carr et al. 1999). 

With the trend toward ambulatory surgery and shorter hospital stays, adequate analgesia 

and avoidance of the complications listed above are especially important. Patient 

monitoring that might otherwise identify pain related complications is reduced with 

shorter inpatient stays (Schug et al. 1998).  

Since the identification of these long-term negative sequelae arising from poorly 

controlled postoperative pain, there have been several changes in surgical analgesia. 

Many of these changes have questioned traditional practices and most of them have 

involved changes to the use of medicines. There is now an increased focus on the 

prevention of pain, rather than its treatment because meticulous, perioperative analgesia 

can lower analgesic requirement and improve functional status months after surgery 

(Gottschalk et al. 1998).  

Historically, bolus doses of morphine had been the mainstay of postoperative analgesia. 

This new philosophy of prevention rather treatment saw the dawn of “multimodal 

analgesia” in the 1990’s (Kehlet et al. 1993). This was accompanied by a substantial 

increase in the prominence of postoperative pain in the research literature (U.S. National 

Library of Medicine et al. 2011)(Figure 1.1-2). 

 
Figure 1.1-2 Per cent of Pubmed titles containing “postoperative pain” (U.S. National Library of Medicine et al. 2011) 

Despite the evidence for fastidious pain management and analgesic administration, pain 

following surgery is still reported in the literature as occurring at “an unacceptable 

frequency and severity” (Rocchi et al. 2002; Apfelbaum et al. 2003). The designation of 

pain as the ”fifth vital sign” was originally used to increase the visibility of pain 

assessment in the clinical arena in the early 1990s (American Pain Society Quality of Care 



 

8 
 

Committee 1995), and while the attention given to pain has increased in recent years, 

practice patterns are much slower to change (Carr 2002; Dihle et al. 2006; Breivik et al. 

2008; Ene et al. 2008).  

Patients often report high levels of satisfaction with the effectiveness of their pain 

medication despite reporting poor satisfaction with overall pain control, indicating 

patients’ low expectations from analgesia or inadequate administration of effective 

analgesia (Bostrom et al. 1997; Rocchi et al. 2002).  

1.1.3.2 OPTIMISING POSTOPERATIVE PAIN CONTROL 

Optimal pain control reduces the intensity of movement-evoked pain and the surgical- 

stress response, improves postoperative recovery and reduces duration of hospital stay 

(Hriesik et al. 2008).  

Research on pain control to discover optimal methods of analgesia is difficult for a 

number of reasons. Pain research in the clinical setting is complicated by issues of 

consent, ethics and the subjective nature of pain. Moreover, clinical pain cannot be 

equated with experimentally induced pain, nor can it be objectively measured. In the 

clinical setting pain has to be accepted at the level it is reported. Other factors such as 

anxiety, sleep disruption and illness burden cannot be duplicated in the experimental 

setting, and conversely results arising from tightly controlled experimental studies may 

not be achievable or even applicable in a busy ward setting (Carr et al. 1999).  

Current best practice of postoperative pain management advocates a multimodal 

approach, targeting different pain pathways with combinations of medication, often in a 

stepwise approach. The well-known WHO pain ladder (Figure 1.1-3) was designed for 

management of non-acute pain. The ladder shows recommended progression of 

analgesics used for treating increasingly severe pain but it can be applied in reverse, in a 

step-down manner, in the postoperative setting (Shang et al. 2003).  

The use of multiple analgesics as part of multimodal analgesia acknowledges that there is 

not one perfect drug for treating all types of postoperative pain and approaches the 

treatment and prevention of acute pain from several different angles to uncouple tissue 

injury from the nociceptive and behavioural cascade that normally ensues (Carr et al. 

1999).  
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Figure 1.1-3 World Health Organisation analgesic ladder (Crews 2002).  

There is good evidence that multimodal approaches not only achieve better analgesia but 

potentially reduce side effects and analgesic requirements (Park et al. 1994; Breivik 

2002). By spreading analgesic demand across several different classes, the requirement of 

more side-effect-prone drugs, such as opiates, can be significantly reduced. Indeed, the 

avoidance of opiate use has become a key focus of modern analgesia (Cohen 1980; Smith 

1989). Analgesics are commonly evaluated in terms of their ‘morphine-sparing effect’. 

This is a measure of the average consumption of morphine of patients who also receive 

an additional drug under evaluation compared with a similar group of patients receiving 

morphine alone (Cobby et al. 1999). Studies that examine the effect of paracetamol and 

NSAIDs administration on morphine usage report morphine sparing of  30% (Cobby et al. 

1999; Fayaz et al. 2004; Pettersson et al. 2005). This represents a paradigm shift from 

historic use of one opiate as sole source of postoperative analgesia.  

By reducing the quantity of opiate used in exchange for other analgesics, there can be a 

reduction in nausea, vomiting, respiratory rate depression, constipation, ileus and other 

side effects associated with opiate use, without any compromise of analgesia.  

Improved analgesia can also result from the frequent dosing of different analgesics from 

standardised prescriptions and protocol (Harmer et al. 1998). In multimodal approaches, 

there is always at least one analgesic in sufficient concentration for therapeutic effect, in 

contrast to past opiate based practices of waiting for a previous dose to become sub-

therapeutic before a subsequent dose could be given, resulting in uncontrolled or 

“breakthrough” pain. 

There are several analgesics used for the treatment of acute pain. Most involve 

minimising the effects of substances involved in inflammation or transmission of pain 

signals. For example, a patient who undergoes a laparoscopic bowel resection may 
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receive paracetamol and parecoxib intravenously, fentanyl and bupivicaine epidurally, 

fentanyl transdermally and a lidocaine patch applied to the port sites. As the patient 

improves, oxycodone may be given orally (Harney 2009).  

Analgesics currently used in the acute pain setting can be considered in four classes: 

paracetamol, anti-inflammatories, local anaesthetics and opiates. Each class will be 

discussed briefly, covering its method of action and role within current pain management 

strategies. Because of paracetamol’s importance to the Thesis, it is mentioned here but 

covered in greater detail in later sections.  

1.1.3.2.1 PARACETAMOL 

The WHO has recommended that paracetamol be used as the starting point for all 

analgesic regimens and it is a major ingredient in numerous prescription analgesics and 

over-the-counter medications (World Health Organisation 2009). Paracetamol is the most 

commonly used analgesic in the world with 24 billion doses being sold annually in the US 

alone (Amar et al. 2007).  

Compared with other analgesics, paracetamol is favoured as a first-line agent because it is 

cheap, safe and relatively free from side effects. It is not mood altering and does not 

cause tolerance, addiction, dependence or withdrawal. Its efficacy has been 

demonstrated in a wide variety of acute and chronic painful syndromes (Bannwarth et al. 

2003; Remy et al. 2005; Schug et al. 2005). It can be used safely during pregnancy and 

lactation (Prescott 1996).  

Due to this safety, paracetamol plays a particularly important role in the treatment of 

surgical patients on discharge because of its wide commercial availability and lack of legal 

restrictions associated with potent opiate analgesics (Apfelbaum et al. 2003). Fear of 

addiction to opiates and avoidance of their adverse effects also leads to more patients in 

this setting using paracetamol.  

Paracetamol is also suitable for combining with other analgesics and has been shown to 

improve the quality of analgesia and reduce a patient’s demand for stronger pain relief 

(Cobby et al. 1999). In part due to its wide availability and perceived safety, deliberate or 

accidental overdose are not uncommon. In overdose, paracetamol can cause potentially 

fatal damage to the liver. The mechanism of action of paracetamol is discussed in Section 

1.2 
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Paracetamol’s role postoperatively has changed dramatically in the last decade. The rise 

of multimodal analgesia and fall of cyclo-oxygenase-2 selective inhibitors (COX-2 

inhibitors) have caused re-examination of the other non-opiates available. Use of non-

selective Nonsteroidal anti-inflammatory drugs (NSAIDs) had decreased postoperatively 

because of their gastrointestinal toxicity and increased bleeding risk, risks COX-2s were 

specifically designed to avoid (Guindon et al. 2007). So with few remaining alternatives, 

attention refocused on paracetamol. There were several key events around the time of 

the COX-2 withdrawal in 2004 that gave paracetamol new life in postoperative analgesia: 

 Paracetamol in combination NSAIDs was shown to improve postoperative 

analgesia above NSAID administration alone (Hyllested et al. 2002); 

 Paracetamol was shown to be “morphine sparing” (Delbos et al. 1995; Cobby et al. 

1999; Korpela et al. 1999; Hernandez-Palazon et al. 2001; Fayaz et al. 2004); 

 Licensed rectal doses of paracetamol were shown to be inadequate (Kvalsvik et al. 

2003); 

 Studies exceeding licensed doses were published in the literature, both in loading 

doses (Juhl et al. 2006; Gregoire et al. 2007) and repeated postoperative doses 

(Schug et al. 1998); 

  A well tolerated IV formulation of paracetamol was bought to the European 

market and licensed in Ireland in 2003 (Bristol-Myers Squibb 2009).  

The last event was the most significant in changing the role of paracetamol 

postoperatively. This formulation overcame the two most significant barriers to wide 

spread use of paracetamol postoperative: paracetamol’s poor oral absorption 

postoperatively; and patient distaste for rectal administration (Sinatra et al. 2005). 

So the situation evolved of the more widespread use of a potentially toxic drug, that 

previously was poorly absorbed now being given by a route that guaranteed complete 

absorption. It was these concerns about toxicity that led to the research contained in this 

thesis being conducted. 

1.1.3.2.2 ANTI-INFLAMMATORIES (NSAIDS/COX-2 INHIBITORS/STEROIDS) 

NSAIDs and COX-2s are generally considered second-line analgesics in the treatment of 

acute pain. While corticosteroids share their analgesic activity, corticosteroids are 
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accompanied by multiple systemic adverse effects that outweigh their usefulness as 

analgesics. 

When considering the mechanism of action of NSAIDs, and that of paracetamol later, it is 

useful to briefly review the inflammatory response (Figure 1.1-4). Trauma to cells, either 

by injury or infection, activates phagocytic cells already present in the tissue. These 

phagocytes digest foreign or injured cells and release inflammatory mediators that 

augment the inflammatory response (Diaz-Perez et al. 1976; Goetzl 1976; McClatchey et 

al. 1976).  
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Figure 1.1-4 Eicosanoid synthesis and place of anti-inflammatory drug activity 

A major component of cell membrane, phospholipid, is released as foreign or injured cells 

are digested by phagocytes, or as a direct result or cellular injury. Phospholipids are then 

broken down by the enzyme phospholipase into arachidonic acid (AA). AA is then 

enzymatically processed into a group of signalling molecules, collectively called 

eicosanoids. Eicosanoids are classified into four families, leukotrienes or one of the three 

families of prostanoids: prostaglandins (PG), prostacyclins and thromboxanes (Soberman 

et al. 2003). 

The availability of free AA, which must be liberated from esterified stores in complex 

lipids, limits the synthesis of eicosanoid, and their subsequent activity (van Dorp et al. 

1964; Goetzl 1976; McClatchey et al. 1976).  

PGs are the most relevant eicosanoid to anti-inflammatory activity. AA is converted to 

PGG2 by cyclooxygenase (COX). PGG2 is then subject to further enzymatic activity to form 

http://en.wikipedia.org/wiki/Prostaglandin
http://en.wikipedia.org/wiki/Prostacyclin
http://en.wikipedia.org/wiki/Thromboxane
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the other prostanoids, one of which being PGE2. PGE2 is most relevant to pain and 

inflammation as it is responsible for peripheral sensitisation. Although PGs themselves 

have no intrinsic pain-evoking properties, they act to sensitise nociceptors to bradykinin, 

serotonin, histamine, adenosine and other components of the ‘inflammatory soup’, as 

discussed above, perpetuating the effect of the initial noxious stimulus (Armstrong et al. 

2008). By inhibiting PG production, NSAIDs prevent a crucial step in the inflammatory 

response and amplification of pain stimulus (Figure 1.1-5).  
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Figure 1.1-5 Site of action of Anti-inflammatories (Extension of fig. 1.1-1) 

Corticosteroids target phospholipases, which are required for AA synthesis, whereas 

NSAIDs and COX-2 inhibitors inhibit COX producing PG. The net result of all three drugs is 

reduced PG production. Because PGs are also involved in the homeostatic mechanisms of 

maintaining the gastric mucosa, gastrointestinal erosion is a significant side effect of both 

corticosteroids and NSAIDs (Macintyre et al. 2007). The antiplatelet effect of NSAIDs, 

derived from the inhibition of thromboxane synthesis, is also well documented. While 

useful as antithrombotics in cardiovascular medicine, NSAIDs used as antiplatelets may 

have negative consequences for postoperative bleeding and haemostasis (Niemi et al. 

1997).  

Anti-inflammatory drugs are synergistic with paracetamol, improving analgesia when 

given in combination (Hyllested et al. 2002; Schug et al. 2005) and having a significant 

morphine- sparing effect of up to 30% (Cobby et al. 1999; Romsing et al. 2002). NSAIDs 

are available in formulations for oral, rectal and intramuscular use, although the latter 

route is used infrequently. 

1.1.3.2.3 LOCAL ANAESTHETICS 

Local anaesthetics have been used since the native South Americans discovered the 

numbing effects of the coca plant. Its derivative, cocaine, was first used medicinally in the 

19th century but has since been replaced with synthetic analogues with more favourable 

side effect profiles (Yentis et al. 1999). Local anaesthetics act by blocking sodium channels 
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in a nerve cell membrane, preventing it from depolarising, thereby inhibiting generation 

of an action potential and blocking transmission of the painful stimulus in the spinal cord 

(Shang et al. 2003; Macintyre et al. 2007). 

Local anaesthetics are utilised increasingly in advanced techniques or ‘regional 

anaesthesia’. These include paravertebral block, used prior to breast surgery, or 

infiltration of port sites following laparoscopic surgery, in order to minimise postoperative 

pain (Australian and New Zealand College of Anaesthetists and Faculty of Pain 

Management 2005). They are more traditionally used topically, prior to cannulation, for 

anaesthesia during short procedures, such as dental extraction, or in combination with 

opiates for epidural anaesthesia.  

Local anaesthetics are rapidly metabolised and have negligible oral bioavailability. If a 

prolonged effect is desired, they must be given by infusion or injection into tissue with 

poor blood flow.  

For procedural pain, local anaesthetics may be used as a sole agent (e.g. suture 

insertion/removal, dental procedures), providing analgesia only while the procedure is 

taking place. For procedures where pain is expected to be more prolonged, an 

intraoperative dose will provide relief immediately postoperatively, when pain is most 

severe, or an infusion is used to provide continuing treatment. Transdermal patches of 

local anaesthetic are currently en vogue for continued delivery of anaesthetic to a painful 

area, such as laparoscopic port sites or new stomas and have the significant advantage of 

minimising systemic drug administration.  

Local anaesthetics are not specifically analgesics and can block all nerve conduction, both 

motor and sensory. The smaller diameter, unmyelinated C fibres are most responsive to 

local anaesthetics, and large, myelinated A fibres the least responsive. This allows some 

specificity with respect to which nerves are blocked. C fibres, which convey 

pain/temperature and postganglionic autonomic (sympathetic) signals are the first to be 

affected, followed by B fibres (sympathetic), Aδ (pain, touch, temperature), Aγ (muscle 

spindle tone), Aβ (touch, pressure) and, finally, Aα (motor, proprioception) (Macintyre et 

al. 2007). Sympathetic blockade is reported first, followed by pain and temperature 

blockade.  

Because local anaesthetics block sympathetic innervation and pain transmission, they are 

able to prevent ‘evoked’ pain, the hyperalgesia and allodynia arising from central 
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sensitisation that can follow surgical trauma. Subsequently, there is increasing evidence 

of reduction in recovery time and post-surgical chronic pain syndromes with the use of 

local anaesthetics (Boezaart 2006). The use of these drugs in regional anaesthesia has also 

been shown to reduce the incidence of nausea and vomiting as well as thromboembolic, 

pulmonary, cardiovascular and gastrointestinal complications (Guindon et al. 2007). 

When used by skilled operators, side effects of local anaesthetics are very rare. Common 

minor-moderate adverse effects from epidural administration are associated with 

blockade of touch or motor function which can impede the return to mobility and hinder 

recovery. More serious adverse effects can occur when local anaesthetics are injected or 

absorbed into the blood stream. The resultant adverse effects also arise from the 

blockade of sodium channels, leading to interference with the generation of action 

potentials and conduction in the heart, causing arrhythmias, and in the CNS, causing 

convulsions (Macintyre et al. 2007). Single enantiomer formulations have improved 

selectivity for sensory over motor blockade and decreased potential for cardiotoxicity 

(Macintyre et al. 2007). 

1.1.3.2.4 OPIATES 

The term “opiate” refers to a broad range of narcotic drugs that were originally derived 

from opium. Now synthetically manufactured, opiates share many structural similarities 

chemically but their analgesic activity varies widely (Shang et al. 2003). They are potent 

analgesics, used mainly for moderate to severe pain. Opiates reduce the distressing, 

affective component of pain more so than dull the sensation of pain itself (Drolet et al. 

2001). Unlike paracetamol and anti-inflammatory drugs, the dose/response of opiates 

varies greatly between individuals, and even within the individual, depending on their 

state of health. Dose adjustment based on age is more appropriate than doses based on 

weight (Camu et al. 2002). Individualisation of dose is essential because of the wide 

variation in response; opiates are fatal in overdose and have many common adverse 

effects. The most common adverse effects due to opiates include nausea and vomiting, 

sedation, respiratory depression, euphoria and dysphoria, among many, many others 

(Shang et al. 2003). 

Exogenous opiates act by mimicking the body’s own endogenous opiates involved in the 

descending pathways of pain regulation (Schaible et al. 2004). Exogenous opioids exert 

their analgesic activity in the same way, binding to opiate receptors on the presynaptic 
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nerve, blocking the release of neurotransmitters and impeding nociceptive transmission. 

They also act supraspinally to activate inhibitory pathways that descend to the spinal 

segment (Camu et al. 2002).  
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Figure 1.1-6 Site of action of opiates (continuation of Figure 1.1-1) 

Opiates are extremely effective analgesics and are the basis of pharmacological 

management of postoperative pain (Carr et al. 1999). The diffuse, visceral pain carried by 

C fibres is especially sensitive to opiates, whereas the Aδ fibres are less sensitive (Guindon 

et al. 2007). Opiates used most often postoperatively include morphine, fentanyl, 

oxycodone and tramadol.  

From a practical standpoint, most opiates used for the control of acute pain are 

controlled drugs in Ireland which must be stored securely and face restrictions on their 

prescribing, dispensing and administration. In a hospital setting these restrictions can 

hinder or delay their administration. On discharge and at home they may not be 

prescribed because of these restrictions, or prescribed in insufficient quantity. 

Paracetamol and anti-inflammatory drugs are not subject to these restrictions, an 

important advantage to their use.  

Morphine is the most commonly used opiate in the acute pain setting, both intra-

operatively and postoperatively. It is cheap and widely available in both oral and 

parenteral formulations. It is considered the gold standard with which other analgesics 

are compared and has been used as an analgesic for centuries.  

Morphine’s metabolism is via Phase II glucuronidation (a pathway shared by paracetamol, 

described in Section 1.2) to two products; predominantly morphine-3-glucuronide (M3G) 

and morphine-6-glucuronide (M6G) in lesser amounts. M6G has increased analgesic 

potency and fewer side effects compared with morphine. Conversely, M3G has no 

analgesic properties but is associated with producing several of the adverse effects 

associated with morphine, including sedation, respiratory rate depression and clinical 

tolerance. M3G may also antagonise morphine (Wittwer et al. 2006). Both metabolites 
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rely on active renal excretion. Accordingly, morphine should be avoided in patients with 

end-stage renal disease and its dose reduced in renal impairment, as substantial amounts 

of M3G can accumulate, causing all the adverse effects with inadequate pain control.  

Fentanyl is used both intraoperatively and postoperatively; however, it is not available in 

an oral formulation due to high first-pass losses. It has a shorter half-life- an advantage 

given the fluctuating demands for analgesia in the surgical patient- and requires no 

adjustment for renal impairment. Both fentanyl and morphine are used in combination 

with local anaesthetics in spinal anaesthesia (Macintyre et al. 2007).  

Tramadol is a mixed agonist, affecting serotonergic receptors in addition to opiate 

receptors. It is less potent than morphine but is associated with many of the same 

adverse effects, particularly changes in consciousness, with the elderly being the most 

susceptible. Access to the drug is simpler as it is not a controlled drug, although there are 

reports of change to this status (Macintyre et al. 2007). Tramadol’s mixed agonism and 

effect on multiple receptor types is thought to lead to its high percentage of CNS adverse 

effects. Oxycodone is a more recent addition to the acute pain formulary. It is increasingly 

used in place of oral morphine, having twice the analgesic potency, but is subject to less 

frequent adverse effects, particularly nausea, vomiting and changes to consciousness. It is 

preferred by many patients, but at greater than ten times the cost of an equivalent dose 

of oral morphine, its cost-utility is debated by pharmacoeconomists (Macintyre et al. 

2007). 

In addition to standard routes of administration, opiates can be used with specialised 

techniques postoperatively. Intravenous (IV) patient-controlled analgesia with morphine 

is available in most Irish hospitals and is considered the optimal treatment for 

postoperative pain in patients who are unable to take oral medication (McCaffery et al. 

1999). Some specialised centres will also offer patient-controlled epidural analgesia. 

When compared with intermittent bolus dosing of opiates, patient-controlled analgesia 

results in better pain control and greater patient satisfaction, without increasing the 

incidence of opioid-related adverse effects (Macintyre et al. 2007). The intensity of pain is 

rarely constant, but with patient-controlled analgesia, small and frequent IV bolus doses 

of opioid can be given whenever the patient becomes uncomfortable, enabling rapid 

titration to the degree of pain the patient is experiencing. This flexibility helps to 

overcome the wide patient variability (8-10 fold) in opiate requirement and avoids dose-

related adverse effects. It can also save medical/nursing time involved in the assessment 
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and administration of intermittent analgesia (Macintyre et al. 2007). One study in 

patients undergoing abdominal surgery showed significantly improved pain control, but 

with greater than twice the morphine consumption, in patients with patient-controlled 

analgesia compared to nurse administered intramuscular prn morphine (Everett et al. 

2005). Despite the greatly increased consumption of morphine, the patient-controlled 

analgesia group did not have a greater incidence of adverse effects. Nurse administration 

of prn opiates varies greatly between nurses (Gordon et al. 2008a), reinforcing the role of 

the patient as the best person to control their own analgesia. All of these findings: better 

pain control, increased opiate consumption, no increase in significant adverse effects, are 

emphasised in a Cochrane Review (Hudcova et al. 2006). 

Intrathecal and epidural routes of administration opiates are also used. They reduce the 

drug load to the patient and, potentially, the adverse effects. Adverse effects from 

opiates are often mediated by peripheral receptors, which are avoided by direct 

administration in the CNS. This route can also provide sustained analgesia for 12-24 hours 

after administration due to the sparsity of opiate metabolising enzymes in the CNS. 

However, the utility of opiates is often limited by their adverse effects. Respiratory 

depression is potentially life-threatening, constipation is almost guaranteed, and nausea 

and vomiting is a common cause of cessation of treatment. Pruritus from opiate induced 

histamine release is also a significant cause of morbidity. Some of the many other 

significant adverse effects include urinary retention, hallucinations, drowsiness and 

confusion, to which the elderly are more prone and more sensitive (Cobby et al. 1999). 

The adverse effects are so considerable that, as described above, the “morphine-sparing 

effect” is a commonly used indicator of the benefit of other analgesia.  

Managing the adverse effects from opiate use adds considerably to the cost of these 

otherwise cheap drugs. A double-blind randomised controlled trial comparing IV 

morphine with IV ketorolac for treating pain after limb injury, showed that while the 

acquisition costs of ketorolac were three times those of morphine, when administration 

costs, adverse events and admission for adverse events were taken into account, 

ketorolac was much cheaper (Rainer et al. 2000).  

Concern over the safety and addiction potential of opiates often results in under-

prescribing and inadequate dosing in the hospital setting, even in the presence of severe 

pain and minimal or no side effects (Gordon et al. 2008b). This often leads to inadequate 
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analgesia (Schug et al. 2007). Interpatient variability can alter response to opiates and 

lead to wide- ranging effects from a similar dose (Schug et al. 2007). Factors that affect 

response include patient and drug characteristics such as prior drug exposure, prior 

responses to analgesics, age, organ function, pain severity, anticipated pain duration, co-

morbid conditions and concomitant drug use (Macintyre et al. 2007; Gordon et al. 

2008b). Due to these factors, titration of opiates to the optimal dose is difficult to 

achieve, and rarely happens (Bannwarth et al. 2003). While opiates are more effective as 

analgesics, the fear of adverse effects limits their application. Similarly, fear over the 

renal, haematological and gastrointestinal adverse effects of NSAIDs also limits their 

usage. Avoidance of these adverse effects is especially important perioperatively. 

Paracetamol, which has a wide therapeutic index and an enviable safety profile, has many 

advantages in this way that are reflected in its wide use postoperatively. 
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1.2 PARACETAMOL 

Paracetamol is a white, odourless, crystalline powder with a melting point of 169-171°C 

and a molecular weight of 151.2 g/mol. The octanol/water partition co-efficient is 0.5 

(Moffat et al. 2011). The empirical formula is C8H9NO2 and structural formula is shown in 

Figure 1.2-1. 

 
Figure 1.2-1 Paracetamol 

Paracetamol is a weak organic acid with a pKa of 9.5. It is moderately soluble in hot 

water, alkaline aqueous solutions and more polar organic solvents such as methanol and 

acetone (Prescott et al. 1971).  

1.2.1 DISCOVERY 

Paracetamol was first synthesised in 1878 (Morse 1878). It was developed as an 

antipyretic agent along with its prodrug, phenacetin, in the second half of the 19th 

century after its parent drug, acetanilide, was found to cause cyanosis and 

methaemoglobinemia (Bertolini et al. 2006). Phenacetin went to market ahead of 

paracetamol because it was believed to be less toxic, although the details of this reported 

toxicity were unclear (Prescott 1996). It was not until 1948 that Brodie and Axelrod 

showed that paracetamol was the major metabolite of phenacetin and that it was 

paracetamol that conferred phenacetin’s pharmacological activity, thereby ‘rediscovering’ 

paracetamol (Brodie et al. 1948).  

1.2.2 PHARMACEUTICAL DOSAGE FORMS 

Paracetamol is unusual in that it is available in a wide variety of formulations. Hampered 

by poor aqueous solubility (1 in 70) it had been available in tablets, capsules, 

suppositories and suspensions for many decades (Van Aken et al. 2004). Advances in 

formulation provided an effervescent soluble tablet and more recently IV infusions, 

initially as a prodrug, proparacetamol (Depre et al. 1992), and more recently as 

paracetamol itself (Van Aken et al. 2004). Proparacetamol is no longer in use and is not 

licensed in Ireland (Irish Pharmaceutical Healthcare Association 2010). While increasing 
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access to the drug, the variety of formulations and combinations of paracetamol with 

other medications has been implicated as a cause of unintentional overdose (Albertson et 

al. 2010). 

Following single doses in healthy adults, the route of administration does not have a 

significant effect on metabolism (Clements et al. 1984) with identical elimination half-

lives following a 1g IV or oral dose (Depre et al. 1992), however the pattern of 

metabolism may be different. 

1.2.3 CLINICAL PARTICULARS 

1.2.3.1 THERAPEUTIC INDICATIONS 

Oral and rectal formulations of paracetamol are licensed in Ireland for the short-term 

management of headaches, musculoskeletal disorders, menstrual pains, toothache and 

for symptoms of common colds and flu. It may also be used for the relief of mild to 

moderate pain associated with osteoarthritis (Glaxo Smith Kline 2008). IV formulations 

are indicated in the short-term treatment of moderate pain following surgery and short 

term treatment of fever (Bristol-Myers Squibb 2009). 

1.2.3.2 POSOLOGY AND METHOD OF ADMINISTRATION 

Licensed doses of paracetamol for adults are 1g repeated if necessary 3-4 times a day, at 

a minimum four hour interval to a maximum of 4g in any 24 hour period. For children the 

does is 10-15mg/kg/dose at the same interval (Glaxo Smith Kline 2008; Bristol-Myers 

Squibb 2009). IV formulations of paracetamol are administered to deliver the same 

licensed dosage as detailed above by IV infusion over 15 minutes (Bristol-Myers Squibb 

2009). 

1.2.3.3 DRUG INTERACTIONS 

Paracetamol has few clinically significant drug interactions. The most notable are: 

1. Prolonged use of paracetamol may enhance the anticoagulant effect of coumarins 

and may inhibit the metabolism of busulphan; 

2. The absorption of paracetamol may be enhanced by metoclopramide and reduced 

by colestyramine; and 
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3. Probenecid can almost half paracetamol clearance by inhibiting conjugation with 

glucuronic acid (Lacy et al. 2005; Klasco 2009). 

There is also evidence of oral contraceptive hormones increasing the glucuronidation of 

paracetamol, although the clinical relevance is uncertain (Bock et al. 1994). 

1.2.3.4 WARNINGS, CONTRAINIDCATIONS AND PRECAUTIONS FOR USE 

Doses above those currently licensed are associated with liver damage. Because of the 

variety of products available that contain paracetamol, it is important that only one 

source of paracetamol is administered at any one time.  

Paracetamol is contraindicated in those hypersensitive to paracetamol, or any of the 

excipients (Glaxo Smith Kline 2008; Bristol-Myers Squibb 2009). It should be used with 

caution in those with hepatocellular insufficiency, severe renal insufficiency, chronic 

alcoholism, chronic malnutrition or dehydration (Bristol-Myers Squibb 2009). 

1.2.3.5 PREGNANCY AND LACTATION 

Although no comprehensive studies have been conducted, paracetamol is not thought to 

cause undesirable effects during pregnancy or for the new born infant. One study has 

shown minor alterations to disposition (Miners et al. 1986). Experience with IV 

formulations is especially limited (Bristol-Myers Squibb 2009).  

Following oral administration, paracetamol is excreted in small amounts into the breast 

milk, however no undesirable effects have been reported and paracetamol may be used 

in breast-feeding women (Bannwarth et al. 2003; Graham et al. 2005b). 

1.2.3.6 UNDESIRABLE EFFECTS 

Considering the quantity of paracetamol consumed annually, it is remarkably safe drug. 

Undesirable effects are either classified as rare (>1/10000, <1/1000) or very rare 

(<1/10000) (Bristol-Myers Squibb 2009). Studies have shown paracetamol adverse effects 

to be comparable with placebo (Moore et al. 1997). Most of the reported adverse 

reactions involve hepatotoxicity. Other rarer adverse effects are those common to most 

medicines; nausea, vomiting, rash, blood disorders and allergy (Fischereder et al. 1984).  

Initial IV formulations of proparacetamol were associated with higher rates of allergy, 

however these have improved since paracetamol replaced proparacetamol. 
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Proparacetamol is a diethylglycidyl ester of paracetamol and after being cleaved by 

esterases present in the body, the remaining diethylglycine was a known allergen 

(Graham et al. 2005b). Proparacetamol was also associated with pain at the injection site 

on infusion, however paracetamol infusions have less than half the incidence, in one 

study reducing from 33% to 14.7% (p<0.005) (Murat et al. 2005).  

More recently, IV paracetamol has been related to hypothermia and hypotension. These 

appear to be related to the rate of administration, occurring only in susceptible 

individuals, such as those hypovolaemic after surgery. Because paracetamol is poorly 

soluble, mannitol and disodium phosphate are used to increase its solubility. Both of 

these excipients are known to cause hypotension, and in those affected, reducing the 

infusion rate minimises this adverse response (Klasco 2009).  

1.2.3.6.1 LIVER TOXICITY 

The metabolism of paracetamol produces a hepatotoxic metabolite, N-acetyl-p-

benzoquinoneimine (NAPQI). Theoretically, alterations that produce significantly more 

NAPQI or reduce its conjugation could lead to toxicity, but this does not occur at 

therapeutic doses.  

Prospective studies show that repeated use of a true therapeutic paracetamol dosage 

may slightly increase the level of serum aminotransferase activity, but hepatic injury, 

failure or death, have also been reported, although extremely rarely (Kurtovic et al. 2003; 

Moling et al. 2006). Some retrospective reports show a higher rate of increased serum 

aminotransferase levels, and several reported associated liver injury and death in 

paracetamol users. However, inaccuracies in recording of paracetamol dose in some case-

reports suggest that these cases may be inadvertent overdoses, rather than true 

therapeutic dosages (Dart et al. 2007). These reports may also be confounded by 

aminotransferase increases from other causes. Additionally, a retrospective review of 

pooled aminotransferase data measured during placebo treatments of nearly 500 

patients from 13 Phase I studies showed that 20% of the subjects had at least one 

aminotransferase value above the upper limit of the reference range (ULRR) and 7.5% had 

at least one value twice the ULRR (Rosenzweig et al. 1999).  

Aside from intentional overdoses, toxicity is very rare and confined to case reports mostly 

in alcoholic adults and children who have been accidentally overdosed by their care-

givers (Whitcomb et al. 1994).  
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1.2.3.7 OVERDOSE  

Paracetamol overdose is potentially life threatening and can result from single doses of 

12g, or 150mg/kg of paracetamol (Brok et al. 2006). Paracetamol overdose presents as 

pallor, nausea, vomiting, anorexia and abdominal pain. Those with paracetamol overdose 

may exhibit liver damage, manifested by liver transaminases elevation eight hours after 

ingestion of the overdose. Paracetamol overdose presents as pallor, nausea, vomiting, 

anorexia and abdominal pain. Alterations to glucose metabolism and metabolic acidosis 

may also occur (James et al. 2003). Severe poisoning may progress to hepatic failure, 

encephalopathy, coma and death (Bartlett 2004). 

IV n-acetylcysteine is an effective antidote to paracetamol overdose when administered 

within eight hours of the paracetamol dose. Although its benefit declines after this time, 

it still may be beneficial up to and beyond 24 hours. Activated charcoal and methionine 

may also be of benefit in those who have ingested >12g (Clark 2001; Bartlett 2004; Brok 

et al. 2006).  

Paracetamol is regarded as a very safe drug in normal doses although in overdose 

fatalities can occur (Bailey 1980; Shayiq et al. 1999; Schmidt et al. 2002; Acello 2003; Lee 

2004; Holubek et al. 2006). Its perception as being such a safe drug has led to toxicity and 

overdose in those who were taking it with therapeutic intent (Graham et al. 2005b). 

Unfortunately, because of paracetamol’s wide availability, it is also frequently used for 

self-harm. This can result in a prolonged painful death from liver failure. In a study of all 

11,092 presentations to Irish hospitals due to deliberate self-harm during 2004, 7,933 

related to drug overdose of which 31% involved paracetamol (Ní Mhaoláin et al. 2009). 

The incorporation of n-acetylcysteine into paracetamol formulations was attempted to 

minimise harm, however the additional expense of these products prevented their wide-

spread use (Clark 2001). When considering the maximum dose of paracetamol it is 

important to evaluate both the frequency as well individual dose. There are numerous 

reports of intentional overdose linked to paracetamol, but these are taken as a single 

dose (Prescott 2000b; Sheen et al. 2002b). Similar amounts may be safe if taken in divided 

doses throughout the day, and this is one of the hypotheses of this Thesis. 

Early observations of toxicity from acute overdoses have shown paracetamol’s disposition 

to be non-linear (Prescott 1996), which has been confirmed in single dose studies of 

doses ranging from 0.325g to 3g (Slattery et al. 1987; Borin et al. 1989). This is thought to 
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due to saturation of the enzymes involved in sulphonation and the depletion of its co-

factors (section 0). This finding led to the fear that repeated doses at or slightly above the 

licensed dose would lead to accumulation of paracetamol and a disproportionate rise in 

NAPQI, with subsequent toxicity (Gelotte et al. 2007). However, a more recent study by 

Gelotte et al. examined the safety and disposition of paracetamol after repeated doses of 

up to 8g/day for three days. They found paracetamol had linear kinetics after the first 

dose, which did not change after reaching steady state (Gelotte et al. 2007). They also 

showed that data modelled from initial doses did not predict those of steady state, with 

the actual concentrations being much lower than those predicted. As discussed above, 

the authors of this study suggest there is an increase in clearance of paracetamol over 

time accompanying increased formation clearance of paracetamol glucuronide. 

Rats given substantially higher doses of paracetamol IV, up to 600mg/kg, had a prolonged 

half-life and decreases in clearance. As the dose of paracetamol increased, more of the 

dose was excreted into the bile with biliary excretion as a proportion of dose increasing 

from 20 to 49% over the dose range of 37.5 to 600mg/kg. Similarly, over the same dose 

range the biliary excretion of the glucuronide metabolite increased from 10.5% to 40.2% 

of the total recovered dose, but the urinary recovery of the glucuronide metabolite 

remained relatively constant around 20% of the recovered dose. At 600mg/kg the 

glucuronide conjugate represented over 70% of the recovered dose, however at doses at 

or above 600mg/kg a significant decline in the rate constant for glucuronide formation 

was noted. Comparable results were seen for the rate for glutathione (GSH) conjugation 

at 300 mg/kg, whereas the formation of the sulphate conjugate was decreased at lower 

dosages (75 mg/kg). The authors concluded that glucuronidation was a high-capacity, 

high-dose saturable pathway of paracetamol metabolism which preferentially excretes 

the product in bile after high dosages (Hjelle et al. 1984). 

1.2.4 PHARMACOLOGICAL PROPERTIES 

1.2.4.1 PHARMACODYNAMIC PROPERTIES 

There are two systemic effects of paracetamol that are of clinical significance: antipyresis 

and analgesia (Bruton et al. 2006).  
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1.2.4.1.1 ANTIPYRESIS 

Pyresis, the elevation of body temperature, is part of the body’s response to eradicate 

infection. In response to the presence of foreign cell components arising from 

phagocytosis, cells derive PGs from AA and release them into the circulation. In the CNS, 

it is thought endothelial cells are responsible for PG synthesis (Cao et al. 1996). PGs, 

especially PGEs, act on the hypothalamus to increase the set point of body temperature. 

Subsequently body temperature rises through heat generation and conservation 

measures (Feldberg et al. 1972; Kasper et al. 2008).  

Paracetamol has no effect on pyresis that is not mediated by prostaglandins (Dey et al. 

1974). It was later discovered that paracetamol prevents PGE2 synthesis by inhibiting 

prostaglandin H2 synthase (PGHS) in the brain (Flower et al. 1972), and that endothelial 

cells are especially sensitive to these actions of paracetamol (Kis et al. 2005). Despite 

considerable research and clinical use for more than a century, the exact mechanism of 

the other actions and therapeutic concentration required for those actions of 

paracetamol is still unclear (Graham et al. 2005a; Bertolini et al. 2006).  

1.2.4.1.2 ANALGESIA 

The mechanisms of pain and pain transmission are discussed in the previous section, 

1.1.1, while the inflammatory process and mechanism of action of NSAIDs is discussed in 

1.1.3.2.2. Two pieces of information from these previous sections are important to the 

discussion of paracetamol’s mechanism of analgesia: 

1. Nociceptors exposed to PGs are sensitised and require a lower intensity of 

stimulation to cause pain; and 

2. Inhibition of PG synthesis reduces this sensitisation and result in analgesia. 

1.2.4.1.2.1 PLACE OF ACTION- PERIPERHAL OR CENTRAL? 

Since paracetamol and NSAIDs have similar antipyretic and analgesic effects clinically, 

much investigation has sought to prove paracetamol inhibits PGHS in a similar way to 

NSAIDs. While there is little doubt NSAIDs act through the peripheral inhibition of the 

COX site on PGHS (Vane 1971; Brooks et al. 1991), the evidence for where paracetamol 

works is conflicting and both central and peripheral pathways may be involved. Although 

paracetamol may have some effect on PGHS, this effect is different from that seen with 

NSAIDs (Anderson 2008). Paracetamol’s lack of any significant anti-inflammatory or 



 

27 
 

antiplatelet activity in vivo are the sentinel differences from NSAIDs, and are consistent 

with a lack of peripheral inhibition of PG synthesis (Clissold 1986; Bruton et al. 2006). 

Despite this finding, peripheral activity is supported by several experimental studies: 

 Lim et al. showed in 1964 that greater analgesia could be achieved when 

paracetamol is administered intra-arterially, proximal to a painful stimulus, rather 

than IV (Lim et al. 1964); 

 Paracetamol was shown to block peripheral autonomic response to pain induced 

by bradykinin injection into the spleen of dogs (Guzman et al. 1964); 

 In perfused livers, action potentials, either spontaneous or from toxic stimuli, 

were inhibited in hepatic nerves by paracetamol (Andrews et al. 1973); 

 Paracetamol was shown to suppress the production of some components of the 

inflammatory soup such as bradykinin, adenosine triphosphate, slow reacting 

substance C and AA in the same way as NSAIDs (Vargaftig et al. 1973); and 

 Paracetamol was also been shown to reduce pain and oedema, widely accepted as 

a typical inflammatory response, mediated, in part, by PGs’ peripheral actions 

(Vinegar et al. 1976).  

While these studies indicate a peripheral activity, there is also considerable evidence in 

favour of a central mechanism of action: 

 Paracetamol concentrations in the CSF match the response to fever (Anderson et 

al. 1998) and pain (Anderson et al. 2001) more closely than concentrations in the 

plasma; 

 Paracetamol reduces pain following administration directly into the CNS (Pelissier 

et al. 1996); and 

 Paracetamol inhibits PG release in the CNS following peripheral noxious stimuli 

(Muth-Selbach et al. 1999).  

While these strongly support activity in the CNS, it is the lack of significant anti-

inflammatory or antiplatelet activity in vivo that are the strongest findings in favour of a 

central mechanism of action.  

1.2.4.1.2.2 NATURE OF ANALGESIC ACTIVITY  
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As it is central to the understanding of the dose/response relationship, and why 

paracetamol has no clinically relevant peripheral activity in vivo, it is worth reviewing the 

most popular proposed mechanisms of action of paracetamol. 

Prescott believes debate on paracetamol’s activity has arisen because of the nature of 

paracetamol’s PG inhibition (Prescott 1996). In humans, paracetamol is generally 

considered to be a weak inhibitor of PG synthesis, exhibiting a highly variable capacity in 

different cell and tissue types (Aronoff et al. 2006).  

The majority of NSAIDs and COX-2 inhibitors inhibit PG synthesis by non-covalently 

binding to the COX active site, physically obstructing the entry of AA, thereby preventing 

this oxygenation process from occurring. However, the current wisdom is that this 

mechanism is not shared by paracetamol which does not work within the COX active site 

but rather the second site involved in the oxygenation, the peroxidase active site (POX). 

Here paracetamol prevents the formation of a tyrosine radical by POX, which is essential 

for COX activity (Figure 1.2-2). 
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Figure 1.2-2 Inflammatory cascade and location of paracetamol’s activity 
Paracetamol inhibits the formation of the tyrosine385 radical (Tyr385*) by peroxidase (POX). Tyr385*is required by 
cyclooxygenase (COX) to metabolise arachidonic acid to PGG2 

PG synthesis begins when PGHS enzymes oxygenate AA to give PGH2. PGH2 synthesis from 

AA occurs in two stages: 

1 AA is metabolised to PGG2 by COX; 

2 PGG2 is metabolised to PGH2 by POX. 
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As mentioned previously, both COX and POX are different active sites on the same 

enzyme PGHS. A more detailed synopsis of the steps is presented in Figure 1.2-3. 

Fe(IV)=OFe(IV)=OPP+*

Tyr385*radical

Tyr385

Fe(III)

PGG2
* radical

PGG2

O2

Arachidonic Acid

Electron 
transfer
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Figure 1.2-3 Schematic of prostaglandin H2 synthase (PGHS) metabolism of arachidonic acid to PGH2. 
Reduction of the ferryl protoporphyrin IX cation (Fe[IV]=OPP*+) at the peroxidase site is necessary for the formation of 
the tyrosine-385 radical (Tyr385*) at the cyclooxygenase site. Paracetamol partially reduces Fe(IV)=OPP*+ decreasing 
the amount available for regeneration of Tyr385*, impairing COX activity. In cells with high peroxide concentration 
greater amounts of Fe(IV)=OPP*+ are produced, overwhelming the actions of paracetamol (adapted from Aronoff et al. 
1996 and Anderson 2008). 

Stage 1, the metabolism of AA to PGG2, occurs in two steps. In the first step a hydrogen 

atom is taken from AA by a tyrosine 385 free radical (Tyr385*) present in the COX active 

site. The second step is this arachidonyl radical using oxygen to produces a PGG2* radical.  

In stage 2, PGG2 is reduced to the equivalent alcohol, PGH2 and Tyr385* is reformed. This 

reduction of PGG2 to PGH2, in the haem containing POX active site, yields an oxidised 

haem radical cation, ferryl protoporphyrin IX (Fe[IV]=OPP*+). Fe(IV)=OPP*+ is then used to 

generate Tyr385* from Tyr385 in the COX active site by intramolecular ion transfer. The 

Tyr385* is then reused by COX. The newly formed partially reduced haem [Fe(IV)] is 

further reduced to the resting state [Fe(III)] (Aronoff et al. 2006). 

POX then reduces hydroperoxides to re-oxidise the haem from the resting Fe(III) state to 

the catalytic Fe[IV]=OPP*+. A variety of hydroperoxides can be used, not just PGG2, each 

with varying efficiency (Markey et al. 1987). Hydroperoxides of fatty acids, such as AA, are 

preferred substrates, as is the case with PGG2, while hydrogen peroxide is a weak 

substrate (Ohki et al. 1979).  

Summarised, COX is dependent on POX to produce the Tyr385* radical for its activity, 

whereas POX does not rely on COX.  
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At this molecular level, most NSAIDs and COX-2 inhibitors work by competitively 

inhibiting the entry of AA and subsequent production of PGG2, with the exception of 

aspirin which, uniquely, covalently modifies the COX site, permanently inactivating it. 

Paracetamol, however, is a reducing co-substrate for the POX active site, like PGG2, 

reducing POX haem from the higher oxidative Fe(IV) state back to its resting Fe(III) state. 

Unlike PGG2, when paracetamol is the co-substrate, Tyr385 is not reproduced, thus 

starving COX of its co-substrate Tyr385* (Boyd et al. 1981; Moldeus et al. 1982; Harvison 

et al. 1986; Markey et al. 1987; Potter et al. 1987; Harvison et al. 1988a). Because the 

electron is being transferred to paracetamol rather than Tyr385 it would be expected that 

paracetamol radicals would be produced, and this has indeed been shown (Boyd et al. 

1981; Moldeus et al. 1982). 

Peroxides, such as PGG2, which arises from COX, oxidise the POX haem back to its 

catalytically active Fe(IV) state, opposing the actions of paracetamol. Experimentally, 

lowering the concentration of peroxides enhances paracetamol’s inhibition of PGHS 

(Ouellet et al. 2001) and conversely, increasing the peroxide concentration reduces it 

(Boutaud et al. 2002). Therefore it can be seen increasing the amount of AA increases the 

amount of PGG2 which in turn overwhelms any inhibitory action of paracetamol (Ouellet 

et al. 2001).  

Initially paracetamol was thought to have similar activity to NSAIDs action on COX. 

However, further evidence for paracetamol’s activity on POX, as oppose to COX, arises 

from paracetamol’s lack of antagonism of NSAIDs on the COX active site (Catella-Lawson 

et al. 2001; Ouellet et al. 2001) and antagonism of paracetamol’s activity following 

addition of exogenous PGG2, which does not occur with NSAIDs (Boutaud et al. 2002). In 

studies where PGHS concentrations have been increased but AA concentrations have 

remained constant, paracetamol activity has decreased, in contrast to the activity of 

NSAIDs.  

1.2.4.1.2.3 PARACETAMOL’S LACK OF ANTI-PLATELET AND ANTI-INFLAMMATORY 
ACTIVITY 

The most clinically relevant point of difference between NSAIDs and paracetamol is 

paracetamol’s lack of anti-platelet and anti-inflammatory activity. With respect to anti-

platelet activity, there are two factors which make platelets resistant to the actions of 

paracetamol, which also add to the understanding of paracetamol’s mechanism of action 

in other cells.  
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Firstly, in inflammation, there is an explosive activation of phospholipase A2 in platelets 

by receptor dependent stimuli. This results in an equivalently dramatic increase in PGG2, 

which in turn causes resistance to inhibition of PGHS by paracetamol.  

Secondly, on activation, a substantial amount of the lipid hydroperoxide 12-

hyroperoxyicosatetraenoic acid (12-HpETE) is formed by the platelet 12-lipoxygenase, 

further increasing the cells peroxide tone (Johnson et al. 1998). 12-HpETE acts as a 

peroxide co-substrate for POX, which is preferred by POX over paracetamol, preventing 

paracetamol returning POX to its resting state (Calzada et al. 1997; Boutaud et al. 2002). 

This action by platelets, the rapid increase in PGG2 and production of a preferred co-

substrate, also adds to the picture of how different cells respond to paracetamol. When 

stimulated by the same concentration of exogenous AA, platelets are completely resistant 

to the actions of paracetamol at concentrations that completely block PGHS activity in 

human umbilical vein endothelial cells. As discussed in Section 1.2.4.1.1, endothelial cells 

are particularly sensitive to the PGHS inhibitory actions of paracetamol (Kis et al. 2005).  

Understanding the importance on the peroxide tone of a cell during activation also 

explains paracetamol’s lack of anti-inflammatory activity. Similar peroxide-producing 

enzymes, such as platelet 12-lipoxygenase, are highly expressed in inflammatory 

leukocytes. Their products together with peroxynitrite and hydrogen peroxide generated 

by activated macrophages, vastly increase the peroxide tone of these cells. This greatly 

reduces the activity of paracetamol in these cells in inflammatory settings, explaining 

paracetamol’s lack of an anti-inflammatory effect. Certain types of monocyte-

marcophage cell lines require over 200 times the concentration of paracetamol to achieve 

the same block in PGHS activity given the same AA stimulation because of their 

considerably greater peroxide tone (Fels et al. 1982; Martin et al. 1984; Sun et al. 1996). 

Indeed, there is evidence that concentrations of paracetamol that completely inhibit PG 

synthesis in endothelial cells actually stimulated PG synthesis in some types of 

inflammatory cells (Aronoff et al. 2006). 

1.2.4.1.2.4 OTHER POSTULATED MECHANISM OF ACTION 

COX-3, a splice variant of the constitutive PGHS (COX)-1, has been suggested to be the 

site of action of paracetamol (Chandrasekharan et al. 2002), but genomic and kinetic 

analysis indicates that this selective interaction is unlikely to be clinically relevant 

(Bertolini et al. 2006).  
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There are many other theories surrounding the pharmacology of paracetamol including a 

central serotonergic mechanism through agonism of 5HT-3, supported by the antagonism 

of paracetamol’s analgesia by tropisetron and granisetron, (Alloui et al. 2002; Pickering et 

al. 2006; Pickering et al. 2007) and activation of cannabinoid receptors (Bertolini et al. 

2006). Despite initial theories of similar mechanism to salicylates (Woodbury 1965) and in 

vivo effects similar to a COX-2 inhibitor, clinically today, paracetamol is almost 

unanimously considered to have no peripheral anti-inflammatory activity. 

Research into this area is complicated by many factors: major differences in both in vitro 

and in vivo effects of paracetamol on PG biosynthesis (Danon et al. 1983); variability in 

PGHS activity depending on source of PGHS; problems controlling co-factor 

concentrations (Aronoff et al. 2006); and in vivo effects also being procedure dependent 

(Gray et al. 2005). In a comment still relevant today, Prescott wrote in his 1996 

bibliographic review of all studies researching into the mechanism of action of 

paracetamol, that: 

“Paracetamol may either inhibit, stimulate or have no effect on prostaglandin 

synthesis depending on the tissue selectivity, the source of the enzyme, the drug 

concentration, the presence or absence of cofactors and experimental conditions. 

The role of prostaglandins in the peripheral analgesic actions of paracetamol 

remain a subject for debate” (Prescott 1996). 

1.2.4.2 PHARMACOKINETIC PROPERTIES 

At concentrations achieved following licensed doses the pharmacokinetics of paracetamol 

are linear, independent of dose and constant with repeated administration (Bannwarth et 

al. 2003). Each of the four factors that influence drug pharmacokinetics, absorption, 

distribution, metabolism and elimination are now discussed.  

1.2.4.2.1 ABSORBTION OF PARACETAMOL  

An advantage of paracetamol is that it is available for oral, IV or rectal administration.  

1.2.4.2.1.1 ORAL 

Paracetamol is rapidly absorbed following oral administration by passive transport 

according to first-order kinetics (Heading et al. 1973). In humans, the majority of 

paracetamol is absorbed from the jejunum (Ueno et al. 1995). The increased rate of 
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absorption from the small intestine is thought due to the greater surface area and hence 

absorptive capacity, compared with the stomach or colon (Prescott 1996). Accordingly, 

gastric emptying is the rate limiting step of absorption. Delays to gastric emptying have 

substantial impact on paracetamol absorption (Kennedy 1996). Peak plasma 

concentrations are obtained 0.5-1.5hrs after intake of standard tablets or capsules. With 

effervescent tablets, drug absorption and onset of action are more rapid than with 

conventional tablets. Oral paracetamol has an absorption half-life of 4.5 minutes with no 

lag time. There are approximately 25% first pass losses which vary with the dose and 

number of doses and accordingly bioavailability varies from 60 to 98% (Clissold 1986). 

Food does not affect the extent of absorption, but does reduce the rate by up to 49% in 

one study of healthy volunteers. The maximum plasma concentrations from 1g of 

paracetamol reduced from 12.6μg/mL to 6.38μg/mL between the fasted and fed states 

(Stillings et al. 2000).  

1.2.4.2.1.2 RECTAL 

Paracetamol absorption from the rectum is incomplete and slow when compared with 

oral absorption. There is wide variation in absorption between individuals and may be 

greater in children than adults (Hahn et al. 2000; Bannwarth et al. 2003; Pettersson et al. 

2006). There is an absorption half-life of 35 minutes, with a 40 minute lag time and a 

reduced area-under the concentration time curve (Anderson et al. 1996). Because of this 

delay, peak concentrations are reduced and occur up to two hours after administration, 

resulting in unsatisfactory analgesia (Prescott 1996). The relative bioavailability of a 

suppository compared with a suspension has been shown to be as low as 30% but is 

generally considered to range from 60 to 90% (Dange et al. 1987). Rectal temperature can 

also effect the rate and extent of absorption, with a significant effect being shown in 

infants (van Lingen et al. 1999). 

1.2.4.2.2 DISTRIBUTION OF PARACETAMOL 

Paracetamol is rapidly distributed following IV administration with a half-time of less than 

20 minutes (Clements et al. 1984) and has been modelled both a non-compartmental and 

two compartment model (Rawlins et al. 1977; Rowland et al. 1995; Allegaert et al. 2004; 

Liukas et al. 2011). It has a volume of distribution (Vd) 9L/kg (Flouvat et al. 2004) in adults 

and is similar in young and elderly subjects of either sex (Prescott 1996). At therapeutic 

concentrations, generally considered to be less than 30mg/L, paracetamol’s protein 
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binding is negligible (Clissold 1986) but can increase up to 50% in overdose (Milligan et al. 

1994; Klasco 2009). In obesity, the weight corrected Vd is reduced (Prescott 1980; Depre 

et al. 1992; Ward et al. 1999). 

Paracetamol distributes relatively evenly between tissue and plasma with concentrations 

lowest in the fat and cerebrospinal fluid and highest in the liver and kidney. It is 

distributed into the brain and cerebrospinal fluid in small and variable amounts by passive 

diffusion. Here paracetamol has a delayed and sustained peak concentration that occurs 

two to three hours after administration (Bannwarth et al. 1992; Klasco 2009). 

Paracetamol is also distributed in the saliva where its concentration is similar to that in 

plasma. Saliva can be seen as an ultra-filtrate of plasma and for some compounds the 

saliva: plasma ratio is constant (Fuhr et al. 1993; Fuhr et al. 1994). Secretion into saliva is 

suggested to be by passive diffusion, which will vary depending on the solubility of the 

drug in the saliva and salivary glands. Factors which determine this solubility include: the 

pH of saliva and lipid solubility, molecular mass, spatial configuration, pKa and extent of 

plasma protein binding of the drug (Häckel et al. 1996; Skopp et al. 1999). Small 

hydrophilic drugs show the best correlations, as the equilibration and equal partitioning 

between plasma and saliva is rapid enough to be clinically useful for monitoring. 

Saliva sampling has been used for determining paracetamol pharmacokinetics, however 

there are some issues with this technique: 

 Only unbound drug can partition into saliva, so alterations to plasma protein 

binding or plasma protein concentration can invalidate results; 

 Saliva more accurately reflects arterial concentrations, rather than venous (Posti 

1982), raising questions over the accuracy especially during the absorptive phase 

of oral formulations (Smith et al. 1991); 

 Bias towards increased saliva concentrations are seen when compared with 

plasma values (Borin et al. 1989); 

 The concentration of paracetamol’s metabolites do not correlate, making it 

unreliable if metabolite patterns are needed (Al-Obaidy et al. 1995; Prescott 

1996). 

Saliva concentration still may have a clinical role in diagnosis and treatment of overdose; 

one study showed no false negatives, although false positives were seen (Wade et al. 

2008). While there are obvious advantages over the more invasive plasma sampling 



 

35 
 

methods, more than one in five patients still reported difficulty with saliva sampling 

(Wade et al. 2008).  

1.2.4.2.3 METABOLISM OF PARACETAMOL  

Paracetamol’s metabolism is complex, involving all of the body’s major pathways of drug 

metabolism. It has a mixed, competitive and sequential biotransformation pattern shown 

in Figure 1.2-4, Figure 1.2-5 and Figure 1.2-6 that results from Phase I oxidation 

competing with Phase II conjugation (Clissold 1986; Zamek-Gliszczynski et al. 2006). While 

metabolism is commonly shown as Figure 1.2-5, which accounts for the majority of 

metabolites, there are also several short-lived metabolites that are shown in Figure 1.2-6. 

The liver has the greatest mass of drug metabolising enzymes and is the primary site of 

paracetamol metabolism, although drug metabolising enzymes are present in many other 

places in the body (e.g. the blood, gut, liver, kidney, lungs). Typical products of 

metabolism are inactive, detoxified and more likely to be excreted in the urine or faeces 

(via bile) (Kennedy et al. 1998). The same metabolic pathways of paracetamol are used 

for and regulated by transformation of other substrates that naturally occur in the body 

i.e. cortisol and ketones. The role of Phase I and Phase II pathways in the metabolism of 

paracetamol is now considered. 
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Figure 1.2-4 Metabolism of Paracetamol (Prescott 1996) 
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Figure 1.2-5 Paracetamol metabolism shown as structural formulas 

1.2.4.2.3.1 PHASE I METABOLISM- THE ROLE OF CYP450 ENZYMES 

The Phase I pathway is a minor but important contributor to paracetamol metabolism. 

Although involving only about 5-10% of a licensed dose, this pathway is important for two 

reasons: 

 The toxicity of its product, NAPQI; 

 The inconsistent activity and variable expression of the cytochrome P450 (CYP450) 

mixed function oxidase enzymes involved.  

The production of NAPQI is the only toxic element of paracetamol’s metabolism and it is 

the only dose-limiting factor (Zaher et al. 1998). NAPQI is a potent electrophile and is so 

toxic to the liver that it is often used as a model toxin to understand the mechanisms of 

hepatic cell injury and death (Davies et al. 1991; Elferink et al. 2008). It binds covalently to 

critical cellular proteins in hepatocytes resulting in covalent modification and inhibition of 

enzyme activity. Mitochondrial proteins are especially sensitive to these changes and 

ultimately this leads to a loss of mitochondrial energy production. Once intracellular 

antioxidants are depleted, NAPQI also causes genomic injury and cell death through both 

necrosis and apoptosis (James et al. 2003).  
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Figure 1.2-6 All elements of paracetamol metabolism showing all short-lived metabolites with major metabolites 
underlined in bold 
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Loss of energy production in the cell also compromises Phase II conjugation processes, 

processes that would otherwise detoxify NAPQI or prevent its formation (Dills et al. 

1986)(section to 0). At worst, these processes culminate in fulminant liver failure and 

death (Hinson et al. 2004; Grypioti et al. 2006). The CYP450 enzymes which produce 

NAPQI are subject to genetic and environmental influence. These cause induction, 

inhibition and polymorphisms of these enzymes. Subsequently, CYP450 enzymes are a 

major source of inter and intra-patient variability in drug response and toxicity of 

paracetamol and many other drugs. Because of their frequent involvement in drug 

metabolism, the understanding of these changes is an area of intense research (Zamek-

Gliszczynski et al. 2006). While the normal role of the CYP450 enzymes to paracetamol 

metabolism is discussed here, further details of the CYP450 enzymes are given in Section 

1.5, while details of CYP450 changes relevant paracetamol metabolism in the surgical 

patient are given in section 1.3 and 1.4. 

The main function of Phase I reactions is to add or reveal sites for Phase II reactions, and 

usually does not result in large changes to molecular weight or water solubility of the 

substrate/drug. Other enzyme families do contribute to Phase I metabolism of other 

drugs, but, as is the case with paracetamol, CYP450 enzymes account for the vast majority 

of Phase I metabolism. 

The CYP450 family is comprised of many isoforms, all of which have differing affinity for 

substrates. Many isoforms of CYP450 have been shown to oxidise paracetamol to NAPQI 

in vitro and in vivo. While there can be considerable variation between individuals, these 

enzymes exhibit even greater inter-species preferential differences (Hong et al. 1987; 

Johansson et al. 1990; Schenker et al. 2001; Walubo et al. 2004). This is relevant to the 

study of paracetamol because, as a known toxin, much of the research pertinent to 

paracetamol use in stressed patients has been done in animal models. In humans, CYP2E1 

has been shown consistently to account for over 90% of the Phase I metabolism of 

paracetamol at licensed doses (Anundi et al. 1993; Manyike et al. 2000). This has been 

confirmed by various inhibition and induction studies that have shown paracetamol’s 

preference for CYP2E1. Post-mortem histological studies of patients who have died from 

paracetamol overdose have also shown that the zonation of hepatocyte death to be 

consistent with CYP2E1 distribution (Anundi et al. 1993; Manyike et al. 2000). 
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CYP2E1 metabolises very few other drugs. Furthermore, no other drugs in common 

clinical use are known to cause clinically significant induction or inhibition of CYP2E1, 

resulting in few drug interactions, further contributing to paracetamol’s safety 

(Bannwarth et al. 2003). 

At doses of paracetamol exceeding 1g in humans other CYP450 enzymes may be involved. 

CYP2E1 is a low capacity, high affinity enzyme and at higher concentrations of 

paracetamol it may be overwhelmed leading to the involvement of CYP450 enzymes 

CYP1A2, 2D6 and particularly 3A4 (Harvison et al. 1988b; Anundi et al. 1993; Prescott 

1996; Frye et al. 1997; Chen et al. 1998; Tonge et al. 1998; Dong et al. 2000; Manyike et 

al. 2000; Zhu et al. 2001; Tanaka et al. 2003; Sharma et al. 2004; Zhou et al. 2004; 

Jaeschke et al. 2006; Laine et al. 2009). The low-capacity nature of CYP2E1 may explain 

some of the interspecies differences in paracetamol metabolism shown in studies. Doses 

used in animal studies typically greatly exceed those used in humans and such doses 

would increase the involvement of other CYP450 enzymes (Prescott 1996). Similarly, the 

use of supra-therapeutic doses in experimental animals may have also contributed to 

fears that some CYP450 inducers (e.g. rifampicin (Prescott et al. 1981), caffeine (Tsutsumi 

et al. 1989)) or inhibitors (e.g. cimetidine (Miners et al. 1984a)) could increase risk of 

paracetamol toxicity, all of which have not been shown in humans (Rumack 2004). 

The product of the Phase I metabolism of paracetamol, NAPQI, is then subjected to 

further metabolism by Phase II pathways, along with 80-90% of the remaining, 

unmetabolised paracetamol.  

1.2.4.2.3.2 PHASE II METABOLISM 

Unusually, three Phase II reactions contribute to the metabolism of paracetamol: GSH 

conjugation, sulphonation and glucuronidation. Phase II reactions increase the water 

solubility and molecular weight of a compound and add a negative charge. Substrates of 

Phase II metabolism, such as paracetamol are normally lipophilic and diffuse into the 

intracellular space of the hepatocyte. Conversely, the products of Phase II conjugation are 

typically too hydrophilic to diffuse across the hepatocyte membrane and require active 

transport either across the canalicular membrane into bile or basolateral membrane into 

sinusoidal blood for later excretion into the urine (Zamek-Gliszczynski et al. 2006). Phase 

II metabolism can occur either: 
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 Directly on a parent drug containing an appropriate metabolic handle; or as more 

often is the case 

  On functional groups added or exposed by Phase I oxidation reactions. 

The first case is seen in the esterification of paracetamol’s phenolic hydroxyl group with 

either glucuronic acid or sulphate, while GSH conjugation of the Phase I product NAPQI 

exemplifies the second case (Zamek-Gliszczynski et al. 2006). The relative contributions of 

these reactions are detailed in Figure 1.2-4 (Gregus et al. 1988). Sulphonation and 

glucuronidation reactions often compete for the same substrate (Mulder 1986). 

Glucuronidation involves the transfer of glucuronic acid from its carrier uridine 

diphosphate-glucuronic acid (UDP-GA) to hydroxyl, amino, carboxyl and sulfhydryl groups 

resulting in a more acidic, water soluble compound (Kaushik et al. 2006). This transfer is 

undertaken by UDP-glucuronosyltransferase (UGT) enzymes which transfer the glucuronic 

acid. UDP-GA is synthesised in the cytoplasm and requires glucose-1-phosphate (G1P) 

conjugation to uridine diphosphate which is finally oxidised to UDP-GA. The preferential 

source of the G1P, whether endogenous or exogenous, is not known, however impaired 

glucuronidation in calorie malnutrition and hypoxia have been reported. Although oxygen 

is not required for this pathway, hypoxia is known to induce glycolysis, which in turn 

reduces the availability of glucose for UDP-GA formation. In vitro this can be overcome by 

endogenous glucose administration indicating that exogenous and endogenous sources of 

glucose have a role (Aw et al. 1984; Aw et al. 1991) (Figure 1.2-7). 

 
Figure 1.2-7 Glucuronidation pathway in Homo sapiens (Pico et al. 2008) 

As with CYP450 enzymes, UGT enzymes are also sub-classified, with the isoform UGT1A6 

largely responsible for paracetamol glucuronidation. UGT are relatively constitutive and 

undergo sparse modulation. Induction of UGT enzymes results in only a two to three fold 

increase in total protein, substantially less than seen with CYP450 enzymes (Zamek-
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Gliszczynski et al. 2006). Glucuronidated compounds are generally pharmacologically 

inactive because their lipid solubility is reduced, making crossing cell membranes unlikely, 

and their structure is altered, which modifies their interaction with receptors (Kaushik et 

al. 2006).  

Paracetamol is also a substrate of two sulphotransferases (SULT), 1A1 and 1A3. These 

enzymes specialise in catalysing sulphonation of hydroxyl groups and monoamine groups 

on phenolic-type molecules. Sulphonation is governed by availability of inorganic sulphate 

and the rate of SULT activity; the depletion of the former and the saturation of the latter 

leads to the sulphonation being overwhelmed (Zamek-Gliszczynski et al. 2006). The 

inorganic sulphur is essential for the synthesis of the co-factor 3’-phosphoadenosine-5’ 

phosphosulphate (PAPS) (Figure 1.2-8) and is absorbed from the diet or produced from 

oxidation of sulphur containing amino acids. The high affinity, low capacity nature of SULT 

enzymes and low concentration of co-factor mean that, while sulphonation predominates 

over other processes at low substrate concentrations, they are saturated readily. Once 

overwhelmed, glucuronide conjugation predominates as substrate concentrations 

increase (Zamek-Gliszczynski et al. 2006). 

 
Figure 1.2-8 Sulphonation pathway in Homo sapiens (Pico et al. 2008) 

Sulphonation often works in tandem with glucuronidation on overlapping substances. In 

paracetamol metabolism sulphonation plays a smaller role (30-35%) than glucuronidation 

(50-60%) at licensed doses (Gregus et al. 1988). In addition to differing enzyme affinity, 
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the predominance of glucuronidation over sulphonation may be explained by the 

concentrations of their respective co-factors. Hepatic PAPS has a concentration in 

humans of ≈23 nmol/g liver compared with ≈300 nmol/g liver of UDP-GA. The hepatic 

PAPS concentration is low enough to be depleted rapidly and is at concentrations lower 

than those required for maximum SULT velocity (Zamek-Gliszczynski et al. 2006). PAPS 

can be synthesised quickly and it is the supply and hepatocellular concentrations of 

inorganic sulphate, not the hepatic biosynthesis of this co-factor that is thought to be the 

rate limiting step of sulphonation in vivo (Hjelle et al. 1985; Zamek-Gliszczynski et al. 

2006). Inorganic sulphate too is much lower than its glucuronidation counterpart G1P. 

Whereas G1P is essential for cellular respiration and in high concentrations, the inorganic 

sulphate is supplied from catabolic processes that supply and breakdown cysteine. 

Accordingly as inorganic sulphate concentration dwindles, PAPS is depleted rapidly and 

sulphonation is reduced (Mulder et al. 1978; Hjelle et al. 1985; Kim et al. 1992). While this 

exhaustion of sulphonation co-factor occurs readily in man, saturation of glucuronidation 

co-factor is virtually unachievable, requiring plasma paracetamol concentrations 100 fold 

greater than those needed for sulphonation exhaustion (Reith et al. 2009), equating to 

massive paracetamol doses of several 100mg/kg (Hjelle et al. 1985; Zamek-Gliszczynski et 

al. 2006; Lee et al. 2007). Despite consistent reductions in sulphonation with increasing 

doses of paracetamol, the result is that the combined rate of sulphonation and 

glucuronidation reactions is linear and the hepatic extraction ratio of paracetamol 

remains relatively constant (Clements et al. 1984).  

Whereas sulphonation activity is highest in the periportal region of the liver, where 

xenobiotics are first presented, glucuronidation mostly occurs in the perivenous region, 

where Phase I oxidation greatest, on whose products Phase II reactions generally depend 

(Anundi et al. 1993; Zamek-Gliszczynski et al. 2006). As paracetamol doses are increased 

or repeated, sulphonation processes are unable to cope and paracetamol continues 

towards the centre of the lobule and into areas of increased glucuronidation (Clements et 

al. 1984). While this reduction could be due to co-factor exhaustion, it could also occur as 

a result of enzyme saturation. Complicating this differentiation is the critical differences in 

sulphonation activity between mice and rats, in which the majority of these studies are 

based. Whereas sulphonation in rats is limited by depletion of PAPS, in mice it is limited 

by SULT activity (Dalhoff et al. 1993; Kim et al. 1995a; Liu et al. 1996). 
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From this discussion it may seem that glucuronidation makes sulphonation redundant, 

however sulphonation’s role in paracetamol metabolism is still an important one in 

preventing toxicity. This importance of sulphonation is demonstrated in two groups of 

individuals. Firstly, children have greater expression of SULT enzymes compared with 

adults and this is thought to confer their tolerance for much greater mg/kg doses of 

paracetamol (van Lingen et al. 1999; van der Marel et al. 2003; Allegaert et al. 2004). 

Secondly are those with defective transport of inorganic sulphate into the cell. These 

individuals have reduced sulphonation capacity and are more susceptible paracetamol-

induced hepatotoxicity (Lee et al. 2006). Indeed, genetic variations that impair almost 

every aspect of sulphonation have been identified and linked to increased sensitivity to 

paracetamol hepatotoxicity (Nowell et al. 2006; Dawson et al. 2007). 

Both glucuronide and sulphate conjugates have much smaller Vd than paracetamol and 

their rates of formation are much greater than their excretion, both of which lead to their 

accumulation in plasma (Sahajwalla et al. 1991; Miners et al. 1992; Haderslev et al. 1998). 

Another Phase II reaction, GSH conjugation, takes place on the product of the 5-10% of 

the paracetamol dose metabolised by the Phase I pathway, NAPQI. As a potent 

electrophile and Phase I metabolite, NAPQI is a typical substrate for GSH conjugation. 

GSH conjugation results in the detoxification of NAPQI which could otherwise bind 

covalently to intracellular macromolecules (Corcoran et al. 1980; Nelson 1990; 

Tirmenstein et al. 1990). Similarly to its substrate NAPQI, GSH conjugation accounts for 

only a small percentage of the overall phase II metabolism but without it paracetamol 

would be universally toxic at licensed doses (Tirmenstein et al. 1990). 

GSH is a substrate naturally occurring in the body, but the body’s ability to synthesise GSH 

is limited. GSH is synthesised by the formation of a peptide bond between glutamic acid 

and cysteine, followed by the addition of glycine. GSH is in high concentrations in the liver 

and conjugation may occur spontaneously, although it is much more efficient when 

catalysed by glutathione S-transferase (GST). Hepatic concentrations of GSH are by far the 

highest of the co-factors utilised in the three Phase II reactions discussed. Consequently 

intracellular GSH is difficult to deplete, although it can be accomplished with extremely 

high amounts of substrate. Hepatic supplies of reduced GSH begin to be depleted over a 

range of 0.5 to 3gm of paracetamol (Lane et al. 2002). A toxic dose of paracetamol can 

deplete GSH levels by as much as 90% (James et al. 2003; Buzaleh et al. 2005). 

Anaesthetics place an additional demand on GSH in the surgical patient, reducing stores 
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by as much as 30%. With GSH depleted, severe hepatotoxicity can occur. This is the 

situation following overdose of paracetamol. Here the large amount of NAPQI 

overwhelms available stores of GSH. If not bound by GSH, NAPQI is free to bind to 

hepatocellular proteins as discussed above. Accordingly, it is the body’s limited ability to 

synthesise GSH that determines the safe dose of paracetamol and why single high doses 

are more toxic that the equivalent divided dose. Any increase in the ratio of NAPQI to 

GSH generally results in toxicity. This can occur when too much paracetamol is given or 

when changes to metabolism produce more NAPQI, or less GSH. Potential causes of 

increased apparent production of NAPQI are discussed further below and in Sections 1.3 

and 1.4.  

GSH production can be increased with the administration of additional N-acetyl-cysteine, 

which is used clinically as the antidote to paracetamol toxicity. GSH conjugates are 

commonly hydrolysed sequentially to form a cysteine metabolite followed by N-

acetylation to form a mercapturate metabolite, as is the case with paracetamol (Prescott 

1996; Zamek-Gliszczynski et al. 2006). 

In the Phase II metabolism of paracetamol, the per cent of paracetamol metabolised by 

sulphonation decreases with increasing doses (Clements et al. 1984). This in itself is not of 

concern as glucuronidation is more than capable of maintaining paracetamol’s Phase II 

metabolism. What is of concern is the complex interaction between sulphonation, GSH 

conjugation and their respective co-factors (Figure 1.2-9) and if this exhaustion of 

sulphonation could reflect and even cause deficiency of GSH and reduce conjugation of 

NAPQI (Mannery et al. 2010). This is because cysteine can be used as a precursor for both 

sulphonation and GSH conjugation. 

Cysteine

Diet

Body protein 
breakdown 

Methionine via 
transsulfuration

Paracetamol- 
sulphate

Glutathione

Inorganic 
Sulphate

Paracetamol

Paracetamol-
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NAPQI

 
Figure 1.2-9 Sources and fate of cysteine in paracetamol metabolism. GSH is both a source and consumer of cysteine. 
Inhibition of sulphonation does not increase GSH synthesis (adapted from (Lu 1999)) 
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The complexity of the interaction is demonstrated following administration of the 

antidote to paracetamol poisoning, n-acetyl cysteine which, as mentioned above, is 

merely a source of cysteine. This alters the pattern of urine excretion of paracetamol, 

increasing the GSH conjugates by 10%, but also resulted in a substantial 27% increase in 

the excretion of the sulphate conjugate (Lauterburg et al. 1983; Slattery et al. 1987). 

The demands for sulphonation in vivo are quantitatively greater than that of GSH 

conjugation, not only for paracetamol metabolism, but for homeostasis in general. When 

there are demands on both sulphonation and GSH, cysteine is diverted from GSH 

biosynthesis to synthesis of PAPS in an attempt to preserve sulphonation capacity 

(Dalhoff et al. 1993).  

In addition to these limitations on synthesis, dietary sources in fasting, malnourished or 

elderly patients are normally not sufficient in cysteine for paracetamol metabolism 

anyway (Reicks et al. 1988; Gregus et al. 1994a; Gregus et al. 1994b; Raguso et al. 2000; 

Joint FAO/WHO/UNU Expert Consultation on Protein and Amino Acid Requirements in 

Human Nutrition 2007; Nimni et al. 2007; Mannery et al. 2010). When demands exceed 

dietary intake, cysteine is produced endogenously by catabolism of one of three sources 

(in descending order of prominence):  

 Methionine and serine (via the transsulphuration pathway);  

 GSH stores; and 

 Body protein (Di Buono et al. 2003; Pujos-Guillot et al. 2011). 

In those with diets insufficient in cysteine, supplies of methionine are also likely to be 

lacking as they are generally present in a 1:1 ratio (Nimni et al. 2007). If dietary supplies 

of cysteine or methionine are limited, further cysteine can be supplied from catabolism of 

GSH. This is limited by the supply of GSH and occurs at the expense of GSH conjugation 

(Moriarty-Craige et al. 2004). This source of cysteine is especially relevant to paracetamol 

metabolism as it is GSH that detoxifies NAPQI, and the breakdown of GSH for cysteine 

may harm this process and increase the risk of paracetamol toxicity (Blackledge et al. 

1991; Wu et al. 2004). The depletion of GSH stores for cysteine was shown initially in 

experimental animals given diets deficient in cysteine and methionine which led to a GSH 

reduction of up to 60% (Rozman et al. 1992) More recent evidence in humans support 

this observation with anorexic individuals deficient in sulphur amino acid intake shown to 

have 30% less GSH than controls (Zenger et al. 2004). The extent of paracetamol’s 



 

46 
 

demands on this system were shown when therapeutic doses were shown to significantly 

decrease plasma GSH concentrations above that consumed in GSH conjugation, showing 

its role as a pool of cysteine (Moriarty-Craige et al. 2004; Mannery et al. 2010). 

The final source, body protein, is catabolised at the expense of muscle growth and repair 

(McLean et al. 1989) and it is this protein catabolism for inorganic sulphate that is 

thought to determine the rate of obligatory nitrogen loss (Millward 1998). Fasting 

patients receiving 4g of paracetamol a day are estimated to mobilise up to 50g of skeletal 

muscle per day to supply the cysteine required for paracetamol’s metabolism and 

homeostasis (Pujos-Guillot et al. 2011). The implications of this skeletal muscle 

catabolism were demonstrated in rats fed a diet of 1% paracetamol devoid of sulphur 

containing amino acids. These rats failed to grow until cysteine and methionine were 

replaced in their diet, a phenomena not seen with this dietary restriction alone (McLean 

et al. 1989). A similar study in rats given methionine-deficient diets showed prolonged 

paracetamol administration caused significant weight loss through protein catabolism 

(Reicks et al. 1988). In humans, colon carcinoma cells have shown similar results with 

cysteine deficiency inhibiting cell division and decreasing intracellular GSH concentration 

(Miller et al. 2002). 

Final hurdles may arise to the sulphonation of paracetamol, even in the presence of 

adequate plasma concentrations. Inorganic sulphate, once sourced from the catabolic 

processes detailed above, must be then transported into the cell (Hendrix-Treacy et al. 

1986). Like many of the transporter molecules in the body the activity of these 

transporters are affected by stress. Even if the rate of formation was unaffected 

membrane bound transport molecules must transport the newly sulphonated compound 

back out of the cell (Buist et al. 2003; Chu et al. 2004). These transporters are also 

suspected to be downregulated in times of stress (Chu et al. 2004). 

Despite the evidence for sulphate depletion, there is also support for saturation of 

sulphotransferase activity as the major factor restricting the rate of paracetamol 

sulphonation, not the depletion of inorganic sulphate (Blackledge et al. 1991). This would 

be a preferable situation for the safety of paracetamol as GSH conjugation of NAPQI 

would be unaffected. In chronic dosing studies, recovery of paracetamol, particularly as 

the sulphate conjugate, drops along with total urinary sulphate output (Pujos-Guillot et 

al. 2011), but in all cases there was still some inorganic sulphur in the urine (Blackledge et 

al. 1991), and plasma concentrations of GSH, plasma sulphates and amino acids were 
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largely unaffected (Mannery et al. 2010; Pujos-Guillot et al. 2011). When overdoses of 

paracetamol have been taken over prolonged periods paracetamol sulphate is produced 

and inorganic sulphate is still quantifiable in plasma. One alternative explanation for this 

is that shifts towards glucuronidation occur well before free sulphate stores are depleted 

(Blackledge et al. 1991) and this suggests that plasma levels of inorganic sulphate must be 

sufficiently high for sulphonation to work effectively. This may be caused by limitations of 

the transport of cofactors. Cofactors of sulphonation are synthesised intra-cellularly and 

rely on active transport to maintain intracellular concentrations of their precursors, 

mainly inorganic sulphate (Lee et al. 2006). Demand may exceed the capacity of these 

sulphate transporters. Alternatively homeostatic inhibition of these transporters may 

occur given the essential roles sulphonation has. Several critical metabolically active 

hormones are deactivated by inorganic sulphate including the catecholamines, 

norepinephrine and dopamine amongst many other (Roth et al. 1982; Kauffman 2004), 

which are increased following surgery (Yoshizumi et al. 1998).  

While plasma concentrations of these sulphur compounds have been shown to remain 

steady, what is missing from this story is what is happening to the hepatocellular 

concentration of these compounds. 

There is a substantial difference in plasma concentration of inorganic sulphate during the 

day, with concentrations exhibiting a circadian rhythm, lowest at 1100 and highest 1900 

hours with a 25.8% average difference between the high and low concentrations. In one 

study repeated administration of 650mg paracetamol four times a day for four day 

reduced inorganic sulphate by 30.1%. Circadian rhythm still occurred, with the difference 

between the high and low increasing to 31.3% (Hoffman et al. 1990). This study also 

showed reduced renal excretion and renal clearance of inorganic sulphate by 51 and 33% 

respectively (Hoffman et al. 1990) 

Additionally, the increase in catecholamines that arise from the stress response may 

compete with paracetamol for metabolism by SULTs but also are known to suppress the 

activity of transporter molecules (Morgan et al. 2008). The findings of Slattery et al, that 

administration of n-acetylcysteine dramatically increases the formation clearance of 

sulphate and GSH conjugates, support this proposition. This also illuminates the different 

mechanisms behind the toxicity of acute and chronic paracetamol overdose. While acute 

overdose brings about the immediate exhaustion of GSH stores, chronic usage causes the 

gradual subjugation of GSH synthesis to NAPQI production (Slattery et al. 1987). 
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Dietary deficiencies of sulphate and cysteine alone has no major effect on paracetamol 

conjugation but their combined deficiency caused a significant decrease in excretion of 

the sulphate conjugate (Krijgsheld et al. 1981)Serum inorganic sulphate levels were 

elevated in patients who take paracetamol regularly (Hendrix-Treacy et al. 1986), and 

there is evidence the endogenous synthesis of cysteine is increased. 

Finally, this interaction between sulphonation and GSH conjugation raises questions over 

the reliability of previous assessments of Phase I metabolism of paracetamol which is 

generally obtained through measures of paracetamol cysteine and its metabolite 

paracetamol mercapturate in urine. If GSH supply was limited, this may also restrict 

conjugation of NAPQI and produce less paracetamol cysteine. It would follow that 

recovery of paracetamol would reduce with chronic and elevated doses and this has 

indeed been shown in these situations (Pujos-Guillot et al. 2011). After 14 days of 

receiving 3g/day of paracetamol, a group of 10 elderly men and women had overall 

reductions urinary excretion of paracetamol to only 77% of the daily dose at day fourteen 

(Pujos-Guillot et al. 2011). This value is substantially lower than the 85-95% recovery 

reported in healthy adults (Forrest et al. 1982). Excretion of paracetamol sulphate was 

particularly effected, reducing to less than 20% of the total paracetamol excreted in the 

urine, compared to the 30-35% reported in healthy adults (Clements et al. 1984). Over 

the 14 day course substantial amounts of sulphur were excreted in the urine but despite 

this there was no significant effect on plasma sulphate concentrations or amounts of 

sulphur containing amino acids. This indicated activity of homeostatic mechanisms to 

maintain sulphate concentrations and indeed evidence of increased activity of the 

transulphonation pathway was shown. Curiously these patients spontaneously increased 

their dietary protein intake (Pujos-Guillot et al. 2011).  

1.2.4.2.3.3 SATURATION OF PARACETAMOL METABOLISM 

As discussed above, sulphonation has a limited capacity in man. A study comparing 

paracetamol doses of 20mg/kg with 5mg/kg, showed dose-dependent sulphate 

conjugation of paracetamol after both IV and oral administration (Clements et al. 1984). 

The reduction of the sulphate conjugation at higher doses is matched by increases in 

glucuronidation. This study also showed much lower renal clearance of paracetamol 

sulphate at the higher dose, indicating saturation of both the formation and the renal 

clearance of the sulphate conjugate. It also observed that higher doses of paracetamol 

lead to a reduction in paracetamol’s plasma clearance. 



 

49 
 

A more recently published study by Gelotte et al. (2007) examined the disposition of 

paracetamol in healthy young adults at doses of 4, 6 and 8g/day for three days. Gelotte et 

al. suggests there is evidence that with increasing doses, paracetamol induces its own 

glucuronidation, and that the increase exceeds the reduction of sulphonation with a net 

increase in paracetamol clearance overall (Gelotte et al. 2007). The same authors also 

showed that with increasing dose there were statistically significant increases in recovery 

of paracetamol and paracetamol glucuronide but reduction in sulphate in the urine. There 

was no change in the percentage excreted as thiols either in the urine or plasma. The 

authors considered the increase in glucuronidation explained the less than dose-

proportional increase in plasma paracetamol concentration and the absence of a more 

than dose proportional increase in excretion through NAPQI and GSH conjugation, which 

would be expected given the saturation of sulphonation. As part of this, these authors 

postulate paracetamol to be an inducer of UGT1A6.  

The reduction in sulphate excretion has also been shown in other studies to occur on the 

fourth day when patients received lower doses of 650mg every six hours (Hendrix-Treacy 

et al. 1986; Hindmarsh et al. 1991). These studies observed a reduction in serum sulphate 

levels and reduced renal clearance of inorganic sulphate after four days of 650mg 

paracetamol every six hours (Hoffman et al. 1990). However, the study by Hendrix-Treacy 

et al. examining kinetics and disposition of the same dose, 650mg every six hours, after 

chronic dosing, found an increase in plasma sulphate level, suggesting it is the 

sulphotransferases activity rather than sulphate depletion that leads to decreased 

sulphonation in most cases (Hendrix-Treacy et al. 1986).  

1.2.4.2.4 EXCRETION OF PARACETAMOL 

All metabolites of paracetamol are excreted in the urine. Biliary excretion is not an 

important pathway in man at licensed doses (Jayasinghe et al. 1986). Only 2.6% of any 

oral dose is excreted in bile, mostly as the cysteine conjugate. Renal excretion amounted 

to 91.3% of the total dose (Siegers et al. 1984).  

Paracetamol has a clearance of 13.5L/h and a elimination half-life of two-four hours, 

which is prolonged in children and infants (Prescott 1996). 
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1.2.4.3 MAXIMUM DOSE OF PARACETAMOL 

1.2.4.3.1 DOSE AND CONCENTRATIONS 

The current licensed dose of 4g per day in Europe is not well founded on experimental 

evidence and is based on avoidance of toxicity rather than affecting efficacy(Bristol-Myers 

Squibb 2009). This may be due, in part, to paracetamol’s wide therapeutic index. There 

are very few drugs in common use with such a wide mg/kg dose where a 45kg adult 

female would receive the same dose as a 120kg male (22 vs. 8mg/kg), nor are there many 

where the daily dose is considered in grams and not milligrams or micrograms. With 

regard to dose, paracetamol is a fairly blunt instrument. 

There is no clear indication in the literature of an optimal analgesic dose or maximum safe 

dose of paracetamol, nor is there a clearly defined analgesic concentration for 

paracetamol. Ward et al. alerted the pain management community to this dearth of 

information in a prominent journal in 1999, but the question of an analgesic 

concentration still remains unanswered. Prescott refers to a concentration range for 

achieving antipyresis as “probably about 5-20mg/L” (Prescott 1996) but he and more 

recent authors continue to point out that there are few studies in which drug 

concentrations and effects have been measured simultaneously in man (Gibb et al. 2008). 

It is generally accepted the concentration for analgesia is higher than that for antipyresis, 

as suggested by Beck et al. (Beck et al. 2000) and in vitro paracetamol has been shown to 

produce dose-dependent depression of nociceptive activity in rat and human models 

(Carlsson et al. 1987). Replicating these in vitro findings in a clinical setting has proven 

elusive. 

While the majority of drugs exhibit concentration-efficacy relationships, some researchers 

believe that there is no direct correlation between serum concentrations of paracetamol 

and its analgesic or antipyretic effect. They cite the poor correlation between time of 

peak plasma concentration and peak analgesia (Prescott 1996; Bannwarth et al. 2003). 

Other groups have shown a good correlation between plasma concentration and 

effectiveness, once a delayed-response was included (where the maximum effectiveness 

follows Cmax) (Seymour et al. 1981; Nielsen et al. 1992). Gibb and Anderson explain this 

discrepancy as the result of the response not being directly related to the concentration 

in the plasma, but rather an effect compartment, whose concentrations are proportional 

to those found in the cerebro-spinal-fluid (CSF) (Gibb et al. 2008). These authors support 
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this theory by suggesting the delay between the peak concentration in the plasma and 

the peak clinical effect is a result of the partitioning between these compartments. They 

also point out the concentration/time curve following oral dosing of paracetamol 

approaches bell shape with the absorption phase resembling the elimination phase. They 

suggest the symmetry of this curve may confound determining an exact therapeutic 

concentration as, for example, 10mg/L would occur on both sides of the curve’s Cmax 

making it impossible to determine which one conferred the drug’s effectiveness unless 

plasma concentrations are constantly monitored (Figure 1.2-10). These authors suggest 

that a significant difference in pain threshold does occur by one hour post-dose in 

association with a plasma concentration of 12mg/L (Gibb et al. 2008). Other authors still 

relate paracetamol’s peak concentration to the central analgesic effect of paracetamol, 

but without reference to time, finding that intravenous paracetamol is at least as 

effective as oral formulations (Luthy et al. 1993). Although IV and oral formulations have 

equivalent areas of concentration/time curve, there are reports of greater and prolonged 

analgesic activity following IV administration (p<0.01) (Jarde et al. 1997). 

 
Figure 1.2-10 Time and concentration profile following a theoretical oral paracetamol dose  
A concentration of 10mg/L is achieved before (absorption phase) and after (elimination phase) maximum concentration 
(Cmax). The delay between maximum concentration and peak effect is approximately one hour (adapted from (Gibb et 
al. 2008)). 

Because of the lack of a clear therapeutic concentration and the subjective nature of pain, 

some research has used antipyresis as a surrogate marker of adequate concentration 

because it is easier to objectively measure and can be reproduced reliably with the 

administration of endotoxins (Kis et al. 2005). This method is also not without its 

criticisms: 
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 Body temperature is subject to circadian variation which may mask or exaggerate 

temperature reduction;  

 The aetiology of the fever may affect the rate of fever reduction; and 

 The initial temperature may influence the magnitude of drug response (Gibb et al. 

2008). 

One clinical trial examining the paracetamol concentrations of major surgical patients 

receiving rectal paracetamol 1g six hourly, concluded the dose to be too low, citing that 

the concentrations had failed to reach those required for antipyretic effect (10-20mg/L; 

≈66-133μmol/L) (Kvalsvik et al. 2003). Similar results were shown in another study 

examining rectal doses of 20 or 40mg/kg in surgical patients. They also concluded that 

analgesic concentrations may not have been reached, even at the 40mg/kg dose (Beck et 

al. 2000).  

Other research has shown no improvement in pain relief with increasing dose from 1g to 

2g in a dental pain model (Skoglund et al. 1991). Conversely, a systematic review has 

shown the number of patients who need to receive the drug to achieve a 50% relief of 

pain (number needed to treat, NNT) reduced from 5 for a 600 or 650mg paracetamol 

dose to 3.6 for a 1g dose (Moore et al. 1997). This review included data from over 1000 

patients involved in 29 studies of post-dental, postpartum and postoperative pain.  

In paediatric patients, paracetamol is thought to produce dose related analgesia with 15-

20mg/kg, reducing pain scores (Bolton et al. 2002; Tay et al. 2002) compared with 

10mg/kg, which has not been shown to be superior to placebo and was associated with 

high requirements for supplemental analgesia (Watcha et al. 1992).  

This uncertainty over the maximum dose, withdrawal of alternatives and repeated 

evidence of benefit, has contributed to an increasingly widespread trend of doses greater 

than the licensed adult dose (4g/24hr) being used in the perioperative environment. 

Loading doses of 2g intraoperatively have been shown to be superior to 1g in terms of 

magnitude and duration of analgesic effect, improving pain control and reducing 

morphine demand with no additional adverse effect (Juhl et al. 2006; Remy et al. 2006; 

Gregoire et al. 2007). 

Higher doses of up to 6g/24hrs have shown similar results when compared with morphine 

patient-controlled analgesia usage alone (Schug et al. 1998). The usual dose of 1g every 
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six hours has a less than 10mg sparing effect on 24hr morphine consumption and does 

not significantly reduce morphine side effects (Sinatra et al. 2005). 

There is some theoretical rationale for using doses above 4g/24hr. The theory of the 

“effect compartment” proposed by Gibb and Anderson, required paracetamol to 

distribute into and accumulate in theoretical third compartment for therapeutic effect. 

Accordingly, the simplest method to reduce paracetamol’s time to effect is to increase 

the dose, in a similar way to the loading doses used for other drugs.  

This has been shown experimentally. A dose of 1g every six hours has been shown to be 

insufficient even to produce antipyresis, however rectal doses of 40mg/kg did produce 

concentrations in this antipyretic range, although they were not shown to be clinically 

superior to 20mg/kg doses (Beck et al. 2000). The study by Korpela et al. demonstrated a 

linear relationship between increasing rectal paracetamol dose and analgesia and showed 

significant differences between 40 and 60mg/kg doses when compared with placebo. 

Another group measured the anti-nociceptive effect of 0.5, 1 and 2g of IV paracetamol in 

11 healthy volunteers and found dose dependent reductions in nociceptive activity of 23, 

28 and 40% respectively (Piguet et al. 1998). Researchers who showed paracetamol 

activity related to cannabinoid receptors also found that paracetamol inhibits COX in the 

brain, but at concentrations not attainable at current analgesic doses (Bertolini et al. 

2006). A study by Temple et al. which gave healthy adults up to 2g every six hours for 3 

days, found no clinically important elevations in aminotransferase levels during or for 

three days after the study (Temple et al. 2007) 
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1.3 CHANGES TO DRUG ABSORPTION, DISTRIBUTION, METABOLISM OR EXCRETION 

DUE TO SURGERY AND ANAESTHESIA 

Surgery is a time when the body faces an extraordinary amount stress over a short 

period. Systemically, anxiety, pain, hemodynamic changes and cardiovascular instability 

(Barker et al. 1987; Kennedy et al. 1998) combine with local proliferation of pro-

inflammatory cytokines, complement factors, acute phase proteins and pituitary 

hormones (Bone 1996). Their combined metabolic effect, referred to as the ‘stress 

response’, produces a catabolic, immunosuppressed state and activates the sympathetic 

nervous system (Bessey et al. 1993). The effect can persist for several days after surgery 

(Kehlet 1996) and is even greater in patients who have pre-existing pathology, a genetic 

predisposition to surgical stress or are of the male gender (Guillou 1993; Pape et al. 2000; 

Ono et al. 2005; Giannoudis et al. 2006). This stressed, catabolic state has many 

implications for drug therapy.  

While the influence of the stress response can be substantial, surgery exposes the body to 

a vast array of other factors that can also alter drug disposition, especially when 

compared with a population of young healthy males, in whom most drug disposition 

studies are based.  

On admission, surgical patients are likely to be of advancing age, have pre-existing 

pathologies, malnutrition and many will be taking multiple medicines. As a result of 

surgery they may also be kept from mobilising and may be kept nil per oral, fasted for 

many days before and after surgery. They will be exposed to a wide range of new drugs 

(patients undergoing major surgery receiving an average of 12 different medications) in 

addition to having their usual medication with-held (Kennedy et al. 2000). Withholding a 

patient’s usual medication can lead to acute abstinence syndromes, such as the 

tachycardia and hypertension that follows abrupt withdrawal of beta-blockers (Nimmo et 

al. 1988). This, in addition to surgical trauma, places an extraordinary amount of stress on 

the body and changes the way it deals with medicines. It has been shown the longer 

patients are without their normal medication, the more non-surgical complications they 

suffer (Kennedy et al. 2000).  

This section discusses the stress response experienced by the surgical patient. It is 

complicated, multifaceted and interlinked (Figure 1.3-1). The impact of the stress 

response on the various aspects of drug disposition; absorption, distribution, metabolism 
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and elimination are detailed below. Where available, the effect on paracetamol 

disposition is given, and where not, examples of drugs that share processes with 

paracetamol are used.  

 
Figure 1.3-1 Stress response schematic showing its complexity of interlinking.  
Solid lines indicate direction of stimulus, broken lines represent suppression. Red boxes show physical symptoms of stress 
response. Abbreviations used: AAG- α1-acid-glycoprotein; ACTH- adrenocorticotropic hormone; AVP- arginine 
vasopressin; CNS- central nervous system; CRH- corticotrophin releasing hormone; HPA- hypothalamic-pituitary adrenal 
axis; PVN- paraventricular nucleus;  

1.3.1 STRESS RESPONSE 

Evolution did not anticipate modern surgery with aseptic techniques and so the body’s 

response to surgical trauma is as if the emergency was infection (Nathan 2002). The stress 

response is mounted in reply to this perceived microbial threat and, to a much lesser 

degree, the insult to cardiovascular homeostasis that also arises from surgery. The extent 
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of inflammatory stress is a key determinant of susceptibility to hepatotoxicity from 

paracetamol (Roth et al. 2010). 

The stress response is an integrated hormonal and metabolic response, rather than a 

series of isolated reflexes. It occurs after injury or trauma and involves both hormonal and 

metabolic systems (Selye 1976). Creating a catabolic state, it is thought to be an 

evolutionary adaptation to allow injured animals to utilise their own fuel stores to survive 

convalescence, sparing glucose for use by neurones (Desborough 2000; Kopp Lugli et al. 

2010). Other systemic changes include; sharpened attention, increased glucose utilisation 

and blood flow to the brain and muscle, modulation of the immune response, inhibition 

of reproductive physiology, decreased feeding and appetite, and water retention 

(Sapolsky 2000). Although virtually all of the body’s systems are eventually affected by 

surgical trauma, the neuroendocrine, cardiovascular, gastrointestinal and immune 

systems are the first to show functional change and subsequent changes to drug 

disposition (Carrasco et al. 2003). The initiation of the stress response varies, depending 

on whether the stressor is an immediate or delayed risk to homeostasis. Stressors that 

are an immediate risk must be transmitted quickly and are processed via the limbic 

insensitive pathway. Delayed risks require sensory processing before becoming stressful 

(limbic stress pathway). An example of this is described in Figure 1.3-2.  
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Figure 1.3-2 Initiation of Stress Response 
Figure shows two pathways of initiation: limbic stress pathway (left) that is slower and occurs in response to less 
imminent danger, and limbic insensitive pathway (right) which is rapid and occurs when there is a perceived threat to 
survival(Drolet et al. 2001). 

A slip of a dentist’s drill is an immediate danger and requires an immediate response, 

whereas the sound of a dentist’s drill is only stressful when compared with memory of 
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the drill slipping in the past. For an individual with previous dental trauma the sound of a 

dentist’s drill evokes a stress response; palms sweat, senses are heightened etc., but the 

response is not as quick as if a new incident had occurred (Herman et al. 1997).  

Historically, the response to injury was thought to consist of three stages: 

 Hypodynamic ebb phase (shock). In the first moments after injury blood flow is 

redirected to maintain perfusion of vital organs and minimise blood loss;  

 Hyperdynamic flow phase. Blood flow is increased to remove waste and provide 

nutrients to the injured area to encourage repair in the first days after injury; and 

 Recuperation phase. Lasting several months, this phase restores the body to pre-

injury conditions (Smith et al. 1998). 

While a useful overview, current opinion is that the response to injury is much more 

complicated than initially described (Giannoudis et al. 2006). 

In modern surgical practice, the stress response, whose main function is the eradication 

of infection, is seen as unnecessary and indeed deleterious to recovery (Giannoudis et al. 

2006). This is due to the widespread use of aseptic techniques and antibiotics, which have 

all but eliminated the dangers once posed by microbial invasion (Nathan 2002). Now the 

need for the surgical stress response has been reduced, progress in surgical care has 

arisen due to the developments in understanding of this response and, most importantly, 

techniques to modify or block it (Desborough 2000). 

The changes to the endocrine and immune systems that arise during the stress response 

are complex and highly interactive. The normal physiological function of each of these 

systems will be briefly described, followed by their role in the stress response. 

1.3.1.1 ENDOCRINE RESPONSE 

The endocrine system is involved in homeostasis through the secretion of various 

hormones from endocrine glands throughout the body into the blood stream. The 

hormones travel in the blood to their target site where they interact with a receptor. The 

hormone-receptor binding is very specific. This triggers the target site to perform a 

specific action and can lead to: 

 Change in function (ranging from that of a single cell through to a whole organ) 

 Alteration of energy usage;  
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 The triggering of growth and development; or 

 In the case of trophic hormones, triggering other endocrine glands to release 

other hormones.  

This enables the endocrine system to regulate many of the other systems throughout the 

body in response to demands of homeostasis (Kohl et al. 2006).  

1.3.1.1.1 INITIATION OF THE STRESS RESPONSE 

From the time of incision, the activity of the endocrine system changes. Somatic and 

visceral afferent neuronal signals travel from the point of injury along sensory nerve roots 

through the dorsal root ganglion, up the spinal cord to the medulla. From there they pass 

through the amygdala and on to the hypothalamic paraventricular nucleus (PVN), 

bypassing the limbic system (Figure 1.3-2). These signals are thought to travel along the 

same fast conducting A-delta fibres as nociceptive signals (Kehlet 1989; Van de Kar et al. 

1999; Desborough 2000).  

Once at the PVN, the signal triggers the hypothalamic-pituitary-adrenal axis (HPA) and 

increases the production of releasing hormones(Egdahl 1959). 

With respect to the stress response, there are two important releasing hormones 

secreted from the PVN: corticotrophin-releasing hormone (CRH) and arginine vasopressin 

(AVP) (Whitnall 1993). These releasing hormones act on the posterior and anterior 

pituitary (Miner 2008). Following secretion, CRH goes into the pituitary portal circulation 

whereas AVP is secreted into posterior pituitary for storage and later release into the 

systemic circulation. 

With the involvement of the locus coeruleus, the sympathetic nervous system is also 

activated by CRH, by increasing release of norepinephrine from presynaptic nerve 

terminals and increasing secretion of epinephrine from the adrenal medulla (de Kloet et 

al. 2008; Guest 2008).  

The majority of these initial processes in the PVN are subject to modulation by 

endogenous opioids, most commonly enkephalin. Endogenous opiate production may be 

stimulated by leukocytes or inflammatory cytokines (Glattard et al. 2010). Opioids 

diminish stress-induced changes in the endocrine system and levels of enkephalin mRNA  

are increased in the PVN after acute stress(Lightman et al. 1987). The mechanism by 

which endogenous opiates act in modulation of the stress response is still uncertain, 
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although opioids have been shown to reduce peripheral nociceptive impulses, which may 

reduce stimulation of the hypothalamus (Drolet et al. 2001; Miner 2008; Glattard et al. 

2010; Madbouly et al. 2010a). 

1.3.1.1.2 EFFECT OF INCREASES IN SYMPATHETIC ACTIVITY 

The increase in plasma concentration of norepinephrine and epinephrine is one of the 

first detectable changes of the stress response, occurring within minutes of incision. The 

increase in concentration is proportional to the extent of injury, although it is short-lived, 

returning to baseline concentrations within hours of the initial trauma (Douglas et al. 

1989).  

This increase in sympathetic tone contributes to the characteristic symptoms associated 

with stress, such as tachycardia, hypertension and peripheral vasoconstriction. The 

efferent sympathetic stimulation and circulating catecholamines also alter the function of 

visceral organs including the kidney, pancreas and liver.  

In the kidney, increased circulatory concentrations of norepinephrine increase production 

of renin. Renin promotes the conversion of angiotensin I to angiotensin II. Angiotensin II is 

a potent vasoconstrictor and also promotes the secretion of aldosterone from the adrenal 

cortex (Ganong 2001). Aldosterone promotes sodium resorption from the distal 

convoluted tubule of the kidney, resulting in reduced urine production (Nicholson 2005).  

In the pancreas, α-adrenergic inhibition by circulating catecholamines prevents β cells 

from secreting insulin, whilst glucagon secretion is transiently increased. Insulin is an 

anabolic hormone normally released from the pancreas after eating, in response to 

increasing concentrations of glucose and amino acids in the blood. Its function is 

threefold:  

 Promoting glucose uptake and utilisation by cells; 

 Promoting glucose storage in the liver as glycogen; and 

 Inhibiting gluconeogenesis, the process of de novo glucose production by protein 

catabolism and lipolysis (Desborough 2000).  

In the absence of insulin, hyperglycaemia develops.  

The effects of inhibiting insulin secretion are further augmented by catecholamine-

induced resistance of cells to the remaining insulin in circulation, and the increase in 
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glucagon release (Thorell et al. 1994; Guest 2008). Glucagon is a catabolic hormone that 

opposes the actions of insulin. It increases hepatic glycogenolysis and gluconeogenesis, 

although its role in postoperative hyperglycaemia is minor compared with the decreased 

insulin secretion and sensitivity (Ni Choileain et al. 2006). Failure of homeostatic 

mechanisms to maintain euglycaemia ensues. 

Stressed individuals are therefore in a catabolic state, hyperglycaemic, oxidising skeletal 

muscle protein and fat stores for gluconeogenesis. This resultant hyperglycaemia after 

surgery may encourage wound infection, further impair wound healing and is a predictor 

of poor outcome in the critically ill (Bochicchio et al. 2005). The weight loss and muscle 

wasting as a result of the gluconeogenesis and lipolysis causes significant amounts of 

nitrogen to be excreted into the urine (Wilmore 1991). Urinary nitrogen concentration 

can be used as a marker of the extent of the stress response as can plasma glucose 

concentrations and insulin/glucagon ratios (Campbell et al. 1984; Anand et al. 1987; 

Bessey et al. 1993; Glaser et al. 1995).  

1.3.1.1.3 EFFECT OF INCREASES IN PITUITARY HORMONE SECRETION 

The pituitary is a major endocrine gland of homeostasis. While the pituitary releases the 

majority of the trophic hormones involved in the stress response, it remains under 

control of the hypothalamus. The pituitary is divided into two lobes, anterior (AP) and 

posterior (PP).  

In response to the increased level of the trophic hormone CRH and the increased AVP 

synthesis in the PVN, the AP releases adrenocorticotropic hormone (ACTH). Stress also 

causes the release of growth hormone from the AP. The PP releases the AVP synthesised 

in the PVN in response to activation of the HPA. AVP has its own stimulatory paracrine 

effect on ACTH release, synergistically with CRH, creating a positive feedback loop. 

However, AVP’s main function is as an anti-diuretic. AVP acts on cells that line the distal 

nephron, causing the translocation of aquaporin water channels from endosomes to the 

luminal membrane, promoting reabsorption of water. Additionally, constriction of 

vascular smooth muscle cells occurs (Guest 2008; Costello-Boerrigter et al. 2009). 

Increasing amounts of ACTH enter the systemic circulation from the AP and travel to the 

adrenal cortex, stimulating the release of glucocorticoids. Norepinephrine released from 

the brain stem nuclei is also involved in glucocorticoid secretion but the pathways 

involved in this control are not clear (Ferreira-Silva et al. 2009). Surgery is one of the most 
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potent stimulators of ACTH, and cortisol release is measurable minutes after the 

commencement of surgery (Thoren 1974; Nicholson et al. 1998; Desborough 2000). 

Cortisol levels peak four to six hours after surgery, when they can be greater than four 

times normal. The extent of the increase depends on the severity of surgical trauma and 

anaesthetic intervention (Traynor et al. 1981; Chernow et al. 1987; Nicholson et al. 1998). 

This increase in glucocorticoid has a strong catabolic effect. This adds to the 

catecholamine stimulated changes in the pancreas, further reducing glucose utilisation 

and promoting catabolism through protein breakdown, lipolysis and gluconeogenesis 

(Kopp Lugli et al. 2010). 

Glucocorticoids also have anti-inflammatory activity, inhibiting macrophage and 

neutrophil accumulation into areas of inflammation and interfering with inflammatory 

mediator synthesis, particularly PGs. This also has a suppressive effect on cytokine 

production, and as cytokines promote ACTH release, this forms a negative feedback loop. 

The cortisol response to surgery is sufficient to depress interleukin-6 (IL-6). IL-6 

concentrations and have a suppressive effect on the immune system (Desborough 2000). 

Cortisol also inhibits the synthesis of CRH and ACTH (Guest 2008). Cortisol is so effective 

that synthetic analogs of cortisol are used clinically as anti-inflammatories e.g. 

hydrocortisone (Han et al. 2002). 

The Growth Hormone, also released from the AP, further contributes to catabolism by 

stimulating the release of somatomedins, also known as insulin-like growth factors, which 

are mainly synthesised in the liver. Somatomedins normally promote cell growth and 

division, but also further stimulate glycogenolysis, lipolysis and reduce glucose uptake in 

the tissue (Guest 2008). 

Thyroid function is also affected with reductions to thyroid stimulating hormone and tri-

iodothyronine (T3) secretion after surgery (Edwards 1997). This can lead to changes in 

both metabolic activity and oxygen consumption of most of the metabolically active 

tissues in the body, although this is offset by the close functional association with 

catecholamines, whose concentrations uniformly increase in the stress response (Thoren 

1974; Desborough 2000). There are also increases in oxytocin and prolactin synthesis in 

the PVN, although the importance of these hormones to the stress response is uncertain 

(Guest 2008). 

As a result of the endocrine elements of the stress response the surgical patient is: 
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 Sympathetically activated (tachycardic, hypertensive, sweating and pale); 

 Catabolic; 

 Hyperglycaemic; 

 Oliguric; 

 Peripherally vasoconstricted; and 

 Immunosuppressed. 

1.3.1.2 IMMUNE RESPONSE 

The immune system is typically involved in the eradication of injured or foreign cells by 

producing an immune response. It is a complex combination of organs, tissues, cells and 

cell products such as antibodies and cytokines.  

Tissue injury following surgical incision causes macrophages to migrate to the damaged 

area. This increases vascular permeability and generates high circulating concentrations 

of IL-1β, IL-6 along and tumour necrosis factor-α (TNF-α) at the site of injury (McMahon et 

al. 1993).  

Although the major initiation of the stress response is from afferent neural stimuli, a 

variety of humoral factors are also involved, most of which arise from the immune 

response (Holte et al. 2002). Cytokine production at the site of injury, especially IL-6 and 

TNF-α, trigger release of subsequent components (Kehlet 1989). TNF-α is released first 

from activated macrophages and it stimulates the release of more cytokines, especially IL-

6, the main cytokine for inducing the systemic changes of the stress response. IL-6 levels 

peak about 24 hours after surgery and remain elevated for 48-72 hours postoperatively 

(Sheeran et al. 1997). High levels of inflammatory cytokines are also associated with 

increased mortality and morbidity after surgery (Roumen et al. 1993a). The cytokines act 

locally mediating and maintaining the inflammatory response to tissue injury and initiate 

some of the systematic changes that occur. 

Systemic changes from IL-6 release include the production of acute phase proteins in the 

liver, such as C-reactive protein (CRP), fibrinogen and other anti-proteinases. These acute 

phase proteins go on to modulate metabolic pathways and hormonal responses 

(Giannoudis et al. 2006). IL-6 also causes alterations in the synthesis of binding proteins, 

decreasing albumin and transferrin and, in most cases, increasing α1-acid-glycoprotein 

(AAG)(Bourguignat et al. 1997). AAG’s physiological role is in the regulation of the stress 
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response as a major steroid and catecholamine binder (Ganguly et al. 1967; Sager et al. 

1987). However, AAG is also adept at binding basic and neutral lipophilic drugs, 

particularly bupivacaine and anti-retrovirals (Holley et al. 1984; Fournier et al. 2000; Israili 

et al. 2001). During the acute phase response, IL-6 also acts directly on the pituitary to 

stimulate ACTH and AVP secretion. This contributes to the initiation of the endocrine 

response and ultimately increases cortisol concentrations (Roumen et al. 1993a). Cortisol 

in turn has a suppressive effect on cytokine production, impairing the immune response, 

completing a negative feedback loop (Desborough 2000; Ni Choileain et al. 2006). 

Studies examining cytokine patterns following surgery report early, transient rises in IL-1β 

and TNF-α followed by later and more sustained elevations in plasma IL-6 and cortisol 

concentrations. Peak IL-6 concentrations have been related to the duration of surgery 

(Cruickshank et al. 1990; Baigrie et al. 1992; Haas et al. 2003). One study examined 

metabolic responses of 158 patients receiving either hip or knee arthroplasty. They 

showed cortisol levels peaked within 12 hours of surgery, ahead of IL-6, which peaks on 

the second postoperative day (Hall et al. 2000). Laparoscopic and open bowel resections 

follow similar patterns, with most reports showing reduced cytokine levels following 

laparoscopic surgery (Leung et al. 2000; Schwenk et al. 2000; Veenhof et al. 2011). 

Due to the immune response elements of the stress response the surgical patient has: 

 Large accumulations of inflammatory cells and pro-inflammatory mediators at the 

site of injury; 

 Increased vascular permeability at the site of injury; 

 Perpetuation of the endocrine response; and 

 Altered plasma protein binding. 

1.3.1.3 INFLUENCE OF SURGERY 

When performing a surgical procedure, surgeons must have a clear view of the operative 

field in order to perform their task. Historically, this involved a long and deep incision, the 

use of clamps to prevent bleeding and retractors to expose the site. As camera and 

monitor technologies advanced in the latter half of the 20th century their use to give a 

magnified view of the operative field to the surgeon on a monitor screen provided an 

alternative to traditional open surgery. The camera and other surgical instruments could 

be inserted through small incisions, or port sites, and manipulated by the surgeon from 
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the outside. This laparoscopic, minimally invasive approach is now routine for many 

diagnostic and surgical procedures. For a cholecystectomy, laparoscopic surgery typically 

involves three 0.5-1cm incisions for the insertion of instruments, compared with 

laparotomy, involving a 20-25cm incision through skin, subcutaneous tissue, three layers 

of muscle and then peritoneum. It is to be expected then that laparoscopic procedures 

cause less physical trauma to the patient, with less stimulation of the stress response and 

subsequent alteration to drug disposition. 

A recent systematic review in 2009 by Vlug et al. compared laparoscopic techniques with 

open surgery. Identified in this review were a number of studies which had found 

favourable outcomes for laparoscopic surgery such as shorter hospital stays, and 

reductions in readmission, mortality and morbidity, but they were of poor design (Vlug et 

al. 2009). Because of the lack of good quality studies the review concluded there was as 

yet insufficient robust evidence of significant superiority of laparoscopic techniques over 

open surgery. However, there is little doubt that laparoscopic surgery is accompanied by 

less extensive tissue damage, painful stimuli, fluid shifts and necessity for opioid analgesia 

(Mythen 2005). Additionally surgery that minimises tissue dissection and retraction is 

likely to minimise the stress response (Giannoudis et al. 2006; Madbouly et al. 2010a). 

Indeed, a number of studies have shown reductions in some inflammatory markers 

accompanying laparoscopic techniques (Glaser et al. 1995; Kehlet 1999; Desborough 

2000; Jess et al. 2000; Le Blanc-Louvry et al. 2000; Gupta et al. 2001). 

Despite the predicted reductions in stress response this has not lead to a wholesale 

reduction in all inflammatory markers, and perioperatively markers of stress are often 

similar in the two surgical techniques (Le Blanc-Louvry et al. 2000). One study showing 

this compared the inflammatory response following open and laparoscopic inguinal 

hernia repairs (Jess et al. 2000). In terms of the stress response, TNF-α and IL-2 

concentrations were not significantly different, although IL-6 concentrations rose 

significantly rose more sharply following open surgery (p<0.00). Additionally there were 

significantly shorter recovery times in the laparoscopic group (median recovery days for 

laparoscopic and open surgery 2 vs. 13 respectively). Other studies have reported similar 

trends (Mansour et al. 1992; Bruce et al. 1999; Chaudhary et al. 1999; Kristiansson et al. 

1999; Grande et al. 2002). Another study found similar inflammatory and metabolic 

responses between laparoscopic and a “mini-laparotomy” procedures (McMahon et al. 

1993). 
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Open surgery is also accompanied by greater increases in endogenous morphine release 

following surgery, another marker of the stress response (Madbouly et al. 2010b). Less 

invasive surgery does have other benefits for pulmonary function and reduction in 

hypoxemia than with open surgery (Mimica et al. 2000), and is manifested clinically in 

reductions of pain, morbidity and duration of hospital stay (Kehlet 1999; Le Blanc-Louvry 

et al. 2000). Laparoscopic approaches also lead to reductions in gastrointestinal paralysis 

and subsequent earlier return to oral nutrition, which has itself been shown to lead to 

reductions in catabolism and risk of septic complications (Kehlet 1997; Andersen Henning 

et al. 2006).  

1.3.1.4 INFLUENCE OF ANAESTHESIA AND ANALGESIA 

The method of ventilation, type of pain relief, extent of resuscitation, use of rapid onset, 

short acting anaesthetic agents, use of muscle relaxants and choice of tubes, drains and 

catheters, may all have a role in minimisation of the surgical stress through a variety of 

mechanisms (Kehlet 1989; Wilmore 2002). 

The type of anaesthesia itself has not been shown to be a major influence on the stress 

response to surgery, except for the use of high doses of opioid anaesthesia. This is 

consistent with the body’s own endogenous opiate system having a role in the 

modulation, mediation and regulation of the stress response and observations of 

exogenous opiates reducing the emotional and affective response to pain (Drolet et al. 

2001). High doses of opiates can reduce intra-operative but not postoperative changes to 

hypothalamic and pituitary hormone secretion (Kehlet 1996). Morphine and fentanyl 

have been shown to suppress the release of ACTH and thereby cortisol, with a dose of 

15ug/kg of fentanyl sufficient to suppress the cortisol and glucose responses in lower 

abdominal surgery (Lacoumenta et al. 1987). However, to achieve meaningful 

suppression in upper abdominal surgery, doses that result in unacceptable respiratory 

depression are required. Conventional doses of opiates result in modest reductions in 

stress response when administered via patient-controlled analgesia, with slightly greater 

reductions when administered epidurally. While there is evidence of opiates reducing the 

stress-induced neuroendocrine and autonomic responses, paradoxically opiates stimulate 

these systems in the non-stressed state, leading to the development of hyperalgesia 

(Drolet et al. 2001). 
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NSAIDs have been shown to attenuate the endocrine metabolic response to endotoxin in 

vitro, but in studies of surgical patients the effect is less pronounced (Chambrier et al. 

1996).  

Conversely, incisional and regional anaesthesia can reduce both pain and the pituitary 

stress response by blocking afferent nerve fibres and their contribution to hypothalamic 

and sympathetic activation (Kehlet 1996). In current practice, regional anaesthesia is 

commonly used in addition to general anaesthesia because of this effect on the stress 

response and the subsequent benefits for organ function and postoperative outcome 

(Rodgers et al. 2000; Wilmore 2002). Neural block with local anaesthetics can 

substantially change the majority of hormonal and metabolic changes, reducing 

endocrine responses and postoperative catabolism (Vedrinne et al. 1989; Holte et al. 

2002; Schricker et al. 2002). Pain relief is achieved, pulmonary is function improved and 

incidence of ileus is reduced. This provides for earlier oral nutrition and mobility (Kehlet 

1996). The same agents administered intravenously, intraperitonealy or intrapleuraly do 

not significantly alter the stress response (Kehlet 1996). 

The approach to postoperative pain control also has clinically significant outcomes. If a 

“prn” (as required) approach is utilised for controlling postoperative pain, higher 

concentrations of stress hormones, more intense pain, more substantial catabolism and 

greater immune impairment than with regional anaesthetic blockade can result (Kehlet 

1997). Pre-emptive analgesia, that is analgesia administered before the onset of injury, 

can also minimise the stress response (Miner 2008). 

1.3.1.5 OTHER ATTEMPTS TO MODIFY STRESS RESPONSE 

Much attention has been devoted to reducing the impact of the stress response in the 

surgical patient. Being catabolic, the surgical patient is utilising skeletal muscle to produce 

energy. In attempts to reduce this gluconeogenesis patients have been administered 

supplemental glucose, which resulted in undesirable hyperglycaemia (Schricker et al. 

2002). Amino acid infusions have had better outcomes, resulting in positive protein 

balance and reduction in endogenous glucose production (Donatelli et al. 2006). 

1.3.1.6 IMPLICATIONS OF THE STRESS RESPONSE  

The net result of the stress response is a postsurgical state characterised by fat and 

muscle breakdown, hyperglycaemia and impaired immune function. There is an increase 
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in catabolism to provide energy from fuel stores within the body (Desborough 2000). 

Retention of salt and water to maintain fluid volume and cardiovascular homeostasis can 

result in fluid overload, tissue oedema and congestive heart failure if fluids are not 

carefully managed. With tachycardia and hypertension arising from catecholamine 

stimulation, there is an increased risk of myocardial ischaemia and reduced blood flow to 

the periphery (Guest 2008). Stimulation of the liver to produce acute phase proteins 

causes reductions in the synthesis of albumin and increases in AAG. High levels of 

inflammatory cytokines have also been shown to alter CYP450 activity (Frye et al. 2002; 

Morgan et al. 2008), while even mild inflammation has been shown to increase the 

demand for sulphur containing amino acids, causing increased diversion of cysteine away 

from GSH production (Mercier et al. 2006). 

These factors can have significant implications for drug disposition and are discussed in 

more detail under the headings absorption, distribution, metabolism and elimination 

below. 

1.3.2 ABSORPTION 

In the non-surgical patient, drugs taken orally must pass down the oesophagus into the 

stomach, dissolve from the dosage form and enter the small intestine. Food and 

medicines taken orally normally pass from the stomach to the small intestine within half 

an hour (Adelhoj et al. 1985). The small intestine is the main site of absorption for any 

ingested compound, whether it be food, drug or toxin (Chan et al. 2004). The bulk of 

absorption occurs in the upper jejunum. Along with the majority of the small bowel, the 

jejunum is a highly vascularised tissue, covered in a mucous membrane with internal 

projections called villi. A villus is coated in an epithelial brush boarder membrane (Figure 

1.3-3).  

These characteristics give it a high surface area ideal for the efficient absorption of gut 

contents. Absorption is so efficient that the rate substances leave the stomach into the 

small intestine is normally the rate limiting step of absorption (Marcos et al. 1996). These 

qualities are clear when considering that the average adult consumes approximately 800-

1000g of food and 1200-1500mL of water per day, of which only 50g and 100mL is 

excreted unabsorbed (Mythen 2005). In addition to absorption, the intestinal epithelium 

must act as barrier, protecting the body from the outside world, repelling harmful 

substances and expelling waste for excretion.  
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Figure 1.3-3 Routes of Intestinal Absorption (Hayashi et al. 1997) 

Substances for absorption are chemically diverse, with substantial variance in size and 

lipophilicity and this diversity also applies to orally administered drugs. Accordingly, a 

drugs absorption from the lumen of the intestine into the blood can be quite difficult, and 

varies with a compound’s affinity for specialised membrane transport systems and 

intracellular metabolising enzymes (Chan et al. 2004).  

Most compounds cross the intestinal epithelia by one of two routes; paracellular or 

transcellular. Which route a compound uses is determined by its size and ionic charge 

(Levine 1970). Small, hydrophilic, ionised drugs can be absorbed by the paracellular 

pathway, through the tight junctions between epithelial cells. It relies on active transport, 

utilising specialised transport proteins. Accordingly, absorption by the paracellular 

pathway is small (Hayashi et al. 1997).  

The transcellular pathway across the epithelia is almost exclusively accomplished by the 

partition and passive diffusion of non-ionised, lipophilic drugs. Most oral medicines are 

lipophilic and rely on this route for absorption (Hunter et al. 1997). In most cases it is 

passive, not requiring any active transport, but some hydrophilic or charged molecules 

also utilise transcellular transport, exploiting specialised transport mechanisms such as 

pinocytosis for entry into epithelial cells (Gubbins et al. 1991; Chan et al. 2004). 

Entry into the enterocyte does not assure a compound’s passage across the basolateral 

membrane and into the blood stream. Efflux proteins at the apical membrane transport 

many compounds back out into the intestinal lumen, and often determine the extent of a 

compound’s absorption. Compounds may also be modified by metabolising enzymes 

found within the enterocyte. This intracellular metabolism may inactivate a drug or make 
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it an efflux protein substrate (Chan et al. 2004). Once a drug has crossed the basolateral 

membrane it is transported in the hepatic portal vein to the liver where it will again be 

exposed to a variety of metabolising enzymes.  

In reference to drugs, the fraction of the administered dose that reaches the systemic 

blood is referred to as a drug’s bioavailability. It is determined by two factors: 

1. The amount not absorbed; and 

2. The amount lost to metabolism either in the intestine or liver as it is absorbed 

(referred to as first pass metabolism or loss) (Bruton et al. 2006; Backes et al. 

2008). 

Of the changes in the stomach and small intestine, the most significant factors that affect 

absorption are: 

 The rate of emptying from the stomach to the small intestine (gastric emptying) 

(Section 1.3.2.1); 

 The ability of the small intestine to absorb the drug (small bowel absorption) 

(Section 1.3.2.2); and 

 The first pass metabolism of the drug (Section 1.3.2.3) 

Changes to these factors that arise from surgery mean that oral absorption is, at best, 

unreliable in postoperative patients (Noble et al. 2000). As the first step of drug 

disposition, changes to drug absorption can severely alter the effectiveness of orally 

administered medicine.  

1.3.2.1 GASTRIC EMPTYING 

Gastric emptying can be delayed substantially in the postoperative patient for a variety of 

reasons. Two of the most significant factors are the: 

1. Nature and duration of surgery; and 

2. Use of drugs, especially opiates. 

As this step is often absorption-rate limiting, understanding changes to gastric emptying is 

the first and perhaps most crucial step to understanding changes to drug disposition in 

postoperative patients. Delays to absorption will typically reduce maximum plasma 

concentration (cmax), and extend the time taken to achieve it (tmax). This can delay 
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therapeutic effect, e.g. analgesics, or even failure of the therapy if it relies on rapid 

absorption for effectiveness e.g. antibiotics and antiarrhythmics (Nimmo et al. 1988).  

Changes to the motility pattern of the gastro-intestinal tract as a result of surgery have 

been known since the early 20th century (Livingston et al. 1990), however the implications 

of this alteration to drug therapy were elucidated in the 1970s (Heading et al. 1973). 

More recently, retropulsive disposition of fluid from the small intestine back into the 

stomach was observed following surgery, further impacting on the rate of absorption 

(Kennedy et al. 2006). 

1.3.2.1.1 INFLUENCE OF SURGERY 

Gastric emptying is diminished or absent following any major procedure and ileus, the 

total paralysis of the gut, may occur, especially when the peritoneum is entered, the small 

bowel is manipulated or the procedure is long (Graber et al. 1982; Livingston et al. 1990; 

Kalff et al. 1998; Le Blanc-Louvry et al. 2000). In many case series ileus is reported at rates 

of >90% following intra-abdominal surgery (Kehlet et al. 2001b; Mythen 2005). This 

reduction in motility was initially thought to occur from sympathetic hyperstimulation as 

a result of surgical stress (Mythen et al. 1994). However, as discussed above, metabolic 

derangement, peritoneal irritation, electrolyte imbalance, hypovolaemic and 

perioperative medicines are now understood to have a greater contribution (Graber et al. 

1982; Wallden et al. 2006). 

1.3.2.1.2 THE ROLE OF OPIATES AND OTHER AGENTS 

Perioperative medications most typically associated with delaying gastric emptying are 

opiate, adrenergic and anticholinergic drugs (Clark et al. 1980; Todd et al. 1983). These 

are commonly used as analgesics, anaesthetics, psychotropics, cardiovascular and 

autonomic drugs around the time of surgery (Kennedy et al. 1998).  

All other factors are insignificant in the face of opiates (Kehlet et al. 2002). They have 

been shown to diminish propulsive contraction of the gut and delay gastric emptying 

(Crighton et al. 1998). Delayed emptying associated with opiate use has been shown to 

persist for at least five hours after dosing (Ingram et al. 1981) and the time to empty 50% 

of an ingested solution from the stomach is increased 8 to 10 fold after pethidine or 

diamorphine administration (Nimmo et al. 1975). There is partial reversal of the delay by 

opiate antagonists naloxone and methylnaltrexone (Frame et al. 1984). The efficacy of 
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methylnaltrexone, which does not cross the blood brain barrier, indicates the delay is 

peripherally rather than centrally mediated (Murphy et al. 1997).  

The exact mechanism of opiate delays is unclear, but is thought to arise from agonism of 

peripheral μ opiate receptors. Opiate receptors are found throughout the gut, but are 

present in especially high numbers in the gastric antrum and proximal duodenum. 

Activation of the opioid receptors in the presynaptic nerve terminals of the mesenteric 

plexus causes increased resting tone and decreased propulsive peristaltic waves of the 

gut (Fiocchi et al. 1982; Manara et al. 1985; Manara et al. 1986). Agonists of these opiate 

receptors all cause delays to gastric emptying (Polak et al. 1979).  

When studies have investigated multiple contributing factors in the cause of delays to 

gastric emptying, opiate use predominates. A group of 20 patients undergoing elective 

cholecystectomy were examined for their ability to empty 100ml of water from the 

stomach before and on the first day after their procedure (Ingram et al. 1981). Emptying 

was grossly retarded following an injection of opiate. No correlation was found between 

age, sex, duration of procedure or anaesthetics and the authors concluded opiate use was 

the most significant factor in a patient’s inability to tolerate oral fluids and that 

alternative analgesia should be sought or opiate administration reduced.  

The method of administration of the opiate is also influential, with pulse doses of opiates 

appearing to delay gastric emptying further than continuous infusions of an equivalent 

dose (Nimmo et al. 1988). Long anaesthesia with inhaled anaesthetics may also delay 

gastric emptying but the changes are relatively small compared with that seen after 

administration of opiates (Adelhoj et al. 1984).  

One study attempting to show the influence of these factors used opiate free anaesthesia 

with sevoflurane in 25 patients undergoing laparoscopic cholecystectomy, but did not 

show significant improvements to delayed gastric emptying over propofol and 

remifentanyl based anaesthesia in the same number of patients (Wallden et al. 2006). 

However, two aspects of the method may have reduced the study’s sensitivity to 

changes; the paracetamol they used to measure gastric emptying was ‘dissolved’ in a 

large volume of water before administration down a nasogastric tube, which is a poor 

marker of delay (Kennedy et al. 2003), and the study period was only two hours, 

prohibiting analysis of area under the concentration/time curve (AUC). 
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Minor delays to gastric emptying have also been shown to occur from alterations to 

posture. A study of 20 patients prior to cardiac catheterisation examined the difference in 

oesophageal transit time whilst standing or supine. Also using paracetamol absorption to 

determine gastric emptying, they found supine patients to have significantly reduced Cmax 

from 8.76 ± 1.17 to 5.92 ± 0.95μg/mL (p<0.04), with tmax 70 minutes longer. Both are 

strong indicators of delay to gastric emptying (Channer et al. 1985).  

Other commonly used medications in surgery, benzodiazepines, have no independent 

effect on gastric emptying (Adelhoj et al. 1985), nor does pain or anxiety alone, unless 

they cause delayed mobilisation or eating or invoke the stress response (Marsh et al. 

1984; Le Blanc-Louvry et al. 2000).  

1.3.2.1.3 DURATION OF DELAYED GASTRIC EMPTYING 

The duration of the delay to gastric emptying following surgery is highly variable. In most 

cases, delays to gastric emptying and postoperative ileus resolve spontaneously after 

two-three days (Livingston et al. 1990), but in severe cases, delayed gastric emptying can 

persist for weeks or even months in those with multiple risk factors (Marcos et al. 1996). 

Emptying can be reduced even in the presence of bowel sounds or the passing of flatus 

(Kennedy et al. 1998), and even if the stomach was not directly involved in the procedure 

(Condon et al. 1986). 

1.3.2.1.4 IMPACT OF DELAYED GASTRIC EMPTYING 

Delays to gastric emptying are characteristically shown in changes to paracetamol 

absorption. Paracetamol absorption is frequently used because it is poorly absorbed from 

the stomach, relying on gastric emptying for absorption (Heading et al. 1973; Todd et al. 

1983; Marsh et al. 1984; Nimmo et al. 1988). Changes to absorption in the surgical 

patient are substantial. Kennedy et al. used paracetamol syrup to demonstrate reductions 

of almost 50% in cmax (30.2 vs. 16.3mg/L) and greater than doubling in tmax (35 vs. 119min) 

comparing values from before and two days after major abdominal surgery (Kennedy et 

al. 2006).  

For drugs that are acid labile, such as penicillin, the extent of absorption can also be 

reduced if gastric emptying is delayed, as these drugs are degraded by prolonged 

exposure to the harsh environment in the stomach (Nimmo et al. 1988).  
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In addition to impacting on absorption of medication, the risk of intolerance, 

regurgitation and aspiration of oral food and fluids may also be a result of delayed gastric 

emptying. There is also a contribution to constipation and ileus (Mythen 2005). In 

addition to patient discomfort, ileus is a significant burden on the health system at a 

minimum through delays to discharge (Livingston et al. 1990). 

With increasing attention on enhanced recovery programmes to reduce inpatient stays 

many strategies to minimise changes to gastric emptying have been investigated. Sparing 

opiates has a major role in this, alongside minimally invasive surgical techniques, regional 

anaesthesia, early mobilisation and early return to enteral feeding (Kehlet et al. 2001b). 

1.3.2.2 SMALL BOWEL ABSORPTION 

Once the drug is released from the stomach, absorption from the small bowel is itself 

dependent on three factors relating to the small bowel mucosa: 

 The blood supply; 

 The motility; and 

 The integrity of the mucosa.  

Changes to these factors in the perioperative period can cause reductions in absorption 

and bioavailability, particularly of drugs that are already poorly absorbed (Uhing et al. 

1995). But for the majority of drugs, changes to the factors listed are insignificant 

compared with the impact of delayed gastric emptying. Such is the case with 

paracetamol. As a weak acid, with a pKa of 9.5, it is largely unionised over the 

physiological pH range (Prescott et al. 1971). This, together with its favourable water and 

lipid solubility, means that it is rapidly and completely absorbed from the small bowel by 

passive diffusion (Bagnall et al. 1979). Therefore, any changes to paracetamol absorption 

from the small bowel are utterly dwarfed by reductions in gastric emptying.  

1.3.2.2.1 BLOOD SUPPLY 

The gut normally receives 15 to 20% of the total cardiac output, which can double two-

three hours following food ingestion (Lantz et al. 1981). Such supply is well in excess of 

the nutritional demands of the enterocytes alone (Lundgren 1967). A rapid blood flow is 

required to remove absorbed substances, which maintains the concentration gradient 
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required for passive diffusion and the health and barrier function of enterocytes (Gubbins 

et al. 1991). 

In the very early postoperative period, when haemostasis is most in danger, blood flow is 

rapidly redistributed away from the gut to maintain circulatory volumes to the more vital 

organs (Kennedy et al. 1998). In addition, spinal and epidural analgesics block autonomic 

vasoconstrictors, which results in vasodilation of large vessels, further reducing afterload, 

cardiac output and ultimately blood flow to the bowel (Winne 1979).  

Theoretically this reduction in blood flow to the gut could impair absorption of drugs that 

rely on passive diffusion (Levine 1970). But to significantly influence drug absorption 

changes to blood flow must be substantial and sustained (Winne 1979). Ischaemia of five 

minutes or less does not impair absorption; more prolonged periods may, but only during 

the time of ischaemia (Robinson et al. 1965; Bailie et al. 1987). Paradoxically, passive 

absorption may be increased once ischaemia ends, potentially allowing pyrogens to 

translocate across the gut wall (Crissinger et al. 1990). 

Active transport of substances is impaired during and after prolonged periods of 

ischaemia, indicating oxygen deficiency damages active transport mechanisms (Varro et 

al. 1965; Ochsenfahrt et al. 1973). However these changes do not have a significant effect 

on paracetamol absorption due to its passive diffusion.  

In the uncomplicated surgical patient, the large blood supply to the gut makes it unlikely 

that any significant reduction in passive absorption occurs (Lundgren 1967). In vivo 

substantial reductions in splanchnic flow (35% of normal in dog models) must occur 

before the efficiency of passive diffusion is affected (Crouthamel et al. 1975). Only the 

most critically-ill who have prolonged reduction to cardiac output and splanchnic flow 

may have some reductions to drug absorption (Kennedy et al. 1998). 

Paradoxically oedematous patients may also have impaired absorption (Berkowitz et al. 

1963). While occasionally shown in surgical patients, this is more commonly seen in 

severely oedematous congestive cardiac failure patients who show resistance to oral 

furosemide (Berkowitz et al. 1963). 

1.3.2.2.1.1 ASSESSMENT OF BLOOD FLOW TO THE GUT 

It is worth considering how blood flow to the gut and liver is assessed because the 

assumption that surgery causes no significant alteration to blood flow to the gut, and 
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subsequently the liver, is important to this Thesis. If blood flow was reduced this could 

cause alterations to drug metabolism by reducing cofactor and substrate delivery that is 

not being assessed. 

The gut provides 75% of the blood supply to the liver, therefore measurement of the 

latter provides a good approximation of the former (Desforges et al. 1953; Horner 

Andrews 1957). Two methods are commonly used to approximate hepatic blood flow: 

 Measurement of the disappearance of a hepatically excreted compound; or 

 Measurement of the appearance of a hepatically produced metabolite. 

Either compound or metabolite must possess a number of other favourable 

characteristics. One such compound, indocyanine green dye, is an example of the first 

method of approximation and has been used extensively to approximate blood flow to 

the gut (Caesar et al. 1961; Gibaldi 1991; Kanaya et al. 1995; Jacob et al. 2007). 

Because the liver is so efficient at extracting indocyanine green from the plasma and 

because 75% of the blood supply to the liver is from the portal vein (Desforges et al. 

1953; Horner Andrews 1957), the plasma disappearance of this compound approaches 

that of the splanchnic blood flow. Accordingly, it can also be used to assess blood flow to 

the mesenteric, splenic and hepatic vessels.  

Work by Kennedy et al. which preceded this research (Kennedy et al. 2006) administered 

indocyanine green and measured the plasma disappearance to approximate blood flow to 

the gut of 12 major abdominal surgery patients before and after surgery. No statistically 

significant difference in mean disappearance of indocyanine green was found. 

Another study examined indocyanine green clearance in patients before and after 

undergoing elective surgery with various types of inhaled anaesthetics. Although one 

inhaled anaesthetic, halothane, did reduce indocyanine clearance, it is not commonly 

used in current practice. Isoflurane and sevoflurane, two other assessed gases in current 

use, did not cause any significant change in indocyanine clearance (Kanaya et al. 1995). 

These results have been shown by other authors (Frink et al. 1992; Nakaigawa et al. 

1995), in other surgical groups (Murray et al. 1992a; Murray et al. 1992b) and confirmed 

by other, more invasive methods (Gatecel et al. 2003). In addition, pigs infected with 

Actinobacillus pleuropneumoniae also did not show any alteration to indocyanine green 
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clearance, indicating that bacterial sepsis alone also does not alter hepatic blood flow 

(Monshouwer et al. 1995).  

1.3.2.2.2 MOTILITY 

Small bowel motility is necessary for the mixing of substances in the bowel, moving them 

into close contact with the brush border membrane, where absorption occurs (Spiller 

1994). In surgical patients, co-ordination of small bowel motility is reduced, reducing the 

efficiency of absorption (Kennedy et al. 2006). 

As for gastric emptying, opiates are implicated in the reduction of small bowel motility, as 

are prolonged procedures involving small bowel manipulation, but unlike gastric 

emptying, small bowel motility returns approximately six hours after surgery in almost all 

patients (Fiocchi et al. 1982). Because small bowel motility is restored quickly in most 

cases, assuming the absence of ileus, it may be assumed that drug mixing is not 

significantly altered postoperatively (Kennedy et al. 1998).  

1.3.2.2.3 INTEGRITY OF THE MUCOSA  

The integrity of the mucosa can also influence drug absorption. Changes seen from 

surgical stress include alteration to cell morphology and loss of normal villus shape. This 

can result in reductions in absorptive area and potentially reduction in absorption by the 

transcellular route. These changes even occur in cardiac or orthopaedic surgery when the 

surgical injury is quite remote from the gut (Mythen 2005).  

Changes to pore size in the gut wall can also occur, allowing even large molecules to pass 

through the mucosa (Crissinger et al. 1990) and increased intestinal permeability has 

been shown after major abdominal surgery (Roumen et al. 1993b; Kennedy 1996). 

Inflammation and infection can also impair the activity of transporter and metabolising 

enzymes present in the gut wall (Aitken et al. 2006).  

1.3.2.3 FIRST PASS METABOLISM 

First pass metabolism broadly involves enzymes present in the brush border cells and the 

liver. As drugs pass from the intestinal lumen into the mesenteric capillaries they are 

exposed to many of the same drug metabolising enzymes that are found in the liver, 

predominately the Phase II conjugation enzymes glucuronosyltransferases and 

sulphotransferases (Pacifici et al. 1986; Rogers et al. 1987; Peters et al. 1991), although 
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Phase I CYP450 enzymes, particularly CYP3A4, are also present (Thummel et al. 1997). 

These enzymes of intestinal metabolism are localised primarily in the mucosal 

enterocytes. 

Similar metabolism can occur again in the parenchymal cells of the liver as absorbed 

drugs flow through the hepatic portal vein to the liver for the first time on their way to 

the inferior vena cava and systemic circulation (Thummel 2007). 

There are some reports of anaesthesia inhibiting intestinal CYP450 enzymes which may 

increase the extent of absorption of orally administered drugs that are normally 

extensively metabolised in the first pass. However, difficulties arising from delays to 

gastric emptying that occur from most anaesthesia and decoupling the contributions of 

the intestine from the liver to first pass metabolism complicates this research (Doherty et 

al. 2002; Thelen et al. 2009).  

Generally changes to first pass metabolism in the surgical patient are of minor 

importance in comparison to the other factors discussed above, and generally first pass 

metabolism is not an important contributor to paracetamol metabolism (Clements et al. 

1984). 

1.3.2.4 ABSORPTION FROM OTHER SITES 

Intramuscular drug absorption can also be affected by surgery and result in erratic plasma 

levels and unpredictable clinical effects (Ueno et al. 1995). Among other factors, the rate 

of drug absorption following intramuscular injection depends on blood flow at the site of 

administration. Anaesthesia and surgery produces a fall in muscle blood flow and this can 

delay drug absorption. This effect can be minimised by administration into the deltoid 

rather than the gluteus (Nimmo et al. 1988). Absorption following subcutaneous 

administration is similarly dependent on blood flow and can show comparable 

fluctuations (Kennedy et al. 1998). Absorption from the rectal route is already erratic and 

highly variable and in the absence of pyrexia, this situation is not improved in the surgical 

patient (Reddy et al. 2002). 

1.3.3 DISTRIBUTION 

Once a drug has reached the systemic circulation it is distributed throughout the body, 

firstly in the blood and then the tissues to varying degrees. In this way the body can be 
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considered to be made up of a number of compartments. The first, or central, 

compartment represents the blood volume. The second, or peripheral, compartment 

represents the tissues of the body. Depending on the nature of the drug it may be 

distributed into other compartments, such as the CNS. The amount of drug found in each 

compartment represents its distribution, and is the result of several drug and patient 

related factors. In general terms, drugs that are hydrophilic prefer the predominantly 

aqueous environment of the plasma in the central compartment while those that are 

lipophilic distribute more rapidly into the periphery, preferring the more hydrophobic 

adipose and muscle tissue. The binding of drugs to plasma proteins within the central 

compartment also influences to the distribution of lipophilic drugs, as bound drugs are 

retained in the central compartment (Bruton et al. 2006). 

Patient related factors may prevent drugs from distributing to their full extent. In the 

surgical patient prolonged operations frequently result in hypovolaemia, vasoconstriction 

and acidosis. These can alter drug distribution. Many of these factors can be considered 

as changes to either blood flow, drug binding or extracellular fluid. 

The distribution of fentanyl, for example, can be altered in surgical patients. Because of 

its lipophilicity, it has a high binding capacity to adipose tissue and muscle. As fentanyl is a 

weak acid, acidosis increases this binding capacity, prolonging fentanyl storage in the 

periphery. As the acidosis is corrected postoperatively by re-warming, volume 

replacement and buffers, fentanyl is released from its binding sites. This can result in a 

second peak, with potential for toxicity (Caspi et al. 1988; Klausner et al. 1988).  

There have been reports of changes to the distribution of paracetamol in surgical 

patients. The Vd of intravenous paracetamol was found to increase from 69.2L in healthy 

volunteers (Flouvat et al. 2004) to 85.0L in patients undergoing hip arthroplasty (Viscusi 

et al. 2008). Another study examined the intravenous paracetamol kinetics in medium 

(equivalent to a High Dependency Unit setting) and Intensive Care Unit patients. They 

found the distribution of paracetamol in Intensive Care Unit patients significantly higher 

(71.09L) than the medium care unit patients (50.88L p=0.033)(de Maat et al. 2010). 

Along with these changes, there are also reports about the inhibition and down 

regulation of a variety of drug transporter proteins, such as P-glycoprotein (PGP), a widely 

expressed efflux pump. Inhibition is linked with levels of inflammation (Morgan et al. 
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2008). PGP is involved in several areas of drug distribution, including the transport of 

compounds from the: 

 Intestinal epithelia, back out into the lumen, reducing bioavailability; 

 Cells back out into the extracellular fluid, conferring multidrug resistance to many 

drugs, including several chemotherapeutic agents; 

 Hepatocytes, into the bile for elimination; and 

 CNS, back across the blood brain barrier into the periphery, reducing exposure of 

the CNS to the drug. 

Any reduction in the activity of PGP that occurs during inflammation or infection can 

therefore be seen to have a wide range of effects on the distribution of drugs that are 

transporter substrates, such as: 

 Increased intestinal absorption and bioavailability; 

 Increased sensitivity of cells to drugs; 

 Reduced clearance of drugs; and 

 Reduction of transport of drugs across the blood-brain barrier. Drugs that are 

normally transported out of the CNS by PGP can enter, accumulate and potentially 

cause CNS toxicity.  

These changes can have important clinical ramifications. Decreases of 50-70% in hepatic 

PGP activity have been reported (Piquette-Miller et al. 1998). These reductions can 

reduce drug clearance, prolonging drug exposure and potentially lead to drug 

accumulation, if multiple doses are given (Goralski et al. 2003).  

Important changes also occur in the CNS. Here, patients with severe CNS trauma, such as 

through infection or surgery, can develop an inflammatory response in the brain. When 

morphine is used in these patients it has been observed that, while it is mostly well 

tolerated for a few days, some patients go on to become agitated, in a similar manner to 

those in renal failure who accumulate the CNS irritant metabolite M3G. This metabolite is 

normally excluded from the CNS by PGP in the blood brain barrier (Letrent et al. 1999a; 

Letrent et al. 1999b). Consequently, inhibition of PGP has been shown to lead to 

morphine metabolite accumulation in the CNS (Morgan et al. 2008). This may affect a 

wide variety of drugs that are PGP substrates (e.g. cyclosporine, digoxin and HIV protease 

inhibitors), which functioning PGPs normally exclude from the CNS (Morgan et al. 2008). 
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Other work has shown that systemic inflammation, not just inflammation in the CNS, can 

cause changes to PGP activity at the blood-brain barrier (Wang et al. 2005). 

1.3.3.1 BLOOD FLOW 

Anaesthesia usually results in a brief reduction in cardiac output and blood flow to several 

different areas of the body, particularly the kidneys, liver and muscle (Hickey et al. 1980). 

When this is coupled with a reduction in blood volume for reasons discussed in 1.3.2.2.1, 

the size of the central compartment into which drugs are delivered can be reduced, 

especially in the early postoperative period (Kennedy et al. 1998). When reductions to 

cardiac output are large and a drug’s target organ is in the central compartment, 

unexpected toxicity following intravenous drug administration can occur. This effect is 

more pronounced in the elderly, who have age related reductions in central compartment 

volume (Moffat et al. 1983). 

The increase in circulating catecholamines arising from the stress response can also alter 

blood flow. By causing vasoconstriction, catecholamines cause changes to perfusion 

pressure and regional blood flow. This can further impact on the rate and extent of drug 

distribution (Udelsman et al. 1994). 

1.3.3.2 DRUG BINDING 

While paracetamol is not known to be highly protein bound at licensed doses, binding has 

been shown following overdose. Thus understanding changes to drug binding following 

surgery is important. Lipophilic drugs may reversibly bind to plasma proteins, increasing 

their concentration in the central compartment. However, only the unbound drug has 

pharmacological activity and is available for metabolism. Any alteration to plasma protein 

binding therefore has important implications to drug therapy. Reductions to drug binding 

could result in unexpected toxicity and conversely therapeutic failure may arise as a result 

of increase drug binding (Streat et al. 1985).  

Serum albumin is the most important plasma protein for drug disposition. Serum albumin 

turnover increases after surgery and the concentration of albumin falls significantly for a 

number of days as a result of the stress response, particularly in sepsis (John et al. 1969). 

Surgical patients malnourished or catabolic as a result of their pathology may be 

hypoalbuminaemic preoperatively (Mann et al. 1987). For drugs that are highly bound to 

albumin a reduction in albumin concentration can increase the volume of distribution 
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(van Dalen et al. 1990). This can have implications for the intensity and duration of the 

action of the drug as it is only the unbound fraction of the drug which is active. 

Reductions to fraction of bound drug may result in increased activity of the drug, or even 

toxicity, as is the case with lidocaine, pethidine and propranolol (Kennedy et al. 1998; 

Kratochwil et al. 2002). 

The second most important plasma binding protein, AAG, has similar affinity for lipophilic 

drugs. It is an acute phase protein and may rise as a consequence of stress and surgery 

(Israili et al. 2001). Its synthesis in the liver is stimulated as part of the acute phase 

response to increasing concentrations of catecholamines and inflammatory cytokines 

(Fournier et al. 2000). Elevated levels of AAG can continue at least 5 days postoperatively 

and may result in increased binding of highly bound basic and neutral drugs, resulting in 

reduced unbound fraction and effective drug concentration, and apparent reduction to 

the volume of distribution (Davies et al. 1988). Drugs reported to show this effect include 

bupivicaine (Wulf et al. 1989), lidocaine, propranolol (Sager et al. 1989; Davies et al. 1991; 

Hunter et al. 1997; Doherty et al. 2002), pethidine (Julius et al. 1989) and prazosin(Sager 

et al. 1989). For highly bound drugs, if increased plasma binding proteins result in even a 

small reduction in unbound fraction of the drug, therapeutic failure can result, as only the 

unbound drug is pharmacologically active (Julius et al. 1989). 

Theoretically, iso-osmotic fluids administered during surgery can cause haemodilution of 

plasma proteins, increasing the free fraction of a highly protein bound drug. Conversely, 

colloidal fluids can result in increased amounts of bound drug, although the clinical 

relevance of this is uncertain (Svensen et al. 1997). 

1.3.3.3 EXTRACELLULAR FLUID 

Postoperative patients have an increased volume of extracellular fluid (Beckhouse et al. 

1988). Aldosterone and AVP are secreted as part of the endocrine response to surgery to 

maintain the circulating blood volume. These substances cause the retention of salt and 

water, and consequently the enlargement of the extracellular fluid volume.  

The distribution of this extracellular fluid can also change in the postoperative patient. 

Extracellular fluid can leak out of the plasma into a theoretical ‘third space’. The 

inflammatory cytokines, PGs, kinins and leukotrienes increase capillary permeability 

causing an accumulation of fluids in the interstitial space, resulting in ‘third spacing’. This 
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causes a net loss of extracellular fluid from plasma. Fluid sequestered in this way is 

unavailable to the plasma, which may alter drug distribution, particularly of those drugs 

with small distribution volumes (Fleck et al. 1985). The authors of the study cited above in 

Section 1.3.3 involving medium and intensive care unit patients (de Maat et al. 2010) 

postulated such a mechanism was responsible for the increase in Vd of paracetamol in 

the more severely ill intensive care patients. 

Postoperative patients with significant third spacing can have substantial changes in 

observed plasma concentrations of hydrophilic drugs such as aminoglycosides and higher 

doses may be required to maintain concentrations in the therapeutic range (Dasta et al. 

1988). As such, aminoglycosides have been frequently used to assess changes to the 

volume of extracellular fluid. As aminoglycoside antibiotics do not bind to plasma proteins 

and are very hydrophilic, their distribution volume closely parallels that of the 

extracellular fluid. There are several studies using gentamicin that show dramatic 

increases to the volume of extracellular fluid following surgery (Zaske et al. 1980; 

Beckhouse et al. 1988; Dasta et al. 1988; Reed et al. 1989). 

One such study by Dasta and Armstrong of 181 critically ill surgical patients found the Vd 

of the aminoglycoside gentamicin was increased to 0.36 ± 0.1L/kg, nearly 50% above the 

reference value of 0.25L/kg (Dasta et al. 1988). These patients also gained on average 

8.4kg in weight and 11.6L of fluid, further indicating changes to volume of distribution, 

although no direct correlation with Vd and fluid balance could be made.  

It is possible that surgery may also alter Vd through changes to total body water, but no 

clinically significant instances have been reported (Nimmo et al. 1988). 

1.3.4 METABOLISM  

As discussed in Section 1.2, the body’s aim for drug metabolism is to a produce a 

compound excretable in the urine or bile. There are two phases of drug metabolism: 

Phase I prepares a compound for Phase II metabolism, which involves conjugating the 

compound to a more aqueous soluble moiety, easing its excretion into the bile and urine. 

As stated previously compounds do not necessarily proceed through Phase I prior to 

Phase II, with some using only the Phase II pathway. 

While changes to absorption are perhaps the most dramatic change in drug disposition in 

the surgical patient, these can be surmounted by parenteral administration. Changes to 
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metabolism are not so easily avoided and represent one of the most clinically relevant 

alterations to drug disposition for the majority of surgical patients.  

Most of the metabolic reactions are catalysed by enzymes and their activity may be 

altered in surgical patients by one of two ways: 

 Alteration of enzyme activity; and 

 Lack of enzyme cofactors or substrates. 

Enzyme activity can be affected by the acute phase response when the expression of 

most enzymes is inhibited, although some are induced. This is discussed in greater detail 

below. 

Changes arising from the endocrine aspects of the stress response and alterations to 

nutrition can affect the availability of co-factors, such as glucose. Glucose is used as a fuel 

to supply adenosine-5’-triphosphate which is essential for enzyme activity including those 

involved in drug metabolism (Aw et al. 1984).  

Changes to respiration and blood flow can also reduce supply of oxygen. All CYP450 

enzymes use oxygen as a direct substrate whereas only some Phase II enzymes require 

oxygen for the generation of essential co-factors. Relatively minor reductions in oxygen 

supply, such as may arise from surgery and anaesthesia, have been shown in vitro to 

impair these metabolic processes. CYP450 enzymes are especially sensitive to these 

changes although in situations of poor nutrition or fasting, Phase II processes may also be 

affected (Aw et al. 1984; Angus et al. 1990). 

Most of the drugs used in anaesthesia are able to reduce drug metabolism whether it 

occurs by oxidation, reduction or conjugation. Halothane, an inhaled anaesthetic no 

longer in use, was known to inhibit a vast array of drugs including propranolol, fentanyl, 

ketamine, pethidine, antipyrine, diazepam and phenytoin. This inhibition of drug 

metabolism occurred during anaesthesia and persisted well into the postoperative period 

(Reilly et al. 1985; Nimmo et al. 1988). Mice anaesthetised with halothane, isoflurane and 

sevoflurane had reductions to UDP-glucuronic acid, a co-factor required for 

glucuronidation, of 40-52% as compared with that in unanesthetised control mice 

(Watkins et al. 1990). 

Apart from these reports, there is a surprising lack of literature examining these changes 

to metabolism in the surgical patient. This is perhaps in part due to some of the same 
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issues mentioned in Section 1.1 concerning consent, ethics and randomisation. The study 

of these changes may also falsely be seen as lacking clinical relevance for several reasons:  

 Changes may have been explained as arising from other sources, such as inter-

subject variability normally experienced with many medications, such as 

morphine; 

 Changes may not have been detected because many of the affected patients are 

seriously ill, making drug toxicity difficult to identify; 

 Changes may not be have been detected because most drugs have a wide safety 

margin and many pathways are not capacity limited; 

 The increased monitoring provided while in the surgical unit can adjust the dose 

to a patient’s response, rather than administering a fixed dose, avoiding toxicity; 

 Changes to metabolism have been unnoticed due to the lack of pre-operative 

requirement of the medication or postoperative observation; and 

 A lack of interest within the surgical specialties.  

However, shorter inpatient stays accompany modern surgical practices and very few 

surgical patients are cared for in intensive care or high dependency units. Accordingly, 

surgical patients are receiving less monitoring and are discharged earlier. Given that 

changes to drug metabolism may persist for several days, even weeks, after surgery, 

greater understanding is needed to protect the surgical patient.  

A number of drugs given to surgical patients have no set dose and must be titrated to the 

patients’ response. This implies a patient must experience periods of inefficacy and 

toxicity, so that a midpoint can be obtained. Having a greater understanding of changes 

to drug metabolism that occur perioperatively may also enable a midpoint dose to be 

predicted more accurately, providing effective doses sooner. While many of the changes 

to metabolism due to surgery may occur at a subclinical level, they can have serious 

consequences when they do become apparent; not only when toxicity occurs but also the 

other potential outcome, lack of efficacy. The area is clearly worthy of study if these 

outcomes are to be minimised.  

1.3.4.1 REPORTS OF CHANGES TO PARACETAMOL’S METABOLISM 

Because paracetamol is widely used in surgical patients there have been some studies 

that have examined changes to its metabolism. Other information regarding changes to 
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paracetamol metabolism can be gained from studies that were primarily assessing other 

aspects of drug disposition of surgical patients, such as absorption.  

The results of these studies are conflicting. One study examined the pharmacokinetics of 

paracetamol in seven children/adolescents (median age 13.7 years) during major surgery, 

four weeks after chemotherapy. Neither major surgery for tumour resection or 

chemotherapy had a major impact on paracetamol metabolism in this study (Wurthwein 

et al. 2005). 

Conversely, Lewis et al.(Lewis et al. 1991) compared excretion of a single oral dose of 1.5g 

of paracetamol in a group of volunteers and in general surgical patients on day one 

postoperatively. They found statistically significant decreases in the unchanged 

paracetamol and paracetamol sulphate and increased amounts of mercapturic acid 

recovered in the urine, but found no changes to AUC or t½ of paracetamol.  

While there are some reports of inhibition of drug metabolism immediately following 

surgery which persists into the early postoperative period, paradoxically there is also 

evidence that a period of enzyme induction follows, which may have given rise to the 

conflicting reports above. Enzyme induction may occur four to eight days following 

surgery by approximately 30-50%, returning to normal by four weeks (Nimmo et al. 

1981). This induction can have dangerous ramifications for drugs such as paracetamol 

which has a toxic metabolite and veritably increased metabolism of paracetamol after 

surgery has been reported (Ray et al. 1985). There are also similar reports of halothane 

anaesthesia alone inducing paracetamol’s metabolism (Ray et al. 1986; Lewis et al. 1991).  

One of the major shortcomings of these studies is the use of saliva paracetamol 

concentrations. While discussed in greater detail in Section 1.4, of relevance here is the 

lack of any information on the relative concentration of paracetamol metabolites gained 

from these samples. Without this information no conclusions can be made about 

contributions of Phase I or II to the increase of paracetamol’s metabolism. Kennedy et 

al.(Kennedy 1996) did examine this in urine samples with HPLC. Using a single oral 1.5g 

dose of paracetamol, they found significant differences in the pre- and postoperative 

levels of glucuronide conjugate (p < 0.01) and cysteine conjugate (p < 0.05) but no 

significant differences in the pre- and postoperative levels of mercapturate conjugate (p < 

0.01) and sulphate conjugate (p < 0.05) excreted in urine over five hours. The finding was 

reconfirmed in longer studies lasting for five days postoperatively(Kennedy 2009a)  
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1.3.4.2 PHASE I 

The stress response is considered a major contributor to alteration of Phase I metabolism 

(Section 1.3.1). Inflammation caused by infection or underlying inflammatory conditions 

are known to down regulate most drug metabolising enzymes and transporters, both in 

acute scenarios, such as following surgery, or chronic conditions such as extra-hepatic 

cancer, inflammatory bowel disease or congestive heart failure(Frye et al. 2002; Carcillo 

et al. 2003; Haas et al. 2003; Aitken et al. 2006; Morgan et al. 2008).  

1.3.4.2.1 CLINICAL CONSEQUENCE OF CYP450 INHIBITION 

This reduction in Phase I activity can lead to a decrease in drug clearance, increasing 

plasma drug concentrations and potentially may cause drug toxicity or increases in the 

incidence of adverse effects (Schmith et al. 2008). One of the first reports of this arose 

from an outbreak of influenza-b in the early 1980’s when 11 young children receiving 

theophylline prophylatically for asthma were hospitalised with severe theophylline 

toxicity. They presented with symptoms as severe as cardiac abnormalities and 

convulsions. One child’s theophylline half-life had increased fivefold, from four to 20 

hours, and suffered severe, permanent brain damage as a result of the theophylline-

induced convulsions (Kraemer et al. 1982). It was suspected inflammation arising from 

the viral infection inhibited CYP1A2, causing theophylline accumulation and toxicity 

(Morgan et al. 2008). One review stated that infection or inflammation can decrease 

metabolic clearance of CYP450 substrates by 20-70% (Aitken et al. 2006). The impact of 

this clinically is much greater than is generally reported (Morgan et al. 2008) and may be 

overlooked for reasons discussed in Section 1.3.4.  

1.3.4.2.2 MECHANISM OF CYP450 INHIBITION 

One of the first experiments to show the effect of inflammation on CYP450 activity in man 

examined the effect of lipopolysaccharide (LPS) on antipyrine clearance. An artificial 

stimulant of the immune system, LPS, has shown to reduce clearance of antipyrine, a non-

specific marker for CYP450 enzyme activity, in healthy men (Shedlofsky et al. 1994). It had 

been earlier shown in mice that it was the inflammatory cytokines produced in response 

to the administration of LPS, rather than the LPS itself, which caused this down regulation 

of CYP450 enzymes (Shedlofsky et al. 1987). Further evidence of the involvement of 

cytokines arises from the finding that inflammation in the CNS, such as that arising from 
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meningitis, affects drug disposition in the brain and peripheral systems (Garcia Del Busto 

Cano et al. 2003). It is even thought the inflammation-induced inhibition of CYP450 

enzymes are involved in the pathogenesis of some types of Parkinson’s disease (Goralski 

et al. 2004).  

Cytokines IL-1, IL-6, IFN-γ and TNF-α have all been implicated in CYP450 down-regulation. 

Interestingly, each is thought to have different effects on different CYP450 enzymes and 

there may also be some overlap between them, with the effects not being additive 

(Morgan 1997; Renton 2000; Morgan 2001; Renton 2001; Renton 2004; Morgan et al. 

2008). Given that the concentration, time course and mix of cytokines vary depending on 

the source of infection and inflammation it is therefore possible that the effect on CYP450 

regulation will also vary (Aitken et al. 2006; Richardson et al. 2006). IL-6 is thought to be 

key, and is by far the most potent down-regulator of CYP450 with strong correlations 

between IL-6 concentrations and reductions to CYP450 activity (Gurley et al. 1997; 

Siewert et al. 2000; Morgan et al. 2008). 

In further proof of the involvement of the immune system, pharmacological doses of 

hydrocortisone, a immunosuppressant, produced an immediate increase in the clearance 

of antipyrine in human studies (Breckenridge et al. 1973). Corticosteroids have also been 

shown to induce CYP3A4 (Pichard et al. 1992; Shimamoto et al. 1999). 

Research indicates CYP450 enzymes are down regulated during generation of host 

defences at the level of gene transcription, with a subsequent drop in the corresponding 

mRNA, protein and enzyme activity (Renton 2004). There may also be post-translational 

steps on some CYP450s which include enzyme modification and increased degradation 

(Aitken et al. 2006). LPS brings about swift and substantial down-regulation of several 

hepatic CYP450 mRNAs. Transcriptional suppression is thought to be an important factor 

in CYP450 mRNA down-regulation and suppression of some CYP450 genes occurs within 

one hour of LPS injection in rats (Cheng et al. 2003).  

Despite the speed of this change to transcription, which makes the pace of enzyme 

induction appear glacial, it cannot explain the rapidity at which mRNA is down-regulated. 

It is thought that changes to mRNA stability must also occur. Even so, the mRNA 

suppression is not fast enough to explain the changes in CYP450 protein expression and 

activity (Morgan et al. 2008). Interestingly, nitric oxide, which can arise from neutrophil 

activation, has been found to have a role in CYP450 enzyme inhibition and protein 
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degradation (Ferrari et al. 2001; Vuppugalla et al. 2005), which may provide the final 

piece in the puzzle.  

Oxidative stress may also have a role in CYP450 down-regulation. Antioxidants and 

inhibitors of xanthine oxidase and nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase have been shown to inhibit LPS-induced CYP3A11 down-regulation, although the 

mechanism is uncertain (Xu et al. 2004; Xu et al. 2005).  

It is probable that constitutive expression of CYP450 is not significantly affected. Some 

CYP450 isoforms are induced following exposure to certain drugs, such as occurs with 

CYP3A4 during treatment with rifampicin or diazepam (Heubel 1969; Pessayre et al. 

1978). This induction is triggered by Pregane X receptor (PXR) (Lehmann et al. 1998; 

Kliewer et al. 2002). It has been found that PXR is also downregulated in hepatocytes 

during inflammation. However, as downregulation of CYP3A has been shown in the 

absence of alteration to PXR expression (Sachdeva et al. 2003), this is unlikely to be a 

significant contributor to changes in Phase I activity unless substantial CYP450 induction 

had previously taken place (Goralski et al. 2005).  

Roles for the constitutive androstane receptor (CAR) have also been proposed. CAR has a 

similar role to PXR and inhibition of CAR has been shown to reduce CYP450 response to 

inducing stimulus such as phenobarbital exposure. CAR itself is positively regulated by 

glucocorticoids, which, as previously discussed, also inhibit cytokine release, further 

implicating the stress response in enzyme regulation (Sachdeva et al. 2003).  

In summary there is still a lot of uncertainty in this area. CYP450 inhibition is thought to 

occur rapidly following inflammation and it is likely that LPS has a role. This inhibition 

seems to apply more to enzymes that are induced, rather than those that are 

constitutively expressed, so that while inflammation may reduce a CYP450 enzyme’s 

activity, it will not eliminate it.  

1.3.4.2.3 PATIENT BASED FACTORS AND EFFECTS ON CYP450 ISOENZYMES 

Given the relevance of CYP450 to paracetamol metabolism and this Thesis, it is important 

to consider the impact on the different isoenzymes.  

Recent reviews have summarised animal studies investigating the effects of cytokines and 

inflammation on CYP450 regulation (Morgan 1997; Renton 2001; Aitken et al. 2006). 

Importantly, hepatocyte expression of human and rodent CYP450 enzymes is regulated in 
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a similar manner (Morgan 2001). In rats, enzymes down-regulated by inflammation 

include CYPs 1A1, 2A1, 2C6, 2C7, 2C11, 2C33, 2E1, 3A2 and 4F4 and in mice 1A2, 2A5, 

2C29, 2E1, 3A11, 4A10, 4A14, 4F15 and 4F16. There is much less research of this type in 

humans.  

In vitro, inflammatory cytokines associated with the stress response, IL-1β, IL-6 and TNF-

α, have been shown to reduce the expression of CYP1A2, 2E1 and 3A mRNA by at least 

40% in human hepatocyte cultures (Abdel-Razzak et al. 1993). Conversely, IL-4, a cytokine 

involved in T-helper-cell activation, can induce 2E1 up to 5 fold (Abdel-Razzak et al. 1993), 

and is strongly implicated in the pathogenesis of drug-induced liver injury, however IL-4 is 

not significantly elevated as part of the stress response (Njoku 2010). 

One study examined antipyrine metabolism in 57 children with multiple organ failure, 

critical illness or bacterial sepsis. The half-life of antipyrine was increased up to five fold 

and clearance was reduced up to threefold, indicating suppression of several CYP450 

enzymes. Consistent with findings discussed above, clearance was reduced the most in 

those with higher levels of IL-6 (Carcillo et al. 2003). 

As a model of chronic inflammation, Frye et al. gave a cocktail of drugs to estimate the 

activity of CYP1A2, 2C19, 2D6 and 2E1 to patients with congestive heart failure. They 

showed inflammatory cytokines IL-6 and TNF-α suppressed CYP1A2 and 2C19 activity, but 

did not appear to affect 2E1 or 2D6 (Frye et al. 2002). Similar results were shown in in 

vitro testing of hepatocyte cultures by Muntané-Relat et al. (Muntane-Relat et al. 1995). 

These authors examined the effect of known enzyme inducers on the activity of CYP 1A1, 

1A2 and 3A4 with and without the presence of inflammatory cytokines IL-1α, IL-6 and 

TNF-α. By measuring mRNA levels they showed the cytokines substantially reduced the 

impact of enzyme inducers on protein synthesis, with reductions in both CYP1A1/1A2 and 

CYP3A4, consistent with the findings of Frye. 

Another study examined CYP3A4 in 16 patients following abdominal aortic aneurysm, 

complete or partial colectomy or peripheral vascular surgery with graft (Haas et al. 2003). 

They found reductions in CYP3A4 activity of between 20-60% with greatest reductions at 

least 72 hours after surgery. Interestingly, peak IL-6 levels occurring 24-36 hours after 

surgery. The authors drew attention to the scale of this inhibition by drawing 

comparisons with the inhibition following administration of ketoconazole, clarithromycin, 

delavirdine and amprenavir, drugs well known to inhibit CYP3A4 (Lacy et al. 2005). 
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1.3.4.2.3.1 CANCER 

Chronic inflammation is a common feature in patients with solid tumours. Cancer patients 

have been shown to have down regulated CYP3A (Rivory et al. 2002; Robertson et al. 

2008), with functionally relevant alteration to pharmacodynamics/pharmacokinetics of 

substrates of CYP3A (Charles et al. 2006), correlating with plasma concentrations of IL-6 

(Rivory et al. 2002). Much of the interpatient variation in response to cytotoxic 

chemotherapy is attributed to differences in CYP3A4 activity as CYP3A4 is responsible for 

the clearance of several cytotoxic agents: taxanes, vinca alkaloids, cyclophosphamide, 

tamoxifen, camptothecines, etoposide, imatinib and gefitinib (Morgan et al. 2008). Given 

these observations, the authors of this review recommended that CYP3A4 phenotyping 

would be a superior means of dose estimation to current crude estimates based on body 

surface area (Morgan et al. 2008).  

It has been shown that variation in CYP3A4 genotype alone is unlikely to significantly alter 

clearance of cytotoxics (Lepper et al. 2005), but rather cancer-induced inflammation is 

thought to be responsible. Inflammation is present in more than 60% of patients with 

advanced cancer and they have significantly reduced CYP3A4 activity; again there are 

links with IL-6 concentrations (Charles et al. 2006) as well as CRP (Slaviero et al. 2003). Of 

specific relevance to this Thesis is the finding that colorectal cancers, in particular, have 

shown IL-6 protein actually within the malignant cells of tumours, indicating cytokine-

stimulated release from Kupffer cells is not the only source of IL-6 in cancer patients 

(Brozek et al. 2005). Slaviero et al. also showed a link between reduced CYP3A4 mediated 

clearance and greater toxicity of vinorelbine and docetaxel (Slaviero et al. 2003). 

1.3.4.2.3.2 DEHYDRATION AND STARVATION 

Over 25% of hospital inpatients may be malnourished, either occurring before their 

admission to hospital or subsequently (Thompson 1995). Factors contributing to 

malnutrition in the surgical patient include increased nutritional requirements associated 

with their illness, increased losses e.g. from malabsorption, stricturing processes limiting 

nutritional intake, aggressive bowel preparations or stoma output and prolonged periods 

nil by mouth. All patients are routinely starved before surgery, often commencing the 

prior evening. Many surgical patients who have undergone major surgery or experienced 

complications are still not fed on day three postoperatively (Kennedy 1996). Prolonged 

starvation can contribute to the stress response and insulin resistance. Metabolic 

pathways more specific to paracetamol, in particular CYP2E1 activity (Nygren 2006), are 
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well known to be up-regulated in starvation alone (Pessayre et al. 1980; Burk et al. 1990; 

Prasad et al. 1990; Manyike et al. 2000).  

Figure 1.3-4 shows the source of energy for CYP450 activity is NADPH. NADPH is derived 

from glucose-6-phosphate (G6P), which is itself derived from gluconeogenesis or dietary 

glucose. During gluconeogenesis NADPH production consumes G6P before glucose is 

produced. Accordingly, during periods of intense CYP450 activity, glucose arising from 

gluconeogenesis is reduced. Gluconeogenic substances enhance CYP450 activity by 

increasing NADPH production. In this way oxidation is closely linked to gluconeogenesis 

(Bánhegyi et al. 1988). As CYP450 systems derive energy straight from a source 

stimulated by starvation (i.e. gluconeogenesis), starvation does not cause the reductions 

in activity seen in other enzyme systems, in fact as described above, activity of CYP2E1 

has been shown to be increased by starvation.  
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Figure 1.3-4 Intracellular glucose regulation and CYP450 
The relationship between to CYP450 activity and intracellular glucose regulation is shown (top right). Abbreviations: 
G6P- Glucose-6-Phosphate, NADPH- Nicotinamide Adenine Dinucleotide Phosphate. Remainder of diagram is shown in 
Figure 1.3-5 
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Protein-containing infusions alone have been shown to prevent elements of the stress 

response (Kopp Lugli et al. 2010) by preserving the activity of drug metabolising enzymes 

(Pessayre et al. 1978). Preoperative glucose infusions have been shown to reduce 

postoperative insulin resistance, further implying the importance of preoperative 

nutrition to preventing CYP450 downregulation (Ljungqvist et al. 1994).  

Dehydration, a common factor in the early postoperative period, is not thought to 

influence Phase I activity greatly, although there are some dissenters (Lee et al. 2008). 

Zafar et al. found that after 96 hours of dehydration the clearance of paracetamol in rats 

was unaffected, although they did show an increase in the glucuronide conjugate and 

reductions in the unchanged paracetamol excreted (Zafar et al. 1987). The significance of 

this is uncertain, given metabolism in the rat does not accurately reflect paracetamol 

metabolism in humans. This may also be a function of changes to excretion, rather than 

metabolism per-se. 

Changes in CYP450 activity in dehydrated rats were reported by Kim et al. in 2001 who 

showed CYP2E1 protein levels increased three fold, without effect on CYP1A2, 2B1, 2C11 

or 3A4 (Kim et al. 2001). However, in their discussion, the authors noted that water 

deprivation was associated with reduced food intake and they suspected the effect on 

CYP2E1 arose from the reduction in food intake rather that dehydration as such. 

Following this work Kim et al. went on to again deprive rats of water but give glucose 

supplementation. They found glucose supplementation ameliorated the changes to 

CYP2E1 activity, confirming that the effects of starvation were of greater consequence to 

CYP2E1 activity than water deprivation (Kim et al. 2006). These findings were echoed in a 

study of surgical patients by Jorquera et al. By providing an exogenous source of glucose 

and protein through administration of parenteral nutrition following surgery, Jorquera et 

al. was able to diminish reductions of antipyrine clearance seen in control patients who 

did not receive the infusion (Jorquera et al. 1994).  

When considering the complexities of the stress response and other changes experienced 

by the surgical patient, the involvement of insulin, glucose, corticosteroids and cytokines 

all probably have a role in the regulation of drug metabolising enzymes. 

1.3.4.2.4 PHYSIOLOGICAL ROLE OF CYP450 INHIBITION 

The question of why CYP450 enzymes are downregulated during inflammation remains a 

subject of debate. Some theories include: 
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 The dependency of the acute phase response on haem. Downregulation of CYP450 

would increase the availability of haem and augment the acute phase response; 

 The protection of the liver against additional oxidative stress. The inflammatory 

response causes oxidative stress which contributes to infection-induced hepatic 

injury. CYP450 enzymes produce reactive oxygen species therefore 

downregulation of CYP450 could prevent further contributions to this stress; and 

 The execution of the inflammatory response. Some CYP450 enzymes generate 

products with anti-inflammatory and vasodilatory activity. Downregulation of 

these enzymes would prevent inhibition of the immune response as well as the 

contribution to hypotension, a significant predictor of morbidity in septic shock 

(Fleming 2001; Aitken et al. 2006). 

While it is clear CYP450 is regulated by inflammation, it is a curious finding that the 

reverse is true. CYP450 inhibitors exacerbate and CYP450 inducers attenuate fever caused 

by inflammatory stimuli (Aitken et al. 2006). The immune response following 

administration of endotoxin to individuals receiving rifampicin, an enzyme inducer, would 

be enhanced, whereas the response of an individual receiving the enzyme inhibitor 

clarithromycin is diminished in comparison. 

1.3.4.3 PHASE II 

Whilst there is some literature on Phase I metabolism perioperatively, research into 

alterations in Phase II enzyme activity perioperatively has been almost absent. Compared 

with the CYP450 system, very little is known about changes to Phase II processes arising 

from surgery, inflammation or infection (Xin 2002; Aitken et al. 2006). This may be due to 

the perception that there is little variation in this pathway in comparison with Phase I 

enzyme activity.  

1.3.4.3.1 ALTERATION TO ENZYME ACTIVITY 

There are two reports relating to changes in Phase II activity postoperatively; both 

showing reductions in the proportion of Phase II products excreted in the urine. Results 

were calculated as ratios between the total of Phase II metabolites (paracetamol 

glucuronide and paracetamol sulphate), to Phase I metabolites (paracetamol cysteine and 

paracetamol mercapturate). In the first study, where patients acted as their own controls, 

patients were given a single dose of paracetamol at least one day preoperatively and 
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again on day two postoperatively. There was a significant reduction in the ratio of Phase 

II:I metabolites of paracetamol postoperatively (Kennedy 1996). In the second study, 

patients again acted as their own controls and received a single daily dose, but the 

duration of administration was extended to five days post-surgery. Twenty seven patients 

undergoing elective major abdominal surgery completed the study. The ratio of Phase II:I 

metabolites dropped from 28 preoperatively, to 5 postoperatively, indicating a 

substantial shift towards the production of the hepatotoxic metabolite (Kennedy 2009a). 

This confirmed earlier incidental findings showing significant reductions in paracetamol 

glucuronide excretion and increased in paracetamol cysteine excretion (Kennedy 1996).  

Glucuronidation and sulphation often occur on overlapping substrates, and to date, 

specific probes for these pathways have not been validated. This may explain the 

difficulty in ascribing alterations to one specific pathway and lack of clinical reports of 

toxicity arising from changes to Phase II metabolism.  

1.3.4.3.1.1 SULPHATION 

Sulphation is a high affinity, low capacity reaction, predominating at low substrate 

concentrations (Section 1.2). Once again there are few studies specifically dealing with 

sulphate conjugation perioperatively. Reith et al. showed that with increasing doses of 

paracetamol, the proportion of the dose excreted as paracetamol sulphate decreased 

(Reith et al. 2009). This effect may also be seen in single doses as paracetamol sulphate 

excretion was markedly reduced, approaching significance, in the first study by Kennedy 

et al. in 1996.  

Depletion of the inorganic sulphate and saturation of SULT enzymes occur following 

paracetamol administration (Hjelle et al. 1985). SULT enzyme 2A1 and the enzyme that 

synthesises SULT enzymes’ cofactors, PAPS synthase 2, have both been shown to be 

downregulated by LPS induced inflammation. Similar results have been shown for 

SULT1A1 and 1C1 with up to 76% suppression of sulphating activity being reported 

(Shimada et al. 1999; Kim et al. 2003; Kim et al. 2004). As observed for CYP450 enzymes, 

PXR and CAR are implicated in the down-regulation of SULT enzymes (Kim et al. 2003). 

1.3.4.3.1.2 GLUCURONIDATION 

Glucuronide conjugation predominates at high substrate concentrations, once sulphation 

has been saturated (Zamek-Gliszczynski et al. 2006). The enzymes involved in 

glucuronidation, UGT, are known to be regulated by factors affected by inflammation 
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(Aitken et al. 2006). Compared with changes in CYP450 enzymes, decreases in hepatic 

UGT activity are minor, species and stimuli-dependent (Aitken et al. 2006). Only one study 

in human liver biopsies has correlated decreases in mRNA of UGT1A4, 2B4 and 2B7 with 

inflammation (Congiu et al. 2002). 

1.3.4.3.1.2.1 GLUCOSE REGULATION AND GLUCURONIDATION 

Because glucuronidation contributes substantially more to the metabolism of 

paracetamol than any other pathway, and is also capable of conjugating greater amounts 

of parent drug, lack of substrate, G1P, for conjugation could be a reason for this reduction 

observed postoperatively. 
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Figure 1.3-5 Intracellular glucose regulation and Glucuronidation 
The relationship between to glucuronidation and intracellular glucose regulation is shown. Abbreviations: G6P- Glucose-
6-Phosphate; G1P- Glucose-1-Phosphate; UTP- Uridine triphosphate; UDP- Uridine diphosphate; UGT- Uridine 5'-
diphospho-glucuronosyltransferase. 

Figure 1.3-5 shows G1P is required for glucuronidation and it is thought that the G1P used 

arises exclusively from glycogenolysis, not from dietary sources per se. Inhibition of 
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glycogenolysis also inhibits glucuronidation and glucose does not reduce glucose 

production arising from gluconeogeneic substances. Glucuronidation activity is 

proportional to carbohydrate reserves with maximum rates seen in livers with the largest 

glycogen reserves. Conversely, depletion of glycogen by starvation inhibits 

glucuronidation. As a result things that inhibit glycogenolysis may impair glucuronidation 

(Bánhegyi et al. 1988).  

Applying these findings to the surgical patient is difficult. Patients are catabolic following 

surgery; tissues are resistant to insulin and with reduced uptake and utilisation of glucose, 

are frequently hyperglycaemic. Insulin resistance and perioperative starvation would 

normally promote glycogenolysis and therefore glucuronidation, but the high ambient 

glucose levels inhibit glycogenolysis. The net result on glycogenolysis and therefore 

glucuronidation is uncertain (Schenker et al. 2001). There are some in vivo studies. One 

study showed short periods of starvation not to affect glucuronidation in 

patients(Rumack 2004). Kennedy et al., also did not find an appreciable change in the 

paracetamol Phase II:I metabolite ratio when patients resuming light diets following 

major abdominal surgery (Kennedy 2009b).  

1.3.4.3.1.3 GSH CONJUGATION 

In starved patients, hepatic concentrations of GSH are diminished through lack of dietary 

cysteine intake. In these patients there is an increased risk of hepatotoxicity from reactive 

oxygen species such as NAPQI (Figure 1.3-6). Whitcomb found starvation reduced GSH 

concentration up to 50% in the liver tissue of adult rodents (Whitcomb et al. 1994). This is 

thought to be due to the utilisation of the hepatic and intestinal GSH stores as reservoirs 

to supply cysteine during cysteine reservoirs during food deprivation (Strubelt 1980; Cho 

et al. 1981; Di Simplicio et al. 1997). 

No changes to constitutive expression of GST have been found to arise from LPS-induced 

inflammation; however induction of GST may be prevented by inflammation (Maheo et 

al. 1998). Downregulation of induced expression is thought to be by accelerated 

degradation of mRNA, in a similar manner to CYP450 downregulation (Maheo et al. 1997). 
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Figure 1.3-6 Role of glucuronidation in paracetamol detoxification and sources of cysteine (Lu 1999) 

While no changes to GST activity have been found, GST requires GSH, and the synthesis of 

this cofactor can be rate limiting. One of the major determinants of GSH synthesis is the 

availability of cysteine. As already described, exogenous cysteine is generally obtained 

from the diet and protein breakdown while endogenous cysteine can be synthesised de 

novo in the liver from methionine by the transsulphuration pathway (Takada et al. 1984; 

Colell et al. 1997; Fernandez-Checa et al. 1997). Cysteine is unusual amongst amino acids 

as it exists in two forms. Inside the cell it is found in its' reduced, sulph-hydryl form, 

cysteine. Outside the cell, in the extracellular fluid, it autooxidises to its disulphide form, 

cystine. Aside from diet, the main factors that determine hepatocellular availability of 

cysteine are firstly the activity of the membrane transport of cystine, cysteine and 

methionine and secondly, the activity of the transsulphuration pathway (Fernandez-

Checa et al. 1997). In normal conditions rat hepatocytes uptake cysteine at a rate about 

three fold higher than methionine and 13 fold higher than that of cystine. Explaining this, 

cysteine transport occurs under normal physiological conditions; however, cystine uptake 

by hepatocytes is poor, but can be stimulated after prolonged exposure to insulin and 

dexamethasone (Takada et al. 1984). This could indicate regulation as part of the stress 

response. Additionally, the enzyme responsible for GSH synthesis, γ-glutamylcysteine 

synthetase, (GCS), is modified by factors involved in inflammation and the stress 

response, being induced by cytokines TNF-α and IL-1β, insulin and glucocorticoids, but 

inhibited by high glucose concentrations (Urata et al. 1996; Lu 1999).  

1.3.5 EXCRETION 

Through the process of metabolism a drug is more readily excretable, most commonly 

through the kidneys into the urine, or into the bile from the liver. Once a drug is 

metabolised there are some factors due to surgery and anaesthesia which may influence 

its excretion: 
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 Altering the rate of delivery to the organ of excretion; and 

 Changing the activity of enzymes or other active or passive process of excretion 

(Nimmo et al. 1988).  

These are discussed below. 

1.3.5.1 ALTERING THE RATE OF DELIVERY TO THE ORGAN OF EXCRETION 

The excretion of some drugs is so efficient that it is limited by the rate at which they are 

delivered to their organ of excretion. Such drugs are known to have a high extraction ratio 

as in the case of volatile anaesthetics, which are excreted by the lungs. They rely on 

pulmonary blood flow to determine their rate of elimination. Because pulmonary blood 

flow is determined by cardiac output and, as discussed above, cardiac output can be 

reduced around the time of surgery, surgery can reduce their clearance (Nimmo et al. 

1988). These effects are most pronounced immediately after surgery (Haas et al. 2003). 

Similarly, drugs such as opiates and β-blockers, that have a high hepatic extraction ratio 

depend on blood flow to the liver to determine rate of elimination (Nies et al. 1976). 

However as paracetamol has only an intermediate hepatic extraction ratio this is not 

particularly relevant to its disposition (Mather et al. 1986; Nimmo et al. 1988). (Mather et 

al. 1986; Nimmo et al. 1988). 

Blood to the kidney can also be reduced and this has been shown to impair renal 

elimination of gentamicin (Nimmo et al. 1988; Kim et al. 2001; Kim et al. 2006; Lee et al. 

2008). It may also have implications for other drugs and metabolites which rely on renal 

excretion. These drugs could accumulate and, if they have pharmacological activity, such 

as morphine metabolites, potentially cause toxicity (Nimmo et al. 1988). In the case of 

paracetamol, renal failure may cause the glucuronide and sulphate metabolites to 

accumulate however, because they are pharmacologically inert, they are 

pharmacologically inert, it does not necessitate dose adjustment. 

1.3.5.2 CHANGES TO THE ACTIVITY OF ENZYMES OR OTHER ACTIVE OR PASSIVE 

PROCESS OF EXCRETION 

Other changes due to surgery can lead to alteration of physiological pH and by affecting 

ionisation states of compounds, this may affect excretion processes. Paracetamol is a 

weak organic acid with a pKa of 9.5. It is therefore largely unionised in urine over the 
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physiological pH range and accordingly its excretion is much slower than glomerular 

filtration rates. Because of its pKa, its clearance is not influenced by changes in urine pH, 

but is affected by changes in urine flow although the effect is modest. In one study, 

increases in urine flow rate from 1.6 to 13.7mL/min resulted in less than a doubling of 

paracetamol clearance(Prescott et al. 1973). Reductions to urine flow are frequently seen 

in surgical patients, especially in the early postoperative period, followed by a period of 

diuresis, and these changes may alter the excretion of paracetamol. However, 

paracetamol glucuronide and paracetamol sulphate are extensively ionised in biological 

fluids, irrespective of pH, and their clearance is therefore unaffected by changes in 

urinary pH or urine flow (Prescott et al. 1973; Prescott 1980). Both paracetamol and its 

metabolites share similar mechanisms of active renal tubular secretion, and along with 

other enzymes discussed above, this may be down-regulated during periods of 

inflammation or infection (Duggin et al. 1975).  

Although changes to hepatic enzymes involved in excretion of drug metabolites into the 

bile may occur as a result of surgery, these are not well documented. Reductions in bile 

flow and bile salt excretion has been reported following surgery, which may arise from 

impairment of transporter molecules in the canaliculi as discussed above (Herman et al. 

1971; Prandi 1975), but the implications for drug therapy and paracetamol use is 

uncertain.  
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1.4 OTHER INFLUENCES OF PARACETAMOL DISPOSITION 

Because of the uncertainty around therapeutic concentrations, literature surrounding 

changes to paracetamol disposition is primarily concerned with toxicity and its prediction.  

Paracetamol is considered an extremely safe drug, especially when it is taken into account 

that the annual United Kingdom (UK) consumption could be measured in the hundreds of 

tonnes (Sheen et al. 2002a). While safe in almost all individuals, there is evidence of 

toxicity at licensed doses, although these are generally limited to case reports. Reviewing 

these case reports reveals a number of common factors for paracetamol toxicity. As 

discussed in Section 1.2 these can summarised into two types of risk:  

 Those that increase NAPQI production (usually through CYP2E1 induction); or  

 Those that impair GSH conjugation of NAPQI (usually through depletion or 

impaired supply of GSH’s co-factors). 

In the majority of case reports of toxicity where licensed doses have been used, both 

types of risk factor can be identified and it is unlikely that either one factor alone is 

sufficient to cause toxicity. The main causes of these risk factors are discussed below. 

1.4.1 ALCOHOL 

Table 1.4-1 Summary of alterations to paracetamol disposition with alcohol intake 

 NAPQI Production GSH 

Acute alcohol  - 
Chronic alcohol   

Alterations to paracetamol disposition in alcoholism are centred on ethanol-induced 

changes to CYP2E1 activity, the enzyme primarily responsible for the production of 

paracetamol’s hepatotoxic metabolite, NAPQI. This is compounded by reductions to the 

supply of GSH (Table 1.4-1).  

The understanding of the interaction between CYP2E1, ethanol and paracetamol 

disposition is complicated by the fact that acute and chronic ethanol intake have opposite 

effects (Prescott 1996). When administered concurrently, ethanol is preferentially 

metabolised by CYP2E1 over paracetamol. Thus individuals with suicidal intent who 

consume a bottle of whisky along with a bottle of paracetamol are provided a large 

degree of protection from paracetamol toxicity by the ethanol in the whisky (Prescott et 

al. 1983). Providing blood-ethanol concentrations remain sufficiently high, paracetamol 
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metabolism proceeds along non-toxic Phase II pathways as CYP2E1 remains occupied with 

ethanol metabolism (Prescott 2000a; Thummel et al. 2000; Waring et al. 2008).  

The detrimental effects of ethanol arise from chronic administration (Liangpunsakul et al. 

2005). However, the risk arising from ethanol-related induction of CYP2E1 alone may be 

overstated and requires a substantial and continuous level of ethanol consumption which 

is reversed quickly by short periods of abstinence.  

A significant level of induction is difficult to achieve because, like many CYP450 enzymes, 

CYP2E1 is a leaky enzyme that, in the absence of substrate, it generates reactive oxygen 

species that increase its own degradation (Liangpunsakul et al. 2005). Because ethanol is 

a substrate of CYP2E1, this stabilises the CYP2E1 enzyme, reducing the rate of 

degradation and effectively increasing their amount. CYP2E1 is normally biphasic with 

half-lives of 7 and 37 hours (Rumack 2002). Ethanol dramatically extends the fast 

component of degradation so that the half-life appears as a single 37 hour duration 

without any transcriptional change to mRNA for CYP2E1 (Eliasson et al. 1992). A modest 

(about four-fold) increase in CYP2E1 activity is observed in those individuals who 

consume substantial amounts of ethanol on a daily basis to maintain blood ethanol 

concentrations around 250mg/dL. However, this requires the consumption of sufficient 

ethanol to continuously maintain blood alcohol concentrations at least five times the 

legal driving limit in UK (Girre et al. 1994; Dilger et al. 1997; Dupont et al. 1998). As 

consumption increases beyond this there appears to be increased synthesis of CYP2E1 as 

well in addition to the stabilisation described above (Waring et al. 2008). To give further 

context, Thummel et al. projected a doubling of NAPQI formation would require an 

individual to consume greater than 50 bottles of wine over eight days (Thummel et al. 

2000). Even once achieved, this induction of CYP2E1 is short-lived, with 50% being lost 

after 36-48 hours of abstinence, returning to within normal ranges after 8 days (Perrot et 

al. 1989; Girre et al. 1994; Lucas et al. 1995). 

While consuming alcohol, the increased risk presented by this CYP2E1 induction is 

balanced by the protection afforded by the ethanol present in the blood. Therefore, in 

those individuals with ethanol-induced CYP2E1 induction, the period of greatest risk from 

paracetamol toxicity is upon acute withdrawal, such as may occur upon admission to 

hospital (Perrot et al. 1989; Schiodt et al. 2002; Graham et al. 2005b). At this most 

susceptible time there can be an increase of 22% in the mean formation of NAPQI 

(Thummel et al. 2000), reducing the average single dose required for toxicity from 15.9g 
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to 13g according to current treatment guidelines (Sivilotti et al. 2005), however, 

indications of the increased sensitivity to licensed doses cannot be found. 

While the role of CYP2E1 induction may be less important, chronic consumption of 

alcohol does independently increase the mortality of paracetamol overdose, both as 

single doses (Schiodt et al. 2002) and repeated supra-therapeutic doses (Alhelail et al. 

2011) indicating the effect of other risk factors.  

When licensed doses are considered, the role of GSH conjugation may be more important 

in chronic consumers of alcohol. Following chronic consumption of alcohol, GSH synthesis 

and transport into mitochondria is reduced (Lu 1999; Lee et al. 2004b). This could 

decrease an alcoholic’s capacity to detoxify NAPQI, which as described above may be in 

increased amounts due to CYP2E1 induction (Fernandez-Checa et al. 1987; Lauterburg et 

al. 1988; Sinclair et al. 2000a; Sinclair et al. 2000b). Additionally, higher energy 

requirement and subsequent malnutrition seen in chronic alcoholics (often despite 

adequate nutritional intake) may impair regeneration of GSH, further impeding the 

detoxification of NAPQI (Lieber 1991; Gloria et al. 1997; Bergheim et al. 2003). The impact 

of malnutrition is discussed further below in Section 1.4.5.  

Despite an increased sensitivity to paracetamol toxicity and several case reports of 

alcoholics with severe and even fatal liver damage after therapeutic doses of paracetamol 

(Whitcomb et al. 1994; Moling et al. 2006; Krahenbuhl et al. 2007; Claridge et al. 2010), 

hepatotoxicity has not been shown in prospective studies. Benson gave 4g 

paracetamol/day to patients with chronic liver disease including alcoholic cirrhosis for up 

to 14 days and showed no adverse effects (Benson 1983). A larger placebo controlled 

study of 385 alcoholics published in 2005 found similar safety of therapeutic doses in this 

population (Dart et al. 2000; Kuffner et al. 2005). Critics of the relationship between 

alcoholism and enhanced toxicity of licensed doses question the validity of the recorded 

dose in these case reports. Ingestion of paracetamol with therapeutic intent does not 

always mean therapeutic doses are taken (Whitcomb et al. 1994) and extrapolation of 

measured serum concentrations was indicative of overdose in most cases (Prescott 

2000a). Additionally, delayed presentation to care centres and poor recollection of dose 

taken may also have a role in enhancing cell sensitivity in alcoholics (Whitcomb et al. 

1994). Delayed presentation or incorrect reporting of time of overdose of one or two 

hours can make a large difference to the way a patient is treated and their likelihood of 

developing hepatotoxicity (Rumack 2004). Despite links between alcoholism and 
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paracetamol toxicity, this has only been shown with paracetamol overdose and there is 

little evidence that licensed doses carry any additional risk (Rumack 2004; Benson et al. 

2005; Kuffner et al. 2005; Dart et al. 2010). Even so the FDA require all paracetamol sold 

in the United States to be labelled with the warning: 

“If you consume 3 or more alcoholic drinks every day, you should ask your doctor 

whether you should take acetaminophen (paracetamol) or other pain 

relievers/fever reducers. Acetaminophen may cause liver failure” (Graham et al. 

2005b).  

1.4.2 SMOKING 

Table 1.4-2 Summary of alterations to paracetamol disposition with smoking 

 NAPQI Production GSH Glucuronidation 

Smoking  -  

Cigarette smoking’s effect on paracetamol disposition is small when compared with 

alcohol (Mishin et al. 1998). Its main effect is to induce CYP1A2, a minor contributor to 

Phase I metabolism at licensed doses, although some changes to CYP2E1 have also been 

identified. There may also be induction of glucuronidation of paracetamol, which could 

potentially oppose these changes, reducing paracetamol’s toxicity (Table 1.4-2). 

Polycyclic aromatic hydrocarbons (PAHs), the products of incomplete combustion, are 

some of the major lung carcinogens found in tobacco smoke and are also inducers of 

UGT1A6, CYP450 1A1, 1A2 and possibly CYP2E1 (Schmidt et al. 2003; Kroon 2007). The 

metabolism of many drug substrates can be induced in smokers resulting in a clinically 

significant decrease in pharmacological effects. These changes have also been reported in 

individuals exposed to second hand smoke (Mayo 2001). Effects have been shown to 

continue for several days after withdrawal of tobacco smoke exposure, with no effect of 

withdrawal seen in the first 24-36 hours (Kroon 2007), although values normalise to pre-

exposure levels within one week of cessation (Eldon et al. 1987; Faber et al. 2005). Other 

compounds in tobacco smoke such as acetone, pyridine, heavy metals, benzene, carbon 

monoxide and nicotine may also interact with hepatic enzymes but their effects appear to 

be less significant. 

The effect of tobacco smoke on CYP1A2 appears to be most pronounced. The induction of 

CYP1A2 by tobacco smoke and other aromatic hydrocarbons is well established. It is 

linked to transcriptional events and is probably tissue specific (Zevin et al. 1999). The two-

fold higher CYP1A2 activity commonly seen in smokers may increase clearance and 
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necessitate higher doses of drugs that are CYP1A2 substrates (Fuhr et al. 1993; de Leon et 

al. 2003; Kroon 2007; Backman et al. 2008). Clearance of theophylline is increased by 58-

100% (Zevin et al. 1999) while caffeine concentrations of smokers can be one half to one 

third of non-smokers (Benowitz et al. 2003). 

Increases in CYP2E1 activity and expression due to smoking have been shown in mouse 

lung, kidney and liver, although most studies in humans have failed to demonstrate 

significant induction of CYP2E1 in smokers (Miller 1989; Girre et al. 1994; Howard et al. 

2001). Induction may be due to repeated exposure to some of the substrates of CYP2E1 

found in tobacco smoke (i.e. NMDA, pyridine, benzene, acetone, styrene and vinyl 

chloride)(Zevin et al. 1999), however their effect is small compared with the inducing 

effects of ethanol, as described in the previous section (Mishin et al. 1998). One study of 

CYP2E1 activity in humans smokers showed intra-individual changes  of smokers before 

and then a week after cessation, although the effect was not seen in all subjects 

(Benowitz et al. 2003). These authors suggested the large inter-individual variation in 

CYP2E1 activity masks the moderate effects of smoking in studies that use a between 

subject design, such as the one by Girre et al. (Benowitz et al. 2003). This wide variation in 

response may be related to the presence of CYP2E1 gene alleles that are associated with 

higher or lower susceptibility to induction by cigarette smoking (Hu et al. 1999).  

Some glucuronide conjugation can also be induced by PAH. Cigarette smoke exerts 

differential effects on UDP-glucuronosyltransferases; and for many drug substrates 

clearance is increased. (Ochs et al. 1981; Grech-Belanger et al. 1985; Fleischmann et al. 

1986; Walle et al. 1987; Bock et al. 1994; Zevin et al. 1999; Kroon 2007). Paracetamol 

glucuronidation was found to be increased in some smokers and those exposed to PAH, 

through induction of UGT1A6. Interestingly the authors noted a correlation with caffeine 

oxidation (a marker of CYP1A2 activity) in the study group, suggesting an element of co-

regulation (Bock et al. 1994).  

The impact of these changes on paracetamol at licensed doses is minor. At these doses 

there is no evidence of a significant change in paracetamol’s half-life, Vd or clearance due 

to cigarette smoking (Pantuck et al. 1974; Mucklow et al. 1980; Miners et al. 1984b; Bock 

et al. 1987; Scavone et al. 1990; Bock et al. 1994; Dong et al. 1998). Although increased 

Phase I metabolism in smokers has been shown, the resultant increase in NAPQI at 

licensed doses is quantitatively unimportant. Following overdose, however, cigarette 

smoking has been shown to be an independent risk factor for severe hepatotoxicity and 
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mortality (Schmidt et al. 2003). In overdose situations the role of CYP1A2 may be more 

important as limited capacity of CYP2E1 is overwhelmed, leading to increased 

involvement of other CYP450 enzymes. If pre-existing induction of CYP1A2 from smoking 

was present, the subsequent increase in NAPQI production could explain the poorer 

outcome of smokers following overdose (Benowitz et al. 2003).  

It is important to note that these interactions are caused by the PAHs in tobacco smoke 

with only sparse evidence of a contribution of nicotine per se. Therefore nicotine 

replacement therapy does not cause the same pharmacokinetic drug interactions as 

tobacco smoke. However, pharmacodynamic drug interactions do result from nicotine, 

the majority arising from the activation of the sympathetic nervous system which can 

affect the pharmacological activity of certain drugs, but this is not important for the 

activity of paracetamol (Kroon 2007).  

1.4.3 AGEING 

Table 1.4-3 Summary of alterations to paracetamol disposition with aging 

 NAPQI Production GSH 

Aging - - 
Frailty -  

Both pharmacodynamic and pharmacokinetic factors are responsible for age related 

changes to paracetamol disposition, although the cumulative effect is much smaller than 

alcohol or smoking (Ochs et al. 1981).  

Regardless of the small scale of changes, the incidence of all serious adverse drug 

reactions increase with increasing age, even after controlling for increased medication 

use (Moore et al. 2007). Even though the majority of paracetamol poisoning cases are 

adolescents and young adults, most paracetamol associated deaths occur in an older 

population (Schmidt 2005). Additional risk factors that contribute to this poor outcome in 

the elderly include an increased time to presentation, poly-pharmacy, poor recollection of 

consumed dose and a greater prevalence of alcohol abuse (Schmidt 2005). Starvation and 

malnourishment is also more prevalent in the elderly which carry their own risk (see 

Section 1.4.5 below)(Schwartz 2007) and insufficient dietary intake of sulphur containing 

amino acids are observed in the elderly (Maher 2005; Mercier et al. 2006). However, 

many studies show no change to disposition of paracetamol at licensed doses in the 

elderly (Triggs et al. 1975; Miners et al. 1988) and there is no evidence age should be 
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considered when deciding the dose of paracetamol in adults (Divoll et al. 1982b; Miners 

et al. 1988; Klasco 2009). 

As people age they become more sensitive to adverse effects of drugs (Demeure et al. 

2006), however it may be the frailty that accompanies aging that is more related to 

changes in drug disposition (Wynne et al. 1990). It is frailty that is associated with a loss 

of reserves and increased state of vulnerability to paracetamol toxicity, not aging per se 

(Mitchell et al. 2011b) and frailty has been shown as a better predictor of deranged liver 

function than age in hospitalised patients receiving regular paracetamol (Mitchell et al. 

2011a)(Table 1.4-3). 

There are some reports of changes to drug absorption in the elderly. These changes are 

minor and not shown consistently, with most studies showing no change to absorption 

kinetics at all (Gainsborough et al. 1993; Schwartz 2007). Small but statistically significant 

reductions in the bioavailability of paracetamol in elderly subjects have been shown, but 

these were lost when co-administered with food (Divoll et al. 1982b). 

There may also be small reductions to Vd. Physiologically, with increasing age comes 

increasing body fat, reduction of body size, intravascular volume, organ volume and 

muscle volume, especially in females (Schwartz 2007). This may lead to reductions in Vd 

which have been shown in studies, especially in females (Schwartz 2007). been shown in 

studies using paracetamol (Divoll et al. 1982a; Liukas et al. 2011). 

Typically there are also declines in renal and hepatic function (Klotz 2009), especially in 

women (Schwartz 2007). Generally, however, half-life of paracetamol is unchanged by 

aging (Divoll et al. 1982a; Galinsky et al. 1986; Miners et al. 1988; Wynne et al. 1990; 

Liukas et al. 2011). Two more recent studies do exhibit some changes: serum paracetamol 

concentrations increased in elderly after five days of therapy (Mitchell et al. 2011a) and in 

a second, clearance was reduced in the elderly with marked increases in exposure to 

paracetamol following a 1g dose (Liukas et al. 2011). 

There are few studies that explain the changes to disposition seen in these last two 

studies. Generally there is very little age-related change to hepatic clearance, but when 

occurring, Phase I reactions are more impaired than Phase II in the elderly (Klotz 2009) 

which only account for a small amount of paracetamol’s clearance.  



 

107 
 

Typically, the role of age in the interindividual variation in Phase I’s CYP450 activity is 

relatively minor (Bebia et al. 2004; Liu et al. 2005) and has been shown to both increase 

and decrease (Galinsky et al. 1986). Determining CYP450 in the elderly is complicated by 

the presence of a number of confounders, which increase with age (Johansson et al. 

1990). Such age-related changes include reductions in creatinine clearance. Once these 

changes are accounted for, observed age-related differences often disappear (Bebia et al. 

2004). Specifically there is no evidence of change in the activity of CYP1A2 or CYP2D6 

(Simon et al. 2001; Bebia et al. 2004). There may be a small degree of induction of CYP2E1 

(Bebia et al. 2004), but this was not seen in an earlier study (Kim et al. 1995b). Clearance 

of CYP3A substrates have been shown to both increase (Bebia et al. 2004) and decrease 

with age (Schwartz 2006) but this is not due to alteration in the activity of the enzyme 

(Schwartz 2006). Aging-related alteration in the clearance of CYP450 substrates is thought 

more likely to be secondary to changes in liver blood flow, size, or drug binding and 

distribution with aging (Hunt et al. 1992a; Hunt et al. 1992b; Klotz 2009). Again, frailty is 

more associated with decline in CYP450 function (Wynne et al. 1990; Wynne 2005). In the 

disposition of paracetamol itself, shifts towards Phase I metabolism seen upon chronic 

dosing to inpatients are more prominent in the elderly, with age related increases to 

urinary recovery of paracetamol cysteine (Pickering et al. 2011).  

Changes to Phase II pathways are also minor. Glucuronidation of paracetamol has been 

shown to reduce in frailty (Wynne et al. 1990) and chronic dosing in the elderly (Pickering 

et al. 2011). Reports of increases (Galinsky et al. 1986) and no effect due to aging also 

exist (Miners et al. 1988). A small reduction in sulphonation has been reported (Galinsky 

et al. 1986; Miners et al. 1988; Pickering et al. 2011) although sulphonation was 

preserved in frailty (Wynne et al. 1990). GSH content of the liver has been shown to 

reduce with age (Liu et al. 2004; Maher 2005; Mercier et al. 2006) and age related 

increases in the demand for cysteine may reduce availability of cofactors for GSH 

formation (Mercier et al. 2006). This effect is compounded by the finding that diets 

containing insufficient inorganic sulphur and sulphur containing amino acids are more 

common in the elderly (Nimni et al. 2007). Despite this, the effect on paracetamol 

disposition has not been shown in all studies (Galinsky et al. 1986; Miners et al. 1988). 

At the other end of the spectrum, neonates do exhibit changes. The half-life of 

paracetamol in neonates is prolonged to 3.5 hours, however, this dissimilarity to adult 

rates reduces by the age of six months (van Lingen et al. 1999). This may be in part due to 
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a lack of glucuronidating enzymes, which have been shown to be deficient in neonates. 

One study found the expression of some UGT transcripts significantly lower in paediatric 

liver, leading to substantially reduced glucuronidation activity of up to 24 fold compared 

to adult controls for one of their study drugs, ibuprofen (Strassburg et al. 2002).  

1.4.4 OBESITY 

Table 1.4-4 Summary of alterations to paracetamol disposition with obesity 

 NAPQI Production GSH activity GSH reserves 

Obesity    

There are several changes to drug disposition that relate to obesity, but, in the absence of 

other accompanying risk factors, namely steatohepatitis and subsequent hepatic 

impairment, these changes do not confer additional risk of paracetamol toxicity (Table 

1.4-4). 

A drugs Vd may be increased in obese individuals (Blouin et al. 1999). In lipophilic drugs 

with a Vd greatly beyond that of intravascular volume, there is a risk that such an increase 

can lead to drug accumulation, escalating the risk of a drug’s toxicity (Abernethy et al. 

1982b). Because paracetamol is only of intermediate lipid solubility and its Vd is only 

slightly greater than the intravascular volume, obese individuals are not thought to be at 

a greater risk of paracetamol toxicity due to this factor (Abernethy et al. 1982a; Varela et 

al. 2008).  

Metabolism of paracetamol has been reported to be increased in obese individuals and 

those with steatohepatitis (Abernethy et al. 1982a). The degree of increased activity of 

some CYP450 enzymes in obese man is more closely linked to the degree of adiposity of 

the liver, rather than the degree of obesity itself (Raucy et al. 1991; de la Maza et al. 

2000; Emery et al. 2003). This illustrates similarities between the changes in CYP450 

activity due to alcoholism and obesity. Similarly, changes to CYP450 activity in obese 

individuals have been shown to normalise following weight loss (Emery et al. 2003).  

Of primary importance to paracetamol metabolism, CYP2E1 activity is increased in obese 

man (O'Shea et al. 1994). Kotylar et al. reviewed the literature on CYP450 changes as a 

result of obesity and concluded that CYP2E1 was induced, CYP3A4 was inhibited and the 

effect on CYP1A2 and CYP2D6 was unclear (Hunt et al. 1992b; Kotlyar et al. 1999). In 

addition to increased CYP450 activity, there is also evidence that obesity reduces the 

activity of GSH peroxidase, the enzyme which detoxifies the CYP450 product NAPQI, 

adding further to the risk of paracetamol toxicity (Karaouzene et al. 2011).  
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While there is evidence of changes that increase risk from the Phase I system, obesity is 

not listed as a risk factor for paracetamol toxicity (Bristol-Myers Squibb 2009). Two 

factors found in obese individuals offer protection against NAPQI toxicity. Generally, 

obese individuals are well-nourished and are likely to have additional stores of co-factors 

required for GSH conjugation, which are necessary for NAPQI detoxification, and are 

subsequently able to detoxify a greater drug load. These additional stores of cofactor may 

explain why the reduced number of GSH peroxidase shown by Karaouzene et al (ibid) did 

not equate to a reduced level of activity. Furthermore, evidence of increased rates of 

glucuronidation in obese individuals would suggest further protection from paracetamol 

toxicity as this would draw paracetamol away from the toxic Phase I pathway (Xu et al. 

2012). 

1.4.5 NUTRITION 

Table 1.4-5 Summary of alterations to paracetamol disposition with malnutrition 

 NAPQI Production GSH activity GSH reserves 

Malnutrition    
TPN    

Of all the factors discussed in this section, malnourishment is the most relevant to 

paracetamol toxicity at licensed dose in the surgical patient, with evidence for both 

increased NAPQI production and reduced GSH conjugation (Table 1.4-5).  

Malnourishment, the intake of a diet insufficient to supply nutritional needs, occurs in 

over 25% of hospital inpatients, particularly the elderly (Thompson 1995). Nearly a 

quarter of elderly patients presenting for surgery are malnourished, often a consequence 

of semistarvation (Schenker et al. 2001). Additionally, overnight starvation/fasting is 

experienced preoperatively by all surgical patients receiving general anaesthesia and is 

aggravated by the use of aggressive bowel preparations, which usually result in 

dehydration (Holte et al. 2004). Following surgery, many patients are subjected to 

restricted diets and fasting may be prolonged for several days in those whose surgery 

requires the bowel to be rested. When allowed to eat, prolonged periods of insufficient 

energy intake are common, due to nausea, pain or lack of appetite (Nygren 2006) 

Poor nutrition or periods of starvation are also common themes in reports of fatalities 

following “normal doses” of paracetamol (Eriksson et al. 1992; Whitcomb et al. 1994; 

Kurtovic et al. 2003; Vitols 2003; Moling et al. 2006). Hepatotoxicity only arose in patients 

taking chronic supra-therapeutic doses of paracetamol following impaired nutrition or 



 

110 
 

fasting (Whitcomb et al. 1994). However analysis of the effect of nutrition on paracetamol 

disposition is complicated by two factors: difficulties in obtaining accurate dietary 

histories and the differences in the effects of chronic malnutrition, starvation and 

dehydration (which often accompanies starvation). There is evidence for the role of Phase 

I and Phase II pathways. 

In man, malnourishment has been shown to increase (Krishnawamy et al. 1977), decrease 

(Narang et al. 1977; Homeida et al. 1979) and not to change CYP450 activity (Sanchez et 

al. 1982). Total fasting has been shown to induce CYP450 (Hong et al. 1987) and CYP2E1 

activity specifically (Johansson et al. 1990; Liu et al. 1993). In malnutrition, there seems to 

be a differentiation between the effect on CYP450 between protein and carbohydrate 

deprivation, with the relative contribution of these to total calorie content being the most 

important predictor, not the calorie content itself. As previously discussed, any induction 

of CYP450 enzymes, particularly CYP2E1 can increase NAPQI production and predispose 

to toxicity (Schenker et al. 2001). 

Following on from this, the development of ketosis seems to be an important cause of 

CYP2E1 induction (Johansson et al. 1990) and it is a common factor that links fasting, high 

fat diets, diabetes and starvation to CYP2E1 induction (Yun et al. 1992). In the absence of 

carbohydrates and insulin, ketones are produced as a by-product from gluconeogenesis 

and the breakdown of fatty acids. These ketones appear to inhibit the breakdown of 

CYP2E1 enzymes, effectively causing induction (Eliasson et al. 1992). Further evidence is 

supplied by the reduction of CYP2E1 activity following the administration of glucose (Kim 

et al. 2006), insulin (Truong et al. 2005), or diets rich in carbohydrate/poor in protein 

(Mgbodile et al. 1972; Hayes et al. 1974; Campbell et al. 1976; Campbell 1977; Tranvouez 

et al. 1985; Jorquera et al. 1996), which would all reverse ketosis. Carbohydrate rich 

parenteral nutrition has been shown to reduce CYP450 activity, regardless of the amount 

of calories provided (Anderson et al. 1979; Knodell et al. 1984; Knodell et al. 1989; 

Jorquera et al. 1996). Specific changes from protein calorie malnutrition have been shown 

in a 60% suppression of CYP1A2 and 40-50% of CYP2E1 (Lee et al. 2004a). This is 

consistent with findings of the concentrations of theophylline (a CYP1A2 substrate) in 

asthmatic children being 62% higher in those with high carbohydrate diets indicating 

reduced activity of CYP1A2 (Feldman et al. 1980). Conversely, protein rich diets cause a 

marked increase to CYP450 activity (Alvares et al. 1976; Campbell et al. 1976; Jorquera et 

al. 1994; Jorquera et al. 1996). Protein rich, hypo-calorific parenteral nutrition given to 
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surgical patients for five days postoperatively significantly enhanced CYP450 activity, 

nearly halving antipyrine half-life (Jorquera et al. 1994). Conventional amino acid 

solutions have an identical effect (Pantuck et al. 1984). An elegant study demonstrated 

this by showing a reduction of similar magnitude upon switching from a regular to protein 

rich diet, which was reversed to original values upon initiation of a carbohydrate rich diet 

(Kappas et al. 1976).  

These changes have not borne out alteration to paracetamol disposition or toxicity in 

humans (Schenker et al. 2001), and even inhibition of CYP2E1 metabolism has been 

shown following a maximum 36 hour fast (O'Shea et al. 1994). However, crucially, ketosis 

did not always develop in this study (Schenker et al. 2001). It seems likely that in the 

presence of prolonged periods of fasting with accompanying development of ketosis 

some degree of induction of CYP2E1 may also occur in humans, however this is unlikely to 

increase the risk of adverse effects associated with CYP2E1 (O'Shea et al. 1994).  

There also seems to be an important role of Phase II metabolism. Malnourished patients 

presenting with paracetamol toxicity excrete twice the amount of Phase I products as 

healthy individuals, indicating changes to all three pathways of paracetamol’s Phase II 

metabolism (Davis et al. 1976). 

For paracetamol disposition, the most important changes to Phase II metabolism in 

malnutrition and perhaps metabolism in general, are to GSH. As discussed in Section 1.2, 

GSH conjugation and sulphonation both depend on a supply of cysteine and methionine 

from the diet: cysteine is used in the synthesis of GSH and supplies inorganic sulphur for 

the synthesis of the sulphonation cofactor PAPS. Diets require at least 0.9g of 

cysteine/methionine per day to eliminate 4g/day dose of paracetamol and this equates to 

on average an additional 50g of protein (Glazenburg et al. 1983; Gregus et al. 1994a). In 

the opinion of Nimni et al. the diets of lacto-ovo-vegetarians, vegans, those on a "health 

conscious diet” and those over 75 years were insufficient to metabolise paracetamol 

without harming homeostatsis (Nimni et al. 2007). In those with deficient diets, 

paracetamol elimination is slower and a greater amount of paracetamol is eliminated via 

NAPQI (Gregus et al. 1994a). In addition to harming sulphonation, these reductions to 

GSH will impair NAPQI detoxification. Tissue GSH levels are depleted by fasting (Liu et al. 

1993) and anorexic subjects have been shown to have 30% less GSH than controls (Zenger 

et al. 2004). The effect of starvation may be even greater in surgical patients who are 

exposed to other drugs, such as propofol, that also deplete GSH during their own 
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conjugation processes (James et al. 2003; Buzaleh et al. 2005). Diets restricted in sulphur 

containing amino acid slow GSH synthesis (Lyons et al. 2000) having a marked effect on 

the redox status of cells (Miller et al. 2002). Rats show reduced GSH conjugation of NAPQI 

following fasting, with reductions to GSH concentration of up to 50% (Whitcomb et al. 

1994). This is thought to arise from reduced cysteine intake following food deprivation 

(Cho et al. 1981). Supplementation of parenteral nutrition with glutamine, a precursor of 

GSH, has been shown to maintain GSH concentrations postoperatively and has even been 

linked to shortened hospital stays (Fan et al. 2009). 

Lack of glucose or sulphate may also reduce glucuronidation and sulphonation and result 

in greater amounts being metabolised by the Phase I pathway to NAPQI (Price et al. 1987; 

Price et al. 1988). Both the rate and amount of paracetamol glucuronidation depend on 

hepatic carbohydrate reserves (Price et al. 1988). Postoperatively, patients are catabolic, 

being forced to supply glucose from amino acids through gluconeogenesis contributing to 

up to a 10-fold difference of glucuronidation activity between fed and fasting states(Price 

et al. 1988). However, short periods of starvation have not been shown to affect 

glucuronidation in patients (Schenker et al. 2001; Rumack 2004). Similarly, sulphonation 

also relies on inorganic sulphate being retrieved from the diet. With greater demands on 

sulphur containing amino acids from potentially increased NAPQI production, poor 

dietary supply can also impair sulphonation. 

Dehydration, a common factor in the early post-operative period, is not thought to 

influence paracetamol metabolism greatly (Zafar et al. 1987; Kim et al. 2001; Kim et al. 

2006) but there are no studies on dehydration-related changes to disposition in man.  

Adequate nutrition can minimise these risks. Glucose and protein infusions prevent 

elements of the stress response (Kopp Lugli et al. 2010), which in turn have their own 

impact on drug metabolism (see Section 1.3), and may preserve the activity of drug 

metabolising enzymes (Jorquera et al. 1994). Prolonged use of licensed doses of 

paracetamol necessitates intake of increased amounts of sulphur containing amino acids 

(Reicks et al. 1988) and curiously these have been shown to spontaneously occur (Pujos-

Guillot et al. 2011). Without an increase the restricted availability of cysteine and 

methionine may impair protein synthesis methylation reactions, and drug detoxification 

(Reicks et al. 1988).  
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1.4.6 DIABETES 

Table 1.4-6 Summary of alterations to paracetamol disposition with diabetes 

 NAPQI Production GSH activity 

Diabetes   

The situation regarding paracetamol metabolism in diabetics is unclear. Work in 

laboratory animals shows induction of all of the main CYP450 enzymes of paracetamol 

metabolism and inhibition of GSH conjugation (Lee et al. 2010). The effect 

glucuronidation and sulphation is uncertain although inhibition has been reported (Price 

et al. 1986) . Extrapolation to humans is difficult because a number of the studies arise 

from rats, which present different metabolite patterns to humans.  

Studies in humans demonstrate increased CYP450 activity in type I diabetics, particularly 

CYP1A2, but this is not seen in type II diabetics (Matzke et al. 2000). Conversely, activity 

of CYP2E1 increases in obese, type II diabetics, but not type I diabetics (Wang et al. 2003; 

Baek et al. 2006). However, poorly controlled type I diabetes is often accompanied with 

high concentration of ketones in the blood. Ketones are substrates of CYP2E1 and these 

high concentrations may induce this enzyme by prolonging the fast component of 

degradation, a similar effect to that of ethanol (Lieber 1997; Rumack 2002). 

In studies using paracetamol, Dajani showed increased half-life of paracetamol in type I 

diabetics through changes to volume of distribution, not clearance (Dajani et al. 1974). 

Adithan’s work agreed and also showed paracetamol clearance in type II diabetics 

reduced to less than half of the controls (Adithan et al. 1988). A study of Phase II 

metabolism in type II diabetics showed only lower clearance of paracetamol by 

sulphation, not glucuronidation, and increases to renal clearance of paracetamol (Kamali 

et al. 1993). While there are reports of induction and inhibition, of note is the induction of 

GSH synthesis by insulin, which is essential for NAPQI detoxification (Okouchi et al. 2006). 

This could oppose the increase in Phase I activity reported above (Lu 1999).  

Conversely, hyperglycaemia and insulin deficiency decrease GSH synthesis to levels that 

impair anti-oxidant defence (Urata et al. 1996). This may theoretically increase the risk of 

toxicity in overdose, but has not been reported. In otherwise healthy individuals, diabetes 

possesses no additional risk of paracetamol toxicity at licensed doses. 

“Surgical diabetes” in the post-operative patient may arise from the stress response, 

when the body becomes catabolic and rapidly resistant to the effects of insulin. The 

duration of diabetes is thought to factor in the nature of alterations to drug metabolism 
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(Sawant et al. 2006). As such, extrapolation of studies in types I and II diabetes to post-

operative, surgical diabetes is not possible because of the substantial differences in 

pathogenesis and time course. 

1.4.7 LIVER DISEASE 

Table 1.4-7 Summary of alterations to paracetamol disposition with liver disease 

 NAPQI Production GSH activity 

Liver disease   

Risks of paracetamol toxicity in patients with liver disease are balanced and are not 

thought to be any greater than the general population at licensed doses (Table 1.4-7). 

There is a reduction in CYP2E1 in patients with cholestatic forms of cirrhosis compared 

with unchanged or increased levels of CYP2E1 with non-cholestatic (e.g. ethanol) related 

cirrhosis (Tegeder et al. 1999). This would theoretically reduce the risk of toxicity, 

although in practice the drug is avoided or dose reduced to a maximum of 3g/day (Klasco 

2009). 

There are other changes to GSH synthesis in cirrhotic patients. GSH is required for the 

detoxification of NAPQI and GSH itself requires cysteine. In patients with cirrhosis one of 

the pathways of cysteine production, the transsulfuration pathway, does not function 

(Mato et al. 1994). This may predispose patients with liver disease to paracetamol 

toxicity, but as discussed above, this has not been shown clinically.  

1.4.8 GENDER 

Table 1.4-8 Summary of alterations to paracetamol disposition with gender 

 NAPQI Production GSH activity 

Male  - 

Small gender differences have been found in the pharmacokinetics of beta-blockers, 

caffeine, selective serotonin reuptake inhibitors, and verapamil (Fletcher et al. 1994; 

Meibohm et al. 2002), but most are not clinically significant (O'Shea et al. 1994). In the 

case of paracetamol, minor reductions to clearance are seen in females (Liukas et al. 

2011)(Table 1.4-8). The activity of some CYP450 enzymes has been shown to be higher in 

men than women, e.g., CYP1A2 and CYP2E1, with CYP3A4 being higher in women than 

men (Meibohm et al. 2002; Bies et al. 2003). However, interindividual differences in 

CYP450 activity are much greater than those due to gender and these changes are not 

always seen (Kim et al. 1995b; Bebia et al. 2004).  
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Gender differences in paracetamol glucuronidation and the activity of UGT1A6 have also 

been shown, with increases seen in males (Bock et al. 1994), whereas reduced reserves of 

inorganic sulphate and PAPS in females mean sulphate depletion due to administration of 

a substrate of sulphation may occur at a lower dose in females than males (Mulder 1986). 

GSH concentration in the liver is identical between genders as are rates of GSH synthesis 

(Mulder 1986).  

Other gender-related factors causing pharmacokinetic differences include the lower body 

weight and organ size, higher percentage of body fat, and lower glomerular filtration rate 

in women than in men (Fletcher et al. 1994; Meibohm et al. 2002; Bies et al. 2003). One 

review cautioned that the information on the effect of gender is mainly derived from rat 

studies because they are most pronounced in this species. They quote several studies that 

have shown the identification of sex-dependent difference in rats do not translate to the 

same xenobiotic handling differences in humans (Mugford et al. 1998). 

1.4.9 ETHNICITY 

Table 1.4-9 Summary of alterations to paracetamol disposition with ethnicity 

 NAPQI Production GSH activity 

African  - 

Ethnicity is not considered a significant risk factor for paracetamol toxicity, although some 

changes to disposition are seen. Critchley et al. examined the 24 hour urinary excretion of 

paracetamol and its metabolites following a single oral dose of 1.5 g in 111 Caucasians 

(Scotland), 67 West Africans (Ghana) and 20 East Africans (Kenya). They found reduced 

amounts of the Phase I conjugates of paracetamol amongst the Caucasians compared 

with Africans (p< 0.0005) indicating slightly reduced Phase I activity in the Africans (Table 

1.4-9). There were also differences in glucuronide conjugation with Caucasians 

conjugating significantly less than in the Africans, accounting for the increased amount 

excreted by the Phase I pathway. The authors conclude that these ethnic differences in 

paracetamol metabolism may be related to genetic or environmental factors including 

differences in diet and protein intake (Critchley et al. 1986). However, in studies using 

similar methods, no differences were seen between Caucasian and Chinese males living in 

South Australia (Osborne et al. 1991) or Caucasian and Oriental subjects in Canada (Patel 

1992). Prescott warns it may be difficult to distinguish the cause of ethnic variation 

between the effect of genetic, dietary or environmental factors (Prescott 1996).  
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1.5 THE CYTOCHROME P450 ENZYMES 

Cytochrome P450 (CYP450) enzymes are a very substantial and diverse superfamily of 

haemoproteins found in eukaryotes, bacteria and archaea (Nelson 2008). The name 

CYP450 is derived from the fact that these are coloured ('chrome') cellular ('cyto') 

proteins, with a "pigment at 450 nm", so named for the characteristic Soret peak formed 

by absorbance of light at wavelengths near 450 nm when the haem iron is reduced and 

complexed to carbon monoxide (Wijnen et al. 2007). They enzymatically metabolise a 

vast range of both exogenous and endogenous compounds. Usually they form part of 

multi-component electron transfer chains, called P450-containing mixed function oxidase 

systems (Wijnen et al. 2007).  

1.5.1 CLASSIFICATION 

CYP450 enzymes have been identified from all lineages of life, including mammals, birds, 

fish, insects, worms, sea squirts, sea urchins, plants, fungi, slime moulds, bacteria and 

archaea (Guengerich 1999). In humans the completion of the human genome sequence 

revealed the presence of 57 active CYP genes (Wijnen et al. 2007). These are displayed in 

Table 1.5-1 based on their major substrate.  

Table 1.5-1 Classification of all 57 human cytochrome P450 based on major substrate class (Guengerich et al. 2005) 

Sterols Xenobiotics Fatty Acids Eicosanoids Vitamins Unknown 

1B1  1A1 2J2 4F2 2R1 2A7 
7A1  1A2 4A11 4F3 24A1 2S1 
7B1  2A6 4B1 4F8 26A1 2U1 
8B1  2A13 4F12 5A1 26B1 2W1 
11A1  2B6  8A1 26C1 3A43 
11B1  2C8   27B1 4A22 

11B2  2C9    4F11 
17A1  2C18    4F22 
19A1  2C19    4V2 
21A2  2D6    4X1 
27A1  2E1    4Z1 
39A1  2F1    20A1 
46A1  3A4    27C1 
51A1  3A5     
 3A7     

CYP450 enzymes are further classified by their amino acid homology. Families are 

identified by an Arabic number and have at least 40% homology of amino acids, the 

subfamily is identified by a capital letter and has at least 55% homology and the gene 

product is identified by a further Arabic number. This classification system has replaced 
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nomenclature based on the substrate of the enzyme, e.g. cyclosporin oxidase and 

nifedipine oxidase are the same enzyme, P450 3A4 (Bruton et al. 2006).  

Human CYP450s are primarily membrane-associated proteins, located either in the inner 

membrane of mitochondria or in the endoplasmic reticulum of cells. While the highest 

concentrations of CYP450 are in the nose and the adrenal gland, the greatest mass is 

found in the centrilobular region of the liver (Wijnen et al. 2007). Their relative 

contribution to marketed drug metabolism is shown in Figure 1.5-1. 

The most common reaction catalysed by CYP450 is a mono-oxygenase reaction, i.e. 

insertion of one atom of oxygen into an organic substrate (RH) while the other oxygen 

atom is reduced to water (Equation 1.5-1). 

           
          

Equation 1.5-1 Most common reaction catalysed by CYP450 enzymes 

Of those whose function is currently known, most CYP450 enzymes present in humans 

are involved in the metabolism of sterols and vitamins A and D (Table 1.5-1) (Guengerich 

2006). About one quarter of the 57 CYP450 enzymes are considered to be involved 

primarily in the metabolism of “xenobiotic” (not normally in the body) chemical 

substances (Guengerich 2006). 

Five of the CYP450 enzymes carry out 90% of all CYP450 metabolism, making study in this 

area much simpler than if all 57 human CYP450 were involved (Frye 2004; Guengerich 

2006). Furthermore, these enzymes play a vital role in homeostasis (Lewis 2004; Wijnen 

et al. 2007). 

 
Figure 1.5-1 Contribution of CYP450 to overall drug Clearance 
(i) Contribution of each clearance pathway to overall clearance. (ii) Of metabolism as a clearance pathway, the 
contribution of individual enzyme systems to metabolism of marketed drugs is shown. UGT indicates uridine dinucleotide 
phosphate (UDP) glucuronosyl transferase; FMO, flavin-containing monooxygenase; NAT, N-acetyltransferase; MAO, 
monoamine oxidase; CYP, cytochrome P450. (iii) Of CYP 450 mediated metabolism of marketed drugs, the involvement 
of individual P450s metabolism is shown(Wrighton et al. 1992). 

Hepatic CYP450 are the most widely studied of the CYP450 enzymes because of their role 

in drug metabolism (Bruton et al. 2006). Here CYP450 enzymes are probably the most 
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important element of oxidative drug metabolism in humans (Guengerich 2006). The 

majority of CYP450 reactions: 

 Deactivate drugs; 

 Attenuate their biological activity; and 

 Accelerate their clearance from the body (Guengerich 2006).  

CYP450s can also activate compounds, which may have their own inherent 

pharmacological activity, or may modify cellular constituents and damage cells, as is the 

case with paracetamol and its metabolite NAPQI (Guengerich 2006). 

1.5.1.1 CAPACITY AND AFFINITY 

The metabolic reactions between a CYP450 enzyme and a substrate can be defined as 

either low affinity/high capacity or high affinity/low capacity. The affinity of an enzyme to 

a substrate refers to its preference for certain substrates. The rate at which the enzyme 

can metabolise substrate refers to its capacity. For example, CYP2D6 is a high affinity/low 

capacity enzyme: it prefers to metabolise specific substrates at low concentrations. As the 

concentration of a substrate increases, CYP2D6 becomes saturated and other, lower 

affinity, enzymes become involved in the metabolism of the substrate. Low affinity/high 

capacity CYP450 enzymes which commonly mop-up the spill over include CYP3A4, and 

CYP1A2 (Chen et al. 1998). While these classifications are true in the main, exceptions do 

exist; such an example is CYP2E1 which has high affinity/low capacity for some substrates 

and low/high for others (Kim et al. 2007). 

1.5.1.2 CYP450 AND DRUG METABOLISM 

1.5.1.2.1 CYP450 VARIATION; GENES AND THE ENVIRONMENT 

Unlike the CYP450 enzymes involved in homeostasis, the amount of xenobiotic 

metabolising CYP450 enzymes can vary widely in number and can even be completely 

absent, depending on an individual’s genome (Guengerich 1999). These polymorphisms 

are an important factor in determining an individual’s response to medication (Wijnen et 

al. 2007). The population can be divided into four subgroups based on their genotype: 

 Poor metabolisers (PM); 

 Intermediate metabolisers (IM); 
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 Extensive metabolisers (EM) and; 

 Ultrarapid metabolisers (UM) (Frank et al. 2007).  

Those with a PM genotype lack any functional allele, whereas EM subjects have one or 

two and UM subjects have more than two functional alleles. The IM genotype can arise 

from heterozygosity from a non-functional allele or the presence of alleles with reduced 

activity (Frank et al. 2007). 

The potential impact is shown for a theoretical drug in Figure 1.5-2. In this figure the 

upper trace represents that of an EM, the majority of the population, and the lower trace 

that of a PM. EMs metabolise drugs quickly and achieve a much lower steady state 

concentration. If the metabolite is active, or toxic, this rapid metabolism can lead to 

toxicity (Gasche et al. 2004). Conversely it can prevent therapeutic concentrations of the 

parent compound being maintained, requiring higher doses (Kirchheiner et al. 2004). As 

EMs constitute the majority of the population, drug dosing is based on their metabolism. 

In PMs, drug concentration accumulates with each administration as shown in the lower 

trace. PMs risk toxicity through parent compound accumulation (Lessard et al. 1999). 

 
Figure 1.5-2 Effect of variation in human CYP450 activity on plasma concentration.  
The effect of different metaboliser status on plasma concentration of a theoretical drug over time is shown. The top 
trace represents that of an extensive metaboliser and the bottom that of a poor metaboliser AUC indicates area under 
the curve(Guengerich 2006).  

Ethno-specificity is also involved in many cases. As an example the number of CYP2D6 PM 

ranges from 1-10% across ethnic groups, with the mean prevalence of 8.9% in white 

British, 3.9% amongst the French and as low as 1% of sub-continental Indians (Mamidi et 

al. 1999).  
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Although the majority (70-90%) of the variation in function is attributable to this genetic 

control (He et al. 2005), environmental factors, such as disease states, caffeine 

consumption, smoking, alcohol and concomitant drug use also impact on the enzymes 

actual activity (Harvison et al. 1988b; Prescott 2000a) and these were reviewed in Section 

1.4. 

Enzyme activity can be either increased or decreased, also referred to as enzyme 

induction and inhibition, respectively. Many clinically relevant drug interactions arise 

from this process. For example, a drug that inhibits the CYP450-mediated metabolism of 

another drug may cause the second drug to accumulate within the body and may result in 

toxicity. It is especially relevant to medicines with narrow therapeutic indices, such as 

some anti-arrythmics and anti-epileptics. Some of these factors were also discussed in 

Section 1.4.  

It is the sum of these influences, both genetic and environmental, which determine an 

individual’s actual enzyme activity, or phenotype. The effect of these are seen every day 

in a clinical environment; why a heavy smoker may need higher doses of benzodiazepine 

for sedation (Greenblatt et al. 1980), why the same dose of theophylline may be toxic for 

a non-smoker but ineffective for a smoker, or why a heavy alcohol drinker requires 

greater doses of opiate for pain relief and yet is at a greater risk of paracetamol toxicity 

(Frye et al. 1997; Ozdemir et al. 2000). As an explanation for these clinical observations, 

and the large differences in pharmacokinetics behind them, CYP450 enzymes can show a 

greater than 30 fold variation in function (Matzke et al. 2000; Carcillo et al. 2003; Zhou et 

al. 2004). The above examples show how important environmental factors are to 

determining an individual’s CYP450 activity.  

Because of the variability of these enzymes and their impact on drug metabolism, reliable 

measures of their activity play an important role in clinical studies of the current type. 

More practically, increased understanding of the variability of CYP450 enzymes may lead 

to the possibility of predicting and managing drug:drug interactions and explaining 

individual differences in response to or tolerability of medicines (Glue et al. 1999). 

It is not surprising then that knowledge of an individual’s CYP450 activity is becoming 

increasingly desirable in medical practice. While a genotype can be determined by arrays 

such as the AmpliChip (Roche Diagnostics, North America) or polymerase chain reaction 

(PCR) assays, from the examples above, it is clear that the genotype only accounts for a 
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fraction of the overall variation. Even in the absence of environmental influences, the 

genotype is inadequate in the majority of cases for predicting enzyme activity. As an 

example, CYP2D6 shows pronounced overlapping of genotype between IM and EM (Evans 

et al. 1991). For this reason, assessing the sum of genetic and environmental influences, 

or phenotyping, is the most accurate way to determine enzyme activity at the time of 

interest.  

1.5.2 ASSESSMENT OF CYP450 ACTIVITY 

As more is understood about drug metabolism in humans, there is increasing interest in 

assessing the role of CYP450 enzymes and how they are modulated. An individual’s 

phenotype at any given time is the sum of the effects of an individual’s genes and their 

environmental exposures (Section 1.4). Assessment of either influence alone is 

insufficient for accurate measurement.  

Phenotype can be assessed by three techniques:  

 Measuring mRNA or protein levels in liver biopsy for a specific CYP450 enzyme; 

 Exposing liver biopsy tissue to a probe drug; or 

 Administering a probe drug systemically and taking a blood or urine sample.  

The most common approach for assessment of CYP450 phenotype is the use of a probe 

drug whose clearance is dominated by the CYP450 enzyme of interest. This probe drug 

can be administered to a patient systemically (i.e. orally or intravenously), or can be 

exposed directly to liver tissue, obtained from a liver biopsy. While liver biopsies are 

considered the benchmark standard material for this assessment, the ethical and patient 

safety considerations of obtaining these samples are often insurmountable and systemic 

administration of probes in vivo have been shown to produce equivalent results (Tanaka 

et al. 2003).  

1.5.2.1 PROBES FOR CYP450 ACTIVITY 

The use of probe compounds to assess CYP450 enzyme activity began with non-specific 

probes such as antipyrine several decades ago (Breckenridge et al. 1973). Antipyrine is 

extensively metabolised by CYP450 enzymes and measuring its clearance following 

systemic administration is the benchmark as a general indicator of CYP450 mediated drug 

metabolism. However, it provides no specific information on individual CYP450 enzymes 
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(Breimer et al. 1990). As this area expanded, several rigorous in vivo pharmacokinetic 

studies found individual probe drugs for specific CYP450 enzymes, such as the clearance 

of caffeine as a means of assessment of the activity of CYP1A2 (Butler et al. 1992). 

While this provided huge advances to the understanding of the role of CYP450 enzymes, 

methods were cumbersome and inexact. Determining the clearance of a probe drug (area 

under the concentration time curve) (AUC(0-∞)), may be the most accurate way of 

determining an individual enzyme’s phenotype (Frank et al. 2007), but it is accompanied 

by several challenges, i.e. the activity of several enzymes other than the CYP450 under 

investigation contribute to clearance of the drug being measured. The rate of renal 

excretion may also be a factor which must remain constant for phenotype measurements 

to be comparable; this may be unachievable in all but the strictest of controlled 

environments, and all but impossible in the surgical patient.  

To avoid these complications, assessment of the partial clearance of the probe to its given 

CYP450 dependent metabolite can be performed. This approach requires multiple plasma 

samples and determination of recovery of the drug from the urine; both of which are time 

and cost intensive strategies, as well as uncomfortable for the test subject.  

Simplified metrics, such as those assessing the metabolic ratio of a probe drug to its 

metabolite at a certain time point, were developed to avoid these problems. Whereas the 

clearance of caffeine had been used to assess CYP1A2 activity, now the ratio of caffeine 

to paraxanthine (its primary metabolite) is used. This method was found to compare 

favourably with the more intensive strategies (Tucker et al. 1998), showing bimodal or 

trimodal distribution, reflecting the PM, IM and EM subgroups of enzyme activity (Frank 

et al. 2007). Moreover, this method is more economically and ethically viable (Frank et al. 

2007). 

Administering several individual probe compounds at the same time in a ‘cocktail’ was 

trialled to simplify and improve analysis, in an attempt to eliminate inter-day variation. 

The feasibility of cocktails was first shown in 1990 (Rogers et al. 2003), but, it was later 

found some of the probes affected the metabolism of other probes, invalidating the 

assessment. After considerable development, probe cocktails are now common place in 

drug research. Probes shown not to interact with other probes to provide good 

approximations of CYP450 activity are used (Fuhr et al. 2007).  

There are several desirable attributes for the ideal probe for CYP450 activity: 
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 The probe must have a known, quantifiable metabolic pathway that is principally 

or exclusively mediated by the CYP450 enzyme under investigation, so no 

interactions occur; 

 The action of the CYP450 enzyme in the clearance or metabolite formation being 

measured must be the rate limiting step. If other enzymes or processes (such as 

rate of excretion) are involved they must not be rate limiting; 

 If other processes, such as rate of excretion, are rate limiting they must remain 

constant for the assessment to remain valid; and 

 Probes for hepatic CYP450 enzymes should be completely metabolised by the liver 

and have a low hepatic extraction ratio (EH) in order to minimise influence of other 

factors, such as changes to hepatic blood flow or protein binding.  

This final point requires further expansion and can be explained by examination of the 

“well stirred” model of hepatic clearance. The well stirred model assumes that the liver is 

a single well stirred compartment and that unbound drug in the plasma is in equilibrium 

with unbound drug in the liver. Hepatic clearance (CLH) can therefore be described as 

Equation 1.5-2, where QH is hepatic blood flow, Clint is the intrinsic clearance of the drug 

and fu is the fraction of the drug unbound. 

    
         
          

 

Equation 1.5-2 Hepatic clearance and influence of hepatic blood flow 

Simplifying the model for low (EH<0.3) and high (EH>0.7), hepatic extraction ratio drugs 

will show which factors are the major influences of CLH. The hepatic extraction can be 

described as Equation 1.5-3. 

   
       

          
 
   
  

 

Equation 1.5-3 Hepatic clearance of drugs with high hepatic extraction ratios 

The liver is less efficient at clearing drugs with a low EH from the blood and therefore 

QH>>>fuCLint. As a result for these drugs the denominator can be simplified to QH. 

Applying this to allow further simplification of Equation 1.5-3 shows that for these drugs 

CLH ≈ fuCLint, revealing that CLH of drugs with a low EH depends on both fu and CLint. 

Accordingly, they should be minimally bound to plasma proteins to avoid complications 

from changes in volume of distribution, and be administered intravenously (Frye et al. 
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1997) in order to rely solely on the intrinsic metabolic activity of the responsible enzyme 

(De Vries et al. 1994). 

Other, more practical considerations, for the ideal probe include: 

 The probe must be safe and relatively pharmacologically benign at doses used; 

 The probe should be readily available commercially and registered as a 

therapeutic drug; 

 Analysis of the probe should be as simple as possible; 

 The probes should ideally show low intra-individual variability; 

 The time between administration of the probe and the taking of the sample 

should be short to minimise opportunities for introduction of sources of error (e.g. 

caffeine intake when caffeine is a probe) and inconvenience to patient and 

researcher; and 

 Pre-test restrictions should be minimal, i.e. fasting, abstaining from alcohol, 

caffeine or other dietary or lifestyle restrictions (Frye et al. 1997; Streetman et al. 

2000b; Zaigler et al. 2000; Frank et al. 2007). 

Several probes can be administered at the same time in a “cocktail”, offering several 

advantages, whilst also presenting their own set of challenges (Frye et al. 1997). When 

probes are given individually, there is often significant inter-day variability between 

samples due to a multitude of unquantifiable factors such as the influence of diet, 

exercise or the body’s circadian rhythms. The impact of this can be minimised by the 

administration of several probes at the same time, providing there is no interaction 

between them. An ideal cocktail is one that produces the same results as if each probe is 

administered separately (Frye et al. 1997). 

Components of a cocktail must not interact metabolically or clinically or cause analytical 

interference. Further validation is required to ensure that the accuracy of individual 

probes is not altered by the use of other probes in the cocktail and that independent 

phenotypic measures of the individual enzymes are still obtained (Berthou et al. 1995). 

The potential for these interactions can be minimised by keeping the doses as small as 

possible without compromising the assay detection limits. This also minimises any 

pharmacological activity. For example, chlorzoxazone, a probe for CYP2E1, was found to 

decrease the metabolism of caffeine, a probe for CYP1A2, by 20% when 500mg doses 

were given (Frye et al. 1997; Zhou et al. 2004), however, using a lower 250mg dose of 
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chlorzoxazone avoided this problem. Chlorzoxazone is metabolised by both CYP2E1 and 

CYP1A2, but CYP1A2 is only involved when CYP2E1 is saturated by higher doses (Frye et 

al. 1997). Other probes may induce the metabolism of another such as quinidine, a useful 

substrate of CYP2D6, but inducer of CYP3A4 (Zhou et al. 2004). 

Ideally sampling schedules should be kept as simple as possible and with multiple probes 

adjustment in the sampling time can be made without significant change in the accuracy 

of the exposure estimates (Campbell et al. 1987). Analytical interference can also be a 

problem as with the addition of each drug into the cocktail at least two additional 

compounds, the parent drug and the metabolite, will appear in the sample. Extraction 

and chromatographic modifications can overcome this. HPLC mass spectrometry based 

methods are about 100 times more sensitive and specific than HPLC-UV ones and provide 

lower limits of detection but the essential equipment is expensive and not often available 

in laboratories in a clinical setting (Guengerich 2006). 

It is important to note that many original studies in this area used non-human CYP450 

enzymes as an approximation of human enzymes. These enzymes are similar, but as an 

example, rat CYP1A2 are only 75% identical to human. For some substrates, rat and 

human 1A2 have nearly identical catalytic activity, whereas with others, human 1A2 has 

≥10 higher catalytic efficiency. There is also a greater variability in 1A2 levels in humans 

than rats. Many of these differences can be overcome by physiologically based 

pharmacokinetic modelling techniques that account for these differences (Guengerich 

2006). 

Probes are used in an attempt to gain knowledge about enzymes involved in drug 

metabolism so that the behaviour of other drugs can be predicted. The best probe drug 

for an individual CYP450 enzyme is metabolised exclusively by the CYP450 enzyme under 

investigation. Probes that have significant alternate pathways of metabolism (i.e. are 

metabolised by more than one CYP450 enzyme) may lead to erroneous conclusions 

(Swart et al. 2004).  

By understanding more about these processes there is the possibility of drug therapy 

being tailored to the individual patient’s metabolic parameters, so those who can tolerate 

a greater dose of a medicine get more and those who are predisposed to toxicity get a 

dose more appropriate to them.  
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The probes used to assess the activity of the four CYP450 enzymes relevant to this Thesis 

and justifications for their choice are discussed in the following section. 

1.5.3 PROBES USED IN THIS STUDY 

A summary of the CYP450 enzymes associated with Phase I paracetamol metabolism and 

their chosen probes are shown below in Table 1.5-2. Following this table is a review and 

evaluation of the enzyme probes for each enzyme. 

Table 1.5-2 Summary of CYP450 enzymes being assessed 

Enzyme Test Time Sample 

CYP1A2 Caffeine PO 100 mg  1 hour post dose Plasma 
CYP2D6 Dextromethorphan PO 30mg 4 hour post dose Plasma 
CYP2E1 Chlorzoxazone PO 250 mg  1 hour post dose Plasma 
CYP3A4 Midazolam IV 0.025mg/kg 4 hour post dose Plasma 

1.5.3.1 CYP1A2 

In addition to its role in the Phase I metabolism of paracetamol, CYP1A2 mediates the 

rate-limiting step in the metabolism of many other drugs including theophylline, 

clozapine, and tacrine, as well as in the bioactivation of procarcinogens (Simon et al. 

2001). CYP1A2 activity shows both pronounced intra- and interindividual variability. A 

major cause of this variability is related to smoking which causes enzyme induction. Other 

influences include drug intake and diet which can result in either induction or inhibition. 

In contrast to these exogenous factors, genetic influences on enzyme activity seem to be 

less pronounced. Therefore, phenotyping of CYP1A2, i.e. the determination of the actual 

activity of the enzyme in vivo, represents a useful approach both for scientific and clinical 

applications. CYP1A2 is almost exclusively expressed in the liver (Faber et al. 2005). 

1.5.3.1.1 CHOSEN PROBE- CAFFEINE 

Caffeine is the drug of choice for phenotyping CYP1A2 (Streetman et al. 2000a). It is 

relatively safe and possesses many favourable pharmacokinetic characteristics as a 

phenotyping probe. It is rapidly and completely absorbed from the gastrointestinal tract, 

distributed throughout the total body water, has low plasma binding, a short half-life, 

negligible first-pass metabolism, minimal renal elimination and first order elimination 

with almost entirely hepatic biotransformation (Fuhr et al. 1993; Kalow et al. 1993; 

Backman et al. 2008). Approximately 95% of caffeine’s systemic clearance is mediated by 

CYP1A2 (Kalow et al. 1993). The metabolism of caffeine is shown in Figure 1.5-3. 
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Caffeine (137X)

5-acetylamino-6-formylamino-3-methyluracil (AFMU)

5-acetyl-6-amino-3-methyluracil (AAMU)1-methylurate (1U)

1-methylxanthine (1X)

Unknown intermediate

Paraxanthine (17X)

CYP1A2

CYP1A2

CYP1A2 NAT2

XO Non-enzymatic

1,7-dimethylurate (17U)

CYP 2A6 and CYP 1A2

 
Figure 1.5-3 Predominant routes of caffeine metabolism 
(Streetman et al. 2000a) 

The caffeine metabolic ratio is also used as a marker for the assessment of liver 

dysfunction in patients with cirrhosis and is believed by some groups to be better than 

static determination of standard liver function tests (e.g. serum transaminases) (Jodynis-

Liebert et al. 2004). 

Plasma phenotyping compares the ratio of paraxanthine (17X, 1, 7-dimethylxanthine) 

with caffeine (1, 3, 7-trimethylxantine, 137X). This N-3 demethylation of caffeine accounts 

for up to 84% of the primary metabolism of caffeine at the doses used in vivo (Rost et al. 

1994; Frye et al. 1998b; Holland et al. 1998) and quantification of 137X partial clearance 

by 17X formation is the standard assessment of CYP1A2 activity if liver biopsy samples are 

not available (Kalow et al. 1993).  

The metabolite 17X is chosen for this purpose as only CYP1A2 is involved in its formation, 

whereas the formation of caffeine’s other metabolites involve CYP2E1 and CYP3A, in 

addition to CYP1A2. If these other metabolites are included, the involvement of these 

other enzymes compromises the accuracy of the assessment of CYP1A2 (Gu et al. 1992; 

Rost et al. 1994; Tassaneeyakul et al. 1994). Measuring the 137X/17X ratio has been 

shown to be more sensitive than a direct measurement of caffeine clearance (Jodynis-

Liebert et al. 2004) and these compounds are only found in plasma (Tanaka et al. 2003). 

1.5.3.1.2 SAMPLE TIME 

The metabolite 17X is both a product and a substrate of CYP1A2 and the goal of the 

17X/137X ratio is to measure 17X formation, or 17X as a product, not as a substrate. 



 

128 
 

Because of this, timing of sample collection is critically important since as time after the 

caffeine administration increases, 17X concentrations are more likely to reflect 17X 

degradation. 

1.5.3.1.3 DOSE OF CAFFEINE 

Most commonly used doses vary from 1-2mg/kg or 100-200mg (Kalow et al. 1993) 

because oral doses of >3mg/kg exhibit saturable pharmacokinetics and involve CYP2E1 

and CYP3A4 (Denaro et al. 1990). This results in poorer correlation with enzyme activity 

(Kalow et al. 1993; Tassaneeyakul et al. 1994). 

1.5.3.1.4 PHARMACOKINETIC PARAMETERS OF CAFFEINE 

In adults, caffeine has a Vd of 0.6L/kg, is 36% protein binding, has a half-life of five hours 

and Cmax between half and two hours following oral administration. It is excreted in the 

urine entirely as metabolised drug (Lacy et al. 2005).  

1.5.3.1.5 OTHER REPORTED PROBES OF CYP1A2 

Plasma samples are most often used for phenotyping CYP1A2, although urine and saliva 

sampling and a breath test have also been used (Fuhr et al. 1994).  

1.5.3.1.5.1 URINE SAMPLING 

Following plasma sampling, urine sampling is the next most cited method. While urine 

samples are far easier to obtain than plasma, this method for CYP1A2 assessment is 

fraught with technical difficulties: 

 Less than 2% of the caffeine dose is excreted unchanged so the ratio of caffeine to 

paraxanthine used for plasma assessment cannot be applied (Butler et al. 1992); 

 As a consequence, urine samples must be analysed for the ratio of four different 

metabolites in an eight hour urine collection (Georga et al. 2001); 

 The four metabolites being measured are amongst a total of 16 metabolites of 

caffeine found in urine. As a result, they are in low concentrations which may 

prevent direct analysis (Rostami-Hodjegan et al. 1996); 

 There are considerable structural similarities between the four metabolites, 

further hindering their analysis and extraction (Georga et al. 2001); 
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 The metabolites examined are either secondary or tertiary metabolites which are 

not exclusively formed by CYP1A2 (Fuhr et al. 1994) and as discussed above, this 

can impair the accuracy of the assessment of CYP1A2; 

 The validity of urine analysis relies on stable renal function and urine flow. 

Changes to renal function can invalidate the assessment because the four 

metabolites analysed are excreted in the urine very slowly, at rates much slower 

than glomerular filtration. Accordingly, the rate of excretion is the rate limiting 

step at which the metabolites appear in the urine, not their CYP1A2 mediated 

synthesis (Kalow et al. 1993). The problem arises because changes to renal 

function can affect the rate of excretion of each metabolite differently, and 

consequently this may alter their ratio in the urine, invalidating CYP1A2 

assessment; 

 Stable renal function and urine flow is difficult to achieve in healthy adults, given 

caffeine induces diuresis (Tang-Liu et al. 1982), and virtually impossible in major 

surgical patients who often have unstable renal function and hydration issues 

arising from surgery; and 

 Urine analysis is also more susceptible to influence by ethnicity and smoking, 

further contributing to poor correlation of the ratios (Fuhr et al. 1994; Tanaka et 

al. 2003).  

1.5.3.1.5.2 OTHER TESTS 

Saliva has been shown to correlate highly with systemic clearance and has been used for 

phenotyping CYP1A2. However some of the limitations of saliva testing are discussed in 

Section 1.2. 

Breath testing has also been used. Breath testing involves the administration of a precise 

dose of 13C-labeled caffeine and the measurement of the amount of 13C labelled carbon 

dioxide exhaled over two hours (Lambert et al. 1983; Lambert et al. 1986; Lambert et al. 

1990). This presents a number of challenges. While the first step in the process, the 

demethylation of the labelled 3-methyl group from caffeine is mediated by CYP1A2, there 

are a number of subsequent steps before the labelled carbon atom is exhaled from the 

lungs as carbon dioxide. All of these steps must remain non-rate-limiting for the 

assessment of CYP1A2 activity to be valid. This assessment also depends on respiratory 

quotient and therefore can be influenced by physical activity, smoking and diet (Lambert 

et al. 1983); none of these presumptions have been shown outside of healthy adults. 
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Additional barriers include sourcing the radio-labelled caffeine and accurately capturing a 

patients breath for two hours; both quite onerous tasks.  

Other, far more invasive tests measure CYP1A2 directly in liver biopsy samples. CYP1A2 

occurs in liver but not in blood cells. Hence assessment of its enzymatic presence using 

Western blot analysis or its formation by way of messenger ribonucleic acid (mRNA) 

determination is possible only by testing liver tissue, not by testing blood or other 

accessible tissue (Kalow et al. 1993). Accordingly these methods are unsuitable for 

frequent assessment of enzyme activity as is required in this Thesis.  

1.5.3.1.6 PROBLEMS WITH CAFFEINE AS A PROBE FOR CYP1A2 

Caffeine's main disadvantage as a probe for CYP1A2 is that it, along with other xanthines, 

is contained in many food and drinks. Intake of anything containing xanthine will interfere 

with the phenotyping (Rainska et al. 1992). This interference is more prominent in those 

who habitually drink coffee. It has been reported that habitual coffee drinkers are 

required to abstain for seven days before blood caffeine concentrations decline below the 

limit of detection, whereas for those who do not consume caffeine containing products, 

caffeine concentrations will fall to undetectable levels within three hours of a 500mg oral 

dose (Warren 1969). Because of the large amounts of caffeine consumed by humans it 

has also been found in ‘blank’ human plasma, which may interfere with preparation of 

control samples. Accordingly, some researchers advocate use of aqueous solutions of 

bovine albumin for control purposes to produce more accurate results than may be 

achieved with human plasma (Denaro et al. 1990).  

1.5.3.2 CYP2D6 

Aside from paracetamol, CYP2D6 is involved in the metabolism of about a quarter of all 

commonly prescribed medicines (Bertz et al. 1997) including anti-arrhythmics, 

antidepressants, neuroleptics, β-blockers and opioids (Lutz et al. 2004). It is often quoted 

for its large inter-individual and interethnic variation in activity and more than 80 allelic 

variants have been described (Zanger et al. 2004). These genetic polymorphisms can 

result in a 30 to 40 fold difference in the clearance of CYP2D6 substrates. Furthermore, 

this can cause extremes in drug concentration, both high and low, in the affected group 

of patients (Frank et al. 2007). This can lead to non-response in some and toxicity in 

others (Bertilsson et al. 2002; Kirchheiner et al. 2004) and no better example of this is 
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seen than in the response to codeine. Codeine is metabolised to morphine by CYP2D6 and 

it is this morphine that confers the majority of codeine’s analgesic activity. For the same 

dose of codeine, CYP2D6 poor metabolisers may receive no analgesic effect, whereas 

ultra-rapid metabolises may experience life-threatening opioid toxicity (Gasche et al. 

2004).  

CYP2D6 is mainly expressed in the liver but is also found in the lung and heart. CYP2D6 is 

stable over years. It is thought genetic determinants prevail over environmental factors in 

determining phenotype as CYP2D6 is not known to be affected by oral contraceptives or 

enzyme inducers such as rifampicin or ethanol(Bock et al. 1994). Neither gender, caffeine 

consumption, diabetes, menstrual cycle phase nor smoking have been shown to affect it 

(Matzke et al. 2000; Frank et al. 2007). However, there is some evidence CYP2D6 activity 

is modified by infection (Bertilsson et al. 2002), but not inflammation alone (Frye et al. 

2002). 

1.5.3.2.1 CHOSEN PROBE- DEXTROMETHORPHAN 

Dextromethorphan (DM) is probably the best probe drug for detecting CYP2D6 activity 

(Streetman et al. 2000a; Frank et al. 2007). DM metabolism is shown in Figure 1.5-4. 

Following absorption, DM is O and N-demethylated to dextrorphan (DX) and 3-

methoxymorphinan (3-MM). CYP2D6 mediated O-demethylation to DX accounts for more 

than 90% of DM metabolism and is the rate limiting step (Frank et al. 2007).  

3-Hydroxymorphinan (3-HM)

3-Methoxymorphinan (3-MM)

Dextromethorphan (DM)

Dextrorphan (DX)

CYP3A

N-demethylation
CYP2D6

O-demethylation

CYP2D6

O-demethylation

CYP3A

N-demethylation

 
Figure 1.5-4 Predominant routes of dextromethorphan metabolism 

1.5.3.2.2 SAMPLE TIME 

Oral clearance once again provides the best measure of CYP2D6 activity but this requires 

multiple samples over a long time to complete an AUC, which is expensive to perform and 

uncomfortable for the patient.  
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Single plasma samples can be used but the low analyte concentration requires very 

sensitive detection methods such as fluorescence detection or mass spectrometry. With 

these methods, correlations between the metabolic ratio in three or four hour post-dose 

plasma samples and oral clearance have been reported as high as r=0.74 (Hu et al. 1998; 

Chladek et al. 2000; Streetman et al. 2000b). 

1.5.3.2.3 DOSE OF DEXTROMETHORPHAN 

Doses of 20-30mg are most common with adverse effects associated with larger doses(Hu 

et al. 1998). Additionally, CYP2D6 becomes saturated at relatively low levels of substrate 

concentration, so doses are kept low to avoid the influence of other enzymes(Frank et al. 

2007). Streetman et al. conducted a dose finding study amongst 40 subjects for the 

purpose of phenotyping with doses ranging from 0.05-1.3mg/kg. They found inaccuracies 

in the results determined from the higher doses consistent with enzyme saturation. They 

concluded that 30mg could be used without concern for toxicity or the accuracy of the 

metabolic ratio to determine phenotype (Streetman et al. 1999). 

1.5.3.2.4 PHARMACOKINETIC PARAMETERS OF DEXTROMETHORPHAN 

DM undergoes rapid absorption with high bioavailability (Pender et al. 1991). Maximum 

concentrations are achieved in two hours. The elimination half-life of dextromethorphan 

is 2.5 hours and 4 hours for dextrorphan (Hollander et al. 1994). It is renally excreted 

mostly as demethylated metabolites (Pender et al. 1991). Absorption may be delayed by 

reductions to gastric emptying. 

1.5.3.2.5 OTHER REPORTED PROBES OF CYP2D6 

Saliva and urinary methods have also been used to probe for CYP2D6. The low analyte 

concentration in saliva makes the analysis difficult to perform and this method also lacks 

reproducibility (Hu et al. 1998; Frank et al. 2007). Poor correlations of saliva with 

established plasma and urinary measures also question the validity of this assessment 

technique.  

Urine collections ranging from 4 to 24 hours in duration have been used and in the 

literature most phenotyping studies involve an 8 hour urine collection, which does show 

good correlation with oral clearance (Evans et al. 1991; Schadel et al. 1995; Hu et al. 

1998; Kashuba et al. 1998b; Chen et al. 2003). However, there are some important 
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problems with urinary measures of the DM:DX ratio as a measure of CYP2D6 activity, 

which include: 

 Changes to urine pH causing up to a 20 fold variation in measured metabolite ratio 

(Kashuba et al. 1998a); 

 Excretion of dextrorphan being reduced in patients with impaired renal function 

(as mentioned in Section 1.3, the stress response temporarily impairs renal 

function in most surgical patients)(Kevorkian et al. 1996; Rostami-Hodjegan et al. 

1999); 

 Poor correlation with oral clearance (Borges et al. 2005) and; 

 Intra-individual coefficient of variation being reported as 37% on average 

(Kashuba et al. 1998a; Labbe et al. 2000).  

Debrisoquine and sparteine have also been used extensively and provide the most 

accurate result, but concerns about their availability and safety, limit their use (Streetman 

et al. 2000a). Tramadol has also been considered but requires further validation before it 

could be used and has safety concerns of its own. The metabolism of tramadol is also 

much more complicated than dextromethorphan. Metoprolol also provides a reliable 

result but the clinical effects of this drug limit its utility (Frank et al. 2007). 

1.5.3.2.6 PROBLEMS WITH DEXTROMETHORPHAN AS A PROBE FOR CYP2D6 

On repeated dosing accumulation may occur to a much greater extent in poor 

metabolisers (PM) than extensive metabolisers (EM) (Schadel et al. 1995). In studies using 

repeated doses where accumulation is an issue, saliva and serum samples may be more 

accurate. PM may also exhibit poor glucuronidation ability (Schadel et al. 1995). Due to 

the structural similarities, several opiates may interfere with the assay (Chen et al. 1990). 

Urinary pH may lead to a 20-fold variation in the measured 

dextromethorphan/dextrorphan metabolic ratio, however, correction factors have been 

developed that can adjust for changes in urinary pH (Ozdemir et al. 2004). Intra-individual 

variation in urinary dextromethorphan/dextrorphan metabolic ratios have been 

investigated (Kashuba et al. 1998a). This group found a coefficient of variation of 37% on 

average; however creatinine clearance and urinary pH were not taken into account which 

could improve these values.  
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DM and DX are present in very low concentrations in plasma and saliva samples. The 

compounds do not absorb UV light and therefore cannot be detected by conventional 

HPLC instruments with UV detection. The compounds do fluoresce so can be detected by 

a fluorescence detector in addition to mass spectrometry methods.  

1.5.3.3 CYP2E1 

The enzyme CYP2E1 is found mostly in the liver but also in several extra-hepatic tissues 

such as the kidney, lung and lymphocytes (Song et al. 1996; Lieber 1997). It exists on the 

plasma membrane when functionally active (Wu et al. 1992). It is involved in the 

metabolism of more than 70 endogenous and exogenous substrates including suspected 

carcinogens (Kharasch et al. 1993). Aside from paracertamol, the most important 

substrates are many inhaled anaesthetics, and ethanol (Song et al. 1996). There is no 

evidence of self-induction of CYP2E1 by paracetamol nor is there evidence of cumulative 

kinetics following prolonged use (Rumack 2002). While not a substrate, azole antifungals 

have been shown to induce CYP2E1. CYP2E1 is also involved in the metabolism of AA and 

has a minor role in gluconeogenesis (Song et al. 1996).  

The metabolites generated by CYP2E1 are often more toxic than the parent compound, 

commonly resulting in reactive free radical metabolites or oxidative species. These may 

cause DNA damage, generate protein adducts, cause lipid peroxidation, mobilise iron 

stores and may result in cytotoxicity (Song et al. 1996).  

There is considerable inter-individual variability in CYP2E1 activity. Many factors such as 

fasting, diabetes, obesity, hypophysectomy, alcohol, high fat diets and drug use influence 

CYP2E1 activity and this may contribute to the variability between individuals (Lieber 

1997). These were discussed in Section 1.4.  

Genetic factors may also be involved, as variations in the CYP2E1 gene have been 

described which are associated with altered enzyme activity or expression, although none 

of the polymorphisms described so far are useful for predicting an individual’s CYP2E1 

activity (Ernstgard et al. 2007). CYP2E1 also exhibits ethnic differences, having greater 

activity in Asians, particularly Taiwanese, compared with European and African Americans 

(Stephens et al. 1994). 
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1.5.3.3.1 CHOSEN PROBE- CHLORZOXAZONE 

Chlorzoxazone is the only CYP2E1 probe that has been widely studied (Desiraju et al. 

1983), is the only one currently available and has been proposed to be a nearly ideal 

probe (Ernstgard et al. 2007). Used clinically as a skeletal muscle relaxant for relief of 

painful musculoskeletal conditions, it is rapidly absorbed when given orally, attaining a 

peak at 38min ±3.3min after dosing (Frye et al. 1996; Ernstgard et al. 2004). The 

concentration then rapidly declines in a mono-exponential manner, suggesting rapid 

distribution and excretion. It is extensively metabolised and rapidly eliminated. Up to 90% 

of chlorzoxazone is oxidised by CYP2E1 to 6-hydroxychlorzoxazone which is then 

glucuronidated and excreted in the urine. Less than 1% of the drug is excreted into the 

urine unchanged with most (74 +/- 3.4%) of the dose excreted as the glucuronidated 

metabolite 6-hydroxychlorzoxazone (Desiraju et al. 1983). Such a high percentage 

indicates minimal influence of other elimination pathways. The 6-hydroxylation of 

chlorzoxazone provides a valid estimate of hepatic CYP2E1 activity and this can be found 

from a single point plasma ratio (Frye et al. 1996). The metabolism of chlorzoxazone was 

shown not to be affected by concurrent administration of paracetamol in a 

pharmacokinetic study (Ernstgard et al. 2004). 

1.5.3.3.2 SAMPLE TIME 

Plasma concentrations after 8 hours are generally undetectable indicating rapid 

elimination(Frye et al. 1996) although methods have been developed to detect 

chlorzoxazone as late as 10 hours after dosing (Desiraju et al. 1983). Two hours is 

considered to be ideal sampling time. High correlation between 2 and 4 hour metabolic 

ratios indicates 4 hours may also be acceptable but while ratios remain the same, the 

concentrations drop thereby increasing the influence of analytical errors. Two studies 

have found crushing the chlorzoxaone tablet improved absorption and similarly improved 

results (De Vries et al. 1994; Ernstgard et al. 2007). 

1.5.3.3.3 DOSE OF CHLORZOXAZONE 

As discussed in Section 1.5.2.1, chlorzoxazone has been found to affect the metabolism of 

caffeine when given at higher doses of 750mg, indicating its preferred enzyme, CYP2E1, 

had been saturated. In subjects with low body weight, 500mg is sufficient to saturate 

CYP2E1 (Frye et al. 1998a). This is avoided by using lower doses. However, it is suggested 
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that intra-individual variation reduces with increasing dose (Tanaka et al. 2003). In an 

attempt to find the ideal dose for phenotyping Frye et al. examined the effect of increase 

dose on kinetics. Their results of increases in the AUC and elimination half-life and 

reductions in the dose-normalised formation of 6OH-chlorzoxazone indicated saturation 

of CYP2E1 with higher doses and a non-linear disposition. They concluded that the use of 

a lower 250mg dose would avoid the complications associated with this non-linear 

elimination and its effect on phenotypic measures (Frye et al. 1998a). 

1.5.3.3.4 PHARMACOKINETIC PARAMETERS OF CHLORZOXAZONE 

Chlorzoxazone is rapidly absorbed following oral administration with a maximum 

concentration being achieved at 38min following a 750mg dose. It has a half-life of 66min 

and clearance 148 mL/min. 

1.5.3.3.5 OTHER REPORTED PROBES 

Measuring chlorzoxazone in other biological fluids has been examined. The solubility of 

the drug in the saliva and salivary glands is a crucial factor in the success of salivary 

monitoring. Chlorzoxazone is a relatively large and hydrophobic molecule and although 6-

hydroxychlorzoxazone is mostly glucuronidated or sulphated, the increase in size 

outweighs this increase in hydrophilicity. Because of these factors, the equilibration and 

equal partitioning of chlorzoxazone or 6-hydroxychlorzoxazone between plasma and 

saliva is not rapid enough to be clinically useful for monitoring (Ernstgard et al. 2007). 

Other methods to measure CYP2E1 activity in lymphocytes by the substrate p-nitrophenol 

or by flow cytometry, have also been investigated but were shown not to be as useful as 

chlorzoxazone metabolism (Ernstgard et al. 2007). 

1.5.3.3.6 PROBLEMS WITH CHLORZOXAZONE AS A PROBE FOR CYP2E1 

There may be a small contribution to chlorzoxazone metabolism by other CYP450 

enzymes. CYP1A has been shown to metabolise chlorzoxazone but it is of minor 

importance compared with human CYP2E1 in vivo (Desiraju et al. 1983).  

Chlorzoxazone metabolism may be affected by other confounders such as body weight. 

Ernstgard et al. in their review of chlorzoxazone use, showed that there was a significant 

correlation between metabolic ratio and body weight, lean body weight, body fat and 

body mass index (Ernstgard et al. 2004). Previous studies have also showed body weight 
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as a major contributor to inter-individual variability in the oral clearance of 

chlorzoxazone. The authors predict CYP2E1 activity is related to amount of body fat. In 

this paper, Ernstgard et al. postulated a connection between body fat, increased plasma 

insulin levels, increased fat catabolism, increased acetone and ketone body formation 

and, ultimately, increased CYP2E1. Ernstgard et al. also found no influence of moderate 

recent alcohol use, although alcoholics are known to metabolise chlorzoxazone five times 

more rapidly than healthy subjects. It is unclear if smoking impacts on CYP2E1 activity as 

it often accompanies alcohol use, although some induction in chlorzoxazone metabolism 

has been observed (Kroon 2007). 

No interfering peaks have been observed with the administration of midazolam and 

caffeine, as well as many other probes for other CYP450 enzymes. No interference was 

found in samples from several different patient population including patients with renal 

or hepatic disease, liver transplants or cancer (De Vries et al. 1994).  

In vivo 6-hydroxychlorzoxazone is rapidly glucuronidated following its formation and 

mainly exists as this conjugate in plasma and is entirely glucuronidated in urine. To 

accurately determine concentrations of 6-hydroxychlorzoxazone, samples must first 

undergo enzymatic hydrolysis to remove the glucuronide and expose the metabolite for 

detection (Lucas et al. 1993). Lucas showed approximately a threefold increase in the 

measured concentration of 6-hydroxychlorzoxazone after treatment with Helix pomatia 

juice. Treatment with β-glucuronidase showed yields 12% lower than with H. pomatia 

juice (Lucas et al. 1993). Unless exposed to enzyme hydrolysis, 6-hydroxychlorzoxazone in 

samples is below the limit of detection with some methods (Stiff et al. 1993). Incubation 

for 3 hours at 37°C is sufficient, with hydrolysis being complete after 2hrs of incubation. 

Longer incubations do not yield increased concentrations of 6OH-chlorzoxazone (Stiff et 

al. 1993). 

Chlorzoxazone is a low extraction ratio drug so clearance depends on metabolic activity 

and not hepatic blood flow (Guengerich 1999). Variation in absorption is thought to be 

one of the main contributors to inter-individual changes in metabolic ratio seen, with co-

efficient of variations commonly reported of 30-40% (Chen et al. 2002; Ernstgard et al. 

2004) and up to 52% in one study (Ernstgard et al. 2007). Accordingly changes to gastric 

emptying in surgical patients may have an impact.  
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1.5.3.4 CYP3A 

CYP3A is the most clinically significant group of enzymes in human drug metabolism, 

being responsible for the metabolism of 60% of all therapeutic drugs and accounting for 

up to a quarter of all CYP450 enzymes in the liver. It is the major metabolic enzyme 

present in the human intestine (Thummel et al. 1994; Thummel et al. 1996; Lin et al. 

2001; Chaobal et al. 2005; Chung et al. 2006). In adults, CYP3A4 and 3A5 are the two most 

important isoforms with CYP3A7 only being found in foetal liver (Lin et al. 2001; 

McDonnell et al. 2005). Of these, CYP3A4 is the major isoform. CYP3A5 is subject to 

polymorphic expression and is only found in 20-30% of adult human livers, but having 

greater expression in the small intestine and kidneys (Lin et al. 2001). CYP3A4 and 3A5 

metabolise many of the same drugs but have different substrate intrinsic clearance and 

regioselectivity (Lin et al. 2001). Variations in CYP3A5 expression have been shown to 

have no effect on midazolam clearance (He et al. 2005) suggesting that CYP3A4 is 

predominantly responsible for the metabolism of midazolam when administered 

parenterally. 

Wide inter-individual variations in rate and extent of intestinal and hepatic CYP3A activity 

are seen in humans (Lin et al. 2001). Studies have shown up to a 48 fold variation in 

weight normalised clearance values between individuals (Lin et al. 2001). The expression 

of CYP3A may be affected by environmental, hormonal or genetic influences, however, 

relatively little is known about these homeostatic influences in comparison with what is 

known about the effects of drugs and diet (Rogers et al. 2002).  

1.5.3.4.1 CHOSEN PROBE- MIDAZOLAM 

Midazolam is a widely accepted and validated phenotyping probe for CYP3A and is one of 

the preferred in vivo probes by the US Food and Drug Administration (FDA) (Food and 

Drug Adminstration 1999). It has many of the attributes of an ideal CYP3A probe: 

 Its short half-life allows for estimation of the area under the curve (AUC and other 

pharmacokinetic end-points) within a reasonable time period; 

 It is exclusively metabolised by CYP3A4 to a primary metabolite, 1’-

hydroxymidazolam when parenterally administered; 

 It is not a PGP/multidrug resistant-1 substrate, which itself is subject to inhibition 

and induction, thereby potentially confounding results (Thummel et al. 1996); 
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 As it is subject to hydroxylation by both intestinal and hepatic CYP3A, oral 

formulations can be used to assess both intestinal and hepatic CYP3A activity and 

parenteral formulations to assess only the hepatic component (Tanaka et al. 

2003); 

 It has a low hepatic extraction ratio and clearance that is largely hepatic blood 

flow independent (Thummel et al. 1994); and 

 Its clearance correlates with CYP3A activity in liver biopsies and the clearance of 

other known CYP3A substrates such as cyclosporine (Chen et al. 2006; Chung et al. 

2006). It also reflects changes expected on co-administration with CYP3A inducers 

and inhibitors and in patients with severe liver disease (Chung et al. 2006). 

1.5.3.4.2 SAMPLE TIME 

Total midazolam clearance is an established in-vivo probe to assess the activity of CYP3A, 

however, accurate quantitation of midazolam clearance after midazolam administration 

requires the collection of serial blood samples (Lin et al. 2001). This is time consuming 

and costly. Similar to the other CYP450 probes discussed the use of a single time point to 

predict the integral plasma midazolam exposure (i.e. AUC) and indirectly in-vivo CYP3A 

activity has been investigated (Thummel et al. 1994; Thummel et al. 1996). This study 

showed that the optimal time for getting the best correlation between a single time point 

and AUC is the harmonic mean of the mean residence time (MRT). The study of 224 

healthy volunteers found the MRT for IV midazolam was 3.5 ± 1.6h and 3.4 ± 1.5h for oral 

midazolam, concluding that four hours was the best sampling time as the absorption and 

distribution would be essentially complete. A strong correlation (r=0.80) was shown 

between the four hour midazolam concentration and the IV midazolam AUC. Similar 

correlations remained when the study participants were given known CYP3A inducers and 

inhibitors, showing the usefulness of midazolam in drug interaction studies as an accurate 

assessment of CYP3A activity in altered states. 

Other studies have assessed the use of the ratio of 1`-hydroxymidazolam 

metabolite/midazolam concentration ratio at 30 minutes and one hour post dose with 

predicted correlations ranging from r=0.43 to r=0.87 (Dundee et al. 1984). However, the 

study using the four hour midazolam concentration had a much larger cohort. The 

metabolite 1`-hydroxymidazolam also undergoes rapid, potentially variable 



 

140 
 

glucuronidation in the liver and may introduce a further source of unpredictability (Food 

and Drug Adminstration 1999). 

1.5.3.4.3 DOSE 

The pharmacological effects of midazolam are dose limiting, but also have to be balanced 

with assay detection limits. Doses range from 0.025mg/kg for MS detection methods and 

up to 7mg dose for UV detection. Used clinically for sedation with amnesia, the relief of 

status epilepticus and induction of anaesthesia, the dose for its use as a probe must avoid 

the potential sedation and respiratory rate depression. The experience of clinical effects 

seems to have no effect on the validity of the probe. Those with previous exposure to 

benzodiazepines or alcohol tend not to be as sensitive to the pharmacodynamic effects of 

the drug.  

1.5.3.4.4 PHARMACOKINETIC PARAMETERS OF MIDAZOLAM 

Midazolam has a Vd ranging from 0.8-2.5 L/kg, being increased in congestive heart failure 

and chronic renal failure (Lacy et al. 2005). It is extensively protein bound (95%) and has a 

half-life of elimination of one to four hours, being prolonged in cirrhosis, congestive heart 

failure, obesity and the elderly. It is excreted in the urine, mainly as glucuronide 

metabolites (Lacy et al. 2005).  

1.5.3.4.5 OTHER REPORTED PROBES 

Simvastatin has also been used as a probe for CYP3A and was listed as a preferred 

substrate for the study of CYP3A drug interactions by the FDA (Prueksaritanont et al. 

2003). Approximately 80% of the metabolism of simvastatin to its metabolite, simvastatin 

acid, occurs via CYP3A with the remaining 20% via CYP2C8 (Chung et al. 2006) making it a 

less ideal probe for CYP3A. It also requires a similar sampling profile to midazolam. 

Simvastatin also lacks studies validating it through liver biopsy and there are few 

randomised controlled studies comparing it with established probes such as midazolam. 

One recent study showed weak correlations of phenotypic values between the two 

substrates, with simvastatin having far wider variability (Chung et al. 2006). The authors 

concluded simvastatin was a less accurate measure of CYP3A activity than midazolam and 

this variability occurred because simvastatin was less specific for CYP3A than midazolam 

(Chung et al. 2006) perhaps due to the influence of CYP2C8, a polymorphic enzyme. 

Simvastatin showed a double peak on its concentration-time profile indicating it may also 
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be subject to entero-hepatic recycling, which would also further complicate its analysis 

(Chung et al. 2006). Compared with midazolam, simvastatin is a non-validated, 

suboptimal CYP3A probe and its use as a CYP3A probe in preference to midazolam cannot 

be justified (Swart et al. 2004). 

1.5.3.4.6 PROBLEMS WITH MIDAZOLAM AS A PROBE FOR CYP3A4 

Midazolam is a hypnosedative and this does limit its usefulness in some settings and in 

some populations, with mild to moderate sedation often being reported (Chung et al. 

2006). There are also some reports of difference in metabolism between sexes (Lin et al. 

2001). 

A history of alcohol abuse and age have also been shown as covariates (Swart et al. 2004). 

Alcoholic cirrhosis can lead to an increased half-life of midazolam due to an increased Vd 

which is explained by a reduction of plasma protein binding (Swart et al. 2004). Compared 

with the effect of alcohol, the contribution of age is small (Swart et al. 2004).  

Midazolam has an intermediate to high hepatic extraction ratio which makes its 

pharmacokinetics susceptible to changes in hepatic blood flow (Swart et al. 2004).  

Once blood samples have been taken, some midazolam is lost with long periods of 

storage. El Mahjoub et al. showed around 90% of the original concentration of midazolam 

was measured in whole blood after 1 year of storage at -80°C and approximately 80% if 

stored at -20°C for the same period. No midazolam was detectable if the same was kept 

at room temperature (El Mahjoub et al. 2000). 
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1.6 POPULATION STATISTICS 

As will be shortly discussed in Section 2.1, this study involved colorectal and breast cancer 

patients. The population statistics of these groups are outlined below. 

1.6.1 COLORECTAL CANCER 

1.6.1.1 PREVALENCE IN EUROPE AND IRELAND 

Colorectal cancers were the most commonly diagnosed cancer across the European Union 

(EU) in 2008, representing 13.6% of all cancers diagnosed. Ireland has one of the highest 

incidence rates of colorectal cancer in Europe with age standardised estimates for 2008 of 

66.9 per 100,000 for males and 42.9 for females. This compares with 54.9 and 35.9 for the 

UK, 54.8 and 36.4 for France and 27.4 and 17.1 for Greece (Ferlay et al. 2010).  

 
Figure 1.6-1 Newly diagnosed cases of colorectal cancer and percentage of all newly diagnosed cancers  
Number of newly diagnosed cases reported each year to the National Cancer Registry of Ireland (solid bar) and this 
number as a percentage of all cancers diagnosed in that year (dotted line). Source: (National Cancer Registry Ireland 
2010). 

Figures from the National Cancer Registry of Ireland list 2,271 newly diagnosed cases of 

colorectal cancers in 2009 (National Cancer Registry Ireland 2010). In Ireland this 

represents 7.6% of the total number of new cancers diagnosed in 2009, much lower than 

the 13.6% seen across the EU due to the even higher rates of other cancers in Ireland 

(National Cancer Registry Ireland 2010).  

The number of cases diagnosed with colorectal cancer in Ireland has increased by 

approximately 35% over the last fifteen years, which may reflect improvements in 

diagnosis, awareness and screening. The number of cases recorded by the National 

Cancer Registry of Ireland is shown in Figure 1.6-1 
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There have also been increases in the population of Ireland over this time which would 

have some impact, increasing the actual number diagnosed. Despite the increase in 

numbers diagnosed, the percentage of colorectal cancers of the total number of 

malignant cancers diagnosed in Ireland, also shown in Figure 1.6-1, has reduced over this 

time period.  

1.6.1.2 PATIENT CHARACTERISTICS 

Of the 2,271 newly diagnosed cases of colorectal cancer in Ireland in 2009, 1,342 

occurred in males and 929 in females (National Cancer Registry Ireland 2010). The actual 

number of cases of colorectal cancer diagnosed in 2008 collected by the National Cancer 

Registry of Ireland differs slightly from the estimates of Ferlay et al. given in section 

1.6.1.1. When the National Cancer Registry of Ireland rates were adjusted to meet the 

age of a theoretical European population, colorectal cancer diagnosis rates were 65.1 per 

100,000 males and 39.0 per 100,000 females. Both sets of age adjusted rates from Ferlay 

et al. (Ferlay et al. 2010) and the National Cancer Registry of Ireland (National Cancer 

Registry Ireland 2010) indicate that approximately two-thirds of those diagnosed with 

colorectal cancer are male. There are also important changes in rates of diagnosis in 

different age group. Data for age at time of diagnosis are shown in Figure 1.6-2.  

 
Figure 1.6-2 Age specific rates of newly diagnosed colorectal cancers in Ireland in 2009 
Data presented as cases per 100,000 of the population within that age group for each gender. Source: (National Cancer 
Registry Ireland 2010) 

This figure shows that colorectal cancer rates are highest in the 80-84 year old age group, 

with very few patients being diagnosed under 50 years of age. This has important 

ramifications for this Thesis in terms of the eligibility criteria for entry into the study, 

which, to paraphrase, required patients to be otherwise healthy aside from their 
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indication for surgery. It is to be expected the number of co-morbidities increase with age 

and this may lead to a greater rate of those who do not meet the entry criteria.  

1.6.1.1 DISEASE CHARACTERISTICS 

Locations of colorectal cancers newly diagnosed in Ireland in 2009 are displayed in Figure 

1.6-3. The National Cancer Registry of Ireland does not publish statistics that distinguish 

between locations of cancer in colon and, as a result, the majority of colorectal cancers 

are found within this region.  

Anus 2%

Colon 68%

Rectum 24%

Rectosigmoid 6%

 
Figure 1.6-3 Location of all newly diagnosed colorectal cancers in Ireland in 2009  
Data rounded to the nearest whole number. Source: (National Cancer Registry Ireland 2010) 

Locations of colorectal cancers also vary with age. These are displayed in Figure 1.6-4. 

 
Figure 1.6-4 Age specific location newly diagnosed colorectal cancers in Ireland in 2009 
Data presented as cases per 100,000 of the population within that age group for each location. Source: (National Cancer 
Registry Ireland 2010). 

Encompassing the largest area of the bowel, cancers of the colon make up the majority of 

diagnoses in all age groups, becoming increasingly prevalent in the later stages of life, 

peaking in the 80-84 year old age group. Rectal cancers are the second largest contributor 
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to colorectal cancer diagnoses, with relatively few rectosigmoid or anal cancers, however 

these represent a relatively exiguous anatomical area of the bowel.  

1.6.2 BREAST CANCER 

1.6.2.1 PREVALENCE IN EUROPE AND IRELAND 

Across the EU malignant breast cancer is the second most commonly diagnosed cancer in 

2008, representing 13.1% of all cancers diagnosed (Ferlay et al. 2010). In a recent report 

Ireland was listed as having the fourth highest incidence of breast cancer of 27 EU 

countries, with age standardised rates of 126.5 per 100,000 females. This compares to 

119.1 for the UK, 133.8 for France and 61.9 for Greece (Ferlay et al. 2010). There were 

2,766 newly diagnosed cases of malignant breast cancer reported to the National Cancer 

Registry of Ireland in 2009 which represented 9.3% of all malignant cancers diagnosed in 

that year (Figure 1.6-5). 

 
Figure 1.6-5 Newly diagnosed cases of breast cancer and percentage of all newly diagnosed cancers  
Number of newly diagnosed cases reported each year to the National Cancer Registry of Ireland (solid bar) and this 
number as a percentage of all cancers diagnosed in that year (dotted line). Source: (National Cancer Registry Ireland 
2010). 

Similar to colorectal cancer, the number of breast cancer cases diagnosed has steadily 

increased in the last fifteen years, although the increase in breast cancer cases has been 

more marked. There was a dramatic increase in 2008, when numbers of cases diagnosed 

increased by 12% on the previous year. This may reflect the effect of increased resources 

and national expansion of the national breast screening program “Breast Check” in 

Ireland, which commenced screening in December 2007. Unlike colorectal cancers, the 

percentage of breast cancers diagnoses of all malignant cancer diagnoses has increased 

from 8.0% in 1994 to 9.3% in 2009 (Figure 1.6-5). 
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1.6.2.2 PATIENT CHARACTERISTICS 

Of the 2766 newly diagnosed cases of breast cancer in Ireland in 2009, 2740 (99.1%) were 

female. When the Irish population statistics were adjusted to meet the age of a 

theoretical European population, the rate of malignancy of the breast being diagnosed 

was 125.23 per 100, 000 population for females and 1.17 per 100,000 males (Figure 

1.6-6).  

 
Figure 1.6-6 Age specific rates of newly diagnosed malignant breast cancers in Ireland in 2009 
Data presented as cases per 100,000 of the population within that age group for each gender. Source: (National Cancer 
Registry Ireland 2010) 
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2 METHODS 

2.1 PARACETAMOL METABOLISM STUDY 

This study was designed to detect changes to surgical patients’ paracetamol metabolism 

before and after surgery and determine the safety of higher doses of paracetamol. 

Following review of the literature discussed in this Thesis it was determined that the most 

effective way of establishing any changes and safety was through the review of: 

 Any changes to the kinetics of paracetamol, which would indicate a change in 

disposition (Section 2.2); 

 The detection of the stress response by reviewing the concentration of 

inflammatory cytokines known to affect drug metabolism (Section 2.3); 

 The measurement of αGST concentration, the most sensitive marker of early 

hepatotoxicity on the market (Section 2.4); and 

 The activity of CYP450 enzymes, the enzymes that contribute to paracetamol’s 

Phase 1 metabolism (Section 2.5); 

The methods for determining changes to paracetamol metabolism identified above 

required the collection of both blood and urine samples from patients and to determine 

the change caused by surgery, patient samples were required, prior to and following 

surgery. Accordingly, each patient recruited into this study was given paracetamol and 

had blood and urine samples taken on the evening before and for four days after their 

surgery (the protocol for which is described below).  

Drug metabolism is subject to a vast array of inter-individual differences arising from 

genetics and environmental influences. As discussed in Sections 1.3 and 1.4 these 

influences make the comparison between individuals very difficult because they are not 

applied to all individuals equally, nor are their drug metabolism’s affected to the same 

degree once an exposure to one of these influences has occurred. With this in mind this 

study compared preoperative to postoperative data from the same patient, using 

preoperative data as the control to reduce sources of variance. This allowed a more 

accurate assessment of the effect of surgery on drug metabolism. 
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2.1.1 THE PATIENTS 

Before the details of the study protocol are presented the justification for the patient 

groups is explained. 

The study began collecting patients scheduled for bowel resection into two groups: one 

group receiving high dose paracetamol (Group A) and the other receiving the licensed 

dose (Group B).  

Bowel resection patients were chosen because of: 

 Their need for good pain control postoperatively (to enable coughing, 

mobilisation etc.); 

 The effect on drug metabolism arising from the invasive and traumatic nature of 

their surgery, frequently involving manipulation of the gut and liver;  

 The malnourishment and prolonged perioperative fasting regularly seen in these 

individuals; and 

 Their prolonged hospital admission. 

Thus, these patients provided a “worst case scenario” for assessing changes to drug 

metabolism in surgical patients.  

Allocation to either group was done sequentially in groups of 10 patients. Doses were not 

randomised for four reasons: 

 This was a study primarily concerned with toxicity, not efficacy. A patient cannot 

have any influence on their own drug metabolism while in hospital;  

 Only one surgeon performed bowel resections at this hospital and he only worked 

with one anaesthetist. Following surgery all patients returned to the same ICU 

where they received the same level of nursing care;  

 Each patient provided their own control data from preoperative sampling; and 

 Randomisation would have necessitated frequent changes to dosing regimen, 

therefore conducting the study in blocks of patients eliminated the risk of dosing 

errors.  

This recruitment continued until half-way through Group B when reconfiguration of 

surgical services in the region in 2008 withdrew bowel resection surgery from this 

hospital (St John’s Hospital, Limerick (Hospital 1)).  
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The next most major surgery still carried out at Hospital 1 was mastectomy. To make the 

best of the situation they were chosen to give a comparator group (Group C) to bowel 

resection patients because: 

 They also have a need to good pain control postoperatively to allow restoration of 

function and reduce risk of chronic pain; and 

 Their surgery does not involve manipulation of the gut or liver, but is still 

considered intermediate in nature and can be of similar duration; and 

 Patients have short preoperative fasting and an early return to oral nutrition. 

However, it became clear that this patient group was unsuitable for this type of research 

primarily because they had poor IV access making the blood sampling detailed below 

difficult.  

It was decided to abandon this group and collect further bowel resection patients (Group 

D) in Mercy University Hospital, Cork (Hospital 2). This added a further 14 months to the 

research and presented significant challenges and some of these are detailed in the 

discussion. 

2.1.2 STUDY APPROVAL 

Ethics Committee approval was sought and gained from The Clinical Research Ethics 

Committee of the Cork Teaching Hospitals (Appendix 1 and 2). 

Clinical Trials approval was also sought and gained from the European Medicines Agency 

(EMEA) and the Irish Medicines Board (IMB) (Appendix 3). 

While application for ethics approval was straight forward, involving obtaining written 

approval from the host hospitals, application, provision of study protocols, presentation 

at meetings and answering of verbal and written questions, the application to the EMEA 

was significantly more laborious. This began with the application to apply for application 

for clinical trial approval, which was assessed on the investigators qualifications and 

experience. Once this was approved the application for clinical trial approval itself was 

nearly 100 pages in length which was completed online and then printed. The printed 

application was then submitted with key references and documents to the authority. This 

was followed by thorough inspection of every detail of the study by the EMEA and 
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resulted in further requested for information. Once these requirements were satisfied, 

approval was finally granted by the IMB as the agency with responsibility for Ireland.  

2.1.3 SAMPLE SIZE 

It was necessary to determine how many patients were required to enter the study to 

detect significant differences in paracetamol metabolism. The aspect of paracetamol 

metabolism of greatest interest was the difference between Phase II: Phase I paracetamol 

metabolite ratios before and after surgery. Generally, the number of participants required 

to detect significant differences is related to the size of that difference. Large differences 

can be detected with fewer participants whereas small differences need many more 

participants to detect them. A measure used to describe the size of this difference is 

called the ‘effect size’. The effect size can be used to determine sample size necessary to 

show a significant difference  

Changes to urinary metabolite ratio seen in previous work conducted by Kennedy in 1996 

were used in the effect size (d) calculation (Kennedy 1996). This was determined using 

Cohen’s d, as shown in Equation 2.1-1: 

 (               ) 
                                                                

                                                                          
 

Equation 2.1-1 Application of Cohen's equation for effect size 

The effect size (d) was shown to be 0.68. A power calculation was conducted which found 

that with and effect size of 0.68, 15 patients be required for 95% significance, which was 

consistent with previous work (Kennedy 1996). 

2.1.4 SAFETY 

At all times the safety and speedy recovery of the patient took priority over the conduct 

of the research study. The patients were informed at the time of consenting that they 

could withdraw at any time without hindrance to their subsequent medical care and this 

statement was also included in the consent form kept by the patient (Appendix 4). 

Low thresholds were set for derangement in liver function tests that were tested and 

reviewed twice daily. Any alterations resulted in withdrawal of trial doses and alterations 

to other analgesia were made to ensure continued comfort of the patient. 
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2.1.5 RECRUITMENT 

Prior to admission, all patients scheduled for elective surgery, who fulfilled the inclusion 

criteria, were identified to the Principal Investigator by the Admissions Co-ordinator 

(Hospital 1) or Surgeon’s Nurse Specialist (Hospital 2). A patient’s suitability for 

recruitment was ascertained by the Principal Investigator prior to consenting. This was 

done by checking previous laboratory values and medical notes to ensure the patient 

fulfilled all the inclusion criteria, but none of the exclusion criteria, as defined below. For 

all suitable patients, this information was presented to the anaesthetist supervising the 

research for their review and, if they agreed, the patient was eligible for admission into 

the study. 

2.1.5.1 INCLUSION CRITERIA 

All patients were eligible for inclusion into the study if they were admitted for any of the 

following procedures:  

 Bowel resection for non-malignant indication (e.g. Crohn’s disease, diverticulitis); 

 Bowel resection for malignancy of the gastro intestinal tract; or 

 Mastectomy (with or without axillary node clearance) for malignant indication, 

and fulfilled all of the following criteria, which were assessed at preadmission: 

 Normal liver and renal function; 

 Fitness to consent (age over 18); and 

 Medical fitness for inclusion as determined by physician. 

2.1.5.2 EXCLUSION CRITERIA 

Any patient fulfilling any of the criteria below was excluded from the study:  

 Type 1 diabetes; 

 Alcoholism (the daily consumption of >2 standard drinks in the previous week was 

used as a screening tool as definitions of alcoholism vary (Tonnesen et al. 1999)); 

 Deranged liver function greater than the upper limit of normal (INR, ALT, AST); 

 Deranged renal function (SCr>110umol/L); 

 Intolerance to oral medication; 

 Pregnancy; 
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 Vomiting; 

 Porphyria; 

 Hypersensitivity to any of the investigational medical products; 

 The use of any of the following medicines in the week before surgery: 

o Paracetamol, carbamazepine, hydantoin, imantinib, isoniazid, rifampicin, 

barbiturate; or 

 Those who, in the opinion of a physician, were too frail to be included in the study. 

2.1.6 ADMISSION INTO THE STUDY 

Patients who were suitable for inclusion into the study were admitted to the ward at least 

the evening prior to surgery. Patients were visited by the Principal Investigator and the 

nature of the study was explained to them before they were invited to participate. 

Patients were informed that complete abstention from caffeine containing foods or 

drinks was required during the study. The consent form was left with the patient and the 

Principal Investigator left the patient to review the information and discuss the study with 

relatives. The anaesthetist supervisor then visited the patient to answer any further 

questions and to consider their fitness to participate and to consent their participation in 

the study. If the patient fulfilled all the inclusion criteria but none of the exclusion criteria, 

the patient either accepted or declined the invitation to enrol in the study. 

If the patient agreed to participate in the study the consent form was signed by the 

patient, the anaesthetist supervising the research and the Principal Investigator 

(Appendix 4). A copy was given back to the patient for their record. At the time of 

consenting, the patient was asked to empty their bladder, and this urine was discarded. 

2.1.7 PRE-OPERATIVE PHASE OF THE STUDY- CYP450 ACTIVITY AND PARACETAMOL 

KINETICS 

2.1.7.1 CANNULATION AND FIRST BLOOD SAMPLE 

A 14 or 16G peripheral line (In-syte® Becton Dickinson, Madrid, Spain) was inserted into a 

forearm vein of the patient and flushed with 10mL normal saline (B Braun, Dublin, 

Ireland). One 3.5mL blood sample was then drawn off from the cannula, (being the dead 

space + 2mL) using a 5mL syringe and discarded to ensure reliability of the sample (Prue-

Owens 2006). A further 6mL of blood was immediately taken using a 10mL syringe which 
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was then transferred to two 2.7mL EDTA blood collection tubes (monovette® Sarstedt, 

Nümbrecht Germany). This transfer was done without delay to minimise clotting in the 

syringe and subsequent haemolysis. The blood collection tubes were labelled with the 

patient number, day of the study, time of the sample and initials of person who took the 

sample. 

Patency and aseptic sampling technique was maintained according to in-house standard 

operating procedures of each participating hospitals. 

2.1.7.2 DRUG ADMINISTRATION 

Relevant background information to the 4 drugs accompanying paracetamol which were 

administered as part of this study is detailed in Section 1.5. 

Two doses of paracetamol were used in the study and their allocation is shown in Table 

2.1-1.  

Table 2.1-1 Paracetamol dosing for each group 

Group Paracetamol Dose 

 Preoperative Intraoperative Posoperative 
A 1.5g single dose 2g single dose 1.5g every four hours 
B, C and D 1g single dose 2g single dose 1g every six hours 

As soon as the peripheral line was inserted a standard giving set was primed with the IV 

paracetamol (Perfalgan, 1g/100mL, Bristol-Myers-Squibb, Dublin, Ireland). The giving set 

was connected to the patient’s peripheral line and the infusion started at a rate to give 

the dose over 15min. Due to the poor availability of infusion pumps on the ward for 

Group A, a drop rate of 30drops/10secs was used to approximate the required flow rate 

of 10mL/min. The time was noted at the beginning and end of the infusion and recorded 

on the individualised patient data collection form (Appendix 6). 

Caffeine 100mg/2mL (Martindale Pharmaceuticals, Romford, UK) in a 5mL syringe and 

midazolam 1mg/0.5mL (Hypnovel, Roche, Basel, Switzerland) in a 2mL syringe were 

administered via the additive port on the giving set while the paracetamol infusion was 

running. Dextromethorphan 30mg/20mL (Benylin Non Drowsy, Pfizer, Dublin, Ireland) 

and Chlorzoxazone 250mg (Paraflex, AstraZeneca, Södertälje, Sweden) were given by 

mouth followed by 25mL of water. All five medicines were given as close together as 

possible, i.e. within 1-2 minutes, so that their administration times were considered the 
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same. After the fifth patient of Group A, the IV caffeine became unavailable and two 

50mg caffeine tablets were used in its place (ProPlus, Bayer, Berkshire, UK).  

For those patients scheduled to receive 1.5g of paracetamol (as detailed in Table 2.1-1), 

the infusion pump was first set to administer 150mL. Once the first vial of paracetamol 

had been given it was removed from the giving set and the second was attached. In those 

few doses administered without infusion pumps, once the second vial had run to 5mm 

below the label of the vial the additional 500mg was deemed to have been given (this 

level was determined by removing the entire contents of a previous vial and replacing 

50mL) and the infusion was stopped. The giving set was detached from the peripheral 

line, the port on the line was cleaned using an alcohol wipe and the line flushed with 

10mL normal saline. Heparinised saline 10 IU/mL (5mL) (Hepsal CP Pharmaceuticals, 

Wrexham, UK) was used in those patients thought to have poor venous access by the 

anaesthetist. The anaesthetist remained in contact with the patients and the researcher 

for 15-30min until the effect of the midazolam was known. 

2.1.7.3 SUBSEQUENT BLOOD SAMPLES 

A second blood sample was taken fifteen minutes after the paracetamol infusion. A 

tourniquet was placed proximally to the peripheral line, the port was cleaned and 3.5mL 

of blood was collected using a 5mL syringe and discarded. A further 5.4mL was collected 

into two EDTA blood collection tubes either using a Sarstedt multi-adapter system 

(Sarstedt, Nümbrecht, Germany) or a 10mL syringe decanted into the EDTA tubes. A 

syringe was used in those with poor access to reduce the risk of the vein collapsing by 

using less suction in the vein. The tourniquet was removed and the time of the collection 

was noted. The port was cleaned and the line was flushed with 10mL saline or 

heparinised saline as described above. Further samples were collected as shown in Table 

2.1-2. The additional CYP450 analysis to be conducted on the 4 hour sample required a 

further 5.4mL of blood collected at this time point. 

Table 2.1-2 Daily sampling times (minutes after administration of monitored dose) and volume of blood needed at 
each sample (mL) 

 Day -1 Day 1 Day 2 Day 3 Day 4 Blood Volume (mL) 

Sa
m

p
le

 t
im

e 
(m

in
) 

0 0 0 0 0 5.4 
15 15    5.4 
30 30    5.4 
60 60 60 60 60 5.4 
90 90    5.4 

240 240 240 240 240 10.8 
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2.1.8 URINE SAMPLES 

As patients were not catheterised pre-operatively, they were asked to collect the entire 

volume of their urine in four hourly aliquots. The importance of collecting the entire 

volume was stressed to patients. To make this as easy as possible, urine collection 

containers labelled with the times of collection interval were placed in all toilets 

accessible to the patient. Patients unable to collect their urine directly into the collection 

container were offered a disposable bed pan from which urine was decanted into the 

collection container. Patients using bed pans were asked not to pass faeces into the same 

container or put toilet paper into the container, however this was unavoidable for some 

patients. In those cases where faecal matter was present, the urine was still collected into 

a separate container and the volume recorded. If samples were heavily contaminated 

with faeces the urine volume was approximated and were discarded as the possibility of 

contamination arising from biliary excretion of drugs could not be excluded.  

It was important the urine collection coincided with the dosing of the study medicines. To 

facilitate this the first postoperative urine collection was ‘rounded up’ to the nearest 

required interval and recorded as pre-operation until that time, even though it may have 

been longer than four hours.  

2.1.9 POSTOPERATIVE PHASE OF STUDY 

2.1.9.1 DAY OF SURGERY (DAY 0) 

2.1.9.1.1 INTRAOPERATIVELY 

The following was performed for all study participants during the intraoperative period: 

 IV paracetamol 2g was administered intraoperatively (Table 2.1-1); 

 Record of the following was taken: 

o Blood/fluid (Appendix 7); 

o Anaesthetics administered (Appendix 8); and 

o The operation performed, its duration, any liver manipulation that took 

place and any associated events or complications (Appendix 8). 

2.1.9.1.2 POSTOPERATIVELY 

The following was performed for all study participants on their return from theatre: 
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 IV paracetamol was administered according to Table 2.1-1; 

 Fluid balance was recorded; 

 Pain scores were recorded every hour 

 Alternative analgesic usage was recorded; and 

 Pharmacodynamic tests (Table 2.1-3) were performed 

In addition, urine was collected every 4 hours. All patients returned from theatre with 

urinary catheters in situ. While catheterised, all urine was collected from the catheter bag 

at four hourly intervals and then processed as described in Section 2.1.10.2 

No blood samples were taken for the study on the day of surgery. This was for several 

reasons: 

 Pharmacokinetics could not be accurately predicted from samples obtained on 

this day. Pharmacokinetic equations exist in either single dose or steady state 

form. On this day paracetamol concentrations would not have reached steady 

state, but would have been above those from a single dose. Typically, five drug 

half-lives must pass before steady state can be assumed. 

 Patients who lost large volumes of blood intra-operatively would not have been fit 

for further blood sampling 

 The timing of a patients return to theatre could not be predicted and would have 

led to inconsistencies between patients. 

2.1.9.2 DAYS 1-4 POST OPERATIVELY 

For any enrolled patient not fulfilling any of the attrition criteria (Section 2.1.9.3), the 

study continued for four postoperative days. This length was the maximum period it was 

considered IV paracetamol use could be justified in clinical practice, given the known 

problems with postoperative oral absorption. Four postoperative days was also the 

minimum duration of inpatient stay following major bowel surgery.  

The following was performed for all study participants during the postoperative period on 

days 1–4 inclusively: 

 IV paracetamol was administered at regular intervals throughout the day 

according to Table 2.1-1; 



 

157 
 

 Plasma samples were drawn usually from the 10pm dose each day according to 

Table 2.1-2; 

 Chlorzoxazone 250mg, caffeine 100mg, dextromethorphan 30mg and midazolam 

1mg were co-administered with the monitored 10pm paracetamol dose; 

 All urine was collected every 4 hours, the total volume was measured and 

recorded and two x 25mL aliquots were taken; 

 Fluid balance was recorded; 

 Pain scores were recorded every hour. Daily best, worst and average pain in last 

24hrs, pain now were also recorded; 

 Alternative analgesic usage was recorded; and 

 Pharmacodynamic tests (Table 2.1-3) were performed and checked daily. 

After surgery patients in Groups A, B and D may have had a central line inserted into the 

vena cava through the jugular vein. When this was present it was used for both drug 

administration and blood sampling. To avoid contamination of the blood samples, 

arrangements were made with the nursing staff that paracetamol was only given through 

the distal line and blood samples were taken from the proximal line. Alternatively, if a 

peripheral line was still available, the paracetamol was given through that line. When 

taking samples from the central line, all fluids running through it were stopped and their 

lines clamped as per local hospital protocols. The allocated port was cleaned and 4 mL of 

blood withdrawn and discarded. The required sample was then taken, the port cleaned 

and the line flushed with 10mL of normal saline using pulsatile flushes of 2mL pushes. In 

patients without a central line, the sampling technique was the same as on day 0, with 

contra-lateral lines being used for paracetamol administration and blood sampling where 

available. Again, all fluids were stopped and lines clamped during blood sampling. Urine 

collection continued as on day 0 until at least 8 hours after the last dose of 

dextromethorphan on day 4. 

Any other non-paracetamol containing analgesia that was administered to the study 

patients was recorded as per protocol. 

2.1.9.3 ATTRITION CRITERIA 

During the course of the study, Patients were removed immediately if they fulfilled any of 

the following criteria: 
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 An AST or ALT level three times above the upper limit of normal; 

 Any other sign of paracetamol toxicity or allergy (e.g. thrombocytopaenia); 

 Loss of fitness for inclusion as determined by a physician; 

 Loss of venous access as to prevent timely blood sampling without excessive 

discomfort to the patient; or 

 The patient withdrew their consent (Section 2.1.13.2) 

Any patient who fulfilled any of the attrition criteria did not receive further investigational 

doses of paracetamol, however, they were monitored for the original proposed study 

period and their data were included in the final analysis.  

2.1.10 PROCESSING OF SAMPLES  

2.1.10.1 PLASMA  

Within one hour of collection, plasma samples were taken to the laboratory centrifuge 

and spun at 3000g for 10min. The plasma layer was then pipetted off using a 3mL pasture 

pipette into labelled 1.25mL plastic screw top collection tubes (Sarstedt, Nümbrecht 

Germany). The labels contained the patient number, day of study, sample number, time 

of collection and the initials of the person who took the sample. These plasma samples 

were frozen in lots according to the sampling day at -20C until the patient had 

completed the study, when the samples were transferred to a -80C freezer in the School 

of Pharmacy, University College Cork. 

2.1.10.2 URINE 

The total volume of urine excreted within each four hour time period was measured using 

a 1L cylindrical flask and recorded (Appendix 6). Two 25mL samples were taken, labelled 

with the total volume, sample period, day of the study and patient number and frozen 

along with the preceding days plasma at -20C until the patient had completed the study, 

when the samples were transferred to a -80C freezer in the School of Pharmacy, 

University College Cork.  
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2.1.11 OTHER SAMPLING- PHARMACODYNAMIC INFORMATION  

The following tests were conducted primarily to ensure the safety of the study participant 

but to also provide information regarding the onset time of any hepatotoxicity that 

occurred while it was still subclinical (Table 2.1-3). 

To monitor safety during the study, LFT’s AST, ALT, INR and bilirubin were done daily 

during the treatment phase. Monitoring continued on alternate days for the rest of the 

admission. The daily t=0hr plasma sample was used for αGST and IL-1 and IL-6 levels. 

Once daily testing of these substances were chosen due to the cost of the sampling kits 

and on advice from the manufacturer of the kits (Shaw 2009). 

Table 2.1-3 Pharmacodynamic testing 

Test Frequency Rationale 

GST Daily An intracellular protein found in hepatocytes in all 
regions of the liver lobule. Specific marker for the 
detection of early (yet subclinical) hepatotoxicity 

ALT + AST Daily Marker of hepatocyte damage, released rapidly, 
peaks early and returns to normal quickly because of 
its short half-life once the injury has ceased 

INR Daily Marker of more substantial hepatocyte damage 
Serum creatinine Daily Marker of renal function which may impact on the 

clearance of paracetamol and its metabolites 
Interleukin-6 (IL-6) Daily Correlates with inflammation and CYP450 activity 

2.1.12 DEMOGRAPHIC AND CLINICAL DATA 

The following information was also collected from the patient or their medical notes 

(Appendix 9): 

 Nutrition status: 

o Height, weight at time of admission for calcuation of BMI; 

o Previous week’s meal plan; 

o Any recent weight loss; 

o Any recent periods of fasting or malnutrition; 

 Review of Systems: 

o Note any co-morbidities, ASA status; 

o Pain scores (VNRS) ‘best’, ‘worst’, ‘average pain in last 24hrs’ and ‘pain 

now’ scores were recorded daily; 

 Other clinical data: 
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o Primary diagnosis; 

o Any concomitant disease; 

o Drug history and any regular medication; 

o Smoking history; and 

o Preoperative laboratory investigations (serum sodium, potassium, 

urea, and creatinine, alkaline phosphatase, bilirubin (total), bilirubin 

(conjugated) and alanine aminotransferase (ALT). 

2.1.13 ADVERSE EVENT REPORTING AND HANDLING WITHDRAWALS 

2.1.13.1  ADVERSE EVENTS 

Adverse events were classified as either an ‘adverse event’ or a ‘serious adverse event’. 

Any patient fulfilling either adverse or serious adverse event criteria did not receive any 

further paracetamol doses and alteration to other analgesia was made to ensure 

continuing comfort of the patient. 

Additionally, all patient reported adverse events were noted. 

2.1.13.1.1 ADVERSE EVENT 

 ALT or AST measurements greater than five times the upper limit of normal, or  

 Any other event that causes morbidity that was thought to be related to the 

study. 

Adverse events were not reported until after consultation with the anaesthetist 

supervising the research and further confirmation, by subsequent analysis of paracetamol 

concentrations and other markers of hepatotoxicity, that the adverse event was a result 

of the patient’s participation in the study. Reporting was delayed due to the possibility of 

other factors causing alteration to liver function associated with surgery but not related 

to paracetamol administration.  

2.1.13.1.2  SERIOUS ADVERSE EVENT 

 ALT or AST measurements greater than ten times the upper limit of normal;  

 INR>2; or 

 Any other event that is life threatening or fatal thought to be related to the study. 
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Serious adverse events were reported immediately after consultation with the Consultant 

directly involved in this research project. 

2.1.13.1.3  REPORTING OF EVENTS 

If an event occurred it was to be reported to the Irish Medicines Board and host hospital 

on the adverse event reporting form on the Irish Medicines Board website: 

www.imb.ie/EN/SafetyQuality/OnlineForms/ClinicalTrial-SeriousAdverseEvent.aspx 

2.1.13.2 WITHDRAWALS 

Patients were informed at the time of consenting that they would be withdrawn from the 

study at any time if they fulfil any of the attrition criteria or if they chose to, for any 

reason, or for no reason at all. Their data were handled as described in Section 2.1.9.3 
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2.2 PARACETAMOL AND METABOLITE ASSAY 

Paracetamol is a weak organic acid with a pKa of 9.5 (Prescott et al. 1971). It is well 

known for its poor aqueous solubility, being moderately soluble in hot water, aqueous 

alkaline solutions and polar organic solvents such as methanol and acetone. Because of its 

small distribution volume and administration in gram doses, the concentration in 

biological fluid of paracetamol, along with its Phase II metabolites, are high, and remain in 

the mg/L range for several hours following a therapeutic dose (Rawlins et al. 1977). 

Along with its metabolites, paracetamol has been analysed by almost every analytical 

technique and the compounds present few detection problems individually. Common 

methods used include enzyme linked immunoassay, spectrophotometry and thin layer, 

gas and high performance liquid chromatography (TLC, GC and HPLC). Because of the 

complex nature of plasma and urine, some form of chromatographic separation or 

solvent extraction is necessary to minimise interference by other drugs and endogenous 

compounds.  

HPLC with octadecylsilica as a means of separation was first reported in the late 1970’s 

(Knox et al. 1977; Knox et al. 1978). Today HPLC is the most cited method in the literature 

for separating mixtures of analgesic drugs and related compounds (Kazakevich et al. 

2007). HPLC also meets the rigorous requirements for precision, specificity and sensitivity 

required by medical regulatory authorities (Moffat et al. 2011). While HPLC is useful in 

research and industrial environments for determining paracetamol concentrations, it is 

less useful in clinical environments where fast results are necessary for therapeutic 

decision. Here spectrophotometric and immunoassays are more common. However, 

these techniques often require costly, highly specialised instruments and do not allow for 

the simultaneous analysis of compounds, making them unsuitable for the analysis in this 

Thesis (Bosch et al. 2006).  

The HPLC methods for analysis of paracetamol and its metabolites have recently been 

extensively reviewed (Bosch et al. 2006; Kaushik et al. 2006). HPLC of paracetamol has 

historically always utilised a gradient method to enable simultaneous analysis of 

paracetamol and its metabolites in a reasonable time frame. Typically a phosphate or 

acetate buffer is used in the mobile phase along with a weak organic solvent such as 

methanol, iso-propanol or acetonitrile. Solvent extraction is rarely performed, but when 

done commonly utilises ethyl-acetate. In plasma samples, perchloric acid (PCA) and 
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acetonitrile are the most frequently used for protein removal. Urine samples are often 

diluted with mobile phase or water up to 50 fold. Internal standards are normally not 

used, but when they are, theophylline, phenacetin and 3-hydroxyacetanilide are among 

the most common. 

2.2.1 MATERIALS 

Paracetamol, potassium phosphate, perchloric acid and formic acid were purchased from 

Sigma (St. Louis, Missouri, United States of America (USA)). Paracetamol glucuronide, 

sulphate, cysteine and mercapturate and paraxanthine were purchased from Toronto 

Research Chemicals (Ontario, Canada). HPLC grade acetonitrile and water were purchased 

from Fisher Scientific (Leicestershire, UK). All other chemicals were of analytical grade or 

higher. The mobile phases were filtered through HA filters (0.45μm Millipore, Bedford, 

Massachusetts, USA) before use. 

Polypropylene 1.5mL Eppendorf tubes (Sarstedt, Nümbrecht, Germany) and 100µL low 

volume inserts (Fisher Scientific, Dublin, Ireland) were used to prevent loss of polar 

compounds due to adsorption onto the un-silanised glassware available.  

Drug free plasma was obtained from the Irish Blood Transfusion Service (St. Finbarr’s 

Hospital, Cork, Ireland) and drug-free urine was obtained in-house. 

2.2.2 APARATUS 

The HPLC separation was performed using a Waters® 2695 Alliance HPLC system, 

equipped with a Waters® 2996 Photodiode Array (PDA) Detector and column oven 

(Waters Corporation, Milford, USA). Chromatograms were captured and processed using 

Empower Pro interface (Empower 2, Waters Corp., Milford, USA). 

Weights of analytical compounds under 5mg were measured using a MX5 Microbalance 

(Mettler-Toledo Inc., Ohio, USA) while larger weights were measured using an Adventurer 

Pro AS-214 balance (Ohaus, Nänikon, Switzerland). Centrifugation was undertaken in a 

Mikro 120 centrifuge (Hettich, Tuttlingen, Germany). Vortex mixing utilised a Lab Dancer 

S42 at a fixed speed of 2800RPM (VWR, Pennsylvania, USA) 
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2.2.3 METHODS- PLASMA 

2.2.3.1 CHROMATOGRAPHIC METHOD DEVELOPMENT 

Initial attempts at analysing paracetamol and its metabolites were based on the method 

reported by Al-Obaidy et al. (Al-Obaidy et al. 1995), using 20mM orthophosphoric acid 

and acetonitrile (4:96, v/v adjusted to pH3.5). However, the Phenomenex Synergi 4m 

Hydro-RP 250x4.6mm column with a Phenomenex SecurityGuard precolumn 

(Phenomenex, Cheshire, UK) available for this research was not suitable for this method 

as it had a much smaller internal diameter and accordingly, the run times were too long. 

After a further review of the literature, the method used by Reith et al. (Reith et al. 2009) 

was selected as the column was similar to the one available for this research. The column 

was heated to 30°C to both reduce the impact of any fluctuation in temperature in the 

laboratory and improve chromatographic peak shape (Yan et al. 2000).  

Chromatography was optimised with alterations to the composition of the mobile phases, 

their gradient and flow rate. The final conditions eluted the compounds of interest with a 

gradient mobile phase consisting of 0.1M KH2PO4 + 1%v/v formic acid (A) and acetonitrile 

+ 1%v/v formic acid (B). The gradient had initial conditions of 95:5 (A:B) for the first 2.5 

minutes, which was then reduced to 91:9 by 10 minutes, and decreased linearly to 77:33 

by 20 minutes which was then maintained until 21 minutes. Re-equilibration to initial 

conditions followed for 4 minutes before injection of the next sample. The flow rate 

remained constant at 1.0mL/min.  

These mobile phase ratios resulted from the adaptation of the method of Reith et al. 

(Reith et al. 2009), who used two mobile phases containing all three elements: KH2PO4, 

formic acid and acetonitrile in different ratios. The method used in this study split the 

mobile phases into the aqueous and organic components. This allowed for greater 

flexibility during method development, taking advantage of the Waters® 2695’s 

quaternary pump. However, KH2PO4 is not generally considered compatible with 

acetonitrile due to salt precipitation (Kazakevich et al. 2007). Therefore, rapid changes of 

organic solvent were avoided to prevent this.  

Needle wash and seal wash solution was 5%v/v methanol in water which was kept at 50°C 

to improve buffer removal. Wash cycles using this solution were incorporated at the end 

of every run to prevent buffer salt build-up. The sample injection volume was 25L and 



 

165 
 

the autosampler compartment was kept at 4°C. All chromatograms were captured using 

PDA spectra from 220-300nm and the wavelengths of interest later extracted using 

Empower Pro.  

2.2.3.2 UV ABSORBANCE 

UV absorbance of a molecule arises from excitation of its electrons by the irradiating light. 

Excitation of the molecule is dependent on its electronic structure and only usually occurs 

in the presence of unsaturated compounds or loan pairs of electrons (Shriner et al. 1980). 

Only these molecules have sufficiently stable excited states to give rise to absorption in 

the near UV range (Silverstein et al. 1991).  

Traditionally, single wavelength UV detectors were set at the absorbance maxima of the 

compound of interest, showing an absorbance peak as the compounds pass through the 

detector. Such a chromatogram of the paracetamol compounds at 242nm is shown in 

Figure 2.2-1.  

 
Figure 2.2-1 Sample chromatogram of paracetamol and its metabolites captured at 242nm in human plasma.  
The elution order was paracetamol glucuronide, paracetamol cysteine, paracetamol sulphate, paracetamol and 
paracetamol mercapturate respectively.  

Additionally, a PDA detector has the ability to scan across the whole near UV spectrum 

virtually simultaneously, providing absorbance spectra of the analyte at a range of 

wavelengths as it passes through the detector (Silverstein et al. 1991). It can be seen from 

Figure 2.2-1 that the only thing distinguishing one peak from another is the elution time, 

whereas examination of the peak spectra of paracetamol and its metabolites reveals 

some additional differences (Figure 2.2-2). 

P
a
ra

c
e
ta

m
o
l 
G

lu
c
u
ro

n
id

e
 -

 6
.8

2
2

P
a
ra

c
e
ta

m
o
l 
C

y
s
te

in
e
 -

 9
.4

7
1

P
a
ra

c
e
ta

m
o
l 
S

u
lf
a
te

 -
 1

0
.2

7
3

P
a
ra

c
e
ta

m
o
l 
- 

1
2
.6

3
1

1
5
.2

9
8

P
a
ra

c
e
ta

m
o
l 
M

e
rc

e
p
tu

a
te

 -
 1

7
.4

8
8

1
9
.5

9
9

A
U

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

Minutes

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00



 

166 
 

 

n
m

2
5
0
.0

0

3
0
0
.0

0
3
5
0
.0

0

2
4
2
.6

3
1
6
.1

3
2
8
.0

3
5
9
.8

3
8
1
.66
.8

2

P
a
ra

c
e
ta

m
o
l G

lu
c
u
ro

n
id

e
 -

 6
.8

2
3

n
m

2
5
0
.0

0

3
0
0
.0

0
3
5
0
.0

0

2
4
3
.8

2
9
7
.1

3
5
6
.7

3
7
0
.8

3
9
0
.0

9
.4

7

P
a
ra

c
e
ta

m
o
l C

y
s
te

in
e
 -

 9
.4

7
1

n
m

2
5
0
.0

0

3
0
0
.0

0
3
5
0
.0

0

2
4
2
.6

3
2
8
.0

3
5
8
.9

3
8
0
.4

1
0
.2

7

P
a
ra

c
e
ta

m
o
l S

u
lp

h
a
te

 -
 1

0
.2

7
3

n
m

2
5
0
.0

0

3
0
0
.0

0
3
5
0
.0

0

2
4
3
.8

3
4
1
.1

3
7
4
.41

2
.6

3

P
a
ra

c
e
ta

m
o
l -

 1
2
.6

3
1

n
m

2
5
0
.0

0

3
0
0
.0

0
3
5
0
.0

0

2
4
3
.8

2
9
7
.1

3
4
8
.3

3
6
6
.0

3
8
1
.6

1
7
.4

8

P
a
ra

c
e
ta

m
o
l M

e
rc

a
p
to

p
u
ra

te
 -

 1
7
.4

8
8

Fi
gu

re
 2

.2
-2

 P
D

A
 s

p
e

ct
ra

 o
f 

p
e

ak
s 

fr
o

m
 F

ig
u

re
 2

.2
-1

.  
Fr

o
m

 l
ef

t:
 P

a
ra

ce
ta

m
o

l 
G

lu
cu

ro
n

id
e;

 P
a

ra
ce

ta
m

o
l 

C
ys

te
in

e;
 P

a
ra

ce
ta

m
o

l 
Su

lp
h

a
te

; 
P

a
ra

ce
ta

m
o

l;
 P

a
ra

ce
ta

m
o

l 
M

er
ca

p
to

p
u

ra
te

. 
In

 a
d

d
it

io
n

 t
o

 p
ea

ks
 a

t 
a

ro
u

n
d

 2
4

2
n

m
, 

P
a

ra
ce

ta
m

o
l 

C
ys

te
in

e 
a

n
d

 
M

er
ca

p
tu

ra
te

 h
a

ve
 a

b
so

rb
a

n
ce

 p
ea

ks
 a

t 
2

9
7

n
m

. 

 



 

167 
 

By only absorbing in the presence of some functional groups with free electrons, the PDA 

spectra can provide some information about constituents of a molecule (Silverstein et al. 

1991). All paracetamol molecules possess an N-acetyl aryl amide group, which produce 

strong absorption around 240nm. Only the thiol conjugates, paracetamol cysteine and 

mercapturate showed absorption at 297nm as a result of the aryl thioether and carboxylic 

acid groups on their side chains (Shriner et al. 1980). While it is possible to use molecular 

features to predict UV absorption, or vice versa, this is more of an art than a science 

because: 

 Most functional groups absorb UV weakly, or not at all;  

 Closely positioned functional groups affect the absorbance of one another; 

 Many functional groups absorb in the same region; and 

 Absorption is affected by the polarity of the solvent. 

However, absorbance spectra are useful to confirm the identity of the eluting compound 

or the presence of co-eluting peaks and were used to determine selectivity and specificity 

of this assay. Ultimately the wider availability of mass spectrometry and nuclear magnetic 

resonance have superseded PDA spectra for compound identification (Shriner et al. 1980; 

Silverstein et al. 1991).  

2.2.3.3 PREPARATION OF STOCK SOLUTIONS 

Stock solutions were prepared in 1.5mL Eppendorf tubes by adding a known quantity of 

compound to water for HPLC to give a final concentration of 1mg/mL. Resultant solutions 

were then vortex mixed for 30 seconds and sonicated for 5 minutes. Following sonication, 

samples were dated and stored at -20°C in batches until required for analysis.  

2.2.3.4 SAMPLE PREPARATION DEVELOPMENT 

2.2.3.4.1 PROTEIN REMOVAL 

Biological samples frequently contain proteins. When mixed with mobile phase, proteins 

still present can precipitate and collect at the head of the HPLC column, leading to its 

degradation and resulting in poor chromatography. Therefore, samples for HPLC analysis 

must be free of proteins before injection onto the HPLC column.  

Three of the most common methods of separating the compounds of interest from 

plasma proteins are: 
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1. Protein precipitation, centrifugation and injection of the resulting supernatant; 

2. Addition of solvents into which compounds of interest are miscible but proteins 

are not, followed by separation and injection of the solvent; or 

3. Solid-Phase Extraction. 

For paracetamol analysis, protein precipitation was chosen because the compounds of 

interest were in high concentrations and not bound to plasma proteins. This method was 

simple, quick and cheap and was adapted from Jensen et al. (Jensen et al. 2004) and Reith 

et al. (Reith et al. 2009).  

From the beginning of the method development, efficient use of plasma was of primary 

importance. Methods above used up to 0.5mL per sample but given the number of 

planned analyses to be performed on each sample collected for this project, this volume 

had to be reduced. Additionally, any chemical added for precipitation of proteins diluted 

the concentration of paracetamol compounds in the sample, making them harder to 

detect, so it was necessary to keep added volumes low. 

2.2.3.4.1.1 CHOICE OF AGENT 

Protein precipitation was the first step in all methods reviewed. Chemicals, 

concentrations and volumes varied amongst papers (Blanchard 1981; Polson et al. 2003; 

Souverain et al. 2004; Hendriks et al. 2008). PCA and acetonitrile were the most common 

agents and these were chosen for further investigation. PCA was used at a concentration 

of 30%v/v to prevent chemical hydrolysis of paracetamol metabolites back to the parent 

drug. To determine which of the two most commonly cited agents was the most suitable 

for plasma protein precipitation, the following experiment was undertaken with triplicate 

samples (Figure 2.2-3): 

3x 1mL blank 
plasma in 1.5mL 

Eppendorf

100µL 30% PCA + 
100µL 

acetonitrile 
added

C

200µL of 30% 
PCA added

A

Vortex and 
centrifuge

Vortex and 
centrifuge

Observe 
supernatant

Observe 
supernatant

200µL of 
acetonitrile 

added
B

Vortex and 
centrifuge

Observe 
supernatant

Clear Solution. 
Large white pellet

Straw coloured 
solution. Small 

pellet

Clear Solution. 
Large white pellet

 
Figure 2.2-3 Experimental design to determine protein precipitant 
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Each Eppendorf was vortex mixed for 30 seconds and centrifuged at 14000RPM 

(c.17500G) for 5 minutes. The results of this were:  

 Samples (A) produced a clear, colourless solution with a large white pellet of 

protein precipitant at the bottom of the tube;  

 Samples (B) produced a straw coloured solution with a small white pellet; and 

 Samples (C) produced the same result as Samples (A). 

It was concluded that, volume for volume, PCA was more efficient at precipitating plasma 

protein. To confirm this finding, further experiments were conducted doubling and then 

quadrupling the volume of acetonitrile. The same results were found. Given the necessity 

to restrict volumes of additive, PCA was chosen to precipitate proteins in future samples.  

2.2.3.4.1.2 DETERMINATION OF VOLUME 

The exact volume of PCA 30%v/v also varied in the literature (Blanchard 1981; Polson et 

al. 2003; Souverain et al. 2004; Hendriks et al. 2008). An experiment was also designed to 

determine the optimal volume and is shown in  

Figure 2.2-4.  

3x 1mL blank 
plasma in 1.5mL 

Eppendorf

100µL of 30% 
PCA added

C

200µL of 30% 
PCA added

A

150µL of 30% 
PCA added

B

Clear Solution. 
Large white pellet

50µL of 30% PCA 
added

D

200µL of 30% 
PCA added to 
supernatant

Clear Solution. 
No pellet

Clear Solution. 
Small white pellet

Mix
Centrifuge and 

Observe

Mix
Centrifuge and 

Observe

Clear Solution. 
Large white pellet

200µL of 30% 
PCA added to 
supernatant

Clear Solution. 
No pellet

Mix
Centrifuge and 

Observe

Mix
Centrifuge and 

Observe

Clear Solution. 
Large white pellet

200µL of 30% 
PCA added to 
supernatant

Clear Solution. 
No pellet

Mix
Centrifuge and 

Observe

Mix
Centrifuge and 

Observe

Clear Solution. 
Large white pellet

200µL of 30% 
PCA added to 
supernatant

Mix
Centrifuge and 

Observe

Mix
Centrifuge and 

Observe

 
Figure 2.2-4 Experiment design to optimise volume of PCA added 

Samples were again vortex mixed for 30 seconds and centrifuged at 14000RPM for 5 

minutes. Following the first centrifugation, all samples became a clear colourless solution 

with a large white pellet of protein precipitant at the bottom of the tube. To ensure 

complete precipitation of proteins, the supernatant of each sample was removed into a 

fresh Eppendorf tube and a further 200L of PCA 30% was added. Samples were mixed 

and centrifuged as before.  
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Samples A, B and C returned a clear solution with no visible pellet. The presence of a 

protein pellet in sample D indicated that protein was still present in solution before the 

second addition of acid and that 50uL of PCA 30%v/v was insufficient for removal of all 

proteins from 1mL of human plasma. It was concluded that the volume of PCA 30%v/v 

must be at least 10% of the volume of the plasma sample for adequate protein removal. 

Blank plasma used in these analyses was donated by fit and healthy volunteers, as 

determined by screening undertaken by the Irish Blood Transfusion Service. This group 

was likely to have at least the same quantities of plasma protein as study participants 

who are undergoing surgery for cancer or other disease of the bowel, as the effect 

disease has on plasma protein concentration, if any, is to lower the total concentration. 

This would suggest plasma protein precipitation methods developed from blank plasma 

could be applied to study participants without consuming plasma samples for validation.  

2.2.3.4.2 EXTRACTION EFFICIENCY 

Although protein removal was optimised, it was necessary to assess if this method altered 

the concentration of paracetamol measured in the sample and if this effect was 

consistent across the concentration range. This was determined by the extraction 

efficiency. Extraction efficiency compares absorption peak areas of a compound in a 

dilution series suitable for direct injection with a plasma dilution series after the plasma 

samples have had their proteins removed (Figure 2.2-5). Mobile phase at initial conditions 

was used as diluent. 

2.2.3.4.2.1 PREPARATION OF STANDARDS 

Stock solution of paracetamol (1mg/mL) was diluted with blank plasma to give a 

concentration of 40g/mL. A seven point concentration range from 40g/mL to 

0.625g/mL was obtained by diluting 750L of the sample (paracetamol 40g/mL) with a 

further 750L of blank plasma and vortexing mixing for 30 seconds, followed by five 

subsequent serial dilutions. The same dilution series was prepared using diluent in place 

of plasma. All samples were prepared in triplicate.  

2.2.3.4.2.2 PREPARATION OF STANDARDS FOR INJECTION 

Plasma: 200L of sample was added to a 1.5mL Eppendorf tube followed by 20L of 

30%v/v PCA. Tubes were vortex mixed for 30 seconds followed by centrifugation at 14000 

RPM for five minutes.  
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Diluent: Samples were prepared as for plasma except that 20L of diluent was added in 

place of the perchloric acid (Figure 2.2-5). 

Stock solutions of 
paracetamol

Diluted in plasma 
to 40-0.625µg/mL

Diluted in diluent 
to 

40-0.625µg/mL

Perchloric acid 
added 

Additional diluent 
added

Vortex and 
centrifuge

Inject 
supernatant

Vortex and 
centrifuge

Inject 
supernatant

 
Figure 2.2-5 Extraction efficiency method 

The supernatant of each sample was transferred to 100µL low volume inserts (Fisher 

Scientific, Dublin, Ireland) and then placed inside an autosampler vial (1.5mL screw neck 

vial, AGB Scientific, Dublin, Ireland) for HPLC analysis. An external standard was not added 

as no extraction occurred. HPLC analysis was conducted with the conditions described 

above (Section 2.2.3.1). 

2.2.3.5 ASSAY VALIDATION 

2.2.3.5.1 LIMITS OF DETECTION AND QUANTIFICATION 

Limits of detection (LOD) and limits of quantification (LOQ) were determined from the 

chromatograms of a dilution series of each compound in blank plasma, prepared and 

analysed in five replicates according to Section 2.2.3.4. LOD were the lowest 

concentration at which the signal to background noise ratio was 3:1, based on peak 

height. LOQ were the lowest concentration at which the signal to background noise ratio 

was 10:1, tests for precision and accuracy were passed, and the peak area was at least 

twice that of the LOD peaks (Shah et al. 1992; Bressolle et al. 1996). 

2.2.3.5.2 PRECISION AND ACCURACY 

Inter and intra batch variations were determined from low, middle and high 

concentrations for each compound (Table 2.2-1).  

Table 2.2-1 Concentrations used for the determination of precision and accuracy values for each compound 

Compound Low concentration 
(µg/mL) 

Mid concentration 
(µg/mL) 

High concentration 
(µg/mL) 

Paracetamol glucuronide 0.625 10 80 

Paracetamol sulphate 0.625 5 40 

Paracetamol 0.625 5 40 

Paracetamol cysteine 0.3125 5 20 

Paracetamol mercapturate 0.625 5 20 
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Values were determined over five samples of each concentration in the first batch (intra-

day variation) and from one sample from a further five batches (inter-day variation). 

Values were calculated over a batch rather than a day in accordance with accepted 

validation practices as batches routinely ran over more than one day (Shah et al. 1991; 

Bressolle et al. 1996). 

2.2.3.5.3 CALIBRATION CURVES 

Calibration curves were prepared by plotting the peak area versus the concentration of 

each compound. These were analysed within each batch during analysis from standards 

placed after every fifth patient sample. Stock solutions of 1mg/mL were serially diluted 

with blank plasma to give a calibration curve constructed over the expected range of 

concentrations in patient samples as shown in Table 2.2-2. Calibration samples had a 

minimum plasma content of 98%. These were then prepared for analysis as described in 

Section 2.2.3.4.  

Table 2.2-2 Concentrations used to construct calibration curves in plasma (µg/mL) 

Paracetamol 
glucuronide 

Paracetamol 
sulphate 

Paracetamol Paracetamol 
cysteine 

Paracetamol 
mercapturate 

   0.3125  
0.625 0.625 0.625 0.625 0.625 

1.25 1.25 1.25 1.25 1.25 

2.5 2.5 2.5 2.5 2.5 

5 5 5 5 5 

10 10 10 10 10 

20 20 20 20 20 

40 40 40   
80     

The linear regression equations were calculated with:  

       

Equation 2.2-1 Linear regression equation 

To prove a linear equation was the most appropriate for regression, calibration curves 

had to be proven to be linear. Calibration curves were accepted as linear if analysis of the 

validation samples showed the correlation co-efficient was not significantly different from 

1, the slope was significantly different from 0 and the intercept was not significantly 

different from 0. Significant differences were deemed to have occurred if the 95% 

confidence interval of the mean excluded the value in question (i.e. 1 for correlation 

coefficient and 0 for the other parameters). 
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2.2.3.5.4 STABILITY 

Stock solution of paracetamol was diluted to 10µg/mL with blank human plasma and 

stored with patient samples in the same polypropylene containers at -80°C and at -20°C, 

4°C and bench-top room temperature (≈20°C). These were analysed and compared with 

calibration curves derived from freshly prepared samples.  

2.2.3.6 ANALYSIS 

Pharmacokinetic calculations were performed using Microsoft Excel® v12.0.6 (Microsoft, 

Redmon, Washington, USA) and statistical analysis was carried out using Statistical 

Package for Social Sciences (SPSS) v15.0 (SPSS, Chicago, Illinois, USA). 

2.2.4 METHODS- URINE 

2.2.4.1 CHROMATOGRAPHIC METHOD DEVELOPMENT 

Using the method developed for plasma samples, clear separation was obtained for 

paracetamol and its metabolites in spiked samples. However, this method was not 

optimal for urine analysis because: 

1. The concentrations of the paracetamol compounds were much higher in urine so 

it was possible to identify and quantify paracetamol mercapturate, which was 

below the LOQ in most plasma samples; and  

2. The plasma method used a gradient mobile phase to elute the compounds of 

interest within a reasonable time of 25 minutes. However, the increasing organic 

content of the gradient programme altered the chromatographic baseline, 

rendering identification and integration of absorbance peaks arising from 

paracetamol mercapturate at physiological concentrations problematic and 

unreliable (Figure 2.2-6).  

Using an isocratic method with different combination of the phosphate buffer and 

acetonitrile of the plasma method gave a flat baseline. However, on the Phenomenex 

Synergi column, isocratic combinations would either compromise the separation of the 

first four compounds (paracetamol glucuronide, paracetamol cysteine, paracetamol 

sulphate, and paracetamol) or cause the elution time of paracetamol mercapturate to be 

very long.  
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Recent developments in HPLC column technology (e.g. pore-, particle-size and 

subsequent increases to the number of theoretical plates), have significantly improved 

chromatography (Majors 2008). A replacement for the Phenomenex Synergi column was 

required for this analysis and an Agilent Zorbax Rapid Resolution C18 1.8µm 2.8x56mm 

column was found suitable (Agilent Technologies, California, USA). It was chosen because 

the <2.0µm particle size allowed for increased separation and peak resolution of the first 

four compounds but the shorter column length would reduce the retention time of the 

paracetamol mercapturate. In addition, the column’s reduced particle size increased 

resolution even at low flow rates with corresponding savings of HPLC solvent. 

To develop the method, the mobile phases and initial conditions as used for plasma 

samples (acidified 0.1M phosphate buffer and acetonitrile) were used. However, 

paracetamol glucuronide co-eluted with the solvent front (Figure 2.2-6).  

 
Figure 2.2-6 Chromatogram (242nm) of paracetamol and metabolite on Agilent column with plasma assay conditions 
Chromatogram shows effect of gradient mobile phase in changes to baseline. Separation of peaks is poor and elution of 
paracetamol mercapturate on sloping baseline makes integration difficult. 

The proportion of acetonitrile was reduced to 3%, the column manufacturer’s stated 

minimum organic component to prevent collapse of the stationary phase’s C18 moiety, 

but this still did not allow sufficient retention of paracetamol glucuronide from the 

solvent front. The mobile phases were changed to water and methanol, both acidified 

with formic acid to 1%v/v. Methanol has about 1/3 the elutropic strength of acetonitrile 

on C18 solid phases, and is more polar (Kazakevich et al. 2007). These properties increase 

the retention times of polar analytes relative to mobile phases containing acetonitrile. 
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The effect of this change is shown in Fig 2.2-7 where the assay using methanol elutes 

paracetamol glucuronide after the solvent front  

 
Figure 2.2-7 Chromatogram (242nm) of paracetamol and metabolites using 97% aqueous and 3% methanol (black 
trace) or 3% acetonitrile (blue trace).  
Acetonitrile trace offset on y-axis. 

Buffer was not added to the water component as salt precipitation was an issue in the 

plasma assay, with frequent system washes required to prevent this occurring. Initial 

method development focussed on optimising paracetamol mercapturate and 

paracetamol glucuronide retention. Paracetamol mercapturate was retained too long, 

necessitating a long run-time and paracetamol glucuronide co-eluted with the solvent 

front. Elution of analytes with the solvent front compromises identification and 

quantification of compounds. Initial combinations did reduce the retention times of 

paracetamol mercapturate and improved the peak shape but during the development, 

the analyte peaks were observed to be fronting. This can signify variable ionisation states 

of the analyte existing in the mobile phase, causing inconsistent partitioning with the 

stationary phase. While it was anticipated acidification of the mobile phases was 

sufficient to prevent this, the re-introduction of the phosphate buffer was necessary to 

eliminate any variation in ionisation, and this improved peak shape markedly.  

Potassium phosphate is soluble in methanol and accordingly, precipitation of the buffer 

salts was less of an issue than when acetonitrile was used. As a precaution though, to 

protect the instrument from the corrosive effects of the buffer salts, an end-of-run wash 

cycle was again incorporated.  

While the elution of paracetamol mercapturate had been resolved the separation of the 

first four compounds now proved troublesome. After several runs it was found a 

combination of 97%v/v 0.1M phosphate buffer and 3%v/v methanol gave sufficient 
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separation. This was the minimum organic component of the mobile phase 

recommended by the manufacturer. Validation was completed as for plasma analysis. 

2.2.4.2 SAMPLE PREPARATION 

In healthy individuals urine does not contain any proteins. However, neat urine contains 

high quantities of salts and their concentration can saturate the PDA. Accordingly, 50L of 

urine samples was diluted with 950L of HPLC grade water before injection, directly into 

the HPLC vial (Goicoechea et al. 1995; Di Girolamo et al. 1998; Jensen et al. 2004; Reith et 

al. 2009). The vial was capped and vortexed for 30 seconds. As no extraction was 

performed and the quantity of urine in the diluted sample so low, paracetamol standards 

were diluted with water, rather than urine, to provide calibration curve data. 
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2.3 CYTOKINE ASSAY 

The activation of the stress response in the study patients was determined by the 

concentration of inflammatory cytokines in their plasma samples. Given their low 

concentrations and protein nature, a multiplex electrochemiluminescense assay (MSD 

Gaithersburg; Maryland; USA) was chosen as it is highly sensitive, specific, requires no 

sample pre-treatment and can process several samples concurrently. 

2.3.1 ASSAY PRINCIPLE 

The assay used for this analysis uses the same principle as other “sandwich” 

immunoassays:  

1. An antibody for a target protein coats the surface of a well; 

2. The target protein is added and binds to the antibody on the well surface; 

3. A detection antibody is added which also binds to the target protein forming 

an antibody sandwich around the target protein; and 

4. The detection antibody contains a label (Ruthenium Ru) that emits light when 

electrochemically stimulated. The amount of light produced is proportional to 

the amount of secondary antibody captured within the antibody sandwich, 

and therefore provides a quantitative measure of the amount of the target 

protein present. 

A Meso-Scale-Discovery (MSD) assay was chosen as it provided the most amount of 

information from the smallest sample volume. There are a few idiosyncrasies of MSD 

assays that allow this. The antibody for the specific protein target is coated on an 

electrode (or “spot”) in the plate well, rather than the whole well. In the case of the assay 

used here a multiplex assay was used, which contained four spots in each well. This 

allowed four cytokines, IFN-γ, IL-1β, IL-6, and TNF-α to be assayed in the same well at the 

same time from a single small-volume sample without requiring any additional steps over 

a conventional ELISA (Figure 2.3-1). 

The 96-well plates were supplied with the spots pre-coated, each with their specific 

cytokine capture antibody. The wells were blocked with a supplied diluent to prevent 

non-specific interactions and then plasma sample was added. The cytokines present in 

the sample bound to the capture antibodies immobilised on their respective spots. A 

detection antibody solution was then added that contained a blend of cytokine 
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antibodies, each labelled with the electrochemiluminescent MSD SULFO-TAG®. Unlike 

conventional ELISAs that use detection labels that fluoresce when exposed to light, 

electrochemiluminescence detection uses labels that emit light when electrochemically 

stimulated. This reduces background signals because the stimulation mechanism 

(electricity) is decoupled from the signal (light). Multiple excitation cycles of each label 

amplify the signal to enhance light levels and improve sensitivity.  

  
Figure 2.3-1 Spot diagram showing placement of analyte capture antibody and schematic of assay principle. 

The labelled detection antibodies then bind to the cytokines, which were already bound 

to the capture antibody, thus completing the sandwich. MSD read buffer was then added 

to provide the appropriate chemical environment for electrochemiluminescence. The 

plate was then loaded into an MSD sector instrument for analysis. Inside the sector 

instrument, a voltage was applied to the electrodes that caused the labels bound to the 

electrode surface to emit light. The intensity of emitted light from each spot provided a 

quantitative measure of IFN-γ, IL-1β, IL-6, and TNF-α present in the sample. 

2.3.2 MATERIALS 

ELISA kits (Pro-inflammatory Panel 1 (4-plex) catalogue number K15009C-2) were 

purchased from Meso Scale Delivery Gaithersburg, Maryland, USA. The contents of the 

kits is detailed in Table 2.3-1. Water for HPLC (Fisher Scientific, Dublin, Ireland) was used 

as deionised water. Phosphate buffered saline plus 0.05% Tween-20 (PBS-Tween) was 

purchased from Sigma-Aldridge (St Louis, Missouri, USA) and made according to 

manufacture’s instructions. Tubes for reagent preparation (50mL and 15mL) and 1.5mL 

micro-centrifuge tubes for preparing serial dilutions were obtained from Sarstedt 

(Sarstedt, Nümbrecht, Germany).  
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Table 2.3-1 Contents of Pro-inflammatory panel kit 

Item Description Storage Number in kit 

Multi-Spot 96 well 4 Spot Human Pro-Inflammatory I Plate 2–8°C 4 
SULFO-TAG Detection Antibody Blend (50X) 2–8°C  1 vial (375μL) 
Human Pro-Inflammatory Calibrator Blend (1μg/mL each) <-70°C  5 vials (15μL ea) 
Diluent 2 <-10°C  1 bottle (40 mL) 
Diluent 3 <-10°C 1 bottle (25 mL) 
Read Buffer T (4X) RT 1 bottle (50 mL) 

2.3.3 APARATUS 

Meso Scale Delivery Sector Imager 2400 was used as the detection device. The imager 

was attached to computer running Meso Scale Delivery’s Discovery Workbench® v3.0.17 

software. 

2.3.4 ASSAY PROTOCOL 

The assay was run as per kit recommendations with one modification on the advice of the 

manufacturer: 

 The assays were incubated with sample overnight to allow the reactions to reach 

equilibration and achieve better sensitivity. 

Otherwise the standard serum assay protocol provided in by the manufacturer was 

followed. The protocol used is summarised here: 

1. Preparation of calibrator samples: A serial dilution of Calibrator Blend was 

performed by diluting calibrators in Diluent 2; 

2. Addition of Diluent 2: 25μL of Diluent 2 was pipetted to cover the entire bottom 

of each well. The plate was sealed and incubated for 30 minutes with vigorous 

shaking (800RPM) at room temperature; 

3. Addition of Sample or Calibrator: 25μL of each Calibrator or Sample Solution was 

placed into the wells. The plate was sealed and incubated for 2 hours with 

vigorous shaking (800RPM) at room temperature; 

4.  Washing and Addition of Detection Antibody Solution: The plate was washed 

three times with 300μL PBS + 0.05% Tween-20 into each well, tapping out the 

liquid onto paper towels after each wash. A 25μL aliquot of the 1X Detection 

Antibody Solution was placed into each well of the MSD plate. The plate was 

sealed and incubated for 2 hours with vigorous shaking (800RPM) at room 

temperature; and 
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5. Washing and Reading: The plate was again washed three times with 300μL PBS + 

0.05% Tween-20. Then to each well, 150μL of Read Buffer T was added. The plate 

was analyzed on the sector imager immediately after addition of Read Buffer.  

Care was taken to ensure that bubbles were avoided at all stages, including the use of 

positive pipetting, as bubbles interfere with the reaction and reading.  

2.3.5 DATA ANALYSIS 

Data were analysed using Meso Scale Delivery’s  orkbench software and curves fitted 

using the built-in 4PL fit with 1/y2
 weighting y = b2 + ((b1 - b2) / (1 + (x / b3)^b4)). 

2.3.6 PLATE CONFIGURATION 

Each spot was in the same position in every well as shown in Figure 2.3-2. A sample plate 

layout is shown in Figure 2.3-3 

 
Figure 2.3-2 Layout of assay spots in plate wells 

 1 2 3 4 5 6 7 8 9 10 11 12 

A stdA stdA 1A0 1A0 1A1 1A1 2A0 2A0 2A1 2A1 2A2 2A2 

B stdB stdB 2A3 2A3 2A4 2A4 3A0 3A0 3A1 3A1 3A2 3A2 

C stdC stdC 3A3 3A3 3A4 3A4 4A0 4A0 4A1 4A1 4A2 4A2 

D stdD stdD 4A3 4A3 4A4 4A4 5A0 5A0 5A1 5A1 5A2 5A2 

E stdE stdE 5A3 5A3 5A4 5A4 6A0 6A0 6A1 6A1 6A2 6A2 

F stdF stdF 6A3 6A3 6A4 6A4 7A0 7A0 7A1 7A1 7A2 7A2 

G stdG stdG 7A3 7A3 7A4 7A4 8A0 8A0 8A1 8A1 8A2 8A2 

H stdH stdH 8A3 8A3 9A0 9A0 9A1 9A1 9A2 9A2 9A3 9A3 
Figure 2.3-3 Layout of plate 1 showing standards (red) and patient samples (yellow) 
Abbreviations: std= standard. Patient samples shown as patient number, group letter and sample day.  
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2.3.7 RESULTS 

The image of plate 1 captured by the sector imager is shown in Figure 2.3-4 showing the 

various intensities of light emitted by the calibration standards and samples. As shown in 

the schematic Figure 2.3-3, the calibration standards are in the wells to the left.  

 
Figure 2.3-4 Image of plate 1 from sector reader from showing light intensities of various assayed samples 

2.3.7.1 VALIDATION 

Alongside patient samples, standard curves were prepared in duplicate in each plate for 

all cytokines assayed. Standard curves were constructed based on omitted light intensity 

(Figure 2.3-5). The concentration of the cytokines in each sample was calculated by 

plotting its intensity on the standard curve from their respective plates (Figure 2.3-6). 

Standard curves also provided limit of detections which also provided validation data 

 

Figure 2.3-5 Standard curve for IFN-γ from plate 1 
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Figure 2.3-6 Standard curve of IFN-γ showing location patient samples from plate 1 

Limits of detection (LOD) were calculated and defined as 2.5 standard deviations above 

the background. They are given in Table 2.3-2 and compared with values published by the 

manufacturer. 

Table 2.3-2 Limits of detection in pg/mL 

Cytokine Typical LOD Plate 1 Plate 2 Plate 3 Plate 4 

IFNγ 0.4 0.91 2.85 2.83 2.41 
IL-1β 0.2 0.38 0.89 1.0 0.49 
IL-6 0.7 0.42 0.34 0.4 0.36 
TNFα 0.5 0.76 0.65 0.64 0.64 

All of the LOD’s are similar to quoted limits and are reproducible, indicating intra-plate 

reproducibility as shown in Figure 2.3-7. No sample matrix issues were observed.  

 

Figure 2.3-7 Plot of standard curve for TNF-α from all plate  
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2.4 α GLUTATHIONE S-TRANSFERASE ASSAY  

Alpha glutathione S-transferase (αGST) is a Phase II detoxification enzyme protein found 

in high concentration in hepatocytes, where it constitutes 2-5% of all soluble protein 

(Trull et al. 1994; Clarke et al. 1997; Nagral et al. 1997). Its function in paracetamol 

metabolism was discussed in Section 1.2. Because it is in such high concentrations in 

these cells it appears rapidly in the plasma when hepatocytes are injured and become 

leaky. Measuring the appearance of αGST in plasma is used in drug development and 

clinical disease management for early detection of liver damage and it is considered the 

most sensitive parameter of liver tissue damage following paracetamol administration 

(Beckett et al. 1985; Trull et al. 1994; Redl et al. 1995; Chouker et al. 2005) 

As a measure of paracetamol induced hepatotoxicity, αGST has several advantages over 

transaminase enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase 

(AST), conventionally used for this assessment: 

 αGST has a half-life in circulation of 90 minutes, significantly shorter than 

transaminases AST (17±5 hours) and ALT (47±10 hours) (Kasper et al. 2008). 

Consequently, αGST levels return to baseline values quickly when damage to 

hepatocytes ceases, enabling the detection of the onset and cessation of 

hepatocyte injury (Beckett et al. 1993; Trull et al. 1994);  

 αGST is more sensitive than transaminases being measurable at low levels of 

hepatocyte injury and lower concentrations of toxin (Clarke et al. 1997); 

 Because αGST is found in high concentrations in hepatocytes, statistically 

significant elevation occurs sooner than other markers of hepatotoxicity(Beckett 

et al. 1993). Accordingly, it may identify preclinical toxicity that is not detected 

using transaminases (Murray et al. 1992a; Sivilotti et al. 2002); 

 αGST is only released from hepatocytes and is therefore more discriminating than 

transaminases, which can be released from a variety of tissues (Murray et al. 

1992a; Kumle et al. 2003); 

 αGST is equally distributed in both the centrilobular and periportal regions of the 

liver (Sundberg et al. 1993). In contrast, transaminases are not distributed 

uniformly, with concentrations higher in the periportal region than the 

centrilobular (Beckett et al. 1993). Since the centrilobular hepatocytes are the 
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most susceptible to damage, αGST is a more sensitive indicator of hepatic 

damage.  

An ELISA αGST assay was chosen as the method of choice for the detection of hepatocyte 

injury over transaminase enzyme assays due to its advantages outlined above. The upper 

limit of the reference range for those without hepatic damage is 11.4μg/L (Rees et al. 

1995). 

2.4.1 ASSAY PRINCIPLE 

This ELISA used a sandwich assay principle similar to that used for the measurement of 

cytokines. This ELISA was more conventional than the ELISA used for the cytokine assay as 

the entire lower surface of each well was pre-coated with anti-αGST IgG antibodies by the 

manufacturer. A schematic of the assay principle is shown in Figure 2.4-1.  

 
Figure 2.4-1 Spot diagram displaying αGST enzyme-linked immunoassay and schematic of assay principle 

Diluted plasma samples were added to each well and any αGST present in the sample 

bound to the αGST-antibodies coating the well surface. Enzyme-conjugate was added, 

followed by substrate. The enzyme used was horse-radish peroxidase (HRP), which 

oxidises the substrate, the chromogen 3,3′,5,5′-tetramethylbenzidine (TMB), changing it 

from colourless to blue (Josephy et al. 1982; Josephy et al. 1983). TMB is the most 

popular substrate for HRP detection in ELISA as it is very sensitive and is more quickly 

oxidised than other HRP substrates, resulting in faster colour development (Liem et al. 

1979). Upon addition of the stop solution, sulphuric acid, TMB becomes yellow with a 

maximum absorbance at 450nm (Josephy et al. 1982; Josephy et al. 1983). Absorbance of 

the wells was read at 450nm with a reference 655nm. The absorbance intensity was 

proportional to the amount of αGST present in the sample. 
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2.4.2 MATERIALS 

Four ELISA kits (HEPKIT-Alpha) were purchased with the same lot number (Argutus 

Medical, Dublin, Ireland). The contents of the kits is detailed in Table 2.3-1. Water for 

HPLC (Fisher Scientific, Dublin, Ireland) was used as deionised water. Tubes for reagent 

preparation (50mL and 15mL) and 1.5mL micro-centrifuge tubes for preparing serial 

dilutions were obtained from Sarstedt (Sarstedt, Nümbrecht, Germany).  

Table 2.4-1 Contents of HEPKIT-Alpha 

Item Description Storage Number in kit 

Anti αGST IgG coated 96 well microassay plate 2–8°C 1 
GST Calibrator stock solution 2–8°C  1 vial (200μL) 
Positive Control  2–8°C  1 bottle (4.5mL) 
Conjugate concentrate (anti αGST IgG conjugated to HRP) 2–8°C  1 vial (300μL) 
Wash Concentrate (20x PBS Tween-20) 2–8°C  1 bottle (55 mL) 
TMB substrate 2–8°C  1 bottle (11 mL) 
Stop solution 0.5 mol/L 2–8°C  1 bottle (11 mL) 

2.4.3 APARATUS 

Plates were read using a Biorad 680 Microplate Reader(Biorad, California, USA) measuring 

absorbance at 450nm with a reference filter at 655nm. Data were captured using Biorad 

Microplate Manager Software V5.2.1(Biorad, California, USA). 

2.4.4 ASSAY PROTOCOL 

The assay was run according to the assay protocol published by the manufacturer with one 

modification on the advice of the manufacturer’s representative: 

 The recommended reference filter 630nm was not available. A 655nm filter was used 

in its place. 

2.4.4.1 PREPARATION OF REAGENTS  

All reagents were bought to room temperature (20.2°C), mixed well and checked to be 

free of crystals before use. 

2.4.4.1.1 WASH SOLUTION (PBST)  

The wash solution was prepared by diluting 50mL of the 20x concentrated solution with 

950mL of deionised water. The salt crystals in the concentrated solution were dissolved 

prior to dilution by gentle warming and agitation of concentrate at 37°C for 30 minutes.  
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2.4.4.1.2 CALIBRATORS  

Calibrators were prepared from the αGST stock solution as follows: 

Calibrator A: 25μL Calibrator Stock+ 2500μL  ash Solution. Using labelled micro-

centrifuge tubes, Calibrator A was further diluted to prepare the remaining calibrators as 

shown in Table 2.4-2. Calibrators were used within 30 minutes of preparation.  

Table 2.4-2 Concentration and preparation of calibrators 

Equivalent Calibrator 
Concentration 

Calibrator Volume  μL   Wash Solution Volume  μL   

40μg/L (A)  500 (A)  -  
20μg/L (B)  500 (A)  500  
10μg/L (C)  500 (B)  500  
5μg/L (D)  500 (C)  500  
2.5μg/L (E)  500 (D)  500  
1.25μg/L (F)  500 (E)  500  
0μg/L (G)  -  500  

2.4.4.1.3 SAMPLE PREPARATION 

Samples were diluted 1:5 by adding 50μL of plasma to 200μL of wash solution in a blank 

microassay plate.  

2.4.4.1.4 CONJUGATE 

Immediately prior to use the conjugate concentrate was diluted 1:51 by adding 980μL 

conjugate to 49mL of wash solution. 

2.4.4.2 ASSAY PROCEEDURE 

All reagents were delivered at the midpoint of the side of the wells with care not to 

scratch the side with the pipette tip. Positive pipetting was used to prevent introduction 

of bubbles. 

1. Addition of Sample or Calibrator: 100μL of each calibrator (A-G) and the control were 

added in duplicate to each plate in rows 1 and 2 as shown in Figure 2.4-2. Samples 

were then added, also in duplicate, in the remaining wells. The plates were sealed and 

incubated at room temperature for 60 minutes with vigorous shaking (800RPM VWR 

Plate Shaker, VWR Scientific, Cambridge, UK). After 55 minutes of incubation the 

conjugate was prepared; 
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2. Washing and Addition of Enzyme Conjugate Solution: At the end of the incubation 

the wells were washed four times with 250μL of the wash solution, tapping out the 

liquid onto paper towels after each wash. 100μL of the conjugate solution was then 

added to each well. The plates were incubated again at room temperature for 30 

minutes with vigorous shaking (800RPM); and 

3. Washing, Addition of Substrate, Stop Solution and Plate Reading: The plates were 

washed again as in step 2. To each well 100μL of substrate was added and the plates 

were incubated in the dark (inside a drawer) for 15 minutes exactly. Immediately 

afterwards, 100μL of the stop solution was added to each well. Plates were read 

immediately with the microplate reader at 450nm with 655nm as reference. 

2.4.5 DATA ANALYSIS 

Data were captured using Microplate manager software. Mean absorbance was 

calculated for each calibrator, control and sample. Calibration curves were constructed by 

plotting A450/655nm on the x axis and [αGST] (μg/L) on the y axis. A polynomial line of best 

fit was determined using the equation Equation 2.4-1: 

           

Equation 2.4-1 Equation for line of best fit for αGST standards 

The equations of these lines were then used for determining sample αGST concentration. 

The actual concentration was then determined by multiplying the calculated 

concentration by the dilution factor of 5. The concentration of the positive control was 

read directly from the curve as it was not diluted. The positive control was checked 

against the reference value specific for the kit. 

2.4.6 PLATE CONFIGURATION 

A sample plate layout is shown in Figure 2.4-2. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A stdA stdA 5C1 5C1 6C0 6C0 6C1 6C1 6C2 6C2 6C4 6C4 

B stdB stdB 7C0 7C0 1D0 1D0 1D1 1D1 2D0 2D0 2D1 2D1 

C stdC stdC 2D2 2D2 2D3 2D3 2D4 2D4 3D0 3D0 3D1 3D1 

D stdD stdD 3D2 3D2 3D3 3D3 3D4 3D4 4D0 4D0 4D1 4D1 

E stdE stdE 4D2 4D2 4D3 4D3 4D4 4D4 5D0 5D0 6D0 6D0 

F stdF stdF 7D0 7D0 8D0 8D0 8D1 8D1 8D2 8D2 8D3 8D3 

G stdG stdG 8D4 8D4 9D0 9D0 10D0 10D0 10D1 10D1 10D2 10D2 

H CTRL CTRL 10D3 10D3 10D4 10D4 11D0 11D0 11D3 11D3 11D4 11D4 
Figure 2.4-2 Layout of plate 3 showing standard samples (red) and patient samples (yellow) 
Abbreviations: std= standard. Ctrl= positive control. Patient samples shown as patient number, group letter and sample 
day.  
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2.4.7 RESULTS 

A photo of plate 3 was taken immediately after reading and is shown in Figure 2.4-3. 

Plates developed colour as shown in response to the presence of αGST.  

 
Figure 2.4-3 Photo of αGST  LISA plate 3 immediately after reading.  
Development of yellow colour indicates presence of αGST in sample 

2.4.7.1 VALIDATION 

Alongside patient samples, calibrator samples A-G were assayed in duplicate on each 

plate to produce a standard curves. Aside from determining αGST in patient samples, 

standard curves were used to provide the limit of detection and compared across plates 

to provide validation data. A sample curve is shown in Fig 2.2-4. 

 
Figure 2.4-4 Standard curve for αGST from plate 3  

Limits of detection (LOD) were determined as 2.5 standard deviations above the 

background. They are given in Table 2.4-3 and compared with values published by the 

manufacturer. 

Table 2.4-3 Limit of detection of αGST  µg/L  on each plate compared to provided reference value 

 Typical LOD Plate 1 Plate 2 Plate 3 Plate 4 

αGST  µg/L) 0.25 0.247248 0.261624 0.097255 0.308198 

y = -0.0007x2 + 0.0816x + 0.0775 
R = 0.9995 
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All LOD are similar or better than quoted limits. No sample matrix issues were visually 

observed. To analyse for inter-plate reproducibility means and standard errors were 

calculated and are detailed in Table 2.4-4.  

Table 2.4-4 Mean and standard error values of standard curve samples 

Concentration 
 μg/L) 

Mean absorbance 
(450/655nm) 

Standard deviation Standard error (%) 

1.25 .1775 .01500 0.084507 
2.50 .2800 .01414 0.050508 
5.00 .4750 .01915 0.040313 

10.00 .8450 .03000 0.035503 
20.00 1.3775 .03403 0.024707 
40.00 2.1800 .02708 0.012422 

Graphs of standard curves from all plates were also prepared (Figure 2.4-5). 

 
Figure 2.4-5 Standard curve for αGST from all plates.  
Graph (A) shows regression line based on mean values from all plates with dotted line representing 95% confidence 
interval of mean values. No value lies outside of the confidence interval. Graph (B) shows the standard curves for each 
plate, virtually superimposed, with all curves lying within the confidence interval. 

The equation of the lines of best fit were: 

Table 2.4-5  quations of lines of best fit for αGST standard curves 

Plate Equation Correlation (r) 

1 y = -0.0007x2 + 0.0819x + 0.1009 0.999649939 
2 y = -0.0007x2 + 0.0816x + 0.0775 0.999549899 
3 y = -0.0006x2 + 0.076x + 0.0813 0.999449849 
4 y = -0.0007x2 + 0.0806x + 0.072 0.999899995 

Assessing the mean and standard error values, all are below 10%, indicating there is very 

little variability between plates. Visually, the lines of best fit for each plate are virtually 

superimposed. From the equations, the intercepts are also virtually identical. To confirm 

this, an analysis of covariance was conducted on the absorbance values to test for 

homogeneity of the regression lines and to test the equality of the error variance. The 
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results of the Levene’s test confirm equal variance between samples F(3, 24)=0.025, 

p=0.995. Testing concentrations across the plates also gave non-significant results with 

F(6, 21)=1.647 p=0.184. These results confirm that there was no significant differences 

between plates. Each observation was independent, variance homogenous (as shown by 

Levene’s tests) and distribution was normal. 

Positive control samples were also included with each kit and assayed in duplicate on 

each plate. Each kit gave the concentration of the quality control sample as a range from 

7.6-12.6ug/L. Results of the plate are considered valid if the calculated value of the 

positive control is within the provided range. The calculated concentrations are provided 

in Table 2.4-6. 

Table 2.4-6 Calculated concentrations of positive control samples determined in each plate (±standard deviation of 
duplicate samples) compared with provided reference range 

Positive Control Reference range Plate 1 Plate 2 Plate 3 Plate 4 

αGST  µg/L  7.6-12.6 9.48±1.06 10.19±0.94 10.32±0.54 9.86±0.54 

The positive control values were within the reference range on all plates, confirming the 

validity of the results. 
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2.5 LCMS ASSAY 

Four medicines: caffeine, dextromethorphan, chlorzoxazone and midazolam were used to 

probe the activity of four CYP450 enzymes, 1A2, 2D6, 2E1 and 3A4, as discussed in 

Sections 1.5. Separate assays for each of these probes are readily available in the 

literature but this would have required significant volumes of blood for this study (Tanaka 

et al. 2003; Zhou et al. 2004; Fuhr et al. 2007). Obtaining such large volumes of blood 

from very sick patients in the acute stage of recovery was unrealistic as it could impede 

their recovery and was also difficult from an ethical and practical standpoint. Accordingly, 

minimising the blood collected from these patients was of paramount importance. As 

such, an assay that could determine the concentration of all of the compounds of interest 

in small blood-volume samples, rather than separate assays involving larger blood 

volumes, was not only an attractive prospect from an efficiency point of view but was also 

an ethical and clinical necessity.  

In determining the activity of the CYP450 enzymes of interest, the concentration of the 

four probe drugs and their primary metabolites in plasma samples were measured. An 

internal standard was used resulting in analysis of nine compounds in total. This 

presented several analytical challenges: 

 The expected concentrations of these drugs and metabolites were below the 

sensitivity limits of HPLC with UV detection; 

 Only one of the drugs and metabolites could be detected by fluorescence, 

rendering fluorescence detection unsuitable; 

 ELISA plates were not available for the detection of all of the compounds, 

simultaneously or as individual assays. ELISAs that were available required too 

much sample for the separate analysis of all eight compounds arising from the 

probe drugs (i.e. ELISA does not require an addition of an internal standard); and 

 Mass spectrometry (MS) is sensitive enough to detect the compounds at the 

concentration levels expected and is commonly used for this type of research. 

However, MS methods in the literature either analysed the compounds in 

separate runs, or in varying combinations with other drugs or used other probe 

drugs that were purposely avoided in this study (e.g. metoprolol). No method was 

reported at the time of this analysis that examined the concentration of all the 

compounds of interest simultaneously (Zhu et al. 2001; Jerdi et al. 2004; Fuhr et 
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al. 2007; Kumar et al. 2007; Lahoz et al. 2007; Zhang et al. 2008; Ghassabian et al. 

2009; Liu et al. 2009).  

Unlike UV or fluorescence detection, MS determines the mass to charge ratio of charged 

particles and determines their abundance as they pass through the detector. MS has two 

main advantages over photometric detection: 

 MS can be several thousand times more sensitive; and (Polettini 2006) 

 Co-eluting peaks can be identified by their individual molecular weights. 

Accordingly, chromatographic separation of compounds is less important than 

with UV detection and as a result, run times can be shorter (Silverstein et al. 

1991). 

For the reasons stated above a MS method was the most appropriate technique for 

this particular analysis. Access to a MS was given through the generous support of the 

Analytical Chemistry Department, UCC. To minimise the time required using the liquid 

chromatogram/mass spectrometer (LCMS), development of the sample preparation 

method was completed on the same HPLC instrument used in Section 2.2. 

2.5.1 SAMPLE PREPARATION AND EXTRACTION 

Sample preparation for LCMS is more demanding than for HPLC. Similar approaches can 

be taken to those discussed in Section 2.2, utilising one of four techniques: direct 

injection, protein precipitation before injection, liquid-liquid extraction and solid phase 

extraction. For this analysis, the aims of the extraction process were to produce a sample 

suitable for injection that used one of these four methods and, in addition: 

 Contained all compounds of interest, unconjugated and extracted in high 

amounts; 

 Was free of proteins and salts; 

 Was of reduced volume, concentrated from the original sample; 

 Was free of particulate residue; 

 Could be produced repeatedly; and 

 Was capable of scaling up for the preparation of the several hundred samples 

taken for this analysis.  
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Direct Injection

Plasma proteins damage instrument.

Concentrations below limit of detectIon. Buffer from 

deconjugation would not be removed

Solid Phase Extraction

Allows for concentration

Free of proteins and buffers

Can’t extract all compounds from one sample. 

Large amount of sample required. 

Expensive

Liquid-liquid extraction

Allows for concentration

Free of proteins and buffers

Possible to extract all compounds from one sample

Sample volume variable

Labour intensive but cheap

Protein precipitation

Aqueous supernatant hard to concentrate. 

Buffer for β-glucuronidase would suppress ionisation in LCMS

Low and variable analyte recovery due to co-precipitation.

Final sample must be:

Unconjugated

Concentrated

Free of proteins

Free of buffers 

Free of particulates

Repeatable

Scalable

Plasma 

sample

 
Figure 2.5-1 Aims of sample preparation and factors that influenced choice of extraction method 

The important factors that influenced what extraction method was chosen are shown in 

Figure 2.5-1. The background to these aims listed above are briefly discussed in sequence 

below: 

Contained all compounds of interest, unconjugated, extracted in high 

amounts; 

The first step of sample preparation was to deconjugate the compounds from other 

molecules added to them during the drug metabolism process.  

Drugs are frequently conjugated to other groups during the metabolism process, most 

commonly to a glucuronide moiety (Daali et al. 2008). This was the case with most of the 

compounds under investigation. Glucuronide conjugation interferes with analysis in two 

ways:  

1. It increases the water solubility of the compound making it harder to extract from 

plasma with organic solvent; and  

2. It increases the molecular weight of the compound, altering its MS signal (which is 

based on a molecular mass to charge ratio) so that the conjugated compounds 

would not be seen in their expected mass to charge range. 

While the molecular weight could be approximated for a glucuronidated compound (by 

adding the weight of a glucuronide group to the molecular weight of the compound of 

interest), and therefore be detected by LCMS, no analytical standards were available for 
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the glucuronide conjugates to produce standard curves and enable the calculation of their 

concentration. It was therefore necessary to de-conjugate these compounds from their 

glucuronide.  

There are several methods in the literature that facilitate glucuronide deconjugation, 

most commonly acid hydrolysis (Daali et al. 2008) or the use of a β-glucuronidase enzyme 

(Kaushik et al. 2006). Acid hydrolysis is difficult to limit to the desired deconjugation 

reaction and may cause degradation of other compounds, whereas β-glucuronidase is 

specific to the deconjugation of glucuronide. There are several sources of β-glucuronidase 

but the most commonly used and readily available is derived from the juice of the snail 

Helix pomatia. Optimal activity of this enzyme requires shaking, incubation and a buffered 

acidic environment; a summary of the conditions used in relevant papers is given in 

Appendix 14.  

The inclusion of buffer salts presented problems for the LCMS, which are discussed 

further below. Inclusion of a buffer into the sample preparation excluded direct injection 

of the sample and any simple protein precipitation method of sample preparation, as the 

buffer would still be present in the final sample. Only solid phase or liquid-liquid 

extraction methods remained as options. After reviewing the literature and contacting 

product specialists at various suppliers, there was no one solid phase cartridge that could 

extract all the compounds being analysed, and sample requirements were too great for 

separate extractions. This left liquid-liquid extraction as the only option. 

Was free of proteins and salts; 

The problems arising from the protein content of plasma samples that makes them 

unsuitable for direct injection in HPLC systems were discussed in Section 2.2. These 

problems are magnified in LCMS systems. Due to the sensitive nature of detection, 

proteins present in plasma samples can, at worst, permanently damage the instrument, 

but more commonly leave ‘ghost signals’ that indicate the presence of a compound even 

though none is present in the injected sample. These signals can remain long after the last 

injection. Salts in samples also cause problems. MS requires the ionisation of the 

compound being analysed and the presence of salts hampers this ionisation. Therefore 

samples that contain salts can suppress this ionisation and also permanently damage the 

instrument, so these also must not be present in samples.  
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Was of reduced volume, concentrated from original sample; 

The concentration of some of the compounds of interest was expected to be so low, it 

was desirable to increase their concentration by reducing the final volume of the sample. 

This required the solvents used in the extraction process to be volatile and capable of 

evaporation to dryness. Following this evaporation, a reduced volume of a solvent could 

be used to reconstitute the sample’s evaporation residue. 

Was free of particulate residue; 

To protect the column and MS from any residual proteins and particulates, the only way 

to ensure particulate removal was to filter the samples. Several product specialists were 

contacted before the final product was chosen. 

Could be produced repeatedly; 

Results of the extraction process were required to be reproducible across the expected 

concentration range. Inconsistencies would invalidate the results. An internal standard 

was required to validate this and account for any variation. Phenacetin was chosen for 

this purpose as incorporating an internal standard for each compound would have been 

extremely cumbersome and problematic for the analysis. Phenacetin was widely used in 

the literature in similar types of analysis as a surrogate internal standard for all 

compounds of interest.  

Was capable of scaling up for the preparation of the several hundred 

samples taken for this analysis; 

The sample preparation process had to be scalable to facilitate analysis of the several 

hundred samples within the period of access to the LCMS. It also had additional 

requirements: 

1. Preparation must be limited to a 2mL Eppendorf tube to prevent sample loss 

through adherence to the sides of larger tubes, and to fit available laboratory 

equipment; and 

2. Use a minimum volume of extraction solvent to prevent long evaporation times 

as these would require large volumes of nitrogen gas to evaporate the samples. 

The availability of this gas was limited, frequently running out at the weekend. 
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2.5.2 EXTRACTION DEVELOPMENT 

2.5.2.1 MATERIALS 

2.5.2.1.1 ANALYTICAL COMPOUNDS 

Caffeine, chlorzoxazone, paraxanthine and phenacetin were purchased from Sigma-

Aldrich (St. Louis, Missouri, United States of America (USA)). Dextromethorphan, 

dextrophan, 6-OH-chlorzoxazone and 1-OH-midazolam were purchased from Toronto 

Research Chemicals (Ontario, Canada). Midazolam was the generous gift of Hoffman-La-

Roche AG (Basel, Switzerland). As midazolam is a Schedule Four Controlled Drug, a license 

to import (Appendix 10) and a license to possess (Appendix 11) midazolam were 

necessary and these were obtained from the Department of Health and Children. 

2.5.2.1.2 SOLVENTS AND BUFFERS AND OTHER MATERIALS 

HPLC grade acetonitrile, methanol and water were purchased from Fisher Scientific 

(Leicestershire, UK). Potassium phosphate (puriss), sodium acetate (puriss), β-

glucuronidase powder (type H-1, 1.96MU/g), analytical grade formic acid 88%, glacial 

acetic acid, diethyl ether, dichloromethane, chloroform and 2-propanol were purchased 

from Sigma-Aldrich (St. Louis, Missouri, USA). The mobile phases were filtered through 

type HA filters (0.45μm Millipore, Bedford, Massachusetts, USA) to remove particulate 

matter before use. These filters were chosen as they were compatible with the mobile 

phases being used.  

2.5.2.2 CHROMATOGRAPHIC CONDITIONS 

For development of sample preparation, separation of all the above listed analytical 

compounds in a single run was performed on a Phenomenex Synergi 4m Hydro-RP 

250x4.6mm column with a Phenomenex SecurityGuard precolumn held at 30°C 

(Phenomenex, Cheshire, UK). A gradient mobile phase combined 0.1M KH2PO4 + 1% 

formic acid (A) with acetonitrile + 1% formic acid (B) (Table 2.5-1).  

Table 2.5-1 Chromatographic conditions for HPLC assay for optimisation of LCMS sample preparation 

Time %A Flow rate (mL/min) 

0 85 1 
16.75 68 (nonlinear) 1 
17 85 1 
21 85 1 
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The gradient had initial conditions of 85:15 (A:B) which declined at a non-linear curve of 5 

to 68:32 (A:B) by 16.75 minutes. The initial conditions were then restored by the 17th 

minute and maintained for a further four minutes. The flow rate remained constant at 

1.0mL/min.  

2.5.2.3 APPARATUS 

Samples were centrifuged using a Mikro 120 Centrifuge (Hettich, Tuttlingen, Germany) at 

14000 RPM. Compounds were analysed using an ATI Unicam UV/Vis spectrometer 

(Unicam Analytical Systems, Madison, USA). Samples were incubated with an Apollo 

shaker oven HP50 (CLP, Northampton, UK) set at 37°C and 20RPM. Extracted solvents 

were evaporated using a TurboVap LV concentration workstation (Caliper LifeSciences, 

Massachusetts, USA) at 40°C under a gentle flow of nitrogen gas until dryness. Final 

samples were filtered using Multiscreen Solvinert 0.45µm low binding hydrophilic 

polytetrafluoroethylene filters and Multiscreen vacuum manifold (Millipore, 

Massachusetts, USA) at 15-20mmHg. 

Analysis of samples during the sample preparation method development was conducted 

using a Waters 2695 Alliance HPLC system (Waters Corporation, Milford, USA) equipped 

with a 2996 Photodiode Array (PDA) Detector, 2475 Multi Wavelength Fluorescence 

Detector and column oven. Chromatograms were captured and processed using 

Empower Pro interface (Empower 2, Waters Corp., Milford, USA).  

2.5.2.4 OVERVIEW 

A summary of factors relevant to the application of liquid-liquid extraction to this work is 

shown in Figure 2.5-2. 
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Compounds must be unionised to 

extract Liquid-liquid extraction

Compounds have different 

physiochemical properties.

Their extraction varies with solvent, pH 

and volume of solvent

Sample volume collected insufficient 

to analyse each compound separately. 

Need simultaneous extraction

From literature

diethylether, dichloromethane, 

chloroform, 2-propanol most common 

extraction solvents

Sample pH and solvent choice must 

be combine to improve extraction of 

various compounds

Volumes must be kept fit within 2mL 

eppendorf tube and be optimised to 

extract maximum amount of 

compound for each addition.  
Figure 2.5-2 Summary of factors affecting liquid-liquid extraction 

This method of sample preparation relies of the varying solubilities of the compounds of 

interest and the contaminants present in the plasma sample. Compounds must be ionised 

to extract and, given the varying physicochemical properties of the compounds being 

measured, this presented the biggest analytical challenge to this research. The literature 

was searched for further details of the compounds solubilities and these are summarised 

in Table 2.5-2 below. Where exact values were unavailable, solubilities are given as freely 

soluble (1 part in 1–10); insoluble (1 part in more than 10000); or sparingly soluble (1 part 

in 30–100) (Lund 1994). Molecular weights, necessary for LCMS analysis, were obtained 

from the Agilent Mass Hunter workstation Acquisition 2.00 software (Agilent 

Technologies, Massachusetts, USA) based on each molecule’s empirical formula.  

Several experiments were undertaken to understand, develop and optimise the 

extraction of the nine compounds of interest. Each of these experiments is summarised 

with key findings and graphs to support the conclusions where relevant in Table 2.5-3 

further below.  
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Table 2.5-2 Structural and solubility details of compounds under investigation 
Abbreviations: MR= molecular weight; (M+H)+= MR of ionised compound; Abs= UV absorbance maxima or fluorescence 
excitation/emission wavelengths; LogP=octanol:water partition coefficient; H2O=water; EtOH=ethanol; 
CHCl3=chloroform; (C2H5)2O=diethyl ether; Free=freely soluble; Ins=insoluble; Spr=sparingly soluble. References: 1-
(Toronto Research Chemicals 2007), 2-(Sigma-Aldrich 2009); 3-(Moffat et al. 2011); 4-(Lund 1994) 

Compound pKa MR (M+H)
+
 Abs LogP Solubility 

Phenacetin  

2.23 
179.09 
180.1 

244nm
3
 1.6

3
 H2O 1:1300

3
 

EtOH 1:15
3
 

CHCl3 1:14
3
 

(C2H5)2O 1:90
3
 

Caffeine  

143 
194.08 
195.09 

273nm
3
 -0.07

3
 H2O 1:46

3
 

EtOH 1:66
3
 

CHCl3 1:5.5
3
 

(C2H5)2O 1:530
3
 

Paraxanthine  

8.82 
180.16 
181.07 

271nm
2
 -0.2

2
 H2O  

EtOH  
CHCl3  
(C2H5)2O  

Dextromethorphan  

8.33 
271.19 
272.2 

λex/em 

280/ 
315nm

3
 

3.97
3
 H2O 1:60

3
 

EtOH 1:10
3
 

CHCl3 Free
3
 

(C2H5)2O Ins
3
 

Dextrorphan  

 
257.18 
258.19 

λex/em 

280/ 
315nm

1
 

3.1
1 

H2O  
EtOH  
CHCl3  
(C2H5)2O  

Chlorzoxazone  

8.03 
169 
170 

280nm
3
 1.6

3
 H2O Spr

3
 

EtOH 1:20
3
 

CHCl3 1:250
3
 

(C2H5)2O 1:60
3
 

6-OH-chlorzoxazone  

 
184.99 
186 

297nm
1
  H2O  

EtOH  
CHCl3  
(C2H5)2O  

Midazolam  

6.23 
325.08 
326.09 

219nm
3
 4.3

3
 H2O Ins

4
 

EtOH Free
4
 

CHCl3 Free
4
 

(C2H5)2O Free
4
 

1-OH-midazolam  

 
341.07 
342.08 

246nm
1
  H2O  

EtOH  
CHCl3  
(C2H5)2O  
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Table 2.5-3 Summary of experiments in development of liquid-liquid extraction method for CYP450 probe drugs. 
Each experiment is summarised in term of Aim, Experiment (a brief summary of the experiment and conditions), Findings (the key findings from the experiment) and Implication (what was learnt from 
the experiment that was relevant to the assay development and future work). Abbreviations used: DEE- diethyl ether; DCM- dichloromethane; CL- chloroform; P- 2-propanol; CLP- a mixture of 
chloroform and 2-propanol; N2- nitrogen gas; HPLC- high pressure liquid chromatography; PDA- photodiode array; AQ- aqueous; ACN- acetonitrile; PCA- perchloric acid; NaAc- Sodium acetate; PH- 
phenacetin; CA- caffeine; PX- paraxanthine; DM- dextromethorphan; DX- dextrorphan; CZX- chlorzoxazone; 6CZX- 6-hydroxy-chlorzoxazone; MDZ- midazolam; 1MDZ- 1-hydroxy-midazolam; PO4 
potassium phosphate buffer; MeOH- methanol; 

HPLC method developed for simultaneous 

determination. Initial conditions 85:15 

AQ:ACN.

Experiment FindingsAim Implication

0.5mL of DEE, DCM, CL and P added to 

separate HPLC vials and timed to 

evaporate to dryness under gentle stream 

of N2.

P component of extraction solvent must be 

small or offset by other more volatile 

solvents.

DEE to be stored at -80°C to reduce 

evaporation.

Extraction of parent compounds (not 

metabolites), 20µg/mL, each in 100µl 

water tested from 500µL of four different 

solvents: DEE, DCM, CL, P and most 

common solvent in literature, chloroform 

and 2-propanol (9:1) mixture (CLP). 

Sample vortex mixed, centrifuged, organic 

layer separated and evaporated to 

dryness under N2 gas (extracted).  

Reconstituted 1mL in water.

Results compared to standard curves. 

Analysis by spectrophotometer.

Analysis of by spectrophotometer took too 

long, results inconsistent.

Simultaneous method needed.

Water spiked with all compounds to 10µg/

mL. 1mL of each solvent added and 

extracted

Solvent evaporated and reconstituted in 

mobile phase initial conditions. 

Extraction varied with compound and 

solvent. No one perfect solvent.

Consideration must be given to adjusting 

pH to have compounds un-ionised.

Stock solutions containing all compounds 

at 125µg/mL made. Dilution of 80µL of this 

solution with 920µL of plasma gives 

plasma spiked with 10µg/mL of all 

compounds (spiked plasma).

Maximum UV absorbance determined for 

each compound.

PDA set to scan for UV maxima of each 

compound.

P very slow to evaporate (45 min), 

followed by CL (27min) DCM (8min) and 

DEE (4min).

Consider adding a base during extraction 

to increase extraction of bases.  Given 

buffering capacity of plasma, experiments 

to determine base required should be in 

plasma.

Repeated extractions may be necessary.

Only DEE forms supernatant, others form 

subnatant under aqueous layer. 

Supernatant much easier to work with than 

subnatant.

No solvent completely extracted any 

compound.

DEE evaporated so quickly it is difficult to 

pipette a volume accurately.

DCM was best overall, but extracted 

bases poorly.

1. Determine 

evaporation of each 

solvent

2. Determine 

Solubility of 

compounds in 

solvents

Key Graphs
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500µL of spiked plasma added to 1000µL 

of NaAc. Add 1M NaOH in 10µL amounts 

to achieve pH 2 units above pKa of 

strongest base. Repeat extraction in 

previous step.

NaAc buffer 0.2M pH 4.75 necessary for 

β-glucuronidase activity. Literature shows 

buffer volume must be ≥2x sample 

volume.

Extraction of DX decreases with addition 

of buffer. Adding acid ionises basic 

compounds which then cannot extract into 

solvent.

Add base before final extraction to remove 

ionisation of bases

500µL of spiked plasma added to 1000µL 

of NaAc and 500µL of DCM. Extract, 

evaporate and reconstitute.

500µL spiked plasma added to 30µL of 

0.33, 0.66 and 1M NaOH. (High 

concentration used to minimise additional 

volume). 30µL water added to controls 

500µL of DCM added and extracted. Two 

further 500µL DCM extractions completed. 

Organic recovered separately, dried and 

reconstituted in 200µL mobile phase. 

Analysed separately to see recovery from 

each step.

CZX and PX extract poorly, 10-20% of 

controls.

The three extraction steps recover 

approximately 75, 20, 5% respectively of 

total recovery at each step. 

Basic and neutral compounds extract well, 

>80% of controls.

 Extraction not significantly affected by 

base strength.

Protein precipitant may be required to form 

harder protein pellet. Adding acid would do 

this and also improve extraction of acidic 

compounds. From paracetamol assay 

volume of PCA 30% required was 10% of 

sample volume, but total removal of 

proteins from plasma is not required, only 

solidification of precipitating proteins to 

make organic subnatant easier to access. 

What is the correct volume for this 

application? Are there alternative 

methods?

Second extraction step contributes 

significantly to recovery, third step less 

important.

Protein precipitate forms diffuse layer 

above organic subnatant. Protein sticks to 

pippette tip making clean extraction of 

organic layer difficult.

Adding base unionises and improves 

extraction of bases.

One step extraction not possible.

Smallest volume of PCA sufficient for this 

purpose.

Poor peak shape on chromatogram 

impairs integration. Significant tailing seen. 

May be effect of pH.

Rerun above with 0.01M phosphate buffer 

as aqueous mobile phase.

Introduce phosphate buffer into aqueous 

mobile phase.

After vortexing all samples form a creamy 

homogenous liquid. Following centrifuging, 

solid protein pellet formed between 

aqueous supernatant and organic 

subnatant of all samples which makes 

removal of organic much easier.

25, 50 and 100µL of 30% PCA added to 

1mL spiked plasma (5µg/mL) followed by 

500µL DCM. Organic extracted and 

evaporated to dryness and reconstituted in 

200µL mobile phase.

pH of sample with 25µL PCA is 1.

Peak shape markedly improved. Recovery 

of acids >80% but bases <20%. Volume of 

PCA does not affect recovery.

Upon reconstituting dried solution in 

mobile phase, white supernatant formed 

and stuck to pipette tips making clean 

sample transfer to HPLC difficult. 

pH9-10 achieved after 120µL addition. 

This pH may be too acidic and risk 

hydrolysing compounds. Also need to 

account for effect of buffer required for β-

glucuronidase activity. 

Extraction of bases improved.

3. Determine 

extraction from 

plasma

4. Improve extraction- 

precipitate protein

5. Incorporate buffer 

for  β-glucuronidase 

activity

6. Improve extraction 

of bases

Experiment FindingsAim Implication Key Graphs
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Previous experiment repeated using pH 4, 

7 and 10 buffer containing all probes at 

10µg/mL. Also included Chloroform/2-

Propanol 9:1 mixture (P) also commonly 

reported. 

500µL of spiked plasma added to 1mL of 

NaAc buffer. Four samples have 500µL 

DCM added, another four have 500µL 

CLP added. Solvents extracted. 120µL 

NaOH added to remaining aqueous 

solution and solvents crossed over for the 

second extraction to give the following 

combinations (1
st
-2

nd
): DCM-CLP, DCM-

DCM, CLP-CLP, CLP-DCM. Organics 

evaporated in Turbovap at 40°C for 45min 

and reconstituted in ACN.

Repeated previous experiment using 

either acetonitrile or methanol as 

reconstituting solvent in final step. 

ACN chosen as reconstituting solvent.

Would using acetonitrile (ACN) or 

methanol (MeOH) (commonly used for 

protein precipitation) as reconstituting 

solvent cause these proteins to precipitate, 

making them easier to avoid when 

pipetting?

Both sets of samples free of protein. 

Reconstitution with ACN gives clearer 

solution.

Access to Turbovap. All samples now in triplicate instead of 

duplicate.

 ?Some effect of plasma on 6CZX and DX 

preventing extraction. Go back to aqueous 

samples to get better assessment of the 

effect of pH on their extraction- ?buffering 

capacity of plasma or protein binding 

making 6CZX and DX extraction difficult to 

assess.

Peak fronting in chromatograms impairing 

integration- ?as a result of using ACN to 

reconstitute evaporation residue. 

CLP now an option again (took too long to 

evaporate by hand). 

8. Determine 

superiority of DCM or 

CLP CLP generally superior over DCM at 

extraction especially for bases following 

addition of NaOH. 

Extraction still mostly ≤65%. 6CZX not 

found in any sample, DX<10%.  

Reduce injection volume.

DEE vastly superior for extraction of acidic 

compounds. 

Compounds in much lower concentrations 

than controls- compounds are leaving 

sample- ?Problem with reconstitution.

Reconstitute in mobile phase removes 

peak fronting.

Recovery poor in all samples. Examine left 

over aqueous samples after extraction- 

lower 6CZX or DX concentration indicates 

better extraction.

Reducing pH to 4 in previous experiment 

increases extraction of 6CZX. Does 

repeating previous experiment using 

phosphate buffer of pH2.9 further improve 

recovery? Method as previous but 

reconstituted mobile phase. 

6CZX and DX spiked into buffer 0.5mL pH 

4, 7, 10 buffers to give 10µg/mL. Each 

sample extracted with 0.5mL of one of 

three solvents, DEE, DCM and CLP. 

Solvents extracted and evaporated and 

reconstituted in ACN.
DX extracted best at pH 10 into CLP.

 6CZX extracted best at pH 4 into DEE.

9. Improve extraction 

of 6CZX and DX

10. Improve extraction 

of 6CZX
Lowering pH 4.75 to 2.9 does not improve 

recovery of 6CZX.

Stick with chloroform rich mixture.

DX extracts best into CLP or DEE at pH 

10.

pH achieved by additional NaAc buffer 

sufficient for extraction of acids. 

1MDZ; best at high pH, no strong impact of solvent. Extracting 50-70%

6CZX; strong effect of pH, 4≥7>>10, solvent DEE (70%)>CLP (50%)>>DCM (24%)

CA; Small pH effect, 4<7<10, strong effect of solvent  P; (83%)>CLP (81%)>DCM (67%), DEE (10%)

CZX; Strong pH effect 10>>7≈4, some solvent  effect P (83%)=CLP (83%)>DCM (76%)>DEE(62%)

DM; solvent effect increases with pH. Best extraction at high pH. CLP=P (83%)> DCM (68%)> DEE (56%)

DX; Strong effect of pH 10>>>7=4. No solvent effect P (86%)≥ CLP (84%)≥ DEE (83%)≥ DCM (81%)

MDZ; pH effect varies with solvent. DEE best at pH 10 (81%), other solvents do not vary with pH (≈60%)

PX; Strong pH effect 4>7>>10. Strong solvent effect P (53%)≥CLP (50%)>>DCM (24%)>>DEE (5%)

PH; Small effect of pH 4≥7≥10. Moderate solvent effect P (82%)≥CLP (81%)>DCM (72%)>DEE (51%).

Chloroform/2-Propanol mixtures have ≈ 

extraction. 9:1 mix takes longer to 

evaporate. Recovery still ≤65%.11. Determine effect 

of pH

Centrifuge samples at 14000RPM for 

10min to try and solidify precipitant.
No change to precipipant.
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before injection

Experiment FindingsAim Implication Key Graphs
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Adding DEE does not improve extraction. 

Erroneously first extraction with CLP has 

superior yield to DEE+CLP as if DEE 

impaired extraction. This experiment was 

repeated and results confirmed.

DEE does not add to the extraction as the 

first step.

240µL required.Advised that pH7 would be optimal for 

allowing all compounds to simultaneously 

extract into solvent. What volume of 1M 

phosphate buffer  pH 7.6 (PO4) would be 

sufficient to neutralise 500µL of 0.2 NaAc 

buffer?

6CZX extracts especially poorly

250µL NaAc buffer containing all 

compounds at 10µg/mL added to 250µL of 

either CLP or DEE. Extract organic. Add 

120µL PO4 and a further 250µL CLP to all 

samples. Add 120µL NaOH followed by a 

further 250µL CLP.

Concern over DX extraction and variation 

of pH after addition of fixed volume of 

NaOH. Would a buffer help?

K2HPO4/KH2PO4 buffer was used because 

it also has buffer activity upon addition of 

NaOH at pH10-12. Add middle extraction 

for weak acids/bases. 

13. Determine 

superiority of CLP or 

DEE

12. Neutralise sample

14. Improve extraction 

of bases

To scale up method to 500µL of plasma 

was exceed capacity of 2mL eppendorf. 

Can volume of additions be reduced?

Drop PCA from the proceedure (risk of 

hydrolysis compounds).

Use MeOH to reconstitute evaporation 

residue.

Remove DEE from final extraction.Negligible amounts found in final DEE 

extraction.

White precipitate still forms between PO4 

and NaOH addition.

MeOH markedly improves recovery >90%, 

except for 6CZX , and does not alter peak 

shape.

Reconstitution of evaporation residue in 

mobile phase compared to reconstitution 

in MeOH.  125µL water containing all 

probes 10µg/mL added to 125µL NaAc 

and PCA 10µL. 250µL CLP added and 

extracted followed by 120µL of PO4 and a 

further 250µL CLP added and extracted. 

30µL NaOH then added followed by 

addition and extraction of another 250µL 

CLP and lastly the addition and extraction 

of 250µL DEE. Two sets of triplicate 

samples produced; 1 set reconstituted in 

mobile phase, the other in MeOH.

Some compounds have poor aqueous 

solubility, but all have good solubility in 

MeOH. 

All samples now mixed for 10min at 

1400RPM.

?Precipitant from buffers (note no plasma 

present in sample unlike earlier 

experiment that noted this problem). Try 

adding small volume of PCA.

White precipitate making uncontaminated 

removal of extraction solvent difficult. 

Reduced variation between replicate 

samples with longer mixing.

Caffeine and Paraxanthine show strong 

relationship with mixing time, with greater 

extraction on longer mixing. Other 

compounds show no improvement.

250µL water containing all probes to 10µg/

mL added to 250µL NaAc buffer. 250µL 

CLP added and extracted. 250µL PO4 was 

added followed by addition and extraction 

of 250µL CLP. 50µL NaOH was added 

followed by a further addition and 

extraction of 250µL CLP. Sample were 

either vortex mixed for 30 seconds or 

shaken at 1400RPM for either 1min or 

10min. 

In one set of samples a shaker was used 

instead of a vortex. This greatly improved 

extraction.

Only small amounts of DX and DM came 

out in DEE. No other compound found in 

thrid extraction. Need to change from 

DEE?

Average recovery:

1MDZ; 61%

6CZX; 32%

CA; 76%

CZX; 69%

DM; 72%

DX; 66%

MDZ; 55%

PX; 38%

PH; 77%.

Extraction of 6CZX and PX main issues. Incorporate base prior to final extraction to 

increase extraction of basic compounds.

250µL NaAc buffer containing all 

compounds at 10µg/mL added to 250µL of 

CLP. Extract organic. Add 120µL PO4 and 

a further 250µL CLP. Extract organic. Add 

50µL of 4M NaOH and 250µL DEE. 

Extract organic. Evaporate and 

reconstitute in mobile phase.

15. Compare mixing 

methods

16. Does using 

methanol to 

reconstitute 

evaporation residue 

improve extraction?
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Reintroduce DEE earlier in process for 

6CZX and PX extraction.

No major effect.Does concentration of drugs influence 

their extraction? Prepare 100µL plasma 

samples containing PX and CZX at 

concentrations of 10, 5, 1, 0.5, 0.1µg/mL. 

Add 100µL NaAc, 6µL PCA, 200µL CLP. 

Extract CLP, evaporate and reconstitute in 

100µL MeOH. 

6CZX extraction <60%.Alter initial HPLC conditions and gradient 

to improve resolution of 6CZX and DX.

Plasma reduces recovery to >70%, except 

for 6CZX and PX at <45%.

DX and DM show better extraction from 

water. All other compounds difference 

≤5%.

For 500µL plasma and 500µL NaAc 

volume of 1M PO4 required for pH 7-8 = 

400µL. To increase pH 10-12 with 4M 

NaOH volume required 80µL.

Volumes of PO4 and NaOH required 

checked

Two sets of samples run 1) 500µL plasma 

spiked to 10µg/mL 2) 500µL water spiked 

to 10µg/mL. Each added to 500µL NaAc 

and 30µL PCA followed by addition and 

extraction of 1mL CLP. 400µL PO4 added 

followed by addition and extraction of 

500µL CLP. 80µL NaOH then added 

followed by final addition and extraction of 

500µL of CLP. Reconstitute evaporation 

residue in MeOH.

?DX and DM extraction effected by buffers 

in plasma- pH not manipulated as much as 

in water- based samples.

Extraction of  6CZX and PX now only 

problems.

Large solvent volume only important when 

PX extraction occurs (first extraction).

PX proportional to solvent volume, PX 

most hydrophilic. Others not affected.
125µL of water spiked to 10µg/mL of all 

compounds added to 125µL NaAc. 

Extraction with either 125, 250 or 500µL of 

CLP. 120µL PO4 added followed by repeat 

extraction using previous volume. 30µL of 

NaOH added along with a final extraction 

of CLP with the same volume. Evaporation 

residue reconstituted in MeOH.

17. Role of solvent 

volume

18. Examine effect of 

plasma

19. Examine effect of 

compound 

concentration

20. Improve PX and 

6CZX extraction

Changes to mixing and reconstitution 

procedures have improved recovery.

Most compounds extracting 65-90%- Only 

DX extracts poorly at 40% but only one 

extraction- no added base in this 

experiment.

?affinity of DEE for 6CZX strong, needing 

less than 250µL for extraction.

Other compounds, do not show any 

significant effect on changing ratio of 

solvent.

CA and PX rely on CLP for extraction and 

extract poorly into DEE.

Both CA and PX show strong relationship 

with CLP volume, with extraction 

decreasing as CLP volume decreases.

Repeat using plasma containing all 

probes.

Discovered in literature- PCA known to 

reduce recovery through binding to 

precipitating protein. ACN does not do 

this. Try ACN instead.

?Volume of DEE required >>750µL.

Increasing DEE component did not alter 

6CZX extraction.

?More as a result of reducing CLP volume.

Increasing DEE component reduces PX 

extraction.

Organic layer from 750µL and 500µL 

additions of CLP form subnatant, 250µL 

addition forms supernatant. 

3 sets of 250µL plasma containing 10µg/

mL PX and 6CZX added to 250µL NaAc 

and 15µL PCA. Each set had one of the 

solvent combinations added and 

extracted: 750µL CLP+250µL DEE; 500µL 

CLP+500µL DEE; 250µL CLP+750µL 

DEE. 
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ACN seems to partition with organics, 

increasing organic volume to 1100µL from 

first extraction.

125µL plasma containing all compounds 

added to 125µL NaAc followed by 250µL 

ACN or 10µL PCA. 750µL and 125µL DEE 

added to both samples and extracted 

followed by 100µL PO4. 500µL CLP then 

added and extracted followed by 25µL 

NaOH and a final addition and extraction 

of 500µL CLP.

Recovery increases overall by ≈ 10%.

Replace PCA with ACN as precipitant.Both volumes of ACN provide acceptable 

protein precipitation. 
125µL of plasma spiked with all 

compounds to 10µg/mL added to 125µL 

NaAc in two sets. First set has ACN 250µL 

added, second has 500µL. Both followed 

by 250µL CLP which is extracted and 

evaporated. 

21. Improve PX and 

6CZX extraction- use 

ACN as precipitant

22. Compare ACN to 

PCA

Repeat above with 1mL of CLP at both 

extractions.

Method does not have same total volume 

of CLP- did not account for CLP from 

second extraction in previous method.

Would a two extraction method without 

addition of buffer be equivalent?

125µL plasma containing all compounds 

added to 125µL NaAc followed by 250µL 

ACN and 750µL CLP and 125µL DEE. 

Organics extracted. 25µL NaOH added 

followed by addition and extraction of 

750µL CLP.

ACN improves extraction 5-20% for all 

compounds except CA which ≈.

?PCA causes buffer salts to precipitate. 

?Can this step be removed.

Following centrifugation immediately prior 

to removal of second set of organic ?white 

crystals seen at bottom of sample tube 

where PCA was used as precipitant.

?Removal of ACN with organic in first 

extraction allows proteins to re-suspend. 

Proteins appear almost dissolved and do 

not contaminate pippette tip.

Following addition of organic for second 

extraction protein pellet dispersed into 

aqueous phase- this occurred more 

prominently in with ACN samples.

Protein precipitation of both precipitants 

adequate.

Average recovery with ACN as precipitant:

1MDZ; 95%

6CZX; 91%

CA; 80%

CZX; 96%

DM; 92%

DX; 88%

MDZ; 92%

PX; 77%

PH; 88%.

23. Simplify method

Average recovery with two extractions:

CA; 63%

PX; 58%

All other compound extraction >75%.

Average recovery improves:

CA; 68%

PX; 70%

All other compound extraction >75%.
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Confirms earlier results when mixed with 

CLP. DEE has strong extraction for 6CZX.

Increasing DEE does not improve 

extraction.

Conditions for β-glucuronidase activity 

checked. 

?Saturation of solvent at lower volumes, 

?at larger solvent volumes mixing may be 

less efficient.

Recovery from 1000µL<<2x 500µL 

recovery. 

Repeat previous experiment with 500µLx2 

vs 1000µL and 750µLx2 vs 1500µL 

volumes of CLP.

May not be transferable to larger solvent 

volumes- ?solvents saturated at these 

lower volumes. Need to examine effects of 

larger volumes.

Repeated extraction does not significantly 

improve recovery over single extraction of 

equivalent volume at these volumes 

(2x250µL≈1x500µL).

Recovery increases with increasing 

solvent volume but effect tails off so 

750µL≈1000µL, except for PX which 

shows linear relationship from 20% up to 

≈60%.

Is there and effect of solvent volume- is 

2x250µL extractions superior to 1x500µL? 

Five sets of 125µL spiked plasma (10µg/

mL) were prepared. 125µL NaAc and 

250µL ACN added to each. One of the 

CLP volumes added to each set 250µL, 

250µL followed by another 250µL, 500µL, 

750µL, 1000µL. Solvents extracted, 

evaporated and reconstituted in MeOH.

24. Improve PX and 

6CZX extraction- CLP 

volume

Four sets of samples increasing to 500µL 

plasma. Add 100µL 2M NaAc, 500µL 

ACN, 800µL CLP. To each set add 25, 50 

or 100µL DEE. Organic phase extracted 

and reconstitute in 500µL MeOH.

In most cases extraction did not improve 

by increasing solvent volume about 

6xsample volume, except for paraxanthine 

which continued to improve but tailed off 

after solvent volumes exceed 6xsample 

volume.

25. Optimise DEE 

volume

All compounds extract >80%.

Use 250µL CLP in final extraction. Add 

remaining solvent to second extraction 

(cannot be added to first extraction as the 

would exceed sample tube capacity).

No significant difference between 500µL 

and 250µL CLP volumes.

Only 1MDZ and DX affected by reduction 

in final CLP extraction, DX mostly, 

reducing only ≈10% across range 500µL 

to 50µL range. 

Only compounds that extract in basic 

conditions are 1MDZ and DX. Only very 

small amount of 6CZX, CA, CZX, DM, 

MDZ and PH are seen in final extraction.

Four sets of 500µL plasma containing all 

compounds 10µg/mL. 100µL 2M NaAc 

added along with 500µL ACN 450µL CLP 

and 25µL DEE. Organic phase extracted 

and a further 550µL CLP added and 

extracted followed by the addition of 

100µL NaOH. To each set of samples a 

final 500, 250, 100 or 50µL CLP was 

added and extracted. 

PX extraction dependent on CLP volume- 

is third extraction necessary again?

Constraints: Turbovap cannot evaporate 

organic volumes >2mL… ACN partitioning 

into organic phase so total extraction 

solvent must be <1.5mL.

Average recovery reduces:

PX; 51%.

26. Reintroduce 

middle extraction
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Lower MeOH content samples have 

symmetrical peaks.

Reducing MeOH content reduces recovery 

by 5-10%.

Repeat method in two sets. Process both 

sets the same until the final step. Dissolve 

evaporation residue of one set in MeOH 

and the second set in MeOH/water 50:50. 

Column on LCMS much shorter than 

previously used. The shorter column does 

not allow for the same degree of mixing 

and suspect the MeOH base of the sample 

is carrying the compounds through the 

column- causing the peak fronting. Try 

reducing MeOH content in solution that 

dissolves evaporation residue.

Extraction good by peak fronting impairs 

integration.

Samples prepared as above- different 

column used in LCMS.

Final method:

500µL plasma added to a 2mL eppendorf tube. 

100µL 2M NaAc containing 2000u β-glucuronidase was added, vortex mixed for 30 seconds and incubated overnight in a shaker oven at 37°C and 40RPM.

500µL ACN with 10µg/mL internal standard PH was added at end of incubation

450µL CLP and 25µL DEE was added and mixed for 10minutes at 1400 RPM and then centrifuged at 14000 RPM for 10 minutes. All of organic phase was removed

A further 800µL CLP was added and extracted as above. 

To remaining aqueous sample 100µL NaOH and a final 500µL CLP was added and organic layer extracted. 

All organics extracted were combined into a 2mL eppendorf and evaporated to dryness in a Turbovap under a gentle stream of nitrogen in a water bath at 40°C

To residue 250µL of MeOH was added and sonicated for 10minutes followed by mixing at 1400RPM for a further 10minutes.

27. Confirm final 

method

28. Stop peak fronting

Use MeOH/water 50:50 to dissolve 

samples.

Experiment FindingsAim Implication Key Graphs

 
2.5.2.5 Β-GLUCURONIDASE ACTIVITY 

Once the extraction method had been finalised, the last the step in the development of this sample preparation was the optimisation of glucuronide 

deconjugation. As discussed in Section 2.5.1, some of the analytes are extensively glucuronidated in vivo as part of their metabolism and elimination 

processes. Glucuronide moieties conjugated to analytes alter their m/z and this would affect their detection by LCMS. As it was intended to 

quantitate these analytes it was necessary to ensure complete deconjugation of the glucuronide. Section 2.5.1 also contains the justification for the 

use of β-glucuronidase for this deconjugation. Like many hydrolytic enzymes, β-glucuronidase requires specific conditions for optimal activity; chiefly 

amongst these are pH 4.5-5 and temperature of 37°C for molluskan sources (Appendix 14). Control of pH was achieved by dissolving the β-

glucuronidase powder in 2M acetate buffer adjusted to pH4.75. Acetate buffer was chosen as it had good buffering capacity around the pH range 

required for β-glucuronidase activity and, following addition of NaOH, a secondary buffering capacity around pH 10. This alkali environment was 

desirable in the latter stages of the extraction method described above. Temperature was maintained by incubating the samples in a shaker oven at 

37°C. Other factors requiring optimisation included:  
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 Ratio of buffer: sample volume; 

 Effect of substrate concentration; 

 Whether activity was dependent on amount of β-glucuronidase or its concentration; 

 Amount of β-glucuronidase per sample; 

 Temperature of incubation; and 

 Length of incubation. 

The optimisation of these factors used the only analytical glucuronide conjugate readily available, paracetamol glucuronide, as analytical glucuronide 

conjugates of the probe drugs/metabolites are not commercially available. The hydrolysis of paracetamol glucuronide back to paracetamol was 

achieved by incubation with freshly prepared solutions of β-glucuronidase (20000u (10.38mg)/mL 2M acetate buffer, pH 4.75). β-glucuronidase was 

freshly prepared with each experiment because the hydrolytic activity of the enzyme was not stable (Kaushik et al. 2006). Both paracetamol and 

paracetamol glucuronide were detected using the assay previously described (Section 2.2) and complete conversion was deemed to have occurred 

when no paracetamol glucuronide was found. All samples were prepared in triplicate along with controls containing acetate buffer without the 

addition of β-glucuronidase. A summary of the method development is shown in Table 2.5-4. This resulted in the overnight incubation of 1000u β-

glucuronidase in 100µL of 2M acetate buffer per 500µL patient plasma sample. Three measures were taken to ensure these deconjugation reaction 

conditions would achieve complete hydrolysis of the probe drugs/metabolites in the actual patient samples: 

 The concentration of paracetamol glucuronide used in this method development was 10-100 fold greater (100µg/mL) than the sum of probe 

drugs/metabolites under investigation in the patient samples; 

 The amount of β-glucuronidase included in the patient samples was at least five times more than was required to fully hydrolyse these more 

concentrated 100µg/mL of paracetamol glucuronide samples; and 

 The period of incubation used (overnight) was at least three times longer than that necessary for the complete deconjugation of the 

100µg/mL of paracetamol glucuronide samples. 
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Table 2.5-4 Summary of experiments to optimise β-glucuronidase activity (abbreviations as in previous figure) 

1. Optimise conditions 

for β-glucuronidase 

activity

Oven did not heat. As all samples in 

triplicate run one of three of each set. 

Incubate other two of each set for a further 

8 hours and run.

Six sets of 100µL plasma samples spiked 

with 100, 50, 10, 5, 1 and 0.5µg/mL of PG. 

50µL BG added to all samples. Samples 

vortex mixed and incubated overnight in 

shaker oven overnight at 37°C. At end of 

incubation 10µL PCA added, mixed and 

centrifuged, supernatant injected.

Concentration of P proportional to dilution 

by additional NaAc.

2:1 ratio of sample:NaAc sufficient to 

achieve pH within enzyme activity limits.

No influence of NaAc volume on 

deglucuronidation.

No PG found in samples- No P present in 

controls.
Three samples sets of 100µL plasma 

containing 10µg/mL PG added to 50µL of 

BG. To two sets of samples an additional 

50 or 150µL of NaAc added. Samples 

incubated in shaker oven overnight at 

37°C. 10µL PCA added, samples vortex 

mixed for 30seconds and centrifuged. 

Supernatant injected. 

Activity determined using conversion of 

paracetamol glucuronide (PG) to 

paracetamol (P). 1000u β-glucuronidase 

dissolved in 50µL NaAC (BG).

No PG present in all incubated samples 

regardless of PG concentration.

All unincubated samples had poor β-

glucuronidase activity. 

No advantage incubating samples beyond 

5 hours. 

1-3 hour samples have almost complete 

deconjugation but some variation. 5 and 

18 hour sample have complete 

deconjugation in all samples. 

Five sets of 100µL plasma containing PG 

100µg/mL. 50µL BG added and mixed. 

Incubate each set in shaker oven at 37°C 

for 1, 2, 3, 5 and 18hrs. At end of 

incubation 10µL PCA added, mixed and 

centrifuged, supernatant injected. 

All samples converted all PG to P.

BG very potent. Suspect carryover of BG 

from pipette tip while pipette NaAc 

sufficient to convert PG to P.

100µL of plasma containing PG 100µg/

mL. Add BG 50, 40, 30, 20, 10, 0µL made 

up to 50µL with NaAc. Samples vortex 

mixed and incubated overnight in shaker 

oven overnight at 37°C. At end of 

incubation 10µL PCA added, mixed and 

centrifuged, supernatant injected. 

Even samples with no BG added 

converted all PG to P. Controls all PG as 

normal.

Volume of sample did not overcome β-

glucuronidase activity. 

Three sets of 50µL BG and 25µL PG 1mg/

mL added to 75, 225 or 475µL plasma. 

Samples vortex mixed and incubated 

overnight in shaker oven overnight at 

37°C. At end of incubation 10µL PCA 

added, mixed and centrifuged, 

supernatant injected.

Temperature critical to β-glucuronidase 

activity.

2. Determine effect of 

NaAc volume

3. Determine effect of 

PG concentration- 

and duration of 

incubation

4. Determine effect of 

plasma volume on β-

glucuronidase activity

5. Determine effect of 

varying amount of β-

glucuronidase

6. Determine effect of 

incubation time on β-

glucuronidase activity

Experiment FindingsAim Implication
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2.5.3 PATIENT SAMPLES 

Once the extraction method was shown to be successful the analysis was transferred to 

the LCMS for the analysis of patient samples. 

2.5.3.1 MATERIALS 

Materials used for the method development were also used for the analysis of patient 

samples. In addition Fisher Optima® LC/MS grade water and acetonitrile were used in 

combination with Optima® LC/MS grade formic acid (Fisher Scientific, Leicestershire, UK) 

as the mobile phase for the LC/MS. 

2.5.3.2 APPARATUS 

Apparatus used for the method development were also used for the analysis of patient 

samples. In addition, the analysis of patient samples was conducted using an Agilent 1200 

HPLC attached to Agilent 1200 series DAD SL detector and a Agilent 6510 Quadrupole 

time-of-flight (Q-TOF) mass spectrometer, with an electron spray ionisation (ESI) ion 

source (Agilent Technologies, Massachusetts, USA). Data were acquired on Agilent Mass 

Hunter workstation Acquisition 2.00, analysed on Agilent Mass Hunter workstation 

Qualitative Analysis 2.00 and quantitated using Agilent Mass Hunter workstation 

Quantitative Analysis 2.00.  

2.5.3.3 CHROMATOGRAPHIC CONDITIONS 

Separation was performed on an Agilent XDB C18, 1.8um, 4.6x50mm column, heated on 

the heating block to 35°C. A linear gradient method was employed using 95% water 5% 

acetonitrile 0.1% formic acid (A) and 95% acetonitrile 5% water 0.1% formic acid (B) as 

shown in Table 2.5-5. Solvents are often premixed in LCMS systems to prevent use of 

100% acetonitrile, which can damage and occlude the narrow bore tubing utilised in 

LCMS systems. 
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Table 2.5-5 Chromatographic conditions for LCMS assay 

Time %B Flow rate (mL/min) 

0.75 7.0 0.600 
3.00 25.0 0.600 
5.00 30.0 0.600 
7.00 30.0 0.600 
7.50 90.0 0.600 
9.00 90.0 0.600 
9.50 7.0 0.600 

2.5.3.4 SAMPLE PREPARATION 

Polypropylene 1.5mL and 2.0mL Eppendorf tubes and 50mL sample tubes (Sarstedt, 

Nümbrecht, Germany) were used for all sample preparation. Samples were inserted into 

HPLC sample vials containing 100µL low volume inserts (Fisher Scientific, Dublin, Ireland). 

Reference samples of nominal concentration were prepared in Solvent A. The Injection 

volume was 10µL. 

2.5.3.5 MASS SPECTROMETER PARAMETERS 

The parameters of the mass spectrometer were optimised for the detection of the 

analytes of interest. As the mass of these analytes was known, acquisition was in MS 

mode only in the m/z range of 100-1000. This causes the instrument to behave as a TOF, 

selecting ions in the desired m/z range without fragmentation in the collision cell. 

Initially the effects of changes to drying gas flow rate on the detector response were 

examined. Drying gas flow rate will affect the ionisation of the sample as it leaves the 

nebuliser. Each analyte was prepared in diluent to 0.1mg/L. 6L was chosen as the ideal 

flow rate (Figure 2.5-3), however, this caused condensation inside the ESI unit. After 

attempts to prevent this by reducing the mobile phase flow rate were unsuccessful, a gas 

flow of 10L/min was chosen as a compromise.  
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Figure 2.5-3 Effect of drying gas flow rate on LCMS detector response 
Shown as mean +standard deviation from 1mg/L sample in diluent 

Due to time constraints only midazolam response was optimised further as it was 

expected to be in the lowest concentration. The remaining conditions role and optimal 

status were as follows:  

 Gas temperature effects ionisation in the ESI. There was very little difference 

across the temperatures assessed with the optimal being 340°C (Figure 2.5-4). 

 
Figure 2.5-4 Effect of drying gas temperature on detector response 
Shown as mean +standard deviation from 1mg/L sample in diluent 
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 Capillary voltage provides the pull of charged ions from the earthed ESI unit into 

the charged MS capillary. There was only minor change and 4000V was chosen 

(Figure 2.5-5). 

 
Figure 2.5-5 Effect of capillary voltage on detector response 
Shown as mean +standard deviation from 0.1mg/L sample in diluent 

 Fragmentor voltage in TOF only mode determines the energy applied to the ion 

stream to exclude ions outside the chosen m/z range. It was selected as 210V. 

 
Figure 2.5-6 Effect of fragmentor voltage on detector response 
Shown as mean +standard deviation from 0.1mg/L sample in diluent 

Additional settings were the rate of acquisition at 2 spectra/second and nebuliser 

pressure of 50 PSIG. 
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3 RESULTS 

3.1 PATIENT DEMOGRAPHICS 

3.1.1 SUMMARY OF PATIENT DEMOGRAPHICS FOR ALL GROUPS 

Demographic information was collected from each group. The description of each group was given in Section 2.1.1. This information is summarised 

below in Table 3.1-1 and continued in Table 3.1-2. All groups were broadly similar in age, although Group A had the highest mean age (63.2±11.0yrs). 

Group C was the youngest (47.7±8.1yrs), reflecting the different diagnosis of this group. Group D was, on average, the youngest of the groups 

undergoing bowel surgery although this group had the largest standard deviation (Table 3.1-1). 

Table 3.1-1 Summary table of patient demographics 
Summary data are presented as mean and standard deviation (Mean (SD)) for continuous data, Count and per cent of group (Count (%)) for categorical data and median and interquartile range 
(Median (IQR)) for discrete, non-normal data. Other abbreviations: BMI- Body Mass Index; Drinker- broken down by number of self-reported standard drinks consumed per average week- “+” ≥1, 
<10/week; “++” ≥10, <20/week; “+++”≥20/week;  ancer- if malignancy was main indication for surgery. 

Group N Age (Years) 
Mean (SD) 

BMI (kg/m2) 
Mean (SD) 

Male 
Count (%) 

Smoker 
Count (%) 

Drinker 
Median (IQR) 

Cancer 
Count (%) 

A 10 63.2 (11.0) 28.6 (5.6) 8 (80) 0 (0) + (0,++) 10 (100) 
B 4 57.9 (3.3) 25.4 (2.4) 2 (50) 4 (100) + (+,+) 4 (100) 
C 8 47.7 (8.1) 23.3 (4.0) 0 1 (12.5) 0 (0,0) 8 (100) 
D 11 52.3 (20.9) 27.6 (4.3) 8 (72.7) 3 (27.3) + (0,++) 7 (63.6) 

Based on the BMI results, all the groups except for Group C could be classified as overweight (i.e. BMI>25 kg/m2). The average BMI of Group C (23.2 

kg/m2) was within the healthy weight range. In many cases the patients in Group C had completed courses of chemo or radiotherapy prior to 

enrolling in the study which may have resulted in weight loss prior to the study. The majority of the patients in the study were male, except for 

Group C, again reflecting the diagnosis of those in Group C. There were very few smokers in the study, with the exception of Group B in which all 

patients smoked. Patients did not smoke during the study itself as this was not permitted by the hospitals involved. There was a wide range of 
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alcohol consumption amongst the patients, with patients in Groups A and D having the highest average consumption. There were no drinkers in 

Group C. Unlike all the other groups, many of the patients in Group D had a diagnosis other than cancer as the main reason for surgery.  

Table 3.1-2 Summary table of patient demographics (continued) 
Other abbreviations (In addition to those used in the previous table) ASA status- (American Society of Anaesthesiologists (ASA) physical status 

Group Duration of Surgery (hr) 
Median (IQR) 

Number of preoperative medicines 
Median (IQR) 

ASA status 
Median (IQR) 

Total Paracetamol dose (g) 
Median (IQR) 

A 3 (2.5, 3.4) 2 (0, 7.5) 1.5 (1, 2) 42.5 (41.4, 43.6) 
B 2.25 (1.9, 2.5) 0 (0, 0.25) 1 (1, 1) 21 (21, 21) 
C 2.25 (2, 2.6) 0 (0, 0.25) 1 (1, 1.3) 21 (21, 21) 

D 5 (4.6,5.6) 0 (0, 2.5) 1 (1, 2) 20 (19.5, 20) 

Group D had the longest surgery time (median 5 hrs; IQR 4.6-5.6), reflecting the more time consuming nature of laparoscopic surgery undergone by 

the majority of this group, whereas Groups A, B and C were broadly similar in duration of surgery (Table 3.1-2). Group A had the highest number of 

preoperative medicines (median 2; IQR 0-7.5) which is also reflected in their higher median ASA status. No medicines taken preoperatively were 

known to alter paracetamol metabolism. During the course of the study, Group A had twice the amount of paracetamol than the other groups. This is 

slightly less than may be anticipated given the dosing schedules for each group, however, the median for Group A (42.5; IQR 41.4-43.6) was brought 

down by the first patient who was withdrawn from the study early.  

As discussed in Section 2.1, reconfiguration of surgical services ended bowel resections at the first hospital. To continue collection bowel resection 

patients the study was moved to a second hospital (Hospital 2). Groups A, B and C were recruited from Hospital 1, whereas Group D was from 

Hospital 2. 

3.1.2 PATIENT DEMOGRAPHICS OF GROUP A 

Group A consisted of 10 patients undergoing major bowel resection. The demographics of this group are detailed in Table 3.1-3.  
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Table 3.1-3 Group A Patient demographics 
Presented as mean and standard deviation (SD), number and per cent (%) of group or median and interquartile range (IQR) as indicated. All other abbreviations are as in previous tables.  

Patient Age Sex Weight (kg) Height (m) BMI (kg/m2) Cancer Smoker Drinker Pre-op 
medications 

ASA status 

1A 87 M 96 1.8 29.63 Y N N 9 2 
2A 65 F 87 1.64 32.35 Y N N 3 2 
3A 67 M 129 1.78 40.71 Y N ++ 6 2 
4A 62 M 83 1.63 31.24 Y N + 9 2 
5A 52 M 92 1.85 26.88 Y N +++ 1 2 
6A 73 F 58 1.62 22.10 Y N N 8 1 
7A 58 M 67 1.69 23.46 Y N ++ 0 1 
8A 54 M 89 1.71 30.44 Y N N 0 1 
9A 51 M 68 1.68 24.09 Y N +++ 0 1 
10A 58 M 79 1.79 24.66 Y N + 2 1 

Mean (SD) 63.2 (11)  84.8 (19.7) 1.71 (0.08) 28.56 (5.57)      
Count (%)      10 (100) 0 (0)    
Median (IQR)        + (++) 2 (0, 7.5) 1.5 (1, 2) 

This group received the high dose of paracetamol, 1.5g every four hours. The majority of all patients were male (80%) and aside from patients 1 and 

6, all patients were aged in their 50’s and 60’s. This is younger than expected from the data given by the National Cancer Registry of Ireland for 

colorectal cancer patients (National Cancer Registry Ireland 2010). BMI varied widely amongst the group, with six being overweight and four of these 

being classified obese. All patients in this group had a malignancy as their main indication for surgery. None were smokers but two were heavy 

drinkers. There was also a wide range in the number of preoperative medicines, which in most cases was reflected in a higher ASA status (Table 

3.1-3). 
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Table 3.1-4 Group A patient demographics (continued) 
All abbreviations explained in previous tables 

Patient Main Procedure Duration of Surgery (hr) Paracetamol dose (g) Plasma Samples Urine Samples 

1A Transverse colectomy 3.5 11 16 16 

2A Extended hemicolectomy 2 44 24 37 

3A Anterior resection 3 39.5 26 30 

4A Anterior resection 5 41 26 33 

5A Anterior resection 3 42.5 26 32 

6A Left hemicolectomy 1.5 41 24 31 

7A Anterior resection 3 41 25 31 

8A Left hemicolectomy 2.5 41 11 27 

9A AP resection 2.5 42.5 21 35 

10A AP resection 4.5 36.5 18 28 

Median (IQR)  3 (2.5, 3.4) 42.5 (41.4, 43.6) 24 (19, 26) 31 (29, 33) 

The majority of surgery involved an anterior resection, followed by colectomies (Table 3.1-4). The full set of plasma samples was collected from the 

majority of the patients in this group with the exception of patients 1 and 10 who withdrew from the study early for reasons given in Table 3.1-11. 

The majority of patients in this group had central lines which were also used for obtaining blood samples. Complete urine collections were also 

obtained in 9 of the 10 cases in this group from urinary catheters which were present for the duration of the study for all patients. Although not 

recorded, the majority of these patients were not ambulating until Day 3 or 4, remaining on complete bed-rest until then. Most were fasted until the 

third day when a light diet of soup and ice cream was commenced. All patients remained in the ICU until at least the evening of Day 3, where they 

received one-to-one nursing care.  
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3.1.3 PATIENT DEMOGRAPHICS OF GROUP B 

Group B consisted of four patients undergoing the same surgical procedures as Group A, but receiving the licensed dose of intravenous paracetamol, 

1g every six hours. The reconfiguration of regional surgical services ended recruitment into this group prematurely and consequently, only four 

patients were recruited (Table 3.1-5). This group was also younger that the national average (57.9±3.3 yrs) (National Cancer Registry Ireland 2010) 

and closer to the healthy range of BMI with less variation than Group A. All had a malignancy as their primary indication for surgery and all were 

smokers. There was a low rate of alcohol consumption amongst all in this group and they had a lower average ASA status than Group A (Table 3.1-5). 

Table 3.1-5 Group B Patient demographics 
All abbreviations explained in previous tables 

Patient Age Sex Weight(Kg) Height(m) BMI(kg/m2) Cancer Smoker Drinker Pre-op 
medications 

ASA status 

1B 60 M 79 1.78 24.93 Y Y + 0 1 
2B 61 F 64 1.68 22.68 Y Y + 1 1 
3B 54 M 87 1.85 25.42 Y Y + 0 1 
4B 55 F 87 1.75 28.41 Y Y + 0 1 

Mean (SD) 57.9 (3.3)  79.3 (10.8) 1.77 (0.07) 25.36 (2.36)      
Count (%)      4 (100%) 4 (100%)    
Median (IQR)        + (0) 0 (0, 0.25) 1 (1, 1) 

All of Group B required colectomy, with two additionally receiving a cholecystectomy. This was slightly above the national average (National Cancer 

Registry Ireland 2010) but being a small group it is difficult to apply to population trends. The duration of surgery was also shorter than for Group A. 

Patient 2 in this group did not consent to give blood samples but complete sets of blood and urine were obtained all other patients (Table 3.1-6) 
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Table 3.1-6 Group B patient demographics (continued) 
All abbreviations explained in previous tables 

Patient Surgery Duration of Surgery (hr) Paracetamol dose (g) Plasma Samples Urine Samples 

1B Left hemicolectomy, cholecystectomy 1.75 20 19 30 
2B Sigmoid colectomy, cholecystectomy 2 20 - 29 
3B Left hemicolectomy 2.5 20 21 31 
4B Right hemicolectomy 2.5 20 21 30 

Median (IQR)  2.25 (1.9, 2.5) 21 (21, 21) 20 (14, 21) 30 (29.7, 30.3) 

3.1.4 PATIENT DEMOGRAPHICS OF GROUP C 

Group C contained patients undergoing mastectomy who received the licensed dose of paracetamol of 1g every six hours. The mean age 

(47.7±8.1yrs) of this group was younger than all other groups and younger than the national average of those with breast cancer (Table 3.1-7). They 

were all female. The mean BMI (23.27kg/m2) was within the healthy range as were all patients except for one obese patient. Only one patient was a 

smoker, who was also a heavy drinker. Very few took medications preoperatively and only two were ASA 2. All patients except for patients 4 and 8 

received chemotherapy prior to their surgery. 
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Table 3.1-7 Group C Patient demographics 
All abbreviations explained in previous tables 

Patient Age Sex Weight (kg) Height (m) BMI (kg/m2) Cancer Smoker Drinker Pre-op medications ASA status 

1C 41 F 62.3 1.67 22.33 Y Y +++ 0 1 
2C 42 F 67.2 1.74 22.20 Y N N 0 1 
3C 45 F 72 1.67 25.82 Y N N 0 1 
4C 52 F 88 1.66 31.93 Y N N 1 2 
5C 64 F 54 1.67 19.36 Y N N 0 1 
6C 41 F 62 1.74 20.48 Y N N 4 2 
7C 52 F 63 1.67 22.59 Y N N 0 1 
8C 41 F 65 1.74 21.47 Y N N 0 1 

Mean (SD) 47.7 (8.1)  66.7 (10) 1.7 (0.1) 23.3 (4.0)      
Count (%)      8 (100) 1 (12.5)    
Median (IQR)        0 (0, 0) 0 (0, 0.25) 1 (1, 1.25) 

All patients underwent a mastectomy with all but one having concomitant axillary node clearances (Table 3.1-8). The duration of surgery varied from 

1.5 to 3 hours. While all patients received the full paracetamol doses, plasma collection was very problematic in this group as none of these patients 

had central lines postoperatively, and most being post-chemotherapy had poor venous access. Urine samples were also problematic as only a few 

patients had urinary catheters for longer than the first postoperative day and female patients had trouble collecting all of their own urine. 
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Table 3.1-8 Group C patient demographics (continued) 
All abbreviations explained in previous tables 

Patient Surgery Duration of Surgery (hr) Paracetamol dose (g) Plasma Samples Urine Samples 

1C Mastectomy, Axillary Node Clearance 2 20 22 13 
2C Mastectomy, Axillary Node Clearance 1.5 20 8 18 
3C Mastectomy, Axillary Node Clearance 2 20 6 19 
4C Mastectomy, Axillary Node Clearance 2 21 19 28 
5C Mastectomy, Axillary Node Clearance 3 20 12 27 
6C Mastectomy, Axillary Node Clearance 2.5 20 15 27 
7C Mastectomy, Axillary Node Clearance 3 20 6 13 
8C Mastectomy 2.5 20 - 7 

Median (IQR) 2.3 (2, 2.6) 21 (21, 21) 9 (5, 13) 20 (12, 27) 

3.1.5 PATIENT DEMOGRAPHICS OF GROUP D 

Group D was a continuation of Group B, being composed of patients undergoing colorectal surgery; however, as noted above, Group D patients were 

recruited from Hospital 2. Under a different surgeon there was a different approach to colorectal surgery. At Hospital 2 colorectal surgery patients 

underwent an enhanced recovery programme where they received high protein drinks supplements pre and post operatively and were returned to 

light diets the morning following surgery, if it was tolerated. Patients were also encouraged to ambulate on the day following surgery and as part of 

that tubing for IV lines and urinary catheters were removed on this or the second day. In addition, the majority of the procedures were laparoscopic. 

Similar to Groups A and B, the average age of this group was less than national averages (52.3±20.9 yr). The average BMI for the group was in the 

overweight range (27.63±11.76 kg/m2). Unlike all other groups, several of the patients who underwent surgery did not have malignant disease as the 

main indication for surgery. Few were smokers although several were alcohol drinkers. The number of preoperative medications also varied widely 

along with ASA status (Table 3.1-9). 
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Table 3.1-9 Group D Patient demographics 
All abbreviations explained in previous tables 

Patient Age Sex Weight (kg) Height (m) BMI (kg/m2) Cancer Smoker Drinker Pre-op 
medications 

ASA 
status 

1D 42 M 58.9 1.67 21.12 N N N 0 1 
2D 61 M 93 1.74 30.72 N N ++ 9 2 

3D 60 M 65 1.68 23.03 N Y +++ 0 1 

4D 52 M 89 1.8 27.47 Y N ++ 3 2 

5D 52 F 74 1.68 26.22 Y N N 0 1 
6D 73 M 93 1.62 35.44 Y N N 0 1 

7D 33 F 90 1.66 32.66 N N + 10 2 
8D 65 M 82 1.72 27.72 Y Y ++ 0 1 
9D 70 M 69 1.72 23.32 Y Y + 2 2 

10D 66 M 73 1.67 26.18 Y N ++ 0 1 
11D 60 F 79 1.62 30.10 Y N N 0 1 

Mean (SD) 52.3 (20.9)  78.7 (11.8) 1.69 (0.1) 27.6 (4.3)      

Count (%)      7 (64%) 3 (27%)    
Median (IQR)        + (0,++) 0 (0, 2.5) 1 (1, 2) 

Similar to Group A there were a larger number of rectal cancers than would be expected in the general population although some of those in this 

group underwent this surgery for inflammatory bowel diseases or congenital malformation (Table 3.1-10). Being laparoscopic, these surgeries were 

of much longer duration than the open surgeries in Groups A and B (median (IQR) duration hours: Groups A and B 2.5 (2, 3.125), Group D 5 (4.5, 

5.75)). Obtaining plasma samples was also problematic as only two had central lines in place, however, for the most part, urine collections were 

successful. 
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Table 3.1-10 Group D patient demographics (continued) 
All abbreviations explained in previous tables 

Patient Surgery Duration of Surgery (hr) Paracetamol dose(g) Plasma Samples Urine Samples 

1D Sigmoid colectomy (open) 4.5 19 11 20 
2D Panproctocolectomy, hernia repair (lap) 5.75 18 24 22 
3D Anterior resection (lap) 4.75 19 22 27 
4D Anterior resection (lap) 4.25 19 20 24 
5D Anterior resection (lap) 5.5 19 6 18 
6D Anterior resection (lap) 5 19 6 25 
7D Sub-total colectomy (open) 5.5 19 6 20 
8D Anterior resection (lap) 4.5 19 25 23 
9D Anterior resection (lap) 6 18 6 13 
10D Anterior resection (lap) 6 18 24 21 
11D Anterior resection (lap) 4.75 19 15 24 

Median (IQR) (9 laparascopic, 2 open) 5 (4.5, 5.75) 20 (19.5, 20) 15 (6,23) 22 (20,24) 
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3.1.6 WITHDRAWALS AND COMPLICATIONS 

Table 3.1-11 details withdrawals and complications recorded during the study period. 

Only one patient withdrew consent for participating in the study due to unpleasant 

sensations and dreams that occurred following the administration of midazolam. The 

majority of patients who were withdrawn were as a result of poor venous access for 

blood sampling. Other patients were withdrawn due to nausea or vomiting that 

prevented the administration of the oral medicines used in the study and two were 

withdrawn for reduction in renal function (Table 3.1-11). 

Table 3.1-11 Withdrawals or complications 

Patient Complication 

1A Renal failure- withdrawn day 2 

8A Poor IV access- limited sampling post-op, no bloods day 4 
10A Unpleasant dreams following midazolam- withdrew day 4 
2B Consented for urine only- no bloods 
1C Dehydration post-op- urine not produced for some intervals 

2C Poor IV access- no bloods from day 2 
3C Poor IV access- no bloods post op 
5C Poor IV access- no bloods from day 2 
7C Poor IV access- no bloods post op 

8C Poor IV access- no bloods 
1D Poor IV access- no bloods from day 2 
5D Persistent nausea and vomiting- no bloods post op 
6D Renal failure post-op– withdrawn post op, urine collected 

7D Poor IV access- no bloods post op 
9D Poor IV access- no bloods post op 

11D Poor IV access- no bloods days 1 and 2 
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3.2 PARACETAMOL ANALYSIS VALIDATION 

3.2.1 PLASMA 

Chromatograms were obtained for all patient plasma samples. A sample chromatogram is 

shown in Figure 3.2-1. 

 
Figure 3.2-1 Sample chromatogram of absorbance of paracetamol and its metabolites in plasma  
Chromatogram is from injection of a plasma standard containing 20µg/mL of paracetamol and its metabolites captured 
at 242nm. The elution order and times (mins) were paracetamol glucuronide (6.82), paracetamol cysteine (9.47), 
paracetamol sulphate (10.27), paracetamol (12.63) and paracetamol mercapturate (17.49). 

3.2.1.1 HPLC VALIDATION 

3.2.1.1.1 SPECIFICITY/SELECTIVITY 

Specificity of the assay for paracetamol and its metabolites was examined to ensure that 

endogenous compounds in the patient’s plasma samples did not co-elute and interfere 

with the compounds of interest. This was validated by the absence of interfering 

chromatographic peaks in blank human plasma and from the pre-dose plasma samples 

obtained from the first six patients in Group A (Shah et al. 1992). Selectivity was 

confirmed by peak contours from the PDA (Figure 2.2-2) (Bressolle et al. 1996). 
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Figure 3.2-2 PDA spectra of peaks from Figure 3.2-1.  
From left: paracetamol glucuronide, paracetamol cysteine, paracetamol sulphate, paracetamol and paracetamol mercapturate respectively. In addition to peaks at around 242nm, Paracetamol 
Cysteine and Mercapturate have absorbance peaks at 297nm 

3.2.1.1.2 CALIBRATION CURVES 

Calibration curves were prepared as detailed in Section 2.2  

Linearity of the calibration curve was shown by: 

 The intercept not being statistically different from 0; 

 The slope being statistically different from 0; and  

 The regression coefficient not being statistically different from 1.  

Table 3.2-1 shows all calibration curves passed tests for linearity. 
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Table 3.2-1 Tests of linearity of calibration curves 

Linearity  Intra-batch Inter-batch 

  Mean 95% CI Mean 95% CI 
Paracetamol 
glucuronide 

Intercept 19616.4 ± 26705.31 5074.356 ± 24228.202 
Slope 52565.64 ± 1633.775 53761.53 ± 3070.789 
Correlation 1 ± 0.001 1 ± 0 

Paracetamol 
sulphate 

Intercept 3493.638 ± 9192.73 8306.097 ± 9772.053 
Slope 39322.89 ± 1212.024 40346.56 ± 2374.88 
Correlation 1 ± 0.001 1 ± 0.001 

Paracetamol  Intercept 3464.38 ± 32134.941 25566.72 ± 32763.734 
Slope 90259.51 ± 13237.234 79346.08 ± 7792.874 
Correlation 1 ± 0 1 ± 0.001 

Paracetamol 
cysteine 

Intercept 4719.723 ± 5954.201 4820.502 ± 5733.96 
Slope 29537.71 ± 1366.425 27697.47 ± 2046.41 
Correlation 0.999 ± 0.001 0.999 ± 0.001 

Paracetamol 
mercapturate 

Intercept 1375.735 ± 2282.031 2501.135 ± 3142.974 
Slope 28157.31 ± 406.278 27752.9 ± 1151.106 
Correlation 1 ± 0 1 ± 0 

3.2.1.1.3 EXTRACTION EFFICIENCY 

A seven point dilution series of paracetamol was prepared in triplicate for both plasma 

and diluent and analysed according to Section 2.2. Extraction efficiency was determined 

by dividing plasma sample peak area by the peak area of its respective diluent 

concentration. Figure 3.2-3 shows extraction from plasma was linear with good 

correlation (R>0.99) across the concentration range. This indicates extraction of 

paracetamol from plasma with this method was consistent over concentrations tested.  

 
Figure 3.2-3 Paracetamol extraction efficiency 

Table 3.2-2 shows extraction efficiency was also high and consistent with an average of 

80% extraction efficiency across the concentration range. The extraction method was also 

proven to be reliable as the per cent relative standard deviation (%RSD) figures was 

comparable between the plasma and diluent samples with no trends being observed.  
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Table 3.2-2 Paracetamol extraction efficiency calculation 

Concentration 

(g/mL) 

Diluent 
Avg peak area 

%RSD Plasma 
Avg peak area 

%RSD Extraction 
Efficiency 

40 4234101.41 0.256 3472697.13 0.329 82.017 
20 2083704.68 1.019 1703640.25 0.333 81.76 

10 1051986.77 1.343 837982.57 0.198 79.657 

5 528783.63 1.052 417076.94 1.015 78.875 

2.5 274278.35 0.736 227213.91 0.426 82.841 

1.25 144025.91 0.608 117132.30 2.457 81.327 

0.625 84736.31 0.589 67936.76 1.256 80.174 

    Average 80.95 

These findings were considered acceptable as: 

1. Extraction efficiency was consistent and repeatable across the concentration 

range; and  

2. Extraction efficiency was above levels where losses due to poor extraction 

can lead to calibration curves with small slopes and which can produce 

unreliable results (Bressolle et al.) (Table 3.2-2). 

3.2.1.1.4 PRECISION AND ACCURACY 

Inter and intra batch variations were calculated from high, middle and low concentrations 

for each compound as discussed in Section 2.2. Precision and accuracy were calculated as 

the per cent RSD and per cent recovery respectively and are shown in Table 3.2-3. Values 

were accepted if below 15%, except at the LOQ, when precision and accuracy were 

accepted if less than 20% (Shah et al. 1992; Bressolle et al. 1996). All values passed the 

acceptance criteria. Although still within acceptable limits, lower concentrations generally 

performed worse than middle and high concentrations as the impact of interference from 

the sample matrix was proportionally greater. Paracetamol mercapturate preformed 

worst of all compounds, in keeping with its late elution and poor peak shape.  

The lower concentration of 0.3125µg/mL was originally included as the lower value for 

this compound but this concentration failed tests for precision. Accordingly, the LOQ was 

raised to 0.625 µg/mL, which fell within acceptable limits (Shah et al. 1992). For 

paracetamol mercapturate the increase in LOQ resulted in only six standards being used 

to construct the standard curve. As standard curves are required to contain a minimum of 

five values this was still acceptable (Bressolle et al. 1996). 
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Table 3.2-3 Validation results for plasma HPLC assay 

 LOQ LOD Conc Precision (%RSD) Accuracy (% recovery) 

 
µg/mL 

Intra-
batch 

Inter-
batch 

Intra-batch Inter-
batch 

Paracetamol 
glucuronide 

0.3125 0.156 0.625 9.279 8.948 97.945 98.022 
10 3.802 2.858 102.87 107.477 
80 1.104 3.304 100.347 101.229 

Paracetamol 
sulphate 

0.625 0.156 0.625 4.881 6.967 102.777 95.622 
5 3.81 5.201 101.533 98.679 
40 1.213 2.335 100.598 99.882 

Paracetamol  0.3125 0.156 0.625 6.081 6.466 104.102 94.616 
5 2.069 2.269 97.794 101.692 
40 7.297 7.209 100.114 100.766 

Paracetamol 
cysteine 

0.3125 0.156 0.3125 9.922 12.461 90.121 87.439 
5 2.822 4.204 98.415 99.174 
20 2.258 3.287 100.117 100.4 

Paracetamol 
mercapturate 

0.625 0.156 
 

0.625 11.055 15.432 88.152 86.197 
5 3.47 2.276 101.871 102.459 
20 0.917 1.912 99.955 99.892 

3.2.1.1.5 STABILITY 

Stability of paracetamol in human plasma was examined. There was no evidence of 

degradation of paracetamol in storage for the conditions and durations tested (Table 

3.2-4). 

Table 3.2-4 Stability of paracetamol 

Storage Condition Duration Found ±SD  
(µg/mL) 

Precision  
(RSD %) 

Accuracy  
(%) 

Freezer -80°C 18 months 9.907 ±0.423 3.881 99.002 
Freezer -20°C 6 months 10.191 ±0.306 2.736 101.907 
Fridge 4°C 1 week 10.165 ±0.432 3.876 101.65 
Bench top 24 hours 10.104 ±0.347 3.126 101.04 

3.2.2 URINE 

3.2.2.1 HPLC VALIDATION 

The HPLC assay for urine analysis was revalidated as the chromatographic conditions 

were different to those of the plasma assay. Specifity, LOQ, LOD, precision and accuracy 

were determined in the same manner as described in Section 3.2.1.1.  

3.2.2.1.1 SPECIFICITY/SELECTIVITY 

The order of elution was different to the plasma analysis, with paracetamol cysteine and 

sulphate switching elution order (Figure 3.2-4).  
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Figure 3.2-4 Sample chromatogram of absorbance of paracetamol and its metabolites  
Chromatogram is from injection of a 20µg/mL solution, captured at 242nm. The elution order and times (mins) were 
paracetamol glucuronide (1.86), paracetamol sulphate (2.56), paracetamol cysteine (3.01), paracetamol (3.30) and 
paracetamol mercapturate (12.86) respectively. 

Identity of the peaks was confirmed by UV spectra, as seen in Figure 3.2-5.  

 
Figure 3.2-5 PDA spectra of compound peaks.  
From left: Paracetamol Glucuronide; Paracetamol Sulphate; Paracetamol Cysteine; Paracetamol; Paracetamol 
Mercaptopurate. The additional absorbance peaks of Paracetamol Cysteine and Mercapturate occur at around 297nm 

3.2.2.1.2 CALIBRATION CURVES 

Linearity was assessed as detailed in Section 2.2. Table 3.2-5 shows all calibration curves 

passed tests for linearity. 

Table 3.2-5 Tests of linearity of calibration curves 

Linearity  Intra-batch Inter-batch 

  Mean 95% CI Mean 95% CI 
Paracetamol 
glucuronide 

Intercept 6481.754 ± 11450.589 4940.385 ± 14343.605 
Slope 60309.22 ± 1078.379 60195.84 ± 1030.175 
Correlation 1 ± 0 1 ± 0 

Paracetamol 
sulphate 

Intercept -1145.34 ± 12817.482 2167.087 ± 10390.411 
Slope 108429.9 ± 1170.996 107687.5 ± 1927.475 
Correlation 1 ± 0 1 ± 0 

Paracetamol  Intercept -8070.76 ± 14594.39 3991.286 ± 34133.937 
Slope 147483 ± 3405.818 145076.7 ± 9248.016 
Correlation 1 ± 0 1 ± 0 

Paracetamol 
cysteine 

Intercept 4798.094 ± 6104.336 3959.116 ± 7028.147 
Slope 29389.54 ± 1451.676 28797.85 ± 1718.671 
Correlation 1 ± 0 0.998 ± 0.004 

Paracetamol 
mercapturate 

Intercept -774.736 ± 5550.438 2266.339 ± 10125.641 
Slope 32156.99 ± 2697.149 32054.07 ± 5265.747 
Correlation 0.999 ± 0.001 1 ± 0.001 
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3.2.2.1.3 PRECISION AND ACCURACY 

Whilst defrosting the first set of urine samples an amount of yellow coloured flocculent 

precipitate settled at the bottom of the urine sample container. Initially care was taken 

not to disturb the precipitate and the sample was drawn from the clear, yellow urine. It 

was assumed that, given their solubility, the paracetamol compounds under investigation 

would be homogenously dissolved in the urine. During the validation, five of the closed 

urine sample containers were inadvertently knocked over and agitated just prior to 

preparation for injection. These samples were then shown to have markedly higher 

concentrations of paracetamol metabolites than their previous analysis, although all 

other non-agitated samples and standards absorbed the same (Figure 3.2-6). Graph F of 

this figure also demonstrated that while the measured concentrations on compounds had 

reduced, all compounds were affected to approximately the same degree, and the 

metabolite ratio was not altered. It was suspected the defrosting process created a 

solvent stratification and a resulting inhomogeneous analyte distribution within the 

sample container. All subsequent samples were vigorously shaken prior to sampling. 

Validation then proceeded. Results from this validation are shown in   

Table 3.2-6 and were found to be within acceptable limits (Shah et al. 1992).  

Table 3.2-6 Validation  

 LOQ LOD Conc Precision(%RSD) Accuracy(% recovery) 

 µg/mL  Intra-
batch 

Inter-
batch 

Intra-batch Inter-
batch 

Paracetamol 
glucuronide 

0.3125 0.156 1.25 5.252 3.788 99.018 112.534 
10 1.079 0.542 99.906 99.616 
80 0.972 1.248 100 100.263 

Paracetamol 
sulphate 

0.625 0.156 0.625 7.183 9.642 101.322 96.766 
5 1.531 1.601 99.529 100.337 
40 0.501 1.134 99.997 99.987 

Paracetamol  0.3125 0.156 0.625 10.078 10.508 98.746 95.696 
5 0.448 0.373 100.136 100.195 
40 1.065 3.162 100.031 99.976 

Paracetamol 
cysteine 

0.3125 0.156 0.3125 7.576 14.447 91.133 118.922 
5 1.058 8.718 97.825 96.429 
20 2.023 2.387 100.464 100.822 

Paracetamol 
mercapturate 

0.625 0.3125 
 

0.3125 10.738 17.851 117.801 112.277 
5 3.683 8.544 103.452 102.78 
20 3.614 7.568 99.556 99.512 
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Figure 3.2-6 Effect of shaking urine sample on the amount of analyte measured 
Graphs show paracetamol (A) and its metabolites (paracetamol glucuronide (B), paracetamol cysteine (C), paracetamol 
sulphate (D), paracetamol mercapturate (E)) measured in five different urine samples. First bar (blue) shows the amount 
in measured in the sample before shaking and the second bar (red) the amount after shaking. While the amount 
recovered was reduced, graph F shows the ratio of the metabolites and their relative concentration was maintained.  

3.2.3 SUMMARY 

Two assays for HPLC were developed and validated. Both were found to surpass 

validation requirements.  
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3.3 URINE RESULTS 

Urine analysis is a useful tool for assessing changes to drug metabolism as the metabolic 

products of most drugs, including paracetamol, are mainly excreted in the urine (Siegers 

et al. 1984). Metabolites are usually found in high concentrations and sample preparation 

of urine is usually straight forward. While studies of paracetamol’s metabolism and 

disposition frequently show considerable inter-subject variation, the fractional urinary 

recovery of each of paracetamol’s conjugates remain remarkably constant within each 

subject (Clements et al. 1984; Kietzmann et al. 1990). Fractional urinary recovery can be 

used to prepare metabolic ratios that assess the relationship between drug metabolites 

and/or parent compounds and provide insight into changes of drug metabolism. These 

ratios are a composite measure and depend on both metabolic partial clearance and 

renal partial clearance. For the metabolic ratio to be accurate as a tool to assess changes 

to metabolic partial clearance of any drug, renal partial clearance must remain relatively 

constant. When this is achieved, changes to fractional urinary recovery can be attributed 

to something other than random intra-individual variation (Miners et al. 1992).  

Paracetamol, although freely filtered at the glomerulus, is subject to substantial, but 

incomplete, tubular resorption (Miners et al. 1992). Tubular reabsorption can potentially 

cause significant alterations to renal partial clearance of drugs and is dependent on two 

factors: 

 Urine pH (compounds must be unionised to be resorbed); and  

 Urine flow rate (resorption efficiency decreases with increased urine flow) (Miners 

et al. 1992).  

Paracetamol is a weak acid (pKa 9.5) and is essentially unionised at all urinary pH values; 

accordingly renal partial clearance of paracetamol is independent of urinary pH (Forrest 

et al. 1982; van der Marel et al. 2003). However, during periods of severe dehydration 

and reduced urine flow, paracetamol’s partial renal clearance is reduced (Miners et al. 

1992). This can have a large effect on metabolic ratios that contain the excretion of 

unchanged paracetamol and obscure changes to metabolic partial clearances.  

Conversely, the increased solubility and active tubular secretion of the major urinary 

metabolites exempt them from the factors that affect paracetamol’s partial renal 

clearance. As a result their elimination is independent of urine flow and urine pH 
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(Kietzmann et al. 1990; Miners et al. 1992). Additionally, excretion of paracetamol and its 

metabolites are also independent of creatinine clearance (Kietzmann et al. 1990). 

It is a central hypothesis of this Thesis that paracetamol metabolism changes around the 

time of surgery. This hypothesis was to be tested in the following manner: 

 Quantification of factors known to affect fractional urinary recovery (changes to 

urine volume and percentage of the dose recovered in the urine); 

 Assessment of the contribution of paracetamol and each of the metabolites to 

overall dose recovery; 

 Determination of the contribution of sulphate containing metabolites to the 

overall dose recovery; 

 Preparation of a metabolic ratio to examine changes to the Phase II and Phase I 

pathways involved in paracetamol’s metabolism; and 

 Assessment of the factors that potentially impact on this metabolic ratio.  

3.3.1 ANALYSIS OF RESULTS- PREAMBLE 

Urine was collected every four hours from each patient in the study. This resulted in 

nearly 1000 urine samples for analysis. Information from each sample included: 

1. Patient and patient group; 

2. Sample time and day; 

3. Volume of urine excreted over collection period; and 

4. The concentration of paracetamol and each of its four metabolites of interest. 

These values were then used to calculate amounts and ratios of excreted metabolites. For 

the purposes of analysis of the urine results, concentrations which were determined to be 

below the LOD were set to 0 and concentrations between the LOQ and LOD were set to 

half the LOD. (Shah et al. 1992) 

With at least 30 samples per patient, collected from samples taken every four hours over 

a five day period, clear trends emerged graphically, however summarising the data for 

meaningful statistical analysis was difficult. As an example, Group A’s urinary paracetamol 

glucuronide concentrations are presented in Figure 3.3-1.  
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Figure 3.3-1 Box plot of Group A Paracetamol Glucuronide concentration from all samples  
Concentration displayed as measured in four hour urine collections. Green line marks first sample obtained following 
surgery. Samples numbers are given as day.sample 
 
Table 3.3-1 Sampling intervals, corresponding pooled intervals, (used in statistical analysis), and graph intervals 

Sample Day 
Notes on interval timing 

Sample Interval 
(hr) 

Pooled 
Interval 

Graph 
Day 

Graph Sample 
No. 

Preoperative day 
Time taken from beginning 
of preoperative paracetamol 
dose 

0-4hrs -1 -1 -4 
4-8hrs   -3 
8-12hrs   -2 
12-16hrs   -1 

Day of Surgery 
Times by clock 

1400-1800 0 0 5 
1800-2200   6 

Day 1 Postop 
Times by clock 

2200-0200 1 1 1 
0200-0600   2 
0600-1000   3 
1000-1400   4 
1400-1800   5 
1800-2200   6 

Day 2 Postop 
Times by clock 

2200-0200 2 2 1 
0200-0600   2 
0600-1000   3 
1000-1400   4 
1400-1800   5 
1800-2200   6 

Day 3 Postop 
Times by clock 

2200-0200 3 3 1 
0200-0600   2 
0600-1000   3 
1000-1400   4 
1400-1800   5 
1800-2200   6 

Day 4 Postop 
Times by clock 

2200-0200 4 4 1 
0200-0600   2 
0600-1000   3 
1000-1400   4 
1400-1800   5 
1800-2200   6 
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An analysis of variance, such as a Friedman’s test, on these data would almost certainly 

show a significant difference at p<0.05 occurred across the study. However, with up to 34 

samples per patient, determining where the significant differences occurred in a full post 

hoc test would require nearly 600 Wilcoxon signed rank tests. While useful for displaying 

graphical trends, the clinical relevance of statistical results from one four hour interval to 

another was questionable. Consequently, results for descriptive and statistical purposes 

were pooled. As much of the literature investigating multiple dose paracetamol excretion 

uses 24 hour urine collections, 24 hour intervals were also chosen for the pooling of 

samples for this Thesis. The results for each patient’s four hourly samples were summed 

over each 24 hour interval as shown in Table 3.3-1. To coincide with study drug 

administration, each “day” began at 2200 hours as opposed to midnight. The same data 

in Figure 3.3-1 are shown after pooling was performed in Figure 3.3-2.  

 
Figure 3.3-2 Box plot of Group A Paracetamol Glucuronide concentration after pooling of sample times  
Concentration displayed after samples pooled across day. Green line marks first sample obtained following surgery.  

The concern with pooling data in this way is the loss of variance, which can arise from the 

“smoothing out” of changes to metabolite concentration that occur from one four hour 

sample to the next. The effect of any loss of variance occurring from the pooling was 

assessed graphically and examples are shown below (Figure 3.3-3). The left plot shows 

boxes and whiskers that vary between each other in size and length, demonstrating the 

differences in paracetamol glucuronide concentrations that occur over the day. This is lost 

when the values are summed as shown in the right-hand plot. Friedman’s tests were 

conducted to assess if the variation between the four-hour samples within a 24 hour set 

of samples (such as those in the left plot in Figure 3.3-3) were statistically significant and 

the majority were.  
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Figure 3.3-3 Box plot of Group A Paracetamol glucuronide Concentration on Day 1 before (left) and after pooling 
(right) 

These revealed that there were significant differences between the sample intervals even 

within each 24hr period. Accordingly, the statistical results that arise from these pooled 

values that were used in the analysis below are likely to underestimate the statistical 

significance of differences. Consequently, data are also presented graphically. While 

statistical analysis necessitated pooling values, graphical and regression analysis used the 

full data set (4hr samples). In graphs, sample and day numbers correspond to the times 

shown in Table 3.3-1. The critical level of significance used in this analysis is α≤0.05. 

3.3.2 DISTRIBUTION OF URINE RESULTS 

For each patient group, the summed results for each day were checked for normality 

visually by preparing a histogram with normal curve superimposed, a Q-Q plot and a box 

and whisker plot. In addition, formal normality tests were conducted using the 

Kolmogorov-Smirnov test (D). No result consistently passed normality tests across the 

groups.  

Based on the shape of the histograms, the log10 of the daily values were taken and 

normality tests repeated. While generally improving normality visually, there was still 

clear deviation in the histograms and Q-Q plots and the Kolmogorov-Smirnov tests were 

still significant. For completeness, other transformations were attempted including the 

natural log, inverse, square and square root of the values, but none improved the 

distribution beyond that of the log10 transformation. As normal distributions could not be 

obtained from these transformations, non-parametric methods were used for the 

description and testing of differences within variables across the samples collected.  
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3.3.3 URINE VOLUME 

The volume of urine was expected to change over the course of recovery as a result of the 

stress response and the challenges to fluid balance presented by surgery. Crucially, 

reductions to urine output can affect the excretion of each of paracetamol’s metabolites 

differently. The total volume of urine collected over each four-hour interval was 

measured and summed for each 24hr interval. This figure was then divided by 24 to give 

average hourly urine output for each 24hr interval. 

Descriptive statistics for the urine output are shown. Exact Friedman’s tests were used to 

assess differences across all days of the study and again over the postoperative days 

alone. This was followed by one or two tailed Wilcoxon signed rank tests, where 

appropriate, for post hoc analysis.  

3.3.3.1 GROUP A 

A total of 293 urine samples were collected from patients in Group A. The group median 

volumes and IQRs of each four-hour sample are shown in Figure 3.3-4. It can be seen that 

urine output changed considerably over the course of the study. Before and for the day 

and a half following surgery, median urine volumes were consistent, between 40 and 

70mL/hr. Following this oliguria, diuresis occurred with outputs rising swiftly to reach a 

maximum median of 309mL/hr. Outputs then plateaued (Figure 3.3-4) onto Day 4.  

 
Figure 3.3-4 Four hourly urine volumes collected over study (median±IQR) Group A 
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Initially IQRs were small, most notably on the day following surgery; however, the 

increases in median outputs later in the study were accompanied by widening IQRs. The 

median and IQRs for the summed daily values are presented in Table 3.3-2. Large 

increases in output were noticed on Day 3 and 4, accompanied by widening IQRs.  

Table 3.3-2 Median and interquartile ranges for the summed daily urine volume 

mL/hr Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

62,  
(44, 85) 

51 
(35, 63) 

92 
(65, 141) 

168 
(127, 239) 

151 
(136, 251) 

To examine for changes between the distributions of urine volume over the course of the 

study exact Friedman’s tests were used on summed urine volumes. All values were first 

examined, followed by only postoperative volumes. The results are shown in Table 3.3-3. 

These results confirm what was observed graphically, that there were significant 

differences in urine volumes across the whole study (χ2=29.067, p<0.000) and also just 

over the postoperative period (χ2=20.067, p<0.000).  

Table 3.3-3 Friedman’s test e amining differences in urine volume across study 
*
= significant difference at p<0.05 

χ2  p  24.800 (<0.000)* 

χ2 (p)Postop only 20.067 (<0.000)* 

As the direction of change of urine volume was unknown, post hoc tests were conducted 

using 2-tailed, exact Wilcoxon signed rank tests to examine on what days significant 

differences in urine output occurred. Tests between the preoperative day and 

postoperative days were conducted, along with examining the first postoperative day and 

all the subsequent postoperative days (Table 3.3-4). To limit the size of the Bonferroni 

correction and Type I error, comparisons for the following days were not conducted.  

Table 3.3-4 Group A, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group A  

1 0.037*  
2 0.064 0.01* 
3 0.008* 0.004* 
4 0.008* 0.004* 
Day -1 1 

All comparisons showed highly significant differences. However, as there were 7 

comparisons in the post hoc analysis, a Bonferroni correction of α/7 needed to be 

applied. This reduced the critical level of significance to p>0.0072, leaving only the 

comparisons between Day 1 and Days 3 and 4 below this level. Differences were of 
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greater significance between the extreme ends of the study, in keeping with the values 

shown in Figure 3.3-4. 

3.3.3.2 GROUP B 

Urine output for Group B shows a similar pattern to Group A (Figure 3.3-5). Urine volumes 

were consistently low (30-40mL/hr) before and until the end of the first postoperative 

day. Thereafter diuresis developed with median outputs increasing to over 250mL/hr 

(sample 3.3) with one individual producing 400mL/hr in one four hour period (Patient 4, 

sample 3.6) and 5.6L that day. The descriptives for the summed values are presented in 

Table 3.3-5 and Figure 3.3-5. 

Table 3.3-5 Median and interquartile ranges for the summed daily urine volume 
*
= significant difference at p<0.05 

mL/hr Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

23  
(18, 45) 

32  
(26, 77) 

117  
(57, 192) 

173  
(84, 221) 

150  
(102, 209) 

 
Figure 3.3-5 Four hourly urine volumes collected over study (median±IQR) Group B 

Table 3.3-6 shows that there were significant differences in urine volumes across the 

whole study and within the postoperative period alone.  

Table 3.3-6 Friedman’s test e amining differences in urine volume across study 
*
= significant difference at p<0.05 

χ2  p  10.667 (0.004) 

χ2  p Postop only 8.100 (0.033)* 
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To determine the combinations of days that were significantly different, post hoc tests 

were conducted using Wilcoxon signed rank tests. These results are in Table 3.3-7. 

Despite trends being seen in Figure 3.3-4 and shown in Table 3.3-6, no significant results 

were found in post hoc tests, illustrating the increased sensitivity of a repeated measures 

test like Friedman’s test. 

Table 3.3-7 Group B, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group B  

1 0.109  
2 0.109 0.068 
3 0.109 0.068 
4 0.109 0.068 
Day -1 1 

3.3.3.3 GROUP C 

The changes in urine production across the study period were less in Group C than other 

groups; however, the variation within each sample period was greater (Figure 3.3-6). This 

group collected their own urine for the majority of the study as they were only 

catheterised for a brief period following surgery. There was also less distinction between 

the perioperative and postoperative urine output. 

 
Figure 3.3-6 Four hourly urine volumes collected over study (median± IQR) Group C 
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Summed daily outputs were also reduced compared with other groups and were 

comparatively consistent over the duration of the study (Table 3.3-8).  

Table 3.3-8 Summed daily urine volume- Median (LQ, UQ) 

mL/hr Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

80  
(40, 155) 

112  
(55, 133) 

52  
(19, 89) 

71 
(40, 93) 

76  
(35, 101) 

The Friedman’s test showed that there were no significant differences in urine output 

found in either comparison (Table 3.3-9).  

Table 3.3-9 Friedman’s test e amining differences in urine volume across study 
*
= significant difference at p<0.05 

χ2  p  8.480 (0.066) 

χ2 (p)Postop only 6.840 (0.075) 

Because Friedman’s tests exclude cases list-wise, post hoc tests were conducted to 

include the full data set, as these tests exclude pair-wise. This revealed that urine output 

was significantly higher on the first postoperative day than the rest of the postoperative 

period, however, once the Bonferroni correction was applied, these values lost their 

statistical significance (Table 3.3-10). This was the opposite of that seen in the previous 

two groups of patients.  

Table 3.3-10 Group C, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group C  

1 0.735  
2 0.237 0.05* 
3 0.345 0.043* 
4 0.345 0.043* 
Day -1 1 

3.3.3.4 GROUP D 

Urine outputs in Group D were greater than the other groups undergoing similar surgery 

types (Groups A and B) until Day 4 when they fell below. Similar to Groups A and B, there 

was a reduction in urine output and IQRs immediately postoperatively, but for a shorter 

period of time (Figure 3.3-7). Urine volumes were also more consistent across the study 

than Groups A+B, not exhibiting the same diuresis seen in these other groups. Variability 

in urine volume for each four-hour sample was wide, but consistent. 
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Figure 3.3-7 Four hourly urine volumes collected over study (median±IQR) Group D 

The maximum median output of 275mL/hr was achieved earlier than other groups 

(sample 2.5), and the individual greatest output was from Patient 6D, who produced 

467.5mL/hr for sample 4.2 (a total of 1870mL was measured in this four hour sample). 

The consistency in urine output was clearly reflected in the daily median outputs shown 

in Table 3.3-5, which varied very little on Days 1, 2, and 3, and fell away on Day 4. IQRs 

were large but also remain consistent.  

Table 3.3-11 Summed daily urine volume- Median (LQ, UQ) 

mL/hr Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

61  
(55, 87) 

110  
(66, 137) 

107  
(83, 134) 

113  
(73, 149) 

50  
(18, 114) 

Friedman’s tests were again conducted and revealed no significant results (Table 3.3-12). 

Table 3.3-12 Friedman’s test e amining differences in urine volume across study 
*
= significant difference at p<0.05 

χ2  p  6.500 (0.167) 

χ2 (p)Postop only 4.200 (0.242) 

For the reasons mentioned in Section 3.3.3.3, post hoc tests were still conducted. These 

showed significant differences in the comparison of the preoperative urine volume with 

Day 1, 2 and 3 postoperatively. This is consistent with the values shown in Table 3.3-11, 

however, as in previous groups, these values were not statistically significant (Table 

3.3-13) once the Bonferroni correction had been applied. 
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Table 3.3-13 Group D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group D  

1 0.019*  
2 0.014* 0.638 
3 0.049* 0.695 
4 0.641 0.547 
Day -1 1 

3.3.3.5 GROUP B+D 

As a combination of two groups already discussed, this group exhibited trends similar to 

that of Group D, who make up the majority of patients. The influence of Group B was to 

lower median urine outputs preoperative and Day 1 postoperatively, increasing them for 

subsequent days (Figure 3.3-8). IRQs remained largely similar to those of Group D. Peak 

median output occurred in interval 3 on Day 3 to just over 200mL/hr. Following the 

trends seen in Figure 3.3-8, the summed outputs increase steadily from the preoperative 

day until Day 4 when they decline for the first time. IQRs show accompanying increases 

and are mostly symmetrical about the median until Day 4 when they show a positive 

skew (Table 3.3-14). 

 
Figure 3.3-8 Four hourly urine volumes collected over study (median±IQR) Group B+D 

The skew indicates asymmetry of the distribution derived from the fact that the urine 

outputs above the median are of greater magnitude, stretching further away from the 

median, than those beneath it, which are clustered closer to the median (Table 3.3-14).  
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Table 3.3-14 Summed daily urine volume- Median (LQ, UQ) 

mL/hr Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

56  
(22, 84) 

91  
(34, 129) 

107  
(80, 154) 

129  
(77, 171) 

79  
(39, 158) 

Once again Freidman’s tests were conducted, but did not show significant results (Table 

3.3-15). As previously, two tailed post hoc tests were conducted.  

Table 3.3-15 Friedman’s test e amining differences in urine volume across study 
*
= significant difference at p<0.05  

χ2  p  8.436 (0.072) 

χ2  p Postop only 4.900 (0.186) 

These show that the preoperative output was significantly lower than that of Days 1, 2 

and 3, which was maintained even after the Bonferroni correction had been considered. 

There was no significant difference at p<0.05 between the outputs of the postoperative 

days (Table 3.3-16).  

Table 3.3-16 Group B+D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group B+D  

1 0.005*  
2 0.002* 0.151 
3 0.008* 0.135 
4 0.365 0.470 
Day -1 1 

3.3.4 PERCENTAGE OF DOSE RECOVERED IN THE URINE 

The molar amounts of all metabolites of paracetamol in each urine sample were summed 

and divided by the paracetamol dose to give the per cent of the dose recovered in the 

urine. As paracetamol dose and administration intervals varied preoperatively and 

postoperatively, and between groups, determining what dose to divide the recovered 

amounts by was calculated as follows: 

 For preoperative samples, as they arose from a single dose of paracetamol, the 

amounts of metabolite in all preoperative urine samples were summed together, 

divided by the dose of paracetamol administered (paracetamol 1g=6.6mmol, 

1.5g=9.9mmol) and are reported as a single preoperative value “All”; or 

 For postoperative samples, as they arose from steady state, the amounts of 

metabolite were again summed, but were divided by the dose administered over 

the four-hour urine collection period. This was determined by summing the total 

24hr paracetamol dose and dividing by six, the number of four-hour collection 
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intervals that occurred within a 24hr period. Therefore, for Group A, the sum 

amount of metabolite in each sample was divided by 9g/6 = 1.5g = 9.9mmol. For 

the remaining groups, the sum of metabolites was divided by 4g/6 = 0.67g = 

4.4mmol.  

For the daily per cent recovered figures, metabolite amounts for the whole day were 

summed and divided by the 24hr paracetamol dose (59.5mmol for Group A, 26.5mmol for 

other groups). In this analysis, changes to dose recovery postoperatively could indicate 

changes to excretion, confounding the interpretation of changes to metabolic ratio. 

3.3.4.1 GROUP A 

Changes to urinary dose recovery are shown in Figure 3.3-9. Recovery of dose 

preoperatively is poor with a median of 61.5% for Day-1.  

 
Figure 3.3-9 Per cent of administered paracetamol dose recovered in the urine from four hourly collection 
Results shown as median % (±IQR) 

Following surgery, recovery increased and remained consistent, with the median peaking 

on Day 2, at 106% of dose. There was no obvious pattern relating to time of day or time 

since surgery. IQRs increase in the later days of the study and appear largely symmetric. 

Daily values exhibited a similar pattern to those seen graphically from the 4hr samples. 

Median values (Table 3.3-17) remained consistent, up to 94% on Day 2, as did IQRs which 

stretch beyond the 100% recovery of dose from Day 2 until the end of the study.  
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Table 3.3-17 Summed daily recovery of dose in the urine - Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

63.17 
(52.02, 
83.98) 

79.96 
(59.03, 
86.85) 

94.27 
(78.59, 
107.68) 

82.57 
(74.73, 
106.09) 

75.81 
(38.89, 
106.74) 

Analysis of these values using an exact Freidman’s tests (Table 3.3-18) showed that the 

distribution of the postoperative values was significantly different. 

Table 3.3-18 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  7.378 (0.116) 

χ2  p Postop only 8.333 (0.036)* 

A post hoc analysis was undertaken using exact 2-tailed Wilcoxon sign-rank tests (Table 

3.3-19). For reasons mentioned in Section 0, a significant difference at p<0.05 was found 

in increase of Day -1 values to Day 2 values (p=0.027), which was not detected by the 

Friedman’s test, although these failed to reach the level of significance after the 

Bonferroni correction. The significant result from the Friedman’s test in the analysis of 

the postoperative days arose from the increase from Day 1 to Day 2 which shows a 

significance of p=0.01. This also failed to reach significance after the Bonferroni correction 

had been applied 

Table 3.3-19 Group A, post hoc pair-wise analysis (p) of urinary recovery of dose 
*
= significant difference at p<0.05 

Group A  

1 0.232  
2 0.027* 0.01* 
3 0.25 0.164 
4 0.652 0.734 
Day -1 1 

3.3.4.2 GROUP B 

Following surgery, urinary recoveries of paracetamol were consistently around the 100% 

value (Figure 3.3-10). The highest median recovery was 134% on the evening of the day of 

surgery, when patients would have received a loading dose intraoperatively and lowest in 

the first sample taken on Day 3. Considering the lower recoveries found in the samples 

either side of this one, and that it was collected after all patients had had their urinary 

catheters removed, this may indicate incomplete evacuation of urine within each four 

hour period and accumulation of the dose in the bladder. This is supported by the 

fluctuations in urine output seen in Figure 3.3-5. Preoperative recovery was again low at 

approximately 40% of the administered dose. Further inspection of the values that 
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contributed to this summed value shown, revealed that, while other patients were 

excreting 60-80% of the dose in the first preoperative four hour urine collection, patients 

in Group B excreted approximately 20% of the dose. 

 
Figure 3.3-10 Per cent of administered paracetamol dose recovered in the urine from four hourly collection 
Results shown as median % (±IQR) 

While the second urine sample contained a slightly higher metabolite concentration than 

most other groups, it still only contributed a further 20% to the recovery. The descriptives 

of the daily values in Table 3.3-20 reflect this consistency in dose recovery, with medians 

varying less than four per cent over the postoperative period.  

Table 3.3-20 Summed daily recovery of dose in the urine - Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

22.79 
(14.20, 
31.30) 

98.89 
(88.94, 
110.49) 

101.21 
(87.95, 
116.53) 

104.535 
(89.361, 
115.174) 

102.165 
(92.49, 
109.436) 

The clear difference between preoperative and postoperative recovery seen graphically is 

reflected in the highly significant result of the Friedman’s tests reported Table 3.3-21. 

Also in line with the graphical observations is the lack of significant difference between 

the postoperative days. Post hoc tests were conducted but the combinations used 

previously failed to show significant differences (data not shown). 

Table 3.3-21 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  11.467 (0.001) 

χ2 (p)Postop only 3.000 (0.432) 
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3.3.4.3 GROUP C 

Recovery of the dose in the urine of Group C patients varied widely over the duration of 

the study (Figure 3.3-11). This group were only briefly catheterised in the immediate 

postoperative period and spent the majority of the study collecting their own urine. As 

with the previous group, the greatest dose recovery was from the first postoperative 

sample, when a median of 176% of the dose was measured. The lowest recovery, 54%, 

was obtained at the end of Day 2 postoperatively, as was the case with Group B. IQRs of 

nearly 100% (sample 2.2) were also the greatest of any group and reflected the dose 

recovery of over 200% of two patients in this sample period. 

 
Figure 3.3-11 Per cent of administered paracetamol dose recovered in the urine from four hourly collection 
Results shown as median % (±IQR) 

Despite the variation described above and seen in Figure 3.3-11, descriptive values 

obtained from daily recovery were remarkably consistent, however, large IQRs were still 

seen, most notably on Days-1 and 2 when it was approximately 60% (Table 3.3-22). 

Table 3.3-22 Summed daily recovery of dose in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

84.38 
(37.91, 
100.37) 

96.34 
(71.46, 
114.54) 

78.31 
(29.29, 
96.43) 

92.08 
(66.63, 
104.66) 

81.51 
(64.00, 
114.07) 

Freidman’s tests were conducted and no significant results were obtained (Table 3.3-23).  
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Table 3.3-23 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  2.880 (0.613) 

χ2  p Postop only 2.280 (0.561) 

3.3.4.4 GROUP D 

As previously, urinary recovery from the preoperative dose was low (median 47%) (Figure 

3.3-12). Following surgery, values showed some variation although no pattern occurs in 

relation to time of day or time since surgery. Values spike in sample 4.2 following a trough 

in the four previous samples. In most cases, this corresponded with catheter removal.  

 
Figure 3.3-12 Per cent of administered paracetamol dose recovered in the urine from four hourly collection 
Results shown as median % (±IQR) 

Descriptives for the daily values show that median recoveries were less than 100% and 

were their lowest on the first and last day of the study (Table 3.3-24). However, several 

individual time points show median recoveries at or near 100% in Figure 3.3-12. IQRs 

were less than seen in other groups, but failed to extend to 100%. 

Table 3.3-24 Summed daily recovery of dose in the urine - Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

46.648 
(24.542, 
62.456) 

84.807 
(70.769, 
85.826) 

78.695 
(48.55, 
92.132) 

78.163 
(57.625, 
91.724) 

58.357 
(25.412, 
67.368) 
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Freidman’s tests showed a significant difference at p<0.05 in the comparison including 

preoperative values, but did not detect a significant difference at p<0.05 within the 

postoperative period alone (Table 3.3-25).  

Table 3.3-25 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  14.6 (0.02)* 

χ2  p Postop only 7.050 (0.068) 

Post hoc tests were conducted and show the dose recovery on Day -1 was significantly 

lower than Days 1, 2, and 3 (Table 3.3-26). The comparison with Day 2 was below the 

critical level of significance after the Bonferroni correction.  

Table 3.3-26 Group D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group   

1 0.001*  
2 0.019* 0.577 
3 0.002* 0.557 
4 0.641 0.148 
Day -1 1 

3.3.4.5 GROUP B+D 

As previously, the result of combining these two groups is mainly dominated by Group D 

values, as they make up the larger proportion of the examined values (Figure 3.3-13).  

 
Figure 3.3-13 Per cent of administered paracetamol dose recovered in the urine from four hourly collection 
Results shown as median % (±IQR) 
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The effect of adding Group B was to slightly raise the median recoveries and increase 

IQRs (Figure 3.3-13). Descriptives of the summed daily values also reflect the influence of 

Group D, again failing to reach 100%, although upper quartiles now approach or exceed 

full recovery of the dose (Table 3.3-27). There is no clear trend indicating recovery 

changes over time.  

Table 3.3-27 Summed daily recovery of dose in the urine - Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

40.4 
(22.2, 
62.086) 

85.316 
(76.222, 
91.976) 

84.702 
(55.565, 
98.595) 

86.816 
(66.939, 
103.847) 

61.164 
(56, 
107.153) 

Freidman’s tests showed significant differences across the study when preoperative 

values were included, but not within postoperative values alone (Table 3.3-28).  

Table 3.3-28 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  16.56 (0.01)* 

χ2  p Postop only 3.982 (0.277) 

As with Group D, post hoc tests showed the preoperative dose recovery to be significantly 

lower than Days 1, 2 and 3, and these all surpassed the required level of significance after 

the Bonferroni correction had been applied (Table 3.3-29).  

Table 3.3-29 Group C, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group   

1 0.000*  
2 0.005* 0.542 
3 0.000* 0.635 
4 0.193 0.123 
Day -1 1 

3.3.5 CONTRIBUTION OF METABOLITES TO RECOVERY 

Overall, there was very little change shown to the amount of paracetamol dose recovered 

in the urine during the steady-state period postoperatively. While the total amount of 

metabolites recovered did not change, the five compounds contributing to this recovery 

may have varied. Alterations to the pattern of metabolite excretion is as, if not more, 

important to this Thesis than the amounts of metabolites recovered as it can indicate 

alterations to the drug metabolism processes. It was therefore import to evaluate the 

contribution of each of the metabolites to the total urinary recovery. For the purposes of 

statistical analysis, recoveries of paracetamol cysteine and paracetamol mercapturate 

were combined into one value, “Phase I products”, as both are derived from NAPQI. To 
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compare the contribution of the metabolites, the amount of each metabolite was divided 

by the total amount of all metabolites recovered in that urine sample. Accordingly values 

are reported as “% contribution to recovery”. Each metabolite was then assessed as with 

previous sections, with Friedman’s tests with and without the day before surgery, and, if 

appropriate, followed by post hoc tests.  

3.3.5.1 GROUP A 

Several trends appear in the relative contribution of paracetamol metabolites to the 

overall dose recovery in this group (Figure 3.3-14).  

 
Figure 3.3-14 Contribution of each metabolite to overall recovery 
Values reported as group medians. Abbreviations used: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; 
PCys= paracetamol cysteine; PMer= paracetamol mercapturate; P= paracetamol 

Comparing the first urine sample with the last, noticeable changes included: 

 Paracetamol sulphate reduced from 25 to 10%; 

 Paracetamol glucuronide increased from 56 to 71%; 

 The combined Phase I metabolites decreased slightly from to 12 to 10%, having 

reached a maximal contribution of 26% in sample 4, Day 1; and 

 Unchanged paracetamol remained relatively constant, increasing from to 7 to 8%. 
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Values were summed as with previous sections. Exact Friedman’s tests were used to 

assess the statistical significance of the resultant values across each day of the study. The 

results in Table 3.3-30 show that there were highly significant differences in the relative 

contribution of each metabolite across all days of the study and within the postoperative 

period alone. 

Table 3.3-30 Results of Friedman’s test  
*
= significant difference at p<0.05 

Group A Paracetamol Glucuronide Paracetamol Sulphate Phase I products 

χ2  p  18.756 (<0.000)* 26.933 (<0.000)* 21.333 (<0.000)* 
Postop only χ2  p  14.6 (0.001)* 15.8 (<0.000)* 13.667 (0.001)* 

To determine the nature of the Friedman’s test results, post hoc tests were carried out 

using two-tailed, exact Wilcoxon signed rank tests (Table 3.3-31).  

Table 3.3-31 Group A, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group A Paracetamol Glucuronide  Paracetamol Sulphate  Phase I Products 

1 0.846   0.027*   0.002*  
2 0.193 0.037*  0.002* 0.002*  0.002* 0.77 
3 0.012* 0.004*  0.004* 0.004*  0.02* 0.008* 
4 0.02* 0.004*  0.004* 0.027*  0.91 0.012* 
Day -1 1  -1 1  -1 1 

For paracetamol glucuronide, the increased contributions from Day-1 to Days 3 and 4 

were statistically significant, as was the increase between Day 1 and all other 

postoperative days. Once the Bonferroni correction had been applied, only the 

comparison between Day 1 and Day 3 and 4 remained significant. Paracetamol sulphate 

showed significant reductions between the preoperative and all postoperative days, with 

all but Day 1 remaining significant after Bonferroni correction. The reduction between 

Day 1 and Days 2, 3 and 4 postoperatively were also significant with Days 2 and 3 

surpassing the rigours of the Bonferroni correction. There were significant increases in 

Phase I products between the preoperative day and Days 1, 2 and 3; Days 1 and 2 

remaining so after Bonferroni correction. There were significant reductions in Phase I 

contribution between Day 1 and Days 3 and 4, with no comparison remaining significant 

after Bonferroni correction. 

3.3.5.2 GROUP B 

Trends in metabolite contribution are less marked in Group B (Figure 3.3-15): 
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 Paracetamol glucuronide started at 43% of the recovery, peaked at 60% in sample 

2, Day 4 and reduced to 51% in the final sample;  

 Paracetamol sulphate began by contributing 31%, gradually reducing to 13% in 

sample 3, Day 3 and increased slightly to 16% at the end of the study; and  

 Phase I metabolites began contributing 15% to the recovery, peaked at 36% just 

before the end of the study in sample 5 Day 4, before reducing to 29% in the last 

urine sample.  

 
Figure 3.3-15 Contribution of each metabolite to overall recovery 
Values reported as group medians. Abbreviations used: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; 
PCys= paracetamol cysteine; PMer= paracetamol mercapturate; P= paracetamol 

Daily summed values were tested using the Friedman’s test (Table 3.3-32). Two significant 

differences arose in the increase of paracetamol glucuronide and decrease of 

paracetamol sulphate between preoperative and postoperative values.  

Table 3.3-32 Results of Friedman’s test 
*
= significant difference at p<0.05 

Group B Paracetamol 
Glucuronide 

Paracetamol 
Sulphate 

Phase I products 

χ2  p  9.067 (0.028)* 10.400 (0.005)* 2.933 (0.469) 
Postop only χ2  p  6.300 (0.094) 5.8 (0.052) 1.200 (0.753) 

However, as this group only contained four patients no significant differences arose in the 

post hoc tests of these values (Table 3.3-33).  
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Table 3.3-33 Group B, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group B Paracetamol Glucuronide  Paracetamol Sulphate  Phase I Products 

1 0.5   0.109   0.109  
2 0.25 0.25  0.109 0.068  0.285 0.273 
3 0.25 0.125  0.109 0.068  0.285 0.465 
4 0.25 0.125  0.109 0.068  0.285 0.715 
Day -1 1  -1 1  -1 1 

3.3.5.3 GROUP C 

Contributions of metabolites in Group C appeared relatively consistent across the study 

(Figure 3.3-16). Observations included: 

 Contribution of paracetamol sulphate was low from the beginning (19%), and 

reduced to 12% in the final urine sample; 

 Paracetamol glucuronide began at 54% and increased to its maximum 

contribution at 65% in the last sample on the day of surgery. After falling slightly, 

contributions remained consistently around the high 50%/low 60% values until 

finishing at 61%; and 

 There was an unusually high contribution of Phase I metabolites from the 

beginning of the study (19%), which increased to 30% by sample 3 on Day 1 and 

remained around 25% until the final sample.  

 
Figure 3.3-16 Contribution of each metabolite to overall recovery 
Values reported as group medians. Abbreviations used: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; 
PCys= paracetamol cysteine; PMer= paracetamol mercapturate; P= paracetamol 
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Values were again summed into daily intervals. Table 3.3-34 shows the results of the 

Friedman’s tests that were conducted. This shows that there were statistically significant 

differences in paracetamol glucuronide and Phase I metabolite contributions across all 

days of the study and within the postoperative period only. There were no differences 

seen for paracetamol sulphate.  

Table 3.3-34 Results of Friedman’s test 
*
= significant difference at p<0.05 

Group C Paracetamol 
Glucuronide 

Paracetamol 
Sulphate 

Phase I products 

χ2  p  15.52 (<0.000)* 7.52 (0.107) 13.6 (0.002)* 
Postop only χ2  p  10.2 (0.007)* 1.08 (0.857) 9 (0.02)* 

Table 3.3-35 shows the results of the post hoc tests conducted on these values. For 

paracetamol glucuronide, the statistical significance of the Friedman’s test arose from the 

decrease between the preoperative day and Days 2, 3 and 4. No comparison remained 

significant after Bonferroni correction. Significant differences at p<0.05 were seen in the 

pair-wise tests for paracetamol sulphate in the decrease from the preoperative day to 

Days 1, 2 and 3, but these also did not remain significant following Bonferroni correction. 

Further, significant differences were also seen in the increase of Phase I products 

between the preoperative day and Days 1 and 3 and in the reduction of Phase I products 

between Day 1 and 4. None of these surpassed the critical level of significance once the 

Bonferroni correction had been applied. 

Table 3.3-35 Group C post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group C Paracetamol Glucuronide  Paracetamol Sulphate  Phase I Products 

1 0.219   0.031*   0.016*  
2 0.016* 0.078  0.016* 1  0.078 0.195 
3 0.043* 0.438  0.125 0.625  0.043* 0.313 
4 0.043* 0.043*  0.043* 0.625  0.125 0.043* 
Day -1 1  -1 1  -1 1 

3.3.5.4 GROUP D 

Clear trends emerged in the relative contributions of metabolites in Group D (Figure 

3.3-17). These include: 

 Steady reduction in contribution of paracetamol sulphate from 26% on the day of 

surgery to 9.6% on Day 4 sample 5; 

 Consistent contribution of paracetamol glucuronide remaining around 60%; and 

 Increased Phase I products from 14% preoperatively, to 25% in sample 6 on Day 3. 



 

259 
 

 
Figure 3.3-17 Contribution of each metabolite to overall recovery 
Values reported as group medians. Abbreviations used: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; 
PCys= paracetamol cysteine; PMer= paracetamol mercapturate; P= paracetamol 

Summed daily values were assessed for variance using Friedman’s tests (Table 3.3-32). All 

metabolites showed significant differences over the entire study and within the 

postoperative period alone.  

Table 3.3-36 Results of Friedman’s test 
*
= significant difference at p<0.05 

Group D Paracetamol 
Glucuronide 

Paracetamol 
Sulphate 

Phase I products 

χ2  p  13.5 (0.005)* 28.4 (<0.000)* 18.1 (<0.000)* 
Postop only χ2  p  12.75 (0.002)* 18.6 (<0.000)* 7.65 (0.049)* 

Post hoc tests were also conducted (Table 3.3-37). Significant differences arose from the 

increase in paracetamol glucuronide contribution between the beginning (preoperative 

and Day 1) and end of the study (Days 3 and 4), although none remained significant after 

Bonferroni correction. Conversely, all comparisons of paracetamol sulphate were highly 

significant; both the reduction from preoperative contributions to all postoperative 

values and again the further reduction from Day 1 to the following postoperative days. 

Only the comparisons with Day 4 just failed to meet the requirements of the Bonferroni 

correction. Phase I products increased significantly between the preoperative and all 

postoperative days, but do not show a significant change between Day 1 and Days 2, 3 or 

4. In these comparisons, all but the increase between Day -1 and 4 remain significant 

after Bonferroni correction. 
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Table 3.3-37 Group D post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group D Paracetamol Glucuronide  Paracetamol Sulphate  Phase I Products 

1 0.898   0.001*   0.003*  
2 0.638 0.52  0.001* 0.001*  0.001* 0.32 
3 0.037* 0.047*  0.002* 0.002*  0.002* 0.695 
4 0.023* 0.049*  0.008* 0.008*  0.016* 0.461 
Day -1 1  -1 1  -1 1 

3.3.5.5 GROUP B+D 

Trends emerge once again in this combination group (Figure 3.3-18): 

 Paracetamol glucuronide began at 59% and fell to 50% in the first postoperative 

sample. Gradual increases followed to its peak contribution of 63% in sample 3, 

Day 3, before it fell again to 52% in the final sample; 

 Paracetamol sulphate began at 20%, increased to 26% in the first postoperative 

sample and then gradually reduced to around 11% by the end of the study; and 

 Phase I contributions increased steadily from 13% to around 25% and remained at 

this level for the remainder of the study.  

 
Figure 3.3-18 Contribution of each metabolite to overall recovery 
Values reported as group medians. Abbreviations used: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; 
PCys= paracetamol cysteine; PMer= paracetamol mercapturate; P= paracetamol 
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Table 3.3-38 shows the results of the Friedman’s tests conducted on the summed daily 

values. This shows highly significant differences for all comparisons aside from the 

examination of the Phase I products across the postoperative days.  

Table 3.3-38 Results of Friedman’s test 
*
= significant difference at p<0.05 

Group B+D Paracetamol 
Glucuronide 

Paracetamol 
Sulphate 

Phase I products 

χ2  p  17.36 (0.001)* 33.68 (<0.000)* 21.12 (<0.000)* 
Postop only χ2  p  12.709 (0.003)* 23.182 (<0.000)* 4.091 (0.266) 

Post hoc test results are also shown (Table 3.3-39). These confirm the observations made 

from Figure 3.3-18: There were significant increases in the proportion of paracetamol 

glucuronide between the first two days and the last two. All but the decrease between 

Day -1 and 4 failed to surpass the requirements of the Bonferroni correction. Paracetamol 

sulphate showed highly significant reductions between both of the first two days and all 

other days of the study. There were also highly significant increases in Phase I products 

between the preoperative day and all other days.  

Table 3.3-39 Group B+D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group 
B+D 

Paracetamol Glucuronide  Paracetamol Sulphate  Phase I Products 

1 0.735   <0.000*   0.001*  
2 0.305 0.241  <0.000* <0.000*  <0.000* 0.542 
3 0.009* 0.017*  <0.000* <0.000*  <0.000* 0.685 
4 0.006* 0.014*  0.002* 0.001*  0.004* 0.898 
Day -1 1  -1 1  -1 1 

3.3.6 CONTRIBUTION OF SULPHATE CONTAINING METABOLITES 

As paracetamol sulphate, cysteine and mercapturate rely on inorganic sulphate for their 

formation, changes to their contribution to urinary recovery across the study were also of 

interest. Inorganic sulphate is mostly derived from dietary protein and body stores of 

GSH. GSH is necessary for the conjugation of NAPQI. Reductions to this value in fasting 

individuals could indicate exhaustion of body stores GSH, and potentially the reduction in 

NAPQI conjugation. 

3.3.6.1 GROUP A 

A consistent downward trend emerges in the role of sulphate metabolites in urinary 

recovery of Group A (Figure 3.3-19). The contribution peaked just after surgery at 45.5% 

and fell steadily to 17.6% in the second to last sample. Within these results there was a 
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high degree of variability between participants with wide IQRs noticeable in the last two 

thirds of the study. 

 
Figure 3.3-19 Per cent of urinary metabolites excreted as sulphate derived compounds.  
Results shown as median % (±IQR) 

Metabolite amounts were summed into daily values and the percentage recalculated. 

Descriptives of these values are shown in Table 3.3-40, which also repeat the downward 

trend seen in Figure 3.3-19. 

Table 3.3-40 Summed daily recovery of sulphate derived metabolites in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

36.185 
(29.189, 
42.704) 

39.657 
(34.002, 
50.449) 

28.171 
(23.641, 
40.135) 

21.269 
(16.862, 
30.455) 

21.591 
(15.228, 
32.218) 

Friedman’s tests were conducted across the entire study and in the postoperative period 

only using these daily values (Table 3.3-41). Both comparisons showed highly significant 

differences across the days tested.  

Table 3.3-41 Friedman’s test e amining differences in urinary recovery of sulphate derived metabolites across study 
*
= significant difference at p<0.05 

χ2  p  23.911 (<0.000)* 

χ2  p Postop only 17.933 (<0.000)* 

Post hoc tests were performed using two tailed, exact Wilcoxon signed rank tests (Table 

3.3-42). Highly significant differences were seen in the comparison of the early days of 

the study with the last two days, confirming the trends observed in Figure 3.3-19. These 

were the only comparisons to remain significant after Bonferroni correction.  
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Table 3.3-42 Post hoc pair-wise analysis (p) of urinary recovery of sulphate derived metabolites 
*
= significant difference at p<0.05 

Group A  

1 0.139  
2 0.093 0.01* 
3 0.008* 0.004* 
4 0.012* 0.004* 
Day -1 1 

3.3.6.2 GROUP B 

Figure 3.3-20 shows less of a decline in contribution of sulphate derived metabolites for 

Group B than with Group A, but still one is apparent, especially on Day 1. From their peak 

of 46.5% early on the first postoperative day, values fell and remained around 36% for all 

of the second and most of the third postoperative day. The sulphate contribution then 

recovers slightly to finish on 40.5%. 

 
Figure 3.3-20 Per cent of urinary metabolites excreted as sulphate derived compounds.  
Results shown as median % (±IQR) 

As previously, daily values were calculated and their descriptives are presented in Table 

3.3-43. These show the largest reduction from the second postoperative day. 

Table 3.3-43 Summed daily recovery of sulphate derived metabolites in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

37.583 
(35.866, 
53.753) 

44.400 
(36.761, 
57.324) 

37.264 
(32.868, 
46.601) 

38.408 
(31.999, 
44.873) 

38.979 
(30.499, 
52.344) 

The statistical significance of the reductions observed in the descriptive values was tested 
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with Friedman’s tests (Table 3.3-44). No significant differences were seen. Post hoc tests 

also did not show significant changes (data not shown).  

Table 3.3-44 Friedman’s test e amining differences in urinary recovery of sulphate derived metabolites across study 
*
= significant difference at p<0.05 

χ2  p  6.133 (0.189) 

χ2  p Postop only 5.700 (0.127) 

3.3.6.3 GROUP C 

In comparison with the previous groups, Group C showed very little alteration in the 

recovery of sulphate metabolites (Figure 3.3-21).  

 
Figure 3.3-21 Per cent of urinary metabolites excreted as sulphate derived compounds.  
Results shown as median % (±IQR) 

Daily values were prepared as with previous groups. The contribution began at 39.3% and 

remained within 5% of this value for the remainder of the study. Median values are 

consistent in the high 30%s but fall slightly on the last day of the study (Table 3.3-45). 

Table 3.3-45 Summed daily recovery of sulphate derived metabolites in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

39.293 
(31.996, 
42.749) 

39.873 
(35.175, 
44.382) 

37.349 
(33.166, 
43.405) 

39.381 
(33.995, 
46.481) 

35.953 
(33.073, 
40.678) 

Table 3.3-46 shows the results of Friedman’s tests. Only the comparison within the 

postoperative period showed a significant difference at p<0.05, however, the comparison 

across all days of the study shows evidence of an association with a p=0.056.  
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Table 3.3-46 Friedman’s test e amining differences in urinary recovery of sulphate derived metabolites across study 
*
= significant difference at p<0.05 

χ2  p  8.8 (0.056) 

χ2  p Postop only 9 (0.02)* 

As could be expected from the values in Table 3.3-45, the post hoc analysis shows only 

one significant difference at p<0.05, between Day 1 and Day 4 (Table 3.3-47).  

Table 3.3-47 Post hoc pair-wise analysis (p) of urinary recovery of sulphate derived metabolites 
*
= significant difference at p<0.05 

Group C  

1 0.176  
2 0.398 0.263 
3 0.345 0.5 
4 0.138 0.043* 
Day -1 1 

3.3.6.4 GROUP D 

Figure 3.3-22 shows Group D’s gradual decline in the contribution of sulphate containing 

metabolites to overall urinary recovery. Starting at 35.9% preoperatively, values increased 

to 44% at the end of Day 1 and then fell to 29.9% by the beginning of the third day. 

Values then recovered to 34.0% by the end of the study. 

 
Figure 3.3-22 Per cent of urinary metabolites excreted as sulphate derived compounds.  
Results shown as median % (±IQR) 

Daily values showed a similar pattern of decline, with median values reducing by 8% 

between Day 1 and 3 which was then maintained into Day 4 (Table 3.3-48). IQRs were 

wide at the beginning of the study, but as the contribution of sulphate metabolites 

reduced so did the IQR. 



 

266 
 

Table 3.3-48 Summed daily recovery of sulphate derived metabolites in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

35.927 
(27.675, 
41.189) 

41.969 
(33.881, 
46.898) 

36.964 
(36.282, 
39.085) 

33.973 
(30.78, 
36.962) 

33.824 
(32.453, 
36.915) 

Table 3.3-49 shows Friedman’s tests results conducted on these values. Significant 

differences were seen in both comparisons, with the postoperative only comparison 

showing a highly significant difference.  

Table 3.3-49 Friedman’s test e amining differences in urinary recovery of sulphate derived metabolites across study 
*
= significant difference at p<0.05 

χ2  p  12 (0.011)* 

χ2  p Postop only 11.55 (0.005)* 

Table 3.3-50 shows one significant difference at p<0.05 in the increase between the 

preoperative day and the first postoperative day. Two more significant differences were 

seen in the reduction of contribution between Day 1 and Days 3 and 4. However, these p 

values do not achieve significance after Bonferroni correction. 

Table 3.3-50 Post hoc pair-wise analysis (p) of urinary recovery of sulphate derived metabolites 
*
= significant difference at p<0.05 

Group D  

1 0.019*  
2 0.091 0.182 
3 0.799 0.027* 
4 0.674 0.05* 
Day -1 1 

3.3.6.5 GROUP B+D 

 
Figure 3.3-23 Per cent of urinary metabolites excreted as sulphate derived compounds.  
Results shown as median % (±IQR) 
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Once again the Group B+D comparison shows trends largely similar to Group D, with a 

small increase postoperatively, followed by a slight decline in values (Figure 3.3-23). Daily 

values peaked on Day 1 at 43.2% and fell gradually to Day 4 (34.1%) (Table 3.3-51). 

Table 3.3-51 Summed daily recovery of sulphate derived metabolites in the urine- Median (LQ, UQ) 

% Day -1 Day 1 Day 2 Day 3 Day 4 

Median 
(IQR) 

35.927 
(28.79, 
41.671) 

43.241 
(33.944, 
47.394) 

37.264 
(36.509, 
40.553) 

35.113 
(31.752, 
38.975) 

34.056 
(33.095, 
42.332) 

Friedman’s tests examined for significant differences across all days of the study and 

across the postoperative period only. Both tests showed significant results (Table 3.3-52). 

Table 3.3-52 Friedman’s test e amining differences in urinary recovery of sulphate derived metabolites across study 
*
= significant difference at p<0.05 

χ2  p  13.92 (0.004)* 

χ2  p Postop only 12.273 (0.004)* 

Table 3.3-53 shows the results of the pos-hoc tests. Significant differences arose in the 

increase from Day-1 to Day 1 and the decrease from Day 1 to Day 3 and 4. However, none 

of these results achieve significance after the Bonferroni correction was applied. 

Table 3.3-53 Post hoc pair-wise analysis (p) of urinary recovery of sulphate derived metabolites 
*
= significant difference at p<0.05 

Group B+D  

1 0.013*  
2 0.133 0.074 
3 0.480 0.008* 
4 0.575 0.01* 
Day -1 1 

3.3.7 RATIO OF METABOLITES PHASE II: PHASE I  

As discussed in the introduction to this results section, changes to urine flow can have a 

significant impact on the fractional urinary recovery of paracetamol. As shown in Section 

3.3.3, there were significant changes to urine flow across the study and this could 

potentially invalidate this type of metabolic ratio. Because the fractional urinary recovery 

of paracetamol’s metabolites was comparatively free from the factors that affect the 

recovery of paracetamol itself, ratios that compared the recovery of Phase II to Phase I 

products in the urine were prepared. As such, it is the most useful indicator of changes in 

contribution of each metabolic pathway to the overall clearance of paracetamol. 
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3.3.7.1 GROUP A 

Figure 3.3-24 shows a steep reduction in metabolite ratio from a preoperative value of 

8.5 to 2.6 in sample 3, Day 1.  

 
Figure 3.3-24 Ratio of Phase II: Phase I metabolites of paracetamol (median ±IQR) 

The ratio then increased gradually to its preoperative value by the end of Day 3, peaking 

at 10.5 in sample 4 Day 4. IQRs increased sharply from the preoperative to first 

postoperative sample, and then gradually declined to their narrowest on Day 2. Daily 

ratios were again calculated. Descriptives are shown in Table 3.3-54 and a box plot 

derived from these values is shown in Figure 3.3-25. 

Table 3.3-54 Ratio of metabolites in daily urine 
Shown as median (LQ, UQ) 

 
Figure 3.3-25 Box plot of metabolite ratio 

Ratio Median (IQR) 

Day -1 8.54 (7.12, 11.28) 
Day 1 2.99 (2.33, 5.55) 
Day 2 3.80 (1.99, 4.23) 
Day 3 5.50 (5, 7.63) 
Day 4 8.68 (5.52, 10.8) 
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Friedman’s tests on these values are shown (Table 3.3-55) which shows the differences 

observed achieved statistical significance.  

Table 3.3-55 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  21.956 (0.000)* 

χ2  p Postop only 13.4 (0.002)* 

Post hoc tests using exact Wilcoxon matched pairs were again performed to compare the 

preoperative day with all postoperative days and also the first postoperative day to the 

remaining postoperative days. Prior research indicated the ratio only went down 

following surgery and accordingly only one tailed tests were used in the comparison of 

preoperative and postoperative values(Kennedy 2009a). However, as the direction of 

change from the first postoperative day to the other postoperative days was unknown, 

two tailed tests were used. Table 3.3-56 shows the results of these tests.  

Table 3.3-56 Group A, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group A  

1 0.001*  
2 0.001* 0.846 
3 0.004* 0.012* 
4 1.000 0.012* 
Day -1 

(1 tailed) 
1 
(2 tailed) 

The decrease between the preoperative day and Days 1, 2 and 3 were all highly significant 

and all surpass Bonferroni correction. The two tailed tests showed the ratio increased 

significantly between Day 1 and Days 3 and 4 postoperatively, but these are not above 

the p value required for significance after the Bonferroni correction is considered. 

3.3.7.2 GROUP B 

There was a gradual reduction in metabolite ratio from 7.9 preoperatively to 3.8 in the 

last urine sample (Figure 3.3-26). The consistency of this decline was interrupted by a 

brief increase at the beginning of Day 2, peaking at 5.5, before declining again. 
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Figure 3.3-26 Ratio of Phase II: Phase I metabolites of paracetamol (median ±IQR) 

The daily values were again calculated and the descriptives (Table 3.3-57) and box plot 

(Figure 3.3-27) arising from these are shown. The median values showed a clear reduction 

from the preoperative sample. Postoperative ratios remain relatively constant.  

Table 3.3-57 Ratio of metabolites in daily urine 
Shown as median (LQ, UQ) 

 
Figure 3.3-27 Box plot of metabolite ratio 

Ratio Median (IQR) 

Day -1 5.52 (4.05, 8.89) 
Day 1 3.09 (2.22, 4.06) 
Day 2 2.44 (2.09, 3.18) 
Day 3 3.06 (2.49, 3.23) 
Day 4 2.43 (2.03, 2.92) 
  

Freidman’s tests were also conducted (Table 3.3-58). Given the small number of patients 

in this group, the finding of a significant difference at p<0.05 between all days of the 

study was unexpected. No significant difference at p<0.05 was seen in the comparison of 

the postoperative days. Post hoc tests were conducted and did not show any significant 

difference at p<0.05 (data not shown). 

Table 3.3-58 Friedman’s test e amining differences in ratio of Phase II:I metabolites in daily urine 
*
= significant difference at p<0.05 

χ2  p  7.6 (0.042)* 

χ2  p Postop only 5 (0.207) 
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3.3.7.3 GROUP C 

Group C began with the lowest preoperative ratio of all groups at 4.6 (Figure 3.3-28). This 

ratio fell gradually to 2.2 halfway through the first postoperative day and remained 

between 2.5 and 3.0 for the remainder of the study. 

 
Figure 3.3-28 Ratio of Phase II: Phase I metabolites of paracetamol (median ±IQR) 

Daily ratios were determined and descriptives (Table 3.3-59) and a box plot (Figure 

3.3-29) were prepared. These show the reduction from preoperative values and also 

show little variability in the data between patients, as IQRs were narrow. 

Table 3.3-59 Ratio of metabolites in daily urine 
Shown as median (LQ, UQ) 

 
Figure 3.3-29 Box plot of metabolite ratio 

Ratio Median (IQR) 

Day -1 4.578 (3.387, 6.224) 
Day 1 2.425 (2.028, 2.922) 
Day 2 3.086 (2.224, 4.055) 
Day 3 2.435 (2.092, 3.176) 
Day 4 3.058 (2.494, 3.232) 
  

Freidman’s tests (Table 3.3-60) were conducted on the daily values.  

Table 3.3-60 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  10.72 (0.018)* 

χ2  p Postop only 8.76 (0.023)* 
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Significant differences were seen in both comparisons. Post hoc tests showed the 

decrease between the preoperative day and Days 1, 2 and 3 reached significance. In the 

comparisons of Day 1 and the remaining postoperative days, only the increase between 

Day 1 and Day 4 reached significance (Table 3.3-61). However, none of these comparisons 

achieve significance after the Bonferroni correction was applied. 

Table 3.3-61 Group C, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group C  

1 0.016*  
2 0.023* 0.109 
3 0.031* 0.313 
4 0.063 0.043* 
Day -1 

(1 tailed) 
1 
(2 tailed) 

3.3.7.4 GROUP D 

The ratio in this group began at 6.1 and fell sharply to 2.3 at end of Day 1. The ratio 

remained consistent from this point, ranging between 3 and 3.5 (Figure 3.3-30). 

 
Figure 3.3-30 Ratio of Phase II: Phase I metabolites of paracetamol (median ±IQR) 

Four hourly values were summed and used to produce the descriptive statistics (Table 

3.3-62) and boxplot (Figure 3.3-31) shown. Median daily values show a marked reduction 

in ratio and remain consistent postoperatively. Variability between patients also reduced 

postoperatively as shown by the narrow IQRs. 
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Table 3.3-62 Ratio of metabolites in daily urine 
Shown as median (LQ, UQ) 

 
Figure 3.3-31 Box plot of metabolite ratio 

Ratio Median (IQR) 

Day -1 6.064 (3.877, 9.827) 
Day 1 2.967 (2.618, 4.095) 
Day 2 2.891 (2.408, 3.067) 
Day 3 3.278 (2.859, 3.475) 
Day 4 3.322 (2.945, 3.816) 
  

Friedman’s tests were conducted on these daily values and both comparisons showed 

statistically significant differences across the days they examined (Table 3.3-63). A greater 

degree of significance was observed when the preoperative value was included.  

Table 3.3-63 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  17.1 (0.000)* 

χ2  p Postop only 7.65 (0.049)* 

Post hoc tests showed significance in the decrease between the preoperative ratio and all 

postoperative ratios, with the comparison with all but Day 4 remaining so after 

Bonferroni correction. However, the postoperative comparisons did not show any 

evidence of a significant change (Table 3.3-64). 

Table 3.3-64 Group D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group D  

1 0.002*  
2 0.000* 0.067 
3 0.001* 0.922 
4 0.02* 0.641 
Day -1 

(1 tailed) 
1 
(2 tailed) 

3.3.7.5 GROUP B+D 

The ratio in this combined group largely reflected the contribution of Group D, with the 

most notable difference being the increase in IQR, especially in towards the end of the 

study (Figure 3.3-32). The preoperative ratio was slightly increased to 6.3, but followed a 

similar trend, decreasing until the end of Day 1 and remaining fairly constant for the 

remainder of the study. 
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Figure 3.3-32 Ratio of Phase II: Phase I metabolites of paracetamol (median ±IQR) 

Values were pooled into daily intervals and used to prepare the descriptives (Table 

3.3-65) and box plot shown (Figure 3.3-33). As described above, this is largely similar to 

Group D with a marked reduction following surgery. The main effect of the addition of 

Group B is the widening of IQRs and the appearance of outlying values shown in Figure 

3.3-33. 

Table 3.3-65 Ratio of metabolites in daily urine 
Shown as median (LQ, UQ) 

 
Figure 3.3-33 Box plot of metabolite ratio 

Ratio Median (IQR) 

Day -1 6.064 (3.807, 10.154) 
Day 1 2.948 (2.537, 4.177) 
Day 2 2.945 (2.317, 3.429) 
Day 3 3.212 (2.545, 3.49) 
Day 4 3.322 (2.325, 3.83) 
  

Table 3.3-66 shows the results of the Friedman’s tests performed on these ratios. As 

could be predicted from Figure 3.3-33 significant differences were seen in the comparison 

of all days of the study but not within the postoperative period alone. 
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Table 3.3-66 Friedman’s test e amining differences in urinary recovery of dose across study 
*
= significant difference at p<0.05 

χ2  p  20.96 (0.000)* 

χ2  p Postop only 5.509 (0.146) 

Post hoc tests (Table 3.3-67) show highly significant reductions between the preoperative 

ratio and all the postoperative days. As predicted by the Friedman’s test, no significant 

differences were seen in the postoperative comparisons. 

Table 3.3-67 Group B+D, post hoc pair-wise analysis (p) of urine volume 
*
= significant difference at p<0.05 

Group B+D  

1 0.001*  
2 0.000* 0.135 
3 0.000* 1 
4 0.005* 0.966 
Day -1 

(1 tailed) 
1 
(2 tailed) 

3.3.8 FACTORS EFFECTING RATIO OF PHASE II: PHASE I PRODUCTS 

From the above results there appeared to be a clear difference in metabolic ratio 

following surgery. There are, however, a number of other factors amongst surgical 

patients that could affect the urinary concentration of metabolites, aside from surgery 

itself. These were examined below to see if they were a strong influence, potentially 

obscuring what appeared to be the effect of surgery.  

In addition to those detailed below, the effects of age and BMI on the metabolic ratio 

were also assessed using a Spearman’s correlation; however the number of patients in 

each group were too low for this to give meaningful results.  

3.3.8.1 GENDER 

Graphs of the metabolite ratio for males and females patients were produced for Group A 

and Groups B+D (Figure 3.3-31). No gender analysis was performed on Group C as all 

patients were female. 
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Figure 3.3-34 Changes in metabolite ratio across study period for males and females in Group A (top) and B+D 
(bottom) 

There were no clear differences in metabolite ratio between genders in either figures and 

both genders followed a very similar course (Figure 3.3-34) although the ratio tended to 

be higher in Group A females. As an estimate of the relationship between genders, two 

tailed Spearman’s correlations were prepared for the two groups based on the median 

values for each gender (Table 3.3-68). The metabolic ratio of males in Group A was highly 

correlated with, and accounted for 68% of the variability of the females’ metabolic ratio. 

In Group B+D, while there was evidence of an association, it was not statistically 
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significant and therefore a difference in metabolic ratio between genders could not be 

ruled out. 

Table 3.3-68 Results of Spearman’s correlation of metabolic ratios between genders 
*
= significant difference at p<0.05 

 Ρ ρ2 Sig (2 tailed) 

Group A 0.826 0.682 <0.000 
Group B+D 0.319 0.102 <0.148 

 
Figure 3.3-35 Correlation of median metabolic ratio between genders in Group B+D before (left) and after (right) 
ranking 
R

2
 values relate to Pearson’s correlation co-efficients, which is equivalent to the Spearman’s correlation co-efficient 

when based on ranked data (right plot) 

Examination of the left graph in Figure 3.3-35 does visually show a relationship. However, 

because the metabolite ratios were non-parametric, the correct means of assessment 

was with a Spearman’s correlation which uses ranked data. The problem with ranking 

data in small data sets is weakening of correlations because the magnitude of the values 

is not taken into account (Figure 3.3-35). A Pearson’s correlation on the unranked data 

did show a significant correlation, but this is not an appropriate test for non-parametric 

data. Accordingly, a further test of Group B+Ds data was necessary to determine if the 

genders were significantly different. A Mann-Whitney test was used to determine this and 

no significant difference between genders at p<0.05 was found (z=0.276, p=0.783). 

3.3.8.2 DOSE RECOVERED IN THE URINE 

A second potential influence is the amount of the dose recovered in the urine within any 

given interval. A relationship between these would indicate that some metabolites are 

more readily excreted in the urine than others causing the metabolic ratio to vary with 

dose recovery, which itself varied across the study (Section 3.3.4). 
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To examine the relationship, dot plots were first prepared plotting the four-hourly ratios 

against the per cent of dose recovered in the same urine samples (Figure 3.3-36). No 

relationship was apparent in any group.  

 
Figure 3.3-36 Dot plots of metabolite ratio and urinary dose recovery, showing values arising from each day 

Spearman’s correlations were then carried out on these values (Table 3.3-69).  

Table 3.3-69 Results of Spearman’s correlation between of metabolite ratio and urinary dose recovery 
*
= significant difference at p<0.05 

 N Ρ ρ2 Sig (2 tailed) 

Group A 245 -0.187 0.035 0.003* 
Group B 77 -0.042 0.002 0.714 
Group C 133 -0.150 0.023 0.086 
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Group D 219 -0.069 0.005 -0.069 
Group B+D 296 -0.063 0.004 0.283 

Only Group A showed a significant association, however with only 3.5% of the variability 

of the metabolic ratio being explained by dose recovery, the influence was very minor.  

3.3.8.3 URINARY OUTPUT 

As with dose recovery, the possibility of urinary output influencing the metabolic ratio 

was also investigated. Dot plots were prepared (Figure 3.3-37) followed by Spearman’s 

correlations (Table 3.3-70) as in the previous section. Graphically, no relationship 

appears, nor does there appear to be any difference in distribution amongst the days of 

the study. 



 

280 
 

 
Figure 3.3-37 Dot plots of metabolite ratio and urine volume, showing values arising from each day 

The Spearman’s correlations revealed a highly significant relationship occurring in Group 

A, however urine volume only accounted for 16% of the variance of metabolic ratio 

(leaving the remaining 84% to be explained by other factors). No other group showed a 

significant relationship or co-efficient of determination.  
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Table 3.3-70 Results of Spearman’s correlation between of metabolite ratio and urinary dose output 
*
= significant difference at p<0.05 

 N Ρ ρ2 Sig (2 tailed) 

Group A 245 0.403 0.162 0.000* 
Group B 77 0.147 0.022 0.201 
Group C 133 0.076 0.006 0.386 
Group D 219 0.005 0.000 0.936 
Group B+D 296 0.078 0.006 0.183 

3.3.8.4 SAMPLE INTERVAL (TIME OF DAY) 

The possibility of diurnal differences was also investigated. Dot plots were prepared 

contrasting the metabolic ratio against the day of the study.  

 
Figure 3.3-38 Dot plots of metabolite ratio and study day showing values arising from each sample interval 
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For each day of the study the six sample intervals were given a different colour. Banding 

of the colours in the graph would indicate a circadian variation (Figure 3.3-38). As no clear 

patterns of colour banding emerged in Groups A, B and C there was no evidence of 

diurnal variation in metabolic ratio in these groups. In Groups D and B+D some banding 

did appear to occur, with interval 6 appearing to cluster around the bottom of Days 1, 2 

and 3. Further examination of the data revealed this was a product of the order which the 

data points are applied or “stacked” on the graph by the statistical software, and that all 

data clustered around this point. To confirm this for Group B+D, day numbers were 

removed from metabolic ratio results, and a box plot was prepared from these data that 

contained interval numbers only. This showed that no interval’s metabolic ratio sits 

clearly above any other interval (Figure 3.3-39). Additionally, a Friedman’s test was 

conducted to establish if there was any statistical evidence of difference between the 

intervals, and none was seen (χ2 22.576, p=0.319) (data not shown). 

 
Figure 3.3-39 Box plot of metabolite ratio for each sample interval across all days 

3.3.8.5 METABOLITES 

Because four compounds contribute to the metabolic ratio, the question arises regarding 

how changes to a metabolite concentration affect the metabolite ratio, and whether one 

metabolite had a predominant effect on the ratio. To ascertain this, the metabolic ratio 

was plotted against the amount of each metabolite in the urine (the two Phase I products 

were again summed to give a single value as previously discussed). To determine the 

nature of their interaction a line of best fit was applied. Spearman’s correlation 

coefficients were also determined to assess the strength of the association between each 

metabolite and the metabolic ratio (Table 3.3-71). While partial correlations may have 

provided more information about these relationships, they cannot be used on non-

parametric data.  
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Table 3.3-71 Results of Spearman’s correlation between metabolite ratio and amount of each metabolite in urine 
*
= significant difference at p<0.05 

 Paracetamol Glucuronide Paracetamol Sulphate Phase I products 
Group Ρ ρ2 Sig (p) Ρ ρ2 Sig (p) Ρ ρ2 Sig (p) 
A 0.126 0.016 (0.031)* -0.047 0.002 (0.422) -0.665 0.442 (<0.00)* 

B 0.406 0.165 (<0.00)* 0.373 0.139 (<0.00)* -0.739 0.546 (<0.00)* 

C -0.050 0.003 (0.546) 0.011 0.000 (0.894) -0.418 0.175 (<0.00)* 

D 0.074 0.005 (0.258) 0.143 0.020 (0.028)* -0.450 0.203 (<0.00)* 

B+D 0.175 0.031 (0.002)* 0.162 0.026 (0.003)* -0.540 0.292 (<0.00)* 

Figure 3.3-40 shows the dot plot for all groups.  

 

 
Figure 3.3-40 Contribution of each metabolite to metabolic ratio and lines of best fit for each group 
Abbreviations: PGlu= paracetamol glucuronide; PSul= paracetamol sulphate; Phase I: total of paracetamol cysteine and 
paracetamol mercapturate.  



 

284 
 

In Group A, the slope of the line of best fit for both Phase II metabolites was fairly flat, 

indicating very little of the variation in metabolite amount explained the variation in 

metabolite ratio. There was also a high dispersion on either side of the best fit line, 

especially in the case of paracetamol glucuronide. This indicated the best fit line itself was 

a poor reflection of the data. Phase I metabolites cluster to the left of the graph and were 

represented by a best-fit line with a step negative slope, indicating that as amounts of 

Phase I values increased, metabolic ratio fell. The results of the correlation in Table 3.3-71 

showed highly significant correlations between the metabolite ratio and paracetamol 

glucuronide and Phase I metabolites. However, while the correlation of the Phase I 

products appears strong (ρ2=44.2%), the coefficient of determination for paracetamol 

glucuronide is small, accounting for just 1.6% of the variation in metabolite ratio.  

For Group B the associations appeared stronger, displaying generally the same directional 

relationship between metabolites and ratio as Group A. Highly significant relationships 

were seen between all metabolites and metabolic ratio. Coefficients of determination 

were greater than in Group A, with Phase I metabolites one again showing the strongest 

relationship, accounting for 54.6% of the variance of metabolic ratio in this group.  

Group C metabolites clustered together towards the origin of the graph and did not show 

any clear relationships with metabolic ratio. As previously, a significant correlation 

between Phase I metabolites and metabolic ratio was found, but it accounted for only 

17.5% of the variation.  

A similar clustering of data was seen in Group D with no clear associations emerging 

visually. Correlation revealed that there were two significant relationships: a weak 

correlation with paracetamol sulphate; and a stronger correlation with Phase I amounts 

which explained 20.3% of the variation.  

Group B+D showed no relationships between metabolic ratio and any metabolite visually. 

Correlation showed significant relationships with all three metabolites, however the 

relationship with the Phase I metabolites was very weak. A stronger relationship was seen 

with the Phase I metabolites, accounting for 29.2% of the variation.  

In summary, the strongest relationship determined by correlation was consistently that 

between metabolic ratio and Phase I metabolites.  
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3.3.8.6 REGRESSION 

It was intended to use a multivariate method on the data from all samples to examine the 

relationship between the Phase II to Phase I metabolites ratio and the other variables; 

initially urine volume, sample number and total amount in the urine. Such analysis was 

attempted using multiple regression. Although the data going into the multiple regression 

model do not have to be normally distributed, the residuals from the generated model 

must. Analysis of the residuals showed that this assumption was violated. This finding 

applied across all groups and a sample is presented from Group A in Figure 3.3-41. This 

shows how the distribution of the residuals from Group A is non-normal, with a skewed 

histogram and deviation in the P-P plot from the normal line. This indicated that the 

model was invalid and could not be relied on for the description of the data.  

 

Figure 3.3-41 Histogram (left) and P-P plot (right) testing normality of regression residuals for Group A.  
Data failed tests for normality as histogram (left) was well outside imposed normal curve and P-P plot (right) did not fall 
along the line of normality. 

3.3.9  SUMMARY  

Several changes were seen to the pattern of excretion of paracetamol metabolites 

following surgery. These changes were most discernible in the high dose group, Group A, 

in whom the large metabolic capacity of glucuronide metabolism was seen. Group A also 

had increased excretions of paracetamol cysteine, one of the metabolites derived from 

the toxic intermediary NAPQI, in addition to marked reductions in paracetamol sulphate. 

Similar patterns of change were shown in Group B and D, although to a lesser degree, 

while the way paracetamol was excreted in Group C did not appear to change noticeably.  
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3.4 PLASMA RESULTS 

Plasma analysis is essential for determining accurate drug pharmacokinetics and most 

pharmacokinetic parameters are derived from a plasma concentration time series. 

Paracetamol is found in high concentrations in plasma as it has a low Vd and, as 

previously discussed in Section 2.2, its extraction from plasma is relatively straight 

forward. In addition to these pharmacokinetic values, when concentrations are at steady 

state, comparison of single time-point concentrations of paracetamol in plasma between 

days can also provide information about changes to drug disposition. For the purposes of 

this study, chromatograms were obtained, as described in Section 2.2 (Figure 3.4-1).  

 
Figure 3.4-1 Sample chromatogram of absorbance of paracetamol and its metabolites in patient plasma  
Chromatogram obtained from injection of patient 5A plasma (30min after dose on day 1) at UV 242nm and shows 
compound and retention time (mins). Retention times (in minutes) for paracetamol and its metabolites were: 
paracetamol glucuronide 6.78; paracetamol cysteine 9.37; paracetamol sulphate 10.31; paracetamol 12.46; and 
paracetamol mercapturate 16.18 

These were used to determine the concentrations of paracetamol and its metabolites in 

plasma samples taken at the times shown in Table 2.1-1. As with the urine data, 

concentrations below the LOD were set to zero and concentrations between the LOQ and 

LOD were set to half the LOD (Shah et al. 1992). Plasma concentrations were then 

converted to molar concentrations. Although paracetamol was administered at regular 

intervals throughout each day postoperatively, only one dose interval per day was 

monitored with plasma sampling, postoperatively, this was usually the 10pm scheduled 

dose. The following plasma samples were taken as shown in Table 2.1-1:  

 A full pharmacokinetic profile following the one preoperative paracetamol dose;  

 A second full pharmacokinetic profile following the 10pm paracetamol dose on 

the first postoperative day; and 
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 Samples at 0, 1 and 4hrs following the 10pm paracetamol dose on subsequent 

postoperative days. 

Accordingly data presented for Days 2, 3 and 4 arise only from the 0, 1 and 4 hour 

samples taken on those days. 

Concentrations were used to calculate various pharmacokinetic parameters on the 

preoperative and first postoperative day. On days 2, 3 and 4 the 1 and 4 hour samples 

were then tested for changes over the duration of the study. Plasma concentrations of a 

typical patient are presented in Figure 3.4-2. 

 
Figure 3.4-2 Plasma and metabolite concentrations for Patient 4B  
Concentrations shown as measured over monitored dose interval on each day of the study. Data shown for days 2, 3 and 
4 arise from 0, 1 and 4hr samples. Abbreviations: PS- paracetamol sulphate; PM- paracetamol mercapturate; PG- 
paracetamol glucuronide; PC- paracetamol cysteine; P- paracetamol 

Statistical tests were performed using PASW Statistics 18, Release Version 18.0.0 (SPSS, 

Inc., 2009, Chicago, Illinois), with a critical level of significance of α=0.05. The distribution 

of paracetamol and metabolite concentrations, and the pharmacokinetic values derived 

from them, were checked visually for normality and by using the Kolmogorov-Smirnov 

test (D). Data did not fulfil conditions for normality and accordingly non-parametric tests 

were used. The critical level of significance was 0.05.  

3.4.1 PARACETAMOL HALF-LIFE 

Half-lives (t½) were determined for the day before and the day after surgery using 

Equation 3.4-1.  
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 ⁄
 
     

 
 

Equation 3.4-1 Plasma half life 

t½ is a translation of the co-efficient of elimination (k) determined from the slope of the 

elimination phase of the semilogarithmic concentration vs. time plot. It is the relationship 

between the rate of elimination and the amount of drug in the body (Equation 3.4-2). 

  
                    (    )

               (    )
  
  

  
 

Equation 3.4-2 Elimination rate constant determined by clearance (Cl), concentration (C) and distribution volume (Vd) 

The half-lives are displayed in Figure 3.4-3 along with a trend line for each patient. 

 
Figure 3.4-3 Pre and postoperative half-lives (hours) 
Graphs (clockwise from top left): Group A, B, C and D 

The postoperative half-lives for Group A almost uniformly increased, with only patients 

3A and 10A exhibiting slight decreases (Pt3A- pre 1.62, post 1.64; Pt10A- pre 1.60, post 

1.58). No other group showed such a consistent trend with most other patients’ half-lives 

remaining the same or slightly decreasing. This is also reflected in the descriptive statistics 

(Table 3.4-1) where again Group A showed an increase in half-life.  
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One tailed exact Wilcoxon signed-rank tests were conducted to examine the changes to 

this paired data for significance (Table 3.4-1). This confirmed that Group A was the only 

group to exhibit a significant change.  

Table 3.4-1 Half-life descriptives and statistical analysis 
Descriptives are presented as median (lower quartile, upper quartile) in hours. Wilcoxon matched pair results are 
presented as Z statistic and p value. * indicates significant result, where p<0.05. 

Group Day -1 Day 1 
 

Difference 
between days 

Day -1=1 
Wilcoxon matched 
pairs.  

A 1.75 (1.59, 2.11) 2.13 (1.80, 3.25) 0.62 (0.02, 1.6) 2.100 p 0.020* 
B 1.97 (1.64, 2.11) 2.09 (1.49, 3.14) 0.15 (0.02, 0.16) 0.000 p 0.625 
C 1.94 (1.60, 3.43) 1.89 (1.25, 2.27) 0.12 (0.01, 0.23) 1.342 p 0.250 
D 2.06 (1.82, 2.40) 1.89 (1.63, 2.19) 0.07 (-0.22, 0.25) 0.944 p 0.219 

3.4.2 PARACETAMOL AREA UNDER THE CONCENTRATION VS. TIME CURVE 

The area under the concentration versus time curve (AUC) relates both dose and 

clearance (Equation 3.4-3). 

    
    

  
 

Equation 3.4-3 Relationship between AUC, dose and clearance (CL) 

AUC was calculated over a dose interval (0-τ) at steady state with the trapezoid rule from 

the concentration time curve (Equation 3.4-4). 

       ∑(       )  
(       )

 

   

   

 

Equation 3.4-4 Calculation of AUC using trapezoid rule 
0-τ=dose interval, t=time, c=concentration, n=total number of concentration points, i= ith concentration time value  

AUC for a single dose was determined out to infinity (0-∞). At steady state: 

              

Equation 3.4-5 Relationship between single dose and steady state AUC 

Determining AUC(0-∞) for a single dose requires the calculation of the area from the last 

measured concentration (Clast) until it reaches zero. This was achieved by the division of 

(Clast) by the constant k, which was then added to AUC(0-τ) 

               (
     
 
) 

Equation 3.4-6 Calculation of AUC0-∞ for a single dose 
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The AUC was determined for the day before (Equation 3.4-6) and the day after surgery 

(Equation 3.4-4) and then divided by dose. These are shown in Figure 3.4-4. The AUC 

increased for the majority of Group A patients, although there was a marked reduction 

for patient 1A. For most patients in the other groups the AUC remained constant or 

reduced slightly. A significant increase in AUC was shown for Group A (Table 3.4-2). 

  
Figure 3.4-4 Pre and postoperative AUC (mg.hr/L.mg) 
Graphs (clockwise from top left): Group A, B, C and D 

No other significant changes were seen. 

Table 3.4-2 AUC values before and after surgery 

Group Day -1 AUC (IQR) 
 mg.hr/L 

Day 1 AUC (IQR) 
mg.hr/L 

Wilcoxon matched 
pairs. Day -1=1, Z  

A 0.041 (0.032, 0.054) 0.049 (0.037, 0.077) 1.820 p 0.039* 
B 0.039 (0.025, 0.052) 0.040 (0.022, 0.057) 0.535 p 0.375 
C 0.045 (0.042, 0.079) 0.045 (0.03, 0.719) 1.342 p 0.250 
D 0.042 (0.029, 0.054) 0.038 (0.032, 0.039) 0.405 p 0.406 

3.4.3 CLEARANCE 

Clearance is a measure of the amount of drug which is removed per unit volume per time 

period. Equation 3.4-2 shows the relationship between k (the co-efficient of elimination), 
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the rate at which a drug is cleared, and Vd (the volume of distribution), the theoretical 

volume into which a drug is dispersed. It is calculated by the rearrangement of Equation 

3.4-3. Clearance values are shown in Figure 3.4-5 

 
Figure 3.4-5 Pre and postoperative Clearance (L/hr) 
Graphs (clockwise from top left): Group A, B, C and D 

For Group A all patients showed reduction in clearance, except for patient 1A who 

showed a large increase. There were no strong trends in the other groups, with most 

patients showing little or no change at all, aside from patient 2D, who showed a marked 

reduction, and patient 3D who showed an increase. 

Based on these values there were no significant changes exhibited (Table 3.4-3). 

Table 3.4-3 Clearance (L/hr) values before and after surgery 

Group Day-1 (IQR) Day 1 (IQR) Wilcoxon matched 
pairs. Day -1=1 

A 24.56 (18.68, 31.21) 20.60 (13.05, 26.90) 1.540 p 0.074 
B 25.46 (19.34, 39.82) 25.27 (17.67, 44.94) 0.000 p 0.625 
C 22.40 (14.00, 23.68) 22.41 (14.56, 19.74) 1.342 p 0.250 
D 24.09 (18.54, 34.87) 26.66 (25.49, 31.47) 0.135 p 0.500 
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Calculating the differences between preoperative and postoperative Cl values showed 

patient 1A’s Cl to lie well outside the distribution of the rest of Group A. Treating patient 

1A as an outlier and removing it from the analysis meant that Group A produced a 

significant difference (2.336 p=0.008). 

3.4.4 VOLUME OF DISTRIBUTION 

Volume of distribution (Vd) was also determined for the day before (Equation 3.4-7) and 

the day after surgery (Equation 3.4-8).  

   
  

 
 

Equation 3.4-7 Calculation of Volume of Distribution for a single dose 

     
   

       
 

Equation 3.4-8 Calculation of Volume of Distribution at steady state (Vdss) 
f=-bioavailability of dose, Css=concentration at steady state 

Where 

    
   

    
 

Equation 3.4-9 Calculation of Concentration at steady state 

There were reductions shown in Vd in all groups for most patients with the exceptions of 

patients 1A and 3D. Only the differences in Group A were significant but clear trends were 

observed in all other groups (Table 3.4-4, Figure 3.4-6). 

Table 3.4-4 Vd (L/kg) before and after surgery 
*=significant difference 

Group Day-1 (IQR) Day 1 (IQR) Wilcoxon matched 
pairs. Day -1=1 

A 0.77 (0.65, 0.89) 0.48 (0.38, 0.70) 2.240 p 0.012* 
B 0.97 (0.63, 1.08) 0.63 (0.52, 0.88) 1.604 p 0.125 
C 0.88 (0.76, 1.11) 0.71 (0.42, 1.33) 1.342 p 0.250 
D 0.89 (0.77, 1.17) 0.75 (0.58, 0.92) 1.753 p 0.063 
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Figure 3.4-6 Pre and postoperative Vd(L/kg) 
Graphs (clockwise from top left): Group A, B, C and D 

3.4.5 MEAN RESIDENCE TIME 

Mean residence time is an approximation of how long an “average” molecule of drug 

stays in the body. It is determined as shown in Equation 3.4-10.  

    
    

   
 

Equation 3.4-10 Calculation of Mean Residence Time (MRT) 
AUMC= area under the moment curve, AUC= area under the curve 

This value can also be used to approximate half-life. 

  
 ⁄
           

Equation 3.4-11 Calculation of half-life using MRT 

There was close agreement between the half-lives calculated using the coefficient of 

elimination and those using MRT.  
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Figure 3.4-7 MRT before and after surgery 

This suggests the disposition kinetics of paracetamol can be approximated by a one 

compartment model. Half-lives derived from the coefficient of elimination that are 

distinctly greater than those determined using MRT indicate multiple compartments that 

cannot be predicted using the simple methods here.  

All patients in Group A exhibited increases in MRT (Figure 3.4-7).  

There were no strong trends in the other groups although there was a tendency for MRT 

to decrease, as depicted in Table 3.4-5. 

Table 3.4-5 Pre and postoperative MRT (hours) 
*=significant difference 

Group Day-1 (IQR) Day 1 (IQR) Wilcoxon matched 
pairs. Day -1=1 

A 2.32 (2.11, 2.88) 3.10 (2.49, 4.69) 2.521 p 0.004* 
B 2.76 (2.29, 2.94) 2.79 (2.06, 4.49) 0.000 p 0.625 
C 2.73 (2.23, 4.95) 2.64 (1.72, 2.92) 1.342 p 0.250 
D 3.04 (2.55, 3.38) 2.64 (2.10, 3.13) 1.214 p 0.156 
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3.4.6 PARACETAMOL CONCENTRATION IN PLASMA ONE HOUR POST DOSE 

Plasma samples taken one hour after paracetamol dosing were analysed. They are 

presented with and without normalisation for dose (Figure 3.4-8). Dose normalised values 

(y) were obtained by multiplying Group A’s measured concentration (x) by the 24 hourly 

paracetamol dose the other groups received (4g) divided by Group A’s dose (9g), so that 

y=(4g/9g)x=0.444x. 

  
Figure 3.4-8 Plasma paracetamol (mmol/L) at one hour with (left) and without (right) normalisation for dose 

The left graph in Figure 3.4-8 shows the extent of accumulation associated with Group A’s 

higher dose. When normalised for dose, trends emerge. For most groups, paracetamol 

concentrations increased until the middle of the study and then appear to decline.  

Differences between distributions were checked with Friedman’s two-way analysis of 

variance by ranks for statistical significance using exact tests (Table 3.4-6).  

Table 3.4-6 Plasma paracetamol concentration (mmol/L  1 hour post dose as median  IQR  and results of Friedman’s 
test 
*
= significant difference 

Group Day -1 Day 1 Day 2 Day 3 Day 4 χ2 (p) 

A 0.102 (0.072, 
0.113) 

0.169 (0.126, 
0.232) 

0.224 (0.16, 
0.272) 

0.15 (0.134, 
0.243) 

0.156 (0.135, 
0.174) 

11.6 
(0.012)* 

B 0.061 (0.046, 
0.071) 

0.078 (0.048, 
0.112) 

0.088 (0.017, 
0.113) 

0.077 (0.063, 
0.101) 

0.056 (0.049, 
0.07) 

4 
(0.475) 

C 0.081 (0.064, 
0.087) 

0.097 (0.085, 
0.109) 

0.03 (0.009, 
0.051) 

0.05 (0.05, 
0.05) 

0.058 (0.033, 
0.084) 

3 
(0.460) 

D 0.06 (0.042, 
0.074) 

0.071 (0.068, 
0.09) 

0.075 (0.06, 
0.11) 

0.072 (0.052, 
0.115) 

0.067 (0.02, 
0.087) 

5.6 
(0.258) 

The Friedman’s test revealed a significant difference across Group A. A post hoc test was 

conducted with exact Wilcoxon matched pairs tests (Table 3.4-7). 
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Table 3.4-7 Group A, post hoc pair-wise analysis (p) 
*
= significant difference 

Group A    

1 0.005*    
2 0.008* 0.173   
3 0.015* 0.594 0.139  
4 0.021* 0.021* 0.028* 0.139 
Day -1 1 2 3 

Significant differences were seen between day -1 (preoperative day) and all others days, 

and Day 4 and Days -1, 1 and 2 (Table 3.4-7). This reflects the parabolic shape of the 

concentration distribution across the days of the study. While many individual tests 

exceed the critical α=0.05 level of significance, statistical devotees would insist the 

Bonferroni correction again be applied to these repeated tests to reduce the chance of a 

Type I error (i.e. chance of a false positive). Because there are 10 comparisons, 

considering the Bonferroni correction in this test reduces the critical level of significance 

to 0.005, so that only the increase between Day -1 and 1 remains statistically significant. 

Wilcoxon matched pairs tests were also conducted for the other three groups. As 

expected from the Friedman’s two-way analysis of variance, only Group A showed any 

pairwise differences.  

3.4.7 PARACETAMOL CONCENTRATION IN PLASMA FOUR HOURS POST DOSE 

A similar analysis was conducted for the four hour post dose concentration of 

paracetamol in plasma (Figure 3.4-9).  

 
Figure 3.4-9 Plasma paracetamol (mmol/L) at four hours with (left) and without (right) normalisation for dose 

Patterns are less clear on analysis of this sample time. The left graph in Figure 3.4-9 shows 

a stark increase in paracetamol concentration in Group A following surgery which then 

appears to reduce over the course of the study. Dose normalisation (right graph Figure 

3.4-9) does not reveal any obvious patterns; however, a similar shape to the one hour 
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concentration emerges, with increases after surgery and declining over subsequent days. 

This effect is most notable in Groups A and B. Once again a significant difference was seen 

in the distribution of concentrations for Group A (Table 3.4-8). 

Table 3.4-8 4 hour plasma paracetamol concentration (mmol/L) as median (IQR) with Friedman’s test results 
*
= significant difference 

Group Day -1 Day 1 Day 2 Day 3 Day 4 χ2 (p) 

A 0.041 (0.025, 
0.052) 

0.107 (0.07, 
0.127) 

0.104 (0.064, 
0.149) 

0.063 (0.049, 
0.108) 

0.044 (0.039, 
0.063) 

18.533 
(0.00)* 

B 0.025 (0.014, 
0.034) 

0.036 (0.014, 
0.064) 

0.042 (0.025, 
0.072) 

0.032 (0.031, 
0.06) 

0.024 (0.018, 
0.033) 

7.467 
(0.096) 

C 0.026 (0.023, 
0.046) 

0.038 (0.034, 
0.050) 

0.034 (0.014, 
0.048) 

0.043 (0.018, 
0.053) 

0.041 (0.023, 
0.045) 

0.406 
(0.354) 

D 0.023 (0.017, 
0.035) 

0.037 (0.028, 
0.073) 

0.026 (0.018, 
0.048) 

0.027 (0.011, 
0.062) 

0.038 (0.02, 
0.053) 

4.267 
(0.432) 

Another post hoc analysis was undertaken (Table 3.4-9) 

Table 3.4-9 Group A Post hoc pair-wise analysis (p) 
*
= significant difference 

Group A    

1 0.005*    
2 0.008* 0.314   
3 0.093* 0.123 0.036*  
4 0.050* 0.017* 0.012* 0.161 
Day -1 1 2 3 

Similar to the one hour time sample, the preoperative sample from Group A was different 

from other days’. There were also significant differences between each of Day 1 and Day2 

with Day 4. Also similar to the one hour time sample, the application of the Bonferroni 

correction causes all but the increase between Day -1 and Day 1 to loose significance. 

3.4.8 ACCUMULATION OF PARACETAMOL IN GROUP A 

Samples were collected at t=0 and t=4hrs for all patients 

 
Figure 3.4-10 Difference between t=4 and t=0 paracetamol concentration 
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For Group A, who received paracetamol every four hours, this represented the beginning 

and end of the dosage interval and these were compared for evidence of accumulation. 

Confirming the data above, the largest accumulation across the dose interval occurred on 

the first dose on the day before surgery (Figure 3.4-10). On the days following surgery, 

the median value reduced to the point where on Days 3 and 4 the paracetamol 

concentrations were lower at the end of the dose interval than at the beginning. A 

Friedman’s test was also conducted on these data showing a statistically significant 

difference. 

Table 3.4-10 Difference between t=0 and t=4 concentrations  mmol/L  as median  IQR  and results of Friedman’s test 
*
= significant difference 

Group A Day -1 Day 1 Day 2 Day 3 Day 4 χ2 (p) 

Median 
IQR 

0.037 
0.024, 0.049 

0.006 
-0.013, 0.009 

0.005 
-0.004, 0.019 

-0.008 
-0.035, 0.025 

-0.005 
-0.036, 0.01 

10.88 
(0.015)* 

The negative median values indicate concentrations actually reduced over the dosage 

interval (i.e. between the time 0 and time 4 hour samples). A post hoc test was again 

conducted using one tailed exact Wilcoxon signed ranks tests (Table 3.4-11). The 

significant differences occurred between the preoperative and postoperative days. While 

none of the postoperative days are significantly different from each other, there is some 

evidence of a trend between them (p=0.078). However, applying the Bonferroni 

correction eliminated the statistical significance of all these results. 

Table 3.4-11 Results of post hoc test of differences between t=0 and t=4 concentrations (p) 
*
= significant difference 

Group A    

1 0.008*    
2 0.074 0.410   
3 0.008* 0.273 0.527  
4 0.031* 0.281 0.078 0.500 
Day -1 1 2 3 

3.4.9 PLASMA METABOLITE CONCENTRATIONS 

All metabolites studied are readily excreted in the urine. As a result, plasma does not 

accurately reflect metabolite ratios as the metabolites’ rates of formation are different 

from one another. Glucuronide and sulphate metabolites appear rapidly in plasma as they 

arise directly from a Phase II reaction on paracetamol. Conversely, paracetamol cysteine 

and mercapturate arise from a Phase II reaction on NAPQI, itself a Phase I product of 

paracetamol. Therefore NAPQI formation will delay the rate of paracetamol cysteine and 

mercapturate formation. The concentrations of paracetamol and these metabolites in 

plasma over the entire study are presented below for each group (Figure 3.4-11).  
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Figure 3.4-11 Paracetamol and metabolite concentrations (mmol/L) 
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Figure 3.4-11 Continued. Paracetamol and metabolite concentrations (mmol/L) 
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Some patterns appear from Figure 3.4-11. In Group A paracetamol and paracetamol 

glucuronide concentrations peak on Days 2 and 3 but there are no accompanying changes 

in the concentrations of paracetamol sulphate or the Phase I conjugates. Visually, 

concentrations of paracetamol sulphate or the Phase I conjugates remain relatively 

consistent across all groups, despite Group A having over twice the daily dose of 

paracetamol of the other groups.  

 
Figure 3.4-12 Median plasma paracetamol concentrations (mmol/L) 
Presented as median +/- quartiles preoperatively (red line) and Day 1 postoperatively (blue line).  

Paracetamol glucuronide concentrations accumulated in Group A, appearing to reach 

their highest concentration on Day 2 from which point they appeared to decline. The fact 

that paracetamol glucuronide concentrations accumulated and in later intervals exceeded 

those of paracetamol itself, indicates that paracetamol glucuronide rate of formation is 

greater than its rate of elimination, i.e. that its half-life is greater than that of 

paracetamol.  



 

302 
 

Further analysis was conducted comparing the kinetics of the preoperative to 

postoperative days and these graphs are shown in Figure 3.4-12.  

For Group A, the median Cmax of paracetamol increases from 0.254 mmol/L 

preoperatively to 0.296mmol/L on Day 1 postoperatively, an approximate increase of 

17%. The preoperative Cmax arising from a single dose in other groups is consistent 

between groups at around 0.1mmol/L. There appeared to be much less accumulation of 

paracetamol in Groups B, C and D (Figure 3.4-12) although as a percentage of 

preoperative Cmax, the increase is greater than of Group A (Table 3.4-12). 

Table 3.4-12 Difference between median Cmax (mmol/L) values 

Group Day-1 Cmax (mmol/L) Day 1 Cmax (mmol/L) Difference (mmol/L) % Increase 

A 0.140 0.243 0.103 73.4 
B 0.092 0.13 0.037 40.6 
C 0.116 0.184 0.068 58.8 
D 0.105 0.128 0.024 22.4 

3.4.10 CONCENTRATIONS WITHIN DOSE INTERVAL 

The concentrations of paracetamol and each metabolite were compared to examine the 

relationship between time of dose and formation of metabolites and the difference 

between steady state and single dose metabolite concentrations.  

3.4.10.1.1 PHASE I PRODUCTS 

The same process was followed for paracetamol cysteine and mercapturate. Neither 

metabolite was found in measurable concentrations following the preoperative 

paracetamol dose. Paracetamol cysteine was found following the postoperative dose 

although the concentration did not change over time, showing no increase with the 

administration of paracetamol. Concentrations in Group A, while still low (0.03mmol/L 

approximately), were about twice those of the other groups. Slight amounts of 

paracetamol mercapturate were detected postoperatively but again the concentration 

was not affected by paracetamol administration. There was no visually apparent 

difference between groups. These graphs are contained in Appendix 13. 

3.4.10.1.2 PARACETAMOL GLUCURONIDE 

Concentrations of paracetamol glucuronide are shown on the day before and day after 

surgery for each group (Figure 3.4-13). Preoperatively, all groups showed increases in 

paracetamol glucuronide concentration following the dose, until the 1.5 hour sample. 
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From this point, concentrations appeared to plateau. There was a substantial increase 

between preoperative and postoperative concentrations in Group A, with accumulations 

to a lesser degree seen in the other groups. Paracetamol glucuronide was detected prior 

to the administration of paracetamol postoperatively.  

 
Figure 3.4-13 Median plasma paracetamol glucuronide concentrations (mmol/L) 
Presented as median +/- quartiles preoperatively (red line) and day 1 postoperatively (blue line).  

3.4.10.1.3 PARACETAMOL SULPHATE 

Concentrations of paracetamol sulphate are also shown (Figure 3.4-14). Preoperative and 

postoperative concentrations are almost identical, not showing any significant increase 

between the single dose and steady state conditions. There was also very little difference 

between groups, despite the much higher dose given in Group A. There were slight 

increases of paracetamol sulphate concentration following the paracetamol dose but 
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these plateaued within 30 minutes for all groups. Paracetamol sulphate was also detected 

prior to the administration of paracetamol postoperatively.  

 
Figure 3.4-14 Median plasma paracetamol sulphate concentrations (mmol/L) 
Presented as median +/- quartiles preoperatively (red line) and day 1 postoperatively (blue line).  

3.4.11 SUMMARY 

Paracetamol’s plasma half-lives were seen to increase in Groups A and B which lead to 

statistically significant increases in exposure to paracetamol in Group A. Clearance and Vd 

were examined for their contribution to these changes. Reductions in clearance were 

large in Group A, while all other groups remained static. More noticeable were reductions 

to Vd which were seen in all groups and achieved statistical significance in Group A. Over 

the postoperative course one and four hour post-dose concentrations appeared to 

accumulate in all groups until Day 2, long after steady state was expected, from which 

time the appeared to decline approaching preoperative concentrations.   
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3.5 CYTOKINE RESULTS 

The concentration of cytokines IL-1β, IL-6, TNFα and IFNγ were measured in daily patient 

samples by the ELISA methods described in Section 2.3. 

Cytokines release and peak at different times following surgical trauma and 

concentrations following major abdominal surgery have been previously reported 

(Roumen et al. 1993a) (Section 1.3.1.2). TNF-α and IL-1β are key pro-inflammatory 

cytokines and are amongst the first to be released, and along with IFN-γ they stimulate 

the release of other cytokines including IL-6 (Dinarello 2000). Together, all four cytokines 

investigated in this study activate the hypothalamic-pituitary-adrenal axis by stimulating 

the release of corticotrophin releasing hormone (CRH), suppressing appetite and inducing 

pyresis. In the liver, they stimulate the acute phase response, leading to an increase in C-

reactive protein and a number of other mediators. They also induce insulin resistance in 

the liver and peripheral tissues. IL-6 is the most important cytokine for this research as it 

correlates well with surgical trauma, the stress response and the subsequent changes to 

drug disposition (Roumen et al. 1993a; Veenhof et al. 2011).  

3.5.1 DISTRIBUTION OF CYTOKINE RESULTS 

The distributions of the cytokine concentrations for each group were assessed graphically 

(examples shown in Figure 3.5-1 and 2) and with a formal normality test (Table 3.5-1). 

 
Figure 3.5-1 Graphs depicting distribution of IL-1β values from Group A on the preoperative day. 
(Left) Histogram with normal curve superimposed shows distribution skewed to the left; (Right) Box plot shows median 
bar is not centrally placed in the box and tails do not extend from the box symmetrically. Both graphs indicate the data 
are non-parametric. 
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Figure 3.5-2 Q-Q plots of IL-1β distribution 
(Left) Q-Q plot shows IL-1β values are not placed along the line of normality; (Right) The de-trended Q-Q plot shows an 
exaggerated deviation from the normal line. Both graphs indicate the data to be non-parametric. 

Kolmogorov-Smirnov tests examine if the data were significantly different from a normal 

distribution. In Table 3.5-1, a significance value of less than 0.05 indicated a significant 

variation from a normal distribution i.e. that the data were non-parametric. No group of 

cytokine results consistently showed evidence of normality. Attempts to normalise the 

data by log, square root and reciprocal transformations did not improve the results of 

these normality tests. 

Table 3.5-1 Results of Kolmogorov-Smirnov test D with (df) degrees of freedom for all cytokines. 
Abbreviations: D- Kolmogorov-Smirnov test statistic; df- degrees of freedom; Sig- significance. *=Significance. 

 Group A Group B Group C Group D 

 D (df) Sig. D (df)  Sig. D (df) Sig. D (df) Sig. 

IL-1β 0.253 (45) 0.000* 0.381 (15) 0.000* 0.236 (23) 0.002* 0.299 (39) 0.000* 

IL-6 0.373 (45) 0.000* 0.166 (15) 0.200 0.371 (23) 0.000* 0.332 (39) 0.000* 

TNF-α 0.154 (45) 0.009* 0.116 (15) 0.200 0.191 (23) 0.029* 0.148 (39) 0.031* 
IFN-γ 0.307 (45) 0.000* 0.118 (15) 0.200 0.347 (22) 0.000* 0.110 (33 ) 0.200 

To assess differences between days of the study, paired tests were used. While it is 

important to consider the distribution of each cytokine concentration as a group, as 

shown above, when conducting paired analysis it is more relevant to consider the 

distribution of the residuals. The residuals are the absolute value of the difference 

between the values in the paired analysis. Their distribution also failed tests of normality 

and an example of IL-1β is shown (Table 3.5-2).  

Table 3.5-2 Formal normality tests of the residuals for IL-1β 

 Group A Group B Group C Group D 

 D (df) Sig D (df)  Sig D (df) Sig D (df) Sig 

Day -1 v 1 0.277 (10) 0.028 0.439 (4) 0.001 0.387 (8) 0.001 0.353 (11) 0.000 

Day -1 v 2 0.516 (10) 0.000 0.439 (4) 0.000 0.325 (8) 0.013 0.353 (11) 0.000 
Day -1 v 3 0.515 (10) 0.000 0.439 (4) 0.001 0.455 (8) 0.000 0.351 (11) 0.000 

Day -1 v 4 0.428 (10) 0.000 0.449 (4) 0.001 0.391 (8) 0.001 0.352 (11) 0.000 
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Accordingly, non-parametric tests were used for cytokine analysis. Quartiles were 

calculated using weighted averages X(n+1)p. The results of the analysis of each cytokine are 

now presented in the following sections.  

3.5.2 IL-1β 

IL-1β is released from blood monocytes and tissue macrophages upon activation as part 

of the initial inflammatory response. As a primary inflammatory mediator IL-1β 

concentrations were expected to peak soon after incision and with a short half-life, 

resolve quickly in the absence of continuing inflammation (Roumen et al. 1993a). 

3.5.2.1 DESCRIPTIVES 

The median and interquartile ranges of all the groups for each cytokine are presented in 

the following tables and accompanied by box plots of their distribution. The assay had a 

lower LOD of 0.19pg/mL and an upper LOD of 2500pg/mL. As can be seen in the graphs 

that follow, the elevations of IL-1β were comparatively minor, with the highest measured 

concentration across all groups of 14.29pg/mL. Nearly half (41.8%) of IL-1β 

concentrations were at or below the LOD (0.19pg/mL). 

3.5.3 GROUP A 

 
Figure 3.5-3 Box plot for IL-1β concentration- Group A 

Table 3.5-3 Descriptives for IL-1β Group A 

IL-1β Group A 
(pg/mL) N Median (IQR) 

Day -1 10 0 (0 ,0.159) 

Day 1 10 0.250 (0.074, 1.029) 

Day 2 9 0 (0, 0.216) 
Day 3 9 0.160 (0, 0.484) 

Day 4 7 0.810 (0.306, 1.034) 
 

Group A began with 10 patients (Figure 3.5-3 and Table 3.5-3). There were only very small 

fluctuations in IL-1β concentrations, peaking on the day after surgery, falling the following 

day to baseline values and returning to slightly elevated values towards the end of the 

study. There was little variation within the study group over the five sampling days.  
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3.5.3.1.1 GROUP B 

  
Figure 3.5-4 Box plot for IL-1β concentration- Group B 

Table 3.5-4 Descriptives for IL-1β Group B 

IL-1β Group B 
(pg/mL) N Median (IQR) 

Day -1 3 0.213 (0.106, 7.249) 

Day 1 3 0 (0, 0.044) 

Day 2 3 0 (0, 0) 
Day 3 3 3.636 (2.511, 3.70) 

Day 4 3 0 (0, 0) 
 

Group B had three patients who gave blood samples (Figure 3.5-4 and Table 3.5-4). The 

small sample size limits its statistical inference. Large variability was noticeable on the 

preoperative day. This was caused by one patient who had elevated IL-1β prior to surgery 

as shown by the length of the whisker on the first box. This concentration of IL-1β may be 

expected in the presence of inflammation. Postoperatively, IL-1β concentrations were 

below the LOD for all days except Day 3 when all patients experience similar elevation in 

IL-1β concentration. 

3.5.3.1.2 GROUP C 

 
Figure 3.5-5 Box plot for IL-1β concentration- Group C 

Table 3.5-5 Descriptives for IL-1β Group C  

IL-1β Group C 
(pg/mL) N Median (IQR) 

Day -1 7 1.097 (0.890, 1.599) 

Day 1 5 0 (0, 0.095) 

Day 2 4 0.506 (0, 3.415) 
Day 3 2 2.958 (0.807, 4.033) 

Day 4 3 0 (0, 1.539) 
 

Group C began with seven patients but complete sample sets were collected from only 

two patients (Figure 3.5-5 and Table 3.5-5). This group also exhibited detectable IL-1β 

concentrations preoperatively. Only one patient had detectable concentrations of IL-1β 

on the first day after surgery. Following this, concentrations rose on Days 2 and 3 and fell 

to baseline on Day 4. As patients dropped out from this group variability increased.  
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3.5.3.1.3 GROUP D 

 
Figure 3.5-6 Box plot for IL-1β concentration- Group D 

Table 3.5-6 Descriptives for IL-1β Group D 

IL-1β Group D 
(pg/mL) N Median (IQR) 

Day -1 11 0 (0, 0.201) 

Day 1 6 0.150 (0, 1.030) 

Day 2 5 0.492 (0.085, 1.840) 
Day 3 6 0.274 (0.091, 1.074) 

Day 4 6 0.564 (0.107, 1.066) 
 

Group D began with 11 patients (Figure 3.5-6 and Table 3.5-6). There was negligible 

inflammation prior to surgery. Concentrations of IL-1β remained low until the second 

postoperative day falling on Day 3 and 4. There was little variability across the study aside 

from Day 3.  

3.5.3.2  CHANGES TO IL-1β CONCENTRATION 

3.5.3.2.1 ALL GROUPS  

Visual observation of Figure 3.5-3 through to Figure 3.5-6 does not reveal any obvious 

trend in IL-1β concentration across the study for any group. To confirm this, a Friedman’s 

test (χ2) was used to assess if the distribution of each of the days were the same. A 

significant result indicates differences between distribution of one or more of the study 

days (Table 3.5-7).  

Table 3.5-7 Results of Friedman test for concentration of IL-1β 
Abbreviations: N-number in group; χ

2
-Friedman test statistic; df- degrees of freedom; Sig- significance. Significant values 

are indicated by *. 

 N χ2 df Sig. 

Group A 7 12.195 4 0.0151* 
Group B 3 8.000 4 0.0916 
Group C 2 4.445 4 0.3492 
Group D 5 4.553 4 0.3363 

Group A achieved a significant result indicating that there were significant changes in the 

distribution of the IL-1β concentrations across the days of the study. A post hoc analysis 

was conducted using a one tailed  ilcoxon’s matched pairs test (Z) to determine where 
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the difference indicated by the significant result in the Friedman’s test occurred. One tail 

was used because IL-1β concentrations were only expected to be increased by surgery. 

While no difference occurred in the other groups, a repeated measures test such as 

Friedman’s requires a value to be present on all of the days of the test for the patient to 

be included in the analysis i.e. if one sample out of the five was missing that patient was 

excluded. This reduced the number of patients included in this analysis considerably 

giving a poor reflection of the amount of data gathered (Table 3.5-7). To improve this, a 

paired analysis was also conducted. To minimise the Type 1 error and the size of the 

Bonferroni correction, only the preoperative day was compared with the other days of 

the test. This resulted in four comparisons between the five tests, with the Bonferroni 

correction reducing the critical level of significance from 0.05 to 0.0125 (i.e. α/4) (Table 

3.5-8). 

Table 3.5-8 Results of Wilcoxon matched pairs test for IL-1β concentrations 
Values shown as Z (significance). Significant values are indicated by *.  

IL-1β Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 1.836 (0.066) 3 1.069 (0.285) 7 2.366 (0.018) 11 1.779 (0.075) 

-1 v 2 9 1.604 (0.109) 3 1.342 (0.18) 4 0.73 (0.465) 5 1.461 (0.144) 

-1 v 3 9 1.183 (0.237) 3 0 (1) 2 0.447 (0.655) 6 1.363 (0.173) 

-1 v 4 7 1.859 (0.063) 3 1.342 (0.18) 3 0.535 (0.593) 6 2.023 (0.043) 

These results show no significant changes in IL-1β concentration between the 

preoperative and any of the postoperative days of the study. This would indicate the 

significant result seen in Group A’s Friedman’s test arose from differences between days 

within the postoperative phase that were not undertaken in this paired analysis. Further 

analysis revealed this to be the case with the results of a Wilcoxon matched pairs test 

between Group A Days 3 and 4 of 2.197 (0.028), showing that the concentration of IL-1β 

was actually significantly higher on Day 4 than on Day 3, contrary to what would be 

expected. However once the Bonferroni correction was taken into account, this result lost 

its significance (Table 3.5-8).  

Two other results approached significance during the matched pair analysis summarised 

in Table 3.5-8, but both lost significance upon incorporation of the Bonferroni correction. 

In Group C the IL-1β concentration trended to being higher preoperatively than on Day 1 

postoperatively, and Group D showed a trend for Day 4 postoperatively to be higher than 

the preoperative sample.  
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3.5.3.3 CHANGES TO IL-1β CONCENTRATION AS PERCENTAGE OF PREOPERATIVE VALUE 

Some previous reports of cytokine concentrations following surgery have reported values 

as a percentage of baseline concentration (Veenhof et al. 2011). Although interesting, 

these results are to be interpreted with caution as working with percentages can skew 

results. However, the advantages of this method are the potential reduction in inter-

individual variation as the percentage increase is calculated for each patient. To facilitate 

this analysis, those with concentrations reported as zero were set at the LOD of the assay.  

 

Figure 3.5-7 Dual axis graphs showing median values of IL-1 β concentration  solid bars, left y a is  and median 
percentage change in IL-1 β concentration when compared to preoperative values. 

The graphs above show how a percentage change can exaggerate differences (Figure 

3.5-7). In the first graph of Group A, the increases on the final day of the study appear 

considerably larger than that of the increase to the actual cytokine concentration. 

Conversely, the increases seen on Day 3 for Group B appear diminished due to the 

elevated IL-1β concentration measured at the baseline in this group. To assess if this 

transformation of the data resulted in any change to the statistical analysis, the same 

analsysis previously undertaken for concentrations of IL-1 β was repeated. 
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As the transformation was applied to all days of the study, the distribution was 

unchanged and therefore the results of the Friedman’s test were identical to those in 

Table 3.5-7.  

The results of the Wilcoxon matched pairs test are summarised in Table 3.5-9. Some 

greater differences did arise in these results including the statistically significant increase 

between the preoperative and first postoperative day in Group A. Groups C and D both 

had results approaching significance for the same comparison.  

Table 3.5-9 Results of Wilcoxon matched pairs test for percentage change of IL-1β concentrations between the 
preoperative day and consecutive days.  
Values shown as Z (significance). Significant values are indicated by *.  

IL-1β Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 2.549 (0.011*) 3 0 (1) 7 2.366 (0.018) 11 1.955 (0.051) 

-1 v 2 9 1.604 (0.109) 3 1.342 (0.180) 4 0.365 (0.715) 5 1.461 (0.144) 

-1 v 3 9 1.992 (0.046) 3 1.069 (0.285) 2 0.447 (0.655) 6 1.753 (0.080) 

-1 v 4 7 2.197 (0.028) 3 1.342 (0.180) 3 1.069 (0.285) 6 2.23 .043) 

3.5.4 IL-6 

T-cells and macrophages activated by IL-1β and TNF-α secrete IL-6 soon after trauma. IL-6 

is also released by unrelated processes such as exercise and obesity, which may affect 

baseline concentrations (Roumen et al. 1993a; Fain 2010). It has both pro and anti-

inflammatory activity, promoting IL-1α and IL-10 and inhibiting TNF-α and IL-1 (Heinrich 

et al. 2003).  

IL-6 concentrations correlate well with trauma severity following surgery and have been 

used as a predictor of survival (Gebhard et al. 2000). Unlike other cytokines, IL-6 can cross 

the blood/brain barrier where it initiates PGE2 synthesis in the hypothalamus, a 

prostaglandin central to paracetamol pharmacology, causing pyresis (Roumen et al. 

1993a). 

3.5.4.1 DESCRIPTIVES 

The median and interquartile ranges of all the groups for each cytokine are presented in 

the following tables below accompanied by box plots of their distribution. The assay had a 

lower LOD of 0.42pg/mL and an upper LOD of 2500pg/mL. Much higher levels of IL-6 were 

measured than of IL-1β, with the highest across all samples of 421.60pg/mL. None of the 

121 samples examined were at or below the LOD. 
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3.5.4.1.1 GROUP A 

 
Figure 3.5-8 Box plot for IL-6 concentrations- Group A 

Table 3.5-10 Descriptive statistics for IL-6 Group A  

IL-6 Group A 
(pg/mL) N Median (IQR) 

Day -1 10 3.025 (1.607, 4.339) 

Day 1 10 35.192 (29.838, 133.137) 

Day 2 9 16.216 (10.602, 29.614) 
Day 3 9 11.167 (9.185, 14.797) 

Day 4 7 9.298 (7.944, 14.489) 
 

 

Although there was a small degree of elevation preoperatively, Group A exhibited a 

marked increase in IL-6 concentration on Day 1 postoperatively (Figure 3.5-8 and Table 

3.5-10). The box plot shows two outlying data points on Day 1, shown as 11 and 14, which 

belong to patient one and four respectively. Patient one went on to develop a leaking 

anastomosis and sepsis and died two weeks later. Patient four also had complications, 

also developing a leaking anastomosis, eventually requiring the formation of a colostomy 

and nearly a month of intensive care.  

The median concentration more than halved on Day 2 and continued to decline more 

gradually on Days 3 and 4. The outlying points 24, 34 and 44 on these later days all belong 

to patient four described above. Although this patient’s IL-6 concentrations declined in a 

similar manner to those of the rest of the group, they still fell outside of the group’s 

upper quartile. Patient one had been withdrawn from the study due to his complications 

and accordingly, IL-6 concentrations were not available after Day 1. 

The variation on Day 1 was far greater than any other day. On the following days data is 

clustered much closer around the median. 
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3.5.4.1.2 GROUP B 

 
Figure 3.5-9 Box plot for IL-6 concentration- Group B  

Table 3.5-11 Descriptive statistics for IL-6 Group B  

IL-6 Group B 

Day -1 3 1.034 (0.754, 2.915) 

Day 1 3 29.100 (26.920, 56.019) 

Day 2 3 20.234 (8.179, 22.498) 

Day 3 3 8.619 (5.183, 25.602) 
Day 4 3 13.995, (7.587, 15.137) 

Day -1 3 1.034 (0.754, 2.915) 
 

As discussed in the results for IL-1β, it is difficult to draw trends because of the size of this 

group. Similarly to Group A, IL-6 concentrations in Group B increased sharply from 

amounts just above the LOD preoperatively to concentrations which where thirtyfold 

higher on Day 1 (Figure 3.5-9 and Table 3.5-11). The concentration reduced gradually on 

Day 2 and three, increasing slightly on Day 4. The variation was greatest on Day 1 but the 

size of this group diminishes the usefulness of this measure. 

3.5.4.1.3 GROUP C 

 
Figure 3.5-10 Box plot for IL-6 concentration- Group C 

Table 3.5-12 Descriptive statistics for IL-6 Group C  

IL-6 Group C 

Day -1 7 1.097 (0.696, 1.692) 

Day 1 5 8.127 (3.378, 15.700) 

Day 2 4 6.134 (3.004, 27.445) 

Day 3 2 43.225 (9.199, 57.410) 
Day 4 3 31.546 (2.227, 44.752) 

Day -1 7 1.097 (0.696, 1.692) 
 

The pattern of changes to IL-6 concentration for Group C was unlike any other group 

(Figure 3.5-10 and Table 3.5-12). There was a high concentration of IL-6 measured 

preoperatively. Concentrations of IL-6 fell to their lowest levels on Day 1, remaining low 

on Day 2. On the third day there was a rapid increase in median concentration. 

Concentrations fell, but still remain markedly elevated on Day 4. Because of the dropout 

of patients from this group it is difficult to draw conclusions about cytokine trends. On 

Day 3, samples were obtained from only patients 1 and 4, both of whom had complicated 
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recoveries, with Patient 4 having the highest concentration of IL-6 of all patients in the 

study on this day (74.18pg/mL). A sample from an additional patient on Day 4 reduced 

the median concentration but did not eliminate the effect of these two other patients 

resulting in another high median concentration.  

3.5.4.1.4 GROUP D 

 
Figure 3.5-11 Box plot for IL-6 concentration- Group D 

Table 3.5-13 Descriptive statistics for IL-6 Group D  

IL-6 Group D 
(pg/mL) N Median (IQR) 

Day -1 11 1.350 (0.946, 3.649) 

Day 1 6 34.674 (16.464, 152.832) 

Day 2 5 19.578 (12.977, 26.223) 

Day 3 6 13.239 (6.762, 62.996) 

Day 4 6 13.836 (2.960, 25.505) 
 

Concentrations of IL-6 for Group D began consistently low across the group as shown by 

the low median and small interquartile range (Figure 3.5-11 and Table 3.5-13). 

Concentrations increased steeply on Day 1, increasing further on Day 2. On Day 1 an 

outlier from Patient 1 was seen about 20 times higher than the group median at 

417.20pg/mL. This patient underwent more extensive and one of the only two open 

surgeries in his group to correct a long standing congenital abnormality within his gastro-

intestinal tract.  

Median concentrations of IL-6 fell by Day 3, and remained relatively constant on Day 4. 

There was a large reduction in interquartile range from Day 3 through to Day 4. Another 

outlier appeared on Day 4 from patient 11. At 47.77pg/mL, Patient 11’s concentration on 

this day was four times that of their IL-6 concentration on the previous day (11.81pg/mL) 

and that of the group median. This patient had an uncomplicated recovery. 

3.5.4.2 CHANGES TO IL-6 CONCENTRATION 

3.5.4.2.1 ALL GROUPS  

Visual observation of the box plots revealed much greater variation in IL-6 concentration 

across the days of the study than seen with IL-1β. For most groups there was a clear 
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increase in the IL-6 concentration on the day following surgery. To confirm if this variation 

was real or due to chance a Friedman’s test (χ2) was used (Table 3.5-14).  

Table 3.5-14 Results of Friedman test for concentration of IL-6 
Abbreviations used: N-number in group; χ

2
-Friedman test statistic; df- degrees of freedom; Sig- significance. Significant 

values are indicated by *. 

IL-6 N χ2 df Sig. 

Group A 7 26.629 4 0.000* 
Group B 3 10.400 4 0.034* 
Group C 2 7.600 4 0.107 
Group D 5 8.480 4 0.075 

Groups A and B show significant differences in IL-6 concentration over the course of the 

study. As with IL-1β, a post hoc analysis was conducted using a one tailed  ilcoxon’s 

matched pairs test (Z) to identify on which pair of days statistically significant differences 

occurred. One tailed tests were again used as inflammation was only expected to increase 

as a result of surgery, and as before, to minimise the size of the Bonferroni correction 

only the pre-operative day was compared with each post-operative day. Once the 

Bonferroni correction was taken into account Group A showed significant differences 

between pre-operative concentrations and Days 1, 2 and 4 (Table 3.5-15).  

Table 3.5-15 Results of Wilcoxon matched pairs test for IL-6 concentrations 
Values shown as Z (significance). Significant values are indicated by *.  

IL-6 Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 2.803 (0.005)* 3 1.604 (0.109) 7 2.366 (0.018) 11 2.934 (0.003)* 

-1 v 2 9 2.666 (0.008)* 3 1.604 (0.109) 4 0.365 (0.715) 5 1.483 (0.138) 

-1 v 3 9 2.666 (0.008)* 3 1.604 (0.109) 2 1.342 (0.18) 6 2.201 (0.028) 

-1 v 4 7 2.366 (0.018) 3 1.604 (0.109) 3 1.069 (0.285) 6 1.572 (0.116) 
 

As the comparisons of the preoperative day with Day 2 and 3 gave exactly the same Z and 

significance value, this was checked by manual calculation. Like most non-parametric 

tests, the Wilcoxon matched pairs test is based on ranking of data rather than comparing 

the data’s actual value. In this analysis the same number of positive ranks occurred in 

both comparisons, resulting in the same Z and significance values. This also explained the 

results shown for Group B, as all postoperative values were greater than the preoperative 

values.  

Group D also showed a significant difference between the Day -1 and Day 1 adding to a 

general trend across all groups. Ignoring the Bonferroni correction brought Group C into 

this trend.  
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3.5.4.3 CHANGES TO IL-6 CONCENTRATION AS PERCENTAGE OF PREOPERATIVE VALUE 

As with IL-1β, IL-6 concentrations were transformed to a percentage of preoperative 

baseline concentration and analysed using the same procedure (Figure 3.5-12). 

 

Figure 3.5-12 Dual axis graphs showing median values of IL-6 concentration (solid bars, left y axis) and median 
percentage change in IL-6 concentration when compared with preoperative values. 

Once again the results demonstrate this method’s ability to skew data based on 

preoperative cytokine concentrations and this is demonstrated clearly in the differences 

between groups. Groups A and C exhibit substantial concentration changes over the 

course of the study but because of the comparatively high concentration preoperatively, 

the percentage changes are small. The converse is true for Groups B and D, where a much 

lower preoperative median concentration results in a large percentage increase 

postoperatively despite the actual concentration being much less than that of Group A 

and Group C. 

Another  ilcoxon matched pair’s test was conducted (Table 3.5-16) to detect difference 

between days of the study. Once again the Bonferroni correction reduced the critical level 

of significance to 0.0125 (0.05/4). 
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Table 3.5-16 Results of Wilcoxon matched pairs test for percentage change of IL-6 concentrations between the 
preoperative day and consecutive days.  
Values shown as Z (significance). Significant values are indicated by *.  

IL-6 Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 2.803 (0.005*) 3 1.604 (0.109) 7 2.366 (0.018) 11 2.934 (0.003*) 
-1 v 2 9 2.666 (0.008*) 3 1.604 (0.109) 4 0.365 (0.715) 5 1.753 (0.080) 
-1 v 3 9 2.666 (0.008*) 3 1.604 (0.109) 2 1.342 (0.180) 6 2.201 (0.028) 
-1 v 4 7 2.366 (0.018) 3 1.604 (0.109) 3 1.069 (0.285) 6 1.992 (0.046) 

3.5.5 TNF-α  

TNF-α is primarily released from activated macrophages and mast cells stimulated by 

lipopolysaccharides and IL-1β. In the initial stages of the inflammatory response the TNF-

α that is released is pre-formed, constitutively expressed in macrophages and mast cells 

to allow a rapid response to stimulation (Nathan 2002). TNF-α works alongside IL-1β as 

part of the initial inflammatory response, potentiating the release of IL-6. 

3.5.5.1 DESCRIPTIVES 

This assay had a lower LOD of 0.65pg/mL and upper LOD of 2500pg/mL. Generally, TNF-α 

concentration was well above the LOD, with the lowest concentration measured being 

3.52pg/mL, which was measured on the first postoperative day from patient 2D. No 

samples were below the LOD. The highest concentration across all groups was 

20.14pg/mL, measured on day 2 from patient 3A. Concentration varied little during the 

study period and there was no obvious effect of surgery.  

3.5.5.1.1 GROUP A 

 
Figure 3.5-13 Box plot for TNF-α concentration- Group A 

Table 3.5-17 Descriptive statistics for TNF-α Group A 

TNF-α Group A 
(pg/mL) N Median (IQR) 

Day -1 10 9.353 (7.323, 11.583) 
Day 1 10 8.676 (6.606, 14.545) 
Day 2 9 7.159 (6.282, 13.6) 
Day 3 9 9.522 (7.645, 11.84) 
Day 4 7 10.411 (9.652, 14.341) 

 

There was very little change in TNF-α concentration over the course of the study in Group 

A and it did not show any expected effect of surgery (Figure 3.5-13 and Table 3.5-17). 
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TNF-α was measurable in all preoperative samples reflecting the constitutive nature of 

this cytokine, being expressed even in the absence of inflammation. Median 

concentrations fell from preoperative concentrations on Day 1 postop although the range 

increased. A further decrease in median concentration was seen on Day 2 although the 

IQR covered approximately the same range. On Day 3 there was a slight increase in 

median concentration and reduction in IQR. A further increase in median concentration 

was seen on Day 4, finishing slightly above the preoperative median. The first outlying 

value of 17.15pg/mL belongs to patient 3 on day minus one. As with IL-1β and IL-6 patient 

4 gave an outlying value on Day 3 of 18.04pg/mL reflecting his complicated recovery. 

3.5.5.1.2 GROUP B 

 
Figure 3.5-14 Box plot for TNF-α concentration- Group B 

Table 3.5-18 Descriptive statistics for TNF-α Group B 

TNF-α Group B 
(pg/mL) N Median (IQR) 

Day -1 3 7.905 (6.393, 12.254) 
Day 1 3 11.62 (9.49, 13.025) 
Day 2 3 10.466 (9.641, 12.8) 
Day 3 3 10.227 (8.879, 10.466) 
Day 4 3 8.836 (8.278,12.887) 

 

There were only minor changes in TNF-α concentration in Group B (Figure 3.5-14 and 

Table 3.5-18). All patients had measurable preoperative concentrations. Median 

concentrations followed a more expected pattern than other groups, being lowest 

preoperatively, increasing to a peak Day 1 postoperatively and gradually decreasing as 

recovery progressed. The median concentration on Day 4 remained elevated above the 

median preoperative concentration. 
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3.5.5.1.3 GROUP C 

Figure 3.5-15 Box plot for TNF-α concentration- Group C 

Table 3.5-19 Descriptive statistics for TNF-α Group C 

TNF-α Group C 
(pg/mL) N Median (IQR) 

Day -1 7 6.87 (5.424, 7.179) 
Day 1 5 7.433 (5.731, 8.587) 
Day 2 4 10.02 (7.259, 13.097) 
Day 3 2 12.381 (10.105, 13.609) 
Day 4 3 9.565 (8.988, 15.982) 

 

TNF-α was once again present in all preoperative samples in Group C (Figure 3.5-15 and 

Table 3.5-19). The median concentration increased gradually peaking on Day 3. However, 

as with the other cytokines for this group, the changing numbers of patients make 

interpretation difficult. Two outlying concentrations occurred on Day 1, of 4.20pg/mL and 

9.59pg/mL belonging to patients 2 and 3 respectively.  

3.5.5.1.4 GROUP D 

Figure 3.5-16 Box plot for TNF-α concentration- Group D 

Table 3.5-20 Descriptive statistics for TNF-α Group D 

TNF-α Group D 
(pg/mL) N Median (IQR) 

Day -1 11 5.747 (5.059, 8.901) 
Day 1 6 8.1 (5.672, 10.635) 
Day 2 5 7.75 (5.326, 8.749) 
Day 3 6 7.896 (5.828, 9.191) 
Day 4 6 7.698 (6.546, 9.05) 

 

Group D started with the lowest preoperative median concentration (Figure 3.5-16 and 

Table 3.5-20). There was a 41% increase in median concentration following surgery 

although this was not reflected in changes to the IQR, which remained similar. TNF-α 

concentrations gradually reduced as the study progressed, with days two, three and four 

having very similar median concentrations. Outliers were seen on Day 1 (patient 7, 

14.64pg/mL), Day 2 (patient 2, 3.80pg/mL), and Day 4 (patient 2, 3.72pg/mL). 
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3.5.5.2 CHANGES TO TNF-α CONCENTRATION 

3.5.5.2.1 ALL GROUPS 

Box plots of TNF-α concentrations showed much less variation than IL-6, although they 

followed a similar pattern. TNF-α concentrations increased to a peak on Day 1 before 

gradually decreasing as the study progressed. However preoperative TNF-α 

concentrations were considerably higher than IL-6. While these patterns emerge 

graphically it was necessary to confirm if these variations were real or due to chance 

using a Friedman’s test (χ2) (Table 3.5-21).  

Table 3.5-21 Results of Friedman test for concentration of TNF-α 
Abbreviations used: N-number in group; χ

2
-Friedman test statistic; df- degrees of freedom; Sig- significance. Significant 

values are indicated by *. 

TNF-α N χ2 df Sig. 

Group A 7 5.143 4 0.273 
Group B 3 2.400 4 0.663 
Group C 2 7.600 4 0.107 
Group D 5 2.560 4 0.634 

The results of the Friedman’s test showed no significant differences for any group over 

the course of the study. Because this test excludes values case-wise, Wilcoxon matched 

pairs were used to confirm these results as they include all samples for which there is a 

matching pair (Table 3.5-22). 

Table 3.5-22 Results of Wilcoxon matched pairs test for TNF-α concentrations 
Values shown as Z (significance). Significant values are indicated by *.  

TNF-α Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 0.153 (0.878) 3 1.069 (0.285) 7 1.753 (0.080) 11 0.934 (0.345) 

-1 v 2 9 0.059 (0.953) 3 0.535 (0.593) 4 1.826 (0.068) 5 0.135 (0.893) 

-1 v 3 9 0.770 (0.441) 3 0.535 (0.593) 2 1.342 (0.18) 6 1.572 (0.116) 

-1 v 4 7 1.352 (0.176) 3 1.604 (0.109) 3 1.604 (0.109) 6 1.363 (0.173) 

Although comparisons in Group C were closest to the critical significance value when 

preoperative values were compared with Days 1 and 2, they failed to surpass it. This 

confirms the results of the Friedman’s test that no significant changes in TNF-α 

concentration were shown over the course of the study for any group.  

3.5.6 IFN-γ  

IFN-γ is produced predominantly by lymphocytes in response to TNF-α induced release of 

IL-12 from macrophages (Andersson 2005). While concentrations may increase in 

response to trauma, much greater release occurs from antigen stimulated T-cells as part 
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of the adaptive immune response. IFN-γ has a main role in antiviral activity and stimulates 

chemokine production in the early phases of inflammation and suppress it in later stages 

(Nathan 2002). 

3.5.6.1 DESCRIPTIVES 

The IFN-γ assay had a lower LOD of 0.91pg/mL and an upper LOD of 2500pg/mL. Six of the 

115 samples were at or below the lower LOD, two from patient 10A (Days 1 and 3), two 

from patient 1B (Days 2 and 4) and one each from Patient 7A (Day -1) and Patient 2C (Day 

1), thus all but one patient had measureable concentrations of IFN-γ preoperatively. 

Generally there were only slight changes in IFN-γ concentration for most patients across 

the study, and those elevations that did occur appeared later than with other cytokines. 

The highest measured concentration was 93.81pg/mL from patient 4C on Day 3. 

3.5.6.1.1 GROUP A 

Figure 3.5-17 Box plot for IFN-γ concentration- Group A 

Table 3.5-23 Descriptive statistics for IFN-γ Group A 

IFN-γ Group A 
(pg/mL) N Median (IQR) 

Day -1 10 3.833 (2.513, 6.966) 
Day 1 10 4.534 (2.224, 12.509) 
Day 2 9 4.987 (3.107, 9.931) 
Day 3 9 6.047 (3.555, 8.419) 
Day 4 7 7.913 (6.103, 8.178) 

 

There were only small changes to IFN-γ concentration in Group A following surgery and 

once again most patients (90%) had measurable concentrations of this cytokine prior to 

surgery (Figure 3.5-17 and Table 3.5-23). Following surgery there was a small increase in 

median concentration but a larger increase in IQR. Patient 3A produced outlying 

concentrations on Day 2 and three with concentrations of 42.67 and 55.92pg/mL 

respectively. The median concentration rose slightly on Day 2 while IQR almost halved. 

IQR continued to shrink on Day 3 and Day 4 as concentrations became more uniform 

across the group. Median concentrations continued to increase on Day 3 and Day 4 and 

finished at more than twice the preoperative value, well above day 1 concentrations.  
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3.5.6.1.2 GROUP B 

Figure 3.5-18 Box plot for IFN-γ concentration- Group B 

Table 3.5-24 Descriptive statistics for IFN-γ Group B 

IFN-γ Group B 
(pg/mL) N Median (IQR) 

Day -1 3 3.521 (2.418, 6.966) 

Day 1 3 3.591 (1.593, 12.509) 

Day 2 3 5.103 (0, 9.931) 

Day 3 3 2.468 (.939, 8.419) 

Day 4 3 5.862 (0, 8.178) 
 

For Group B IFN-γ was found in all preoperative samples. Median concentrations followed 

an atypical course, increasing slightly on Day 1 followed by a greater increase on Day 2, a 

reduction on Day 3 and an increase on Day 4 (Figure 3.5-18 and Table 3.5-24). Day 4 had 

the highest median concentration of this group, although the IQR included 0. There was 

large variation across all postoperative days in this group with IQRs ranging from 2-3 

times the median concentration with the highest upper quartile value being recorded on 

Day 1. 

3.5.6.1.3 GROUP C 

Figure 3.5-19 Box plot for IFN-γ concentration- Group C 

Table 3.5-25 Descriptive statistics for IFN-γ Group C 

IFN-γ Group C 
(pg/mL) N Median (IQR) 

Day -1 7 3.921 (1.967, 4.554) 
Day 1 5 4.340 (1.849, 8.211) 
Day 2 4 7.172 (2.493, 14.493) 
Day 3 2 49.900 (5.987, 8.419) 
Day 4 3 8.013 (5.061, 8.178) 

 

Group C began with measurable concentrations of IFN-γ for all patients preoperatively 

and patient 4C with an outlying concentration of 7.62pg/mL (Figure 3.5-19 and Table 

3.5-25). There were increases of median concentration following surgery to a marked 

peak on Day 3, when samples were only obtained from two patients, one of whom 

(Patient 4) had the highest concentration across all day for all groups of 93.81pg/mL. 
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Concentrations fell on Day 4 to give a median approximately twice that of Day 1 values. 

Patient 4’s values also fell on Day 4 to approximately 20% of the Day 3 value. Further 

interpretation is limited as discussed above. 

3.5.6.1.4 GROUP D 

Figure 3.5-20 Box plot for IFN-γ concentration- Group D 

Table 3.5-26 Descriptive statistics for IFN-γ Group D 

IFN-γ Group D 
(pg/mL) N Median (IQR) 

Day -1 11 5.475 (4.298, 8.008) 
Day 1 6 6.589 (2.219, 10.768) 
Day 2 5 3.704 (2.366, 6.745 
Day 3 6 4.884 (3.79, 8.295) 
Day 4 6 4.271 (2.752, 10.273) 

 

Once again all patients in Group D began with measurable concentrations of IFN-γ, 

producing a high median concentration second only to Day 1 postoperatively for this 

group (Figure 3.5-20 and Table 3.5-26). Following a more typical course, postoperative 

median concentrations peaked on Day 1 falling markedly on Day 2, increasing slightly on 

Day 3 before falling again to a value approximately 0.5pg/mL above Day 2 concentrations. 

IQR was greatest on Day 2 and Day 4.  

3.5.6.2 CHANGES TO IFN-γ CONCENTRATION 

3.5.6.2.1 ALL GROUPS 

Visually from the box plots there were no obvious trends in the changes to IFN-γ. While 

postoperative concentrations were generally higher than preoperative concentrations, 

measurable preoperative concentrations were found in all groups, reducing the likelihood 

of finding significant changes following surgery. Unlike other cytokines, increases to IFN-γ 

commonly occurred in the later stages of the study, on Day 3 and Day 4. To confirm if 

these variations were attributable to chance or a significant change a Friedman’s test (χ2) 

was used (Table 3.5-27). No significant changes in IFN-γ concentration over the course of 

the study were found using this test. As with other cytokines a post hoc analysis was 

conducted using a one tailed  ilcoxon’s matched pairs test (Z) to increase the number of 
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samples included in the analysis in case this resulted in a statistically significant difference 

over one of the days. 

Table 3.5-27 Results of Friedman test for concentration of IFN-γ 
Abbreviations used: N-number in group; χ

2
-Friedman test statistic; df- degrees of freedom; Sig- significance. Significant 

values are indicated by *. 

IFN-γ N χ2 df Sig. 

Group A 7 3.657 4 0.454 
Group B 3 2.237 4 0.692 
Group C 2 8.000 4 0.092 
Group D 5 6.720 4 0.151 

One tailed tests were again used and only the pre-operative day was compared with each 

post-operative day (Table 3.5-28).  

Table 3.5-28 Results of Wilcoxon matched pairs test for IFN-γ concentrations 
Values shown as Z (significance). Significant values are indicated by *. ^=The sum of negative ranks equal the sum of 

positive ranks 

IFN-γ Group A Group B Group C Group D 

Day N Z (sig) N Z (sig) N Z (sig) N Z (sig) 

-1 v 1 10 1.172 (0.241) 3 0.535 (0.593) 7 0.405 (0.686) 11 0.105 (0.917) 
-1 v 2 9 1.125 (0.26) 3 0.535 (0.593) 4 1.826 (0.068) 5 1.753 (0.08) 
-1 v 3 9 1.007 (0.314) 3 0.535 (0.593) 2 1.342 (0.18) 6 1.363 (0.173) 
-1 v 4 7 1.521 (0.128) 3 0 (1) 3 1.604 (0.109) 6 0.943 (0.345) 

These resulted in values consistent with the Friedman test, with no statistically significant 

difference being shown between the preoperative concentrations and each postoperative 

day.  

3.5.7 SUMMARY 

IL-1β, IL-6, TNF-α and IFN-γ were measured in all patients on each day of the study and 

the results were non-parametric. Most patients had measurable concentrations of IL-1β, 

TNF-α and IFN-γ in the sample taken before surgery. Significant differences between the 

preoperative and the post-operative days of the study were seen for IL-1β and IL-6, 

although these elevations were still small. While these two cytokines were elevated TNF-

α and IFN-γ showed no relationship with surgery. The largest differences between 

preoperative and postoperative values were seen for IL-6. Patients with outlying values of 

elevated cytokines were those with complicated recoveries.   
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3.6 α GSH S-TRANSFERASE RESULTS 

The concentration of αGST was measured in daily patient samples by the ELISA methods 

described in Section 2.4. 

3.6.1 DISTRIBUTION OF GST RESULTS 

The distribution of the αGST concentrations for each group were checked for normality 

visually by preparing a histogram with normal curve superimposed, a box plot, a Q-Q and 

detrended Q-Q plot for each day. A sample is shown below from Group A on the 

preoperative day (Figure 3.5-1). In addition, formal normality tests were conducted using 

the Kolmogorov-Smirnov test (D) (Table 3.6-1). 

  

Figure 3.6-1 Graphs depicting distribution of αGST values from Group A on the preoperative day. 
(Clockwise from top left) Histogram with normal curve superimposed shows distribution skewed to the left; Box plot 
shows median bar is not centrally placed in the box and tails do not extend from the box symmetrically; Q-Q plot shows 
αGST values are not placed along the line of normality; the de-trended Q-Q plot shows an exaggerated deviation from 
the normal line. All of these graphs indicate the data to be non-parametric. 

Table 3.6-1 shows the results of the formal normality tests. A significance value of less 

than 0.05 indicates a significant variation from a normal distribution i.e. that the data are 

non-parametric. No group consistently passed normality tests. 
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Table 3.6-1 Results of Kolmogorov-Smirnov test D with (df) degrees of freedom.  

 Group A Group B Group C Group D 

 D (df) Sig. D (df)  Sig. D (df) Sig. D (df) Sig. 
Day 0 0.246 (10) 0.087 0.309 (3) 0.038 0.389 (7) 0.002 0.298 (11) 0.007 

Day 1 0.332 (10) 0.003 0.342 (3) 0.026 0.297 (5) 0.017 0.362 (6) 0.014 

Day 2 0.362 (9) 0.001 0.364 (3) 0.014 0.281 (4) 0.001 0.207 (5) 0.200 

Day 3 0.227 (9) 0.200 0.385 (3) 0.000 0.260 (2) 0.057 0.355 (6) 0.018 

Day 4 0.295 (7) 0.066 0.349 (3) 0.019 0.333 (3) 00.06 0.189 (6) 0.200 

To assess differences between days of the study, paired tests were used. While it is 

important to consider the distribution of αGST concentrations on each day of the study as 

shown above, when conducting paired analysis it is more relevant to consider the 

distribution of the residuals. The residuals are the absolute value of the difference 

between the values in the paired analysis. Their distribution also failed tests of normality 

(Table 3.5-2). Accordingly non-parametric tests were used through the analysis of αGST 

results. 

Table 3.6-2 Formal normality tests of the residuals 

 Group A Group B Group C Group D 

 D (df) Sig D (df)  Sig D (df) Sig D (df) Sig 

Day -1v1 0.277 (10) 0.028 0.439 (4) 0.001 0.387 (8) 0.001 0.353 (11) 0.000 

Day -1v2 0.516 (10) 0.000 0.439 (4) 0.000 0.325 (8) 0.013 0.353 (11) 0.000 
Day -1v3 0.515 (10) 0.000 0.439 (4) 0.001 0.455 (8) 0.000 0.351 (11) 0.000 

Day -1v4 0.428 (10) 0.000 0.449 (4) 0.001 0.391 (8) 0.001 0.352 (11) 0.000 

3.6.2 DESCRIPTIVES 

The median and interquartile ranges of all the groups are presented in Table 3.6-3 below. 

Additionally a box plot of the distribution of all αGST results is shown in Figure 3.6-2.  

Table 3.6-3 Descriptive statistics for αGST 

αGST Group A Group B Group C Group D 

 (µg/L) N Median (IQR) N Median 
(IQR) 

N Median (IQR) N Median (IQR) 

Day -1 10 3.15 
(2.03, 5.22) 

3 1.28 
(0.66, 3.57) 

7 2.01 
(0.82, 2.78) 

11 1.71 
(1.40, 2.65) 

Day 1 10 2.07 
(1.70, 2.70) 

3 0.15 
(0.09, 0.51) 

5 0.82 
(0.00, 1.95) 

6 1.21 
(1.16, 2.04) 

Day 2 9 2.53 
(1.97, 3.33) 

3 0.47 
(0.46, 0.66) 

4 5.97 
(0.93, 13.70) 

5 1.37 
(0.97, 2.25) 

Day 3 9 3.20 
(2.33, 4.24) 

3 1.39 
(1.14, 1.39) 

2 13.67 
(1.47, 25.88) 

6 3.19 
(1.22, 4.95) 

Day 4 7 3.56 
(2.76, 10.67) 

3 0.95 
(0.83, 1.93) 

3 26.42 
(14.34, 28.61) 

6 4.52 
(2.31, 5.63) 
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Figure 3.6-2 Boxplot of αGST concentrations in each group on each day 
Black dotted line indicates upper limit of reference range in healthy individuals (11.4µg/L) and red dotted line indicated 
three times this limit (34.2 µg/L), from where hepatotoxicity may be suspected. 

Figure 3.6-2 shows Group C as the only group to exceed the upper limit of the reference 

range even though they received the lower dose of paracetamol (Section 2.1). As noted in 

Section 3.1, Group C had poor retention in the study and the number of αGST values from 

this group was small.  

Group A also showed an increase in αGST concentrations, with the upper whisker 

stretching beyond the upper limit of the reference range on the final day of the study. 

Similar trends were observed in Figure 3.6-2 for both Group D, and to a lesser extent, 

Group B. However, both fall well short of the upper limit of the reference range (Figure 

3.6-2). 

It is also notable in Figure 3.6-2 that all groups start the study on day-1 with median αGST 

concentrations above zero, despite other LFTs being normal, although the median values 

for all groups were well below the upper limit of the reference range. Also of note for day 

-1 were the two outlying values from one patient in Group A and one in Group C (Figure 

3.6-2). These αGST concentrations exceeded the upper limit of the reference range, but 

were taken before the study began. These two patients had a αGST of 12.4 and 16.2 µg/L 

while having a AST concentration of 40 and 28 IU/L, which are both within the normal 

range. This could indicate an increased sensitivity of αGST, or hepatic damage yet to 

cause AST to increase. 
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3.6.3 CHANGES IN GST OVER THE STUDY PERIOD 

While trends can be observed from the box plot in Figure 3.6-2 statistical tests are 

necessary to determine if the differences were statistically significant. Initially a 

Friedman’s test (χ2) was used to assess if the distribution for each of the days were the 

same for each group. A significant result would indicate there was a difference between 

one or more of the days and all the other days of the study, which was not found to be 

present in these results, except for Group D (Table 3.5-7).  

Table 3.6-4 Results of Friedman test 
Abbreviations used: N-number in group; χ

2
-Friedman test statistic; df- degrees of freedom; Sig- significance 

 N χ2 df Sig. 

Group A 7 7.314 4 0.12 
Group B 3 5.867 4 0.209 
Group C 2 5.6 4 0.231 
Group D 5 15.520 4 0.004 

However, a repeated measures test such as Friedman’s requires a value to be present on 

all of the days of the test for the patient to be included in the analysis i.e. if one sample 

out of the five taken was missing that patient would be excluded. As a result the number 

of subjects who were included in this analysis was low (Table 3.5-7) and a poor reflection 

of the amount of data gathered.  

To further investigate differences of distribution between the days of the study a paired 

analysis was conducted using a one tailed Wilcoxon’s matched pairs test (Z). One tail was 

used because αGST was only expected to increase following surgery and IV paracetamol 

administration. To minimise the Type 1 error and the size of the Bonferroni correction, 

only the preoperative day was compared with the other days of the test. This resulted in 

four comparisons between the five tests, with the Bonferroni correction reducing the 

critical level of significance from 0.05 to 0.0125 (i.e. α/4) (Table 3.5-8). 

Table 3.6-5 Results of Wilcoxon matched pairs test 
Values shown as Z (significance). Significant values are indicated by *.  

Pair Group A n Group B n Group C n Group D n 

Day -1 vs 1 1.89 (0.059) 10 1.07 (0.285) 3 1.48 (0.138) 5 2.20 (0.028) 6 
Day -1 vs 2 1.24 (0.214) 9 1.07 (0.285) 3 0.00 (1.000) 4 2.02 (0.043) 5 
Day -1 vs 3 0.18 (0.859) 9 0.00 (1.000) 3 0.45 (0.655) 2 1.15 (0.249) 6 

Day -1 vs 4 1.18 (0.237) 7 0.53 (0.593) 3 1.07 (0.285) 3 2.20 (0.028) 6 

When the Bonferroni correction is considered there are no significant changes in αGST 

concentration over the study period.  
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Ignoring the Bonferroni correction, there are some significant differences in Group D, who 

received the lower dose of paracetamol. These differences were refelcted in the 

significant result of Friedman’s test above (Table 3.5-7), however, once the Bonferroni 

correction is considered these results serve only as an indication, and while of interest, 

cannot be interpreted as actual significant results (Table 3.5-8). Of interest here is that 

the differences do not show any consistent trend as may have been anticipated; neither 

increasing in magnitude as more paracetamol was given or reducing as recovery after 

surgery proceeded.  

Group A, who had the highest dose of paracetamol (i.e. 9g daily) with invasive surgery, 

did not show any significant changes in αGST over the course of the study, with the only 

result from this group approaching significance being from the comparison of the pre-

operative with the first postoperative day (Table 3.5-7, Table 3.5-8). There appears to be 

no relationship with αGST concentration and the total dose of paracetamol received.  

Given the major focus of this study was to examine the safety of higher doses of 

paracetamol and that αGST is such a sensitive marker of hepatotoxicity, it is worth 

examining Group A, the high paracetamol dose group, in greater detail. From examination 

of Figure 3.6-2 there are some clear trends that have not been considered in Table 3.5-8 

in an attempt to minimise the Type 1 error. To determine if this group’s elevated 

concentrations of αGST on admission may be masking some differences that arise 

following surgery, further tests were undertaken to compare the differences between the 

other days of the study. Two comparisons yielded results that required further discussion: 

Day 1 v Day 2 (Z=2.67 (p=0.008)) and Day 1 v Day 4 (Z=2.03 (p=0.043)). These differences 

are more in line with what was observed in Figure 3.6-2, however in order to find these, 

the number of tests that were conducted created a Bonferroni correction that, once 

applied, prevented these results from achieving significance. Accordingly, they are only 

indicative and must be interpreted with caution. Even where these trends were observed, 

all the αGST concentrations fell below a level of clinical significance and there was no 

evidence of hepatotoxicity occurring during the time αGST was monitored. 

3.6.3.1 αGST AND AST CONCENTRATIONS 

αGST concentration is not a standard measure of hepatocellular damage clinically. AST is 

more commonly used in the hospital setting for this purpose, in addition to being part of 

the assessment following paracetamol overdose (Amar et al. 2007). The major drawback 
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with AST is that its release from cells and appearance in the plasma is reported to be 

slower than αGST. 

To compare and validate αGST with the standard AST test, the correlation of one to the 

other was checked by pairing each patient’s αGST and AST result (Figure 3.6-3). When all 

patients were combined both αGST and AST were determined to be non-parametric with 

the Kolmogorov-Smirnov giving highly significant results for both αGST and AST. 

  

Figure 3.6-3 Correlation of αGST and AST concentrations. 
Also shown: Trend line (black) and upper limits of normal range for both αGST and AST (red lines) 

Most of the points in Figure 3.6-3 cluster around the origin, however there is some 

general trend, shown by the trend line, such that higher αGST concentrations were 

associated with higher AST concentrations. There was one notable exception where the 

highest αGST concentration was associated with a normal AST value. Additionally, not all 

elevated AST concentrations were associated with elevations of αGST, nor was the 

opposite true.  

To test the correlation a Spearman’s correlation coefficient was determined as the data 

were non-parametric. As an increase in one test was expected to result in an increase in 

the other, a one-tailed test was used. The correlation coefficient rs was 0.372 with p (one-

tailed) <0.01 indicating a significant relationship between the αGST and AST 

concentrations: as AST concentrations increased, so did αGST. The coefficient of 

determination shown in Figure 3.6-3 indicates αGST accounts for 30.4% of the variance in 

AST.  
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3.6.3.1.1 DELAYED AST ELEVATIONS 

As discussed above, one of the criticisms of AST is that its elevation after hepatic damage 

was much slower than αGST. To investigate this Figure 3.6-3 was modified to show the 

day of each test (Figure 3.6-4). 

 

Figure 3.6-4 αGST and AST concentrations showing the day of each test. 
Also shown: Trend line (black) and upper limits of normal range for both αGST and AST (red lines) 

If AST was delayed, elevations in AST would only occur in the latter stages of the study. 

Also, elevations in αGST occurring early on in the study would not be matched by 

elevations in AST, skewing those results to the left of the graph. To some degree these 

were confirmed in Figure 3.6-4 although too few patients had elevations in αGST or AST 

to make this possible visually. 

In order to confirm this, the day of the test was included into a partial correlation. It was 

seen the day of the test had a stronger relationship with AST (r= 0.344 p (one tailed) 

<0.001) than with αGST (r= 0.224 p (one tailed) 0.008), indicating increases of the day of 

the test were a better predictor of the AST results than that of αGST. Even so, both αGST 

and AST correlations coefficients were significant.  

3.6.4 INDIVIDUAL PATIENT ANALYSIS  

To confirm the αGST concentrations measured in the daily samples and to assess any 

changes that occurred within the dosing interval, three patients had αGST measured in all 

of their plasma samples taken for the pharmacokinetic analysis (as detailed in Section 

2.1). Each of the three patients were from one of the colorectal surgery groups (Groups A, 

B and D) and were chosen as they were all males with malignancy and were of broadly 
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similar age and BMI. These patients were chosen before αGST results were known and 

without reference to other liver-function tests. 

3.6.4.1 PATIENT DEMOGRAPHICS  

The demographic information of these patients is illustrated below (Table 3.6-6) followed 

by their paracetamol dose characteristics (Table 3.6-7). The patients were all male and in 

their early 50s. Their weights and BMIs were similar and all were undergoing surgery for 

colorectal cancer. 

Table 3.6-6 Individual analysis patient demographics 

Patient Age Gender Weight BMI Surgery Indication 

5A 52 M 92 26.9 Anterior resection Malignancy 
3B 54 M 87 25.4 Hemicolectomy Malignancy 
4D 52 M 89 27.5 Anterior resection Malignancy 
Table 3.6-7 Individual analysis paracetamol dose characteristics 

Patient Paracetamol Dose Interval (hour) Daily dose Total paracetamol given (g) 

5A 1.5g (16.3 mg/kg) 4 97.8 mg/kg 42.5 
3B 1g (11.5mg/kg) 6 46.0 mg/kg 20 
4D 1g (11.2mg/kg) 6 44.9 mg/kg 20 

All patients received their full quota of paracetamol. Patients 3B and 4D were very similar 

in daily dose on an mg/kg basis, with patient 5A receiving just over twice the daily mg/kg 

dose and total amount of paracetamol. While there were substantial differences between 

Group A and Groups B and D in the daily and total doses, the quantity received was not 

greatly different at 16.3mg/kg versus 11.5 and 11.2 mg/kg respectively. These doses were 

similar to the licensed paediatric dose of 10-15mg/kg with patient 5A’s 16.3mg/kg only 

just outside it (Glaxo Smith Kline 2008). 

3.6.4.2 αGST CONCENTRATIONS 

αGST concentrations were obtained in the same manner as, and measured alongside, the 

samples from the beginning of this section. The concentrations are presented below in 

Figure 3.6-5. 
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Figure 3.6-5 Patient 5A, 3B and 4D αGST concentrations over time on each day of the study 
Graphs show αGST concentrations and red reference line, which indicates upper limit of reference range (11.4µg/L). 
Circles show measured concentrations. Graphs are (clockwise from top left) 5A; 3B and 4D.  

The graph of αGST concentrations for patient 5A shows three interesting trends: 

 The concentrations at time zero for Days 2,3 and 4 are the highest, with Days 2 

and 4 exceeding the upper limit of the reference range. As time zero samples, the 

time these were taken was before the administration of paracetamol;  

 Samples after time zero decrease in αGST concentrations, even though these were 

taken after the paracetamol had been administered. αGST concentrations appear 

to reduce during the dosing interval; 

 For Group A paracetamol was administered every four hours. As such the four 

hour time sample shown in the graph was equivalent to the time zero of the next 

dose, and it would be expected that the time zero and four hour αGST 

concentrations would be similar. Curiously there was very little similarity between 

them, with the time zero sample being almost universally higher;  
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 There was no elevation as a result of the first 1.5g dose of paracetamol on day -1; 

and  

 There does not appear to have been any accumulation of αGST concentrations in 

patient 5A as the four hour time samples were approximately equivalent on all 

days of the study. However, the predose αGST concentration on the fourth day 

was the highest of all this patients concentrations.  

Graphs for Patients 3B and 4D were more comparable, as may be expected given they 

received the same paracetamol dose. The most important difference between these two 

patients was that Patient 3B underwent open surgery whereas Patient 4B’s surgery was 

laparoscopic. For patient 3B: 

 The shape of the curves for Days -1 and 1 indicated a small rise in αGST 

concentrations following administration of the paracetamol dose, which returned 

to predose concentrations by the end of the dosing interval. This effect does not 

seem to continue on subsequent days of the study where one hour αGST 

concentrations were less than or approximately equal to time zero αGST 

concentrations; and  

 There was no substantial accumulation of αGST over the study period. The one 

hour αGST concentration was less on Day 4 than Day 1. 

For patient 4D: 

 Similar patterns emerge as those of patient 3B. There was a more consistent trend 

of αGST concentrations increasing after the administration of paracetamol. Unlike 

patient 5A the paracetamol dosing interval of this patient was six hours. Therefore 

αGST concentrations would have had an additional two hours to reduce before 

the administration of the next paracetamol dose; and  

 There was no evidence of accumulation of αGST over the course of the study with 

αGST concentrations on the preoperative day amongst the highest of this patients 

values.  

3.6.5 FINDINGS AFTER STUDY PERIOD 

In addition to those data collected as part of the study protocol, further information was 

collected from several patients who remained in hospital after the study had finished. In 

these patients, results from any liver function tests that were done as part of their usual 
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care after the study were recorded. These results were not included in the above analysis 

as they were not part of the study protocol and were not accompanied by measurements 

of αGST concentrations. While this information was incomplete it nevertheless 

demonstrates clinical significance because it opposed the findings from the reportedly 

more accurate measure of hepatic damage, αGST concentrations, and had implications 

for patient safety. Figure 3.6-6 shows dramatic increases in AST concentration in many 

patients on Day 5 and following. When Days 1-4 are viewed in isolation there is no 

evidence of change to liver function tests, however, when the following days are 

considered, slight elevations that were seen on Days 3 and 4 take on new meaning. These 

changes were only seen in the high dose group, Group A. Generally these elevations 

resolved within 3-4 days after the conclusion of the study, with the exception of Patient 

9A who showed clinically significant AST elevations for a week after receiving his last 

investigational dose of paracetamol.  

 
Figure 3.6-6 AST concentrations in Group A for each patient 

Comparing those patients who showed the greatest increase in AST concentration after 

the study finished (Patients 2A, 3A, 4A and 9A), with the remainder of the group, there 

was only a very slight increase in αGST concentration seen prior to the conclusion of the 

study (Figure 3.6-7).  hile elevated above the remainder of the group, these patients’ 

αGST concentrations were still well below the upper limit of the reference range.  

Considering only Patients 2A, 3A, 4A and 9A, in whom the greatest AST elevations were 

shown, there was no consistent factor between them that explained why their AST rose. 
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Figure 3.6-7 αGST concentrations of those with large AST elevations following the conclusion of the study compared 
with the remainder of the group. 
Values shown as median (±IQR) 

These patients had a wide ranging BMI, were both male and female, had a variety of 

bowel cancer diagnoses, surgeries of both short and long durations and both drank 

alcohol and did not. There was also no distinction in their paracetamol plasma kinetics or 

urinary excretion ratio. In their urinary excretion in particular their Phase I metabolite 

output was no higher, nor their Phase II:I ratio clearly different to the remainder of their 

group. However, one clear distinction between these patients did arise; they were 

admitted to hospital for the longest period of their group, with Patients’ 2A, 3A, 4A and 

9A admitted for 20, 15, 34 and 15 days respectively, compared with the average of 8 days 

for the remainder of the group.  

3.6.6 SUMMARY 

αGST was measured in all patients on each day of the study and the results were non-

parametric. Two individuals entered into the study with αGST concentrations above 

normal but possessing normal AST concentrations. There was no significant difference 

between the preoperative and any postoperative day of the study. A correlation between 

increases in αGST and AST was demonstrated. One patient from the high dose group 

(Group A) showed substantial variation in αGST concentration over the dose period that 

was not seen in similar patients from Groups B or D, who received the normal 

paracetamol dose. There was no evidence from the analysis of αGST concentrations that 

any hepatic damage was done to any patient during the study, however, review of post-

study AST concentrations revealed that damage had occurred after the study finished. 
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3.7 CYP450 PROBE RESULTS 

A total of 518 patient plasma samples were analysed for the concentration of 9 

compounds of interest as described in Section 2.5 in 10 batches by LCMS in addition to 

approximately 100 standard samples. Access to the instrument was generously provided 

by the Department of Chemistry, UCC at limited hours over a six week period.  

The compounds eluted in the order and times shown in Table 3.7-1. Following 

chromatographic separation, samples were ionised by dual electrospray ionisation and a 

total ion chromatogram (TIC) was acquired using a quadrupole time-of-flight mass 

spectrometer. From the TIC, extracted ion chromatograms (EIC) were obtained using the 

mass/charge ratios (m/z) shown in Table 3.7-1. Compounds were quantified by the 

detector response which is proportional to parent ion abundance. Integration of detector 

response was conducted by Agilent Mass Hunter workstation Quantitative Analysis 2.00 

(Agilent Technologies, Massachusetts, USA) after the analysis had taken place. 

Table 3.7-1 Analyte, their mass/charge range of the protonate ion (M+H)
+
, elution order and elution time 

Analyte (M+H)+ range Elution Order Elution time (min) 

Paraxanthine 181.00-181.10 1 1.41 
Caffeine 195.05-195.15 2 2.14 
6-OH Chlorzoxazone 185.90-186.10 3 3.85 
Dextrorphan 258.15-258.25 4 4.10 
Phenacetin 180.05-180.15 5 6.19 
1-OH Midazolam 342.00-342.10 6 6.47 
Dextromethorphan 272.20-272.30 7 6.55 
Midazolam 326.05-326.15 8 6.78 
Chlorzoxaone 169.95-170.05 9 7.68 

3.7.1 LCMS VALIDATION 

Faults in the mass spectrometer resulted in poor chromatography from this instrument.  

 
Figure 3.7-1 Chromatogram from a prepared plasma sample containing 10mg/L of all compounds of interest.  
Red trace: UV absorbance at 280nm; Black trace: total ion chromatogram. 
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These complications are discussed in greater detail in the discussion. Figure 3.7-1 was 

obtained from a 10mg/L plasma standard, prepared as described in Section 2.5. The 

chromatogram in red displays smooth contours arising from the PDA, whereas the jagged, 

non-Gaussian peaks in black arose from the mass spectrometer. The extracted ion 

chromatograms showed more pronounced spiking (Figure 3.7-2) and this had 

ramifications for peak integration, on which quantitation depend. 

The trace arising from the PDA was good (Figure 3.7-1), affirming the sample preparation 

and chromatographic separation methods. This also indicated that the problems 

experienced with this process lay with detection, not the sample itself. 

 

Figure 3.7-2 Extracted ion chromatogram 326-326.15 (midazolam) (2.5x10^5 abundance) 

Extensive attempts were made at improving the peak shape shown in Figure 3.7-2 

including the revision of all of the MS settings optimised in Section 2.5, but these were 

unsuccessful. Reassurance was given by the researcher supervising the instrument that 

the integration software was capable of smoothing over such misshapen peaks and, given 

the time constraints, analysis should proceed. This turned out to be a flawed advice.  

3.7.1.1 SPECIFICITY/SELECTIVITY 

Specificity was examined to ensure endogenous co-eluting compounds in the patient’s 

plasma samples did not cause a matrix effect with the compounds of interest. This was 

confirmed in two ways (Polettini 2006): 

 Chromatographic separation of the compounds from the solvent front and other 

compounds was achieved (Figure 3.7-1); and 

 No interfering peaks were identified in blank human plasma samples.  
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Selectivity was confirmed by examination of EICs. EICs were extracted over a narrow m/z 

range on either side of the compound’s known m/z value (Polettini 2006). As the 

quadrupole time-of-flight mass spectrometer used was stated as able to determine m/z 

accurate to four decimal places, this, when combined with the elution time, meant the 

chances of mistaking compounds were negligible. No peaks with the same m/z were 

identified. 

3.7.1.2 INTERNAL STANDARD RECOVERY 

As detailed in the sample preparation method, the internal standard, phenacetin, was 

added before any extraction had taken place (Section 2.5). In robust sample preparation 

methods, internal standard concentrations vary little between samples, and this is a 

measure of the consistency of the extraction method. During the validation procedure, 

large variance in detector response of the internal standard phenacetin was seen. To 

examine the source of this, repeat injections were performed (Figure 3.7-3).  

 
Figure 3.7-3 Detector response for internal standard following repeated injection of plasma standard curve samples 

The results are shown of the repeated injection of a standard curve prepared in plasma, 

which contained the same concentration of internal standard in each sample. With an 

expected response around 2x106, there was considerable deviation. This triggered the 

investigation of peak shape described above. Figure 3.7-4 shows the variation in detector 

response of phenacetin across all patient sample batches by plotting the day of analysis 

against the detector response (note batches frequently ran over more than one day). 

Inconsistency in response is especially noticeable in the first few batches.  
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Figure 3.7-4 Internal standard detector response 

To quantify what can be seen in Figure 3.7-4 visually, internal standard precision values 

were determined (Table 3.7-2). 

Table 3.7-2 Internal standard precision values 

Sample batch Number of samples Precision (%RSD) 

1 37 22.50 
2 20 17.81 
3 55 20.74 
4 36 34.34 
5 35 11.90 
6 40 13.36 
7 28 12.21 
8 72 13.92 
9 73 9.68 

10 62 8.68 

 Inter-batch 29.98 

The first four of the ten batches failed standards for validation. Precision improved in 

later batches and the last six were within the 15% of the acceptable limit (Shah et al. 

1991; Bressolle et al. 1996).  

3.7.1.3 EXTRACTION EFFICIENCY 

Prior to running patient samples, nominal concentrations of analyte in diluent (water for 

LCMS) and prepared plasma samples were analysed to determine extraction efficiency. 

Three sets of samples were prepared and the first of these injected three times. There 

was a good correlation between plasma and diluent samples for most analytes until the 

5mg/L concentration after which the responses deviated (Figure 3.7-5). 
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Figure 3.7-5 Extraction efficiency of each compound 
Data shown as mean +/- standard deviation. 
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Five critical problems arose from these calibration curves which were not discovered until 

the use of the quantification software subsequent to the analysis: 

 The plasma derived curves were not linear; 

 The relationship between the diluent and plasma curves was not consistent; 

 No internal standard data could be obtained as phenacetin concentration was 

varied along with the other metabolites; and  

 The detector response was substantially less than with subsequent samples. 

These issues and the ramifications for subsequent samples meant that the analysis could 

not be accurate. Subsequent processing of the data abandoned validation standards and 

therefore results that are presented are of interest only and the applicability and 

precision of these findings is very limited. 

3.7.1.4 CALIBRATION CURVES 

Calibration curves were constructed using the ratio of the analyte’s detector response to 

that of the internal standard, phenacetin. The problems discussed above also impacted 

on these values and the intermittent changes to detection shown in Figure 3.7-3 meant 

that many of the calibration points were unusable. Accordingly calibration points were 

picked across the entire data collection to provide composite values. These were used to 

determine plasma concentration.  

Despite all of the issue discussed above, plasma concentration profiles in some patients 

for some probes were in line with those expected (Figure 3.7-6, Figure 3.7-7). 

  
Figure 3.7-6 Plasma concentration/time profile of 
chlorzoxazone on Day 1 for patient 7A.  

 
Figure 3.7-7 Plasma concentration/time profile of caffeine 
on Day-1 for patient 6D. 

The concentrations determined were converted to their molar equivalent and the 

metabolic ratio of each compound was then ascertained as shown in Table 3.7-3. 
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Table 3.7-3 Summary of CYP450 probe method 

Enzyme Drug, route and dose Sample matrix Sample time 

CYP1A2 Caffeine PO 100 mg  Plasma 1 hour post dose 
CYP2D6 Dextromethorphan PO 30mg Plasma 4 hour post dose 
CYP2E1 Chlorzoxazone PO 250 mg  Plasma 1 hour post dose 
CYP3A4 Midazolam IV 0.025mg/kg Plasma 4 hour post dose 

3.7.2 CYP 1A2 

The activity of CYP 1A2 was assessed by the molar ratio of paraxanthine to caffeine 

present in the one hour plasma sample. Despite the best efforts of the Principal 

Investigator, caffeine was above the LOD in 63/107 time zero samples, indicating caffeine 

intake in addition to that administered as part of the study, which as referred to in 

Section 2.1, patients were asked to remove from their diet as part of their involvement in 

the study. Such an example is shown in Figure 3.7-7, where the time zero sample 

contained considerable amounts of caffeine. 

3.7.2.1 GROUP A 

The molar ratio of paraxanthine to caffeine for Group A is shown in Figure 3.7-8 as 

median and quartiles. Most noticeable was the wide interquartile range, indicating a high 

variability in the data, but this is not inconsistent with the high inter-individual variation 

to be expected with this type of data. Despite this variation, a trend does emerge where 

the ratio falls from the preoperative value and slowly recovers as the study progresses. A 

reduction in the value of this ratio indicates a fall in the amount of paraxanthine relative 

to that of caffeine. Amongst many other possibilities, this could indicate a reduction in 

CYP1A2 activity postoperatively.  

 

Figure 3.7-8 Median paraxanthine:caffeine ratio for Group A patients  
Shown as median ± IQR 
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3.7.2.2 GROUP B 

Group B’s paraxanthine: caffeine ratio shows a similar pattern to that of Group A, a 

reduction from preoperative ratio and gradual return toward the end of the study (Figure 

3.7-9). The median ratio begins slightly higher than Group A at 0.87, decreased but then 

returned to a higher value by the end of the study. This pattern of change could also be 

explained by reduction in CYP1A2 activity around the time of surgery, but with a small 

group size and wide IQRs many other factors could also account for the changes.  

 
Figure 3.7-9 Median paraxanthine:caffeine ratio for Group B patients 
Shown as median ± IQR 

3.7.2.3 GROUP C 

The paraxanthine:caffeine ratio shows much less variation across the study in Group C 

than other groups, however, variation within the day still remains high (Figure 3.7-10).  

 
Figure 3.7-10 Median paraxanthine:caffeine ratio for Group C patients 
Shown as median ± IQR 
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The ratio starts lower than with previous groups (0.46) and there is very little change 

between preoperative and postoperative values until Day 2, when the ratio slightly 

increases. These changes could be explained by increases to CYP1A2 activity over the 

postoperative period. 

3.7.2.4 GROUP D 

The paraxanthine:caffeine ratio in Group D had the lowest starting value from all the 

groups. The ratio falls slightly towards the middle of the study and then increases sharply 

between Day 3 and 4. 

 
Figure 3.7-11 Median paraxanthine:caffeine ratio for Group D patients 
Shown as median ± IQR 

3.7.2.5 GROUP B+D 

The results from Group B+D have a very similar pattern to those of Group D.  

 
Figure 3.7-12 Median paraxanthine:caffeine ratio for Group B+D patients 
Shown as median ± IQR  
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However, the starting ratio was larger than Group D, there was a greater fall towards the 

middle of the study and also the dramatic increase between Day 3 and 4. 

3.7.3 CYP 2E1 

In addition to the problems with this assay discussed above, the CYP2E1 probes 

chlorzoxazone and 6-hydroxychlorzoxazone are ideally detected in negative mode by the 

MS. Because the instrument used for this analysis was not capable of switching polarity 

within runs the detector response of these analytes was especially low.  

3.7.3.1 GROUP A 

The median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group A appeared to 

increase following surgery and then returned to preoperative values (Figure 3.7-13). One 

possible explanation for the increase in ratio seen could be a brief induction in CYP 2E1 

activity following surgery. 

 
Figure 3.7-13 Median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group A  
Shown as median ± IQR 

3.7.3.2 GROUP B 

A remarkably similar pattern in 6-hydroxychlorzoxazone:chlorzoxazone ratio to Group A 

was seen in Group B results (Figure 3.7-14). The main difference between the groups is 

Group B’s values remain around preoperative median ratio for the last three days of the 

study. Similarly, in Group A, these changes could be explained by short lived induction of 

CYP2E1 perioperatively. 
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Figure 3.7-14 Median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group B 
Shown as median ± IQR 

3.7.3.3 GROUP C 

Group C’s median 6-hydroxychlorzoxazone:chlorzoxazone ratio showed a slightly 

different course from the previous two groups. Still increasing following surgery, the 

increased ratio was maintained at a steady level for three further days postoperatively 

before returning towards preoperative values (Figure 3.7-15). The possibility of increased 

CYP2E1 activity could also explain these changes.  

 
Figure 3.7-15 Median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group C 
Shown as median ± IQR 

3.7.3.4 GROUP D 

Figure 3.7-16 shows the median 6-hydroxychlorzoxazone:chlorzoxazone ratio in Group D 

took a similar course to that seen in Groups A and B. There was a wide variation within 
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each days’ values in this group, shown by the large IQR. As above, a short lived induction 

in CYP2E1 activity could have explained these changes.  

 
 Figure 3.7-16 Median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group D 
Shown as median ± IQR 

3.7.3.5 GROUP B+D 

As a combination of two groups already shown to follow a similar pattern, the only effect 

the amalgamation of these two groups had was to reduce the size of the error bars 

(Figure 3.7-17). Otherwise, the same conclusions of increased CYP2E1 activity could be 

reached.  

 
Figure 3.7-17 Median 6-hydroxychlorzoxazone:chlorzoxazone ratio for Group B+D 
Shown as median ± IQR 

3.7.4 CYP 3A4+2D6 

Detection of midazolam was too erratic to provide usable data and 1-hyrdroxymidazolam 

was below the LOD. Dextrophan was below the LOD and the detection of 
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dextromethorphan was too inconsistent to provide enough usable data to represent 

graphically. 

3.7.5 SUMMARY 

Problems with instrumentation impaired reliability and interpretation of results. As a 

consequence assessment of CYP2D6 and CYP3A4 was not possible. Results for CYP1A2 for 

Groups A, B and D suggest an initial induction of enzyme activity immediately following 

surgery that resolves and recovery progresses. There is no discernible effect on Group C. 

Conversely assessment of CYP2E1 suggests that inhibition occurs in the immediate 

postoperative period which then returns towards preoperative activity levels as time 

passes.   
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3.8 CASE STUDIES 

The majority of the data before this point have been presented as a group. Given the high 

degree of inter-individual variation to be expected with this type of research, the course 

of a few individual patients who were involved summarise the various changes observed. 

A patient was chosen from each group and their case is presented in sections concerning: 

liver function; inflammatory cytokines; CYP450 probes; plasma paracetamol 

concentrations and finally the data from their urine analysis.  

3.8.1 PATIENT 4A 

Patient 4A was a 62 year old male who was scheduled for a low anterior resection 

following the discovery of a mid-rectal adenocarcinoma for which he had received six 

weeks of radiotherapy, completing this six weeks previously. He was a retired factory 

worker who reported consuming eight standard units of alcohol per week and until five 

years earlier was a heavy smoker, with a 20 pack year history. He was overweight with a 

BMI of 31.2kg/m2 and had a history of ischaemic heart disease and Type II diabetes. He 

was taking the following medicines prior to admission: aspirin, clopidogrel, losartan, 

lansoprazole, atorvastatin, furosemide/hydrochlorothiazide, bisoprolol, iso-sorbide 

mononitrate and metformin. He was classified by the anaesthetist as ASA 2. 

He was admitted into hospital two days prior to the scheduled procedure and was invited 

to join the study on that day. He consented the following day and the preoperative 

medication dosing and sampling took place without any deviation from Section 2.1. That 

evening he was fasted from 6pm and also received 4L of Klean Prep and a phosphate 

enema. The following day, his surgery was uneventful but took five hours, the longest of 

any patient undergoing open colectomy. He lost 2.5L of blood and received three units of 

whole blood and 3.5L of additional IV fluids. He also received 100µg fentanyl, 4mg 

ondansetron, 2g paracetamol, 140mg propofol and 60mg rocuronium intravenously, 

0.125% levobupivicaine, 100µg fentanyl and 3mg morphine lumbar epidural anaesthesia, 

in addition to inhalation of 1.5-1% sevoflurane in oxygen. Some manipulation of the liver 

was reported in the surgeon’s notes. He returned to the ICU with a lumbar epidural 

infusion of bupivicaine 0.125% and fentanyl 2µg/mL running at 15mL/hr, urinary catheter 

and central venous access. In addition to his preoperative medication he was also 

prescribed IV paracetamol 1.5g every four hours, cefuroxime 1g twice daily, 

metronidazole 500mg three times each day, 160mg of gentamicin daily, 5000 units of 
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subcutaneous heparin twice daily and a 10% glucose/10 unit insulin infusion. The 

remainder of the study protocol was undertaken without deviation from Section 2.1 and 

the patient went on to receive a total of 42.5g of paracetamol over the study period. He 

had a complicated postoperative course. On Day 2 he became pyrexial and gentamicin 

was increased to 400mg daily. As he had not resumed oral intake, and the surgeon 

wanted to continue resting the bowel, total parental nutrition (TPN) was initiated at 3pm 

on day two. He was the only study patient to receive TPN. 

Pharmacodynamic parameters obtained during the study are summarised in Table 3.8-1. 

His pain was well controlled throughout. His renal function and clotting time showed 

short-lived impairment following surgery. Transaminase concentrations remained within 

normal limits trending slightly upwards at the end of the study. Following the conclusion 

of the study his paracetamol dose was reduced to 1g every six hours. By day 7 he had not 

improved and returned to theatre where a leaking anastomosis was found which 

precipitated the formation of a stoma. He did not resume any oral nutrition for two and 

half weeks after surgery, requiring two weeks of TPN. 

Table 3.8-1 Pharmacodynamic monitoring values 
Abbreviations used: SCr- serum creatinine; AST- aspartate aminotransferase; INR- international normalised ratio; NRS- 
numerical rating scale- measure of pain experienced in last 24hrs and at time of study. 

 Day -1 Day 1 Day 2 Day 3 Day 4 

SCr (µmol/L) 94 110 87 74 69 

AST (U/L) 22 21 20 27 109 

INR 1 1.6 1.7 1.1 1 

NRS Best 0 0 0 0 0 
NRS Worst 0 3 4 3 5 
NRS Now 0 1 1.5 1 1 

3.8.1.1 LIVER FUNCTION 

Preoperative αGST concentration was high enough to indicate liver injury prior to surgery 

(Figure 3.8-1). This potential liver injury was not known at the time of the study as AST 

was not increased. The lack of sustained αGST elevation and absence of AST increase 

questioned the accuracy of this one elevated αGST. Postoperatively, there was no 

evidence of hepatotoxicity with αGST and AST remaining within normal limits until Day 4, 

when AST values spiked to just above three times the upper limit of normal. αGST 

concentrations, however, remained low, slightly above group concentrations. This 

increase in AST was minor in comparison with that seen with paracetamol toxicity, which 

registers in the thousands. As the only patient to experience an elevation outside the 

upper limit of normal this elevation is notable, but may not be clinically significant. 
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Transient LFT increases are widely reported following initiation of TPN (Gabe et al. 2010) 

and continued monitoring showed the AST elevation resolved quickly. 

 
Figure 3.8-1 Liver function tests αGST and AST on each day of the study with group median αGST (±IQR) 

3.8.1.2 CYTOKINES 

All cytokines were elevated on the postoperative day (Figure 3.8-2-Figure 3.8-5).  

 
Figure 3.8-2 Individual and group median (±IQR) IL-6 
concentration in daily samples 

 
Figure 3.8-3 Individual and group median (±IQR) IFN-γ 
concentration in daily samples 

 
Figure 3.8-4 Individual and group median (±IQR) TNF-α 
concentration in daily samples 

 
Figure 3.8-5 Individual and group median (±IQR) IL-1β 
concentration in daily samples  

IL-6 increases were especially prominent, rising to the highest level measured in any 

patient in any group. This was not surprising given that this patient had the longest 

operation of the most traumatic surgery. Despite the substantial increase in IL-6, 
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increases in the other cytokines were comparatively minor (Figure 3.8-3 and Figure 3.8-4). 

Notable was the increase in IL-1β, one of the first cytokines to be released, on the third 

and fourth day as the patient became increasingly unwell (Figure 3.8-5), however the 

magnitude of this increase was very minor. 

3.8.1.3 CYP450 PROBES 

The paraxanthine:caffeine ratio for patient 4A reduced from preoperative values. The 

ratio continued to fall in a similar pattern to the rest of the group until Day 4 when it 

showed a sharp increase (Figure 3.8-6). There is nothing in this patient’s clinical course 

that easily explains this induction on Day 4, which indicates CYP1A2 operating at above 

preoperative levels. While CYP450 activity is known to be reduced by inflammation, 

considering this patients state health on Day 4 and the indication given by IL-1β that 

inflammation was, if anything, increasing, the paraxanthine:caffeine ratio should fall, not 

peak on this day. Given the deteriorating health of this patient, subsequent samples 

would have been interesting to further examine the role of inflammation.  

Figure 3.8-7 shows the 6-hydroxychlorzoxazone:chlorzoxazone: ratio followed a similar 

course, falling from preoperative values until Day 2, indicating an induction of CYP2E1. A 

gradual increase in ratio was seen on Days 3 and 4. This coincides with the administration 

of TPN, which is known to induce CYP450 activity as seen in the last two days. While it is 

difficult to see relationships with caffeine metabolism, the inhibition of CYP2E1 by 

inflammation could explain slightly delayed inverse relationship between inflammation 

(IL-6 concentration) and the 6-hydroxychlorzoxazone:chlorzoxazone ratio. 

 

Figure 3.8-6 Individual and group median ratio (±IQR) of 
paraxanthine to caffeine in plasma  

 

Figure 3.8-7 Individual and group median ratio (±IQR) of 
6-hydroxychlorzoxazone to chlorzoxazone in plasma 

3.8.1.4 PLASMA 

Figure 3.8-10 shows the paracetamol concentrations were used to calculate 

pharmacokinetic values (Table 3.8-2). This patient’s half-life fell postoperatively. 
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Clearance, Vd and AUC values were all substantially different to the remainder of this 

patient’s group. The large reduction in clearance postoperatively, indicated metabolism 

was slowed, but this was opposed by a substantial reduction in volume of distribution. 

Because both clearance and Vd values changed by a similar magnitude, there was little 

change to the mean residence time or half-life postoperatively. However, the reduction to 

clearance may have allowed an increase in AUC postoperatively, showing some plasma 

accumulation of paracetamol, which was not seen in the remainder of the group.  

Table 3.8-2 Plasma pharmacokinetics preoperatively and postoperatively with group medians (±IQR) 

 Day -1 Day 1 

Patient 4A Group A Patient 4A Group A 
t ½ (hr) 2.22 1.75 (1.59, 2.11) 2.13 2.13 (1.80, 3.25) 
AUC (mg.hr/L.mg) 0.043 0.041 (0.032, 0.054) 0.083 0.049 (0.022, 0.057) 
Cl (L/hr) 23.07 24.56 (18.68, 31.21) 12.0475 20.60 (13.05, 26.90) 
Vd (L/kg) 0.83 0.69 (0.62, 0.83) 0.309 0.48 (0.38, 0.70) 
MRT (hr) 2.97 2.32 (2.11, 2.88) 2.13 3.10 (2.49, 4.68) 

Because Phase I processes contribute a relatively small amount to paracetamol 

metabolism overall, it is difficult to link the assessment of CYP1A2 and 2E1 to changes in 

clearance, however, both enzymes show reduced levels of activity postoperatively in this 

patient in conjunction with substantial reductions to plasma clearance. The contributions 

of the more significant pathways, glucuronidation and sulphation, do appear reduced as 

seen in the reductions to the ratio of metabolites recovered in the urine. It is possible that 

the Phase II processes are susceptible to inhibition due to inflammation, pharmacokinetic 

values were not calculated beyond the first postoperative day the relationship between 

clearance and cytokine concentration cannot be reliably determined.  

Daily plasma paracetamol concentrations at one and four hours post dose were used to 

assess for accumulation (Figure 3.8-8 and Figure 3.8-9). Both one hour and four hour 

concentrations more than doubled between preoperative and postoperative sampling. 

Following their peak on Day 1, a steady state concentration did not seem to be achieved 

and there was a continuous reduction in paracetamol concentration at both one hour and 

four hour times. The final samples had paracetamol concentrations similar to 

preoperative values and this fall indicated metabolism of paracetamol was induced.  

The increase in plasma concentrations immediately following surgery is greater than the 

remainder of his group and coincides with increases to plasma cytokine concentrations. 

Cytokines are known to reduce volume of distribution, which was also lower in this 

patient than the rest of his group. This could explain the short lived increases in plasma 
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concentration seen. However, considering the size of the increase in IL-6, the highest of 

any patient, the plasma concentrations of this patient are too consistent with that of his 

group for any strong effect of cytokine concentrations to exist. 

 

Figure 3.8-8 Individual and group median Plasma 
concentration of paracetamol- 1hr 

 

Figure 3.8-9 Individual and group median Plasma 
concentration of paracetamol- 4hr 

Figure 3.8-10 shows a substantial increase in paracetamol glucuronide concentrations 

postoperatively. Glucuronide concentrations rose to dwarf all other metabolites and even 

surpass paracetamol itself on the final day. This reflects the considerable reserve capacity 

of glucuronidation and how its activity can expand rapidly to meet demand. 

Comparatively, paracetamol sulphate concentrations did not alter from preoperative 

values, despite the much higher concentrations of paracetamol present, indicating the 

saturation of sulphation. Furthermore, unlike paracetamol glucuronide, there is very little 

difference in paracetamol sulphate concentrations over the dose interval postoperatively, 

despite the much higher concentrations of the substrate paracetamol, indicating 

saturation of sulphonation processes. Paracetamol cysteine and mercapturate were not 

detectable preoperatively; however cysteine concentrations were greatly increased 

postoperatively and by the end of the study had risen above those of paracetamol 

sulphate. This suggests a rise in the conjugation of potentially toxic of NAPQI; however it 

is not possible to determine if NAPQI production is increased, or if, as a result of 

increased cysteine from the TPN, it is simply that GSH conjugation has increased. 

However, considering the increases in AST in this patient, it may be the former. 
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Figure 3.8-10 Concentration of paracetamol and its major metabolites in plasma 
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3.8.1.5 URINE 

The two most important graphs arising from the urine are presented in Figure 3.8-11 

Figure 3.8-12 and Figure 3.8-13. 

Marked changes were seen in all these figures that coincide with the initiation of TPN. As 

discussed in Section 1.4, the main changes to disposition of paracetamol following the 

initiation of TPN were the induction of the CYP450 system and an increase in the supply 

of sulphur containing amino acids.  

3.8.1.5.1 SULPHATE CONTRIBUTION 

This patient’s contribution of sulphate derived metabolites initially followed a similar 

track to that of his groups (Figure 3.8-11). The fall seen between Day 1 and Day 2 occurs 

even though plasma concentrations of paracetamol sulphate and cysteine seen in Figure 

3.8-10 remain steady. This could indicate as much a lack of glucuronide increase that was 

seen in other groups, as an increase in sulphate derived metabolites in this patient.  

From sample 4 on Day 2 this patient’s values diverge from his group’s, when the patient’s 

values appear to spike and then continue to slowly rise while his group’s continue to fall. 

This change coincided precisely with the initiation of TPN in this patient. As a rich source 

of inorganic sulphur and sulphur containing amino acids this would maintain the urinary 

output of sulphate derived metabolites and were indicative that the decline seen in the 

remainder of his group could be attributed to malnutrition. Other possible explanations 

for this pattern could be the patient’s condition, being of poorer health than the 

remainder of his group with evidence of returning inflammation. However this could not 

explain the marked increase in the sulphate containing metabolites in the urine seen in 

exactly the same interval as when TPN was initiated and that his values are virtually 

identical to his preoperative values, whereas the groups values declined.  
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Figure 3.8-11 Per cent of urinary metabolites excreted as sulphate derived compounds with group median (±IQR) 

3.8.1.5.2 PHASE II:I METABOLITE RATIO 

As in the previous figure, there is a clear divergence of this patient’s values from his 

groups that begin at the same time as TPN initiation (Figure 3.8-12).  

 
Figure 3.8-12 Ratio of Phase II: Phase I metabolites of paracetamol with group median (±IQR) 
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The maintained reductions in this ratio could indicate increased CYP450 activity, as has 

been shown with TPN administration (Section 1.4.5), or at least an increased conjugation 

of the CYP450 product NAPQI as discussed in Section 3.8.1.4. The lack of change in the 

ratio of these metabolites in the urine matches what is seen in the plasma 

concentrations, where the contribution of each of the metabolites remained relatively 

static, although plasma levels are not good indicators of metabolism due to difference 

rates of renal excretion. This pattern of Phase II:I ratio is unlike any other patient in his 

group, as shown by the recovery of group values towards the end of the study, and would 

suggest that the effect of TPN administration is to favour NAPQI production/recovery, not 

increase the rate of sulphonation. Further investigation reveals the cause of this altered 

Phase II:I ratio. Figure 3.8-13 shows there was no alteration to total urinary recovery of 

the dose or clear influence of TPN, maintaining total urinary recovery around 100%.  

 

Figure 3.8-13 Contribution of paracetamol metabolites to urinary recovery of dose (left axis) and percentage of total 
dose recovered (right axis) 

This shows that the change in urinary Phase II:I ratio was not due to plasma accumulation 

or alteration to urinary excretion, but was due to changes in the amount of metabolites 

produced. In fact, at 103% over the total postoperative course, this patient had the 

highest dose recovery of any in his group, where the next closest was at 98%. This was 
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achieved through an unusually high contribution of paracetamol cysteine, not through 

increases to paracetamol glucuronide as seen in all other patients of his group (Figure 3.3-

14). As a conjugate of NAPQI and indicator of CYP450 activity, this patient’s high 

paracetamol cysteine recovery, the highest of his group, may explain why he showed 

altered liver function towards the end of the study period. While TPN is known to 

increase CYP450 activity, it would also provide a source of cysteine for detoxification in 

the same manner as an antidote. However, in this patient, the increased AST 

concentrations indicate the increased cysteine was not sufficient to completely prevent 

liver injury. 

There were three other notable change in the contribution of each of the metabolites 

that coincide with the initiation of TPN: 

1. Paracetamol sulphate recovery increases; 

2. Paracetamol glucuronide recovery reduces; and 

3. The relative contribution of each metabolite remains static from the point 

onwards. 

As a source of sulphur containing amino acids (precursors for sulphonation) it is not 

surprising that paracetamol sulphate contribution increased following TPN 

administration, however the increase was to values still well below those seen 

preoperatively and its role remains minor. Assuming the abundance of cofactor supplied 

by TPN, this could be explained in two ways: SULT enzymes were saturated or Phase I 

pathways were induced and deprived Phase II pathways of substrate. It seems unlikely 

SULT enzymes were saturated because an increased capacity is exhibited earlier in the 

study by the greater recoveries of paracetamol sulphate seen. However, the possibility 

CYP450 pathways are induced to such a degree as to deprive Phase II pathways also 

seems remote. As already stated, TPN is known to cause CYP450 induction but this would 

require unreported levels of induction, in situations where inhibition is more commonly 

reported, and these are not seen in the CYP450 probe results above. Furthermore, while 

the increase to AST could be due to increased NAPQI production, given the limited extent 

of the elevation, it would seem more likely to be associated with TPN (Gabe et al. 2010). 

Additionally, the TPN administered to this patient contains 3.5g of methionine in each 

daily bag Kabi, 2011 #4630}. While well short of the maximum 300mg/kg infusion of n-

acetlycysteine given to patients in the 24 hours following overdose, this is still a 

significant amount which should reduce the risk of toxicity (Brok et al. 2006).  
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There is also something occurring in this patient at the time TPN was initiated that 

prevents the rise of glucuronidation that occurs in the other members of his group. The 

absence of this rise may explain the deviations seen in Figure 3.8-11 and Figure 3.8-12. It 

is possible that this rise in the other group members was not a factor of increased 

glucuronidation activity, but rather a reduction in the activity of the sulphur containing 

pathways. As detailed in Section 1.4.5 while malnutrition is known to increase Phase I 

metabolism, it has a more significant effect in the reduction of GSH conjugation and 

sulphonation. This would explain the apparent rise in glucuronidation, as it is not affected 

by starvation. Further evidence of this change was exhibited by the continuing rise of 

paracetamol glucuronide in the group data shown in Figure 3.3-14, indicating worsening 

exhaustion of the alternative pathways, whereas, once TPN was initiated and adequate 

nutrition supplied, this patient’s metabolic pattern abruptly stabilised. Further support for 

this hypothesis is this patients highest urinary recovery of dose, whereas the potential for 

unconjugated NAPQI remaining in the liver may explain the lower dose recovery recorded 

in the other patients.  

3.8.2 PATIENT 1B 

Patient 1B, was a 60 year old mechanical engineer. He had a BMI of 24.9kg/m2, smoked 

15-20 cigarettes a day for 35 pack years and reported drinking only on special occasions, 

having no regular alcohol consumption. He had no significant medical history or 

preoperative medications until recent complaints of biliary colic which led to the 

discovery of a high grade dysplastic polyp near his splenic flexure. He was scheduled for a 

left hemicolectomy and cholescystectomy and was graded by the anaesthetist as ASA 1. 

He was admitted the day prior to the procedure and consented for this study that 

afternoon. Preoperative study medications and sampling went ahead without deviation 

from the protocol Section 2.1. That evening he was fasted from 6pm, received four litres 

of Klean Prep and a phosphate enema the following morning. The following day his 

surgery went ahead as scheduled taking 1.75 hours. In theatre he received 0.125% 

levobupivicaine, 100µg fentanyl and 3mg morphine lumbar epidural anaesthesia, 4mg 

ondansetron, 130mg propofol, 35mg rocuronium, 2g paracetamol, parecoxib 40mg 

intravenously in addition to 1.5-1% sevoflurane in oxygen. He received 4L of IV fluid 

intraoperatively and some liver palpation was noted by the surgeon. He returned to the 

ICU with a lumbar epidural infusion of bupivicaine 0.125% and fentanyl 2µg/mL running 
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at 15mL/hr, urinary catheter and central venous access. He was also prescribed twice 

daily parecoxib 40mg, 1g paracetamol every six hours, 5000 units of subcutaneous 

heparin twice daily, pantoprazole 40mg daily, cefuroxime 1g twice daily, metronidazole 

500mg three times each day. Subsequent study procedures went ahead as in Section 2.1 

with the omission of the 15min plasma sample on the first postoperative day as no line 

was free for access. The patient received a total of 21g of paracetamol over the study 

period. His postoperative course was uncomplicated and he resumed oral intake on the 

third postoperative day with sips of water, followed by tea and toast on the fifth day. His 

epidural infusion was reduced to 12mL/hr on the first postoperative day and continued at 

this rate until midday on the fourth postoperative day when it was stopped. 

Pharmacodynamic values showed some derangement around the time of surgery, with 

increased creatinine and INR on Day 1 (Table 3.8-3). Both resolved by Day 3 without 

intervention. Pain was well controlled throughout the patient’s recovery. 

Table 3.8-3 Pharmacodynamic monitoring values 
Abbreviations used: SCr- serum creatinine; AST- aspartate aminotransferase; INR- international normalised ratio; NRS- 
numerical rating scale- measure of pain experienced in last 24hrs and at time of study. 

 Day -1 Day 1 Day 2 Day 3 Day 4 

SCr (µmol/L) 105 114 95 83 74 

AST (U/L) 24 51 39 27 21 

INR 1 1.5 1.2 1 1 

NRS Best 0 0 0 0 0 
NRS Worst 0 6 0 0 3 
NRS Now 0 4 0 0 0 

3.8.2.1 LIVER FUNCTION 

Despite the changes seen in the rest of the group, there was no alteration in this patient’s 

liver function seen with either αGST or AST (Figure 3.8-14).  

 
Figure 3.8-14 Liver function tests αGST and AST on each day of the study with group median αGST and IQR 
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Similar to patient 4A, αGST concentrations appeared to actually decrease following of 

surgery, although this patient’s preoperative αGST concentration was 10 times less than 

that of patient 4A. 

3.8.2.2 CYTOKINES 

Elevations in IL-6 were seen in this patient on the day following surgery (Figure 3.8-15) 

which was accompanied by slight increases to TNF-α (Figure 3.8-17).  

 

Figure 3.8-15 Individual and group median IL-6 
concentration in daily samples 

 

Figure 3.8-16 Individual and group median IFN-γ 
concentration in daily samples 

 

Figure 3.8-17 Individual and group median TNF-α 
concentration in daily samples 

 

Figure 3.8-18 Individual and group median IL-1β 
concentration in daily samples 

IL-6 fell on the following day but remained above that of the group until the final day of 

the study. TNF-α remained slightly elevated, but the size of the elevation was very minor. 

Elevations in IFN-γ (Figure 3.8-16) and IL-1β (Figure 3.8-18) preoperatively were slight and 

resolved postoperatively with no effect of surgery seen. 

3.8.2.3 CYP450 PROBES 

Both Figure 3.8-19 and Figure 3.8-20 show changes to the ratio of these probes for this 

patient were very close to that of the rest of his group. Ratios of caffeine:paraxanthine 

fell and then remained low for the remainder of the study, indicating induction of CYP1A2 

and subsequent production of more paraxanthine following surgery. Conversely, the ratio 

of 6-hydroxychlorzoxazone to chlorzoxazone increased initially, and then returned to 



 

365 
 

preoperative values. This indicates brief inhibition of CYP2E1 following surgery, which was 

quickly corrected by Day 2. 

 

Figure 3.8-19 Individual and group median ratio of 
caffeine to paraxanthine 

 

Figure 3.8-20 Individual and group median ratio of 
chlorzoxazone to 6-hydroxychlorzoxazone 

3.8.2.4 PLASMA 

Pharmacokinetic values are shown in Table 3.8-4. The half-life of paracetamol in this 

patient was slightly above that of his group preoperatively but changed very little 

following surgery to become the group’s median value. There was no substantial 

difference between the half-life of this patient and Patient 4A who received the high 

dose. The only value to show a noticeable change postoperatively was the reduced Vd, 

with all of the other values remaining relatively constant. 

Table 3.8-4 Plasma pharmacokinetics preoperatively and postoperatively with group medians (±IQR) 

 Day -1 Day 1 

Patient 4 Group  Patient 4 Group  
t ½ (hr) 2.11 1.97 (1.64, 2.11) 2.09 2.09 (1.49, 3.14) 
AUC (mg.hr/L.mg) 0.039 0.039 (0.025, 0.052) 0.040 0.040 (0.022, 0.057) 
Cl (L/hr) 25.46 25.46 (19.34, 39.82) 25.27 25.27 (17.67, 44.94) 
Vd (L/kg) 0.95 0.95 (0.61, 1.05) 0.68 0.70 (0.53, 0.93) 
MRT (hr) 2.94 2.76 (2.29, 2.94) 2.13 2.19 (1.80, 2.63) 

Figure 3.8-21 shows paracetamol concentrations changed very little following surgery and 

there was only a slight accumulation seen in the t=0 and Cmax samples postoperatively. 

Following surgery metabolite concentrations remain relatively constant with slight 

accumulation of paracetamol glucuronide, cysteine and mercapturate and reduction in 

paracetamol sulphate. 
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Figure 3.8-21 Concentration of paracetamol and its major metabolites in plasma 
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One hour and four hour concentrations of paracetamol are shown in Figure 3.8-22 and 

Figure 3.8-23. Both show a very minor accumulation until Day 2 and then a gradual return 

to preoperative levels.  

 
Figure 3.8-22 Individual and group median Plasma 
concentration of paracetamol- 1hr 

 
Figure 3.8-23 Individual and group median Plasma 
concentration of paracetamol- 4hr 

3.8.2.5 URINE 

3.8.2.5.1 SULPHATE CONTRIBUTION 

Patient 1B showed a steady reduction in sulphate derived metabolites being excreted in 

the urine until half way through Day 2 which plateaued thereafter (Figure 3.8-24). These 

values were consistently below that of the rest of his group.  

 

Figure 3.8-24 Per cent of urinary metabolites excreted as sulphate derived compounds with group median (±IQR) 
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3.8.2.5.2 PHASE II:I METABOLITE RATIO 

The ratio of metabolites in the urine from this patient was quite different from the 

expected course. Although values dipped immediately following surgery they climbed 

back to preoperative levels quickly, and finished slightly above those seen preoperatively. 

This was in stark contrast to the results of Patient 4A. In Patient 1B the contribution of 

paracetamol glucuronide increased postoperatively, exceeding the reductions in 

paracetamol sulphate recovery, and this accounts for the return of the metabolic ratio to 

beyond preoperative levels. The dip in paracetamol metabolite ratio seen on Day 1 was in 

the opposite direction to that seen in chlorzoxazone metabolism, which appears inhibited 

on this day, confounding the possibility of a role of CYP2E1. A closer relationship could be 

seen with caffeine metabolism, although this appeared most induced on Day 2, well after 

paracetamol’s metabolic ratio had recovered. A better relationship between metabolite 

ratio and cytokine concentration could be drawn with IL-6 concentrations peaking at the 

same time the metabolic ratio was at its lowest. 

 
Figure 3.8-25 Ratio of Phase II: Phase I metabolites of paracetamol with group median (±IQR) 

3.8.3 PATIENT 1C 

Patient 1C was a 41 year old female who was scheduled for a left mastectomy and axillary 

node clearance following three months of chemotherapy and radiotherapy for an invasive 
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ductal carcinoma of her left breast. Her main chemotherapy agents, docetaxel, 

doxorubicin and cyclophosphamide, were given three weekly prior to surgery. She had a 

BMI 22.3kg/m2, consumed 10-14 standard units of alcohol per week and smoked 15-20 

cigarettes a day for 20 pack years. She was taking no regular medication prior to the 

procedure and, having no medical history of note, was graded as ASA 1. She was fasted 

from midnight prior to the procedure and shortly before induction levo-bupivicaine was 

given to provide a left paravertebral block.  

Surgery and anaesthesia were uneventful. In theatre she received remifentanyl and 

propofol infusions, receiving a total of 1.9mg and 5.6mg of each respectively over the two 

hour long procedure. In addition, she received paracetamol 2g intravenously, 100mg 

diclofenac rectally and 4.5L of IV fluids. She returned to the ward with IV access into her 

external jugular vein, a peripheral line and a urinary catheter. She also had a morphine 

patient-controlled analgesia and required 32mg of this on demand over the next three 

days. Additionally, she received twice 75mg diclofenac orally and 5000 units of heparin 

subcutaneously for the remainder of the study period.  

The remainder of her recovery was uncomplicated (Table 3.8-5) and the study followed 

Section 2.1. Her urinary catheter was removed on the day after surgery and she 

continued to collect her own urine for the study. Problems on the same day drawing the 

predose sample from the external jugular line necessitated the use of the peripheral line 

which remained patent for the rest of the study. In total 21g of paracetamol was 

administered over the course of the study. 

Table 3.8-5 Pharmacodynamic monitoring values 
Abbreviations used: SCr- serum creatinine; AST- aspartate aminotransferase; INR- international normalised ratio; NRS- 
numerical rating scale- measure of pain experienced in last 24hrs and at time of study. 

 Day -1 Day 1 Day 2 Day 3 Day 4 

SCr (µmol/L) 73 80 94 90 82 

AST (U/L) 24 24 21 27 29 
INR 1.1 1.1 1 1 1 

NRS Best 0 0 0 0 0 
NRS Worst 0 1 1 3 4 
NRS Now 0 0 0 0 1 

3.8.3.1 LIVER FUNCTION 

Patient 1C’s liver function tests showed very little variation across the study duration, 

remaining below that of her group for the duration of the study (Figure 3.8-26).  
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Figure 3.8-26 Liver function tests αGST and AST on each day of the study with group median αGST and IQR 

3.8.3.2 CYTOKINES 

There were only minor elevations in cytokine concentrations following surgery that were 

either equivalent to or less than the rest of this group. IFN-γ (Figure 3.8-28) and TNF-α 

(Figure 3.8-29) concentrations showing barely any change at all over the five days of 

monitoring. IL-1β (Figure 3.8-30) and IL-6 (Figure 3.8-27) concentrations were elevated 

towards the end of the monitoring period, but these were very small.  

 

Figure 3.8-27 Individual and group median IL-6 
concentration in daily samples 

 

Figure 3.8-28 Individual and group median IFN-γ 
concentration in daily samples 

 

Figure 3.8-29 Individual and group median TNF-α 
concentration in daily samples 

 

Figure 3.8-30 IL-1β Individual and group median 
concentration in daily samples 
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3.8.3.3 CYP450 PROBES 

Figure 3.8-31 and Figure 3.8-32 were suggestive of induction of both CYP1A2 and, to a 

lesser extent, CYP2E1 in this patient, occurring maximally for both enzymes on Day 3. 

 

Figure 3.8-31 Individual and group median ratio of 
paraxanthine to caffeinein plasma  

 

Figure 3.8-32 Individual and group median ratio of 6-
hydroxychlorzoxazone to chlorzoxazone in plasma 

3.8.3.4 PLASMA 

This patient showed a marked accumulation of paracetamol glucuronide and a slight 

accumulation of paracetamol sulphate, while plasma concentration of paracetamol and 

the other metabolites remained relatively constant following surgery. Despite the 

changes seen in chlorzoxazone and caffeine metabolic ratios (Figure 3.8-31 and Figure 

3.8-32) there was not significant change in either of the CYP450 products, paracetamol 

cysteine or mercapturate (Figure 3.8-33).  

There was very little evidence of accumulation of paracetamol with preoperative and 

postoperative profiles being very similar (Figure 3.8-32). Plasma data pharmacokinetic 

parameters (Table 3.8-6) showed plasma half-life of paracetamol was longer than most of 

her groups and slightly fell postoperatively. This was accompanied by reductions to AUC. 

The two determinants of half-life, clearance and volume of distribution, both fell, but the 

fall of Vd was much larger (≈25%). These changes were reflected in reductions to MRT of 

about one third.  

Table 3.8-6 Plasma pharmacokinetics preoperatively and postoperatively with group medians (±IQR) 

 Day -1 Day 1 

Pt 1C Group median (±IQR) Pt 1C Group median (±IQR) 
t ½ (hr) 2.35 1.94 (1.60, 3.43) 2.12 1.89 (1.25, 2.27) 
AUC (mg.hr/L.mg) 0.042 0.045 (0.042, 0.079) 0.039 0.045 (0.039, 0.052) 
Cl (L/hr) 23.68 22.40 (14.00, 23.68) 25.41 22.41 (19.41, 25.41) 
Vd (L/kg) 1.29 0.88 (0.74, 1.094) 0.904 0.758 (0.612, 0.904) 
MRT (hr) 3.38 2.72 (2.233, 4.947) 2.216 2.09 (1.95, 2.22) 
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Figure 3.8-33 Concentration of paracetamol and its major metabolites in plasma 
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There was very little evidence of accumulation in either the one (Figure 3.8-34) or four 

hour concentration (Figure 3.8-35), with the one hour concentration appearing to decline 

on the third and fourth day. These show very little relation to either CYP450 enzyme 

result. 

 
Figure 3.8-34 Plasma concentration of paracetamol- 1hr 

 
Figure 3.8-35 Plasma concentration of paracetamol- 4hr 

3.8.3.5 URINE 

3.8.3.5.1 SULPHATE CONTRIBUTION 

Unlike the patients undergoing bowel surgery, there was no notable change in sulphate 

derived metabolite recovery in this patient throughout the study or in their group (Figure 

3.8-36).  

 

Figure 3.8-36 Per cent of urinary metabolites excreted as sulphate derived compounds with group median (±IQR) 
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3.8.3.5.2 PHASE II:I METABOLITE RATIO 

The metabolic ratio recovered in the urine of this patient fell from preoperative values 

and remained at this level for the duration of the study (Figure 3.8-37). This was 

consistent with the lack of change to cytokine concentration and sulphate contribution to 

recovery. 

 

Figure 3.8-37 Ratio of Phase II: Phase I metabolites of paracetamol with group median (±IQR) 

3.8.4 PATIENT 8D 

Patient 8D was a 65 year retired factory worker. He was scheduled for a laparoscopic low 

anterior resection to remove a circumferential low rectal cancer. He reported smoking 

15-20 cigarettes a day, with a 30 pack year history, and drinking 10 units of alcohol per 

week. He had a BMI of 27.7kg/m2 and with no comorbidities was graded as ASA 1. 

He was admitted and consented to this research the day prior to surgery and sampling 

and dosing proceeded as per Section 1.2 that evening. The following day his surgery 

proceeded routinely taking 4.5 hours. As part of his anaesthesia he received a total of 

375µg of fentanyl, 18mg vecuronium, 10mg morphine, 8mg dexamethasone, 8mg 

ondansetron, 2g of paracetamol and 75mg of diclofenac. He also received sevoflurane 

1.5-1% and a total of 4.5L of IV fluids perioperatively. On return to the ward he had 
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patient-controlled analgesia containing fentanyl 500µg/50mL, of which he used 48mL on 

demand until 1500hrs of Day 3 when it was removed. He also received 1g paracetamol 

every six hours and twice daily 75mg diclofenac. He was prescribed 10mg oxycodone 

(immediate release) up to every four hours after the patient-controlled analgesia was 

removed but did not require it. There was no clinically significant change in laboratory 

values and pain remained well controlled, rising slightly when the patient-controlled 

analgesia was removed (Table 3.8-7). 

Table 3.8-7 Pharmacodynamic monitoring values 
Abbreviations used: SCr- serum creatinine; AST- aspartate aminotransferase; INR- international normalised ratio; NRS- 
numerical rating scale- measure of pain experienced in last 24hrs and at time of study.. 

 Day -1 Day 1 Day 2 Day 3 Day 4 

SCr (µmol/L) 74 68 57 60 68 
AST (U/L) 9 12 32 28 42 
INR 1.0 1.1 1.0 1.0 1.0 
NRS Best 0 0 0 0 0 
NRS Worst 0 0 0 0 2 
NRS Now 0 0 0 0 1 

3.8.4.1 LIVER FUNCTION 

The concentration of αGST in Patient 8D paralleled that of the group until Day 3 when it 

rose sharply to 9.4µg/L, still within the upper limit of normal of 11.4µg/L. AST values also 

remained lower until Day 3 when it rose gradually to finish at 42U/L, slightly above the 

upper limit normal (40U/L). Neither of these tests indicated clinically meaningful changes 

to liver function during the study, and the only changes that were observed occurred on 

the last two days of the study. 

 

Figure 3.8-38 Liver function tests αGST and AST on each day of the study with group median αGST and IQR
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3.8.4.2 PLASMA 

 

Figure 3.8-39 Concentration of paracetamol and its major metabolites in plasma 
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Plasma paracetamol concentrations were similar preoperatively to postoperatively 

although there was a large increase in the Cmax concentration on Day 1. Paracetamol 

sulphate values fell postoperatively and were matched by a rise in paracetamol cysteine. 

Paracetamol cysteine concentrations in plasma remained constant despite the increased 

CYP1A2 and CYP2E1 activity suggested by the changes to caffeine and chlorzoxazone 

metabolism. Paracetamol mercapturate failed to rise above the limit of detection and 

there was no evidence of accumulation in paracetamol glucuronide (Figure 3.8-39). 

Kinetic values were altered following surgery with a reduction in half-life of over 10%. 

This reduction mainly arose from a reduction in Vd, although a slight increase in clearance 

was also seen. Almost the exact same reduction in Vd in this patient was seen in patient 

1B who received the same surgery type, however in the case of . 

Table 3.8-8 Plasma pharmacokinetics preoperatively and postoperatively with group medians (±IQR) 

 Day -1 Day 1 

Patient 8D Group  Patient 8D Group  
t ½ (hr) 2.29 2.06 (1.82, 2.40) 1.99 1.94 (1.72, 2.28) 
AUC (mg.hr/L) 0.042 0.042 (0.029, 0.054) 0.041 0.038 (0.036, 0.04) 
Cl (L/hr) 23.82 24.09 (18.54, 34.87) 24.68 26.48 (25.09, 27.55) 
Vd (L/kg) 0.93 0.87 (0.74, 1.14) 0.65 0.8 (0.58, 0.96) 
MRT (hr) 3.22 3.04 (2.55, 3.38) 2.16 2.14 (1.91, 2.30) 

There was no evidence of accumulation of paracetamol until Day 3 when both one and 

four hour concentrations increased. This was different from that of his group which 

showed no evidence of accumulation. 

 
Figure 3.8-40 Plasma concentration of paracetamol- 1hr 

 
Figure 3.8-41 Plasma concentration of paracetamol- 4hr 

3.8.4.3 CYTOKINES 

Changes to cytokine levels for Patient 8D were also largely unremarkable. There was a 

slight increase in IL-6 (Figure 3.8-42), IFN-γ (Figure 3.8-43) and TNF-α (Figure 3.8-44) but 

no change to IL-1β (Figure 3.8-45). 
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Figure 3.8-42 IL-6 Concentration in daily samples 

 
Figure 3.8-43 IFN-γ Concentration in daily samples 

 
Figure 3.8-44 TNF-α Concentration in daily samples 

 
Figure 3.8-45 IL-1β Concentration in daily samples 

3.8.4.4 CYP450 PROBES 

There was a strong increase in the ratio of paraxanthine to caffeine in the final days of the 

study (Figure 3.8-46) and the opposite was seen the chlorzoxazone ratio (Figure 3.8-47). 

The chlorzoxazone ratio opposed that of his group. 

 

Figure 3.8-46 Individual and group median ratio and IQR 
of paraxanthine to caffeinein plasma  

 

Figure 3.8-47 Individual and group median ratio and IQR 
of 6-hydroxychlorzoxazone to chlorzoxazone in plasma 

3.8.4.5 URINE 

3.8.4.5.1 SULPHATE CONTRIBUTION 

There was a slight reduction in sulphate derived metabolite contribution immediately 

postoperatively which briefly recovered. Otherwise there were only minor changes to this 

value (Figure 3.8-48). 
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Figure 3.8-48 Per cent of urinary metabolites excreted as sulphate derived compounds with group median (±IQR) 

3.8.4.5.2 PHASE II:I METABOLITE RATIO 

Figure 3.8-49 shows Patient 8D’s metabolite ratio started lower than the rest of his group 

but still fell further following surgery. This was maintained for the remainder of the of the 

study period.  

 

Figure 3.8-49 Ratio of Phase II: Phase I metabolites of paracetamol with group median (±IQR) 

Similar, but to a lesser extent that Patient 4A, this ratio arose from increases to 

paracetamol cysteine contribution in the absence of increases to paracetamol 

glucuronide. Increases to paracetamol cysteine contributions did not align with either 

measured CYP450 activity or cytokine concentrations. Paracetamol glucuronide 

concentrations still remained within expected ranges.  
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4 DISCUSSION 

This study investigated the safety of high doses of IV paracetamol in postoperative 

patients. There were several factors that resulted in this research: 

 Paracetamol had re-emerged as a popular drug perioperatively and, despite it 

being toxic on overdose, doses exceeding those licensed were being advocated; 

 Paracetamol had been used safely for decades in postoperative patients when 

licensed doses were given by oral or rectal routes. However, the bioavailability of 

these routes was known to be poor in surgical patients; and 

 A new IV formulation of paracetamol became available, however the impact of its 

greater bioavailability on drug safety in surgical patients was unknown. 

These factors, the increased doses and increased bioavailability, were a cause for concern 

given the toxicity of paracetamol on overdose. However, the safety of IV paracetamol in 

postoperative patients had been assumed by health-professionals for two reasons: 

1. The active ingredient is one of the most consumed, safest drugs on the market 

when given at licensed doses (Amar et al. 2007); and  

2. This safety can be applied to the IV formulation because many aspects have been 

shown to be bioequivalent to enteral products in healthy adults (Depre et al. 

1992; Flouvat et al. 2004; Duggan et al. 2009). 

Subsequently, the product has been widely used and well tolerated by the vast majority 

of surgical patients. However, there were a growing number of reports of individuals who 

have developed toxicity after receiving licensed doses, and malnourishment seems to be 

a common theme (Vitols 2003; Kaplowitz 2004; Moling et al. 2006; Forget et al. 2009; 

Gray et al. 2011). A recent determination as to the causes of death of a hospital patient 

who died following repeated IV paracetamol doses found a “prevailing culture of 

assumed familiarity” with intravenous paracetamol “…derived from the common use of 

oral paracetamol”. This “misplaced assumed familiarity” was listed as a cause death 

(Sheriffdom of Glasgow and Strathkelvin 2011). 

Drug safety shown in healthy adults cannot always be applied to surgical patients. As 

discussed in Section 1.3 there are several differences between these two populations that 

affect drug disposition. In this specific case, IV and oral paracetamol are far from 

bioequivalent. In surgical patients the rate and extent of oral absorption of paracetamol is 
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significantly reduced (Goldhill et al. 1995; Kennedy et al. 2006; Duggan et al. 2009) and 

overcoming this with IV paracetamol is considered of therapeutic benefit and sufficient to 

justify its use (Sinatra et al. 2005; Gregoire et al. 2007; Candiotti et al. 2010; van der 

Westhuizen et al. 2011). This leads to substantial differences between the 

pharmacokinetic profiles of oral and IV paracetamol with a doubling of Cmax and plasma 

concentrations not equivalent until at least an hour after the dose (Depre et al. 1992). It 

could be possible that this delayed and reduced oral absorption conferred protection 

from paracetamol toxicity to vulnerable surgical patients, however, just as with efficacy, 

whether the link with toxicity is between Cmax or AUC is not certain. This would suggest 

that the IV formulation has hidden risks associated with its different pharmacokinetics 

and therefore safety established with oral paracetamol doses could not realistically be 

relied upon.  

These concerns and potential issues highlighted above led to the research questions of 

this clinical project: 

1. Was IV paracetamol safe in surgical patients at unlicensed doses? 

2. Did surgery change paracetamol disposition? 

3. If disposition changed, why? 

To answer these, patients scheduled for surgery volunteered to provide blood and urine 

samples and to receive up to 9.5g of paracetamol daily and daily doses of CYP450 enzyme 

probes for the day before and the four days after surgery. To analyse these samples, 

analytical tools were developed and applied to measure clinical and pharmacokinetic 

observations and address the research questions: 

1. αGST concentrations were measured in daily plasma samples to assess safety of 

paracetamol; 

2. Paracetamol pharmacokinetics and metabolite concentrations were determined 

from plasma and urine samples to assess changes to disposition; and 

3. Cytokine concentrations and CYP450 activity were measured in plasma samples to 

determine why disposition changed. 

Once these methods were established and validated analysis of samples collected from 

patients was carried out. From these, interpretation of parameters became possible, with 

conclusions finally drawn. 



 

382 
 

This discussion will be divided into four parts:  

1. The development and establishment of the assays; 

2. Recruitment and conduct of the study;  

3. The disposition of parenteral paracetamol and its metabolites in the various 

surgical groups and the factors affecting disposition; and finally 

4. The strengths, limitations and of future work of the research 
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4.1 DEVELOPMENT AND ESTABLISHMENT OF THE ASSAYS 

4.1.1 PARACETAMOL ANALYSIS- HPLC 

The assay used for plasma analysis was adapted from previous reports while a second 

was developed with novel conditions for urine analysis. Both assays performed well and 

both surpassed accepted validation standards.  

Challenges which presented with the development and application of the assays were of 

three categories: relating to either sample, mobile phase and run time.  

The plasma sample preparation following the method of Reith et al. (Section 2.3.3.4) was 

selected and optimised for this research as it was quick and simple, favourable qualities 

given the large numbers of samples that needed to be processed (Reith et al. 2009). 

However, by some standards, the prepared sample would have been regarded as 

relatively “dirty” (Chen et al. 2008). Small quantities of contaminant (mostly protein 

precipitate) were occasionally present in the sample. With the large number of samples 

analysed, over time, these contaminants accumulated in the guard column and increased 

back pressure. This collection at the head of the column in turn shifted retention times 

and caused problems with peak shape and integration. Replacing the guard column 

cartridge resolved these problems and as long as it was maintained, this facilitated the 

safe use of this simple and rapid sample preparation method without compromising 

accuracy. 

The mobile phase components of the first assay detailed in Section 2.2.3.1, potassium 

phosphate buffer and acetonitrile, are considered incompatible in certain conditions 

(Kromidas 2005). In this assay, precipitation of buffer crystals caused blockages of check 

values and failure of the HPLC pump. Once the source of the problem was identified, a 

warmed methanolic solution was used as a wash at the end of the run and the gradient of 

mobile phase changes between the phosphate buffer and acetonitrile were reduced. The 

final details of the mobile phase gradient and wash solution are also given in Section 

2.2.3.1. This eliminated the pump problems as well as protected the HPLC and the HPLC 

column from the corrosive effects of the phosphate buffer. 

The run time of the method adapted from Reith et al. was 25 minutes (Section 2.2.3.1). 

While reasonable in many settings, the length of this run time meant that a set of samples 

from a patient would run over several days. Additionally, the detection of paracetamol 
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mercapturate was poor in the first assay. It was therefore desirable to reduce the run 

time and improve the detection. This led to the acquisition of another column and 

redefining the chromatographic conditions from the beginning to develop an isocratic 

assay with phosphate buffer and methanol. A valuable lesson was learnt though, that it 

can take longer to do some things quickly, and even though there was the advantage of a 

shorter run time, this benefit was lost in the additional time it took to determine new 

conditions and revalidate the assay. However the additional benefit of improved 

detection of paracetamol mercapturate did justify the time spent on the development of 

the new assay. 

4.1.2 LCMS METHODS 

Changes to the disposition of drugs in surgical patients in the first instance, and elderly 

surgical patients in the second instance, is a much under researched area. Because 

CYP450 systems and Phase II systems alter quickly and extensively, it is important to be 

able to quantify those changes to identify those at risk from subsequent inefficacy and 

toxicity. This is especially relevant given that an excess or a lack of drugs in a patient who 

is haemodynamically unstable perioperatively can have effects on their postoperative 

outcome (Kennedy et al. 2000).  

In doing clinical research, the maxim of primum non nocere dictates that minimising 

discomfort and harm to the patient is the primary objective. Therefore, research 

undertaken in patients must not interfere with their recovery. Assay’s that are developed 

to support this objective are not only a great advantage to the patient but also to other 

clinical researchers who want to do this type of research. While determining the activity 

of the relevant CYP450 was necessary, methods in the literature commonly used one 

assay per drug, in a similar approach to the analysis of paracetamol described above. 

Adapting this technique for the analysis of the four CYP450 probe drugs and their 

metabolites would have necessitated prohibitively large amounts of blood to be taken 

from patients who had had major blood loss from surgery and difficulty with IV lines and 

venous access postoperatively. 

To avoid this, an assay was developed with novel conditions on HPLC using both UV and 

fluorescence detection that separated five analytical compounds which, unlike the 

paracetamol assay, were of a very heterogeneous nature with different pKa, solubility’s 

and functional groups that complicated their extraction, separation and detection. The 
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difficulty of this assay was further increased by the need to detect the metabolite of each 

of four of these analytical compounds, which were of very similar nature to their parent. 

As the ratio of these two entities was the focus of this analysis, their clear separation and 

peak resolution needed to be obtained, but in conditions that achieved separation of the 

parent compounds, which were very different in nature. Additional complications arose 

for the glucuronidation of some of the probe metabolites that required the sample to be 

hydrolysed with enzyme incubation prior to analysis. This and each of the eight remaining 

steps in extraction were optimised as shown in Table 2.5-3.  

The development of this assay was very positive and proved very successful in terms of 

the extent and reliability of both extraction and separation methods. All compounds were 

extracted from one sample, thereby reducing the amount of blood sample required. 

Extraction was consistently around 80% for all compounds of interest and separation of 

all nine compounds was achieved in a 25 minute run. However, when the method was 

transferred to patient samples, it was limited by its inadequate detection of midazolam, 

which was anticipated given the low doses administered to patients. An LCMS assay was 

an attractive alternative as this instrument provides a much lower limit of detection. 

Similar methods were published for the simultaneous detection of CYP450 probe drugs 

using LCMS but none contained the same cocktail used here. The transfer of the HPLC to 

LCMS method was complicated by the use of a buffer and column that were not 

compatible with the LCMS instrument.  

Transfer to LCMS analysis encountered additional, unexpected challenges which led to 

the accuracy of this assay being compromised. As a result, the information on the CYP450 

analysis in the level of detail that was anticipated was not able to be retrieved, although 

from an educational point of view it was extremely useful and had provided much 

valuable data. The factors which compromised the transfer of this assay were:  

1. Changes to supervision of the LCMS; 

2. Access to the LCMS; and  

3. Problems with the instrument.  

The personnel changes for the supervision of the LCMS, which occurred at the time of 

transfer of the assay led to a loss of expertise in the operation of the equipment, making 

transfer of the assay to this instrument more of a challenge. 
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Access to a LCMS instrument was not available in the School of Pharmacy and therefore 

access to such technology was sought from another department. As a user outside of the 

parent department owning the instrument, access was only possible for a limited period 

of time for which this the researcher remains most grateful. This situation though limits 

the time available to transfer and develop the assay especially in studies where there are 

large numbers which must be processed.  

Given the use of this type of analytical equipment is central to the work of many 

disciplines, other Universities have overcome access, maintenance and supervision issues 

and prevented duplication of resources by introducing a network of Platform 

Technologies. These networks are essentially a central location in the University that 

hosts the analytical equipment for the use of the entire University and industry 

community. Such a network is present in Monash University, Australia, who saw benefits 

in creating “a one-stop first class technology shop, with access to cutting edge equipment, 

and a critical mass of leading scientists.” (Monash University 2010). Such a network is 

currently under development in UCC for researchers whose own departments do not 

possess the analytical equipment required for their analysis and will be beneficial for this 

type of research in the future. 

There were several problems with the LCMS instrument which were compounded by the 

two factors already described. Peak shape from the MS was poor and abundance was 

very low, even in standard samples prepared in mobile phase. As discussed in the Section 

3.7, at concentrations sufficient to be detected by UV, the PDA upstream from the LCMS 

produced Gaussian peaks (Figure 4.1-1), whereas the peaks from the same injection on 

the MS’s TIC were splintered and asymmetrical (Figure 4.1-2). The integration software 

was capable of smoothing over misshapen peaks, but the calibration curves constructed 

from the resultant area under the curve of these peaks were poor, with few points along 

the line of best fit and large changes in area on repeated injection of the same sample.  
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Figure 4.1-1 UV 280nm (red line), and Total Ion Chromatogram (black line) from same injection of 1ug/mL standard.  

 

Figure 4.1-2 Extracted Ion Chromatogram (EIC) 326-326.15 (2.5x10
5 

abundance) (midazolam) 

Much work was done to try to overcome these problems. The symmetry of the PDA peak 

indicated the problem was not with the sample or chromatography, and this was 

confirmed firstly by injection of other freshly prepared standards, and subsequently by 

using a new column of the same specifications. The parameters of the MS were all 

confirmed and optimised (Section 2.5.3.5) and the ion source was cleaned. During this 

time it was noticed the calibrant liquid was not being drawn into the ion source and there 

were problems with the drying of the electrospray plume which were causing 

condensation on the inside of the ESI unit. Attempts at resolving both these issues were 

made and thought to be resolved. At this stage there was only enough time left in the 

period of access to the instrument for it to run the remaining samples. A set of standards 

were run which appeared no different so the remaining samples were analysed. Further 

attempts at resolving the ESI problems revealed a piece of lint/fluff across the entrance to 

the capillary (Figure 4.1-3). Once removed, detector response did improve. It was 

concluded this was the cause of the low and irregular detector response previously 

discussed.  
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Figure 4.1-3 Electrospray Ion Source of Agilent 6520 mass spectrometer showing position of obstruction 
(Agilent Technologies Inc 2009) Used with permission. 

Throughout the use of the LCMS there were problems with the hydrogen gas sensor in 

the laboratory where the LCMS was situated. The alarm frequently detected hydrogen 

despite there being no source of hydrogen in the laboratory. Upon sensing hydrogen, the 

alarm system would shut down the supply of all the gases to the laboratory, including 

nitrogen, and without a supply of nitrogen the MS would shut down, ending the sample 

set prematurely. Aside from ending the sample set, further samples could not be analysed 

until gas had been restored and the MS recalibrated. Gas could not be restored to the 

laboratory until the system was reset, which could only be done by the system’s 

engineers, who were external to the university and unavailable over the weekend. On 

three separate occasions the system alarmed on a Friday night and as the access period 

required weekend work, this was a significant set-back. 

While delaying the analysis of further samples, the MS shutting down during the run also 

raised issues regarding the stability of the un-analysed samples sitting in the LC awaiting 

analysis. This was exacerbated by the LC not having a refrigerated sample drawer. The 

samples were loaded in the evening and the sample run overnight. On each occasion 

when the instrument shut down the samples would be removed and refrigerated 

immediately upon discovery in the morning. Extreme care was taken not to confuse 
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samples. Samples that had run successfully were re-run to examine for degradation and 

no significant change in abundance was observed.  

There was a further problem around the negative and positive detection mode of the 

instrument. The MS (an Agilent 6510 QTOF) is a powerful instrument for the 

determination of accurate mass, capable of giving molecular weights to beyond four 

decimal places at femtogram concentrations; abilities far beyond the requirements for 

this analysis, given that the masses of the analytes were known. MS can work in either 

positive or negative mode. The signal-to-noise (S/N) ratio of an analyte will be greater in 

one mode or the other and this is just a property of the analyte. The vast majority of 

compounds are best detected in positive mode and this was the case for all analytes in 

this analysis, except for two: chlorzoxazone and its 6-hydroxy metabolite. Although the 

height of the negative-mode peaks can be one-tenth those of the equivalent positive-

mode peaks, there is less noise in negative mode so signal peaks are more distinct.  

Many MS instruments can detect in both positive and negative mode simultaneously, but 

this newer technology is mostly available in nominal mass instruments, unlike the 

accurate mass Agilent 6510 being used. Upon discussing the capabilities of the MS being 

used with the manufacturer before the analysis began, they provided assurance that 

detection of both positive and negative modes was possible with this instrument too, but 

when this option was not available in the software it was revealed that this particular 

instrument was, in fact, not capable of this function. In this way the extended capabilities 

of this instrument’s accuracy was its downfall in this analysis, preventing simultaneous 

detection of positive and negative modes. Switching between negative and positive mode 

on the Agilent 6510 required the analysis to stop and the instrument to be recalibrated 

with a different calibrant solution from the one used for positive mode. This process 

cannot be automated and would have required significantly longer periods on the 

instrument and access to the instrument throughout the night. As can be seen from the 

results (Section 3.7), detection of chlorzoxazone and its 6-hydroxy metabolite in positive 

mode was still possible but in very low abundance, which is contrary to what would be 

expected given that it was administered in the highest dose of all the CYP450 probe drugs 

(Section 2.1), and a satisfactory extraction was achieved. Ideally the sample would be run 

in positive and then negative mode. This would have required frequent changing of the 

calibrant and recalibration of the instrument, which the researcher in control of the MS 

did not sanction. Additionally, because of the necessity for recalibration, the samples 
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could not have been analysed in positive and negative mode consecutively. This 

effectively would have doubled the sample load on the instrument and run times would 

have gone beyond the allocated access time for this project. It also would have resulted in 

the samples sitting in the sample drawer at room temperature for twice as long, as they 

waited to be re-run in negative mode. Further, the volume of the sample following 

extraction was not always sufficient to allow for two injections and the volume of the 

plasma sample was not always sufficient for duplicate samples. When these factors were 

considered in addition to the time constraints, the only option was to run the samples in 

positive mode in expectation that the anticipated high concentrations of chlorzoxazone 

and its 6-hydroxy metabolite in the samples would be sufficient to overcome the 

problems with their detection in positive mode. 

The final product of the extraction process was filtered before injection in the LCMS. The 

researcher supervising the LCMS did not believe a guard column would be sufficient to 

protect the MS from any contaminant remaining in the sample, even though such 

methods are reported (Kharasch et al. 2004) and there were no changes to backpressure 

on the HPLC used for method development. This meant that the samples could not be 

filtered “on-line” with a guard column and that a separate filtering step was necessary. 

There were some limitations to the type of filtration that could be used. Namely, the 

product of the final evaporation was reconstituted in 50% methanol, which was not 

compatible with a number of filters typically used for clean-up of samples before LCMS 

injection. Further, there was a limited budget and over 600 samples to filter.  

When choosing the product, the technical assistance of two suppliers both referred onto 

a manufacturer, Millipore (Massachusetts, USA). Millipore recommended a 96 well plate 

format filter that was subsequently purchased. The additional apparatus for the 

operation of the filter, a vacuum manifold and a vacuum pump, were to be lent by 

Millipore, this loan did not materialise due to the vacuum pump been irreparably 

damaged by the previous user imediately prior to its use in this work. No other vacuum 

pump was available from within the department for the period of time it was required. A 

water vacuum was used in its place which produced a vacuum just at the lowest end of 

the usable range specified by the manufacturer. Given the low vacuum, filtration was 

slow and recoveries were very poor, with 100µL of sample yielding approximately 10-

20μL of filtrate, with a small amount of the sample remaining unfiltered but the majority 

lost to evaporation. This introduced variation arising from the evaporation of the sample, 
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in addition to a volume that would not pass through the filter at the vacuum used. 

Attempts to improve the yield included pre-wetting the filter with the methanolic 

solution used to reconstitute the sample following evaporation, occluding unused wells 

with adhesive plate films and centrifuging the filtration system in place of using a vacuum, 

none of which caused significant improvements to the yield. As there was no budget for 

an alternative filtration product this process was deemed adequate as, with careful 

handling, there was sufficient volume filtered for a single injection into the LCMS and the 

internal standard incorporated at the beginning of the extraction could be used to 

account for any changes due to evaporation of the sample during filtration.  

Despite these problems, the extraction procedure was very successful in terms of 

recovery and developing the method provided much useful experience and knowledge. 

As discussed above, the problems mainly arose with this method in the detection of the 

compounds subsequent to their successful extraction from plasma. With additional time 

on the LCMS this method could be validated, however insufficient patient plasma would 

prevent its application to this project. 
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4.2 RECRUITMENT AND CONDUCT OF THE STUDY 

4.2.1 SETTING 

For the first two groups of patients, the setting of Hospital 1 was as close to ideal as 

possible for this type of research. Groups A and B patients returned from theatre with a 

triple lumen central line and urinary catheter to an ICU with one-to-one nursing. Blood 

and urine samples were obtained on time with comparative ease. In a small hospital, it 

was possible to establish personal relationships with the various staff and they were 

generally supportive of the research and would offer help when it was not widely outside 

their usual practices i.e. emptying urinary catheter bags into collection vessel as opposed 

to into the sluice. Other than this relatively small amount of help, these groups required 

no other assistance for conducting the study in the postoperative phase at all.  

The major drawback of Hospital 1 was that recruitment into the study was slow. Fewer 

than one colectomy was performed a week and many of these patients were unfit for 

inclusion. It was difficult finding patients sick enough to require major surgery, but well 

enough to be involved in the research. Of those eligible, the consent rate of 70% of 

eligible patients was good, considering the research was demanding for the patient. 

Similarly high rates have been reported elsewhere in Irish populations (Desmond et al. 

2011), which are higher than found in other populations (Myles et al. 1999; Dorantes et 

al. 2000). Ideal situations for consenting patients for this type of study have been 

determined by patient surveys as: 

1. At preadmission testing; 

2. With enough time for patients to consult with their own surgeon, who endorses 

the research; 

3. In private, when the patient is in street clothes  

4. With assurances the investigator would also consent if eligible (Mingus et al. 

1996).  

The evening prior to surgery, after being recently diagnosed with potentially life 

threatening cancer, is a difficult time for anybody without the addition of being asked to 

consent to a clinical trial. The difficulties in consenting for clinical research at this time 

have been previously reported and are in part due to the shorter hospital stays that are 

demanded by economic pressures (Mingus et al. 1996). Consequently, the four aspects 
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listed above were often unobtainable. Frequently, preadmission testing did not occur as 

the cases were urgent, so consenting was done at the time of admission. This prevented 

patients having enough time to consult with their own physician and also meant the 

patient was on the ward and often in a hospital gown. Despite these issues, there was an 

overwhelming spirit of good will, altruism and willingness to participate in Groups A and 

B. The most significant hurdle to recruitment was not the chance of being administered 

large doses of paracetamol or frequent blood tests, but the necessity to abstain from 

caffeinated drinks. Here a lack of cultural understanding on the researcher’s part came 

into play because it became clear that asking Irish adults to abstain from tea for a week 

was extremely difficult given that tea is such an integral part of everyday life in this 

culture. Despite this, in the first two groups of patients, three made totally unsolicited 

offers to write letters in support of the study to any potential study patient, commending 

participation in the study to them. 

There was no apparent difference between consenters and non-consenters in this study, 

although other work has shown that the most important influences on consent rate 

include: age of the patient (those >60 years being more likely to consent), trust in the 

investigator and trust in the institution/hospital (Patel et al. 2004). Prospective study 

participants who were less trusting of or assured by study personnel or who “felt like a 

guinea pig” were shown by Patel et al. to be less likely to participate.  

Conducting the study became more difficult in the third and fourth groups (Groups C and 

D). Group C, the mastectomy patients, were frequently post chemo/radiotherapy. 

Patients consented to an external jugular line being inserted in theatre as a central line 

could not be justified. However, even these lines would frequently occlude. This lead to a 

number of missed samples. The external jugular lines proved less effective than 

peripheral lines and were very positional for obtaining blood samples. Most had occluded 

by the second day, if not before. Additionally, urinary catheters were removed promptly 

after surgery and many patients had trouble collecting their own urine postoperatively. It 

was also not possible to ensure the bladder had been emptied every four hours, which 

could be assumed while catheterised. Another problem was that, when the IV catheter 

that was in place occluded, the maintenance of IV access beyond the first postoperative 

day was difficult to justify to the surgeon as it was only for the purposes of this research. 

No IV antibiotics were prescribed to these patients and IV fluids did not continue beyond 

the first postoperative day. With the frequent occlusion of lines and trouble reinserting 
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them, few patients had complete data sets. As a result of these sampling problems, this 

group was abandoned. 

Reconfiguration of surgical services in Hospital 1 necessitated moving to a second site 

(Hospital 2) where Group D was collected. At Hospital 2, the Investigator was there as a 

researcher external to the hospital, compared with Hospital 1, where the Investigator was 

a member of staff with clinical duties.  

4.2.1.1 ADDITIONAL CHALLENGES EXPERIENCED AT HOSPITAL 2 

Clinical research, whilst highly rewarding, presents many obstacles which have to be 

overcome. It became clear on transferring to the second hospital that a large part of 

those obstacles is actually building relationships with those who are involved on a day to 

day basis with the patients. This is especially difficult, for instance, when there is shift 

work involved and frequent changes of personnel that occur in large institutions.  

Irregular contact with ward staff meant that they may not be as familiar with the study 

protocol as would be desired. While the Investigator was primarily responsible for the 

conduct of the study, the assistance of many individuals was required to varying degrees 

for the smooth running of the study. At Hospital 1, the necessary relationships had been 

built up over time because the Investigator was a member of staff. At Hospital 2 the key 

relationships that needed to be re-established were with: 

 Ward management; 

 Nursing staff; 

 Ancillary staff/healthcare assistants; 

 Admissions co-ordinators; 

 Medical records; 

 Surgical teams; and 

 Anaesthetists. 

In most cases “assistance” meant not disturbing the conduct of the study and adhering to 

study protocols, which for the staff part, would be considered standard care. Education 

was conducted with all ward staff, but due to the size of Hospital 2, there were frequent 

changes to nursing staff and it was not possible to ensure all staff coming in contact with 

study patients had received training.  
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Additionally, staff may not have fully realised the ramifications of their actions to the 

validity of the study, i.e. disposing of a urine collection or inaccurate recording of time of 

paracetamol dose administration. In Hospital 1, as it was much smaller, it was possible to 

explain the reasons for a request in the study protocol to all members of staff. In Hospital 

2, study patients were admitted to one of three surgical wards, greater than tripling the 

number of staff involved and on occasion they were outliers on medical wards. 

Following their surgery, study patients in Hospital 2 returned to a six bed ward. Here they 

were cared for by one nurse and one healthcare assistant, who also had responsibility for 

another room of equal size. In comparison, Hospital 1 returned bowel resection patients 

to an ICU with one to one nursing. With the additional demands on staff in Hospital 2, the 

timing of paracetamol administration outside of those given by the Investigator was less 

certain. There were no paracetamol doses that were recorded as being administered 

outside of their correct time and this was assumed for the purposes of these results. 

However, conduct incidentally noted on the ward in relation to the administration of 

other drugs indicated that this may not have always been the case.  

There is no evidence to confirm, but it was presumed by the Investigator, that having 

capacity as a member of staff with other clinical duties improved adherence to the 

protocol by other staff because the Investigator would have had: more incidental 

presence on the ward; been better known to staff; and had the support of a department 

of other pharmacy staff who could have assisted and alerted the Investigator to issues 

involving the study. Additionally, the Investigator being familiar to the other staff and part 

of the normal preoperative routine (in the Investigator’s capacity as a pain team member) 

may have improved the consent rate in Hospital 1, which was much lower in Hospital 2. 

These presumptions are supported by the findings of Patel et al. discussed above that 

relate a patients likelihood to consent to their trust in study personnel and the host 

institution (Patel et al. 2004).  

Anaesthetists at Hospital 2 used different anaesthetics from those used in Hospital 1 for 

the same surgery and they generally refused to put in central lines. Only two study 

patients in Hospital 2 had central lines and both were removed before the conclusion of 

the study. In addition, the Surgeon at Hospital 2 used different surgical techniques, with 

the majority being laparoscopic bowel resections. He also encouraged early re-feeding 

and the use of high protein drinks after surgery, which reduced the time of fasting 

experienced by patients in this group.  
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4.2.2 PATIENTS 

Diagnoses were comparable within groups and between groups A, B and D, with the 

exception that Group D had some non-malignant indications for surgery. Procedures were 

also similar between Groups A and B, whereas the majority of the procedures for Group D 

were laparoscopic. This technique led to Group D having considerably longer duration of 

surgery.  

There were a few patients who were withdrawn from the study, mostly as a result of loss 

of IV access for blood sampling. Only one patient was withdrawn as the result of a drug 

administered during the study, but upon review by the anaesthetist it was thought 

unlikely to be associated with the study. 
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4.3 CHANGES TO DISPOSITION  

As shown in Table 3.4.1 there were alterations to half-life. Median increases were 0.6 and 

0.2 hours in Group A and B respectively, while smaller reductions in Group C and D of 0.1 

hours were seen in both groups. Half-life is the drug disposition term with the greatest 

clinical utility because of its tangible nature, however, on its own it describes very little 

about a drugs disposition. Equation 3.4-2 shows that it is a composite term comprising of 

both the Vd and clearance of a drug. Clearance itself arises from both a drugs metabolism 

(in paracetamol’s case this is entirely hepatic) and elimination. These three factors: Vd, 

metabolism and elimination, provide the structure for the discussion of the changes to 

paracetamol’s disposition in surgical patients. Absorption is not considered as 

paracetamol was administered parenterally. 

4.3.1 DISTRIBUTION 

Volume of distribution (Vd) was calculated using a non-compartmental method that is 

commonly used (Rowland et al. 1995; Allegaert et al. 2004; Liukas et al. 2011). As 

discussed in Section 1.4.4.2.2, the Vd of IV paracetamol is listed as approximately 0.9 L/kg 

(Flouvat et al. 2004). As shown in Section 3.4.4, preoperative volumes of distribution are 

largely in agreement with this figure aside from Group A, whose preoperative value was 

slightly lower at 0.77L/kg. At slightly more than 20% different from the reported 

population values, the difference in paracetamol distribution is substantial however, as a 

drug with intermediate distribution, the reduction is not clinically meaningful. Indeed, 

there are several other studies reviewed with similar and even lower volumes of 

distribution in man (Prescott 1996). Given the wide IQR shown in Table 3.4-75, Group A’s 

reduced preoperative Vd is most likely due to the wide intra-individual variation seen in 

this value compounded by the use of medians, not means in the analysis. The mean Vd 

was closer to the listed value, but given the small group size, the use of parametric tests 

was not statistically warranted. There are two other factors that make Group A stand out 

from the remaining groups that could explain this slightly smaller distribution 

preoperatively: their higher age and prevalence of obesity as shown in Table 3.1.1. Age 

related changes to blood flow and extracellular fluid volumes have been shown to reduce 

drug Vd as discussed in Section 1.4.3 (Schwartz 2007; Liukas et al. 2011), however with a 

median age of 64 years, only 5 years greater than the closest other group, this 

explanation would seem unlikely. Secondly, with five out of the 10 in the group being 
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classified as obese, the finding of reduced weight corrected volumes may be applicable 

given that there are only four other obese in the entire study (Prescott 1980; Abernethy 

et al. 1982b; Depre et al. 1992; Ward et al. 1999). Furthermore, there was possibly some 

impact from the bowel preparations those patients received which may in turn have led 

to dehydration, but the impact of this on plasma volume has been reported to be 

negligible and if this was a factor it would also be seen in Group B who underwent the 

same treatment (Zafar et al. 1987; Kim et al. 2001; Kim et al. 2006). 

When preoperative and postoperative Vds are compared there are stark changes. There 

were reductions to Vd observed in all groups which were statistically significant in Group 

A. The universality of these changes and their direction was surprising. Generally, 

increased volumes of distribution are reported in surgical patients, in response to 

increases to capillary leakiness and reductions in plasma proteins due to the stress 

response. However there are few studies in adults that report this for paracetamol and 

none reuse the same patient before and after surgery as has been done here 

(Schuitmaker et al. 1999; Viscusi et al. 2008; Fouad et al. 2009). Generally gentamicin is 

used for this purpose. As discussed in Section 1.3.3.3 gentamicin is poorly protein bound 

and highly lipophilic, making it ideal for the determination of extracellular fluid volume. In 

surgical patients, amongst vast inter-individual variation, gentamicin’s distribution is 

generally greater than given for healthy adults (Zaske et al. 1980; Mann et al. 1987; 

Beckhouse et al. 1988; Dasta et al. 1988; Reed et al. 1989; van Dalen et al. 1990; 

Schuitmaker et al. 1999; Viscusi et al. 2008; Fouad et al. 2009). Additionally, the timing 

when distribution is estimated in these papers varies considerably, sampling intra- or 

immediately post-operatively, or not stating the time of sampling in relation to the 

patient’s surgery at all. This has been reported to have a significant impact on the Vd due 

to changes in haemodynamics and the stress response that wax and wane as recovery 

progresses (Dasta et al. 1988). Furthermore, while generally surgical patients, many of the 

participant in these studies are critically ill and septic, much worse than the generally 

expected course. The effect of infection alone on Vd is much greater than routine surgical 

trauma and therefore the applicability here may be limited (Zaske et al. 1980; Mann et al. 

1987; Beckhouse et al. 1988; Dasta et al. 1988; Reed et al. 1989; van Dalen et al. 1990) 

Reductions in distribution when compared with the general population have also been 

reported in major surgical patients (Wurthwein et al. 2005) and medium and intensive 

care unit patients (de Maat et al. 2010). The latter group had paracetamol Vds of 
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approximately 0.66L/kg, similar to what was shown postoperatively in this study (Table 

3.4.4). While not assessing it directly, a study using IV paracetamol also indicated 

reductions to Vd through increases to Cmax following repeated doses postoperatively 

(Holmer Pettersson et al. 2006). 

As discussed in Section 1.3.3, there are three factors that can affect the Vd:  

1. Blood flow; 

2. Drug Binding; and 

3. Extracellular fluid. 

It is possible that blood flow may have been reduced in these patients, impairing 

distribution. Reductions to blood flow could arise from three causes: stress induced 

vasoconstriction; blood loss during surgery and lack of activity and bedrest.  

Extensive vasoconstriction seems the most likely explanation for this reduction to Vd and 

could arise from the increase in circulating catecholamines from the stress response 

(Udelsman et al. 1994). There are two conflicting facts on the role of catecholamines in 

these patients: cytokine concentrations were low, but oliguria was present. Cytokines 

stimulate the release of catecholamines and result in vasoconstriction, therefore without 

cytokines, stimulation of vasoconstriction would be low; however, the presence of 

oliguria in the majority of patients is a strong indicator of catecholamine release and the 

activity of the stress response. The low concentrations of cytokines reported in this study 

in Section 3.5 are questionable, as, given the nature of surgery and complicated 

postoperative courses of some patients, they were expected to be much higher. The 

limitations of this assay are discussed further below.  

Consistent with the involvement of the stress response in causing the changes to 

distribution is the finding that those patients with open major surgery (Groups A and B) 

did have smaller volumes of distribution than the other patients postoperatively. This 

may have arisen from a greater degree of activation of the stress response and 

vasoconstriction, although this was not shown in cytokine concentrations, but was 

supported in changes to urine output. Section 3.3.3 shows diuresis began from Sample 

2.2 in both Groups A and B where oliguria was barely seen at all in Group C and only until 

Sample 1.3 in Group D. When these changes to Vd and urine output are considered 

together it may give some indication of the extent of stress response experienced by each 

group.  hile it is to be expected that Group C’s stress response would be the least (due 
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to the intermediate nature of their surgery), the finding that Group D’s is less than Group 

A or B’s is interesting.  ith similar indications for surgery, the difference between open 

and laparoscopic surgical techniques may explain this.  

The laparoscopic procedures performed on the majority of Group D, while considerably 

longer with attending increases to administered anaesthetics, seem to have evoked less 

stress response than the much shorter laparotomy procedures. In short, it appears that 

the extent of surgical trauma is more important than time in theatre in predicting the 

extent of the stress response for a group of patients with the same indication for surgery. 

These findings are widely reported elsewhere (Glaser et al. 1995; Kehlet 1999; 

Desborough 2000; Jess et al. 2000; Le Blanc-Louvry et al. 2000; Gupta et al. 2001; 

Giannoudis et al. 2006; Vlug et al. 2009; Madbouly et al. 2010b). However, because 

cytokine levels in this study were so low in all groups, they could not be used to confirm 

this. 

The role of blood loss seems less important. Samples used for the estimation of Vd 

postoperatively were taken on the evening of the day after surgery. Blood loss arising 

from surgical trauma is unlikely to have been a factor as late as when these samples were 

taken, in all but two cases, fluid balance had been restored and patients were 

haemodynamically stable. Therefore, given intraoperative blood loss alone would have 

been replaced and paracetamol is not extensively protein bound, reductions to Vd seem 

unlikely to be explained by this factor alone. However, with pitting oedema observed in 

many patients loss of fluid from the plasma into the ECF may explain the reduced Vd. As 

discussed in Section 1.3.3.3 the volume of ECF is increased postoperatively. Fluid 

sequestered from ECF in plasma during “third spacing” is not available for drug 

distribution, however this is more associated with infection and sepsis and the effect is 

mainly on highly hydrophilic drugs 

There may have been a minor role played by inactivity. All patients would have remained 

almost permanently supine until the time Vd was determined. Inactivity, with subsequent 

reduction in blood flow to adipose and other inactive tissues may reduce drug 

distribution to these tissues and result in a reduction to Vd being measured (Ylitalo 1991). 

Without published of similar design it is difficult to compare and validate results. 

The paper by Schuitmaker exemplifies some previous barriers to this type of work. Based 

only on oral dosing, their calculations of Vd required complicated modelling techniques, 
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and secondly, unreliable postoperative absorption and bioavailability may introduce 

significant inaccuracies (Hopkins et al. 1990; Kennedy et al. 2006). Both of these factors 

could be overcome with the use of IV formulations. 

Consequences for the patient arising from a reduced Vd include faster elimination, and 

potentially better distribution into the CNS (considered as paracetamol’s site of action) 

(Gibb et al. 2008). The latter could result in greater efficacy, whereas the former could 

result in toxicity and is discussed under metabolism below. Considering this potential for 

toxicity, those with LFT or αGST increases did not show Vds different from the remainder 

of the group.  

Further plasma samples were taken later in the study at one (C1) and four (C4) hours. 

Unexpectedly, paracetamol concentrations in the one hour samples followed an inverse 

parabolic pattern across the study period (Figure 3.4-8). C1 concentrations of 

paracetamol increased from preoperative values until Day 2 and then, rather than 

maintain a steady concentration as would typically be expected following multiple 

infusions, they fell to equate to preoperative values by Day 4. Because pharmacokinetic 

sampling was not carried out on these days a definitive explanation for these changes 

cannot be determined, however, a C1 concentration is influenced by both the Vd and 

clearance. In addition to those points discussed above, Vd related changes later in the 

postoperative period that could explain this phenomenon could include: 

 Falling Vd secondary to continuing stress response until Day 2 followed by 

reductions in the stress response and subsequent vasodilation; 

o Development of diuresis around this time in most patients supports this, 

although diuresis had begun well before plasma sampling on Day 2 in most 

patients. 

 Further expansion to plasma volume arising from; 

o The consistently positive fluid balances and oedema especially prominent 

in Group A and B; 

o Reductions to plasma proteins through starvation and the stress response 

(although paracetamol is not considered heavily bound to plasma 

proteins). 

Reduction to clearance could also explain these changes. The contribution of clearance to 

the change in these values is now discussed. 
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4.3.2 METABOLISM/CLEARANCE 

As paracetamol is not renally metabolised, nor excreted renally to any great extent, the 

rate of clearance is dependent on hepatic metabolism. There were several changes to 

paracetamol’s plasma concentration and urinary recovery that indicated paracetamol 

metabolism had changed following surgery. The first, paracetamol’s plasma 

concentration, provides information about the rate of metabolism, the second, urinary 

recovery, provides indications on how metabolism is occurring and by which pathways. 

The changes to C1 concentrations described in the previous section on Vd (increase until 

Day 2 and then fall to approximately preoperative concentrations) show variation in 

elimination across the study and can provide some information about changes to 

clearance. These changes to C1 were most prominent in Group A, with statistically 

significant reductions from Days 1 and 2 to Day 4, although a similar pattern was 

noticeable in Group B and to a lesser extent Group D (Table 3.4.6). Problems with plasma 

sampling in Group C make their results difficult to compare. The postoperative oliguria 

developed into polyuria in most patients prior to midday on Day 2. Sampling for this day 

took place later that night from 10pm. Therefore continuing stress response-induced 

reductions to Vd on this day seem unlikely as a cause for the peak concentration 

occurring on this day indicating other factors at play. This continuing increase in 

paracetamol concentration until Day 2 is anomalous and is explored further. 

It seems most likely that in Groups A, B and D patients there was an initial inhibition of 

paracetamol metabolism on the first two days following surgery. Metabolic capacity was 

then recovered and may have progressed to the point of induction. Inhibition of 

metabolism would lead to accumulation of paracetamol from the previous dose and this 

could explain the increases to C1 apparent in the first two postoperative days. The 

reduced urinary dose recovery of paracetamol on Days 1 and 2 in Groups A and B support 

this hypothesis of accumulation in the plasma (Tables 3.3-17 and 3.3-20). Mechanisms of 

both Phase I and II drug metabolism are known to be inhibited by surgery, anaesthesia or 

the stress response and these have been shown to return as recovery progresses 

(Pessayre et al. 1978; Nimmo et al. 1981; Frye et al. 2002; Renton 2005; Aitken et al. 

2006; Morgan et al. 2008). Processes behind these changes are reviewed in Section 1.3.4, 

however the lack of studies using repeated measures means the sequence of the 

inhibition followed by induction cannot be compared. While the effect of the stress 

response on cytokine concentration and urine output had resolved by Day 2 in most cases 
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in this study, a prolonged effect on drug metabolising enzymes has been shown 

elsewhere (Nimmo et al. 1981). The literature would also support that alterations to 

clearance in Group D would be less considering the less invasive procedure and reduced 

stress response arising from laparoscopic surgery (Glaser et al. 1995). Following the 

sequential increases in C1 concentations on Days 1 and 2, the subsequent reduction in 

concentration is most likely a result of the stress response resolving. However this does 

not explain the continued reduction in C1 concentations on Days 3 and 4 to approximate 

preoperative values that arose from a single dose. This could be a factor of induction of 

metabolism through repeated exposure to the paracetamol, which has been shown 

elsewhere (Gregoire et al. 2007; Kim et al. 2007), or through exposure to other drugs or 

hormones arising from surgery (Kairaluoma et al. 1979; Ray et al. 1985). Enzyme 

induction was also shown to occur four to eight days following surgery by approximately 

30-50%, returning to normal by four weeks (Nimmo et al. 1981), findings which align well 

with the reduced C1 values shown here. Without full kinetic profiles on Days 2-4, 

increased clearance cannot definitively be proven in this study, however other factors 

that could explain this pattern of C1 concentrations can be eliminated:  

 Dose - this did not change. An individual’s dose was consistent throughout the 

study;  

 Accumulation due to steady state - this was already achieved. In stable 

environments, steady state is assumed after five half-lives (Dhillon et al. 2006). 

Half-lives shown in Table 3.4-1 estimate steady-state would have been achieved 

half way through Day 1, assuming disposition factors remained constant. The fact 

that C1 concentrations still rose on Day 2 invalidates this assumption; and 

 Changes to Vd – these have been discussed above. 

While indicative, C1 concentrations are difficult to interpret in isolation. As previously 

mentioned, they are influenced by both distribution and clearance. Full kinetic profiles of 

paracetamol were taken on Day -1 and Day 1 and provide accurate clearance values. 

Reported clearance values in healthy males range from 22-27L/hr (Prescott 1996) and the 

values reported here are in general agreement with this. Some patients do show changes 

after surgery (Table 3.4-3). Figure 3.4-5 displayed a downward trend in Group A, while 

values in the other groups stayed remarkably constant. The lack of numbers and small 

changes in the others groups makes their interpretation and inference to the causes of 

the changes in Group A difficult. These reductions to clearance are in the face of 
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reductions to volume of distribution, which, if anything, should improve the efficiency of 

metabolic processes by increasing the concentration of paracetamol in the plasma 

available for metabolism. If one was to assume the reduction to Group A’s clearance was 

a short-lived inhibitory effect of surgery, it is supported by the reductions in urinary 

recovery of paracetamol on Day 1 seen in this group described above. Group A’s urinary 

dose recoveries on Day 1 were the lowest of any postoperative day. Consistent with this 

reduction in clearance only occurring in Group A is that none of the other groups had 

their lowest urinary recoveries on Day 1. Additionally, all patients would have been 

catheterised at this time, reducing the possibility of incomplete urine collections 

explaining these findings. However, a major confounder of this explanation is that if this 

reduced clearance seen in Group A was due to inhibition of metabolism, then a similar 

trend would be expected in Group B as they underwent the same surgery, but this was 

not seen. This suggests a degree of dose limitation in the clearance of paracetamol. This 

has been shown with single-high doses (Prescott et al. 1973; Prescott 1980; Mutlib et al. 

2006), but has not been reported with doses similar to those that were used here 

(Gelotte et al. 2007).  

Generally clearance of paracetamol is not altered following surgery (Lewis et al. 1991; 

Schuitmaker et al. 1999; Wurthwein et al. 2005). Slightly increased clearances were seen 

in another study (Ray et al. 1985) but this had methodological flaws, most importantly the 

use of an oral dose of paracetamol for the calculation of clearance. A more recent study 

using IV formulations in surgical patients has reported reductions similar to those seen 

here (Fouad et al. 2009).  

One patient who was an outlier in Group A with an increased value was Patient 1A, who 

went on to have a very complicated postoperative course. The processes of induction of 

metabolism are very slow in comparison to inhibition (Park 1996), taking up to 48 hours 

(Barry et al. 1990). Thus most factors in this patient would lead to the expectation of a 

reduction in clearance, as seen in the rest of the group, not the increase seen. The 

increase of Patient 1A is difficult to explain and is most likely due to error, especially when 

it is considered that his opposing change to Vd resulted in a half-life consistent with the 

remainder of his group. This would indicate a problem with the administration of the 

paracetamol dose as both the calculation of clearance and Vd account for dose, whereas 

k and the equation for half-life do not. The only other factor seen in his clinical scenario 

on Day 1 which could account for such a divergent clearance figure is his IL-6 
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concentration, which at 349pg/mL was one of the highest measured. Stress is known to 

cause vasoconstriction, which can increase hepatic blood flow and therefore drug 

clearance, however this can be discounted as the patient’s distribution volume increased 

and even if it had not, paracetamol has a low hepatic extraction ratio so changes to 

hepatic blood flow would not have a major impact on clearance (Lewis et al. 1991). 

Additionally, IL-6, as by far the most potent down-regulator of CYP450, is known to inhibit 

metabolism, not induce it (Gurley et al. 1997; Siewert et al. 2000; Morgan et al. 2008). 

Despite this there was evidence of induced CYP2E1 activity in this patient with his ratio 

for 6-hydroxychlorzoxazone:chlorzoxazone as 2.5:1, whereas the group median was 0.9:1 

(Section 3.5.3). However it is possible poor absorption of this orally administered 

chlorzoxazone influenced this analysis by reducing the amount of parent drug in the ratio. 

As an outlier, if this patient was removed from the analysis, the consistency of the other 

values in the group did result in a statistically significant reduction in postoperative 

clearance in Group A.  

In summary there are some changes in paracetamol disposition that could be attributed 

to high doses and surgery, however reflection on the half-life values (Table 3.4-3) shows 

that these changes do not lead to accumulation and are unlikely to be clinically important 

on their own. Further unexpected findings to support this were from the one and four 

hour plasma concentrations that had been normalised for dose (Figures 3.4-8 and 3.4-9). 

There were no visual differences occurring between dose groups which had suggested 

that paracetamol had not accumulated in the high dose group beyond that of the normal 

dose groups. This would indicate that the metabolic processes that eliminate paracetamol 

were not overwhelmed at this higher dose. 

So the question arises over how drug elimination of paracetamol was maintained 

following surgery, and to what extent the milieu of reported changes to drug metabolism 

influence how paracetamol was eliminated. This question is most applicable to the high 

dose group, with more frequent doses of larger amounts, and if this was influenced by 

surgery.  

There were several changes in the pattern of metabolite excretion in the urine that were 

of interest. The high dose group (Group A) showed several clear changes to the excretion 

pattern in the postoperative period. The most significant change was the increased 

contribution of paracetamol glucuronide to the excretion, which increased by more than 

20% over the course of the study (Figure 3.3-14). This was matched with an increasingly 
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large reduction in paracetamol sulphate, which finished with less than half its 

preoperative contribution. There was also a bulging of Phase I metabolite contribution on 

Days 1 and 2, consistent with the possible increase in CYP2E1 activity as evidenced by 

increases to the ratio of metabolite:parent ratio of the probe drug chlorzoxazone (Section 

3.7.3). This was consistent with the literature where identical patterns of change to 

metabolite excretion have been reported following increased doses (in healthy adults) 

(Clements et al. 1984; Gelotte et al. 2007), repeated doses (Hendrix-Treacy et al. 1986; 

Allegaert et al. 2005) and repeated increased doses (Gelotte et al. 2007). All scenarios 

exhibit similar increases to the contribution of paracetamol glucuronide, as is the case 

here in this study (Hendrix-Treacy et al. 1986; Allegaert et al. 2005). Repeated doses of 

paracetamol have been suggested to have an inductive effect on UGT enzymes (Allegaert 

et al. 2005) and this has been reflected in increases to amounts of paracetamol 

glucuronide recovered in the urine. While in vitro methods exist for quantification of UGT 

activity, existing in vivo methods depend on morphine administration (de Wildt et al. 

1999). Morphine could have been used as a marker drug, but hospital policy did not allow 

fentanyl patient-controlled analgesia that would have been needed to replace morphine 

patient-controlled analgesia to facilitate this analysis .  

The reduction in paracetamol sulphate and Phase I excretion in Group A on Days 3 and 4 

of the study are of interest. Sulphate-derived metabolites (paracetamol sulphate, cysteine 

and mercapturate) share a common precursor, GSH. GSH is itself derived mostly from 

dietary protein. Because GSH detoxifies NAPQI, it is integral to the safety of paracetamol. 

Reductions to excretion of sulphate derived metabolites indicated a potential drop in GSH 

levels which may have led to a drop in NAPQI detoxification. Sulphation is known to 

saturate (Hendrix-Treacy et al. 1986; Martin et al. 1991), however, its decreased 

contribution later in the study is more difficult to explain. Group A were fasted until at 

least Day 3 postoperatively. The question of the nutritional impact on these patients on 

inorganic sulphate reserves arises given inorganic sulphate’s necessity for the production 

of GSH and precursors for sulphation. When viewed as a whole for this group, the 

contribution of sulphate-containing metabolites reduced at the same time as overall dose 

recovery (Figures 3.3-19 and 3.3-9 respectively). Group A’s median sulphate-containing 

metabolite contribution on the final day was almost half that of their Day 1 postoperative 

value. If this indicates exhaustion of inorganic sulphate stores, there is a possibility that 

the unaccounted for paracetamol seen in the reductions to dose recovery remains in the 

body as unconjugated NAPQI. This would explain the appearance of raised liver function 
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tests in some Group A patients after the study was concluded. Even if adequate 

concentrations of inorganic sulphur remained in the blood, reductions to sulphonation 

could also arise from insufficient sulfotransferase activity to maintain intracellular 

concentrations after several days of repeated paracetamol administration (Hendrix-

Treacy et al. 1986; Hindmarsh et al. 1991).  

Results for Group B in Table 3.3-32 show a similar, but much less marked pattern with 

statistically significant increases to paracetamol glucuronide excretion and reductions to 

paracetamol sulphate excretion. In Group C similar changes were seen in comparison with 

preoperative values although relative contributions postoperatively were more consistent 

(Table 3.34). There was a large degree of similarity between Group A and D in their 

metabolite pattern in the early postoperative period with statistically significant 

reductions to paracetamol sulphate recovery and increases to glucuronide and Phase I 

products, however this was not to the same extent as Group A.  

At the outset of this research, it was believed that changes previously seen to the Phase 

II:I metabolic ratio were a product of CYP450 induction postoperatively, but there are 

problems with this assumption: 

Using the contribution of paracetamol cysteine and mercapturate to urinary recovery of 

paracetamol as an approximation of Phase I metabolism assumes that all of their 

precursor, NAPQI, produced by this pathway is rapidly conjugated and excreted. The 

culmination of published work and results of this study would now suggest this not to be 

the case and that the role of nutrition is more significant. Conjugation of NAPQI relies on 

the presence of sufficient quantities of GSH, which as detailed in the discussion of the 

urine results, is depleted in fasting postoperative patients and at higher doses (Slattery et 

al. 1987).  

The assumption also relies on the change of ratio being due solely to changes in the 

contribution Phase I metabolites, while Phase II metabolites remain static. As most clearly 

shown in the contribution of each metabolite to overall recovery for Group A (Figure 3.3-

14), the reduction to paracetamol sulphate and increase to paracetamol glucuronide 

recovery in the urine would suggest this is not the case. To the contrary, both Phase II 

metabolites are dynamic, as previously reported (Hendrix-Treacy et al. 1986), and the 

metabolic ratio is a combination of both Phase I and II changes. 
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From a pure mathematical standpoint, because Phase I products contribute a much 

smaller value to this ratio, a small change in their contribution can cause a 

disproportionately large change in the ratio. Additionally, as much smaller values, they 

are more sensitive to analytical errors arising from the instrumentation. 

Finally, and perhaps most importantly, the rapid changes seen in Group A’s metabolic 

ratios postoperatively, cannot be explained by CYP450 enzyme induction. CYP450 enzyme 

induction is a slow process, requiring the up-regulation of transcription and synthesis in 

the cells that are involved in enzyme production (Takahashi et al. 1993) and several 

aspects of the stress response would oppose these processes (Renton 2005; Morgan et al. 

2008). Generally inhibition of CYP450 enzymes is reported postoperatively (Monshouwer 

et al. 1996; Morgan 1997; Haas et al. 2003). Results from the analysis of the individual 

CYP450 enzymes are difficult to interpret because of methodological problems with the 

assay (discussed above) and unfortunately the two drug probes which were assessable 

had additional confounders. Both were administered orally to patients known to have 

poor oral absorption. This could explain the variation in chlorzoxazone ratio. In the case of 

caffeine, additional intake, outside of that administered in the study, could explain the 

variation seen in its metabolic ratio and despite the best efforts of the Investigator, the 

possibility of this additional intake could not be excluded. 

Similar but less pronounced changes were seen in Group B. Especially prominent in this 

group was the contribution of paracetamol-cysteine that did not diminish as it did in 

Group A (Figure 3.3-15). This observation could further suggest exhaustion of GSH in 

Group A by the high dose, as, in that group, both paracetamol-cysteine and paracetamol-

sulphate reduced, whereas in Group B paracetamol-cysteine increased towards the end 

of surgery. This is supported by the evidence of enzyme induction in this group shown in 

Section 3.7, which would cause an increase in the production of NAPQI and therefore its 

metabolite, paracetamol cysteine, when sufficient stores of GSH are present. The lack of 

change in metabolite ratio in Group C (Figure 3.3-28) also supports this hypothesis of the 

role of nutrition, more than stress, as these patients were able to eat the day after 

surgery, but experienced a similar stress response to the surgical patients in Group A and 

B (Section 3.5). There is further support for role of nutrition from Group D findings, where 

reductions to sulphate derived metabolites were reversed early on Day 3 and trended 

back towards preoperative levels. This group were able to eat as soon as they could 

tolerate it, which was generally the evening of Day 2. 
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Although this metabolic ratio, comparing Phase II with Phase I products, has not been 

used previously, applying it to other published results leads to similar findings as those 

described here. The paper by Pickering et al. is one of the only other papers to publish 

urinary metabolite concentrations in surgical patients over several days. When the ratio is 

calculated, their data follow a similar form, beginning from the day after surgery with a 

ratio of 5.2 which reduces to 2.7, 2.6 and 2 on each subsequent postoperative day 

(Pickering et al. 2011). This compares favourably with the ratios shown here for Groups C 

and D especially, in addition to the Group A Patient 4A who received TPN.  

Prior to the review of the results, cytokines were thought to play an important role in 

determining CYP450 activity (Section 1.3.1). Inflammation caused by infection or 

underlying inflammatory conditions is known to down regulate most drug metabolising 

enzymes and transporters, both in acute scenarios, such as following surgery, or chronic 

conditions such as extra-hepatic cancer, inflammatory bowel disease or congestive heart 

failure (Frye et al. 2002; Carcillo et al. 2003; Haas et al. 2003; Aitken et al. 2006; Morgan 

et al. 2008). This reduction in Phase I activity can lead to a decrease in drug clearance, 

increasing plasma drug concentrations and potentially may cause drug toxicity or 

increases in the incidence of adverse effects (Schmith et al. 2008). While mostly 

associated with untoward events, this inhibition can also be protective against toxicity of 

compounds that are activated by Phase I metabolism (Renton 2000; Morgan 2001; 

Renton 2001; Renton 2004) such as NAPQI formation. Results of this study (Section 3.5) 

show cytokine concentrations fell rapidly postoperatively and for the remainder of the 

study were often close to the lower limit of detection. The cytokine most affected by 

surgery was IL-6, which showed substantial increases in Day 1 in some patients. However, 

as a whole, group values showed only minor changes with very large inter-individual 

variation. As is consistent with the nature of IL-6, its concentration fell rapidly on the 

following postoperative days. Therefore, it was difficult to draw any relationship with 

paracetamol concentrations as there was no consistent elevation in this cytokine across a 

group. Another group used the erythromycin breath test as a measure of CYP3A4 in major 

surgical patients up to 72 hours after surgery and compared this with their IL-6, IL-1β and 

TNF-α blood concentrations (Haas et al. 2003). CYP3A4 activity progressively declined 

from preoperative values to the 72 hour sample and the depth of this decline was 

significantly and negatively correlated with peak IL-6 concentrations only, not subsequent 

concentrations. In almost all cases the peak IL-6 concentration occurred within the first 24 

hours of surgery at sampling times not included in this Thesis’ analysis. Similar to this 
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work by Hass et al., Section 3.5 showed the other cytokines measured exhibited even less 

of an effect from surgery (compared with IL-6) and their elevation was even more 

inconsistent and minor, but this may be related to sampling times used in this present 

study. 

Previous work that examined cytokine concentration postoperatively began sampling at 

the time surgical wounds were closed (Leung et al. 2000; Haas et al. 2003; Catena et al. 

2009). Therefore, the daily interval used in this study may not have been appropriate for 

the determination of the peak cytokine elevation in the study patients. These sample 

times were not used in this study for a culmination of reasons, including that the effect of 

surgery was thought to cause longer elevation in cytokine levels and determining 

paracetamol pharmacokinetics was the primary importance, while the assessment of 

other factors, such as cytokine concentration, were less so. Paracetamol concentrations 

arising from intraoperative samples would have been meaningless as they would have 

been between steady state and single dose conditions, therefore calculation of 

pharmacokinetic values could not be accurately performed.  

Other potential confounders to these cytokine results include the use of NSAIDs in some 

patients which are known to depress cytokine elevations (Chambrier et al. 1996) and thus 

the full extent of cytokine concentrations increases may not have been visible. 

There is only one other group that has examined the regular administration of 

supratherapeutic doses of paracetamol similar to those in Group A. Gelotte et al. found 

that although sulphonation of capacity was exceeded, rapidly increased formation of the 

glucuronide conjugate prevented an increase in NAPQI synthesis (Gelotte et al. 2007). 

This is at odds with this study where statistically significant increases in Phase I 

metabolites were seen in Group A towards the end of the study (Figure 3.3-14), findings 

similar to those of Slattery et al. (Slattery et al. 1987). The conflict between the findings 

here and those of Gelotte et al. may have arisen because of the difference in subjects and 

the trial conditions most obviously that their study was conducted in healthy adults in a 

clinical trials centre where patients were regularly fed and given oral doses of 

paracetamol. This study highlights the difference between a usually homogeneous, 

healthy study group used to establish pharmacokinetic parameters and the usual clinical 

setting of immense individuality and variation which can fluctuate on an hourly basis, 

depending on the severity of illness or metabolic assault. 



 

411 
 

With hepatotoxic doses, paracetamol metabolism is impaired and the half-life prolonged. 

(Prescott 1980). Increased half-lives were shown here when they were measured on the 

first postoperative day, but these were well within ranges contained in the product 

literature. However, plasma paracetamol concentrations can also provide information on 

toxicity. One of the first studies to advocate the use of unlicensed doses of IV 

paracetamol as a loading dose prior to surgery lists a 150mg/L four hour plasma 

concentration as the threshold for hepatotoxicity to occur, 200mg/L as a risk of some 

damage and 300mg/L as a concentration at which liver damage will always occur 

(Gregoire et al. 2007). Gregoire et al. cite Prescott and Rumack as their sources (Prescott 

1996; Rumack 2002). In this present study the maximum four hour concentration was 

recorded in Patient 8A on day 2 and at 32.9mg/L, was well short of the 150mg/L threshold 

for toxicity suggested above. Those patients who went on to developed AST elevations 

above the upper limit of normal (Patients 2A, 3A, 4A and 9A) all had four hour 

paracetamol concentrations consistently below this. While empiric, this may suggest that 

four hour concentrations are not a good predictor of hepatic injury. While thoughts then 

shift to examining prevalence of the Phase I products in the urine, these are only excreted 

once they are made safe by GSH. NAPQI causing toxicity is not excreted. With this in mind 

another measure of hepatotoxicity, αGST, was measured. αGST concentrations are touted 

as a better predictor of hepatotoxicity than standard laboratory tests (Beckett et al. 1985; 

Rees et al. 1995; Clarke et al. 1997; Kumle et al. 2003; Chouker et al. 2005). These 

concentrations provided one of the biggest surprise of the study. Even in the group of 

patients receiving an excess of twice the licensed daily dose (Group A), no clinically 

significant increase in αGST concentrations were seen after four days of this dose. In 

many cases αGST appeared to decrease following surgery, which was completely opposed 

to what was expected. αGST is marketed as an early marker of hepatic damage, however, 

the results of this study question this assertion. While no patient showed AST elevation 

during the study, several did go on to have elevations once the study had finished. The 

fact that αGST concentrations did not show these elevations prior to the AST rise was very 

disappointing. Examining αGST alone would suggest the high doses of paracetamol are 

completely safe over a four day period and it is only AST concentrations that question this 

assertion. Similar work administering up to 8g daily to patients also failed to report liver 

function tests beyond the three days the study dose was administered, despite them 

being obtained (Temple et al. 2007).  
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There is some explanation for the safety of the high dose given to Group A offered in the 

literature. Experimental animals have shown changes to the location paracetamol is 

metabolised in the liver following repeated, high, dosing, which has led to a reduction in 

bioactivation and production of NAPQI (Shayiq et al. 1999). If the percentage of a dose 

metabolised to NAPQI fell, then the safe dose could theoretically increase. It is not until 

GSH stores are depleted by 90% that hepatotoxicity can ensue (James et al. 2003; Hinson 

et al. 2010). In addition, there are several studies in man that have shown the capacity for 

glucuronidation exceeds that utilised by currently licensed doses of paracetamol. Clearly 

the key determinant of safety is the state of an individual’s CYP2E1 activity and the 

opposition provided by their GSH reserves. Both factors are linked to nutrition. This 

finding is not new, but the example shown by Patient 4A suggests that care must be taken 

with how nutrition is managed in postoperative patients. In his case, the supplementation 

of sulphur-containing amino acids by administration of TPN may have been outweighed 

by the induction in CYP450 enzymes this protein rich solution caused in an undercurrent 

of induction to his CYP450 enzymes following surgery. It may also be relevant in his case 

that once paracetamol toxicity has developed, GSH synthesis and conjugation is 

depressed, so that paracetamol toxicity forms something like a positive feedback 

mechanism (Lauterburg et al. 1982). This may explain why he went on to develop 

elevated ASTs in the face of receiving methionine in the TPN (Fresenius Kabi 2011), what 

is equivalent to the low dose of the antidote to paracetamol toxicity. However, the 

paracetamol-cause of the increased AST could be questioned as LFT elevations are very 

commonly seen with TPN initiation of administration alone (Gabe et al. 2010)  

4.3.3 ELIMINATION 

Both previous sections on disposition refer to one of the most obvious impacts of the 

stress response to an external observer: a reduction in urine output following surgery. 

The reduction in urine volume following surgery is a well-known phenomenon in 

response to injury-induced increases of arginine vasopressin and aldosterone 

concentrations in the circulation (Section 1.3). For this research, a reduction in urine 

output was not of interest in itself, but was of concern because of its effect on the 

excretion of paracetamol, which is unreliable when urine volumes are low (Kietzmann et 

al. 1990). This had major ramifications for what was of interest to this research; the 

change in metabolism. This was because traditional metabolic ratios used to determine 



 

413 
 

changes to metabolism contain both metabolite and parent concentration, and therefore, 

because of the unreliability of paracetamol excretion, these could not be used. 

Accordingly, another ratio was derived that was urine flow independent, but still provided 

information about changes to metabolism. This ratio compared the concentration of 

Phase II with Phase I metabolite in urine as the urinary excretion of all of the metabolites 

of paracetamol are urine flow rate independent (Prescott et al. 1973).  

While data showing a change in metabolism following surgery were presented in the 

Section 3.3 of the results, it was necessary to rule out other factors that could have had 

an undue influence and invalidate these finding. Firstly, recovery of the paracetamol dose 

in the urine needed to be high and consistent as this confirmed the fact that urine 

remained the main route of excretion of paracetamol following surgery. In this study, 

catheterised patients in the steady state period had good recoveries, generally around 

90-95% of the administered dose. These values are concordant with those reported 

elsewhere (Miners et al. 1992; van der Marel et al. 2003). This confirmed the validity of 

the assay and that the effect of the reduction in urine flow rate was not substantial 

enough to make a difference to overall recovery. However, urinary recovery of 

paracetamol from the single preoperative dose was 40-60% slightly below the 65% that 

has been reported in other studies (Kietzmann et al. 1990). This may have been due to 

incomplete urine collections, both in terms of the volume collected and duration. Ideally 

all urine produced within the four hourly interval collection period would have been 

collected in the relevant collection. While this was requested of patients, enforcing 

patients to empty their bladder every four hours throughout the night would have seen 

recruitment drop even further. Therefore, complete evacuation of the bladder could not 

be confirmed by the Investigator and there were several four hourly samples pre-

operatively that contained no urine. In addition, incomplete urine collections could have 

arisen from patients being unable (or unwilling) to collect the entire volume of their 

urine, loss of urine through transferring between the collection and storage vessels or the 

use of an absorbent collection vessels (such as cardboard bedpan). In terms of duration of 

urine collection, it may have been more appropriate to collect urine right up until the 

time of surgery. However, asking patients to collect their own urine at this time would 

produce almost insurmountable issues given the necessity for pre-operative sedation and 

procedures such as X-ray and ultrasound immediately prior to surgery. 
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The factors discussed above may also apply to Group C patients who were only briefly 

catheterised and mostly collected their own urine. This group had the lowest measured 

urine volumes, although they did not receive as much IV fluid as the other groups. Group 

C had large variability in dose recovery over the course of the study, even though the net 

collection was around 95% of the overall administered dose. As drug input was constant, 

this could be explained by accumulation of the metabolites in the urine in the bladder and 

the difficulties arising from obtaining complete urine collections from patients, especially 

females (which constituted the entirety of this group). 

Other differences between groups that were noticed included that the recoveries were 

lowest in the high dose group (Group A), especially towards the end of the study period. 

This may suggest a rise in extra-renal excretion, plasma accumulation or excretion as 

metabolites not monitored. Increases to extra-renal excretion cannot be ruled out but 

these have been shown to be only a minor contributor in previous work (Hjelle et al. 

1984; Jayasinghe et al. 1986; Gregus et al. 1988). However, biliary excretion has also been 

shown to be dose dependant (Siegers et al. 1984) so the importance of this route is still a 

possibility. Plasma accumulation of paracetamol in this group seems to be an unlikely 

cause of the change in recovery as, while increased paracetamol concentrations were 

seen until Day 2, they reduced on Days 3 and 4 to pre-operative concentrations. 

Increased metabolism may have led to accumulation of metabolites in plasma, but these 

are readily excreted so this would seem to be an unlikely cause. The metabolites not 

monitored as part of this study are generally considered to make an insignificant 

contribution to the overall metabolite excretion (Prescott 1996). As shown in Section 1.2 

there are many other metabolites of paracetamol not monitored in this study but given 

the presence of the phenol moiety in their structure, if they were a significant contributor 

large peaks would be expected on the HPLC traces at 242nm (Silverstein et al. 1991). 
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4.4 STRENGTHS, LIMITATIONS, AND FUTURE WORK 

4.4.1 STRENGHTS 

This is the first study to examine the effects of surgery on paracetamol pharmacokinetics 

in the same patient. One of the major strengths of this study is that paired or repeated 

measures methods were used to detect statistical significance to allow each patient to act 

as their own control. Previous work of this nature has compared paracetamol’s 

pharmacokinetic values obtained from postoperative patient’s and then sought to 

compare these to published values obtained from normal, healthy individuals. There are 

some flaws in this method for determining an effect of surgery as it assumes surgical 

patients’ have normal drug disposition prior to their surgery. However, as referred to in 

Section 1.3, very few people have “normal” values for drug disposition as these are 

themselves, in fact, an average. For example, very few people would have a Vd of exactly 

0.90L/kg and this is borne out of the fact that paracetamol’s half-life is given as a range of 

2-3 hours. By not using the same patient, research ignores all the genetic and 

environmental variation that those patients have even prior to surgery and can grossly 

underestimate the effect size as a consequence. 

The high dose used in this study was novel, especially considering the population to which 

it was administered, however, the fact that it was administered without any evidence of 

hepatic damage is a significant strength. The dose was chosen because 1g every four 

hours was well established (Schug et al. 1998) and had been shown to “be unlikely to 

have useful clinical impact” (Schuitmaker et al. 1999) as a result of failing to reach 10mg/L 

concentrations which were considered to be therapeutic. The next logical step was to 

either 2g six hourly (8g in total) or to the dose used here, 1.5g four hourly. Considering 

the toxicity to be linked to a maximum concentration, rather than exposure, the latter 

was chosen. There is a lack of pharmacokinetic studies in the adult surgical populations 

and the use of an IV formulation adds significant strength as it facilitates the accurate 

calculation of paracetamol pharmacokinetics. 

A further strong point is drawn from the multitude of tests applied to the patient. 

Simultaneous measurement of plasma and urine concentrations of paracetamol, CYP450 

activity, cytokine concentrations and αGST concentrations allows their integration to 

produce explanations to phenomena that are only otherwise observed. It can also direct 

future research more precisely when observations do not line up. 



 

416 
 

4.4.2 LIMITATIONS 

The most significant short fall of this study was that it failed to reach its recruitment 

goals. As a consequence, this study was probably not large enough to detect differences 

in disposition in the groups that received normal doses that arose due to surgery. 

However, the effect size of surgery when combined with the larger dose was large 

enough to result in detection of significant results, even though the recruitment into this 

group was less than desired. Without powering the study for comparisons between 

groups, differences due to dose and surgery type can only be discussed 

phenomenologically, without the strength of statistical rigour. In addition to these 

comparisons, larger groups may allow the detection or exclusion of the role of other 

potential influences on disposition, such as smoking, obesity and others discussed in 

Section 1.4. This study is too small to detect these. 

While changes to disposition values, such as clearance, were not detected in the normal 

dose groups (which was potentially due to under-powering), the possibility cannot be 

ignored that this was because there weren’t any changes to detect. The metabolic 

capacity of paracetamol is vast, with several overlapping mechanisms competing for 

whatever paracetamol is around. What this study has contributed is information of the 

changes in metabolism that arise underneath a constant clearance value. Changes were 

virtually instantaneous, when sulphonation decreased, glucuronidation’s increase was 

immediate, without a noticeable reduction to total excretion. Even in Group B, with only 

four participants, statistically significant alterations to the contribution of paracetamol 

sulphate and glucuronide were seen (Table 3.3-32). 

Further limitations arise from the number of plasma samples that were missing due to 

problems with obtaining blood. These were discussed above under conduct of the study. 

Urine data could also be flawed by incomplete bladder emptying and partial urine 

collections. While catheterised, these influences are minimised, however once urinary 

catheters were removed, these issues re-emerged. Longer urine collections 

preoperatively may have led to a more complete recovery of paracetamol and given a 

better indication of metabolism. Although close to reported values, this reduction in 

recovery may have altered excretion patterns as the proportion of metabolites in the 

urine changes with time following a single dose. A metabolite ratio of this type is 

considered to be highly variable and show large interindividual variation. While factors 

such as gender, sample time and dose recovery could not be excluded as confounding the 
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metabolic ratios used in this research, their contribution was analysed and found to be 

minor. However a larger analysis that could control for these variables in a multiple 

regression would be more appropriate. Given the change in metabolite ratio was seen in 

Group D, a group that showed very little change in plasma kinetics or concentrations of 

paracetamol metabolites, the question arises whether the change in urinary ratio was a 

result of repeated dosing rather than a change in metabolism. However, as no previous 

published work has used the metabolite ratio used here or reported metabolite 

concentrations on repeated days, it is impossible to validate this possibility. Another 

limitation is due to the comparison of single-dose with steady-state paracetamol kinetics. 

An ideal comparison would have been to have patients at steady state paracetamol 

concentrations prior to surgery. The only flaw in this type of analysis would be that it 

could not account for changes in paracetamol metabolism due to repeated dosing. 

The most significant limitation of α-GST measurement was the cessation of monitoring at 

the conclusion of the sampling period. This was done as a number of patients were 

discharged shortly after the conclusion of the study and due additionally to the cost of 

the assay, which necessitated limiting the number of samples analysed. Additionally, 

there was a spuriously high preoperative concentration of αGST seen in many patients. 

This diluted the significance of any postoperative elevations seen and also could suggest 

the under-reporting of alcohol consumption. However, all those with high αGST 

concentrations preoperatively had AST concentrations within the normal range. 

The primary limitation of the cytokine analysis, as discussed above, was the comparatively 

late sampling time. This almost certainly missed peak cytokine concentrations and as 

such, their effect on paracetamol kinetics could not be determined. Additionally, the 

number of cytokines that were monitored were superfluous as, although of interest, IL-6 

has been shown to have the most significant correlation with drug metabolism (Abdel-

Razzak et al. 1993; Muntane-Relat et al. 1995; Frye et al. 2002; Morgan et al. 2008). It was 

on the advice of a company representative that all four pro-inflammatory cytokines were 

measured, however, retrospectively, this advice may have been self-serving. 

There may have also been problems with absorption of the CYP450 probes caffeine and 

chlorzoxazone that were administered orally. Future work of this kind in major surgical 

patients should rely solely on the use of probes that can be administered via IV. This is 

due to the well-known problems with oral absorption in surgical patients. Unfortunately 

at the date of this study no IV formulation of chlorzoxazone was commercially available, 
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so alternative probes for CYP2E1 would need to be identified. Additionally, caffeine 

should be avoided as a probe for CYP1A2 due to the difficulties in preventing incidental 

intake, discussed above. 

Finally, there were some factors that could reduce the generalisability of the data to 

other groups: 

 There was an under-representation of females in Groups A and D. Similarly, there 

were no male patients in the intermediate surgery Group C; 

 The majority of bowel surgery patients underwent anterior resection, followed by 

colectomies. This may limit the applicability to the general population as it 

deviates slightly with the colorectal cancer statistics for the Irish population, 

discussed in Section 1.6, from which more colectomies would be expected. This 

may reflect the expertise of the hospital where these patients were treated and 

the comparative ease of diagnosis of rectal cancers. An additional source of 

deviation in the data may arise from the National Cancer Registry recording the 

number of diagnoses, not the number of patients with each diagnoses coming 

forward for surgery, which was recorded in this Thesis.  

 Generally the age of patients was younger than expected from the data given by 

the National Cancer Registry of Ireland for colorectal cancer patients (National 

Cancer Registry Ireland 2010) and this may also affect the generalisability. This 

may be due to the problems recruiting older patients due to their comorbidities 

and a large number of older colorectal cancer patients who were assessed for 

inclusion into the study were not fit. Additionally, it was observed during the study 

that older patients were more difficult to cannulate, would often occlude their 

cannula and were more sensitive to the effects of midazolam.  

 All surgery was elective. Applicability of data to emergency surgery could not be 

assumed as factors relating to fasting and the stress response could be different. 

However, this would exclude relatively few as the vast majority of these 

procedures are planned; 

 Most indications for surgery were for malignancy, which could reduce to the 

applicability of data to other diagnoses for surgery; 

 Most patients were either overweight or obese. This is known to influence CYP450 

enzyme activity;  
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 Most patients did not smoke or had given up smoking in the last 5 years. As 

enzyme activity reportedly normalises within one week of smoking cessation 

(Faber et al. 2005) this limits the applicability of these data to surgical patients 

who do smoke as their induced level of enzyme activity is maintained, even after 

36 hours of smoking withdrawal (Eldon et al. 1987); and 

 Alcohol consumption reported was less than reported in other European 

populations and may have been the subject of recall bias (Tonnesen et al. 1999). 

Alcohol consumption is a known inducer of CYP2E1 and if significant quantities of 

alcohol were normally consumed by the patient and then abruptly withdrawn 

upon admission to hospital, this could have had a significant effect on 

paracetamol’s metabolism. If consumption was under-reported then these 

patients could not be identified.  

4.4.3 FUTURE WORK 

Future work could include: 

 Conducting a much larger study in patients undergoing various types of surgery 

who received licensed daily doses, collecting only their urine. A less invasive study 

such as this would potentially increase patient recruitment. This would finally 

conclude the relationship between surgery and changes to paracetamol’s 

metabolic ratio; 

 Comparing changes of Vd with blood losses and fluid administration. This could 

determine the effect of IV fluid administration on paracetamol distribution, and if 

colloidal fluids have an influence; 

 Calculation/presentation of values that represent the change within individuals, 

not within the group. A “per cent change” value could be determined, but this can 

over-represent small changes seen in individuals with initially low values; 

 Combining urine and plasma data to calculate and model formation clearance and 

apparent oral clearance and predict steady state concentrations from the 

preoperative single dose with the use of pharmacokinetic software; 

 Determination of a correlation between CYP450 activity and the recovery of 

paracetamol-cysteine and mercapturate. This would hold significant value and 

could determine the true effect of enzyme induction on paracetamol’s metabolic 

ratio; 
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 Administering morphine to patients to assess UGT activity in conjunction with IV 

paracetamol. Fentanyl patient-controlled analgesia/non morphine based analgesia 

would be necessary to facilitate this; 

 The measurement of inorganic sulphate in the urine in surgical patients receiving 

paracetamol to determine if it matches the reduction of sulphate-containing 

metabolites in the urine; 

 Conducting a larger study in non-surgical patients that compares the effects of 

repeated IV and oral dosing on paracetamol metabolism; 

 Monitoring liver function in a similar study beyond that of the time where the 

investigational doses were stopped. Examining post study AST concentrations 

suggest that at least an additional three sampling days would be necessary;  

 Obtaining plasma samples closer to the time of surgery to measure peak cytokine 

concentration appears to be the most significant factor. For reasons of economy, 

it would seem efficient to examine changes to IL-6 concentration alone and not 

those of the other cytokines assessed as part of this study;  

 Conducting the study in patients with central lines or obtaining an intravenous 

cannula designed for bloodletting. Postoperative patients are renowned for their 

poor venous access and failure of venous access was a perennial issue in this 

study. In addition, many of the study patients had recently received IV 

chemotherapy which can, through frequent use, reduce the number of veins 

suitable for cannulation. This will always be a barrier to this type of research and 

choosing a group of patients who frequently return to the ward with central lines 

is probably the easiest way around this problem; 

 Consider the use of other CYP450 probes. Aside from the problems with the assay, 

detailed above, there were additional problems with probes chosen for this 

analysis. Midazolam was a problem from a clinical perspective; its potency as a 

hypnosedative is its main advantage in clinical use, however, for the purposes of 

this study it was a substantial drawback. Whereas some studies were able to 

administer up to 10mg of midazolam, administering this dose to postoperative 

patients who were receiving narcotics could have led to severe respiratory 

depression and hypotension. Consequently a compromise dose was chosen, but 

this lead to the necessity of LCMS detection. Ideally a probe that could be given in 

higher doses and detected by UV would be used in this research. Secondly, using 

caffeine as a probe was a significant problem for patients. As discussed above, 
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requesting patients to abstain from tea and coffee was the source of many 

refusals to participate. The likelihood of patients taking caffeinated drinks during 

the study cannot be ignored and this raises questions about the validity of the 

findings. As already suggested, another probe for CYP1A2 should be considered; 

and finally 

 More Pharmacists conducting clinical research. 

The concept of a Clinical Pharmacist leading and conducting research of this nature is 

unusual in Ireland, if not the world, but it makes a lot of sense. Pharmacists have many 

advantages in the understanding of pharmacokinetics, why samples must be taken on 

time and what the best strategy is if they are missed. Clinical Pharmacists are also well 

used to the hospital ward environment, dealing with hospital patients and working with 

and around teams of other health professionals. Although Pharmacists do not have “built 

in” technical skills such as phlebotomy, cannulation or observation recording, these can 

be and were taught to the Investigator in this study. Aside from the barrier of being 

unable to prescribe drugs, Pharmacists can be just as able to conduct clinical research as 

any other health professional and thankfully Hospital 1 were largely of the opinion of “not 

why?, but why not?” and provided all the extra training that was necessary alongside 

newly recruited nurses.  

Despite this, there was initially a high level of suspicion from other staff, especially 

surgeons, which took some time to overcome. As mentioned previously, surgeons were 

aware of the study, were content to have their patients involved, but only as long as it did 

not cause them any interference. The relationship between the study and both surgeons 

was more one of non-maleficence than beneficence. Other staff members were also 

suspicious initially, but after a few patients staff members affected were generally 

interested in the research and by the end of the study most were happy to assist where 

they were able to.  

While there are few barriers to Pharmacists carrying out this type of research, it is 

immensely beneficial for Pharmacists to be involved in it. Although Pharmacists talk a lot 

about drugs, it is rare for Pharmacists to administer them to a patient. It was a 

revelationary experience to administer a drug, such as midazolam, and see the effect on 

the patient straight away as well as the varying sensitivities to this drug both between 

individuals and within individuals over the postoperative course. This variability captured 

the essence of this research.  
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5 CONCLUSIONS 

A clinical pharmacokinetic study was undertaken in surgical patients in two hospitals. The 

study examined changes to the disposition of IV paracetamol and the safety of licensed 

and a higher, unlicensed dose.  

The safety of both licensed and unlicensed doses was assessed during the study. Results 

indicated that there was no evidence that IV doses of up to 9.5g of paracetamol a day 

caused any clinically relevant liver damage during the study period. However, monitoring 

beyond the conclusion of the study showed substantial elevations in AST concentrations 

in some individuals, questioning the assumption of safety. No clear determining factor 

arose that could identify those individuals that showed AST elevation, other than that 

they had prolonged hospital stays (over 20 days). Given this evidence of safety, the next 

step would be to establish if this increased dose improved surgical analgesia. 

There were also several changes to paracetamol disposition. In terms of kinetics, the most 

commonly seen were reductions to paracetamol’s Vd postoperatively. Vd changes were 

frequently offset by smaller increases to clearance and resulted in small reductions to 

half-life postoperatively. Curiously, paracetamol concentrations did not achieve a steady 

state, but instead concentrations peaked on the second day and then reduced to nearly 

preoperative values.  

Changes to urinary excretion were also seen. In the high dose group there was a 

substantial increase in the role of paracetamol glucuronide in the recovery of the dose for 

most patients. However, along with the other groups, the ratio of Phase II to Phase I 

metabolites reduced sharply following surgery. The absence of literature reporting 

paracetamol using this ratio makes interpretation of these changes difficult as it is 

impossible to determine if the they have arisen from a “push” of increasing Phase I 

products, or a “pull” of retracting Phase II products. Regardless, these changes return 

towards preoperative values within the study period in most cases and therefore do not 

align well with the changes to liver function. 

While large enough to show significant differences within tests, this study is too small to 

be able to draw conclusion about safety or the effect of co-variates between groups of 

patients. However patient recruitment in this population is difficult. As described above, a 

study that would examine only paracetamol’s urinary metabolic ratio in a larger group of 

surgical patients undergoing surgery of multiple severities could be a useful next step. 
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Such a study may benefit from better recruitment rates and confirm the relationship 

between surgery, the stress response and paracetamol’s metabolic ratio. 
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APPENDIX 4 CONSENT FORM- ST JOHN’S HOSPITAL  

 

CONSENT BY SUBJECT FOR PARTICIPATION IN RESEARCH 
 

Patient Name: ___________________ 

 

Title of Protocol: Paracetamol metabolism in general surgical patients 

 

Doctor Directing Research: Dr. Brendan Conroy    Phone: (061)462222 

 
 You are being asked to participate in a research study.  The staff at St John’s Hospital study the 

nature of disease and attempt to develop improved methods of diagnosis and treatment.  In order to decide 

whether or not you want to be a part of this research study, you should understand enough about its risks and 

benefits to make an informed judgement.  This process is known as informed consent.  This consent form 

gives detailed information about the research study, which will be discussed with you.  Once you understand 

the study, you will be asked to sign this form if you wish to participate. 

 

NATURE AND DURATION OF PROCEDURE(S):  

Paracetamol (Panadol


/Calpol


) is a medication that most people will have taken or have 

been given at sometime in their lives.  It is generally considered to be a safe drug when 

used at its recommended dose.  It is commonly used for minor ailments such as headaches, 

however it is also extremely useful for patients who have had surgery. Studies have shown 

that when it is used with stronger painkillers such as morphine, patients need less of these 

stronger drugs and hence have fewer side effects.  

Because there is the general feeling that paracetamol is such a safe drug, some doctors are 

now using higher doses in patients who have had surgery. Currently there is little published 

research that this practice is safe and this is what we want to investigate. We expect the 

findings of this study to be very important for surgical care. 

The aims of this study are  

1 To see if paracetamol at higher than normal doses achieves better pain control in 

surgical patients. 

2 To see if surgery changes the way the body metabolises paracetamol by sampling the 

blood and urine  

3 To monitor patients liver function from the blood samples that are taken to determine 

if the higher doses of paracetamol have any effect on the liver. 

 

If you choose to enrol in this study you may receive up to two and a half times the normal 

daily dose of paracetamol on the day before surgery and for up to 4 days after. We will 

also be using very low doses of four other medications to look at your liver’s ability to 

metabolise medicines. For the purposes of the study and to ensure your safety up to 26-

teaspoon size samples of blood will be collected over these 5 days as well as saliva and all 

your urine. This is to monitor for the breakdown products of paracetamol, if any of the 

harmful effects of paracetamol occur and to look at your genetics that relate to your liver’s 

ability to metabolise medicines. We will also be asking you questions about your pain to 

see if you think your pain has improved 

 

POTENTIAL RISKS AND BENEFITS: 

This study may be using higher than normal doses of paracetamol. The current dose 

recommendations represent a dose that is known to be safe over long periods. The risks of 

adverse effects from paracetamol are thought to increase over time as the breakdown 

products build up. Because of this, higher doses over short periods are thought to be safe. 

However by using these higher doses there may be an increased risk of problems 

associated with paracetamol toxicity. You will receive regular monitoring for the duration 

of the study and in the unexpected event that toxicity does occur you will not participate 
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toxicity. An antidote for paracetamol toxicity is readily available and in the event of physical 

injury caused by taking part in the research project, compensation shall be available. We will 

let you know any significant new information that we find out during the course of the study 

that may relate to your willingness to continue.  

We will be asking to take some blood samples. Some potential risks with taking blood 

include a bruise at the site of vein puncture; inflammation of the vein and possible infection 

but care will be taken to avoid complications. The blood sample will be used for the sole 

purpose of this study and the information we receive will not be presented in a form that will 

identify you. 

 

By participating in this study you may receive higher doses of paracetamol, which has been 

shown in trials to reduce the need for more potent painkillers such as morphine. This may 

improve pain management. By using less of these more potent painkillers you are less likely 

to experience their adverse effects. Medications like morphine, in their usual doses, can often 

cause nausea, vomiting, constipation and hallucinations.  

The information that we will record during this study will help show us whether these higher 

paracetamol doses are safe so that the benefits you experience can be passed on to the general 

population 

 

POSSIBLE ALTERNATIVES: 

Participation in this study is voluntary. Choosing not to participate in this study will not alter 

the treatment you receive. You can also choose withdraw from this study at any time without 

effecting your treatment.  

 

AGREEMENT TO CONSENT 

 The research project and the treatment procedures associated with it have been fully 

explained to me.  All experimental procedures have been identified and no guarantee has 

been given about the possible results.  I have had the opportunity to ask questions concerning 

any and all aspects of the project and any procedures involved.  I am aware that participation 

is voluntary and that I may withdraw my consent at any time.  I am aware that my decision 

not to participate or to withdraw will not restrict my access to health care services normally 

available to me.  Confidentiality of records concerning my involvement in this project will be 

maintained in an appropriate manner.  When required by law, government agencies and 

sponsors of the research may review the records of this research. 

 I understand that the investigators have such insurance as is required by law in the 

event of injury resulting from this research. 

 I, the undersigned, hereby consent to participate as a subject in the above described 

project conducted at St John’s Hospital.  I have received a copy of this consent form for my 

records.  I understand that if I have any questions concerning this research, I can contact the 

doctor and fellow investigators listed above.  If I have further queries concerning my rights in 

connection with the research, I can contact the Clinical Research Ethics Committee of the 

Cork Teaching Hospitals, Lancaster Hall, 6 Little Hanover Street, Cork. 

 

 After reading the entire consent form, if you have no further questions about giving 

consent, please sign where indicated. 
 

 

 

___________________      ___________________ 

Doctor/Co-investigator      Signature of Subject 

Dr. Brendan Conroy / Philip Murphy (Clinical Research Pharmacist)     

     

Witness:                                      Date:                             Time:   
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APPENDIX 5 CONSENT FORM- MERCY UNIVERSITY HOSPITAL 

 

 

 

CONSENT BY SUBJECT FOR PARTICIPATION IN RESEARCH 
 
Patient Name:   ________ 
 

Title of Protocol: Paracetamol metabolism in general surgical patients 
 

Doctor Directing Research: Dr. Donal Harney    Phone: (021)4271971 
 

You are being asked to participate in a research study. The staff at Mercy University Hospital studies the nature of 
disease and attempt to improve methods of diagnosis and treatment.  In order to decide whether or not you want to be 
a part of this research study, you should understand enough about its risks and benefits to make an informed 
judgement.  This consent form gives detailed information about the research study, which will be discussed with you.  
Once you understand the study, you will be asked to sign this form if you wish to participate. 
 

NATURE AND DURATION OF PROCEDURE(S):  

Paracetamol (Panadol/Calpol) is a medication that most people will have taken or have been 
given at some time in their lives.  It is generally considered to be a safe drug when used at its 
recommended dose.  It is commonly used for minor ailments such as headaches; however it is also 
extremely useful for patients who have had surgery. Studies have shown that when it is used with 
stronger painkillers such as morphine, patients need less of these stronger drugs and hence have 
fewer side effects.  
Because there is the general feeling that paracetamol is such a safe drug, some doctors are now 
using higher doses in patients who have had surgery. Currently there is little published information 
about the way the body handles medicines around the time of surgery and this may affect the 
safety of medicines, such as paracetamol. This is what we want to find out. We expect the findings 
of this study to be very important for surgical care. 
The aims of this study are  

1 To see if surgery changes the way the body metabolises paracetamol by sampling the blood 
and urine  

2 To monitor patients liver function from the blood samples that are taken to determine if the 
higher doses of paracetamol have any effect on the liver. 

If you choose to enrol in this study you will receive the standard, normal dose of paracetamol (1g 
every six hours). We will also be using very low doses of four other medications to look at your 
liver’s ability to metabolise medicines. One of these medicines is caffeine so to be as accurate as 
possible we ask you not to drink tea, coffee or other caffeinated beverage while you are in the 
study. Herbal teas are provided.  
We will also ask for some blood samples. Up to 24-teaspoon size samples of blood will be collected 
over the entire length of the study as well as all your urine. This is to monitor for the breakdown 
products of paracetamol, to ensure the paracetamol isn’t unsafe and to look at your genetics that 
relate to your liver’s ability to metabolise medicines. We will also be asking you questions about 
your pain to see if you think if it is controlled. 
 
POTENTIAL RISKS AND BENEFITS: 
You will receive the standard normal dose of paracetamol. This dose is known to be safe over long 
periods in health adults and is routinely used in surgical patients.  
As with any medicine there is a small risk from the harmful effects of paracetamol, although these 
are extremely rare. You will receive regular monitoring for the duration of the study and in the 
unexpected event that toxicity does occur you will not receive any further paracetamol. An antidote 
for paracetamol is readily available. We will let you know any significant new information that we 
find out during the course of the study that may relate to your willingness to continue.  
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CONSENT BY SUBJECT FOR PARTICIPATION IN RESEARCH 
 
We will be asking to take some blood samples. Some potential risks with taking blood include a 
bruise at the site of blood sampling, inflammation of the vein and possible infection but care will be 
taken to avoid complications. The blood sample will be used for the sole purpose of this study and 
the information we receive will not be presented in a form that will identify you. 
 
By participating in this study you will receive regular doses of paracetamol, which has been shown 
in trials to reduce the need for more potent painkillers such as morphine. This may improve pain 
management. By using less of these more potent painkillers you are less likely to experience their 
adverse effects. Medications like morphine, in their usual doses, can often cause nausea, vomiting, 
constipation and hallucinations.  
 
The information from this study will help show us whether paracetamol is safe so that any benefits 
you experience in pain relief can be passed on to others. By being involved in the study you will be 
contributing to what we expect to be important research for surgical care. 
 

POSSIBLE ALTERNATIVES: 
Participation in this study is voluntary. Choosing not to participate in this study will not alter the 
treatment you receive. You can also choose to withdraw at any time without effecting your 
treatment.  
 

AGREEMENT TO CONSENT 
The research project has been fully explained to me.  All experimental procedures have been 
identified and no guarantee has been given about the results.  I have had the opportunity to ask 
questions about the project and the procedures involved.  I am aware that participation is voluntary 
and that I may withdraw my consent at any time.  I am aware that my decision not to participate or 
to withdraw will not restrict my access to health care services normally available to me.  
Confidentiality of records concerning my involvement in this project will be maintained in an 
appropriate manner. I understand that the investigators have such insurance as is required by law 
in the event of injury resulting from this research. 
 
I, the undersigned, hereby consent to participate as a subject in the above described project. I have 
received a copy of this consent form for my records.  I understand that if I have any questions 
concerning this research, I can contact the investigators listed above. If I have further queries 
concerning my rights in connection with the research, I can contact the Clinical Research Ethics 
Committee of the Cork Teaching Hospitals, Lancaster Hall, 6 Little Hanover Street, Cork.  
 
After reading the entire consent form, if you have no further questions about giving consent, please 
sign where indicated. 
 
 
 
___________________      ___________________ 
Signature of Subject       Doctor/Co-investigator  
 
          
Witness:                                      Date:                             Time:   
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APPENDIX 6 DRUG ADMINISTRATION AND SAMPLE COLLECTION FORM 
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APPENDIX 7 FLUID BALANCE SHEET 
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APPENDIX 8 SURGICAL NOTES SHEET 
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APPENDIX 9 BASELINE MEDICAL INFORMATION SHEET 
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APPENDIX 10 MIDAZOLAM IMPORTATION LICENSE 
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APPENDIX 11 MIDAZOLAM POSSESSION LICENSE 
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APPENDIX 12 MIDAZOLAM SUPPLY AGREEMENT 
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APPENDIX 13 ADDITIONAL PLASMA CONCENTRATION GRAPHS 

Paracetamol Cysteine 

Median plasma paracetamol cysteine concentrations are presented as median +/- 

quartiles preoperatively (red line) and day 1 postoperatively (blue line).  

 

There was very little change in concentration over the dose intervals. Group A 

paracetamol cysteine concentrations were noticeably higher following surgery, and in 

Group D some elevation was seen towards the end of the sampling period on the 

postoperative day. 
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Paracetamol Mercapturate 

Median plasma paracetamol mercapturate concentrations are also presented as median 

+/- quartiles preoperatively (red line) and day 1 postoperatively (blue line).  

 

Paracetamol mercapturate was only found in very low concentrations in the plasma. 

There appears to be no effect of dose or surgery. 
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APPENDIX 14 REVIEW OF β-GLUCURONIDASE METHODS 

 

Ref Drug Sample 
Volume 

Amount β-glu Vehicle pH Temp Time IS Clean Up 

(Chen et al. 
2002) 

CZX 0.5mL 
plasma 

1000 1mL 0.2M 
NaAc  

4.75 37 4 Phenacetin 50uL 
20umol/L 

5ml EE 

(Chen et al. 
2003) 

CZX 0.5mL 
plasma 

1000 1mL NaAc  4.75 37  Phenacetin 50uL 
20umol/L 

5mL DEE 

(Chen et al. 
2003) 

MDZ 1mL 
plasma 

200 NaAc  4.75    DEE 

(Daali et al. 
2008) 

DX 0.25mL 
urine 

2000 1mL vs. 
85uL 10N HCl 

0.1M 
NaAc 

5 37 O/N 5uL Levallorphan 2.3 
nmol/mL 

↑pH 90uL KOH 10N 
and 500uL NA2CO3 
1M. 5mL Hex:EA 
(50:50) for 15 min. 
Spin. Add 0.5mL OPA 
50mM to organic 

(Desiraju et al. 
1983) 

CZX 0.5mL 
urine 

? NaAc 4.6 37 O/N N-butyl-p-aminophenol ↑pH 7.4, 1mL KP, 
5mL EA X2. Dry. 50uL 
MeOH 

(Dreisbach et 
al. 1995) 

CZX 0.5mL 
plasma 

1200    O/N 6 fluorochlorzoxazone DEE 

(Frye et al. 
1997) 

4’OH 
mephenytoin 

0.5mL 
urine 

 500uL 
NaAc 1M 

5 37 3 100uL 0.05mg/mL 
phensuximide 

5mL DEE. Dry 500uL 
40% MeOH. Inj 
100uL 

(Frye et al. 
1996) 

CZX 0.5mL 
plasma 

1000/0.5mL 
0.2% NaCl 

1mL NaAc 
0.2M 

4.75 37 3 Incubation completed 
in 2hours with 1000u 

3mL DEE. Dry. 200uL 
MP inject 50 
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Ref Drug Sample 
Volume 

Amount β-glu Vehicle pH Temp Time IS Clean Up 

(Girre et al. 
1994) 

CZX 0.5mL 
plasma/ 
urine (dil 
1:100) 

2000 (20uL)   37 O/N  4mL 0.6N PCA, 2 X 
4mL EA 

(Gurley et al. 
2005) 

Cocktail 250uL 
serum 

500/250uL 0.2M 
NaAc 

5 37 2.5   

(Haufroid et al. 
2005) 

CZX 500uL 
plasma 

20uL 500uL 2M 
NaAc 

4.5 37 O/N  500uL removed. 1mL 
1.2M PCA. Spin. 1mL 
extracted with 2mL 
EA. Dry 1.5mL. 500uL 
MP inj 20uL 

(Kashuba et al. 
1998b) 

DEX 3mL urine 100MU   37 18  ↑pH 12 SPE 

(Liangpunsakul 
et al. 2005) 

CZX 0.5mL 
urine 

2000   37 1   

(Lutz et al. 
2004) 

DEX 250uL 
urine+ 
250uL 
MeOH 

     5uL Levallorphan 2.3 
nmol/mL 

 

(Lutz et al. 
2008) 

DEX 500uL 
urine 

      Column switchin 

(Manyike et al. 
2000) 

PA 500uL 
urine 

40uL 500uL 
NaAc 
0.125M 

5 37 O/N  Filter 

(Mishin et al. 
1998) 

CZX 500uL 
plasma  

200/0.1mL 
0.2%NaCl 

1mL NaAc 
0.2mM 

4.75    5mL DEE. Dry 3.5mL. 
Wet with 250uL 40% 
ACN. Sonicate 
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Ref Drug Sample 
Volume 

Amount β-glu Vehicle pH Temp Time IS Clean Up 

(O'Shea et al. 
1994) 

CZX 2mL 
plasma+ 
0.5mL 
H2O 

200 1mL 1:1 
1M NaAc: 
1M glacial 
acetic acid 

5 20 O/N  SPE 

(Park et al. 
1984) 

DEX 2mL urine 0.2mL 50mM 
NaAc pH 
3.5 

5-
5.5 

37 18  ↑pH 12 1M NaOH. 
6mL Hex mix 40min. 
Freeze off aqueous. 
Back extract with 
0.2mL 0.1M HCl mix 
30min. Repeat for 
aqueous layer 

(Petsalo et al. 
2008) 

Cocktail 125uL 
urine 

750U in 125uL 
0.9% NaCl 

250uL 
0.1M 
NaAc 

5 37 6 phenacetin 480uL spiked with 
20uL of IS in ACN 

(Sarich et al. 
1997) 

ME 200uL 
urine 

10uL 1mL Ac 
200mM 

5 37  O/N  2 X 3mL 2:1 EA:DEE. 
Dry. 0.5mL 20% ACN 
inj 5uL 

(Scott et al. 
1999) 

Cocktail 0.5mL 1000/0.5mL 
0.2% NaCl 

1mL 0.2M 
NaAc 

4.75 37 3  SPE 

(Stiff et al. 
1993) 

CZX 0.5mL 
plasma 

1000/0.5mL 
0.2% NaCl 

1mL NaAc 
0.2M 

4.75 37 3  SPE 

(Streetman et 
al. 1999) 

DEX 3mL urine 100mU   37 18  ↑pH 12, SPE 

(Varela et al. 
2008) 

CZX  2000   37 1   

(Wang et al. 
2003) 

CZX 0.5mL 
urine 

2000 0.2mL 
NaAc 
0.2M 

5 37 1 Phenacetin +10uL sodium 
azide0.6M 
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Ref Drug Sample 
Volume 

Amount β-glu Vehicle pH Temp Time IS Clean Up 

(Zhang et al. 
2008) 

Cocktail 0.5mL 
urine 

1250 250uL in 
20mM 
ammonium 
formate pH 
4.75 

.25mL 
20mM 
AcA 

4.75 37 12   

(Zhu et al. 
2001) 

CZX 0.5mL 
plasma 

?   37 3 10uL 1mM Phenacetin 5mL DEE 

Abbreviations used: AcA- Acetic Acid; CA-Caffeine; CZX-Chlorzoxazone; DM-Dextromethorphan; EA-Ethyl acetate; EE-Ethyl ether; DEE-Diethyl ether; 

KP-Phosphate buffer; MDZ-Midazolam; MeOH-Methanol; ME-Mephenytoin; MP-Mobile Phase; NaAc-Sodium Acetate; O/N-Overnight; OPA-

Orthophosphoric Acid; PA-Paracetamol; PCA-Perchloric acid. 
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