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Abstract—Millimeter-wave (mm-Wave) frequency bands are a
key technology enabler for the ultra-high data rates of 5G cellular
networks, and it is fully expected that 5G smart phones will
be equipped with mm-Wave network interfaces. Interestingly,
millimeter transmissions have utility beyond communication;
previously they been used extensively for short-range radar
detection and ranging. We envisage a future in which each
person carries a smart phone equipped with mm-Wave which can
opportunistically scan the adjacent environment and share the
results in a participatory manner to allow accurate 3D models
to be constructed and maintained. Applications for such low-
cost modelling are numerous and include navigating smart cities
and buildings, as well as accident prevention in factories. In
this article we provide a brief review of mm-Wave, its detection
properties, and the basics of 3D scanning and modeling. We
introduce a system architecture to enable participatory scanning
based on mm-Wave and show results from experiments to
demonstrate its feasibility. A variety of research challenges must
be solved in order to realize our vision, and we expound on
these with a view to stimulating research on this compelling
opportunity.

Index Terms—Millimeter-wave, radar detection, 5G, smart
cities, smart buildings, participatory sensing.

I. INTRODUCTION

M ILLIMETER Wave (mm-Wave) is defined as the range
of frequencies between 30-300 GHz and is an integral

part of the 5th generation (5G) mobile communication net-
work [1] to provide multi-Gb/s data rates. During the World
Radiocommunications Conference (WRC) 2015, the ITU pro-
posed a list of 8 frequency bands between 24 GHz and 86 GHz
to be used in 5G, shown as orange in Fig. 1. In addition, many
national regulatory agencies released about 9 GHz bandwidth
in the unlicensed 60 GHz frequency range (shown as green in
Fig. 1). It is expected that future 5G-enabled smart devices,
including smart phones, will be equipped with mm-Wave
technology.

Of special interest is that mm-Wave has been used in the
past for radar detection, and it can be used for detecting objects
roughly larger than 5 cm (to be precise, the size of detectable
objects depends on the frequency). Historically it was used for
long-range radar and in the last few decades, it has been in
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from research supported in part by a research grant from Science Foundation
Ireland (SFI) under Grant Number 13/RC/2077.

Fig. 1. mm-Wave frequency bands proposed by ITU for 5G (orange) and the
unlicensed ISM band (green). The unit of numbers is GHz.

use for short-range radar, in particular, for object sensing and
relative speed measurement in vehicles and for harmful object
detection in airport security scanners [2].

We envisage a future in which smart phones are equipped
with mm-Wave technology with a primary purpose for com-
munications but which can also be used by the phone to scan
its physical environment. We hypothesise that this scanned
data can be used to make and update 3D models of the
environment, including inside buildings and in smart cities.
Having a 3D model of the indoor and outdoor environments
makes it possible to offer a plethora of new services, including
guiding firefighters in smoke-filled buildings, and helping
vision-impaired people avoid obstacles. Inspired by the con-
cept of participatory sensing [3], we propose an innovative
approach in which users provide mm-Wave radar data on a
voluntary basis, which is then fused to provide the 3D models.
This has the benefit of sourcing data from many individuals,
thus increasing spatial accuracy, and on a continuous time
basis, thus ensuring that models can track changes in the
physical environments over time.

In this paper we expound on our vision for participatory
sensing of the environment using mm-Wave. We outline a
suitable system architecture and show results from a set of
experiments to demonstrate feasibility.

The rest of this paper is organized as follows. Key applica-
tions are presented in Section II. In Section III, we summarize
the main properties of mm-Wave technology. Section IV
provides a scientific background on 3D modeling. The pro-
posed system architecture is shown in Section V, followed in
Section VI by supporting results. In Section VII we discuss the
main challenges to be addressed by the research community in
realising our vision. Finally, Section VIII concludes this paper.
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Fig. 2. Applications of mm-Wave 3D scanning/modeling (made using 3D models of Kanistra Studio and DMG Vision and used with their permissions).

II. APPLICATIONS

In 2002, nobody could imagine that just 5 years later a new
generation of mobile phones would have global positioning
system (GPS) circuitry and Internet connection capability
by which an online map will be accessible through mobile
phones, showing the real-time location of users on a map,
augmented by location-based services. We believe that the
addition of mm-Wave to future smart phones will inspire a
similar leap forward.

In the context of smart cities, the availability of a real-time
accurate 3D model can seed many new services; Figure 2
highlights some example applications. The pattern of traffic
and movements of people can be tracked, by which the traffic
lights can be enhanced. The available parking spots can be
found. The vehicle type can be detected to be used by the
online maps to show the proper route suitable for each vehicle.
The maps can also measure road width and slopes to include
them in paths suitable for each vehicle. The smart building
systems can make use of the 3D model of the buildings, so
for example to monitor elderly/disabled people and kids. An
interior designer can use the 3D model of houses in their
designs. The following subsections provide three case studies.

A. Case Study 1: Obstacle Avoidance and Guidance for
Vision-Impaired People

mm-Wave radar sensor has being used in vehicles to avoid
accidents. It can be used with a similar approach to assist
people who are vision-impaired by warning them of any

obstacle or hazard in their way. A more advanced application
within their smart phone can make use of available 3D model
of the cities to help them find their way and avoid obstacles,
thus to make the cities and indoor environments, such as
inside buildings, airports and hospitals more suitable and safe
for them. Similarly, naturally dark areas such as caves and
mines can be scanned and modeled for people to enhance
their visibility.

B. Case Study 2: Enhanced Placement and Maintenance for
IoT devices

The Internet of things (IoT) is seen as the key enabler of
the next generation industrial revolution, which is commonly
known as Industry-4. Billions of devices and sensors commu-
nicate through the Internet, to gather and process large volume
of data and make enhanced decisions. The placement of
devices in the physical environment is today a labor-intensive
process, requiring walk-through of rooms and factories etc.
Having a 3D model of the environment would assist in
planning the placement of IoT devices, including feeding into
systems for estimating wireless connectivity, by accounting
for obstacles. Furthermore and significantly, the participatory
nature of the solution could provide the basis for tracking
changes in the physical environment that may have an impact
on sensing or communications. Accurate 3D models can also
assist in planning other utilities, including cable ducts and
pipes.



C. Case Study 3: Guidance for Emergency Responders
Firefighters and police officers responding to an emergency

in a building often suffer from a lack of information on the
internal layout. For firefighers this is especially of concern,
given that the presence of dense smoke will substantially
cloud their vision. For modern commercial buildings it may
be possible to provide the original layout when the building
was constructed, at least including interior walls and doorways.
However, furniture and any reconfiguration will not be known.
A mm-Wave participatory system would provide such details,
in an up-to-date manner, including for a broad range of
buildings, both small and large.

III. MILLIMETER-WAVE TECHNOLOGY

Looking for methods to enable higher data-rates for wire-
less/mobile communications beyond 6 Gb/s for ultra high data-
rate demanding applications, researchers and engineers consid-
ered use of higher frequencies between 30-300 GHz known
as mm-Wave as one of the most promising solutions in recent
years. The use of smart phones and mobile data traffic will be
increased so that an average mobile user will download around
1 terabyte of data annually by 2020 [4]. This will increase the
use of mm-Wave technology for communication purposes. The
global mm-Wave technology market was accounted for $0.27
billion in 2015 and is expected to reach $2.89 billion by 2022
growing at a CAGR of 40.5% [5].

mm-Wave channels have some featured properties [6]:
• The power degrades drastically with distance. Therefore,

to compensate for this power degradation, use of direc-
tional antennas are common.

• The multipath effect is weak and can be neglected. So,
the channel response is more stable and the compensation
for channel impairments is easier.

• The mm-Wave is blocked by human body and any obsta-
cle larger than 5 cm. It also does not penetrate through
wall.

• It has a short wavelength enabling engineers to fabricate a
large number of antenna elements within a chip or board.

• Larger bandwidth is available compared with regular
sub-6 GHz frequencies which makes ultra high bit-rate
communication possible.

The development of antenna beamforming and beamsteering
techniques has changed the nature of wireless communication
in mm-Wave to having a directional antenna in which its direc-
tion can be steered toward the receiver antenna electronically
within less than 1 millisecond [7].

While there exist some debates between large telecom
companies on whether to use mm-Wave in 5G access networks
because of the costs involved for reasonable coverage, recent
successful experiments over these frequency bands by the
same companies reveal the fact that mm-Wave will be one
of the main components of 5G.

Besides communication, mm-Wave technology has being
used for radar detection. Normally, radar can measure range
(from wave propagation delay), velocity (from Doppler fre-
quency shift), and angular direction (from antenna pointing or

antenna array layout). It is also possible to detect hand gestures
with the aid of AI [8]. While the long-range radar distance
measurement is mainly based on transmission of impulses
and measuring the difference between the time the pulse
transmitted and the time it is reflected back from objects and
received, the short-range radar systems use other approaches
to achieve higher precision. There are multiple approaches on
radar range detection, some of them are explained with details
in [2]. While each of these approaches have different pros
and cons, the frequency modulated continuous wave (FMCW)
is the most popular approach in short-range radar detection.
A new trend of research tries to use wireless LAN or 5G
signals for the positioning and localization purposes. These
approaches can be classified into two categories: based on
received signal, and based on reflected signal. In the first
category, the position of the transmitter is estimated based
on the information in the received signal, such as the angle
of arrival and received signal strength. In the second category
which is similar to the radar concept, the reflected signal is
analyzed to extract information related to the position of the
objects in the environment (See [9] as an example). While the
first category focuses on localizing the transmitter, the second
approach can detect any object.

No matter which radar detection approach is used, one main
requirement of radar detection is simultaneous transmission
and reception of the electromagnetic wave. In the other word,
the radio-frequency (RF) circuitry and antenna system should
support two-way transmission and reception of the signals.
However, most wireless communication systems work in half-
duplex operation mode, which means that they are designed
in such a way that they can only transmit or receive at a given
time, and not both. In recent years, a considerable research is
done to design full-duplex operation. Because of duplicating
the channel utilization, full-duplex operation is considered as
one of the key enablers of the 5G. So, to make this 3D
modeling of the environment possible, the 5G smart devices
should be equipped with a full-duplex wireless chip, or with
one of the mm-Wave short-range radar detection chipsets such
as FMCW. As the trend of current research shows feasibility
of full-duplex operation, it is highly probable that the smart
devices are equipped with this technology. Besides, including
a mm-Wave radar detection component in the smart devices
is rather reasonable based on the small cost it incurs to their
production.

IV. 3D MODELING OF ENVIRONMENT

3D scanning and modeling is the act of mapping an object,
structure, or area, and describing it in the form of x, y, and
z coordinates – a format known as a point-cloud. There are
different techniques for 3D scanning, but below we introduce
a few of them which are more popular.

• Light detection and ranging (LIDAR): LIDAR is a sensor
which uses lasers to build a 3D model of the environment.
It is widely used for creating accurate topological maps.



• Digital photogrammetry: Similar to human visual system,
this method takes multiple photographs which are math-
ematically intersected to create accurate 3D coordinates.

• Infrared or structured light 3D scanning: Uses projected
light or infrared and a camera system to shoot light onto
the surface of an object, creating a pattern of stripes of
light. Distortions in the pattern are then used to recreate
the object surface geometry.

• mm-Wave radar: It uses radar techniques with mm-Wave
beamforming and beamsteering antenna arrays. It is not
as precise as the other methods, for example, the details
of the face of human cannot be captured. So, it preserves
privacy.

The field of 3D scanning and modeling is well-studied by
the researchers and engineers and lots of products are available
in the market. Challenges such as registering different 3D
models created from the scans of different angles to make a
single model, dealing with imprecise scans and how to make
a precise model from imprecise scans, and efficient methods
for processing data are addressed in the literature and there
exist lots of solutions for each problem [10].

Before 3D models are obtained from the acquired data,
many processing steps are needed. The first of these is pre-
processing of the data. The scanned data must be transformed
into an appropriate coordinate system and into a format that
is suitable for further processing. For example, it is often
desirable to convert the scanned data into raster models.
Removal of noise is another example of preprocessing. It is
then followed by specific processing steps, including: regis-
tration, neighborhood selection, outlier removal, tangent plane
estimation, tangent plane orientation, feature point detection,
segmentation, surface fitting and object detection [11].

Almost all available 3D scanning and modeling products
in the market use laser or infrared for two reasons: These
technologies are more accurate and can model the details
of objects in the order of millimeter, and they are cheaper
than mm-Wave. So, at first it seems more reasonable to use
laser or infrared and install a scanning device on a car to
go around the cities to make precise 3D model of cities.
However, there are three problems with this approach: It
is highly expensive, there is no electronically beamsteering
approach for laser and infrared and they need mechanical
devices to full scan the environment, and the models made will
be offline models and cannot be updated in real time. Another
suggestion is to equip smart phones with laser or infrared
sensors. However, this makes smart phones more expensive
while mm-Wave is already there for communication purpose.
Also, laser and infrared are basically blocked when they are
in the pocket/purse of people, while mm-Wave can continue
scanning the environment when they are in the pockets. Again,
the problem with lack of electronically beamsteering lasers or
infrared exists here.

V. SYSTEM ARCHITECTURE

To have a better understanding of 3D modeling system
architecture, we identified some of the main components in
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Fig. 3. System architecture for 3D modeling of environment using smart
devices.

Fig. 3. The engaging components belong to three parts: smart
devices, communication systems, and cloud data center. In
smart devices, different components at the hardware, oper-
ating system and the applications layer are needed. In the
hardware layer, beamforming and beamsteering, short-range
radar, interference mitigation, and hardware drivers are of
the most important components that should be designed and
added to the smart phones. In the application layer, two sets
of components are needed: software applications for data
collection such as signal processing and data collection and
exchange components, and applications developed for end
user services and interfaces for third party service providers.
Operating systems should also be equipped with interfaces and
libraries for both data collection and end user services.

End user devices communicate with the cloud services
through communication systems, such as wireless networks
and mobile networks. These networks have their own network
management components. With the advent of mobile edge
computing (MEC), a good contribution to enable low latency
updates to 3D-models can be made by the processing units of
mobile edge network, for example, in cases where there is a
need for urgency.

To offload computations and storage from user devices,
cloud data centers are needed, which include components at
three levels: cloud management, cloud computing and cloud
storage. The main components of cloud management are load
balancing, host management, energy consumption manage-
ment, and task management. These components orchestrate
cloud operation. At the cloud computing level, all required
tasks for 3D modeling based on the data collected by user
devices are done. The main components are data analytics
and statistics, system deployment and upgrade, application
framework, service gateways, data transformation, registra-
tion, making/updating 3D models, and object detection. The
cloud storage includes the functions and databases for storing
models. They include: storage management and data access
components. The main databases are data sources, object
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Fig. 4. Experimental setup for 3D scanning and modeling of an office using
an FMCW mmWave sensor.

models, navigation 3D models, and third party databases.
All layers of the system will require integrated security and

operational management. End users, equipment manufacturers,
system administrators, infrastructure providers, third party
service providers and network operators will be the main
contributors of the whole system, each benefit and contribute
from different angles.

VI. FEASIBILITY EXPERIMENTS

In our prior work, we conducted a series of laboratory ex-
periments to assess the feasibility of using mm-Wave devices
to provide object detection, using IEEE 802.11ad mm-Wave
signals to build a 2D model of an indoor environment [12].
In this section, we present the results of experiments that
explore making a 3D model of an office using FMCW mm-
Wave sensors. For the scanning part of the experiment, we
use a IWR1443 sensor [13] which is a single-chip 76-to-
81GHz mm-Wave sensor integrating microcontroller and hard-
ware accelerator. We expect that future smart phones will be
equipped with either a full-duplex mm-Wave communication
RF transceiver or an FMCW enabled chipset, which can be
simply added to the RF transceiver circuitry. Figure 4 shows
the experimental setup we used for our measurements. We
installed the mm-Wave sensor on a small revolving turntable
with a 360◦ full scale protractor over a height-adjustable stand.
The sensor board is controlled by a Linux machine using
the related drivers. The RVIZ open-source visualization soft-
ware [14] and ROS melodic distribution software package [15]
are used to visualize the point-clouds captured by the mm-
Wave sensor. We put the sensor at 82 different locations and
heights in the office environment of Fig. 4. We also changed
the scanning plane of the sensor for different measurements.
At each location, we rotated the sensor face toward different
directions in 10◦ steps and recorded the measured point-
clouds in a .bag file. We created a total of 2952 .bag files,
incorporating 111,484 points.

The layout of the office can also be read from Fig. 4. The
left side of this office is composed of a complete glass wall
with metal frames. Both glass and metal are good reflectors
for mm-Wave frequency radiation. The front and back walls
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Fig. 5. Block diagram of the offline 3D scanning and modeling process.

are composed of wood panels. An average size whiteboard is
installed on the front wall. The right side wall is also composed
of wood, but it also includes a glass door with wood and
metal frames and margins. Two sets of office desks which
are symmetric in shape are also located in the office. The
dimensions of this office are Width × Length × Height =
3.48 × 3.60 × 2.89 m. By using a confined space such as
this office we were able to focus on understanding the basic
requirememts and challenges for mm-Wave sensing.

Figure 5 shows the block diagram of our offline 3D scanning
and modeling process. It starts by mm-Wave scanning using
the mm-Wave sensor and the ROS package. We save the mea-
sured point-clouds as a .bag file using rosbag tool [16]. We
convert all the .bag files into .pcd files by writing a batch
shell script which uses the bag_to_pcd command [17]. In
the second part of our process, we remove some outlier points
based on the sensor properties. For example, we remove all
points which are too close to the sensor (which were the
reflections from the stand), or outside a predefined horizontal
or vertical angle of arrival.

As we know the exact location of the scanning sensor, we
align the point-clouds captured at time tn+1 to those captured
at time tn by point-cloud transformation operations. When
using a smart phone or real-time scanning, we would start
with the first scan at time t0, continue with the second scan at
time t1, assuming the movement of the smart phone is known,
and by having access to the gyroscope information. This is
counted as the partial knowledge of the coordinates shown in
Fig. 5. But, in our current offline measurements, we know the
exact coordinates. In our offline alignment process, we use
two transformations as follows.

Rotation: We align all the point-cloud coordinates measured
at angle α to the coordinates measured at angle 0◦:

P0 = R.Pα, (1)

where Pα = [xα, yα, zα]
T denotes the coordinates of the

point-cloud captured at angle α and they are rotated to achieve
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Fig. 6. Point-clouds generated by the FMCW mm-Wave sensor and after point-cloud processing.

P0 = [x0, y0, z0]
T which is the coordinates of the point-cloud

at angle 0. R is the rotation matrix of −α around the Z axis
given by:

R =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 . (2)

Transformation: During our measurements, we put the sen-
sor in 5 different positions: XY, XZ, inverse XZ, YZ, and
inverse YZ planes. We use the following four transformations
to transform all the coordinates to the XY plane, respectively.

TXZ =

 0 −1 0
0 0 −1
1 0 0

 , TXZ,i =

 0 1 0
0 0 1
1 0 0

 ,
TYZ =

 0 0 −1
0 1 0
1 0 0

 , TYZ,i =

 0 0 1
0 −1 0
1 0 0

 . (3)

and multiply the relevant transformation matrix by the coor-
dinates of each point-cloud. Among 82 locations of measure-
ments, 53 measurements were done in XY plane, 5 in XZ, 9
in inverse XZ, 7 in YZ, and 8 in inverse YZ planes.

The next step in Fig. 5 is the registration of point-clouds.
In real-time participatory scanning by the smart phones, this
would include registering a moving point-cloud to a fixed one
based on the iterative closest point (ICP) algorithm [18] (or
similar approaches). However, in our current processing, as
we already know the exact coordinates at this step, we simply
merge the point-clouds.

After registration, a set of points in the registered point-
clouds which move over time can be detected and extracted for
further processing. These moving points can represent human,
animals, cars, or other moving objects. In our current offline
processing, we do not extract moving objects. Figure 6–a
shows the resulting registered point-clouds from all 82 scans.
In the central region of this figure, a cube can almost be seen
around the origin which is the office of Fig. 4.

rt
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Fig. 7. Multiple reflections of target object t from side walls received by
sensor s which shows it at coordinate r.

In [12] we report our observation on how mm-Wave follows
Newton’s law of light reflection in wireless communications
signals. In our experiments with FMCW mm-Wave sensors,
we also observe similar properties. Indeed, part of point-cloud
points outside the office are reflections from the inside objects.
These are shown outside the office region in Fig. 6–a. In
particular, all points beyond Y = 3.60 m on the left side of
the figure are located outside of the office which apparently
incorrect, as there is nothing outside of our third floor office
left-side windows. Figure 7 shows an example of double
reflections by the side walls of the target object t received by
sensor s. In this example, the sensor shows target t at r which
is outside the office {(x, y)|x ∈ [0, X], y ∈ [0, Y ]}. The next
step in the processing of point-clouds in Fig. 5 is to distinguish
such multiple reflections from direct reflections of an object. In
this paper, we initially assumed all the points outside the office
are incorrect reflections, and relocate them back to their correct
locations. However, this is not accurate, as we observed that
some points outside the office are actually correct reflections
from outside objects. To relocate the points outside the office
to their original locations, we use the following formula for
dimension X and repeat it similarly for dimensions Y and Z:

xt =

{
2X
(
b xr

2X c+ 1
)
− xr, if (xr mod 2X) > X

xr − 2X
(
b xr

2X c+ 1
)
, o.w. (4)

where b.c denotes the floor function. In Eq. (4) we assume all
the reflections come from the walls or ceiling or floor, which
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is not necessarily true. Indeed, we may have reflections from
other objects. But, we apply this assumption for the sake of
simplicity. Figure 6–b shows the resulting point-cloud after
relocating the reflections to inside of the office. The windows
frames are apparent on the left side of this figure.

The next step in the processing of point-clouds in Fig. 5 is to
remove outliers within the free space of the office. These out-
liers are mainly from human bodies and some moving objects
such as chairs. In the participatory scanning application, these
outliers can be detected by continuous scanning and using
techniques such as median filters to remove the points where
they only appear in one or a few measurements. The points
from reflections of fixed objects such as wall and windows
appear in multiple scans and they will be kept. Other points can
be removed. In our experiments, we used the knowledge of the
physical environment dimensions to remove the outliers from
the free space of the office. This information will be available
after the first scan in the participatory scanning application.
The resulting point-cloud after removing outliers is shown in
Fig. 6–c.

We then reduce the noise of point-clouds using the open-
source software Meshlab [19]. The next step is to detect and
fill the gaps using interpolation techniques. We skip this step
as our future research. However, in participatory scanning
application, we expect that most of such gaps are filled by
continuous scanning over time. Now, we downsample the
point-cloud to enhance the performance and accuracy of the
3D model. We then compute the normals of the points of the

TABLE I
NUMBER OF POINTS IN THE POINT-CLOUD AFTER DIFFERENT

PROCESSING STEPS

Scanning
(Average)

Alignment Removing
Outliers

Denoising Downsampling

37 111,484 55,550 49,514 4,000

point-cloud. Table I shows the number of points in the point-
cloud after different stages of Fig. 5.

Finally, we compute the mesh grid using the robust implicit
moving least squares (RIMLS) algorithm [20]. The resulting
mesh grid is shown in Fig. 8–a. We remove the ceiling in this
mesh to be able to see inside the model. The color used in this
figure is dependent on the Z axis values. Walls, ground, and
desks are apparent in this figure. The radiator on the left side
of our office beside the window is also modeled partly. As we
do not detect and fill the gaps, some of them remain in the
final model. A 3D interactive object of this model is shown
in Fig. 8–b and can be viewed and rotated if you open this
paper’s PDF file using Adobe Reader which is a free software.

It is worth noting that we made this model with only 82 mm-
Wave scans, still precise enough to detect objects. However, in
participatory scanning, we expect to have many more number
of scans and the 3D models improve over time by having more
scans from user devices at different angles and locations.

The sizes of the resulting model at different parts match the
physical sizes in the office. Table II shows some measurements
from the model depicted in Fig. 8 compared to the actual sizes



TABLE II
MEASUREMENT PRECISION IN THE FINAL 3D MODEL

M1 M2 M3 M4 M5 M6
Actual Size (cm) 360 348 128 61 83 75

3D Model Size (cm) 360 85 125 55 75 75
Absolute Error (cm) 0 3 3 6 8 0

measured physically in the office. The average measurement
error is about 3.3 cm for the numbers of this table which shows
the high precision of the final model.

VII. CHALLENGES AND OPEN RESEARCH AREAS

In this section we discuss key research challenges that
pertain to the use of smart phones to form 3D models of
environment using mm-Wave technology.

Point-cloud registration is a known problem but in mm-
Wave, we work with a small number of points compared
to other sensors’ generated point-clouds where they produce
millions of points. The effectiveness of existing approaches is
yet to be explored and even new methods may be needed to
be designed that can work with large numbers of smaller point
clouds.

Referring to Fig. 5, detecting and extracting moving objects,
distinguishing reflected points from correctly located ones
and finding their reflecting sources, aligning point-clouds with
partial information from the environment, removing outliers,
customized point-cloud downsampling, and detecting and fill-
ing gaps in point-clouds are also open problems.

Processing the big-data generated from the reflections col-
lected by millions of smart devices and using them to update
the 3D model or make it more precise is another main
challenging problem. In particular, when we try to combine
the information from different types of devices with different
antenna patterns, with different precisions, and with different
methods (e.g., some use IEEE 802.11ad signals and some other
use FMCW or other short-range radar approaches).

Finally, privacy is a significant issue, not least due to reveal-
ing the interior layout of buildings. Certainly for commercial
settings such as factories, such concerns can be overcome in
the interest of business prerogatives.

VIII. CONCLUSION

Inspired by the concept of participatory sensing, we propose
to use smart phones equipped with mm-Wave technology
as a short-range radar sensor, enabling the construction and
continuous update of 3D models for smart buildings and
cites. We out;ine a system architecture model, identifying
each of the key required components, along with experimental
results to demonstrate feasibility of using mm-Wave for object
detection. The idea of participatory sensing for 3D modeling is
innovative, and raises numerous technical, privacy and ethical
challenges. We identify several key technical topics that merit
research. We hope that our paper will encourage technology
researchers to get involved in dealing with the challenges
in different layers of the system architecture, and others to
examine participatory incentivisation and implications that

will arise as future smartphones gain more extensive sensing
capabilities.
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