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Preface

There are many excellent books of topology; from the bibliography at the end
of this book, the reader might look at [1, 2, 3, 5, 6, 7, 8, 9, 11, 10, 12, 13, 14, 15].
So it might have been wise to avoid writing these notes. They explain what I
tried to cover in my 2017 lectures on topology for undergraduate students at
University College Cork. I assume the reader is familiar with elementary theory
of metric spaces. I will also give a few examples from differential geometry,
which the reader can ignore, and which assume familiarity with manifolds and
diffeomorphisms.
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Chapter 1

Topology

We define topological spaces and their essential properties.

Motivation

When we study polynomial functions on the plane, there is a natural notion of
“open set” different from the usual one: a Zariski open set is the set of points
on which some polynomial function p is not zero. For example,

U = { (x, y) ∈ R2 | x2 + y 6= 0 }

is a Zariski open set. Of course, U is also an open set in the usual sense, but

W = { (x, y) ∈ R2 | x > 0 }

is an open set in the usual sense, but not a Zariski open set.

1.1 Prove that W is not Zariski open.

So we can have different concepts of open set playing different but no less
useful roles in the same space R2. Intuitively, an open set is like a little “fat
blob”. If you want to study polynomial functions, then sets like W above are
not as fat as they “should” be, because any polynomial which doesn’t vanish
on W also doesn’t vanish on some much larger set.

Definition

A topology on a set X is a collection of subsets of X, called the open sets of the
topology, so that

a. the union of any collection of open sets is an open set,

b. the intersection of any finite collection of open sets is an open set,

c. the empty set and the whole of X are open sets.

A topological space is a set X equipped with a topology; we usually leave the
topology as implicitly understood somehow. The elements of the set X are
called points.
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2 Topology

As in our previous experience, every subset X ⊆ Rn is a topological
space, with open sets being the intersections X ∩ U where U ⊆ Rn is
the union of a collection of open balls, the Euclidean topology. If no
topology is otherwise specified, we always mean the Euclidean topology.

If X is a metric space, then the usual open sets (unions of open balls)
form a topology, making every metric space into a topological space, its
metric topology. If no topology is otherwise specified, we always mean
the metric topology.

Take any set X and let the open sets be all of the subsets of X, the
discrete topology.

Take any set X and let the only open sets be the empty set and X, the
indiscrete topology.

Take X = Rn and take as open sets the sets

{x ∈ Rn | p(x) 6= 0 }

for some polynomial function p on Rn: the Zariski topology.

The periodic topology on X = R is the topology whose open sets are
just those from among the usual (Euclidean) topology which happen to
be 2π periodic.

Let X be the set of nonnegative real numbers, and take as open sets all
sets of the form

{x | x0 < x } ,

for any real number x0 ≥ 0. This is yet another topology.

If S ⊆ X is any subset of a topological space, the subspace topology on
S has open sets S ∩ U ⊆ S for U ⊆ X any open set.
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If X is any set, the cofinite topology has open sets just precisely (i) the
empty set and (ii) the sets X − F where F is any finite set.

1.2 Check that each of these examples correctly defines a topology.

1.3 What are all topologies on the empty set? On a set with one element
X = { 0 }? On a set with two elements X = { 0, 1 }? On a set with three
elements X = { 0, 1, 2 }? On a set with 4 elements X = { 0, 1, 2, 3 }?

Take distinct points p, q, let r be the distance between them, and look at
the balls of radius r/2 around those points. Those balls are not empty,
but don’t intersect. Hence any metric space with two or more points
contains nonintersecting nonempty open sets.

If we take nonempty Zariski open sets U,W ⊆ Rn, we claim they inter-
sect. Write

U = {x ∈ Rn | p(x) 6= 0 }

and
W = {x ∈ Rn | q(x) 6= 0 } .

We need to find a point in U ∩W , i.e. a point where neither of these
polynomials vanish. Since U and W are not empty, we can take points
x in U and y in W . Take the line between them. It is enough to find a
point of that line on which neither of those polynomials vanish. We can
rotate and translate to get that line to the x1-axis. Set all of the other
variables except x1 to zero. So it is enough to assume that both of our
polynomials depend on only one variable. Each polynomial, being not
everywhere zero, vanishes on a finite set of points. Remove those points,
and neither of the polynomials vanish on any of the remaining points:
U and W contain a point in common. Therefore the Zariski topology is
not a metric topology of any metric (including, in particular, the usual
metric).

Closed sets

If A is a subset of a set B, we write B −A to mean the set of points of B not
lying in A, the complement of A in B. A subset C ⊆ X of a topological space
X is closed if its complement X − C ⊆ X is open.

1.4 Prove that the intersection of any closed sets is closed.

1.5 Prove that union of finitely many closed sets is closed.

1.6 Prove that the empty set and X are closed subsets of any topological space
X. In particular, sets can be both open and closed (sets are not doors).
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The closure Ā of a set A ⊆ X in a topological space X is the intersection
of all closed sets containing A.

1.7 Find the closure of the rational numbers in the real numbers.

1.8 Find the closure of the open unit ball in Rn.

1.9 Find the closure of the open unit ball in Rn with the Zariski topology.

1.10 Prove that

a. the closure Ā of any subset A ⊆ X of any topological space X is closed

b. A is closed just when A = Ā

c. A ⊆ Ā

d. Ā lies inside any closed set containing A.

Bases

A neighborhood of a point x ∈ X in a topological space is a subset S ⊆ X
containing x so that there is an open subset U ⊆ X lying inside S and containing
x. A basis is a collection of open sets so that every open set is a union of open
sets from the basis.

The open balls of a metric space form a basis for the metric topology.

The only basis of the cofinite topology on any infinite set is the entire
cofinite topology.

All open sets taken together form a basis (there is no reasonable notion
here of “independence” like in linear algebra).

1.11 Prove that every basis S of Rn contains an infinite set T ⊂ S so that S−T
is also a basis.

1.12 A collection of open sets of a topological space X forms a basis just when,
for any point x ∈ X and neighborhood N ⊆ X of x, there is an element U in
that collection so that x ∈ U ⊆ N .

1.13 Prove that the topology of Rn has a countable basis.

1.14 Prove that the Zariski topology on Rn does not have a countable basis.
Hint: first try n = 1.

1.15∗ Give an example of an open set U ⊆ R containing the rational numbers
so that R − U is uncountable.
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A basis S on a set X is a collection of subsets of X so that any finite
intersection of those subsets is also expressible as a union of some of those
subsets. Clearly S is a then a basis for a unique topology: the one whose open
sets are unions of any collections of those subsets, called the topology by or by
S.

Boundaries

Given a subset A ⊆ X of a topological space, a point x ∈ X is an interior
point of A if A is a neighborhood of x, an exterior point of A if X − A is a
neighborhood of x, and a boundary point otherwise, i.e. if every neighborhood
of x contains points both inside A and outside A. The exterior is the set of
exterior points, and so on.

1.16 Find the interior, exterior and boundary of

a. the set A ⊂ X of rational numbers inside the set X of real numbers.

b. the set A ⊂ X of irrational numbers inside the set X of real numbers.

c. the set A ⊂ X of positive numbers inside the set X of real numbers.

d. the set A ⊂ X of positive numbers inside the set X of rational numbers.

e. the unit interval A ⊂ X inside the set of X = R in the Zariski topology.

f. the rational numbers A ⊂ X inside the set of X = R in the Zariski
topology.

1.17 Find a subset A ⊂ R whose boundary has nonempty interior.

1.18 Take any set X with the discrete topology and any subset A ⊆ X. Find
the interior, exterior and boundary of A.

1.19 Take any set X with the indiscrete topology and any subset A ⊆ X. Find
the interior, exterior and boundary of A.

1.20 Find 3 different open subsets of the real number line that have the same
boundary.

1.21 Suppose thatU is an open subset of the plane and that the boundary ofU is
a finite set of points, say { p1, p2, . . . , pk }. Prove that U = R2−{ p1, p2, . . . , pk }.

Density

A subset A ⊆ X of a topological space is dense in a subset B ⊂ X if B ⊂ Ā,
and everywhere dense if Ā = X.

1.22 Prove that every nonempty open set in Rn in the Zariski topology is
everywhere dense.

1.23 Prove that the rational numbers are dense in the real numbers.
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In the indiscrete topology, every nonempty subset is everywhere dense.

In the discrete topology on a set X, only X is everywhere dense.

In Rn, the points with rational coordinates are everywhere dense, as are
the points with irrational coordinates.

1.24 If A ⊂ X is dense and U ⊂ X is open, prove that A ∩ U is dense in U .

Separability

A topological space X is separable if it contains a dense sequence of points, i.e.
a sequence which enters every open set.

In the indiscrete topology, every sequence is dense, so the space is
separable.

In the discrete topology on a set X, only X is everywhere dense, so if the
points of X do not all lie on a single sequence, then X is not separable.

The real numbers are separable: put the rational numbers into a se-
quence.

Euclidean space is separable: put the points with rational coordinates
into a sequence.

1.25 Which of the following topologies on Rn make Rn separable?

a. The Euclidean topology.

b. The discrete topology.

c. The cofinite topology.

d. The Zariski topology.

1.26∗ The half-open topology on R is the topology generated by the half inter-
vals a ≤ x < b for numbers a < b ∈ R. Prove that this topology has a countable
basis, is separable, and is not the Euclidean topology.
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Products

Recall that the plane R2 is the product R2 = R × R. But the open sets of the
plane are not all products; there are disks, interiors of triangles, and so on, as
well.

The product open sets in the plane are only the products of intervals, i.e. the
open boxes:

If X and Y are topological spaces, the product topology on X × Y has as open
sets precisely those sets whose every point lies in a product UX × UY of an
open set UX ⊂ X and an open set UY ⊂ Y .

1.27 Take any basis for the topology of X, and any basis for the topology of
Y . Take the open sets of the form of a product UX × UY of a basis element
UX ⊂ X and a basis element UY ⊂ Y . Prove that these form a basis for the
product topology.

1.28 Suppose that A ⊂ X and B ⊂ Y are closed sets in topological spaces.
Prove that A×B is a closed set in X × Y in the product topology.
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1.29 Suppose that A ⊂ X and B ⊂ Y are sets in topological spaces and write
A◦ for the interior of a set and Ā for its closure. Prove that (A×B)◦ = A◦×B◦
and that Ā× B̄ = A×B in the product topology.

1.30 If X = Rp and Y = Rq with the Zariski topology, is the product topology
on X × Y = Rp+q equal to the Zariski topology on Rp+q?

Subspaces

If A ⊂ X is a subset of a topological space X, the subspace topology has as
open sets the sets A ∩ U for any open set U ⊂ X.

1.31 Prove that the subspace topology is a topology.

1.32∗ If a topological space is separable, is every subset separable in its subspace
topology?

1.33 Suppose that A ⊂ B ⊂ X are subsets of a topological space. Then A
has a subspace topology as a subset of X, as does B. But then A has another
subspace topology, as a subspace of B where B has its subspace topology as a
subspace of X. Prove that these two topologies on A are the same topology.

If X = R and A = R>0, then the closure of A as a subset of A is A, but
as a subset of X the closure of A inside X is R≥0.

Lemma 1.1. If A ⊂ X is a subset of a topological space X, then A has as
closed sets just exactly the sets A∩C for any closed set C ⊂ X. Moreover, the
closure of a subset S ⊂ A inside A is the intersection of A with the closure
of S in X.

Proof. Take a subset S ⊂ A and let CX ⊂ X be its closure in X and CA ⊂ A
be its closure in A. Let UA = A− CA and UX = X − CX . Then

CA =
⋂
S⊂C

C

where the intersection is over the A-closed subsets of A containing S. So

UA = A− CA,

=
⋂

S∩U empty

U,

where the intersection is over the A-open sets U ⊂ A not intersecting S; write
those open sets as U ∩A, for X-open sets U ⊂ X:

=
⋂

S∩U∩A empty

U ∩A,
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but then S ∩ U ∩A = S ∩ U since S ⊂ A, so

=
⋂

S∩U empty

U ∩A,

where the intersection is over the X-open sets U ⊂ X not intersecting S,

= A ∩
⋂

S∩U empty

U,

where the intersection is over the X-open sets U ⊂ X not intersecting S,

= A ∩ UX .

Therefore CA = A ∩ CX .

1.34 A subset A ⊂ X of a topological space is locally closed if each point a of
A lies in an open subset U ⊂ X of X so that A ∩ U ⊂ U is a closed subset of
U . Given an example of a locally closed subset of X = R which is not closed.
Given an example of a locally closed subset of X = R3 which is not closed.

The disjoint union of two topological spaces X,Y is the set X t Y of all
points of the form (x, 1) for x ∈ X or (y, 2) for y ∈ Y . We give it the topology
for which a basis of open sets consists of sets of the form U tW for U ⊂ X
open and W ⊂ Y open. Intuitively, X t Y means X and Y “drawn separated
from one another”. Typically, we will denote points of X tY as x ∈ X or y ∈ Y
rather than as pairs (x, 1) or (y, 2), as long as this doesn’t confuse matters.

Hausdorff

Two point x, y ∈ X of a topological space X are housed off from one another
if there are open sets U, V ⊂ X with x ∈ U , y ∈ V and U ∩ V is empty.

U x Vy

If any two distinct points of X are housed off, then X is Hausdorff .

1.35 If X is any set with the cofinite topology, prove that X is Hausdorff just
when X is finite.

1.36 Prove that every metric space is Hausdorff.

Lemma 1.2. The Zariski topology is not Hausdorff.
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Proof. Take two points x, y ∈ Rn and two Zariski open sets U, V with x ∈ U
and y ∈ V . We write U as the set of points at which some polynomial p doesn’t
vanish, and V as the set of points at which some polynomial q doesn’t vanish.
Draw the line from x to y. Restrict the polynomials to that line. None of our
polynomials vanishes everywhere on that line, since each is nonzero at x or at
y. So each vanishes at only a finite number of points. Remove those points to
see that U and V intersection.

1.37 Prove that in any Hausdorff space X, for any point x of X, the set {x }
is closed: “points are closed”.

1.38 Prove that, in the Zariski topology, “points are closed”, even though the
Zariski topology is not Hausdorff.

1.39 Prove that in any topological space, “points are closed” if and only if
finite sets are closed.

If X is a topological space, the diagonal ∆X ⊂ X ×X be , i.e. the set of
points (x, x) for x in X.

1.40∗ A topological space is Hausdorff just when its diagonal is closed.

1.41 If X = Rn with the Zariski topology, prove that the diagonal in X ×X is
dense in the product topology, but not in the Zariski topology on R2n.

1.42 The product X × Y of two Hausdorff spaces X,Y is also a Hausdorff
space.

1.43 Prove that, for any subset A ⊂ X of a Hausdorff space, A is Hausdorff in
the subspace topology on A.

Compactness

Recall that a subset A ⊂ Rn is compact just when every infinite sequence of
points has a convergent subsequence. We will try (and fail) to imitate this
in topological spaces. A sequence x1, x2, . . . of points of a topological space
X converges to a point x ∈ X if every open set containing x contains all but
finitely many points of that sequence.

Take the sequence of points xj = (j, 2j) ∈ R2 and let X = R2 with the
Zariski topology. Take any open set U , not empty. Then U has the form
U = R2−C where C ⊂ R2 is an algebraic curve in the plane (or C is the
empty set). Only finitely many points of our sequence can lie inside C,
because the points lie on the graph of y = 2x, which is not an algebraic
function. (The reader should explain why that is the case.) So, for any
nonempty open set, all but finitely many points of our sequence lie in
that open set. In particular, this sequence converges to every point in
the plane, in the Zariski topology.
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Sequences turn out to be the wrong objects to work with in topology. We
work with open sets.

Recall another defining property of compact sets in Rn: every open cover
has a finite subcover. An open cover of a set A ⊂ X in a topological space X
is a collection of open sets whose union contains A. A subcover is a smaller
collection of open sets, each one belonging the the original collection.

The set of open balls of radius 1/2 is an open cover of the plane R2.
The subset of open balls of radius 1/2 with rational centre point is a
subcover. The set of open balls of radius 1/3 is not a subcover: these
balls are not drawn from our original set. The set of open balls of radius
1/2 around integer points is not a subcover: the point (1/2, 1/2) is more
than 1/2 unit from any integer point.

A topological space X is compact if every open cover has a finite subcover.

1.44 Prove that every finite subset A ⊂ X, of any topological space X, is
compact.

Lemma 1.3. Every locally bounded function f : X → R on a compact topolog-
ical space X is bounded.

Proof. Each point of X lies in an open set in which f is bounded. These open
sets cover X. Take a finite subcover. So we have finitely many open sets, and
a bound of f on each, from above and from below. Take the maximum of the
upper bounds, and minimum of the lower bounds.

1.45 Suppose that A ⊂ X is a subset of a compact topological space. Prove
that if A is closed then A is compact. If X is also Hausdorff, prove that A is
closed just when A is compact.

1.46 Give an example of a compact space X which is not Hausdorff and a
compact set A ⊂ X which is not closed.

1.47 Prove that, in any topological space, the union of finitely many compact
sets is compact. Give an example to prove that the union of infinitely many
compact sets need not be compact.

Lemma 1.4. Topological spaces X and Y are both compact just when their
product is compact.

Proof. Suppose that X × Y is compact. Take an open cover Xa of X. Then
Xa × Y is an open cover of X × Y . Take a finite subcover, say Xi × Y ,
i = 1, 2, . . . , n. Then X1, X2, . . . , Xn is a finite subcover of the collection of Xa.
The same trick for Y in place of X.

Suppose that X and Y are compact. Take an open cover by open sets
Ua ⊂ X × Y . Each point (x, y) ∈ X × Y lies in one of these open sets, call it
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Ux,y. The product open sets Xb × Yc ⊂ X × Y form a basis. So there is such a
product, call it Xx,y × Yx,y, inside Ux,y.

For each point x ∈ X, the various Yx,y cover Y . Take a finite subcover, say

Yx,y1(x), . . . , Yx,ynx (x).

Let
Xx = Xx,y1(x) ∩ · · · ∩Xx,ynx (x).

Since x ∈ Xx, these various open sets Xx ⊂ X form an open cover of X.
Take a finite subcover X1, X2, . . . , Xn, say containing points x1 ∈ X1, . . . , xn ∈
Xn. Then X × Y is covered by the finitely many sets Uxi,yj(xi) for all possible
values of i and j for which this is defined.

Lemma 1.5. In any Hausdorff space, every compact set is closed.

Proof. Suppose that X is Hausdorff. Since X is Hausdorff, any two points
x, y ∈ X have disjoint “houses”. Suppose that x is outside a compact set
K ⊆ X. Fixing x and letting y vary over K, finitely many of our “houses” cover
those points of K. The finite intersection of the corresponding “houses” around
x give an open set around x not intersecting K. So every point x outside K
lies in an open set outside K, i.e. the complement of K is open.

1.48 Give an example of a compact but not closed subset of some non-Hausdorff
space.

1.49 Prove that, in any Hausdorff space, for any collection of compact sets,
the intersection of all of those sets is compact. If the intersection of any finite
number of those compact sets is not empty, prove that the intersection of them
all is not empty.

1.50 Give an example of a space, not Hausdorff, and two compact subsets of
that space, whose intersection is not compact.

1.51 Take compact sets K ⊂ X, L ⊂ Y of topological spaces. Suppose that
W ⊂ X × Y is an open set containing K × L. Prove that W contains an open
set of the form U × V so that U ⊂ X and V ⊂ Y .

Connectivity

A topological space X is connected if it is not expressible as a disjoint union
X = U ∪ V of two nonempty open sets U, V ⊂ X.

1.52∗ Prove that any interval of the real number line is connected.

1.53∗ If a subset S ⊆ X of a topological space is connected, prove that its
closure is connected.

1.54∗ If a subset S ⊆ X of a topological space is connected, and f : X → Y is
a continuous map, prove that f(S) ⊂ Y is connected.
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1.55∗ A coprime arithmetic progression is a set of integers of the form
. . . , a− 3b, a− 2b, a− b, a, a+ b, a+ 2b, a+ 3b, . . .

where a and b are integers with no common prime factor. The Golomb topology
on the integers is the topology for which the coprime arithmetic progressions
form a basis for the open sets. Prove that the set of integers, in the Golomb
topology, is Hausdorff, connected and not compact.
1.56 Prove that every topological space is uniquely expressed as a union of its
maximal connected subsets, called its connected components.
1.57 Suppose that f : X → Y is a continuous open map of topological spaces
and that all fibers f−1 { y0 } are connected, y0 ∈ Y . Prove that f bijectively
identifies the connected components of X with those of Y .

Path connectivity

A topological space X is path connected if any two points lie on the image of a
path, i.e. a continuous map from an interval of the real number line.
1.58 Prove that any path connected space is connected.
1.59 Prove that every topological space is uniquely expressed as a union of its
maximal path connected subsets, called its path components.
1.60 Suppose that f : X → Y is a continuous open map of topological spaces
and that all fibers f−1 { y0 } are path connected, y0 ∈ Y . Prove that f bijectively
identifies the path components of X with those of Y .

The union of the graph of y = sin(1/x) with the line x = 0 is connected,
but not path connected: the graph is path connected, as is the line, so
each lies in a single path component, so in a single component. Any open
set around the line x = 0 intersects the graph, so intersects any open
set containing the graph: there is only one component. But there are
two path components, since a continuous path along the graph hits the
infinitely many peaks and throughs, with infinitely many points where
y = 1, and where y = −1, so no limit as it approaches the line.

1.61∗ Give an example of a connected space with infinitely many path compo-
nents.
1.62 If a subset S ⊆ X of a topological space is path connected, and f : X → Y
is a continuous map, prove that f(S) ⊂ Y is path connected.

A topological space X is locally path connected if, for any point x0 ∈ X and
open set U ⊂ X containing x0, there is a path connected open set W ⊂ X
containing x0 with W ⊂ U .
1.63 If a topological space is locally path connected, prove that its path com-
ponents are its components.
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The Baire category theorem

A subset A ⊂ X of a topological space is everywhere dense if A is dense in X.

For each rational number q ∈ Q, take the set Uq ..= {x ∈ R | x 6= q }.
So the various Uq ⊂ R are dense open sets. Their intersection⋂

q∈Q
Uq ⊂ R

is precisely the set of irrational numbers, not open, but still dense.
Roughly speaking, if we only pull out a single rational at each step,
we still have a lot left over after an infinite sequence of steps.

A set B ⊂ X of a topological space is nowhere dense if B ∩ U is not dense
in any open set U ⊂ X. A meager set is a subset S ⊂ X of a topological space,
which can somehow be written as

S = C1 ∪ C2 ∪ . . .

as the union of a sequence of nowhere dense closed sets. A comeager set is a
subset A ⊂ X of a topological space, which can somehow be written as

A = U1 ∩ U2 ∩ . . .

as the intersection of a sequence of dense open sets.

1.64 Prove that a subset of a topological space is meager just when its com-
plement is comeager.

A topological space X is Baire if every meager set has dense complement,
or equivalently if every comeager set is dense.

1.65 Prove that every complete metric space is a Baire space, in its metric
topology.

1.66 Prove that every open subset of any Baire space is Baire. Use this to
prove that every meager subset of an open set in a complete metric space is
nowhere dense.

A topological space X is locally compact if every point of X lies in the
interior of a compact set.

1.67 Suppose that K ⊂ X is a compact subset of a locally compact topological
space. Prove that there is an open set V ⊂ X containing K so that V̄ ⊂ X is
compact.

Theorem 1.6 (Baire category theorem). In any Hausdorff locally compact
space, every meager set has dense complement, i.e. every Hausdorff locally
compact space is a Baire space.
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Proof. Take a comeager set A = U1 ∩ U2 ∩ . . ., with each Ui open and dense.
Since U1 is dense, it is not empty; take a point x1 ∈ U1. Take a compact set
K1 with x1 in the interior of K1. Since U2 is open and dense, it intersects the
interior of K1; pick a point x2 in that intersection. Take a compact set K2
with x2 in the interior of K2. We can replace K2 by K2 ∩K1, so assume that
K2 ⊂ K1. By induction, generate nested compact sets · · · ⊂ K3 ⊂ K2 ⊂ K1.
The intersection is not empty, by the solution to problem 1.49 on page 12.

Given a topological space X, we say that “the generic element of X has the
property . . . ” to mean that the set of elements of X which do not have the
property . . . is meager.

The generic real number is irrational (has the property of being irra-
tional), i.e. the rationals form a countable union of closed, nowhere
dense sets in the set X of real numbers.

The Baire category theorem says that, in any Baire space, any generic
property occurs on a dense set.

The generic real number is irrational, and the real numbers form a
complete metric space (so Baire), so the irrational numbers are dense in
the real numbers.

The generic point of the unit ball in Euclidean space Rn is irrational
(i.e. has all coordinates irrational), and the ball is an open subset of a
complete metric space (so Baire), so the irrational points are dense in
the ball.

Take a sequence of polynomial functions p1(x, y), p2(x, y), . . . in two
variables x, y, each function nonzero somewhere. Associate to each
polynomial pj(x, y) the set of its zeroes: Cj ..= { (x, y) | pj(x, y) = 0 }.
The plane is Baire and contains the nowhere dense closed sets Cj . So
the union has dense complement: you can avoid satisfying all of the
polynomial equations pj(x, y) = 0 by slight perturbation of any point
(x, y).

A transcendental point of Rn is a point not satisfying any nonconstant
polynomial equation 0 = p(x) with rational coefficients. Transcendental
points of Rn are generic, so dense, as there are countably many such
polynomials, each with a closed, nowhere dense, zero set.
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Local compactness

In any topological space, a subset with compact closure is precompact.

1.68 For any Hausdorff space X, prove that the following are equivalent:

a. X is locally compact.

b. Every point of X lies in a precompact open set.

c. X has a basis of precompact open sets.

So if X is locally compact Hausdorff, every open set around any point
contains a precompact open set around that same point.

1.69 Prove that every closed or open set in any locally compact Hausdorff
space is locally compact Hausdorff.

1.70 Prove that the product of two locally compact Hausdorff spaces is locally
compact Hausdorff.



Chapter 2

Continuity

If f : X → Y is a map, the preimage f−1S of a subset S ⊆ Y is the set

f−1S ..= {x ∈ X | f(x) ∈ S } ⊆ X.

A continuous map f : X → Y is a map so that the preimage of any open set in
Y is an open set in X.

2.1 If X and Y are subsets of Euclidean space, prove that this agrees with the
usual definition.

Another way to say this: for any point x0 ∈ X and associated point y0 =
f (x0), if you want y = f(x) to stay in some neighborhood of the point y0, you
only have to keep x in a suitable neighborhood of x0. Continuity demands
precisely that the preimage of a neighborhood is also a neighborhood.

2.2 Suppose that X and Y are sets equipped with the cofinite topology. Prove
that a map f : X → Y is continuous just when each point has finite preimage.

2.3 Prove that a map f : X → Y is continuous just when the preimage of any
closed set is a closed set.

2.4 We don’t need to check all open sets: prove that, for any basis Ya ⊂ Y of
open sets of a topological space Y , a map f : X → Y is continuous just when
the preimage of any Ya is open.

2.5 Prove that a map f : X → Y is continuous just when preimage commutes
with closure, i.e. for any subset AY ⊂ Y , with closure ĀY ⊂ Y , and with
preimage denoted AX = f−1AY , we have ĀX = f−1ĀY .

2.6∗ If X and Y are Hausdorff spaces and f : X → Y is a continuous map,
prove that the graph of f is a closed subset of X × Y .

2.7 Prove that every polynomial function f : Rn → R is continuous in the
Zariski topologies of Rn and R.

2.8 Prove that the function f : R → R given by f(x) = sin x is discontinuous
in the Zariski topology of R.

2.9 Prove that the function f : R → R given by f(x) = ex is continuous in the
Zariski topology of R.

17
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2.10 Prove that the function f : R2 → R given by f(x, y) = y + ex is discon-
tinuous in the Zariski topology of R.

2.11 Prove that constant maps are continuous.

2.12 Suppose thatX is a set with the discrete topology, and Y is any topological
space. What are all continuous maps f : X → Y ?

2.13 Suppose that X is the real number line, and Y is a set with the discrete
topology. What are all continuous maps f : X → Y ?

Lemma 2.1. The composition g ◦ f of any continuous maps f : X → Y and
g : Y → Z is continuous.

Proof. For any open set UZ ⊂ Z, note that the set

UX = (g ◦ f)−1
UZ

is just
UZ = g−1UY

where
UY = f−1UX .

If A ⊂ X is a subset and f : X → Y is a map, define

f |A : A→ Y

by
f |A (a) = f(a)

for every a in A; the map f |A is the restriction of f to A.

2.14 Prove that the restriction of a continuous map to any set is continuous.

2.15 Continuity is “local”: take some open sets Xa ⊂ X whose union is X.
Prove that any map f : X → Y is continuous just when all of its restrictions
f |Xa

: Xa → Y are continuous.

2.16 Continuity is “very local”. A map f : X → Y is continuous at a point x
in X if, for any open set UY ⊂ Y containing f(x), there is an open set UX ⊂ X
containing x so that fUX ⊂ UY . Prove that any map is continuous just when
it is continuous at every point.

2.17 Take topological spaces X,Y and let p : X×Y → X be the map p(x, y) =
x, the projection map. Prove that the projection map is continuous.

2.18 Take topological spaces X,Y, Z and continuous maps f : X → Y and
g : X → Z and let (f, g) : X → Y × Z be (f, g)(x) = (f(x), g(x)). Prove that
(f, g) is continuous.
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2.19 Take topological spaces X,Y and let f : X × Y → Y × X be the map
f(x, y) = (y, x). Prove that f is continuous.

Lemma 2.2. Suppose that f, g : X → Rn are continuous. Then f+g : X → Rn
is continuous.

Proof. Compose (f, g) : X → Rn × Rn with the map +: Rn × Rn → Rn, con-
tinuous maps.

Similarly, multiplication and division are continuous, etc.

2.20∗ Any continuous map f : X → Y takes any compact subset K ⊂ X to a
compact set f(K) ⊂ Y .

Density

The zeroes of a continuous function on Rn form a closed set. The same is true
in much more generality:

Lemma 2.3. Take two continuous maps f, g : X → Y . Let A ⊂ X be the set
of points at which f = g. If Y is Hausdorff, then A is closed.

Proof. Consider the map F : X → Y × Y given by F (x) = (f(x), g(x)). Let
∆Y ⊂ Y × Y be the diagonal, i.e. the set of points of the form (y, y) ∈ Y × Y
for any y ∈ Y . Then clearly A = F−1∆Y . By problem 1.40 on page 10,
∆Y ⊂ Y × Y is closed just when Y is Hausdorff. So then A is closed.

Lemma 2.4. If two continuous maps f, g : X → Y agree on a dense subset of
a Hausdorff space X, then they agree everywhere.

Proof. By lemma 2.3, the set of points where f = g is closed, so if dense, is
X.

Homeomorphisms

A homeomorphism is a continuous map f : X → Y with a continuous inverse
f−1 : Y → X. If a homeomorphism f : X → Y exists, X and Y are homeomor-
phic; for purposes of topology, they are essentially identical.

The map f : x ∈ R 7→ arctan x ∈ (−1, 1) is a homeomorphism: the real
number line is homeomorphic to any open interval of the real number
line.

Let X be the interval [0, 2π) ⊂ R. Let Y be the unit circle in the plane
Y ⊂ R2. The map f : θ ∈ X 7→ (cos θ, sin θ) ∈ Y is continuous, and has
an inverse f−1(cos θ, sin θ) = θ. But f is not a homeomorphism. The
map f−1 is discontinuous: for points just above the positive horizontal
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axis, and points just below it, f−1 takes these close points far apart. To
make a proof out of this idea: the f−1 preimage (i.e. the f image) of
the open set [0, ε) is not open in the circle for ε < 2π.

2.21 Prove that the plane is homeomorphic to any open ball in the plane.

Theorem 2.5. A continuous bijection f : X → Y from a compact space X to
a Hausdorff space Y is a homeomorphism.

Proof. By continuity, open sets have open preimages; equivalently, closed sets
have closed preimages. Closed sets of X are compact, so their images are
compact, so closed: closed sets have closed images. Equivalently, open sets
have open images. Hence the inverse is continuous.

2.22 Prove that the open unit disk in the plane is not homeomorphic to the
real number line.

Proper maps

A proper map f : X → Y is a continuous map so that the preimage of any
compact set is compact.

On X = R, every nonconstant polynomial is proper.

On X = R2, the polynomial x2 + y2 is proper, while x, x3, x2y2, x2 + y3

are not proper.

2.23 Which trigonometric and inverse trigonometric functions are proper maps?

2.24 The one point compactification of a topological space X is the topological
space X̄ whose points are X ∪ {∞} for some element ∞ not in X, and whose
open sets are (a) the open sets of X and (b) the sets {∞}∪ (X−C) for C ⊂ X
compact. Prove that these sets form the open sets of a topology. Prove that
a continuous map f : X → Y of Hausdorff spaces is proper if and only if it
extends to a continuous map f̄ : X̄ → Ȳ with f̄(∞) =∞.

2.25 For a topological space X, prove that X is a locally compact Hausdorff
space if and only if there exists a topological space X ′ so that

• X is embedded into X ′ and

• X ′ −X is a single point (to be denoted ∞) and

• X ′ is a compact Hausdorff space.
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Moreover X ′ is then homeomorphic to the one point compactification of X by
the unique homeomorphism which is the identity on X.

2.26 Prove that the one point compactification of Euclidean space Rn is home-
omorphic to the sphere Sn.

x1

x2

xn+1

p

n

s

q

A map f : X → Y is open if the image of any open set is open, closed if the
image of any closed set is closed.

2.27 Prove that any closed injection f : X → Y is a homeomorphism to its
image.

2.28∗ A test to decide if a map is proper: prove that a continuous map
f : X → Y is proper if and only if it satisfies the two conditions (a) preimages
of points are compact and (b) f is closed.

2.29 Prove that every continuous map f : X → Y from a compact space to a
Hausdorff space is proper.

Lemma 2.6. Every proper map f : X → Y to a locally compact Hausdorff
space Y is closed.
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Proof. Every open set U ⊆ Y lying in some compact set has compact closure,
i.e. is precompact, so f−1Ū is compact.

Take A ⊆ X closed. Pick a point y ∈ Y − f(A). We need only prove there
is an open set U in Y containing y avoiding f(A). Take any precompact open
set U ⊂ Y containing y. Write A as a union of the compact set A′ = A∩ f−1Ū
and the subset A′′ = A ∩ f−1(X − Ū). Since f(A′′) avoids U , we need only
arrange that f(A′) avoids some perhaps smaller open setW around y, and then
f(A) will avoid U ∩W . So we can replace A by A′, X by f−1Ū , Y by Ū , so
assume both X and Y are compact. By problem 1.45 on page 11, A ⊆ X is
compact. By problem 2.20 on page 19, f(A) is compact, and so closed.

A test for homeomorphism

Corollary 2.7. Take a locally compact Hausdorff space Y . Any closed injection
f : X → Y is a homeomorphism to its image. In particular, any proper injection
f : X → Y is a homeomorphism to its image.

Proof. One proof: by lemma 2.6 on the previous page, f is closed; apply
problem 2.27 on the preceding page.

Another proof, which might give more intuition: write Y as a union of
precompact open sets Ya ⊂ Y . Let X̄a

..= f−1Ȳa. Then

f |X̄a
: X̄a → Ȳa

is a homeomorphism to its image by theorem 2.5 on page 20. In particular, if
we let Xa

..= f−1Ya, then
f |Xa

: Xa → Ya

is also a homeomorphism to its image. Take any open set U ⊂ X and let
Ua ..= Xa ∩ U . Then

f(U) = f(
⋃
a

Ua) =
⋃
f(Ua)

is open: open sets have open images. Hence the inverse is continuous.

Quotient topologies

Let’s glue things together.

The Möbius strip is given by gluing two sides of a square
together, in opposite directions. Imagine X is the square,
and Y is the square after we identify those points together;
define the map X → Y which takes each unglued point
to the corresponding point after gluing. But what is the
topology on Y ?
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Suppose that we have a map f : X → Y between two sets X and Y . If X
has a topology given, but Y doesn’t, the quotient topology on Y has an open
sets precisely those subsets of Y whose preimages in X happen to be open.
Clearly for any map f : X → Y , the quotient topology is the “simplest” (has
the fewest open sets) so that f becomes continuous. In a picture, if we draw
X as a looking like a box, and Y as its shadow on the plane:

and our map takes each point

to its shadow:

then open sets in Y :

are sets whose preimage is open in X:
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A pointed space or space with marked point is a topological space X
together with a point x0 of X, often denoted (X,x0). If (X,x0) and
(Y, y0) are spaces with marked points, the join of those spaces is the
quotient space (X tx0=y0 Y, x0) defined as follows: let X tx0=y0 Y be
X t Y but removing the point y0. Map f : X t Y → X tx0=y0 Y by
f(x) = x but

f(y) =
{
y if y 6= y0,

x0 if y = y0.

Give X tx0=y0 Y the marked point x0 and the quotient topology from
this map f .

Take n circles, each with a marked point, and join to get
the bouquet of circles:

2.30 Prove that if f : X → Y is a surjective map and X is a complete metric
space and every fiber f−1 { y } ⊂ X of f is a closed subset, and any two distinct
fibers f−1 { y1 } , f−1 { y2 } stay a positive distance apart, then the quotient
topology on Y arises from a metric on Y .

Another language we use to talk about surjective maps f : X → Y is the
language of equivalence relations. We can say that two points ofX are equivalent
if they have the same value under f . On the other hand, given an equivalence
relation ∼ on X, define the quotient X/∼, to the the set of all equivalence
classes, and the quotient map X → X/∼ by sending each point x ∈ X to its
equivalence class [x]. If we write X/∼ as Y and the quotient map as f (to avoid
the intimidating notation), we define the quotient topology by an equivalence
relation to be the quotient topology via the quotient map. It is just a change
of notation and language, but we get just the same quotient spaces if we think
about surjective maps f : X → Y or equivalence relations ∼ on a topological
space X.

Theorem 2.8. Take a topological space X and an equivalence relation ∼ on X
with quotient map X → X/∼. Any continuous map X/∼ → Y induces a
continuous map X → Y by composing with the quotient map: X → X/∼ → Y .

Conversely, a continuous map X → Y arises in this way, i.e. has the form
of a composition X → X/∼ → Y , for a unique continuous map X/∼ → Y
just when it is constant on equivalence classes, i.e. equivalent elements go to
the same point of Y . We then say that that our map X → Y descends to the
quotient.

Proof. Suppose that f : X → Y is a continuous map taking equal values in
Y for any equivalent points of X. We define a map, perhaps not continuous,
by f̄([x]) = f(x) on each equivalence class [x] ∈ X/∼. Clearly this is well
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defined, but we need to prove that it is continuous. Let q : X → X/ ∼ be the
quotient map taking each point x ∈ X to its equivalence class [x] ∈ X/ ∼.
Note also that by definition f(x) = f̄([x]), i.e. f = f̄ ◦ q. Take an open set
UY ⊂ Y . Take its preimage UX/∼ ⊂ X/∼. We need to prove that UX/∼ ⊂ X/∼
is open. By definition of the quotient topology, this is precisely proving that
UX ..= q−1UX/∼ is open. But this is just

UX = q−1f̄−1UY ,

=
(
f̄ ◦ q

)−1
UY ,

= f−1UY ,

open in X.

2.31 Suppose that f : X → Y is a surjective map from a topological space X.
Suppose that X contains a compact set K for which f(K) = Y . Prove that Y
is compact in the quotient topology.

2.32 A map f : X → Y is strict if the induced topology on f(X) agrees with
the quotient topology. Prove that every surjective open map is strict, and that
every surjective closed map is strict.

Often we can guess what the quotient space by a map should be, and we
need the following theorem to check our guess.

Theorem 2.9. Suppose that f : X → Y is a continuous surjective map and Y
is Hausdorff. Suppose that every point of Y lies in the interior of the image
of a compact subset of X. Define an equivalence relation: x1 ∼ x2 just when
f(x1) = f(x2) for any x1, x2 in X. Then f : X → Y descends to the quotient
to a homeomorphism X/∼ → Y .

Proof. Clearly the quotient map X/∼ → Y is a bijection and constant on
equivalence classes, so continuous. Pick an open subset UY ⊂ Y , which lies in
the image of some compact set KX ⊂ X. We can replace KX by its intersection
with the preimage of ŪY , so that f(KX) = ŪY . By problem 2.20 on page 19,
the image of KX in KX/∼ ⊂ X/∼ is compact. By theorem 2.5 on page 20,
KX/∼ ∼= ŪY is a homeomorphism. So near each point of Y , the quotient map
is a homeomorphism.

2.33∗ Suppose that f is a continuous function

f(v1, v2, . . . , vn)

of vector variables vj ∈ Rn. Suppose that f is invariant under simultaneous
orthogonal transformation of all of the vectors:

f(Uv1, Uv2, . . . , Uvn) = f(v1, v2, . . . , vn),

for any orthogonal n×n matrix U . Let Y be the set of all positive semidefinite
symmetric matrices, i.e. symmetric matrices A so that 〈Av, v,≥〉 0 for any
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vector v ∈ Rn. Prove that there is a continuous function g : Y → R so that f
can be written as

f(v1, v2, . . . , vn) = g(A)

where A is the matrix with entries Aij = 〈vi, vj〉.

2.34 Suppose that B is a collection of open subsets of a topological space X.
Suppose that, for any U, V ∈ B, and point x ∈ U ∩ V , there is an open set
W ∈ B so that x ∈W ⊆ U ∩ V . Prove that there is a topological space Y and
an onto continuous map f : X → Y so that f takes every set U ∈ B to an open
set f(U), and f−1f(U) = U , and these sets f(U) form a basis of open sets of
Y .

If A ⊂ X is a subset of a topological space, X/A means the quotient where
we make any two points of A equivalent, and no other points equivalent to one
another. If X is a metric space and A is closed then X/A is also a metric space,
so we have an enormous collection of examples of metric spaces.

2.35 Let X be the closed unit interval [0, 1] ⊂ R and Y the unit circle in the
plane. Let f : X → Y by f(x) = (cos 2πx, sin 2πx). Prove that X/ { 0, 1 } is
homeomorphic to Y .

2.36∗ Let X be the closed unit ball X = B̄ ⊂ R and Y ⊂ Rn+1 the unit sphere.
Let A ⊂ X be the unit sphere. Write points of Rn+1 as (t, x) for t ∈ R and
x ∈ Rn. Consider the map f : X → Y given by

f(x) =
{(

cos(π|x|), sin(π|x|) x
|x|

)
, if |x| 6= 0,

(1, 0), if |x| = 0.

Prove that f is continuous. Prove that f is injective from the interior of X
to Y − { (−1, 0) } and that f takes every point of A to the point (−1, 0) ∈ Y .
Prove that X/A is homeomorphic to Y .

The Möbius strip is the quotient of the closed unit square
X = [0, 1]×[0, 1] by the equivalence relation (0, y) ∼ (1, 1−
y):

The Klein bottle is the quotient of the closed unit square
X = [0, 1]× [0, 1] by the equivalence relation (x, 0) ∼ (x, 1)
and (0, y) ∼ (1, 1− y):

The torus is the quotient of the closed unit square X =
[0, 1]× [0, 1] by the equivalence relation (x, 0) ∼ (x, 1) and
(0, y) ∼ (1, y).
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The real projective space is the quotient RPn = Sn/(x ∼ −x). Every
line through the origin strikes the unit sphere at two antipodal points.
In other words, a point of real projective space corresponds to a line
through the origin in Rn+1.

The complex projective space is the quotient CPn = RP2n+1/ ∼ where
a unit length vector z ∈ Cn+1 is equivalent to eiθz for any real number
θ. In other words, a point of complex projective space corresponds to a
complex line through the origin in Cn+1.

The quaternionic projective space is the quotient HPn = CP2n+1/ ∼
where a unit length vector z ∈ Hn+1 is equivalent to λz for any unit
length quaternion λ. In other words, a point of quaternionic projective
space corresponds to a quaternionic line through the origin in Hn+1.
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Let D̄ be the closed unit disk, i.e. the set of points
(x, y) so that x2 + y2 ≤ 1. The map

(x, y) ∈ D̄ 7→ (x, y, z(x, y))

where
z(x, y) =

√
1− x2 − y2

parameterizes precisely the top half of the unit
sphere, the upper hemisphere.

Let π : S2 → RP2 be the quotient map, taking
each unit vector (x, y, z) to the line through that
vector and the origin, i.e. quotienting by (x, y, z) ∼
−(x, y, z). Consider the map

f : (x, y) ∈ D̄ 7→ π(x, y, z(x, y)).

This map is onto, as every line through the origin
strikes a point of the upper hemisphere. But horizon-
tal lines strike the equator twice at opposite points.
So f is not injective; indeed f is injective precisely
in the interior of the disk, and 2 to 1 along the
boundary of the disk, taking (x, y) and (−x,−y) on
the unit circle to the same line: the one spanned
by (x, y, 0). Define an equivalence relation ∼: two
points are equivalent if their images are the same
under f . The map f descends to a homeomorphism
D̄/ ∼∼= RP2, since D̄ is compact, and f is surjective,
every point of RP2 lies in the interior of the image
of D̄.
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Fundamental Groups

Homotopy

Continuous maps f, g : X → Y between topological spaces X,Y are homotopic
if there is a homotopy between them, i.e. a map F : [0, 1]×X → Y , denoted by
Fs(x) instead of F (s, x), so that F0 = f and F1 = g. If there is a subsetX0 ⊂ X
on which f = g, f is homotopic to g relative to X0 if there is a homotopy F
between f and g so that Fs (x) = f(x) for all x ∈ X0. A map is null homotopic
if it is homotopic to a constant map, i.e. a map whose image is a single point.

3.1 Prove that the relation of being homotopic relative to some set is an
equivalence relation.

Given points x0, x1 ∈ X, a path from x0 to x1 is a continuous map x : [0, 1]→
X so that x(0) = x0 and x(1) = x1, i.e. a map x : ([0, 1], 0, 1) → (X,x0, x1).
We often omit to write the expression “relative to { 0, 1 }” when discussing
homotopies of paths, and the reader will have to decide when we should have
written that expression.

Intuitively, a homotopy between paths looks something like

x1

x0

3.2 Take two paths x, y : [0, 1] → X for one is a reparameterisation, of the
other, i.e. there is a continuous map τ : [0, 1] → [0, 1] so that y ◦ τ = x with
τ(0) = 0 and τ(1) = 1. Prove that x is homotopic to y relative to { 0, 1 }.

Lemma 3.1. Cover a topological space X in open sets Xa ⊂ X. Take a
path x : [0, 1]→ X. Then there are real numbers 0 = t0 < t1 < · · · < tn = 1 so
that x(t) stays in one open set Xai for ti ≤ t ≤ ti+1.

Proof. Each point of [0, 1] lies in an open interval lying entirely inside one
x−1Xa. Replace that open interval with a smaller open interval: each point
of [0, 1] lies in an open interval whose closure lies entirely inside one x−1Xa.

29
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Since [0, 1] is compact, finitely many such open intervals cover [0, 1]. Take the
endpoints of those intervals: 0 = t0 < t1 < · · · < tn = 1.

Some inessential differential geometry

Think of Euclidean space of dimension n as having n coordinates:

x = (x1, . . . , xn).

An n-dimensional manifold is a subset of Euclidean space Rn+k, locally ex-
pressed as the graph of k of the coordinates as smooth functions of the other n
coordinates. An n-dimensional manifold with corners is a subset of Euclidean
space Rn+k, locally expressed as the graph of k of the coordinates as smooth
functions of the other n coordinates, constrained to be inside an n-dimensional
box. A surface is a 2-dimensional manifold (perhaps with corners). A continu-
ous map of manifolds is smooth if it is smooth as a map of those coordinates.
We won’t prove:

Theorem 3.2. Every continuous map of manifolds is homotopic to a smooth
map.

Lemma 3.3. Any path x : [0, 1]→M in a manifold (perhaps with corners) M
is homotopic relative to { 0, 1 } to a smooth path.

Proof. IfM = Rn, and x : [0, 1]→M is a path then let y(t) = (1−t)x(0)+tx(1)
and let F (s, t) = (1− s)x(t) + sy(t). More generally, the same trick works for
M any convex domain in Rn, and in particular for M a box.

Suppose next that we have a path x(t) in a box M , and we want to smooth
out that path only inside some interval a < t < b. Take a smooth increasing
function h(t) equal to 0 in a small neighborhood of a, and equal to 1 in a small
neighborhood of b. Let

y(t) =


x(t), if 0 ≤ t ≤ a,
(1− h(t))x(a) + h(t)x(b), if a ≤ t ≤ b,
x(t), if b ≤ t ≤ 1.

and let
F (s, t) = (1− s)x(t) + sy(t).

Cover M in open sets, each a graph over a convex open set in a box in Rn.
Apply lemma 3.1 on the preceding page to split x(t) into intervals on which
it stays in these open sets. On each interval, we use the first trick to smooth
x. This done, x is now piecewise smooth. We use the second trick near each
corner to smooth out corners.
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Loops

A loop is a path x : [0, 1]→ X with x(0) = x(1). Given a path x from x0 to x1
and a path y from x1 to x2, define a path x ∗ y from x0 to x2 by

(x ∗ y)(t) =
{
x(2t), if 0 ≤ t ≤ 1

2 ,

y(2t− 1), if 1
2 ≤ t ≤ 1.

and define x̄(t) = x(1− t). Also, for any point x0, define the null path x(t) = x0
for 0 ≤ t ≤ 1 which we just denote by x0.

If you have two paths and I have two paths, with homotopies fixing endpoints
between your first and my first, and between your second and my second, then
we can make a homotopy between paths glued together:

x0

x1

x2

Hence gluing paths together commutes with homotopy relative to { 0, 1 }.

3.3 For any three paths x, y, z, if (x ∗ y) ∗ z is defined then so is x ∗ (y ∗ z), and
vice versa, and they are homotopic relative to { 0, 1 }.

3.4 For any path x, the path x∗ x̄ is homotopic to x(0) relative to { 0, 1 } while
x̄ ∗ x is homotopic to x(1) relative to { 0, 1 }.

Therefore, for any topological space X and point x0 ∈ X, the homotopy
classes of loops relative to { 0, 1 } form a group, called the fundamental group
of X and denoted π1 (X,x0).

3.5 If x0, x1 ∈ X are two points connected by a path x, then any loop y at
x0 has an associated loop x̄ ∗ (y ∗ x) at x1. Prove that the homotopy class of
x̄ ∗ (y ∗ x) in π1 (X,x0) depends only on the homotopy class of y in π1 (X,x1),
and that this gives an isomorphism of groups

π1 (X,x0)→ π1 (X,x1) .
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A topological space X is path connected if any two points of X are the
endpoints of a path in X. If X is path connected, then we usually ignore
the point x0 and write π1 (X) instead of π1 (X,x0), even though this is not
strictly speaking well defined. A path connected topological space X is simply
connected if π1 (X) = {1}.

A star shaped set is a set X ⊂ Rn so that there is some point x0 ∈ X so
that for every point x1 ∈ X, the line segment from x0 to x1 lies entirely
in X.

In other words, X admits the homotopy F : (s, x) ∈ [0, 1] ×X 7→ x0 +
s (x− x0) ∈ X. Clearly π1 (X) = { 1 } is the trivial group, where 1 is
the constant path x0. In particular, π1 (Rn) = { 1 }.

For the circle S1, take any path z(t) = x(t) + iy(t)) on S1 and write it
as z(t) = eiθ(t) using trigonometry to prove that one can continuously
pick out a value of θ(t) for any continuous z(t). The number

n(z) ..= 1
2π (θ(1)− θ(0))

is an integer, since z is periodic. Suppose that two loops z0(t) and z1(t)
have the same values of n (z0) = n (z1) and start (and thus end) at the
same point of S1, say at eiα0 . Pick continuous angles θ0(t), θ1(t) with
θ0(0) = θ1(0) = α0 and

z0(t) = eiθ0(t), z1(t) = eiθ1(t).

Clearly
θ0(1) = θ1(1).

Let
θs(t) = (1− s)θ0(t) + sθ1(t)

and
zs(t) = eiθs(t),

a homotopy. Therefore π1
(
S1) = Z, identifying the homotopy class of

a loop z with the number n(z).
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For an annulus

A ..= { x ∈ Rn | r0 < ‖x‖ < r1 } ,

the map
Fs(x) = x

(1− s) + s ‖x‖
retracts the annulus to the unit sphere, and retracts paths on the annulus
to those on the sphere, homotopies on the annulus to homotopies on the
sphere, so that π1 (A) = π1

(
Sn−1).

It turns out to be more difficult to find the fundamental group of the
plane punctured at two points, or at three points, etc.

The spaces R and R2 are not homeomorphic, as R becomes path discon-
nected when we remove any point, while R2 does not.

The spaces R2 and R3 are not homeomorphic, as R2 punctured at any
point has fundamental group Z, while R3 punctured at any point remains
simply connected.

The Hawaiian earring has a very complicated and
uncountable fundamental group.

The union of all circles with irrational radius passing through the origin
and tangent to the vertical axis is even more complicated than the
Hawaiian earring.

Lemma 3.4. Any connected finite graph has finitely generated fundamental
group.

Proof. Take a connected finite graph X and a vertex x0 ∈ X. A tree is a simply
connected graph. A maximal subtree is a maximal simply connected subgraph;
take one, say T ⊂ X. Then T contains all vertices, since otherwise we could
add an edge that attaches one more vertex, without creating a loop (any loop
would have two edges reaching that vertex). Each path in X is determined up
to homotopy by listing the edges it passes through. Each path in T is uniquely
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determined, up to homotopy, by its end points, since there is then a unique list
of edges giving a path between the end points. For each edge ea of X not in T ,
pick a loop [xa] in X starting at x0, and passing once along ea. Every loop [x]
in X, starting and ending at x0, passes finitely many times through each ea,
either in the same direction or the opposite direction to [xa]. Picture the last
edge ea which [x] passes along, and picture direction in which it passes. We can
suppose for simplicity that [xa] traverses ea in the opposite direction. Consider
the loop [y] = [xa] ∗ [x]. It goes through ea, say through the two vertices xb, xc
of ea, and then passes through T to x0, and then back again to xb and then xc.
By uniqueness of paths in T , up to homotopy, with given end points, we can
arrange that [y] takes the same route from xc to x0 and then back again. So
[y] is homotopic to cutting that part of [y] out, i.e. up to homotopy [xa][x] has
one fewer pass through ea that [x] did. By induction, we arrange that [x] is a
product of these various [xa].

Lemma 3.5. Any graph with countably many vertices and edges has countable
fundamental group.

Proof. By compactness of [0, 1], each loop in the graph can only hit finitely
many vertices and so finitely many edges. Listing the vertices and edges of the
loop in order gives the loop up to homotopy.

More inessential remarks on differential geometry

A diffeomorphism is a smooth of manifolds with smooth inverse. We will not
prove:

Theorem 3.6 (Sard). Take a smooth map ϕ : P → Q of manifolds. If P
has smaller dimension than Q, then the image of ϕ is nowhere dense. If P
and Q have equal dimension, there is a dense set of points q0 ∈ Q whose
preimage ϕ−1 { q0 } consists entirely of points p0 ∈ P near which ϕ is a local
diffeomorphism.

Careful: this point q0 could have empty preimage, for example if ϕ maps
all of P to a single point of Q.

For the spheres S2, S3, . . ., any path x : [0, 1]→ Sn is smoothly approx-
imated by some smooth path y : [0, 1] → Rn+1 homotopic to x, which
we then divide by ‖y‖ to get a smooth path homotopic to x lying in
Sn. By Sard’s theorem, y misses some point of the sphere. Recall that
stereographic projection from that point identifies the rest of the sphere
with Rn, where we can use our previous result to homotope to a con-
stant map: π1 (Sn) = { 1 }. Note that this doesn’t work for the circle
S1, where the application of Sard’s theorem doesn’t tell us anything.

A more difficult theorem, which we won’t prove, but which may provide
some comfort:



Maps and fundamental groups 35

Theorem 3.7 (Whitney [4] p. 49 Theorem 2.6). The smooth maps between
any two manifolds are dense in the continuous maps, in the topology of uniform
convergence on compact sets, and every continuous map is homotopic to a
smooth map.

Maps and fundamental groups

A diagram is a collection of maps between sets, drawn as a graph like:

X Z

Y

f

g

h

Start at one of the sets, and follow a path along the maps, in the direction of
their arrows: compose those maps. The diagram commutes if any two paths
with the same starting and ending points give the same composition. In our
example, this means that g = h ◦ f .

Lemma 3.8. A continuous map f : X → Y between topological spaces yields
a group morphism

f∗ : π1 (X,x0)→ π1 (Y, y0)
where y0 = f (x0), given by

f∗[x] = [f ◦ x]
for any path x : [0, 1] → X. The group morphism doesn’t change if f varies
through a homotopy of maps taking x0 to y0. More generally, if we take ho-
motopy ft of f through a family of maps taking, say x(t) to y(t), for some
paths x(t), y(t) = ft (x(t)), then there is a commutative diagram between the
maps f0∗ and f1∗:

π1 (X,x0) π1 (Y, y0)

π1 (X,x1) π1 (Y, y1)

f0

x∗ y∗

f1

Under composition of continuous maps

X Y Z
f g

the group morphisms

π1 (X,x0) π1 (Y, y0) π1 (Z, z0)f g

compose: (g ◦ f)∗ = g∗ ◦ f∗.

A homotopy equivalence is a continuous map f : X → Y between topological
spaces so that there is a continuous map g : Y → X for which f ◦ g and
g ◦ f are both homotopic to identity maps. A homotopy equivalence identifies
fundamental groups.
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The annulus in Rn is homotopy equivalent to the unit sphere, by the
map including the sphere into the annulus.

The sphere in Rn punctured at one point is homotopy equivalent to
Rn−1 by Ptolemaic projection, and so homotopy equivalent to a point.

The sphere in Rn punctured at two points is homotopy equivalent to the
annulus in Rn−1 by Ptolemaic projection, and so to the sphere in Rn−1.

If L ⊂ R3 is a line, the topological space X = R3 − L is homotopy
equivalent to S1, by projecting to a plane perpendicular to L, punctured
where the plane strikes L, and then taking a homotopy to a circle.

Theorem 3.9 (Fundamental theorem of algebra). Every nonconstant polyno-
mial function of one complex variable has a complex root.

Proof. Take a nonconstant polynomial function

p(z) = a0 + a1z + · · ·+ anz
n,

with an 6= 0. Clearly p(z) has a root just where p(z)/an has a root, so we can
assume that an = 1. Let α be the maximum of |a0|, |a1|, . . . , |an−1|. If we pick
any z with |z| > (n− 1)α then clearly the leading term of p(z) is larger than
all other terms added together, so p(z) 6= 0. Rescale the z variable if needed to
ensure that (n− 1)α < 1. So if |z| ≥ 1 then p(z) 6= 0. By the same reasoning,
none of the functions

pt(z) = zn + (1− t)
(
a0 + a1z + · · ·+ an−1z

n−1) ,
vanishes as long as |z| ≥ 1, a homotopy betweeen p0(z) = p(z) and p1(z) = zn.
Let

gt(eiθ) = pt(z)
pt(1) ,

where z = eiθ, for 0 ≤ t ≤ 1. This map is a homotopy between the loop

g0(z) = p(z)
p(1)

with z = eiθ and the loop
g1(z) = zn.

Note that gt(1) is fixed during the homotopy.
Let

ft(z) = p(tz)
p(t) ,
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where z = eiθ and 0 ≤ t ≤ 1. The map f is a homotopy from the trivial loop
at t = 0 to a loop at t = 1:

f1(z) = p(z)
p(1) = g0(z),

for z = eiθ. So, inside the plane punctured at the origin, the trivial loop is
homotopic to the loop winding n times and so n = 0.

3.6 Prove that the fundamental group of a product is the product of the
fundamental groups:

π1 (X × Y, (x0, y0)) ∼= π1 (X,x0)× π1 (Y, y0) .

The torus Tn = S1 × S1 × · · · × S1 has fundamental group

π1 (T ) = Zn.

3.7 Give some explanation (not a rigorous proof) why the surface called Alexan-
der’s horned sphere has uncountable fundamental group, while the open subset
of R3 inside (called Alexander’s horned ball) is simply connected.

Alexander’s horned sphere, Krzysztof Rykaczewski

Corollary 3.10. If a path connected topological space X admits a countable
basis of simply connected open sets, then its fundamental group is countable.

Proof. The homotopy class of any path is determined by listing off finitely many
simply connected open sets that cover it, in the order that it enters them, as
in lemma 3.1 on page 29.
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Corollary 3.11. Every compact and locally simply connected topological space
X has finitely generated fundamental group.

Proof. By compactness, we can find a finite covering by simply connected open
sets Xa and cover the overlaps Xa ∩Xb by finitely many path connected open
sets X ′c. The homotopy class of any path is determined by listing off finitely
many simply connected open sets that cover it, in the order that it enters them,
as in lemma 3.1 on page 29. The homotopy class of any path is determined by
listing off finitely many Xa and X ′c that cover it, in the order it enters them,
as in lemma 3.1 on page 29.



Chapter 4

Covering Spaces

Covering maps

A continuous map f : X → Y of topological spaces evenly covers an open set
UY ⊂ Y if f−1UY ⊂ X is a disjoint union of open sets mapped homeomorphi-
cally to UY by f , called sheets. The map f : X → Y is a covering map if Y has
an open cover by evenly covered open sets. A covering space of a topological
space Y is a topological space X equipped with a covering map f : X → Y .
Covering spaces are the main tool to calculate fundamental groups.

The map θ ∈ R 7→ (cos θ, sin θ) ∈ S1 is a cov-
ering map. Every open set of S1 which is not
all of S1 is evenly covered: use trigonometry
to write out an angle θ for each point of your
open set, well defined and unique up to adding
2π multiples. The sheets correspond to the
2π multiples.

The map eiθ ∈ S1 7→ einθ ∈ S1 is an n-sheeted covering.

The map x ∈ Rn 7→
(
eix1 , eix2 , . . . eixn

)
is a covering map of the n-

dimensional torus Tn ..= S1 × S1 × · · · × S1.

The map x ∈ S2 7→ [x] ∈ RP2 taking a point to the line through that
point is a 2-sheeted covering of the projective plane.

Take a manifold M . Let M̂ be the set of pairs (m, o) where m ∈ M
and o is an orientation of TmM , i.e. a choice of oriented basis up to
equivalence, with two bases equivalent if the change of basis matrix
between them has positive determinant. Then M̂ →M is a 2-1 covering

39
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map. If M is orientable, then M̂ is a disjoint union of two copies of M
and the covering map is a homeomorphism on each copy. If M is not
orientable, then M̂ is connected.

4.1 Let X be the open interval (0, 3) ⊂ R. Let Y be the unit circle in the
complex plane. Prove that the map f : X → Y given by f(x) = e2πix is not a
covering map.

In the complex plane
C, the map z ∈ C −
{ 0 } 7→ z3 ∈ C−{ 0 }
is a covering map.
We like to pretend
that we can draw ev-
ery covering map as
a picture of “sheets”,
but in this case the
best picture we get is
an immersed surface.

4.2 Prove that the number n of sheets (which might be ∞) above an evenly
covered open set is constant along any path in Y . In particular, if Y is path
connected, this number n is constant, and we say that the covering map is n
to 1.
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The fiber of a map f : X → Y over a point y0 ∈ Y is the set f−1 { y0 },
usually denoted Xy0 .

4.3 Prove that Xy0 ⊂ X is discrete, i.e. has the discrete topology as a subset
of X.

4.4 Suppose that f : X → Y is a covering map. Prove X is Hausdorff if and
only if Y is Hausdorff.

4.5 Prove that every proper local diffeomorphism f : P → Q between manifolds
without boundary, with Q connected, is a covering map.

Theorem 4.1 (Fundamental theorem of algebra). Suppose that k is a field
containing R and of finite dimension as a real vector space. Then k = R
or k = C, up to isomorphism. In particular, the splitting field of any real or
complex polynomial is R or C, i.e. every complex polynomial in one variable
splits into a product of linear factors over C.

Proof. Pick any inner product on the real vector space k. Take the unit sphere
S ⊂ k. The map f : x ∈ S 7→ x2/|x2| ∈ S is smooth. Compute that

f ′(x)y = 2x
|x2|

(y − 〈f(x), xy〉x) .

In particular, if f ′(x)y = 0 then y is a scalar multiple of x. So for y tangent to
S, f ′(x)y = 0 just when y = 0, i.e. f is a local diffeomorphism. The sphere is
compact, so f : S → S is a covering map. If f(x) = f(y), pick a real number
λ > 0 so that λ2 = |x2|/|y2|. Check that (x − λy)(x + λy) = 0, so x = ±λy,
i.e. up to scaling x = ±y, so f : S → S is 2-1. But the sphere of dimension
2 or more is simply connected, so does not admit a covering map of degree 2
from a connected space. So S is the 0-dimensional or 1-dimensional sphere, i.e.
k = R or k is a 2-dimensional real algebra. Suppose that k is 2-dimensional.
Pick some y ∈ k nonzero. Then y/|y| lies in the image of f , i.e., for some x
with |x| = 1,

x2

|x2|
= y

|y|
.

So if we let

λ =

√
|y|
|x2|

,

and replace x by λx, we find x2 = y. So every nonzero element of k has a
square root, and so in particular, −1 ∈ R has a square root in k, so k contains
C, and hence k = C. Note that we could pick k to be the splitting field of any
real or complex polynomial.
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Quotients by group actions

An action of a group Γ on a topological space X is a map associating to each
g ∈ Γ a continuous map X → X denoted x 7→ gx or sometimes denoted
x 7→ g ·x, so that g(hx) = (gh)x for any g, h ∈ Γ and x ∈ X and so that 1x = x
for any x ∈ X. The action is free if for any x ∈ X, the only g ∈ Γ for which
gx = x is g = 1. The action is a covering action if any x ∈ X lies in an open
set U ⊂ X so that the only g ∈ Γ for which gU intersects U is g = 1. A group
action is proper when any points x, y ∈ X lie in open sets Ux, Uy so that gUx
intersects Uy for only finitely many g ∈ Γ . The orbit of a point x ∈ X is the
set Γx ..= { gx | g ∈ Γ }. The quotient space X/Γ of the group action is the set
of orbits, with the quotient map x ∈ X 7→ Γx ∈ X/Γ .

4.6 Suppose that X is a metric space and that Γ acts on X by isometries.
Prove that Γ acts on X as a covering action if and only if the action is free
with discrete orbits.

4.7 Take an invertible matrix A with at least one eigenvalue λ satisfying λ > 1
and at least one eigenvalue µ satisfying 0 < µ < 1. Let M ..= Rn−{ 0 } and let
Γ ..= {An | n ∈ Z }. Show that the action of Γ on M has discrete orbits, but
the quotient space is not Hausdorff.

4.8 If a group Γ acts on a topological space X and X contains a compact set
intersecting every Γ -orbit, then X̄ is also compact.

Theorem 4.2. Take a group Γ acting on a topological space X. The quotient
map X → X̄ = X/Γ is a covering map just when the action is a covering
action.

Proof. For each point x ∈ X pick some open set Ux ⊂ X containing x so that
gUx doesn’t intersect Ux for any g ∈ Γ unless g = 1. The image Ūx ⊂ X̄
has preimage in X precisely the union of the nonoverlapping translates gUx
for g ∈ Γ . The open sets in Ūx have preimages precisely the Γ -invariant
open sets in the translates of Ux, precisely one of which lies in Ux. Hence the
quotient map restricted to Ux is a homeomorphism Ux → Ūx. Each element
of Γ interchanges the sheets. Conversely, if the quotient map is a covering
map, then evenly covered open sets have preimages precisely open sets U not
intersecting their translates gU .

Theorem 4.3. Take an action of a group Γ on a Hausdorff space X. The
quotient space is Hausdorff just when any two points of X lie in disjoint Γ -
invariant open sets.

Proof. Take two points x̄ 6= ȳ ∈ X̄ in the quotient space X̄ ..= X/Γ . Take
points x, y ∈ X mapping to them. If x̄, ȳ lie in disjoint open sets Ūx̄, Ūȳ, then
the preimages of these open sets are disjoint Γ -invariant open sets around x
and y.
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Conversely, take any disjoint Γ -invariant open sets around x and y, Ux, Uy.
Let Ūx̄, Ūȳ be their images in X̄. By Γ -invariance, the preimage of Ūx̄ is Ux so
Ūx̄ is open and Ūx̄ ∩ Ūȳ has preimage Ux ∩ Uy empty so is empty.

Theorem 4.4. Any proper group action on any Hausdorff space has Hausdorff
quotient space.

Proof. Surround points x, y ∈ X with open sets Ux, Uy so that gUx is disjoint
from Uy except for finitely many g ∈ Γ , say g1, g2, . . . , gn. Because X is
Hausdorff, for each j we can take “houses”: disjoint open sets Vj ,Wj so that
Vj ⊂ gjUx and Wj ⊂ Uy and gjxj ∈ Uj and y ∈Wj . Replace Ux with⋂

j

g−1
j Uj

and Uy with ⋂
j

Wj .

The resulting sets Ux and Uy have all translates disjoint, i.e. x and y lie in
disjoint invariant open sets.

A group Γ acting on a metric space X acts by isometries if x 7→ gx is an
isometry for all g ∈ Γ , i.e. d(gx, gy) = d(x, y) for any points x, y and g ∈ Γ .

Theorem 4.5. Take a group action on a metric space X by a group of isome-
tries Γ . The following are equivalent:

a. The orbits are closed.

b. Any two points of X lie in disjoint Γ -invariant open sets.

c. The quotient space is a metric space, under the quotient metric

d(x̄, ȳ) = inf
g∈Γ

d(gx, y),

so that the metric space topology agrees with the quotient topology.

Proof. The orbits are closed just when any point in any orbit lies at a positive
minimum distance from some point in any other chosen orbit, which occurs
just when the “quotient metric” expression d is a metric.

Suppose that the orbits are closed. Then the balls around distinct points
x̄, ȳ ∈ X̄ have as preimages in X some disjoint Γ -invariant open sets.

Suppose that any two points x 6= y ∈ X lie in disjoint Γ -invariant open sets
Ux, Uy. It is clear that the expression d above is continuous on X̄ × X̄, since
any open set of real numbers has open preimage inside X ×X. Next we want
to prove that d(x̄, ȳ) = 0 just when x̄ = ȳ. If d(gjx, y) → 0 for some gj ∈ Γ ,
then gjx enters Uy for all but finitely many j, and so Ux ∩ Uy is not empty.
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So d is a metric on X̄. If x ∈ X maps to x̄ ∈ X̄ then the ball of radius
r around each point x̄ has preimage precisely the set of points y ∈ X so that
d(gy, x) < r for some g ∈ Γ , i.e. just exactly the union of Γ -translates of the
ball of radius r around x. Take an open set W̄ ⊂ X̄ around x̄. Let W ⊂ X be
its preimage. Pick a radius r small enough that the ball of radius r around x
lies inside W . Then so do all Γ -translates. So the ball of radius r around x̄ lies
in W̄ .

A locally isometric covering map is a map of metric spaces X → Y so that
every point of Y lies in an open set Ū evenly covered, say by disjoint open sets
Uα ⊂ X for which Uα → Ū is an isometry.

Theorem 4.6. Take a free group action on a metric space X by a group of
isometries Γ with discrete orbits. Then the quotient map X → X/Γ is a locally
isometric covering map.

Proof. The quotient is a metric space by theorem 4.5 on the preceding page.
Take a point x ∈ X mapping to a point x̄ ∈ X̄ and a ball B ⊂ X̄ about x̄
of radius r small enough that it is evenly covered by balls Bα → B so that
gBα doesn’t intersect Bα unless g = 1. Let B′ ⊂ B be the ball of radius r/2
about x̄. Pick points y, z ∈ X in the same sheet B′α mapping to points ȳ, z̄ in
B′. The orbits are closed, so we can pick a point gz to be the closest point
to y in the orbit Γz. So d(gz, y) ≤ d(z, y) < r/2 so d(gz, x) < r. But then
gBα intersects Bα. So g = 1. Hence z is the closest point to y mapping to z̄.
Therefore d(z, y) = d(z̄, ȳ), for all z, y ∈ B′α.

The torus Tn = Rn/Zn is the quotient of the Rn by the free action of Zn
with discrete orbits. Hence the torus is a metric space in the quotient
topology, and Rn → Tn is a locally isometric covering map, as are all
of the following examples.

The real projective plane RP2 is the quotient of the unit sphere S2 ⊂ R3

by the covering action of Γ = { ±1 }.

The Möbius strip is the quotient R2/Γ by the covering action of rigid
motions Γ of the plane generated by the transformation

(x, y) 7→ (x+ 1,−y).

It is covered by the cylinder, given as the quotientR2/Γ0 by the subgroup
Γ0 ⊂ Γ generated by

(x, y) 7→ (x+ 2, y).
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Onl
y

side

one

The Klein bottle is the quotient R2/Γ by the covering action of rigid
motions Γ of the plane generated by the two transformations

(x, y) 7→ (x, y + 1)

and
(x, y) 7→ (x+ 1,−y).

It is clearly covered by the Möbius strip, and by the cylinder.

Lifting

Lemma 4.7. Take a covering map f : X → Y from a Hausdorff space X.
Take a path connected space Z and continuous maps g1, g2 : Z → X so that
f ◦ g1 = f ◦ g2. If g1 (z0) = g2 (z0) for some point z0 ∈ Z then g1 = g2.

Proof. Suppose that g1(z) = g2(z) at some point z ∈ Z. Let x = g1(z) and
y = f(z). Take an open set UY ⊂ Y around y so that f−1UY is a disjoint union
of sheets. Let UX be the sheet containing x. Let

f̃ ..= f |UX
.

Let
UZ ..= g−1

1 UX ∩ g−1
2 UX .

Clearly z ∈ UZ . Moreover
f ◦ g1 = f ◦ g2
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implies that on UZ ,
f̃ ◦ g1 = f̃ ◦ g2.

But f̃ is a diffeomorphism, so on UZ , g1 = g2.
The set E of points z ∈ Z at which g1 = g2 is not empty because z0 lies in

E. But E is open, since it contains an open set UZ around each of its points as
above. But E is also closed, because X is Hausdorff. Any path in Z starting
in E stays in E, because the set of points at which it lies in E is both an open
and a closed subset of [0, 1]. Since Z is path connected, E is all of Z.

Proposition 4.8. Take a covering map f : X → Y from a Hausdorff space X.
Take a path y : [0, 1] → Y , and a point x0 ∈ X so that f (x0) = y(0). There
is a unique path x : [0, 1]→ X so that f ◦ x = y and x(0) = x0, the lift of the
path y.

Proof. Uniqueness follows from lemma 4.7 on the previous page. Near each
point y ∈ Y there is an evenly covered open set UY ⊂ Y , i.e. so that f−1UY is
a disjoint union of open sets (the “sheets”), each mapped homeomorphically to
UY by f . For example, picking y to be y0, we find x0 on precisely one of these
sheets, call it UX , and we define

x(t) = f |−1
UX

(y(t))

on the largest interval 0 ≤ t < τ for which y(t) stays inside UY .
Cover [0, 1] by open intervals Ia so that y(t) stays inside an evenly covered

set Ua on each open interval Ia. By compactness, extract a finite cover, and
therefore a finite collection of intervals 0 ≤ t ≤ a1, a1 ≤ t ≤ a2, . . . , an−1 ≤ t ≤
1, so that on each one y(t) stays inside an evenly covered open set U1, U2, . . . Un.
Lift up y(t) by inverting f over each Ui one at a time.

Proposition 4.9. Suppose that f : X → Y is a covering map from a Hausdorff
space, and F : [0, 1] × Z → Y is a continuous map, written Fs(z) ..= F (s, z),
and that there is a continuous map F̂0 : Z → X so that f ◦ F̂0 = F0. Then there
is a unique map F̂ : [0, 1]× Z → X so that f ◦ F̂ = F and F̂ (0, z) = F̂0(z) for
all z ∈ Z, the lift of the map F .

Proof. For each z0 ∈ Z, lift the path F (s, z0) ∈ Y to a path F̂ (s, z0), and this
defines F̂ (s, z0). We need to prove that F̂ is continuous. This is a purely local
problem, so it suffices to prove for a trivial covering map, a homeomorphism,
for which is it obvious.

Lemma 4.10. The morphism of fundamental groups f∗ : π1 (X)→ π1 (Y ) of
a covering map f : X → Y on a Hausdorff space X is injective. Its image is
the set of loops in Y (modulo homotopy) which lift to loops in X.

Proof. The kernel of f∗ consists of the homotopy classes of the loops x : [0, 1]→
X so that f ◦x : [0, 1]→ Y is homotopic to the trivial loop. Lift that homotopy
up to a homotopy of x to the trivial loop. Given a loop y with homotopy class
in the image, x is its lift, a loop.
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Take a covering f : X → Y with points x0 ∈ X and y0 ..= f (x0) ∈ Y .
Denote the fiber as Xy0

..= f−1 { y0 }. Given any loop ` based at y0, let ˆ̀ be its
lift, a curve in X starting at x0. Suppose that we replace ` by a homotopy of
loops `t based at y0. That homotopy lifts to a homotopy of curves ˆ̀

t, all starting
at y0. Since `t ends at y0, all of those curves ˆ̀

t end at points of Xy0 . Looking
at our picture of sheets, we see that Xy0 is a discrete set, i.e. any continuous
map to Xy0 is constant. By continuity, the map t 7→ ˆ̀

t(1) is constant. So the
endpoint ˆ̀(1) doesn’t change if we move ` through a homotopy. Therefore we
have a well defined map

π1 (Y, y0) 7→ Xy0 .

Take any loop x based at x0 and consider the associated loop y = f ◦ x based
at y0. The loop y ∗ ` starts at y0 and its lift is x ∗ ˆ̀, with the same endpoints
as ˆ̀. Therefore our map descends to a map

π1 (Y, y0) /f∗π1 (X,x0) 7→ Xy0 .

Lemma 4.11. If X and Y are path connected Hausdorff topological spaces
and f : X → Y is a covering map, then the endpoint map

π1 (Y, y0) /f∗π1 (X,x0) 7→ Xy0

is bijective.

Proof. Take any two points x0, x1 ∈ Xy0 and connected a path x. Then the
loop y = f ◦ x lifts to x, so the map takes y to x1.

Proposition 4.12. Take a covering map f : X → Y from a Hausdorff space
and a map g : Z → Y from a path connected and locally path connected topolog-
ical space Z,

X

Z Y

and points z0 ∈ Z, x0 ∈ X, y0 ∈ Y so that y0 = f (x0) = g (z0). Then there is
a unique lift ĝ : Z → X so that

X

Z Y

i.e. a map so that f ◦ ĝ = g and ĝ (z0) = x0, if and only if

g∗π1 (Z, z0) ⊂ f∗π1 (X,x0) .
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Proof. If ĝ exists then g∗ = f∗ ◦ ĝ∗ so the image of g∗ lies in the image of f∗.
Suppose that the image of g∗ lies in the image of f∗. Take a path z in Z starting
at z0. Map it a path y in Y and lift to a path x in X. Then define ĝ(z) = x(1).
This is a map z 7→ ĝ(z) defined on paths. Lifting homotopy of paths, ĝ(z) is
clearly defined on homotopy classes of paths: ĝ([z]). Take two paths z, z′ with
the same endpoints in Z and let y, y′ and x, x′ be the corresponding paths in
Y and lifts to X. Then [z]−1[z′] is a loop in Z, mapping to the loop [y]−1[y′]
in Y , which lifts to a loop in X. By uniqueness of lifts, this loop is [x]−1[x′].
In other words, x and x′ have the same endpoint, so ĝ([z]) = ĝ([z′]) is that end
point. So ĝ([z]) depends only on the endpoint z1 = z(1) of a path z: ĝ(z1),
i.e. ĝ : Z → X. Invert the covering map f locally, in some evenly covered open
set in Y . Pick a simply connected open set in Z mapping to that open set in
Y . Then paths in that simply connected open set will stay in the domain of
the local inverse of f . We see that ĝ and g are locally identified by that local
inverse of f , so ĝ is continuous.

4.9 Suppose that Z ⊂ C is a domain in the complex plane and that g : Z → C
is a complex analytic function defined in Z. A logarithm for g(z) is a complex
analytic function G : Z → C so that g(z) = eG(z). Prove that g(z) has a
logarithm G(z) just when both of the following conditions are satisfied:

a. g(z) 6= 0 for any z ∈ Z and

b. g takes every loop in Z to a null homotopic loop in C − { 0 }.

Suppose that f : X → Y is a covering space over a path connected space
Y . Take two points y0, y1 ∈ Y . Take a path y(t) ∈ Y from y0 to y1. For
each point x0 ∈ Xy0 , let xx0(t) be the lift of y(t) that satisfies xx0(0) = x0.
Let h : [0, 1] × Xy0 → X, ht (x0) ..= xx0(t). Since the lift xx0(t) is uniquely
determined by the choice of x0, this map h is well defined. By problem 4.3 on
page 41, every fiber Xy0 has the discrete topology as a subset of X. Hence h is
continuous simply because each path xx0(t) is continuous. The map ht : Xy0 →
Xy1 has inverse given by following the path y(t) backwards and constructing the
same sort of map as h. In particular, the fibers Xy0 and Xy1 are homeomorphic
via h1 : Xy0 → Xy1 , the monodromy of the path y(t).

By the homotopy lifting lemma, the monodromy depends only on the ho-
motopy class of y(t), giving a group morphism from π1 (Y, y0) to the group of
permutations of the elements of Xy0 , the monodromy morphism.

4.10 Let X be the unit sphere in R3, let Y be the projective plane, and
let f : X → Y be the usual covering map: f(x) being the line through the
origin passing through x. Take the path x(t) = (cosπt, sin πt, 0) ∈ X and
let y(t) = f(x(t)). Explain why y(t) is a loop and calculate its monodromy
morphism.

4.11 Take a path connected Hausdorff space X with covering action of a group
Γ and let X̄ = Γ\X. Explain how to find the monodromy of the covering map
x ∈ X 7→ Γx ∈ X̄ over any loop in X̄.
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4.12 Prove that every continuous map X → Y from the real projective plane
X to the 2-dimensional torus Y is null homotopic.

The universal covering space

A universal covering space of a topological space Y is a simply connected
covering space X of Y . The map X → Y is a universal covering map.

The map θ ∈ R 7→ eiθ ∈ S1 is a universal covering map.

The map x ∈ S2 → [x] ∈ RP2, taking a unit vector x to the line through
0 and x, is a universal covering map.

A morphism of covering spaces X → Y and Z → Y is a continuous map
X → Z making a commutative diagram:

X Z

Y

4.13 Prove that X → Z is then also a covering map.

4.14 Suppose that Y is a Hausdorff topological space which admits a universal
covering space. Prove that a covering map (X,x0) → (Y, y0) is universal
just when every other covering map (Z, z0)→ (Y, y0) has a unique morphism
(X,x0)→ (Z, z0).

An isomorphism is a morphism with an inverse morphism.

4.15 Suppose that X1 → X and X2 → X are universal covering spaces of a
Hausdorff space X. Pick points x1 ∈ X1 and x2 ∈ X2 mapping to the same
point x0 ∈ X. Prove that there is a unique isomorphism taking x1 to x2.

Theorem 4.13. Every path connected and locally simply connected topological
space X has a universal covering space X̃ → X.

Proof. Pick a point x0 ∈ X. Let X̃ be the set of all paths starting at x0, modulo
homotopy fixing endpoints. Let x̃0 = [1x0 ] be the homotopy class of the trivial
loop. Map p : [x] ∈ X̃ 7→ x(1) ∈ X, a surjective map. The open sets U ⊂ X
which are simply connected form a basis of open sets on X. To such a set U
and a path x from x0 to a x1 ∈ U , with homotopy class [x] with fixed endpoints,
we associate the set

U[x]
..= { [x ∗ y] | y is a path in U and y(0) = x(1) } ⊂ X̃.
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Note that [x] ∈ U[x], so these sets U[x] cover X̃. We take these sets U[x] be a
basis of open sets in X̃. Note that

p ([x ∗ y]) = y(1) ∈ U,

so that
p
(
U[x]

)
= U.

Since U is simply connected, any two paths y, z from x(1) to y(1) = z(1) are
homotopic, so [x ∗ y] = [x ∗ z], i.e. p is injective on U[x]. So p is a bijection

p : U[x] → U.

If [z] ∈ U[x] then [z] = [x ∗ y] for some y. But then [x] = [ȳ ∗ z], so

[x] ∈ U[z].

Take any two such open sets U[x], V[y], containing some common point [z],
we see than that

U[x] = U[z]

and
V[y] = V[z].

Take an open subset W ⊂ U ∩ V , connected and simply connected. Then

W[z] ⊂ U[x] ∩ V[y].

Therefore the sets U[x] form the basis of a topology: their unions are closed
under finite intersections. Note that

p−1U =
⋃
[x]

U[x]

where the union is over all paths x from x0 to a point of U . The map p : X̃ → X
is therefore continuous.

We want to show that the map

p|U[x]
: U[x] → U

has a continuous inverse. This is a bijection, so has an inverse, call it q. We
need only check that, for any open set of U[x], the inverse image via q is also
open. In other words, we need only check that, for any open set of U[x], the
image via p is also open. Since the various {W[y] } open sets form a basis for
our topology, it is enough to check that, for any simply connected open set
W ⊂ U , and path y from x0 to a point of W , the image

pW[y] ⊂ U

is open. But this is just exactly W , since W is path connected, so every point
of W is the endpoint of a path in W .
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Given any path x(t) starting at x0, let

xs(t) =
{
x(t), if 0 ≤ t ≤ s,
x(s), if s ≤ t ≤ 1.

The homotopy class [xt] is a path x̃(t) = [xt] in X̃ from x̃0 to [x1]. So X̃ is
path connected.

Take a loop x(t) in X starting and ending at x0. The loop lifts to a path x̃(t)
as above. By definition, the path x̃(t) is a loop just when x̃(1) = x̃(0) = [1x0 ].
But x̃(1) = [x1] = [x] is the homotopy class of x, so the lift is a loop just when
the original loop is null homotopic, in which case the lift is null homotopic.

4.16 Suppose that f : Rn → Rn is a continuously differentiable map, that f ′(x)
is an invertible matrix for every x ∈ Rn, and that, for any sequence x1, x2, . . .
with ‖xi‖ → ∞, ‖f (xi)‖ → ∞. Prove that f is a diffeomorphism.

The fundamental group π1 (X,x0) acts on the universal covering space X̃
by the action [x][y] = [x ∗ y], which is clearly continuous. The covering map
X̃ → X is invariant under the action.

Lemma 4.14. Take a path connected and locally simply-connected topological
space X. The action of the fundamental group on the universal covering space
is a covering action.

Proof. We use the notation of theorem 4.13 on page 49. Take two points
[x1] , [x2] ∈ X̃. If the paths x1(t), x2(t) have distinct endpoints, say x1(1) 6=
x2(1), then pick disjoint open sets U,W around them, and then U[x1] does not
intersect W[x2]. If the paths have the same endpoint, take a simply connected
open set U containing that endpoint: x1(1) = x2(1) ∈ U . If the open sets
U[x1] and U[x2] are not disjoint, then they are equal (as we saw in the proof
of theorem 4.13). The homeomorphism p : U[x1] → U over the evenly covered
open sets U then identifies the points [x1], [x2] ∈ X̃, so the points of X̃ are not
distinct.

4.17 Prove that the only topological spaces with R as a covering space are R
and S1.

Lemma 4.15. Take a path connected and locally simply connected space X.
Every subgroup Γ ⊂ π1 (X) arises as the image of the fundamental group of
a connected covering space XΓ → X. Any connected covering space Z → X
whose fundamental group has image Γ is isomorphic to XΓ → X.

Proof. Let XΓ
..= X̃/Γ , with the topology generated by declaring open sets to

be the preimages of the open sets of X under the quotient map. So X̃ → XΓ →
X are continuous maps, and indeed covering maps. Take a connected covering
space f : Z → X for which π1 (Z) maps to f∗π1 (Z) = Γ . By proposition 4.12
on page 47, the map f : Z → X lifts to a map f̂ : Z → XΓ , and the covering
map p : XΓ → X lifts to a map p̂ : XΓ → Z. We leave the reader to check that
these maps are inverses of one another.
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Corollary 4.16. If a group Γ has a covering action on a simply connected
and locally simply connected Hausdorff topological space X, then the quotient
has fundamental group

π1 (Γ\X) = Γ

and the quotient map X → Γ\X is the universal covering map.

The fundamental group of the Klein bottle is the nonabelian group
generated by the two transformations

(x, y) 7→ (x, y + 1)

and
(x, y) 7→ (x+ 1,−y)

of the plane. Picture how this acts on the 1 × 1 squares with integer
corners. Since the (x, y)-plane is the universal covering space of the Klein
bottle, the preimage of each point is an orbit of these transformations.
Each element of the group is identified with such a point, so the group
is identified with the integer points of the plane, but with a tricky group
operation.

The fundamental group of the torus R2/Z2 is Z2, abelian. Hence the
Klein bottle is not homeomorphic to the torus.

The fundamental group of RPn is ±1, from the covering map Sn → RPn
and the fact that Sn is simply connected.

Deck transformations

A deck transformation of a covering map f : X → Y is a homeomorphism
g : X → X so that f ◦ g = f .

For any integer n, the map θ 7→ θ+ 2πn is a deck transformation of the
universal covering space θ ∈ R 7→ eiθ ∈ S1.

The map x ∈ S2 7→ −x ∈ S2 is a deck transformation of the universal
covering map x ∈ S2 7→ [x] ∈ RP2.

Lemma 4.17. Take a Hausdorff, path connected and locally simply connected
space X. The group of deck transformations of the universal covering space
X̃ → X is precisely π1 (X), acting by [x][y] = [x ∗ y].
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Proof. It is clear that the fundamental group acts in this manner by deck
transformations. Write out universal covering as p : X̃ → X and suppose that

p (x̃0) = x0.

Take a deck transformation g : X̃ → X̃, say taking x̃0 to some point x̃1. Since
X̃ is simply connected, there is a unique path x̃ from x̃0 to x̃1, up to homotopy.
Composing g with the map

[y] 7→
[
x̃−1 ∗ y

]
we can arrange that g fixes x̃0. Being a deck transformation, g is locally
identified by p with the identity map X → X, so if g fixes a point, then g fixes
all nearby points, lifting the identity map to the unique lift up to X̃. Therefore
g is the identity map. So every deck transformation of the universal covering
space arises from a unique element of the fundamental group.

4.18 Let Y be the set of all quadratic polynomials of the form z2 + bz+ c, with
two distinct roots and complex coefficients b, c, in a complex variable z. Let
X be the set of all pairs (z0, z1) of distinct complex numbers z0 6= z1. Map
f : X → Y by taking f(z0, z1) to be the quadratic polynomial in Y with roots
z = z0 and z = z1. Explain why f is a covering map. Explain how to find the
universal covering space Ỹ → Y . Explain how the fundamental group of Y acts
on Ỹ .

Classification of regular covering spaces

A covering space X → Y is regular if the deck transformations act transitively
on the fibers, i.e. the quotient is Y . If Γ is the group of deck transformations, we
also say that Y → X is a Γ -covering. It is convenient to restate lemma 4.15 on
page 51 in terms of maps to groups, rather than in terms of subgroups, so that
we can find all of the regular covering spaces. Take a path connected and locally
simply connected space X, a group Γ , and a group morphism φ : π1 (X)→ Γ .
Write the universal covering space of X as p : X̃ → X. Give Γ and π1 (X) the
discrete topology. Let π1 (X) acts on X̃ × Γ by having any h ∈ π1 (X) act on
(x, g) ∈ X̃ × Γ as

h(x, g) = (hx, gφ(h)−1).
Let

Xφ
..= (X̃ × Γ )/π1 (X) ,

with quotient topology. The map (x, g) 7→ p(x) is π1 (X)-invariant, so descends
to a unique map pφ : Xφ → X. The group Γ acts on X̃×Γ by g0(x, g) = (x, g0g).
This action commutes with the π1 (X)-action, so descends to an action on Xφ.

Theorem 4.18. Take a path connected and locally simply connected space X,
a group Γ , and a group morphism φ : π1 (X)→ Γ . Then pφ : Xφ → X is a Γ -
covering. The space Xφ is path connected just when φ is surjective. Conversely,
every regular covering space Y → X is isomorphic to Xφ, for a unique φ.



54 Covering Spaces

Proof. The actions of π1 (X) and of Γ on X̃ × Γ are covering actions, so

X̃ × Γ → Xφ

is a covering map. But
X̃ × Γ → Xφ → X

is also a covering map, so every point x0 ∈ X lies in an open set U ⊂ X with
preimage in X̃ equivariantly homeomorphic to a product U × π1 (X). So the
preimage of U in X̃ ×Γ is equivariantly U ×π1 (X)×Γ . So Xφ is the quotient
by the action, i.e. U × Γ .

Suppose that Γ acts as deck transformations on some covering space Y → X,
with quotient X. So if we have points x0 ∈ X and y0 ∈ Yx0 then Γ acts on Yx0

transitively, and each element of Γ is uniquely determined by where it takes
y0. Take a path on X, say [x] ∈ X̃, starting at x0. Lift to a path [y] on Y ,
starting at y0, to get a map X̃ → Y . If [x] is a loop, [y] has end points above
x0. Since Γ acts as deck transformations on Y with quotient X, y(1) = g y0
for a unique deck transformation g ∈ Γ , say g = φ([x]), so φ : π1 (X)→ Γ is a
group morphism. So then X̃ → Y is φ-equivariant, dropping to a morphism
Xφ → Y , which is a bijection on fibers above x0, so an isomorphism.

van Kampen’s theorem I

Theorem 4.19 (van Kampen I). Suppose that X is a path connected and
locally simply connected topological space, with a covering by path connected
open sets Xa ⊂ X, all containing the same point x0 ∈ X, and that every
intersection Xab

..= Xa ∩ Xb is also path connected. Let π ..= π1 (X,x0) and
πa ..= π1 (Xa, x0), and so on. Take a group Γ and group morphisms πa → Γ
which agree on every πab, i.e. a commutative diagram

πab πa

πb π

Γ

for every a, b. Then there is a unique group morphism π → Γ which makes
commutative all of these diagrams:

πab πa

πb π

Γ
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Proof. Call the group morphisms φa : πa → Γ . Returning to theorem 4.18 on
page 53, consider the Γ -covering spaces X̌a

..= (Xa)φa
→ Xa. Each contains

an open set X̌ab ⊂ X̌a: the preimage of Xab ⊂ Xa. So X̌ab → Xab is the
Γ -covering space Xψab

where ψab is the composition πab → πa → Γ . Since the
two compositions πab → πa → Γ and πab → πb → Γ are equal by assumption,
these Γ -covering spaces X̌ab and X̌ba are identical, so there is a Γ -equivariant
homeomorphism X̌ab → X̌ba. Let X̌ be the join: quotient of the disjoint union
of all X̌a by the equivalence of these homeomorphisms. By equivariance, X̌ has
a Γ -action, free because it is free at each point of each X̌a. The Γ -quotient is
the join of all Xa along all Xab, i.e. X, and X̌ → X is a Γ -covering because it
is locally. But then X̌ → X arises from a unique group morphism φ : π → Γ , as
X̌ = Xφ. This morphism then restricts to πa to become the group morphism
that builds X̌a, i.e. φa.

Group presentations

Take an abstract set S. A word on the alphabet S is a finite sequence of choices
of element of S and integer power. We write each word as a string of symbols

sa1
1 sa2

2 . . . sak

k .

We allow the empty string, and write it as 1. Reduce a word by deleting any
s0 symbols and replacing any subword spsq by sp+q. The free group 〈S〉 on
an alphabet S is the collection of all reduced words on S. The multiplication
operation: multiply two words by writing down one after the other, called
concatenation and then reducing. The inverse operation: write down the word
in reverse order, with opposite signs for the powers.

Take an abstract set S with associated free group 〈S〉. Take a subsetR ⊂ 〈S〉.
The group generated by S with relations R, denoted 〈S|R〉, is the quotient of
〈S〉 by the smallest normal subgroup containing R. The expression of a group
in the form 〈S|R〉 is a presentation of the group with generators S and relations
R. A group is finitely presented if it is isomorphic to a group 〈S|R〉 with finite
S and R.

Lemma 4.20. Every map of sets f : S → G to a group extends uniquely to a
morphism of groups f : 〈S〉 → G. It therefore extends to an injective morphism
of groups 〈S|R〉 → G where R is the set of all words

w = sa1
1 sa2

2 . . . sak

k

on the alphabet S for which

f(s1)a1 . . . f(sk)ak = 1.

In practice, we usually write the relations not as a set R, but as a collection
of equations like

w1 = w2

between words. This equation means that we require w−1
2 w1 ∈ R.
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We have see that the Klein bottle X has fundamental group generated
by the two transformations

T : (x, y) 7→ (x, y + 1)

and
F : (x, y) 7→ (x+ 1,−y)

of the plane, a translation and a flip. Check TFT = F . Let Γ =
〈f, t|tft = f〉; in other words Γ is the group generated by alphabet { t, f }
with relation tft = t, i.e. with R = { t−1tft }. So the fundamental
group π = π1 (X) admits a surjective morphism of groups Γ → π,
mapping t 7→ T and f 7→ F . Here t is a formal symbol, not an actual
transformation of the plane, while T is the actual transformation. Take
any word in Γ . Wherever we find tf we replace it by ft−1. Wherever
we find t−1f we replace it by ft. Wherever we find tf−1 we replace
it by f−1t−1. Wherever we find t−1f−1 we replace it by f−1t. The
reader can check that these are all consequences of tft = f . Therefore
any word in Γ can be written uniquely as fptq. If the corresponding
transformation F pT q is the identity, then it fixes the origin, and so the
translations of the x variable cancel each other out, i.e. p = 0. But
then T q(x, y) = (x, y + q) fixes the origin just when q = 0. So the only
element of Γ mapping to the trivial transformation of the plane is 1.
Therefore Γ = π, i.e. the fundamental group of the Klein bottle X is

π1 (X) = 〈f, t|tft = f〉 .

The image

is invariant under a vertical translation and under a horizontal trans-
lation with a flip (taking an upward pointing corner to a downward
pointing one). The quotient by those two symmetries is thus the Klein
bottle.
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The fundamental group of the real projective space RPn is Z/2Z (if
n ≥ 2), as we have seen, which clearly has the presentation

π1 (RPn) =
〈
x|x2 = 1

〉
.

Amalgamations

Suppose that G and H are two groups. We would like to define a group G ∗H,
which contains G and H, and is otherwise “as unconstrained as possible”. The
product G × H is not “unconstrained”, because the elements of G commute
with those of H inside G×H.

First, note that any group G has an obvious group morphism 〈G〉 → G
given by g 7→ g. It will help to write out concatenations using some symbol like

g1 ∗ g2 ∗ · · · ∗ gn ∈ 〈G〉 .

Then we can write our group morphism as

g1 ∗ g2 ∗ · · · ∗ gn ∈ 〈G〉 7→ g1g2 . . . gn ∈ G.

This group morphism is clearly surjective, with kernel precisely the group
NG ⊂ 〈G〉 whose elements are the concatenations

g1 ∗ g2 ∗ · · · ∗ gn

for which g1g2 . . . gn = 1. So we can write

G = 〈G|NG〉 .

Think of NG as encoding all of the equations satisfied inside the group G.
We define the free product G ∗ H to be the group 〈G tH|NG tNH〉 gen-

erated by the elements of G and H, subject to the relations consisting of all
equations satisfied by elements of G together with all equations satisfied by
elements of H.

Another way to look at this: a word in G,H is a finite sequence of elements
of G and of H (perhaps empty), written beside one another with ∗ symbols
inbetween, like

g1 ∗ g2 ∗ h1 ∗ g3 ∗ h2 ∗ h3 ∗ g4,

et cetera. We denote the empty sequence as 1. We reduce a word by deleting
any appearance of the identity element (of either group), and also by replacing
any two neighboring elements from the same group by their product in that
group:

g1 ∗ g2 7→ g1g2.

A word is reduced if we cannot further reduce it. The group G ∗H is the set of
reduced words, with multiplication being simply writing down one word after
another and then reducing.
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A further wrinkle: suppose that K ⊂ G is a subgroup which also appears
as a subgroup of H: K ⊂ H. The amalgamation of G and H over K, denoted
G ∗K H, is

G ∗K H = 〈G tH|NG tNH t E〉
where E is the collection of equations kG = kH where kG is an element of K
as a subgroup of G, and kH is the associated element of K ⊂ H. Equivalently,
we can think of allowing reduced words to be acted on by inserting into any
reduced word an element of K right of an element of G, and left of the next
element ofH, and vice versa. There is no longer any straightforward description
in terms of reduced words, but the trivial elements, once reduced, are products
k1 ∗ k−1

1 ∗ · · · ∗ kn ∗ k−1
n .

Similarly, if we have a collection of groups Ga, for a in some set, the free
product ∗Ga is the quotient 〈⊔

a

Ga|
⊔
a

NGa

〉
,

and if we have some groups Kc and various morphisms φca : Kc → Ga, the
amalgamation ∗KcGa is 〈⊔

a

Ga|
⊔
a

NGa
t E

〉
,

where E is the set of all equations φca(k) = φcb(k) where k ∈ Kc.

van Kampen’s theorem II

Theorem 4.21 (van Kampen II). Take a path connected and locally simply
connected topological space X, and a cover by path connected open sets Xa ⊂ X,
with path connected intersections Xab

..= Xa ∩ Xb, all containing some point
x0 ∈ X. Let π ..= π1 (X,x0), πa ..= π1 (Xa, x0), and so on, with obvious
commutative diagrams

πab πa

πb π

Then π = ∗πbc
πa is the amalgamation of all πa over all πab.

Proof. Let Γ ..= ∗πbc
πa. There are obvious morphisms of groups

πab πa

πb π

Γ
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given by taking each word in πa as giving a word in the larger alphabet of Γ .
By theorem 4.19 on page 54, there is a unique group morphism π → Γ make
commutative all diagrams

πab πa

πb π

Γ

This morphism of groups is surjective, because it includes the image of every
πa.

The group morphisms πa → π determine a single group morphism ∗πa → π
of the free product. Take any loop in X; lemma 3.1 on page 29 splits it into
intervals, say xi(t) ..= x|[ti,ti+1], remaining each in a single Xai . Adding a
little on at the beginning and end of those intervals, because every Xa is path
connected and contains x0, we can arrange that xi(t) is a loop starting and
ending at x0. Hence ∗πa → π is surjective.

The kernel of the composition ∗πa → π → Γ is precisely the subgroup
generated by the various words ka ∗ k−1

b where ka and kb are the images in πa
and πb of some k ∈ πab. The element k is a loop [x] in Xab, and so becomes
that loop sitting in either Xa and Xb, and both of those become the same loop
in X, so this word becomes trivial in π. So π → Γ is injective.

Suppose that X is the sphere of dimension n ≥ 2. Let X1 and X2 be
the sphere punctured at the south pole and the north pole. So X12
is the sphere with two punctures. These are all path connected, and
{ 1 } = π1 = π2, so { 1 } = π: X is simply connected.

Suppose that X is the bouquet of n circles, say joined at a point x0 ∈
X. We define each X1, . . . , Xn to be X with all but one of the circles
punctured, and hence homotopy equivalent to a single circle. So πi =
π1 (Xi, x0) = Z. The various πij are all trivial: all circles are punctured.
So π = Z ∗ · · · ∗ Z = ∗nZ.

If Ya are path connected and locally simply connected spaces with marked
points xa ∈ Ya, and let Y = ∗Ya be the join of them along those points,
then we can take simply connected neighborhoods Ua ⊂ Ya of xa, and
let Xa be the join Ya ∗ ∗b 6=aUb. Then πab = { 1 } and so π = ∗πa, i.e.
the fundamental group of the join at points is the free product of the
fundamental groups.



60 Covering Spaces

Puncture a torus, and gently widen the puncture, until you see a pair
of “belts” attached; homotopy equivalent to a bouquet of two circles. A
torus, say with fundamental group 〈x, y|xy = yx〉, becomes punctured,
and becomes a bouquet of circles with fundamental group 〈x, y〉, included
into the torus as x, y 7→ x, y.

Suppose that X is a connected manifold of dimension at least 3; pick
a point p0 ∈ X. Take a chart around p0, with connected domain, and
a point x0 ∈ X in the domain of the chart. Let X2 be an open set
identified by the chart with the interior of a closed ball. Cover X in the
open setX1 = X−{ p0 } andX2. They intersect in the setX0 = X1∩X2,
homeomorphic to a punctured ball according to the chart. Then π2 =
{ 1 } and π0 = { 1 }, so π = π1, i.e. π1 (M − { p0 } , x0) = π1 (M,x0):
deleting a point does not affect the fundamental group of a manifold of
dimension 3 or more.

How does poking a hole affect the fundamental group of a surface?
Suppose that X is a connected surface; pick a point p0 ∈ X. Take a
chart around p0: a homeomorphism from a connected neighborhood of
p0 to an open subset of the plane. Take a point x0 ∈ X in the domain of
the chart. Let X2 be an open set identified by the chart with the interior
of a closed disk in the plane. Cover X in the open set X1 = X − { p0 }
and X2. They intersect in the set X0 = X1 ∩X2, homeomorphic to a
punctured ball according to the chart. Then π2 = { 1 } and π0 = Z. so
π = π1 ∗Z 1 = π1/N , where N is the normal subgroup generated by the
puncture.

+ =

Take two tori, poke holes in them, and join together along a tube; let
X be the resulting surface of genus 2. Each punctured torus is an open
set X1, X2 ⊂ X, and the tube is their intersection X0 = X1 ∩X2. The
tube X0 has fundamental group π0 = Z, and this includes into each
fundamental group of each punctured torus as a small circle around the
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puncture. On each torus, the circle around the puncture is the product
xyx−1y−1, which of course vanishes once we close up the puncture. So
if we glue two tori together, the resulting surface X of genus 2 has
fundamental group〈

x, y,X, Y |xyx−1y−1 = XYX−1Y −1〉 .
4.19 Prove that the fundamental group of any compact, path connected, and
locally simply connected topological space is finitely presented.

Homotopy groups

For any topological space X with marked point x0, and any n ≥ 1, let πn (X,x0)
be the set of all continuous maps [0, 1]n → X taking every boundary point of
[0, 1]n to x0, modulo homotopy through such maps. Each πn (X,x0) has a
distinguished point: the constant map.

There is a special case: n = 0. We define π0 (X,x0) to be the set of all
components of X, with a special chosen component: that of x0. Make π0 (X,x0)
into a topological space, by the quotient topology.

For n ≥ 1, take f, g : [0, 1]n → X each mapping the boundary of [0, 1]n to
x0. Define f ∗ g to be the usual

(f ∗ g)(t, x2, . . . , xn) =
{
f(2t, x2, . . . , xn), if 0 ≤ t ≤ 1

2 ,

g(2t− 1, x2, . . . , xn), if 1
2 ≤ t ≤ 1,

and f̄(t, x2, . . . , xn) = f(1 − t, x2, . . . , xn). If f : X → Y is continuous, and
y0 ..= f(x0), define f∗ : π∗ (X,x0)→ π∗ (Y, y0) by f∗[g] = [f ◦ g].

A contraction of a topological space X to a point x0 ∈ X is a continuous
map ϕ : X × [0, 1]→ X so that ϕ(x, 0) = x and ϕ(x, 1) = x0 for any x ∈ X. A
topological space X is contractible if it has a contraction.

4.20 Prove that every contractible space is connected and has trivial homotopy
groups.

Given a continuous map f : X → Y , a lift of a continuous map g : Z → Y is
a continuous map ĝ : Z → X so that f ◦ ĝ = g. A Serre fibration is a continuous
map f : X → Y of topological spaces, so that for any box Z = [0, 1]n and
continuous map g : Z × [0, 1] → Y , denoted gt(z) ..= g(z, t), every lift of g0
extends to a lift of g.

Theorem 4.22. If f : X → Y is a Serre fibration, then the obvious maps

πn (F, x0)→ πn (X,x0)→ πn (Y, y0)

fit together into an exact sequence
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· · ·

π4 (F, x0) π4 (X,x0) π4 (Y, y0)

π3 (F, x0) π3 (X,x0) π3 (Y, y0)

π2 (F, x0) π2 (X,x0) π2 (Y, y0)

π1 (F, x0) π1 (X,x0) π1 (Y, y0)

π0 (F, x0) π0 (X,x0) π0 (Y, y0) 0

Pick x0 ∈ X, let y0 ..= f(x0) and let F ..= f−1 { y0 } ⊆ X. The mor-
phism π1 (X,x0) → π1 (Y, y0) kills loops in X which lie entirely in a fiber
F = f−1 { y0 }, i.e. those loops map to 1 ∈ π1 (Y, y0). More generally, it kills
the loops in X which admit a homotopy, fixing endpoints, to a loop in F . Any
loop in Y starting and ending at y0 lifts to a path in X, starting at x0, but
perhaps not a loop. Since it is a loop in Y , its lift has ends in X lying in the
fiber F . Under homotopy of the loop in Y , with fixed ends, the ends of the lift
can only move inside F , so they have well defined components, a map

π1 (X,x0)→ π1 (Y, y0)→ π0 (F, x0) ,

where π0 (Xy0 , x0) is the set of all path components of Xy0 , and contains a
distinguished element, the path component that contains x0 ∈ Xy0 . If the
ends of that lift lie in the same path component, then we can draw those two
ends together, obtaining the path in Y from a path in X, i.e. the image of
the first map is the “kernel” of the second, i.e. the elements mapping to the
distinguished component.

Take a continuous map h : Z × [0, 1]→ Y , which we write as ht(z) = h(z, t).
Suppose that h0(z) = y0 for all z, and hs(z) = y0 for all z ∈ ∂Z. Lift h0 to the
trivial map to x0. Lift h to a map ĥ : Z × [0, 1] → X extending that lift. So
f ◦ ĥt(z) = ht(z), and ĥ0(z) = x0 for all z ∈ Z. Since hs(z) = y0 for z ∈ ∂Z,
ĥs(z) ∈ F for z ∈ ∂Z, for all s. In particular, ĥs(z) stays in the component
of x0 in F , for z ∈ ∂Z, for all s. If we replace our choices at each step, still
ĥ1 : ∂Z → F varies only by homotopy, giving an element of πn−1 (F, x0), a map

πn (X,x0)→ πn (Y, y0)→ πn−1 (F, x0) .

If this element vanishes, then ĥ1 is nulhomotopic in F , and if we attach that
homotopy to ĥ, and its composition with X → Y to h, then h continues to
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map to hs(z) = y0. So h is an element of πn (Y, y0) arising from an element of
πn (X,x0). In other words, in

πn (X,x0)→ πn (Y, y0)→ πn−1 (F, x0) .

the kernel of the second map is the image of the first.
Being a Serre fibration is a local property in Y :

Lemma 4.23. A continuous map f : X → Y of topological spaces is a Serre
fibration if and only if there is an open cover of Y by open sets Ya ⊆ Y so that,
if Xa

..= f−1Ya and fa ..= f |Xa
, then each fa is a Serre fibration.

Proof. Take such an open cover, and some map g : Z × [0, 1] → Y with a lift
ĝ0 : Z → X, where Z = [0, 1]n. Cover the image of g in our open sets Ya. Take
a finite subcover. Divide up Z × [0, 1] into a grid of cubes small enough that
each lies inside a single Ya. Lift up one cube at a time.

A projection is a map (x, z) ∈ X × Z 7→ z ∈ Z; the fiber is Z. Two maps
X0 → Y0 and X1 → Y1 are isomorphic if there are diffeomorphisms X0 → X1

and Y0 → Y1 making a commutative diagram
X0 X1

Y0 Y1

A continuous

map is trivial if isomorphic to a projection. A continuous map π : X → Y is
locally trivial ifevery point of Y lies in an open set U ⊆ Y so that

π|π−1U : π−1U → U

is trivial. A fiber bundle is a continuous locally trivial map π : X → Y of
topological spaces.

Lemma 4.24. Every fiber bundle is a Serre fibration.

Proof. Fiber bundles are locally trivial, so true locally; apply lemma 4.23.





Hints

1.3. On the empty set, the only topology is the one whose only open set is the
empty set. On the set X = { 0 }, the only topology is the discrete topology,
which is also the indiscrete topology. On the set X = { 0, 1 }, the possible
topologies are

a. discrete: open sets are: the empty set, { 0 } , { 1 } , { 0, 1 };

b. indiscrete: open sets are: the empty set, { 0, 1 };

c. the Sierpinski topology: open sets are: the empty set, { 0 } , { 0, 1 };

d. the other Sierpinski topology: open sets are: the empty set, { 1 } , { 0, 1 }.

1.4. Take some sets {Ca }a∈A, so that each Ca ⊆ X is closed. The complement
Ua ..= X − Ca is open. So the union U ..=

⋃
a Ua is open. So its complement

C = X − U is closed. But C is the set of points of X not belonging to U , i.e.
not belonging to any Ua, i.e. belonging to Ca instead of Ua for every a, i.e.
C =

⋂
a Ca.

1.40. The diagonal is closed just when its complement is open. Its complement
is the set U ⊂ X × X of pairs of distinct points. This U is open just when
every point of U lies inside a basis element which lies in U , for any basis, and in
particular for the basis consisting of products U1 ×U2 of open sets U1, U2 ⊂ X.
So the diagonal is closed just when, for any pair of distinct points x1 6= x2 in X,
the point (x1, x2) lies inside a subset U1×U2 ⊂ X×X which does not intersect
the diagonal. In other words, just when x1 ∈ U1 and x2 ∈ U2 but U1 ∩ U2 is
empty. In other words, just when X is Hausdorff.
1.42. Take two points (x1, y1), (x2, y2) in X × Y . Take disjoint open sets
X1, X2 ⊂ X and Y1, Y2 ⊂ Y so that x1, x2, y1, y2 belong to X1, X2, Y1, Y2
respectively. Then (x1, y1) is in X1 × Y1 and so on.
1.46. Take X to be a set consisting of two points p, q with open sets: X, the
empty set, and the set { p }. Then { q } is the complement of { p }, so closed.
But { p } is not the complement of an open set, so is not closed. There are only
4 open sets, so every open cover is finite.
1.49. Take compact sets Ka and let K be their intersection. Take an open
cover Ub of K. By lemma 1.5 on page 12, every Ka is closed. Therefore the
intersection K is closed, so X −K is open. The open sets {X −K } ∪ {Ub }
cover X. So each set Ka is covered by these, and so covered by finitely many of
these. But then those finitely many cover K ⊂ Ka. So K is compact. Suppose

65
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thatK is empty. The open setsWb
..= X−Kb coverX. Each setKa is compact,

so finitely many Wb cover Ka, say Wb1 , . . . ,Wbn
. So Wa,Wb1 , . . . ,Wbn

covers
X. So their complements Ka,Kb1 , . . . ,Kbn

intersect in an empty set.
1.50. Let X = { 0, 1, 2, . . . } ∪ {∞,∞′}, where a subset U ⊆ X is open just
when either U ⊆ { 0, 1, 2, . . . } or X \U is finite. Then A = { 0, 1, 2, . . . } ∪ {∞}
and B = { 0, 1, 2, . . . }∪{∞′} are both compact. But A∩B = { 0, 1, 2, . . . } has
the discrete topology and is not compact.
1.67. Every point x of X lies in the interior U of a compact set Ū ⊂ X. So
K is covered by such interiors. Take a finite subcover U1, U2, . . . , Uk and let
V ..= U1 ∪ · · · ∪ Uk, so V̄ ⊂ Ū1 ∪ · · · ∪ Ūk is compact.
1.68. If X has a basis of precompact open sets, then every point of X lies in one
of them. If every point of X lies in a precompact open set, then those open sets
cover X, so X is locally compact. Suppose that X is locally compact. Take a
point x0 ∈ X. So x0 lies in one of our Xa open sets lying in a compact set, and
hence (by Hausdorffness!) with compact closure X̄a. Every open set U around
x0 contains U ∩Xa, which has compact closure, hence a basis of precompact
open sets.
1.69. We know the subsets of a Hausdorff space are Hausdorff. If U ⊆ X is
open, every point of U lies in an open set with compact closure inside U , so U is
locally compact Hausdorff. If A ⊆ X is closed, cover X in a basis of precompact
open sets, and they intersect A in precompact open sets covering A.
2.20. Take an open cover Ya ⊂ Y of f(K). Let Xa = f−1Ya. Then Xa form
an open cover of f−1f(K), and so of K. Take a finite subcover of K, say
X1, X2, . . . , Xn ⊂ X. Then the corresponding sets Y1, Y2, . . . , Yn are an open
cover of f(K).
2.25. If X ′, X ′′ are two such spaces, define f : X ′ → X ′′ to be the identity on
X and∞→∞. Take an open set U ⊆ X ′. If∞ is not in U , f(U) = U is open
since X ⊂ X ′′ is embedded. If ∞ ∈ U , C ..= X ′ − U = X − (U −∞) is closed
in X ′ so compact in X ′, therefore in X since X ⊂ X ′ is embedded, and so C
is compact in X ′′, and so closed since X ′′ is Hausdorff. Hence U = X ′′ − C is
open. Therefore f is an open map, and so is f−1 by the same argument, so
both are homeomorphisms.

Following problem 2.24 on page 20, let X ′ be the one point compactification
of X. We need to prove that X ′ is compact and Hausdorff and that X ⊂ X ′ is
embedded. Trivially any open set U ⊂ X ′ intersects X in an open set, so the
inclusion map X → X ′ is continuous. Conversely, any open set in X is open in
X ′, so the inclusion map is open, hence an embedding.

Take an open cover of X ′ by open sets X ′a. Each is either X ′a = (X −Ca)∪
{∞} for a compact set Ca ⊆ X or X ′a = Xa for open sets Xa ⊆ X. At least
one of these X ′a contains ∞, so is some X − Ca0 . The sets Xa or X − Ca
cover X ′ − {∞} so cover X. Because Ca0 ⊆ X is compact, Ca0 is covered by
finitely many of these. So then X ′ = X ∪ {∞} is covered by those finitely
many together with (X − Ca0) ∪ {∞}.

To see that X ′ is Hausdorff, note that X ⊂ X ′ is embedded and Hausdorff.
Take two points x, y ∈ X ′. If both are in X, then they are housed off. So we
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can suppose that y =∞ and x
inX. Because X is locally compact, we can choose a compact set C ⊆ X
containing an open set U around x, and then U, (X − C) ∪ {∞} house x,∞.

If X ′ satisfying these three conditions exists, we need to prove that X is
locally compact and Hausdorff. But X ⊂ X ′ is embedded in a Hausdorff space,
so Hausdorff. Pick a point x ∈ X and houses in X ′: open sets U, V ⊆ X ′ so
that x ∈ U and ∞ ∈ V and U ∩ V is empty. Then C = X ′ − V is closed in Y
so compact, and so compact in X, and contains U . So X is locally compact.
2.26. If we write a point p of the sphere Sn ⊂ Rn+1 as

p =
(
a
b

)
with a ∈ Rn and b ∈ R, then map

y = $(p) = a

1− b .

The inverse map is

p = $−1(y) =
(

0
1

)
+ 1

1 + ‖y‖2
(

2y
−2

)
.

So
$ : Sn −

(
0
−1

)
→ Rn

is a homeomorphism.
2.27. The image f(A) of a closed set A ⊆ X is closed in Y so closed f(X).
Hence we can replace Y by f(X) and assume the map is a bijection. Closed
sets have closed images. Open sets have open images by taking complements.
But then for f−1 : Y → X, the f−1-preimages of open sets are just exactly the
f -images, so open. So f−1 is continuous.
2.28. Suppose (a) and (b). Pick a compact set K ⊆ Y and an open cover
Uα ⊂ X of f−1K. Pick a point y0 ∈ Y . Choose finitely many open sets
Uαi
⊆ X covering f−1 { y0 }; let U be their union. Check that y0 belongs to

W ..= Y − f(X − U)

which is open since f is closed. Note that f−1W ⊂ U . For each y0 ∈ Y , there
is some such open set W . Cover K by finitely many such W , say Wj , each
arising as

Wj = Y − f(X − Uj),
from some open set Uj ⊂ X which itself is a finite union of open sets Uαi

on
X. So f−1K lies inside the union of the various f−1Wj , each of which lies in
its Uj . So f−1K lies in a finite union of Uαi sets.
2.29. Take a compact set K ⊆ Y . Since Y is Hausdorff, K is closed. Take an
open cover of f−1K by open sets Xa; add in one more open set X0 = X−f−1K
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to give an open cover of X. Take a finite subcover of X; throw away X0 to give
a finite subcover of f−1K.
2.33. The firs problem is to use linear algebra to prove that any matrix A ∈ Y
arises as a Gram matrix

A = ϕ(v1, . . . , vn),

where ϕ is the map giving Aij = 〈vi, vj〉. For this, you can use induction on
dimension. The second problem is to show that this Gram matrix uniquely
determines the vectors v1, . . . , vn up to orthogonal linear transformation. Hence
the map ϕ associating to vectors their Gram matrix is an injection modulo the
action of the orthogonal group. The third problem is to prove that every point
A ∈ Y lies in the interior of the image of a compact set of choices of vectors
v1, . . . , vn; but this follows from taking all of the vectors to lie in some large
enough ball in Rn, so that every Gram matrix whose diagonals are bounded by
the radius of that ball lies in the image of that set.
2.36. If we let t = π|x| then |f(x)|2 = cos2 t+ sin2 t = 1, so f is valued in the
unit sphere Y . Continuity is clear except when |x| → 0, but then the fact that
sin′ t = cos t tells us that

sin t
t

is continuous with
1 = lim

t→0

sin t
t

by L’Hôpital’s rule. Write

f(x) =
{(

cos(π|x|), sin(π|x|)
|x| x

)
, if |x| 6= 0,

(1, 0), if |x| = 0.

to see that f(x) → (1, 0) as |x| → 0, continuity. Clearly f(0) = (1, 0) and,
if |x| = 1, then f(x) = (−1, 0). Since 0 ≤ π|x| ≤ 1, if f(x) = (−1, 0) then
cos(π|x|) = −1 and sin(π|x|) = 0 and so π|x| = π, i.e. |x| = 1. If x, y ∈ X and
|x| < 1 and |y| < 1 and if f(x) = f(y) then

cos(π|x|) = cos(π|y|)

so 0 ≤ |x| = |y| < 1. But then also

sin(π|x|)x = sin(π|y|)y

and sin(π|x|) 6= 0 so x = y. Hence f is continuous and 1-1. Since X is compact
and Y is Hausdorff and f is onto, f identifies Y with the quotient of X by the
map, i.e. with the closed ball with its boundary glued to a single point.
3.2. Let Fs(t) = x((1− s)t+ sτ(t)).
4.1. Suppose that UY ⊂ Y is an evenly covered open set near 1 ∈ Y . Write
each point of Y as w = u + iv ∈ Y . Then UY contains a connected open set
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near 1 ∈ Y , say the “interval” −ε < v < ε. Since UY is evenly covered, so is
this “interval”. The preimage of this “interval” is a union of 4 open intervals:

(0, δ) ∪ (1− δ, 1 + δ) ∪ (2− δ, 2 + δ) ∪ (3− δ, 3)

where
δ = sin−1 ε

2π .

Any sheet over our open set is homeomorphic so also path connected, so lies
inside one of these 4 intervals. But no open subset of the first interval maps
onto our “interval” as the map takes on values u+ iv with 0 < v < ε there.
4.3. Pick an evenly covered open set Uy0 ⊂ Y containing y0. Every point
x0 ∈ Xy0 lies in a sheet, say Ux0 , over Uy0 . Take two distinct points x0, x1 ∈ Xy0 .
The sheets Ux0 and Ux1 are disjoint so x1 is not in Ux0 and x0 is not in Ux1 .
Hence Xy0 ∩ Ux0 = {x0 }. Take any subset S ⊂ Xy0 . Then

S = Xy0 ∩
⋃
x∈S

Ux

is the intersection of Xy0 with an open subset⋃
x∈S

Ux ⊂ X,

so is open inside Xy0 .
4.4. Suppose that Y is Hausdorff. Take distinct points x1, x2 of X. Let
y1 = f(x1) and y2 = f(x2).

Suppose that y1 6= y2. Take disjoint open sets U1, U2 ⊂ Y so that y1 ∈ U1
and y2 ∈ U2. Then f−1U1, f

−1U2 ⊂ X are disjoint open sets so that x1 ∈ f−1U1
and x2 ∈ f−1U2.

Suppose that y1 = y2. Take an evenly covered open set U ⊂ Y containing
y1. Every point x1 ∈ Xy0 lies in a sheet, say Ux1 , over U . The sheets Ux1 and
Ux2 are disjoint open sets.

Now instead suppose that X is Hausdorff. Take distinct points y1, y2 in
Y . Take two points x1, x2 in X so that y1 = f(x1) and y2 = f(x2). Pick
evenly covered open sets Uy1 and Uy2 around y1 and y2. Pick disjoint open
sets Wx1 and Wx2 around x1 and x2. Let Ux1 = Wx1 ∩ f−1Uy1 . Then f is a
homeomorphism of Ux1 to its image inside Uy1 ; call its image Vy1 . Similarly
define Vy2 . Because f homeomorphically maps Ux1 to Vy1 , Vy1 is an open set
in Y . The sets Vy1 and Vy2 are disjoint since they are images of disjoint open
sets in X.
4.5. Take a point q0 ∈ Q. Because f is proper, the fiber Pq0

..= f−1 { q0 } is
compact. Because f is a local diffeomorphism, each point p0 ∈ Pq0 lies in an
open set Up0 ⊂ P taken by f diffeomorphically to a neighborhood Uq0 ⊂ Q.
The set Pq0 intersects Up0 in a set taken by f to { q0 }, so just the single point
p0. Therefore every point p0 ∈ Pq0 lies an open set Up0 containing only p0, so
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Pq0 is a discrete set of points. Being compact, Pq0 is therefore a finite set of
points, say

Pq0 = { p1, p2, . . . , pn } ,

with each point pj lying in an open set Upj taken diffeomorphically to some
open set

f
(
Upj

)
⊂ Q

around q0. Since there are finitely many such open sets, their intersection is
open; call it Uq0 . Then replace Upj

by

Upj
∩ f−1Uq0

so we can arrange that f takes each of the open sets

Up1 , Up2 , . . . , Upn

diffeomorphically to Uq0 .
4.14. If X is a universal covering space, then the map X → Y lifts to a map
X → Z by proposition 4.12 on page 47.

Take a covering map (X,x0) → (Y, y0) so that every other covering map
(Z, z0) → (Y, y0) has a unique covering map (X,x0) → (Z, z0) making a com-
mutative diagram

X Z

Y

Take a universal covering map (Z, z0) → (Y, y0). Take the unique covering
map described above. Any loop in X maps into Z, where it is homotopic to
a constant map. Map that homotopy into Y , and then lift the curves of that
homotopy up to curves in X, which are loops by taking the “endpoint of the
lift” mapping. So then X is simply connected, i.e. a universal covering map.
4.15. By problem 4.14 on page 49, there are unique morphisms (X1, x1) →
(X2, x2) and (X2, x2)→ (X1, x1). The composition of these a morphism X1 →
X1. Again by problem 4.14 on page 49, there is a unique such morphism. But
the identity map is a morphism. So X1 → X2 composes with X2 → X1 to give
the identity map. Swapping the roles of X1 and X2, the same is true for the
composition in the other order. Therefore the two morphisms are inverses of
each other.
4.16. By hypothesis, for any point y0 ∈ Rn, the fiber f−1 { y0 } is bounded, but
also closed, so compact. But around each point x0 ∈ f−1 { y0 }, f is a local
diffeomorphism, so x0 is isolated in f−1 { y0 }. So f−1 { y0 } is discrete and
compact, so finite, say equal to {x1, x2, . . . , xN }. Take a small enough open
set around each xi so that f is a diffeomorphism on that open set. Inside each,
take a compact set containing a neighborhood of xi, and take the images of
those compact sets. Because f is a local diffeomorphism, each of these images
contains some relatively compact open neighborhood of y0. So their intersection
does as well. But then that open neighborhood is evenly covered.
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4.17. Consider the fundamental group action, a covering group action on R.
Every orbit is discrete. Pick some t0 ∈ R. It has a discrete orbit: some
ti ∈ R, which we can write it order ti < ti+1. Each element of the group is
uniquely determined by how it maps any one point, since they act without fixed
points. Define elements γi by γi(t0) = ti. Define a group operation on these ti,
isomorphic to the fundamental group, by ti + tj = tk if γj(γi(t0)) = γk(t0).

Each element of the fundamental group is a homeomorphism of R, so an
increasing or decreasing proper map R → R. If decreasing, it has a fixed point
by the intermediate value theorem, so it is an increasing function, so preserves
the ordering of the ti. Hence tj takes t0 7→ t0 + tj = tj , and so sends t1 to tj+1,
and so on. Hence the fundamental group is isomorphic to Z. Each interval
[ti, ti+1] is mapped to the quotient space injectivity except at the ends, so
quotients to S1, an bijective continuous map from a compact Hausdorff space,
so a homeomorphism by theorem 2.5 on page 20.
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