
Title Surfing the high energy output branch of nonlinear energy
harvesters

Authors Mallick, Dhiman;Amann, Andreas;Roy, Saibal

Publication date 2016-11-04

Original Citation Mallick, D., Amann, A., Roy, S., (2016) 'Surfing the high
energy output branch of nonlinear energy harvesters'.
Physical Review Letters, 117(19), 197701 (5pp). doi: 10.1103/
PhysRevLett.117.197701

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1103/PhysRevLett.117.197701

Rights © 2016 American Physical Society. This article may be
downloaded for personal use only. Any other use requires prior
permission of the author and AIP Publishing. The following article
appeared in Physical Review Letters, 117(19) and may be found at
http://link.aps.org/doi/10.1103/PhysRevLett.117.197701

Download date 2024-04-24 11:11:03

Item downloaded
from

https://hdl.handle.net/10468/3272

https://hdl.handle.net/10468/3272


Surfing the High Energy Output Branch of Nonlinear Energy Harvesters

D. Mallick,1 A. Amann,1,2 and S. Roy1,*
1Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland

2School of Mathematical Sciences, University College Cork, Cork T12 XF62, Ireland
(Received 18 March 2016; revised manuscript received 12 June 2016; published 4 November 2016)

Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which,
however, restrict many applications such as mechanical energy harvesting. We introduce an electrical
control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester
by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method
improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying
environment using only a small energy budget. The underlying effect is independent of the device scale and
the transduction method and is explained using a modified Duffing oscillator model.
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Recently, scavenging electrical energy from environmen-
tal vibration using miniaturized systems has received enor-
mous attention due to its potential to provide an alternative
energy solution for wireless sensor nodes leading to the
vision of the Internet of Things. The vibrational energy
harvesters (VEHs) have emerged over the years as an
attractive solution, as they will not only eliminate the
required maintenance cost and chemical hazards associated
with batteries but also expand the life span of the power
supply. Most of the earlier reported VEHs are linear [1–5]
and have the limitation of a narrow bandwidth. Nonlinear-
oscillator-based energy harvesters improve the off-
resonance performance significantly due to their inherent
wideband frequency response. Various nonlinear energy
harvesters with different types of potential energy functions,
e.g. single-well [6–10], double-well [11–15], and triple-well
[16–18] systems, have been explored comprehensively to
achieve energy transduction over a wide frequency range.
However, it has been observed that the branching of the
frequency response introduces the phenomena of multi-
stability and hysteresis in the dynamics of the devices
[8,9,19], which means that a number of stable steady states
with different energy outputsmay coexist. The device selects
a stationary state depending upon the frequency schedule of
the external excitation and the initial conditions [19,20].
In general, many dissipative nonlinear dynamical sys-

tems exhibit the coexistence of several stable states for a
given set of parameters and can be found in various
disciplines of science, including electronics [21], optics
[22], mechanics [23], and biology [24]. In such systems,
the control of the coexisting states is critical, because the
corresponding attractors are extremely sensitive to any sort
of perturbation. A number of control mechanisms [25] have
been reported by researchers to achieve the desired state in
a multistable system such as feedback control [26], using
chaotic [27] or noise [28] signals or by creating a crisis of
the undesired state [29].

The vibrational energy harvesting application, which is a
crossover between mechanical and electrical domains,
serves as the proving ground for many nonlinear dynamical
phenomena. In principle, it is desirable to surf the state with
the largest possible energy output. However, in a real-world
environment there is little control available over the
frequency and amplitude of the driving vibration, and
therefore a large energy output is not guaranteed. Thus,
efficient and convenient control mechanisms are required to
perturb the system from the low energy branches (LEBs) to
the high energy branch (HEB) to facilitate the maximum
energy conversion within the region of multistability.
Previously, this pertinent problem was addressed by
Cammarano et al., who proposed the concept of altering
the natural frequency of the oscillator to a higher value
where only a single solution exists for the given excitation
frequency and then reducing the natural frequency as the
oscillator response stays on the HEB [30]. This concept is
similar to the formation of a crisis, but the destruction of
coexisting states can be difficult for some nonlinear
systems, as small perturbations of the system parameters
can give rise to new complex multistabilities. Zhou et al.
used mechanical impact to provide additional kinetic
energy to the oscillator to obtain the HEB [31]. Both of
these mechanisms involve mechanical modifications which
are practically not very convenient. Recently, Masuda and
Sato introduced an electrical method to destabilize the
lower output branch by developing a switching circuit of
the load resistance between positive and negative values
depending on the response amplitude of the oscillator [32].
This switching of the effective damping is difficult to
implement and changes the dynamics of the oscillator,
which is not desirable.
In this Letter, we demonstrate that a suitable electrical

control signal switches the state of a nonlinear VEH from
the LEB to the HEB. The VEHs have an inherent
connection between their mechanical and electrical degrees
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of freedom. We exploit this interplay and supply a periodic
electrical signal over a short period of time to the system to
initiate the large amplitude mechanical motion when the
system response is in the LEB. The dynamical character-
istics of the proposed methods are theoretically reproduced
and explained by a modified Duffing oscillator model. We
expect this elegant approach can be generalized to systems
of any scale (MEMS or nanoscale devices) and with
different transduction mechanisms where the manipulation
of mechanical parameters may not be easy to implement.
Experimentally, we have demonstrated the proposed

scheme using a stretching-strain-induced nonlinear electro-
magnetic energy harvester [Fig. 1(a)]. The hardening
nonlinearity is induced in the harvester through the large
amplitude stretching strain in the fixed-guided spring arms.
The wideband response of the system occurs due to the
stretching-induced, amplitude-dependent spring stiffness
[9]. The proposed switching scheme is shown in a circuital
form in Fig. 1(b), where the harvester is modeled using a
spring-mass-damper system. A voltage γ _x is induced in the
coil (internal resistance RC) of the EM harvester, where γ is
the electromagnetic coupling coefficient and _x is the
velocity of the mechanical oscillator. The electrical power
is extracted through the load resistance RL, which is
connected in series with the coil. Additionally, a voltage
source VA (with internal resistance RA) is connected across
the coil, which generates electrical voltage over a short
period of time to supply enough energy to perturb the
system to switch the state when needed.
The frequency response widens with increasing accel-

erations [subplot in Fig. 2(a)], as the jump-down frequency
during the up sweep gradually increases. During the down
sweep, the VEH follows the LEB of the hysteresis, resulting
in a very small output power. In Fig. 2(a), we demonstrate the
switch from the LEB to the HEB for a mechanical driving
frequency fm ¼ 70 Hz, at an acceleration of 0.5g. We
supply a periodic sinusoidal electrical signal of frequency
fA ¼ 70 Hz and 5Vamplitudewithin the time interval from
20 to 20.2 s, which is approximately 15 cycles. As a
consequence, the peak output power changes dramatically
by a factor of more than 35, from the LEB steady state value

of 16 μW before the switching period to the HEB steady
state value of 563 μW after the switching period. This large
power is maintained even without any further supply of
electrical energy. This transition from the LEB to the HEB is
indicated by the arrow shown in the subplot in Fig. 2(a). The
experimental result is validated using numerical simulations
based on a modified Duffing oscillator [Fig. 2(b)]. The
equation of motion of the modified Duffing oscillator is
derived based on the model shown in Fig. 1(b). The
generated voltage VA is given as

VAðtÞ ¼
�
VOA sinð2πfAtþ ϕÞ for ti ≤ t ≤ tf
0 else;

ð1Þ

(a) (b)

FIG. 1. Prototype and the proposed method. (a) The exper-
imental prototype of the nonlinear EM harvester. (b) Proposed
circuit to model the electrical actuation scheme. The mechanical
to electrical energy conversion transducer consists of a spring-
mass-damper system.

FIG. 2. Transition from the LEB to the HEB. (a) Experimental
result. The subplot indicates the load power as a function of the
input frequency under different input accelerations without any
electrical switching. The up sweep is indicated by the solid line
and the down sweep by the dotted line. (b) Numerical result. The
basin of attraction of the nonlinear oscillator is shown. High and
low energy attractors are denoted by red and blue regions,
respectively. Successful (yellow) and unsuccessful (green)
switching are mapped in to the basin of attraction for varying
the phase of the switching signal at fixed amplitudes (diamonds,
5 V; squares, 15 V; circles, 25 V).
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where VOA, fA, and ϕ are the amplitude, frequency, and
phase, respectively, of the signal within the switching period
and ti and tf are the starting and ending time of the switching
period, respectively. VA drives a large current (IA) through
the coil which, in turn, produces a magnetic field that forces
the outer magnetics along with the resonating spring to
vibrate with a large amplitude. Using Kirchhoff’s law for
the loops in Fig. 1(b), the net current IC through the coil is
given as

ICð_x; tÞ ¼ IL − IA ¼ γ _x
RC

−
RL

RC

VAðtÞRC þ γ _xRA

RCRA þ RARL þ RLRC
:

ð2Þ

Taking into account the effect of the additional voltage
signal, the coupled electromechanical equation of motion
of the oscillator is given as

mẍþ 2cm _xþ kxþ knx3 þ γIC ¼ −m̈z; ð3Þ
where m, cm, k, and kn denote the mass, mechanical
damping coefficient, linear spring constant, and cubic
spring constant of the VEH, respectively. z is the displace-
ment amplitude of the external vibration. Equation (3) has
been numerically solved using the Runge-Kutta method
and compared with the experimental results.
The switching action attributes to the basin of attraction

of the oscillator as indicated in the subplot in Fig. 2(b). The
basin of attraction shows that, starting from different initial
conditions at a vanishing driving force, the solution
approaches either the LEB (blue) or the HEB (red). The
state of the Duffing oscillator can be switched easily under
external perturbation due to the intermingled nature of the
basin of attraction, as the system can be driven from the
current to the other attractor using a small amount of
energy. We use this feature of the Duffing oscillator to
intentionally perturb the system to the HEB. Previously, it
has been demonstrated using basin of attraction plots that
the steady states are largely dependent on the initial
conditions and the phase space volume associated with
the HEB shrinks as the system comes close to the jump-
down frequency [9,19,33]. Close to the jump-up frequency,
the phase space of the HEB is large, and comparatively
small perturbations are sufficient to switch the state and
vice versa. However, the phase ϕ of the switching signal
relative to the mechanical driving force plays an important
role in the switching action as illustrated by the yellow and
green symbols in the basin of attraction plot in Fig. 2(b).
By varying ϕ ∈ ½ 0 2π � for fixed switching signal ampli-
tudes, it is observed that even a very large switching
amplitude cannot guarantee a successful switching. For a
particular switching amplitude, the successful switching
occurs for those phase values for which the oscillator lands
in the high energy attractor just after the electrical signal is
switched off and vice versa for the unsuccessful cases. In
mathematical terms, the LEB and HEB correspond to stable

fixed points in the Poincaré map of Eq. (3) with respect
to the constant phase of the external driving force.
The separatrix which divides the two basins of attraction
is given by the stable manifold of the saddle of this
Poincaré map.
To obtain further insight into the switching mechanism,

we have mapped successful and unsuccessful switching for
varying phases and amplitudes of the electrical switching
signals [Fig. 3(a)]. For very small amplitudes, there is no
switching as expected due to the lack of injected energy to
facilitate a switch. For moderately high amplitudes, the
probability of successful switching increases due to the
presence of the high energy attractor near the origin. Thus,
suitably injected electrical energy can relatively easily drive
the oscillator from the low to the high energy attractor. Very
high amplitude signals, on the other hand, can oscillate the
system into concentric and shallow elliptical rings of high
and low energy attractors. Therefore, the probability of
switching decreases relatively as the unsuccessful switch-
ing is obtained for many phase values. The corresponding
variation of the probability of switching is shown in
Fig. 3(b). The optimization of the energy required for
optimal control of coexisting states is, however, out of the
scope of this Letter. The practical implication of this phase
dependence of the switching method is to simply repeat the
process if success is not obtained in the first attempt. Let E0

be the energy required to apply the switching signal once
and PS be the probability of successful switching in one
attempt. Then the total energy (ET) that would be spent in
order to switch the state is calculated as

ET ¼ PSE0

�X∞
k¼1

kð1 − PSÞk−1
�

¼ E0

PS
: ð4Þ

Since PS is not too small, the total energy required is not
very large under practical conditions even if successful
switching into the HEB is not obtained in a single trial.
In general, there is no control over the amplitude and

frequency of the ambient sources, and the convertible
energy is distributed over broad ranges of these parameters,
making nonlinear energy harvesters an attractive solution.
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FIG. 3. Probabilistic study on the switching mechanism.
(a) Mapping of successful (yellow) and unsuccessful (green)
switching for varying the phase of the electrical switching signal
with its amplitude. (b) Probability of successful switching as a
function of the switching signal amplitude.
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However, as mentioned already, the selection of the
desirable branches in a nonlinear harvester is strongly
dependent on knowledge of the input amplitude and
frequency. Thus, its application is limited due to this
fundamental effect without much effort to exploit it.
Using our method, the oscillation can be sustained in
the desired branch within the multistable regime. To
demonstrate this improvement, we map two such input
trajectories (R → R0 and S → S0) in Fig. 4 as both the
above-mentioned parameters are varied simultaneously.
The jump-up and jump-down lines correspond to saddle-
node bifurcation lines of the Poincaré map and are plotted
to define the multistate regime of the oscillation. Below
0.15g, the two jump frequencies merge into a codimension-
two cusp point at 57 Hz which is close to the linear
resonance frequency of the device. The R to R0 input
variation is confined within the LEBs, defined by the area
above the jump-down frequency line, and the hysteresis of
the oscillation, whereas the input path S to S0 crosses the
threshold of the HEB regime, defined by the jump-up
frequency line, before traversing back in the hysteresis
again. The output response always remains in the LEB and
HEB for input parameter values which are above the jump-
down frequency line and below the jump-up frequency line,
respectively. In the absence of the electrical actuation
[Fig. 4(a)], the low amplitude oscillation is maintained
as the oscillator enters the hysteresis region crossing the
jump-down frequency line for both the input variation paths
(R1 → R2 and S1 → S2). For S to S0 trajectory, the
oscillator is pushed to the HEB automatically when it
crosses the jump-up frequency from the hysteresis region

at S2 and remains there till S3, as that is the only available
state. This high amplitude oscillation is continued even
when the oscillator returns to the hysteresis from the HEB
region through S3 and maintains the corresponding state
until S4, as there are no other perturbations. By applying
the short-duration electrical actuation at the inception of the
hysteresis, the system can be driven onto the HEB, which
persists during the entire multistate regime [Fig. 4(b)] for
both the input vibrations. These result in substantial
improvements in the harvesting efficiency over the entire
trajectories (being more than 300 times for R → R0), and
the improvements are shown in Figs. 4(c) and 4(d),
respectively, for the two input trajectories. The proposed
method is significantly important for input excitations as R
to R0, where the device oscillates mostly within the multi-
stable region. It is a classical approach in VEH applications
to sweep either the frequency or acceleration of the input
vibration which corresponds to straight lines parallel to
either axis in Fig. 4(a) or 4(b). In such cases, the switching
technique can be employed to surf the HEB during the
down sweep (for frequency variation) or up sweep (for
acceleration variation) (see Supplemental Material [34]).
One of the most significant concerns about the proposed

approach is that a certain amount of energy needs to be
supplied in order to facilitate the switching. However, this
invested energy is quickly recovered through the increased
power conversion in the HEB. This is demonstrated in
Fig. 5, where the numerically calculated net electrical
energy evolution of the system is shown. The net energy
increases very slowly as long as the system remains in the
LEB, as only a little power is generated. The energy is
supplied electrically for 0.2 s, and this results in a negative
slope of the energy curve. Once the system reaches the
HEB, the slope of the energy curve becomes steep, as large
power is generated. With a decreasing acceleration level,
both the required switching energy and the energy recovery

(a) (b)

(c) (d)

FIG. 4. Electrical switching under frequency-amplitude-vary-
ing input vibration. Two input vibration trajectories (R → R0 and
S → S0) are defined. Jump-up and -down frequencies are plotted
in (a) and (b) as a function of input acceleration using AUTO-07P
[35]. Output states: (a) without the electrical actuation and
(b) with the electrical actuation. Numerical results show the
improvement in load power due to electrical actuation for input
trajectories (c) R → R0 and (d) S → S0.
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time become larger. If the switching is successful at the
first attempt, the externally supplied energy is recovered
within 2 s at 0.3g, which shortens to 0.4 s at 0.8g. Similarly
to ET in (4), the expectation times for energy recovery
increase by a factor of 1=PS if multiple switching attempts
are required.
In summary, the reported work has demonstrated the

potential of the electrical control mechanism to switch into
the HEB of a nonlinear energy harvester within the region
of hysteresis. In principle, the control method can be
applied to any device with nonlinear hysteresis, having
different sizes and transduction methods, through required
modifications. The presented physics is generally appli-
cable for other means of a switching mechanism to control
the coexisting states of the nonlinear oscillators which may
find manifold applications in different branches of science
and engineering.
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