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Quaternary InAsSbP quantum dots (QDs) and quantum rings (QRs) are grown on InAs (100)

substrates by liquid phase epitaxy. High resolution scanning electron and atomic force microscopes are

used for the characterization. The room temperature optoelectronic and magnetoelectric properties of

the InAsSbP type-II QDs and QRs are investigated. For the QD-based structures, specific dips on the

capacitance-voltage characteristic are revealed and measured, which are qualitatively explained by the

holes thermal and tunnel emissions from the QDs. Specific fractures at room temperature are

experimentally found in the magnetic field dependence of an electric sheet resistance for the InAsSbP

QRs-based sample. VC 2012 American Institute of Physics. [doi:10.1063/1.3676437]

Semiconductor quantum dots confine electrons and

holes in all three directions, and this property is making

them very attractive for optoelectronic devices not only for

improved laser diodes, but also for single photon sources,

quantum computing systems and new generation quantum

dot (QD)-photodetectors.1 Among quantum size objects’ fab-

rication techniques, the self-organized Stranski–Krastanow

(S–K) method is an important one by which dislocation-free

nanostructures can be produced.2 The well established liquid

phase epitaxy (LPE) growth technique has been improved in

order to allow for a better thickness control and reproducibil-

ity for thin layer epitaxy despite the high initial growth rate.

The modified LPE has been employed to grow quantum well

heterostructure lasers,3 QD and QD/nanopits cooperative

structures.4–7

In this Letter, we present an example of quasi-ternary

InAsSbP QDs and quantum rings (QRs) growth on InAs

(100) substrates by modified LPE. The InAsSbP type-II QDs

and QRs room temperature optoelectronic and magnetoelec-

tric properties, as well as capacitance-voltage characteristics

are investigated.

For the growth of quantum size objects we use a step-

cooling version of LPE with a modified slide-boat crucible,

where nucleation is performed from a thin (tunable from 200

to 1000 lm in height) liquid phase. As a starting point, we

use the quaternary liquid phase composition that corresponds

to the InAs0,742Sb0,08P0,178 alloy in solid phase, that is con-

veniently lattice-matched to InAs substrate. The InAs (100)

substrates have a diameter of 11 mm and are undoped, with a

background electron concentration of n¼ 2� 1016 cm�3. To

obtain strain-induced nanostructure formation in the S–K

mode, we use the liquid phase supersaturated by antimony

(for the growth of QDs) and by both antimony and phospho-

rus (for the nucleation of QRs). The antimony and phospho-

rus concentrations in liquid phase were chosen to provide a

lattice mismatch of up to 2% between the InAs substrate and

InAsSbP wetting layer at initial growth temperature of

T¼ 550 �C.

In Fig. 1, the atomic force microscopy (AFM) (Asylum

Research MFP-3D) images of the InAsSbP type-II QDs in

plain (a) and oblique (b) view, as well as the high-resolution

scanning electron microscopy (HR-SEM) (SEM-EDXA–FEI

Nova 600-Dual Beam) images (c) of the QRs (d and e—

enlarged view) grown by LPE on InAs (100) substrate are

presented.

These structures were grown from the quaternary

In–As–Sb–P liquid phase of 500 lm in height and contact

duration with the substrate of 20 min. At the growth of QRs

phosphorus and antimony concentrations in liquid phase

were chosen twice as high as those at the growth of QDs. A

statistical exploration shows that the QDs average density

ranges from 6 to 8� 109 cm�2 with heights and widths from

0.5 nm to 20 nm and 10 nm to 60 nm, respectively. The QRs’

average density is equal to (1-3)� 109 cm�2 with the average

height and outlet diameter of 10 nm and 35 nm, respectively.

Gauss-like distribution on the dependence of number versus

average diameter for both QDs and QRs were observed.

Ring-shaped semiconductor nanostructures have gath-

ered growing attention in recent years.8 These structures

have many interesting electronic properties and confine car-

riers into ring-like quantum states. QRs also provide a means

to study quantum effects involving magnetic flux. Most of

the experimental work in this field was performed using

mainly molecular beam epitaxy (MBE) technique and, in

particular, have been done on the InGaAs/GaAs material

system.9

For the investigation of electrophysical, optoelectronic

and magnetic properties of our nanostructures, we fabricated

three device structures in the form of photoconductive cells

(PCC). The first (test) sample is made of n-InAs (100) bulk

industrial substrate with the parameters described above.

The second sample is made of the same substrate, but witha)Electronic mail: kgambaryan@ysu.am.
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type-II InAsSbP QDs (Figs. 1(a) and 1(b)), and the third one

with QRs (Figs. 1(c)–1(e)) grown on the substrate surface.

The active surface area of these structures is the same and

equals 1 mm2. The topology of the ohmic contacts was cho-

sen to provide needed requirements for the PCCs. Current-

voltage (I–V) measurements show, that the electrical sheet

resistance of sample 2 is more than one order higher than for

sample 1, which can be explained by the charge carrier (light

holes) localization inside the QDs. Precise I–V measure-

ments (Keithley-6514 System Electrometer) performed at

room temperature also show that for sample 2, a deviation

from linearity occurs in the range of 0.52–0.58 V positive

applied voltages. In order to definitely state that only the

influence and contribution of QDs are responsible for that

deviation, we also measured the capacitance-voltage (C–V)

characteristics of the prepared samples using High precision

capacitance spectrometry (QuadTech-1920 precision LCR

meter). The results of room temperature C–V measurements

for the first and the second samples performed at f¼ 106 Hz

frequency are presented in Fig. 2(a).

As can be seen two specific dips on the QDs-based sam-

ple’s C–V curve are observed at 0.28 and 0.54 V, which do

not appear on the first sample’s curve. We also suspect that

additional hidden dips exist at low voltages, which can be

revealed in low temperature measurements. The results of

accurate measurements in the range of 0.2–0.4 V and

0.5–0.62 V with the polynomial fitting curves are presented

in Figs. 2(b) and 2(c), respectively. We assume that revealed

dips are attributed to the ground and exited energy levels for

holes in a sub-bandgap created by the QDs. The presence of

an electric field tilts the band structure, which may lead

to three mechanisms of emission enhancement: (i) the

Poole–Frenkel effect,10 when the carrier is still emitted by

thermal activation over the top of a potential barrier, which

is lowered by the presence of an electric field, (ii) pure tun-

neling, and (iii) phonon-assisted tunneling, where the carrier

absorbs energy from the lattice and then tunnels through the

barrier at higher energy. In our type-II InAsSbP QDs system

the apparent difference in the emission mechanisms for

heavy and light holes is attributed to the different effective

masses, since the tunneling probability is inversely propor-

tional to the effective mass.10

For InAs, the heavy hole effective mass is typically by a

factor of 10 larger than the light hole (and electron) effective

mass. However, light hole and electron effective masses are

approximately the same and equal to �0:028 m0. In our case

we assume that light holes from the ground state are emitted

by direct tunneling through the triangular barrier, and/or

from the ground state are thermally activated into excited

states and subsequently emitted by thermal and tunnel emis-

sion, whereas heavy holes are emitted by pure thermal acti-

vation from the ground state into the InAs substrate’s

valence band. But this is not always the case. Because of the

symmetry breaking and 3D confinement, what we refer to as

heavy hole states can also include a small amount of light

hole character, and this light hole character can then contrib-

ute to the tunneling. However, based on C–V measurements,

we experimentally calculated the activation energy ðh1 � h0Þ
in our system which is equal to � 0:26 eV at room tempera-

ture. The similar approach has been applied in Ref. 11,

FIG. 1. (Color online) AFM images of

the InAsSbP type-II QDs in plain (a)

(S¼ 5� 4.3 lm2) and oblique (b)

(S¼ 1� 1 lm2) view, as well as HR-

SEM images (c) (S¼ 1.4� 1.4 lm2) of

the QRs (d and e—enlarged view) grown

by LPE on InAs (100) substrate.
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where the electronic energy levels of InAs QDs were meas-

ured with respect to the GaAs conduction band edge by

employing capacitance–voltage spectroscopy.

Type-II QDs and QRs (samples 2 and 3 in our case)

are distinctly different from single or multiple stacked type-

I QDs and the charge carrier distribution and geometry are

more complicated. This geometry makes them particularly

interesting for studies in magnetic fields, because for both

cases this geometry defines a ring-like trajectory for elec-

trons (or holes), ensuring that for instance in our type-II

InAsSbP QDs the electron wave function is delocalized, as

we have confirmed in previous calculations based on an

eight-band k�p-simulation.4 Here, the free particle is the

electron rather than the hole, which has a smaller effective

mass. A strong band gap bowing in InAsSb induces a shal-

low conduction band minimum in InAsSb. However, strain

effects in the systems studied in Ref. 4 due to the lattice

mismatch to the surrounding InAs matrix compensate for

this minimum in the conduction band offset and prevent an

electron localization in InAsSb QDs. The magnetic flux

leads to a periodic change in the quantum mechanical prop-

erties of the charge carrier system in QR and encircling the

type-II QD. These oscillations are periodic in the applied

magnetic field and are known as Aharonov–Bohm (AB)

oscillations that have no classical analog.12 The experimen-

tally observed AB-oscillations of the excitonic energy and

the photoluminescence intensity dependence on the

magnetic field have been reported in particular for type-II

InP/GaAs and ZnTe/ZnSe QDs,13,14 as well as oscillations

of the magnetic moment per electron on self-assembled

InAs/GaAs QRs.15

We investigated the magnetic field dependence of the

electric sheet resistance (magnetoresistance) for our samples

at the Faraday (perpendicular to the substrate surface—Z) and

Voigt (parallel to the substrate surface—X and Y, at X?Y)

geometries. A magnetic field of up to 1.6 T was applied and

measurements were performed at room temperature. The clas-

sical behavior of the dependence of the electric sheet resist-

ance versus the magnetic field was measured and observed for

the first test sample (Fig. 3(a)). Otherwise, for the QRs-based

sample 3, specific fractures (probably due to the AB effect) on

the magnetoresistivity curve are revealed and detected

(Fig. 3(b)). Fig. 3 also reveals that the values of the third sam-

ple’s sheet resistance are higher up to one order of magnitude

as compared to the reference sample 1. Finally note that inves-

tigated samples prepared in the form of photoconductive cells

can be directly used as mid-infrared photodetectors, as well as

in many other very important mid-infrared applications.

Thus, we have reported an example of quaternary

InAsSbP QD and QR growth on InAs (100) substrates by

modified LPE. The room temperature magnetoelectric proper-

ties of the prepared samples with (and without) type-II

FIG. 2. (Color online) (a)—Room tem-

perature high-precision C–V characteris-

tics of sample 1 (blue triangles) and

sample 2 (red circles); (b) and (c)—an

enlarged view of dips with the polyno-

mial fitting curves.

FIG. 3. (Color online) Sheet resistance

(magnetoresistance) versus magnetic

field at Faraday (perpendicular to the

substrate surface—Z) and Voigt (parallel

to the substrate surface—X and Y, at

X?Y) geometries of sample 1—(a) and

sample 3—(b).
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InAsSbP QDs and QRs have been investigated. Specific dips

on the C–V curves are detected and qualitatively explained,

as well as fractures that were found at room temperature in

the magnetic field dependence of the electric sheet resistance

for type-II InAsSbP QRs-based sample. Our study opens up

interesting fundamental and applied prospects including the

underlying physics and technology, understanding the influ-

ence of QDs and QRs on InAs-based devices’ properties and

requires more research effort from both experiment and

theory.
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