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We investigate the elastic properties of selected zinc-blende III-V semiconductors. Using hybrid functional
density functional theory, we calculate the second- and third-order elastic constants and first- and second-order
internal strain tensor components for Ga, In, and Al containing III-V compounds. For many of these parameters,
there are no available experimental measurements, and this work is the first to predict their values. The stricter
convergence criteria for the calculation of higher-order elastic constants are demonstrated, and arguments are
made based on this for extracting these constants via the calculated stresses, rather than the energies, in the
context of plane-wave-based calculations. The calculated elastic properties are used to determine the strain
regime at which higher-order elasticity becomes important by comparing the stresses predicted by a lower-
and a higher-order elasticity theory. Finally, the results are compared with available experimental literature data
and previous theory.
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I. INTRODUCTION

Elastic constants are fundamental material parameters, a
knowledge of which is essential for the design and under-
standing of semiconductor materials and devices. For exam-
ple, the electronic and optical properties of semiconductor
heterostructures are strongly influenced by the strain state
of their active regions [1]. This strain state depends on the
lattice mismatch between the constituent compounds, and on
the relative magnitude of their elastic constants [2]. Elastic
constants are also necessary for the determination of the ma-
terial composition of heterostructures by x-ray diffraction [3],
assessing the critical thickness and strain relaxation in devices
[4], modeling the behavior of dislocations [5], the characteri-
sation of piezoelectric resonators [6], and the parametrization
of interatomic potentials [7] used for the calculation of strain
fields in supercells containing millions of atoms.

For crystals that lack inversion symmetry, standard macro-
scopic elasticity theory does not fully describe the position of
their atoms under strain, and internal strain [8–10] occurs. In-
ternal strain is a displacement between sublattices in a crystal.
It is described, for a particular material, by the components
of the internal strain tensor. Knowledge of these material pa-
rameters is essential for any semiempirical atomistic modeling
which requires the equilibrium atomic positions of strained
structures, and has, for instance, particular importance for the
piezoelectricity of a crystal [11,12].

For many device and material applications, infinitesimal
strain theory [13], in which there appear only second-order
elastic constants (SOEC) and first-order internal strains, is
sufficient to describe the elastic properties. This means that
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the crystal energy can be accurately expressed to second
order in the strain, with the SOECs as coefficients, and
that the internal strain can be described accurately to first
order in the strain, with the first-order internal strain tensor
components (ISTCs) as coefficients. However, as the strain
in the system increases, its energy (internal strain) can no
longer be accurately described using only a second (first)-
order expansion in the strain, and higher-order terms need
to be accounted for. The lowest-order of such corrections
are third-order elastic constants (TOEC) for the macroscopic
strain energy, and second-order ISTCs for the internal strain.
The strain magnitudes at which these corrections to the energy
and internal relaxation become important will depend on the
relative magnitudes of the higher- and lower-order coefficients
of the strains.

Recent studies have shown that third-order contributions to
the elastic energy are necessary to correctly model the relax-
ation, strain state, and thus optical properties, of several tech-
nologically important heterostructures such as InGaAs/GaAs
[14–18], InGaN/GaN, and GaN/AlGaN [18–22]. Similar ef-
fects can be expected in other highly lattice-mismatched
nanostructured systems, such as the InSb/GaSb quantum dot
(QD) system [23]. Furthermore, second-order ISTCs have
been shown to play an important role in the piezoelectric
response in many materials [24,25]. Other phenomena related
to lattice anharmonicity, such as phonon-phonon or electron-
phonon interactions [26], thermal expansion [26], stress or
temperature dependent elastic response [26], and pressure
dependence of optic mode frequencies [27], also require the
use of TOECs and second-order ISTCs.

Because of this wide application, there has long been
interest in the measurement or theoretical determination of
TOECs [28–31]. Typically, TOECs are measured using the
velocity of sound waves through a crystal under uniaxial or
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hydrostatic stress [32], analyzed via the finite strain theory
of Murnaghan [33,34]. However, there are often very large
uncertainties in such measurements [35], and these difficul-
ties are compounded for brittle or metastable semiconductor
materials [27,36,37], which are often of interest for device
applications. Similarly, for the internal strain, of the materials
addressed in this paper, only GaAs and InSb have available
experimental values of their single first order ISTC (Kleinman
parameter), due to the high precision of experimental obser-
vations required [27,38] for the extraction of ISTCs; there are
no experimental evaluations of any second-order ISTCs. Thus,
given the experimental difficulty in the measurement of ISTCs
in general and the importance of nonlinear elasticity for the
accurate description of the electronic and optical properties of
technologically relevant semiconductors and their connected
heterostructures, there is strong motivation for the theoretical
determination of TOECs and first- and second-order ISTCs.

Early calculations of TOECs involved the use of pseu-
dopotential [39] and interatomic force potential methods [29];
however, since the work of Nielsen and Martin [40], first-
principles calculations have become an increasingly popular
route towards the calculation of TOECs. In recent years,
ab initio methods have been used to determine the TOECs
for ultrahard materials such as diamond [41,42], materials
of which it is difficult to obtain high quality single crystals,
like the metastable cubic-phase nitride materials [19], and
technologically important materials for which experimental
TOEC measurements are sparse, such as InAs and GaAs
[18,19,40,43].

In this work, we present first-principles calculations of
SOECs, TOECs, as well as first and second-order ISTCs, of
a range of III-V zinc-blende (ZB) semiconductor compounds.
The calculations are carried out using density functional the-
ory (DFT) within the Heyd-Scuseria-Ernzerhof (HSE) hybrid-
functional approach [44]. We demonstrate that higher-order
elastic properties require a higher resolution of calculation
parameters for their accurate evaluation, and extend argu-
ments present in the literature for the use of the stress method
for the extraction of elastic constants to the case of TOECs.
Moreover, we show the importance of third-order effects in
the strain regimes relevant to a sample InSb/GaSb heterostruc-
ture system, and demonstrate for other materials the errors
incurred by the use of a linear theory. Finally, our results are
compared, where possible, with previous experimental and
theoretical results. Overall, we find very good agreement with
previously reported experimental and theoretical literature
data.

The paper is organized as follows: in Sec. II, we present
the finite strain theory in which the TOEC and second-order
ISTCs are defined; in Sec. III, we discuss our computational
framework, giving the specifics of the DFT implementation
and discuss the different nature of convergence of TOECs
compared with SOECs, including a comparison of constants
extracted from the stress-strain approach with those extracted
via the total energy; in Sec. IV, we present the calculated
SOECs, TOECs and first- and second-order ISTCs, make
comparisons with recent experiment and theory, and apply
the extracted TOECs to address the question as to the strain
regime in which nonlinear elasticity need be used; finally, in
Sec. V, we summarize and conclude.

II. OVERVIEW OF FINITE STRAIN THEORY

In this section, we review the aspects of finite strain theory
necessary for the calculation and discussion of TOECs and
second-order ISTCs. In Sec. II A, we apply finite strain to
the discussion of the macroscopic elasticity of crystals, and in
Sec. II B, we outline the theory describing the internal strain
resulting from a given applied finite strain.

A. Elasticity

In solid state physics, the description of third-order elastic-
ity is conventionally achieved via the Lagrangian strain for-
malism [19,28,40,41]. The application of Lagrangian stresses
and strains to the theory of elasticity with finite deformations
has been developed by Murnaghan [33,34] and applied to
cubic crystals by Birch [30].

The deformation gradient tensor F marks the starting point
of all strain formalisms. It describes the deformation of a
material, including rotations, when the coordinates of that
system are transformed. If the position of a point in a material
is given by a, and after strain is at the position x, then the
deformation tensor may be defined as [2]

F = Fij = ∂xi

∂aj

. (1)

This relates simply to the linear strain tensor as

Fij = εij + δij , (2)

where δij is the Kronecker delta, and ε is the small, or
infinitesimal, strain tensor. While this simple relation between
the infinitesimal strain and the deformation is very useful and
attractive, the conceptual underpinning of the infinitesimal
strain (that it measures the relative changes of lengths in
the material) becomes increasingly invalid with increasing
strain. Thus, in the regime of larger strains, where third-order
elasticity becomes relevant, Lagrangian strains are employed.
The Lagrangian strain tensor, ηij , is related to the deformation
by [30]

ηij = 1
2 (FipFjp − δij ), (3)

where the Einstein summation notation is used. In cases where
the infinitesimal strain tensor is known, the following useful
matrix relation may be used to determine the Lagrangian
strain tensor [30]:

η = ε + 1
2ε2. (4)

The TOECs are conventionally defined in terms of the expan-
sion of the free energy density in these Lagrangian strains. For
a cubic crystal, this energy density is given by [19,28,30]

ρ0E = 1
2C11

(
η2

1 + η2
2 + η2

3

) + 1
2C44

(
η2

4 + η2
5 + η2

6

)
+C12(η1η2 + η1η3 + η2η3) + 1

6C111
(
η3

1 + η3
2 + η3

3

)
+ 1

2C112
(
η2η

2
1 + η3η

2
1 + η2

2η1 + η2
3η1 + η2η

2
3 + η2

2η3
)

+C123η1η2η3 + 1
2C144

(
η1η

2
4 + η2η

2
5 + η3η

2
6

)
+ 1

2C155
(
η2η

2
4 + η3η

2
4 + η1η

2
5 + η3η

2
5 + η1η

2
6 + η2η

2
6

)
+C456η4η5η6. (5)
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Here, ρ0 is the mass density of the unstrained material, E

is the Helmholtz free energy per unit mass, and the various
Cij and Cijk are the second- and third-order isentropic elastic
constants, respectively. We have also above employed Voigt
[2,45] notation, which, using the symmetry of the strain
tensor, makes the convenient contraction of indices: 11 →
1, 22 → 2, 33 → 3, 32 → 4, 13 → 5, and 12 → 6. The
derivatives of this energy density, ρ0E, with respect to the ηi

provide equations relating the Lagrangian stresses, ti , to the
Lagrangian strains, ηi , via the elastic constants:

ti = ρ0
∂E

∂ηi

. (6)

Thus, the general expressions for the Voigt components of the
Lagrangian stress in terms of an arbitrary Lagrangian strain
on a cubic crystal are

t1 = C11η1 + C12(η2 + η3) + 1
2C111η

2
1 + 1

2C112
(
2η2η1

+ 2η3η1 + η2
2 + η2

3

) + C123η2η3 + 1
2C144η

2
4

+ 1
2C155

(
η2

5 + η2
6

)
,

t4 = C44η4 + C144η1η4 + C155(η2η4 + η3η4) + C456η5η6,

(7)

with t2,3 and t5,6, given by cyclic permutations of the indices
of t1 and t4, respectively.

However, when the stresses on a strained supercell are cal-
culated via DFT using the Hellmann-Feynman theorem [46]
or from an interatomic potential calculation, it is the stresses
on the faces of the deformed cell that are obtained; these are
the Cauchy stresses, σ . Therefore, in order to use Eq. (7) to
extract elastic constants from DFT data, the Lagrangian stress
must be related to the Cauchy stress [33]:

t = det (F )F−1σ (FT )−1. (8)

Hence, by either measuring the energy or stress of a cubic
crystal as a function of applied Lagrangian strain, Eqs. (5), (7),
and (8) may be used to obtain values for the elastic constants.
Having established the finite strain formalism required for
the discussion of TOECs, in the next section we describe the
application of this formalism to the description of nonlinear
inner elasticity in cubic crystals.

B. Internal strain

Nonlinear internal strain involves a second, rather than
first-order description of the internal strain in terms of the
Lagrangian strain. To achieve this description of sublattice
displacement to second order in the regime of large strains
for ZB semiconductors, we will use the formalism introduced
by Cousins [10,27].

Taking the ZB primitive cell, and letting the atom at the
origin remain fixed, the position of the second atom, after
strain, is given by

r = F r0 + u, (9)

where r0 is its equilibrium position and u represents the in-
ternal strain vector. Although this transformation completely
specifies the deformed positions geometrically, the u are not
suitable parameters in which to expand the scalar energy.

This is because they lack rotational invariance. Given that
the internal strain represents the atomic configuration which
minimises the energy of the ZB crystal under shear strain,
a rotationally invariant description of the internal strain is
needed. This is obtained through use of what Cousins [10]
calls the inner displacement. This is given by

ξ = FT u. (10)

Because this inner displacement occurs in response to internal
forces arising from the application of finite strain, each inner
displacement can be expressed as a Taylor series in the
components of the strain:

ξi = AiJ ηJ + 1
2AiJKηJ ηK. (11)

Here, Voigt notation has been employed for the elements of
the finite strain tensor, and the Einstein summation convention
is again utilised. The subscripts relating to the strain are
denoted by capitals, whilst those relating to the Cartesian
coordinate of the inner displacement are denoted by the lower
case i. The AiJ and AiJK are the first- and second-order
internal strain tensors, respectively. Cousins [27,47] gives
the form of these tensors for a ZB crystal. The first-order
internal strain tensor may be expressed conveniently in matrix
notation:

AiJ =
⎛
⎝0 0 0 A14 0 0

0 0 0 0 A14 0
0 0 0 0 0 A14

⎞
⎠. (12)

We note that for small strains, F ≈ I , the identity matrix, and
ξ ≈ u, where ui = − a0

2 ζεjk (u1 = − a0
2 ζε23, u2 = − a0

2 ζε13,
u3 = − a0

2 ζε12), and thus A14 = − a0
4 ζ , where ζ is the well

known Kleinman parameter [9].
A matrix representation is not possible for AiJK , but

there are only three independent nonzero components, which
are [47]

A114 = A225 = A336, (13)

A156 = A246 = A345, (14)

A124 = A235 = A316 = A134 = A215 = A326. (15)

Substituting Eqs. (12)–(15) into Eq. (11) yields an expression
for the value of ξ , which minimises the strain energy of a ZB
crystal for a given applied finite strain:

ξ = A14

⎛
⎝η4

η5

η6

⎞
⎠ + A114

2

⎛
⎝η1η4

η2η5

η3η6

⎞
⎠

+ A124

2

⎛
⎝η4(η2 + η3)

η5(η3 + η1)
η6(η1 + η2)

⎞
⎠ + A156

2

⎛
⎝η5η6

η4η6

η4η5

⎞
⎠. (16)

If, for a given primitive ZB unit cell, the atomic positions
corresponding to the energetic minimum for a particular La-
grangian strain branch are known, Eq. (16) can be used in
fitting procedures to obtain the first- and second-order ISTCs.

In the next section, the manner in which the presented finite
strain theory is applied to deformed unit cells is described.
In addition, the details of the DFT caculations performed to
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obtain the stresses on, and energies of, these deformed unit
cells are presented, along with a discussion of the different
calculational criteria needed for the accurate calculation of
elastic constants and internal strain tensor components.

III. COMPUTATIONAL METHOD

In this section, we discuss the computational method used
to calculate the SOECs, TOECs, and first- and second-order
ISTCs.

First, in Sec. III A, the deformations applied to each ZB
unit cell are presented. This is accompanied by a description
of the strains and stresses associated with these deforma-
tions via the finite strain theory introduced in the previous
section. In Sec. III B, the details of the DFT calculations
are given. This is followed in Sec. III C by an analysis of
the convergence of the calculations with respect to k-point
grid density, plane-wave cutoff energy, lattice constant, and
applied strain range. In particular, it is demonstrated and
explained that a higher resolution of calculation in terms of
k-point grid density, cutoff energy, and lattice constant, is
needed to achieve convergence of TOECs when compared
with that needed for the calculation of SOECs. Whether to
calculate the elastic constants via the calculated stresses or
energies is discussed. Our results show that, using the energy
method, the convergence of TOECs is much slower with
respect to cutoff energy, k points, and applied strain range
when compared to that exhibited by the stress strain method.
Consequently, the energy method is significantly more com-
putationally expensive. A similar behavior has been reported
in the literature for SOECs [48], where it was identified that
the slower convergence of the energy method occurs due to
changes in the k-point basis set used, as the cutoff energy is
kept fixed in the calculations, while the unit cell size/shape
is being varied. By contrast, the stresses, when calculated
according to the Hellmann-Feynmann theorem, are computed
implicitly for a fixed basis set (since they are computed at
fixed lattice vectors). We then find, given the already high
computational demands, that the effect of the changing basis
set in the energy calculations is strongly enhanced when
calculating TOECs, as further discussed in Sec. III C 1.

A. Applied deformations

For the extraction of all SOECs, TOECs, and first- and
second-order ISTCs, data from the following applied strain
branches [24] were used:

ε (1) ≡ (0, 0, 0, β, β, β ),

ε (2) ≡ (α, 0, 0, β, 0, 0),

ε (3) ≡ (0, α, 0, β, 0, 0),

ε (4) ≡ (0, α, α, β, 0, 0),

ε (5) ≡ (α, α, α, β, β, β ).

(17)

The corresponding deformations of the unit cell were chosen
such that, according to the symmetries of Eqs. (12)–(16), at
least one independent determination of each of the second-
order ISTCs would be obtained from the resultant inner
displacements. Deformations chosen in this way also enabled

several pathways to the determination of each of the SOECs
and TOECs from the stresses on the unit cells.

For the calculation of all elastic constants and ISTCs, α and
β are varied in the following manner: In the strain branch ε (1),
β is varied in steps of 0.01 from −0.04 to 0.04, resulting in
a total of 9 strain points. For each of the remaining branches,
α (β) is varied from −0.02 (−0.04) to 0.02 (0.04) in steps
of 0.01 (0.02), comprising a total of 25 points. Each value
of α and β is associated with six stress components, a total
energy value, and the position vectors of the atoms in the ZB
primitive cell. To ascertain the form of the relation between
the deformation parameters α and β, and the stress, energy,
and relaxed atomic positions, the Lagrangian strains corre-
sponding to each deformation branch must be determined.
Using the tensor relation, Eq. (4), the Lagrangian strains, η(i),
obtained from the strain branches, ε (i), are given by

η(1) ≡
(

β2

4
,
β2

4
,
β2

4
, β + β2

4
, β + β2

4
, β + β2

4

)
,

η(2) ≡
(

α + α2

2
,
β2

8
,
β2

8
, β, 0, 0

)
,

η(3) ≡
(

0, α′,
β2

8
, β + αβ

2
, 0, 0

)
,

η(4) ≡ (0, α′, α′, β + αβ, 0, 0),

η(5) ≡
(

α′ + β2

8
, α′ + β2

8
, α′ + β2

8
, β ′, β ′, β ′

)
,

(18)

where the notation α′ = α + α2

2 + β2

8 and β ′ = β + β2

4 + αβ,
has been used for compactness.

With these five strain branches there are five energy equa-
tions from Eq. (5), from which all SOEC and TOECs may be
obtained, fourteen unique stress component equations, from
which all SOEC and TOEC may be obtained in multiple ways
using Eqs. (7), and five equations for inner displacements,
from Eq. (16). We do not present these twenty four long
equations here in the interest of brevity. However, to illustrate
the methodology, we will present in the Results section a
sample subset of these equations, truncated to second order
in the deformation parameters. A more detailed description of
the full set of stress and inner displacement fitting equations
is given in Ref. [49].

The first three of the Lagrangian strain branches of Eq. (18)
allow, via the relaxed atomic positions, determination of A14

(the Kleinman parameter within the finite strain formalism,
≈− ζa0

4 ), and all three of the second-order ISTCs. Further-
more, because α and β are varied independently, these first
three branches also furnish, via the different components of
the stress tensor, multiple independent determinations of each
of the SOECs, and all but one of the TOECs. The remaining
TOEC, C123, can then be determined from the stress in the x

direction associated with η(4). The stresses and relaxed atomic
positions of the more complicated strain branch, η(5), are not
used to obtain any new values for the elastic constants, but to
check the overall accuracy and consistency of the full set of
elastic constants or ISTCs by substituting in particular values
derived from the other branches, and performing fits for the
remaining constants. Since the fitting will be dependent on
the accuracy of the substituted constants, the agreement of the
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result with previous fittings indicates accurate determination
of all those substituted constants, as well as those newly
obtained.

B. DFT framework for the calculation of energy, stress, and
relaxed atomic positions

To obtain the energies, stresses, and relaxed atomic posi-
tions associated with each of the above strain branches, DFT
calculations were performed on the (deformed) ZB unit cells
using the Heyd-Scuseria-Ernzerhof (HSE) hybrid-functional
approach [44]. The calculations were carried out using the
software package VASP [50]. A screening parameter, μ, of

0.2 Å
−1

, and an exact exchange mixing parameter, α, of 0.25,
were utilized; these correspond to VASP’s HSE06 version of
the HSE functional. More details are given in Ref. [24].

For the calculation of material parameters, DFT within the
HSE scheme offers improved accuracy over standard Kohn-
Sham approaches to the exchange energy [51]. For instance,
it circumvents the well known band gap problem of LDA and
generalised gradient approximation (GGA) implementations.
Moreover, HSE-DFT has been shown to give improved pre-
dictions of elastic and lattice properties of solids over LDA
and GGA implementations [52,53]. Fitting to the DFT data
using Eqs. (5), (7), and (16), yields values for the SOECs and
TOECs as well as first and second-order ISTCs as described
above.

For the determination of elastic constants, we choose to fit
to the stress-strain equations [Eq. (7)] rather than the energy-
strain equations [Eq. (5)] for reasons of greater accuracy and
efficiency [40,41,46,48], which we will demonstrate below. In
general, the stress method is suited to efficient calculation of
the elastic constant tensor because a single DFT calculation
yields the full stress tensor, with its six unique components,
and six equations to fit to. However, a single DFT calculation
produces only one scalar energy, with one equation available
to fit to. Thus the elastic constants can be obtained via the
stress method efficiently from one calculation, whereas from
the energy method, several separate calculations are needed
for the same number of constants. Furthermore, in terms of
accuracy, the equations relating these elastic constants to the
strains will be a lower-order polynomial in the strain, and
therefore easier to fit when dealing with very small strains.
Finally, as will be corroborated in the next section: in a plane
wave-based DFT implementation using a fixed cutoff energy
in its plane-wave expansion at different k-points and different
lattice vectors, the number of k points and cutoff energy
needed in a given calculation to obtain converged values of
the elastic constants is lower for those calculated via the stress
method than for those calculated via the total energy method
[48]. Consequently, elastic constants can be determined to
a desired accuracy at less computational expense using the
stress method. Moreover, these issues of convergence are even
more pronounced for TOECs and second-order ISTCs than
SOECs and first-order ISTCs, as will be demonstrated below.

C. Convergence of results

In this section, we analyze the convergence of our results,
and show that the aforementioned advantages in convergence

which the stress method exhibits over the energy method,
demonstrated in the literature in the context of SOECs
[40,46,48] are even more dramatic for the TOECs. First, in
Sec III C 1, we show that TOECs require a higher resolution
of calculation than SOECs: that elastic constants extracted via
the stress method converge faster with respect to k-point mesh
density and cutoff energy than those extracted via the energy
method; and that the elastic constants presented here, calcu-
lated using the stress method, are converged (where those
extracted via the energy method, from the same calculation,
may not be). These convergence tests are shown using InSb as
a model system, which of the studied materials is the slowest
to converge with k-point density and cutoff energy. Thus, the
presented results for InSb validate also the convergence of the
other III-V materials studied here. Second, in Sec. III C 2,
the dependence of the extracted elastic constants on the equi-
librium pressures and applied strain ranges is investigated.
The increased sensitivity of TOECs to these calculation pa-
rameters when compared with SOECs is highlighted, and this
increased sensitivity is shown to be worsened when elastic
constants are extracted through use of the energy method.
Finally, the suitability of our choice of applied strain range
and allowed equilibrium pressure are confirmed.

1. Convergence with k points and cutoff energy

Compared to the effects of linear elasticity, third-order
elasticity gives rise to smaller changes in stress, energy, and
atomic positions. Therefore it can be expected that conver-
gence of TOECs will require denser k-point grids and higher
cutoff energies than is the case for SOECs. We find that
this is, indeed, the case, as illustrated in Fig. 1, where, for
InSb, the slower convergence of the stress-extracted TOECs
with respect to k-point density may be immediately inferred
from the different scales. Here, the cutoff energy is fixed at
600 eV. On closer inspection of Fig. 1, one finds that the
percentage changes in C11 and C12 on going from a 6 × 6 × 6
to an 8 × 8 × 8 k-point grid are both 1%, whilst for C111 and
C112 the values change by 10% and 17%, respectively. There-
fore, while an 8 × 8 × 8 k-point grid may be sufficient to
obtain converged SOECs, the calculation of TOECs requires
a higher k-point density. Examining the percentage change in
the calculated constants when going from an 8 × 8 × 8 to a
10 × 10 × 10 k-point mesh, convergence of both SOECs and
TOECs is apparent. For the SOECs, a negligible difference
of 0.5% exists, whilst for the TOECs, C111 and C112, the
values differ by only 4% and 5%, respectively. To further
corroborate convergence of the TOECs, we note the negligible
change on increasing the k-point density from 10 × 10 × 10
to 12 × 12 × 12; the differences being <1% for both TOECs.
With these small changes between subsequent grid sizes, we
conclude that a grid of 10 × 10 × 10 is sufficient to converge
the stress extracted elastic constants, at a cutoff energy of
600 eV.

While Fig. 1 establishes convergence of the elastic con-
stants extracted through the stress method, Fig. 2 justifies
the choice of extracting the elastic constants using the stress
rather than energy by showing the poorer convergence of
the energy method. Figure 2 shows that, using the en-
ergy method, the TOECs also converge much slower when
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FIG. 1. Comparison of convergence with k-point density of stress-extracted InSb SOECs (left) and TOECs (right). The calculations were
performed at a cutoff energy of 600 eV, on a k-point grid of n × n × n, with C11, C12, C111, and C112 all determined from an applied strain of
ε = (α, 0, 0, 0, 0, 0), with α varied between ±2% in steps of 1% and C44 is determined via a shear strain ε = (0, 0, 0, β, β, β ), with β varied
between ±4% in steps of 2%.

compared with the SOECs. Also similarly to the convergence
of the stress-extracted constants, the energy-extracted TOECs
are also clearly converged with respect to k-point density by
a 10 × 10 × 10 k-point grid density. However, in this case,
the TOECs exhibit much larger fluctuations at lower grid
densities. For example, at a grid of 4 × 4 × 4, the energy
extracted C111 is 28% lower than the converged value, whilst
the stress-extracted 4 × 4 × 4 C111 is only 8% lower than its
converged value. In addition to the fact that the energy values
are converging slowly, we note, more importantly, that they
are also unconverged at this cutoff energy, with final C111

and C112 values of −504 and −242 GPa, respectively, com-
pared to the converged stress-extracted values of −360 and
−235 GPa.

Therefore, in a second step, we analyze the impact of the
cutoff energy on the elastic constants. Table I shows the effect
of increasing the cutoff energy, with a fixed k-point grid of
10 × 10 × 10, on the calculated C11 and C111 values. The
superscripts t and E refer to constants extracted via the stress
and energy methods, respectively. The numbers following

the “±” are the fitting errors. The table shows that for both
the energy and stress method, a cutoff of 400 eV is more
than sufficient to obtain converged SOECs. However, for the
TOEC C111, only the stress extracted C111 is converged. As
with Figs. 1 and 2, the table shows that TOECs generally
require higher cutoff energies than SOECs; energy extracted
TOECs require higher cutoff energies for a given accuracy
than stress extracted TOECs; that a cutoff energy of 600 eV
is sufficient to obtain converged TOECs (for InSb) using the
stress method; and that even for a cutoff energy of 1000 eV,
the energy method still does not yield a converged value for
CE

111, as can be seen by comparison with Ct
111.

The slower convergence of the energy extracted parameters
with respect to those extracted via the stresses is due to
the larger impact of the changing plane-wave basis set on
the strain energy than on the stress [48]. The total energy
results can in principle be corrected by using a (in general
anisotropic) strain-dependent cutoff energy. For small strains,
±1% change in lattice vectors corresponds to ∼ ∓2% change
in cutoff energy. This is because, for a cutoff energy Ecut, only

FIG. 2. Convergence with k-point density of InSb (left) SOECs and (right) TOECs extracted using the energy method. The calculations
were performed at a cutoff energy of 600 eV, on an n × n × n k-point grid. C11, C12, C111, and C112 are all determined from an applied strain of
ε = (α, 0, 0, 0, 0, 0), with α varied between ±2% in steps of 1% and C44 is determined via a shear strain ε = (0, 0, 0, β, β, β ), with β varied
between ±4% in steps of 2%.
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TABLE I. Effect of cutoff energy on elastic constants, C11 and
C111, of InSb calculated using the stress and energy method. A
superscript of t denotes the stress method, and E denotes the
energy method. Calculations all performed with a k-point grid of
10 × 10 × 10.

Ecut (eV) Ct
11 (GPa) CE

11 (GPa) Ct
111(GPa) CE

111 (GPa)

400 65.2 ± 0.1 65 ± 1 −379 ± 11 −1108 ± 15
600 64.89 ± 0.03 65.0 ± 0.2 −360 ± 4 −504 ± 34
1000 64.8 ± 0.1 64.9 ± 0.1 −359 ± 6 −445 ± 21

those plane waves that obey the condition |G + k| < Gcut,
where G is a reciprocal lattice translation, are included in the
basis, with

Ecut = h̄2

2m
Gcut

2. (19)

Modifying the cut-off energy to maintain a fixed basis set
leads to a remarkably improved agreement between total
energy and stress methods, as shown in Fig. 3, where to
illustrate this point, we have performed LDA calculations of
the bulk modulus of AlN using energy and stress, with and
without the cutoff energy correction.

Unfortunately, this cut-off energy correction can only be
easily implemented for hydrostatic strain (i.e., only allows to
calculate bulk modulus) because this is the only case where
the basis set changes isotropically, consistent with Fig. 3.
Because it avoids these issues, the stress method should
therefore be used for reliable, consistent, and computationally
inexpensive calculation of elastic constants.

Finally, we note that InSb, being the heaviest and softest
material, will require the highest resolution of calculation in
terms of cutoff energy and k-point mesh. Thus the conver-
gence indicated in Fig. 1 and Table I also serves to confirm that
the chosen cutoff energy and k-point density are appropriate
for the other materials.

2. Convergence with applied strain range and
equilibrium pressure

In addition to their sensitivity to k-point grid density and
cutoff energy, TOECs also exhibit a more pronounced de-
pendence on the residual pressure at the assumed equilibrium
lattice constant, and the range of strain applied to the system

TABLE II. Effect of residual pressure due to insufficient lattice
relaxation on C111 and C11 of AlN. The accompanying errors are the
least squares fitting errors. C ′

111 is the value for C111 extracted using a
fitting, which accounts for the equilibrium pressure. The calculations
were performed with a cutoff energy of 600 eV and a k-point grid
density of 10 × 10 × 10.

a0 (Å) P0 (kB) C11 (GPa) C111 (GPa) C ′
111 (GPa)

4.3643 0.5927 310 ± 3 −1471 ± 169 −1122 ± 3
4.3646 0.1521 309.56 ± 0.40 −1212 ± 43 −1123 ± 3
4.3647 0.0051 309.49 ± 0.03 −1125 ± 3 −1122 ± 3
4.3648 −0.1369 309.41 ± 0.37 −1037 ± 40 −1118 ± 3
4.3651 −0.5752 309 ± 2 −778 ± 164 −1117 ± 4

in order to calculate them. Because the demonstration of this
point requires a large number of calculations, in this section
we analyze the TOECs and SOECs of AlN. For this compound
of lighter atoms, the stress and total energy calculations are
computationally less expensive than for InSb. Unless stated
otherwise, all convergence tests are performed at a cutoff
energy of 600 eV and on a 10 × 10 × 10 k-point mesh.

The issue of lattice constant relaxation is examined in
Table II, where the elastic constants C11 and C111, extracted
using the stress method, are shown for different equilibrium
lattice constants and pressures. The C111 and C11 values
displayed are the result of applying the strain branch ε =
(α, 0, 0, 0, 0, 0) with α varied from −0.02 to 0.02 in steps of
0.01. The pressure denoted by P0 in the table is the calculated
residual pressure on the ZB primitive cell with the lattice
constant given in the first column. The values preceded by the
“±” are least squares fitting errors.

Table II shows that, when optimizing the lattice constant by
minimizing the absolute value of the pressure on the unit cell,
the magnitude of the pressure below which we may accurately
extract elastic constants from the stress, using standard fitting
methods, is lower for TOECs than for SOECs. In columns
three and four of Table II are presented the results of fitting
the equation t1 = ( C111

2 + C11
2 )α2 + C11α directly to the DFT

data, which include this ‘equilibrium’ pressure, P0, as the
pressure corresponding to a strain of 0%. Here the variation
of AlN’s C111 value with residual “equilibrium” pressure may
be contrasted with the constancy of the corresponding C11

value. As the residual pressure increases, so does the value of
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FIG. 3. LDA calculation of the bulk modulus (C11 + 2C12) of AlN, using both the stress and energy method. (left) Results for a fixed cutoff
energy of 800 eV, and (right) with a strain-corrected cutoff around 800 eV, for the same system (hydrostatically strained ZB AlN).
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TABLE III. Impact of range of applied strain in fitting data for
AlN on SOEC Ct

11 extracted from the stresses, and TOECs Ct
111 and

CE
111 extracted from the stresses and energy, respectively. All elastic

constants are in units of GPa. Ct
11, Ct

111, and CE
111 are calculated on

a k-point grid of density 10 × 10 × 10, and with a cutoff energy of
600 eV. CE

111 (1000 eV) has the same settings but with the cutoff
energy increased to 1000 eV.

αmax Ct
11 Ct

111 CE
111 CE

111 (1000 eV)

±2% 309.49 ± 0.03 −1125 ± 3 −2959 ± 381 −1223 ± 22
±4% 310.0 ± 0.1 −1125 ± 6 −1627 ± 80 −1153 ± 6
±6% 310.8 ± 0.2 −1126 ± 8 −1359 ± 31 −1137 ± 5
±8% 311.9 ± 0.3 −1128 ± 9 −1261 ± 17 −1132 ± 5

C111 deviate from the value obtained at lowest pressure, along
with increasing fitting errors. For a lattice constant change of
−0.0004 Å from the lowest pressure lattice constant, a 30%
error is incurred in C111. This may be attributed to related
factors such as: the small magnitudes of the contribution of
the TOEC to the total stress (at α = 0.02, C111

2 α2 = 2.25 kB),
of which the initial pressure is a significant fraction; and the
tendency of higher-order polynomials to be more sensitive to
noise in fitting.

The errors so-incurred can be reduced by two means.
The first is to modify the fitting equation to account for
the equilibrium pressure; i.e., by fitting using the equation:
t1 = ( C ′

111
2 + C11

2 )α2 + C11α + P0. The improvements induced
by this adjustment are evident in the stability with intial
pressure of C ′

111 in column five of Table II. The second way to
reduce these errors is to ensure the lattice has been relaxed
to a sufficiently low pressure. While the origin adjustment
shown before more than solves the problem for AlN over the
given pressure range, for softer materials, this sensitivity to
initial pressure will be even more pronounced, with a given
pressure corresponding to a higher strain, and this adjustement
is less effective. We thus impose more stringent criteria on the
maximum pressures below which we consider a crystal to be
relaxed, aiming for pressures below 0.1 kB, a fifth of the cutoff
value of ∼0.5 kB typically used for SOECs [54].

Another important calculation parameter to which the
TOECs are sensitive is the range of strain applied to the unit
cell [41,54]. Applying strains over a larger range will produce
larger changes in stress and energy from which the contribu-
tion of the third-order terms will be more easily discerned;
however, as the strain range is increased, even higher-order
terms may begin to have an effect. Furthermore, having a large
strain range with a constant strain point density will require a
larger number of calculations. Thus, the strain range applied
will need to be large enough that the effect of the TOECs can
be observed, but not so large that further higher-order terms
come into play, or the calculation is prohibitively expensive;
i.e., the optimal strain range is the minimum strain range at
which the effects of TOECs are appreciable.

Table III shows the influence of the range of applied strain
on the calculated elastic constants of AlN. The superscript t in
this table refers to a stress extracted constant, and E denotes
an energy extracted constant. αmax denotes the maximum
value of α in the applied strain of ε = (α, 0, 0, 0, 0, 0), with

the data set comprising strains in increments of 1% between
±αmax. The stability of the stress extracted Ct

11 and Ct
111

in Table III reveals that the range of ±2% is large enough
to yield measurable nonlinearities in the stress, but not so
large that higher-order terms interfere with the fitting. The
increasing influence of these unwanted higher-order terms can
be observed in the increasing errors of Ct

111. The rightmost
two columns of the table show again the shortcomings of the
energy method when compared with the stress method for the
extraction of TOECs; the energy extracted constants requiring
larger strain ranges to lower the fitting error. The rightmost
column shows the interrelation between the cutoff energy and
the strain range. Small errors in the calculated free energy can
have significant impact on the determined TOECs at small
strain; increasing the cutoff energy reduces the scale of these
errors, while increasing the strain range reduces their relative
input in the total calculated change in energy. Overall, we see
that the convergence of the TOEC values is clearly slower
using the energy method.

Having justified our choice of the stress method over the
energy method for the extraction of SOECs and TOECs,
and shown that our stress extracted constants are indeed
converged, we present in the next section the full set of
SOECs and TOECs for all considered materials, and discuss
the results.

IV. RESULTS

In this section, the calculated SOECs, TOECs, and first
and second-order ISTCs are presented and discussed. First, in
Sec. IV A, the calculated elastic constants are presented, along
with plots validating the fittings used to obtain them. The
extracted values are compared with previous experimental and
theoretical literature results, and an analysis of the strains
at which third-order effects become important is made. In
Sec. IV B, the calculated first and second ISTCs are reported.

A. Elastic constants

Given below in Eqs. (20) and (21), are six sample stress
fitting equations, truncated to second-order in the strain,
each furnishing an independent determination of a subset
of the nine independent elastic constants of a ZB crystal.
Equations (20) show three axial stress equations which may
be used to determine simultaneously the SOECs, C11 and C12,
and the TOECs, C111, C112, and C123,

t
(2)
1 (α, 0) = 1

2 (C11 + C111)α2 + C11α,

t
(2)
2 (α, 0) = 1

2 (C12 + C112)α2 + C12α, (20)

t
(4)
1 (α, 0) = (C12 + C112 + C123)α2 + 2C12α,

and Eq. (21) shows three shear stresses that yield simulta-
neously values of the SOEC C44, and TOECs C144, C155,
and C456:

t
(2)
4 (α, β ) = C144αβ + C44β,

t
(3)
4 (α, β ) = (

1
2C44 + C155

)
αβ + C44β,

t
(1)
4 (β ) = (

1
4C44 + C456

)
β2 + C44β. (21)
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FIG. 4. Fitting Lagrangian stresses of Eq. (20) to AlN HSE-
DFT data. The points represent calculated DFT data, and the lines
depict stresses determined from Eqs. (20). The used elastic constants
defining the functions in Eq. (20) are obtained by fitting to the data
out to ±2%, and are presented in Table V.

Here, the subscripts on the t
(n)
i refer to the stress tensor

component in Voigt notation, and the superscripts, n, refer
back to the strain branches, η(n), in Eq. (18). The zeros in
brackets in Eq. (21) indicate that β is set to 0, and only α

is varied.
The solid lines in Figs. 4 and 5 show the stresses on

AlN unit cells as a function of strain, calculated using the
expressions in Eqs. (20) and (21). The figures also display the
stresses calculated by DFT for each strain (symbols). Note
that the fitting of the coefficients in Eqs. (20) and (21) is not
done on the data sets shown in the figure. These coefficients
were obtained by two-dimensional fittings to unsimplified un-

FIG. 5. Fitting shear stresses of Eqs. (21) to one dimensional
line scans of AlN HSE-DFT data. Here the data plotted are on the
line α = β. The points represent calculated DFT data points, and the
lines represent stresses calculated via Eq. (21), with coefficients fitted
from data sets with −2% < α < 2% and −4% < β < 4%, using
elastic constants presented in Table V.

truncated stress equations using only data points in the range
−2% � α � 2% and −4% � β � 4%. The lines shown in
the figure show then predictions for higher strain values. As
the figures confirm, not only is the fit very good at ±2%, but
the line also matches the DFT data points very well at higher
strains. The influence of nonlinear effects may be inferred
from the slight curvature and asymmetry of the lines.

By performing fittings to several stress relations, the full
set of SOECs and TOECs for all considered materials were
obtained. For C11 and C111, there are two independent deter-
minations, from t

(2)
1 and t

(3)
2 , and the values given in Tables IV

and V are the averages of these two. The constants C12 and
C112 have three independent determinations, t

(2)
2,3, t

(3)
1 and the

values given in the table are the averages of these. C123 is
obtained from the single fitting to t

(4)
1 . For C155, we extracted

six separate values from the different stresses on the unit
cells; the value given is the average of all these very closely
agreeing values. C144 is given as an average over the values
obtained from the three stresses t

(2)
1 , t

(2)
4 , and t

(3)
1 . Finally, for

all materials, C44 and C456 were obtained from t
(1)
4 .

Table IV presents a comprehensive comparison with ex-
periment and previous theory of lattice constants, SOECs,
and Kleinman parameters for all considered materials. The
table reveals an abundance of both experimental and theo-
retical values of lattice and elastic constants for all materi-
als except for the metastable III-N compounds and highly
toxic AlP, for which experimental elastic constants are not
available. For the Kleinman parameter, experimental values
are rare, with measurements made only on GaAs [69] and
InSb [36]. The theoretical values presented are from DFT
studies utilising different approximations to the exchange
correlation energy functional. References [43,55,56,59,61,64]
use the local density approximation (LDA) to the exchange
correlation functional. As is evident from the table, in most
cases, LDA DFT accounts well for the elastic properties of
solids; however, LDA is known to often overestimate the
binding in solids [53], resulting in smaller lattice and larger
elastic constants. Indeed, we see from Table IV that whenever
there is a significant disagreement between LDA elastic or
lattice constants and those experimentally measured or here
calculated, the LDA elastic constants tend to be larger. For the
Al containing compounds considered here, this trend seems
not to hold, with the elastic constants being often smaller
than experiment, but nevertheless agreeing very closely.
References [18,19] use the generalised gradient approxima-
tion (GGA) of Purdew, Burke, and Ernzerhof (PBE) [72]. This
functional tends to underestimate binding energies [19,53],
and examining in particular InAs and GaAs, we see this trend
borne out. From Ref. [53], we take those structural and elastic
properties calculated using HSE; these show good agreement
with the HSE-DFT values of the present study, as well as with
experimental values. This good agreement with experiment
demonstrates both the validity of the particular HSE-DFT
determined elastic constants presented here, and of the use
of this method for the calculation of structural and elastic
properties in general.

The TOECs, averaged over the independent determinations
given in Eqs. (7) and (18), are gathered in Table V. The errors
following the constants are the fitting errors.
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TABLE IV. Elastic and structural properties of III-V compounds, where Cij are the second-order elastic constants, a0 is the equilibrium
lattice constant, and ζ is Kleinman’s internal strain parameter. All calculations have been performed with a cutoff energy of 600 eV, on a
k-point grid density of 10 × 10 × 10, and the stress method is used to obtain the elastic constants.

a0 (Å) C11 (GPa) C12 (GPa) C44 (GPa) ζ

Prev. theory 4.342 [55] 304 [56], 282 [19] 160 [56], 149 [19] 193 [56], 179 [19] 0.55 [56]
AlN Experimental 4.373 [57], 4.38 [58] – – – –

Present 4.3647 309.47 166.06 196.90 0.5385
Prev. theory 5.417 [59], 5.4735 [60] 132.5 [61] 66.7 [61] 62.7 [61] 0.604 [61]

AlP Experimental 5.46 [62], 5.4635 [63] – – – –
Present 5.4713 138.25 67.73 66.52 0.5759

Prev. theory 5.614 [59] 113.1 [61] 55.5 [61] 54.7 [61] 0.592 [61]
AlAs Experimental 5.66139 [63] 119.9 [63] 57.5 [63] 56.6 [63] –

Present 5.6865 116.64 55.62 56.96 0.5746
Prev. theory 6.090 [59] 85.5 [61] 41.4 [61] 39.9 [61] 0.601 [61]

AlSb Experimental 6.1355 [63] 87.7 [63] 43.4 [63] 40.76 [63] –
Present 6.1877 86.39 40.65 40.71 0.5893

Prev. theory 4.460 [64] 293 [56], 252 [19] 159 [56], 129 [19] 155 [56], 147 [19] 0.61 [56]
GaN Experimental 4.50597 [65], 4.510 [66] – – – –

Present 4.4925 288.35 152.98 166.68 0.5678
Prev theory 5.463 [53], 5.322 [59] 142 [53], 150.7 [61] 61 [53], 62.8 [61] 72 [53], 76.3 [61] 0.516 [61]

GaP Experimental 5.439 [67] 140 [67] 62 [67] 70 [67] –
Present 5.4600 142.16 60.47 72.58 0.5333

Prev. theory 5.619 [43], 5.75 [19] 125.6 [43], 99 [19] 55.06 [43], 41 [19] 60.56 [43], 51 [19] 0.514 [43]
GaAs Experimental 5.65325 [68] 113 [68], 120 [67] 57 [68], 53 [67] 60 [68], 60 [67] 0.55 ± 0.02 [69]

Present 5.6859 116.81 49.64 59.76 0.5288
Prev. theory 5.981 [59] 92.7 [61] 38.7 [61] 46.2 [61] 0.530 [61]

GaSb Experimental 6.0959 [63] 88.34 [63] 40.23 [63] 43.22 [63] –
Present 6.1524 86.37 36.55 43.44 0.5517

Prev. theory 4.932 [55] 187 [56], 159 [19] 125 [56], 102 [19] 86 [56], 78 [19] 0.80 [56]
InN Experimental 4.98 [70], 5.01 [71] – – – –

Present 4.9908 185.20 121.72 91.49 0.7474
Prev. theory 5.899 [53], 5.729 [59] 101 [53], 109.5 [61] 54 [53], 55.7 [61] 48 [53], 52.6 [61] 0.615 [61]

InP Experimental 5.8687 [63] 101.1 [63] 56.1 [63] 45.6 [63] –
Present 5.9035 100.42 53.72 47.39 0.6520

Prev. theory 6.103 [53], 5.921 [59] 86 [53], 92.2 [61], 72 [18] 45 [53], 46.5 [61], 43 [18] 40 [53], 44.4 [61], 33 [18] 0.598 [61]
InAs Experimental 6.0583 [63] 83.29 [63] 45.26 [63] 39.59 [63] –

Present 6.1160 84.28 44.72 39.66 0.6378
Prev. theory 6.542 [53], 6.346 [59] 67 [53], 72.0 [61] 34 [53], 35.4 [61] 30 [53], 34.1 [61] 0.603 [61]

InSb Experimental 6.4794 [63] 69.18 [63] 37.88 [63] 31.32 [63] 0.68 [36]
Present 6.5625 64.97 33.00 30.42 0.6366

TABLE V. HSE-DFT calculated third-order elastic constants of selected III-V compounds. All calculations have been performed with a
cutoff energy of 600 eV, and on a k-point grid density of 10 × 10 × 10. The elastic constants were extracted by fitting to the stresses, the given
errors are fitting errors.

C111 (GPa) C112 (GPa) C123 (GPa) C144 (GPa) C155 (GPa) C456 (GPa)

AlN −1125 ± 3 −1036 ± 8 −44 ± 12 51 ± 3 −789 ± 3 −11.6 ± 0.7
AlP −595 ± 4 −428 ± 4 −103 ± 6 14.9 ± 0.9 −243 ± 1 −33 ± 1
AlAs −526 ± 4 −364 ± 3 −86 ± 4 7.1 ± 0.7 −220 ± 1 −27 ± 1
AlSb −416 ± 3 −268 ± 2 −77 ± 3 6.4 ± 0.5 −156.9 ± 0.6 −21.4 ± 0.7
GaN −1277 ± 8 −976 ± 4 −252 ± 9 −46 ± 1 −647 ± 2 −49 ± 1
GaP −753 ± 8 −441 ± 7 −73 ± 7 −10 ± 1 −295 ± 1 −47 ± 1
GaAs −612 ± 5 −351 ± 4 −86 ± 5 −15.2 ± 0.9 −264 ± 1 −33 ± 1
GaSb −471 ± 6 −260 ± 5 −63 ± 4 5 ± 1 −192 ± 1 −19.3 ± 0.3
InN −786 ± 8 −701 ± 8 −327 ± 12 28 ± 2 −290 ± 1 22 ± 1
InP −491 ± 2.5 −336 ± 2 −131 ± 3.5 −5.17 ± 0.59 −168.6 ± 0.6 −13.6 ± 0.6
InAs −406 ± 16 −262 ± 15 −132 ± 13 −8.8 ± 0.6 −156 ± 1 −7.9 ± 0.7
InSb −360 ± 4 −235 ± 3 −94 ± 3 −14 ± 2 −122 ± 1 −6.8 ± 0.8
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TABLE VI. Previous experimental and theoretical determinations of third-order elastic constants of GaAs and the cubic III-nitride
materials. Theoretical values are italicized.

C111 (GPa) C112 (GPa) C123 (GPa) C144 (GPa) C155 (GPa) C456 (GPa)

AlN −1070a −965a −61a 57a −757a −9a

GaN −1213a −867a −253a −46a −606a −49a

GaP −676 ± 52b,c −499 ± 25b,c −82 ± 56b,c 75 ± 47b,c −332 ± 23b,c 199 ± 66b,c

GaAs −561a,−618 ± 9b,d,e −318a,−389 ± 4b,d,e −70a,−48 ± 11b,d,e −16a,50 ± 25b,d,e −242a,−268 ± 3b,d,e −22a,−37 ± 10b,d,e

GaSb −475 ± 6f −308 ± 2f −44 ± 29f 5 ± 1f −216 ± 13f −25 ± 15f

InN −756a −636a −310a 13a −271a 15a

InAs −404g −268g −121a −5g −138g −6g

InSb −338 ± 30b,h −242 ± 17b,h −79 ± 14b,h 13 ± 7b,h −131 ± 7b,h 0 ± 3b,h

aReference [19].
bReference [35].
cReference [73].
dReference [74].
eReference [75].
fReference [76].
gReference [18].
hReference [77].

In Table VI, experimental and theoretical values are pro-
vided for those materials for which they are available, with
theoretical values italicised. We find good agreement between
the experimental measurements and our calculated values,
taking into account that these measurements are performed
often at room temperature (T ≈ 300 K) where materials tend
to be softer [19] than at the T = 0 K temperature at which
DFT calculations are made. With regard to literature theoreti-
cal calculations, for GaAs, there were several different works
calculating TOECs [18,19,40,43]. Here, we present only the
most contemporary study, by Łopuszyński and Majewski [19].
Overall, we find very good agreement between our results
and those obtained via experiment or theory in the literature.
This serves as a validation for the extracted constants for
which previous experimental or theoretical values are not
available.

With the TOECs and SOECs thus determined and validated
against previous experimental and theoretical values, we may
use them to address the question of when third-order effects
become important in the materials under consideration. As
a test case, we consider an InSb system that is strained in
the x-y plane and free to relax in the z direction. In Fig. 6,
the Cauchy stress, σ , in the z direction, of this system is
shown. This stress will be relevant to the pressure tuning of
the Poisson ratio, and through this the pressure coefficient of
the band gap. The figure plots the Cauchy stress, determined
three different ways, against the strain. The stress obtained
from DFT is given by the symbols, that obtained by linear
strain theory is given by the thin green line, and that obtained
through third-order finite strain theory is given by the solid
red line. Figure 6 shows clearly the increasing failure of
the linear theory with increasing strain. By ±5% strain, the
linear theory suffers from errors in σ of 26% for −5% strain,
and 45% for +5% strain. This failing of the linear theory at
these strains would introduce inaccuracies in the modeling
of, for example, the elasticity of InSb/GaSb quantum wells
[78] and QDs [23] grown by the Stransky-Krastanov method,
given that the lattice mismatch between InSb and GaSb
is 6.3%.

Extending this analysis to the other materials, in Fig. 7,
the error in the out of plane stress induced by a biaxial strain
as calculated by the linear strain theory when compared with
the nonlinear theory is plotted as a function of applied strain.
From the figure we may infer that once the strain in the system
is greater than 2%, the linear theory is no longer appropriate,
with the errors in the stress being �10% for all materials,
except for AlN, which has a 9% error in the calculated
stress at −2% strain. These large nonlinearities in the out
of plane stress will manifest most noticeably in the pressure
dependent behavior of these materials in their respective het-
erostructures. Indeed, this has been already demonstrated by
Lepkowski [18]. From our results we infer that the pressure
tuning of strains in InSb/GaSb structures will be even more

FIG. 6. Nonlinear behavior of σ
(4)
1 for InSb. Red crosses repre-

sent HSE-DFT data, whilst the red line shows the nonlinear behavior
predicted from Eqs. (20) when Cij and Cijk are fitted on data sets
out to ±2% strain; the green line shows the behavior at high strain
predicted by linear infinitesimal strain theory. This is the stress that
would be obtained in a biaxially strained system, strained equally
along y and z axes.
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TABLE VII. Internal strain tensor components extracted from HSE-DFT data for Ga, In, and Al containing III-V compounds. Errors given
are those associated with least squares fitting.

A14 (Å) A114 (Å) A124 (Å) A156 (Å)

AlN −0.5888 ± 0.0002 4.339 ± 0.008 4.478 ± 0.009 2.33 ± 0.03
AlP −0.7936 ± 0.0003 4.01 ± 0.01 5.32 ± 0.01 1.81 ± 0.06
AlAs −0.8187 ± 0.0003 3.959 ± 0.009 5.385 ± 0.007 1.95 ± 0.06
AlSb −0.9129 ± 0.0003 3.95 ± 0.01 5.53 ± 0.01 1.72 ± 0.06
GaN −0.6394 ± 0.0002 4.04 ± 0.02 6.11 ± 0.02 1.97 ± 0.02
GaP −0.7295 ± 0.0002 3.417 ± 0.008 5.65 ± 0.01 1.98 ± 0.04
GaAs −0.7533 ± 0.0005 3.584 ± 0.009 5.55 ± 0.01 2.38 ± 0.08
InN −0.9357 ± 0.0002 5.12 ± 0.05 6.61 ± 0.04 1.23 ± 0.03
InP −0.9645 ± 0.0004 3.86 ± 0.03 6.72 ± 0.03 1.44 ± 0.07
InAs −0.9777 ± 0.0004 3.91 ± 0.05 6.58 ± 0.07 1.70 ± 0.06
InSb −1.0427 ± 0.0009 3.19 ± 0.25 6.61 ± 0.07 1.8 ± 0.1
GaSb −0.8499 ± 0.0002 3.48 ± 0.02 5.38 ± 0.01 2.20 ± 0.03

markedly nonlinear than that which has already been observed
in InAs/GaAs and InN/GaN systems. In the next section, we
turn to higher-order effects in the internal strain.

B. Internal strain tensor components

The components of the internal strain tensor are derived
from Eqs. (16) and (18). These are given for the strain
branches, η(1), η(2), and η(3), in Eq. (22) below:

ξ
(1)
1 = 1

4 (A14 + 2A156)β2 + A14β,

ξ
(2)
1 = A14β + 1

2A114αβ,

ξ
(3)
1 = 1

2 (A14 + A124)αβ + A14β. (22)

The extracted nonzero components of the internal strain
tensor are given in Table VII. For A14, the values from
strain branches η(1), η(2) and η(3), obtained from fitting to
Eq. (22) are averaged. Since there is not the same abundance
of equations from the relaxed atomic positions to describe

FIG. 7. Percentage error in σ
(4)
1 , �σ = σnonlin−σlin

σnonlin
, where the error

is the difference between the stress as predicted using third-order
finite strain theory σnonlin and that predicted using a second-order
infinitesimal strain theory σlin as a function of increasing strain α.

the higher-order internal strain tensor components as there
are from the stresses for the elastic constants, the values
for the different AiJK are set simply to those of the single
independent determination of lowest error. For A114, the only
independent determination is that from η(2); for A156, it is η(1).
For A124, there are two independent determinations, but we
include in the table only the value from the uncomplicated
η(3) strain branch.

In terms of comparison with previous calculation or mea-
surement, Table IV reveals very good agreement between
our calculated first-order ISTC (the Kleinman parameter) and
literature values. To the best of our knowledge, the only other
first-principles calculation of the components of the second-
order internal strain tensor, are given only for C, in Ref. [42].
However, strain derivatives of the Kleinman parameter are
available for Si in Ref. [40], and for GaAs in Ref. [25]. While
these strain derivatives for the case of GaAs could be related
to our data in Table VII, we find that the obtained Kleinman
parameter of Ref. [25], 0.455, disagrees significantly with
our obtained value, 0.5288, with those from experiment,
0.55 ± 0.02 [69], and with those from more recent theory
0.514 [43], 0.517 [79]; we do not therefore attempt explicit
comparison.

V. CONCLUSION

In summary, second- and third-order elastic and first- and
second-order internal strain tensor components were extracted
from accurate HSE DFT calculations. The elastic constants
and internal strain tensor components were extracted via
stress-strain and position-strain relations expressed within
the formalism of finite strain, respectively. This is the first
determination of many of these constants. In particular, the
components of the second-order internal strain tensor ex-
tracted here have not before been measured or calculated.
Where previously determined, good agreement was obtained
with experiment and theory found in the literature. The
results of convergence checks presented illustrate that far
greater care must be taken in the determination of third-
order elastic constants (TOECs) as compared to second-order
elastic constants (SOECs), with a high resolution of calcula-
tion required. The use of the stress-strain equations for the
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calculation of elastic constants was justified, and arguments
from the literature, formulated in the context of SOECs, were
shown to have even more force in the case of third-order
elastic constants. The impact of nonlinear strain effects was
demonstrated in particular for the elasticity of InSb, and in
general for other III-V materials systems, where it was found
that third-order effects become significant for as little as
2% strain. Knowledge of the elastic constants and internal
strain tensor components presented here should therefore

prove useful for the modeling of highly mismatched III-V
heterostructures.
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