
Title Using a DHT in a Peer to Peer architecture for the Internet of
Things

Authors Tracey, David;Sreenan, Cormac J.

Publication date 2019-04

Original Citation Tracey, D. and Sreenan, C. (2019) 'Using a DHT in a Peer to Peer
Architecture for the Internet of Things', IEEE 5th World Forum
on Internet of Things (WF-IoT), Limerick, Ireland 15-18 April, pp.
560-565. doi: 10.1109/WF-IoT.2019.8767261

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/8767261 - 10.1109/WF-
IoT.2019.8767261

Rights © 2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-18 20:04:33

Item downloaded
from

https://hdl.handle.net/10468/9653

https://hdl.handle.net/10468/9653

Using a DHT in a Peer to Peer Architecture for the Internet of Things
David Tracey, Dept. Of Computer Science,

University College Cork, Cork, Ireland
Cormac Sreenan, Dept. Of Computer Science,

University College Cork, Cork, Ireland

Abstract—A challenging aspect of The Internet of Things (IoT)
is to provide an architecture that can handle the range of IoT
elements ranging from Cloud-based applications to
constrained nodes in Wireless Sensor Networks (WSNs). Such
an architecture must be scalable, allow seamless operation
across networks and devices with little human intervention.
This paper describes a set of abstractions and an architecture
for the flow of data from sensors to applications supported by
a Distributed Hash Table (DHT) and our novel Holistic Peer to
Peer (HPP) Application Layer protocol to handle node ids,
capabilities, services and sensor data. We show that this
architecture can operate in a constrained node by presenting a
‘C’ implementation running on the Contiki3.0 OS and consider
the effectiveness of its use of a DHT and its abstractions.

Index Terms—Wireless Sensor Networks, IOT, Tuple Space,
DHT, Data Model, OMA LWM2M.,

I. INTRODUCTION
IoT can be described as allowing the easier integration of

the physical world with the Internet’s virtual world [1]. IoT
is a distributed system comprised of individually addressed
nodes, including constrained nodes with sensing or actuation
capabilities in a Wireless Sensor Network (WSN). The use
of IoT is expected to grow in a range of applications, such as
environmental monitoring and healthcare. The potential of
new applications to take advantage of IoT is limited by the
difficulties caused by the heterogeneous nature, constrained
computing and memory capabilities of nodes, exacerbated by
limited development environments. Also, deployments may
be in challenging environments for wireless [2] and may be
dedicated to a particular use with proprietary or specialized
software/protocols to optimize an aspect like lifetime.

By making sensor data available over the Internet, IoT
allows Cloud services and Big Data approaches to store and
analyze it in a scalable manner, supported by Cloud provider
tools and Fog/Edge Computing [3]. A key consideration is
how to seamlessly find, store and analyze increasing
amounts and variety of IoT data on such Cloud services and
on constrained devices, so that a range of application
software can be developed. One approach is to allow
software to understand data from sensors/actuators in the
way people using browsers understand information on the
Web [4] and use defined data models for sensors/actuators,
e.g. IPSO Smart Objects [5], accessible using a Client/Server
approach as in the Constrained Application Protocol (CoAP)
or the publish/subscribe model of MQTT.

This requires being able to scale the technology down to
resource-constrained devices and to scale it up to billions of
devices [6]. This will require seamless interoperability and
sets of abstractions to support that. In this context, Peer-to-
Peer (P2P) approaches offer a number of potential benefits,
such as scalability, a low barrier to entry, greater autonomy,

and robustness. These features have been demonstrated in
systems such as BitTorrent [7].

We previously presented an architecture that uses a set of
service-based abstractions and a tuple space based data store
for local and remote data [8], with the novel CacheL
algorithm using leases [9]. We termed this architecture
holistic as it considers the varied roles in an IoT system,
from constrained devices to Cloud services.

This paper presents the detail of a Holistic Peer-to-Peer
(HPP) application layer protocol we have added and its
support for the data-centric approach in our Architecture.
This paper also considers our contribution of an application
overlay that can span the WSN and services over the Internet
using a Distributed Hash Table DHT, based on Kademlia
[10] to find nodes and allow new nodes to join by knowing
only the address of a node in the overlay. This DHT is also
used to allow an innovative use of forming groups of data or
nodes with an associated identifier, similarly to an info-hash
in BitTorrent. We believe this P2P approach will allow IoT
to move beyond isolated islands of data to nodes and
services that are more easily deployed, developed and
integrated, e.g for the healthcare scenario outlined in [11].
This also applies at the edges of the Internet, making it
suitable for Fog Computing. A prototype implementation is
presented on the Contiki3.0 OS [12] and Linux servers that
demonstrate the overlay across the WSN to external services.
Its shared codebase and abstractions also helped to make
development and testing easier.

The rest of this paper is organized as follows. Section II
presents prior work on P2P and DHTs and Section III gives
an overview of our architecture. Sections IV and V present
and review a prototype implementation of the Holistic Peer
to Peer (HPP) protocol and DHT. It concludes in section VI.

II. P2P OVERVIEW
P2P systems are used for communication, collaboration,

computation, distributed storage/databases and file sharing.
primarily for music file sharing, e.g. BitTorrent. Freenet [13]
is an example of a purely decentralized, self-organizing P2P
network designed to hide the origin or destination of files.
File sharing P2P systems were driven by advances in hard-
disk capacity, processing power and bandwidth availability.

One view considers that a system is P2P if it meets the
test “Does it give the nodes at the edges of the network
significant autonomy?” [14]. Such a definition including
edge nodes makes P2P relevant in the Fog Computing
scenario, e.g. Figure 1 from the OpenFog Consortium [15]
illustrates the diverse range of devices, services and roles
from the edge to the Cloud.

Figure 1 OpenFog Architecture Scenario [15]

A. Peer to Peer (P2P) in WSNs
The file-sharing use case is different to the constrained

WSN node environment, with its limited storage and
bandwidth, but there are characteristics that make P2P
suitable for WSN and IoT nodes and services, i.e. scalability,
decentralized control, robustness and self-organizing nodes..

One approach to using P2P in a WSN is for it to interact
between the WSN and the gateway to an external network.
An example [16] views the sensor network as one peer in the
P2P network where the gateway represents it in the wider
network and also included a Sensor Network Abstraction
Layer with P2P protocols to publish available services, to
collaborate on tasks, to query all sensor nodes and to search
for services using a service discovery protocol. Another
approach is to use a P2P Overlay Network [17], which
includes the WSN nodes. A P2P overlay network allows
applications to identify and send to peers, without requiring
knowledge of the underlying network implementation. The
P2P overlay topology can also be mapped with the physical
topology so that the P2P neighbor is the physically closest
node. As pointed out by [17], real deployments often require
assigning nodes a globally unique identifier anyway, e.g. to
support network management, and so this can be provided by
a DHT and not considered an overhead of a DHT. The
identifier size can also be reduced in some cases, e.g. by
assigning dynamically smaller locally-unique identifiers for
use locally within a sensor network. DHT computation is
within the capabilities of simple node platforms.

B. Distributed Hash Tables
Distributed Hash Tables (DHT) are used in P2P systems

to provide efficient routing, without centralized control.
DHT's “appear to provide a general-purpose interface for
location-independent naming upon which a variety of
applications can be built. Furthermore, distributed
applications that make use of such an infrastructure inherit
robustness, ease of operation, and scaling properties” [18].

A hash-table is suitable for distributed lookup as it only
requires that data is identified using unique numeric keys. A
data item is inserted into a DHT and found by specifying a
unique key for it. Nodes store information about neighboring
nodes, forming an overlay network to store and retrieve keys.

Given that the purpose of sensor networks is to collect data,
the lookup times achievable by DHT's and their scalability
suggest that their use in sensor networks is appropriate.

A DHT algorithm must map which node is responsible
for storing the data associated with any given key, probably
using a hash function. It must also build routing tables
holding their node identifiers and forward a lookup(key) to a
node (maybe the destination) with a “closer” identifier to that
key [18]. The key could be the result of applying a hash
function to a file name if storing files and a user retrieves the
file using lookup(key) and is returned the node, e.g. its IP
address, holding that key’s data.

Examples of P2P systems using DHTs include Chord
[19] and Pastry [20], which differ in how they build and
maintain their routing tables as nodes join and leave. They
rely on a somewhat fixed topology to assign data to peers
and subsequently look up, e.g. Chord uses a one-dimensional
space to assign Ids for both keys and nodes. BitTorrent [7]
uses a DHT based on Kademlia [10].

1) Kademlia
Kademlia [10] is a P2P system to store and lookup key-

value pairs, using 160-bit keys. Each node uses a key for its
id. Kademlia defines the distance between two keys as their
bitwise exclusive or (XOR). It uses XOR to find the closest
peer nodes (those with more common bits in their prefix) and
to route queries. Its use of a single routing algorithm differs
from Chord or Pastry, where one algorithm is used to get
close to the desired identifier and a different one for the final
message hops. The symmetric property of XOR allows
Kademlia to use information in the queries it receives.

Kademlia nodes keep a list of ⟨IP address, UDP port,
Node Id⟩ triples for nodes of distance between 2i and 2i +1

from itself for 0 ≤ i < 160. These lists are termed k-buckets
as they grow up to a defined size of k and they are sorted by
time last seen. On receiving a message, a node identifier
already in the bucket is moved to the list’s tail and its times
updated and a node identifier not in the bucket is inserted if
the bucket is not full. Kademlia uses a set of messages to
manage these buckets, i.e. PING, FIND_NODE, FIND
VALUE (for a target key identifier) and STORE (a key-
value pair). In particular “node lookup” finds the k closest
nodes to an identifier using the FIND_NODE in a defined
manner, beginning with the initiating node picks α nodes
(from its closest non-empty k-bucket) and sending them a
FIND_NODE. The lookup finishes when it has received
replies from the k closest nodes.

2) BitTorrent
BitTorrent [7] is a protocol for distributing static data,

primarily files broken up using a SHA-1 hash. A metadata
file (torrent) is distributed to peers with a tracker reference,
the SHA-1 hashes of all pieces of files and their mapping to
files. A swarm is a set of peers distributing the same files. A
peer joins a swarm by asking the tracker for a peer list and
then it connects to those peers. The tracker can be a central
server, holding a list of all peers in the swarm, but such a
tracker is a single point of failure and may be a bottleneck
for publishers. Trackerless torrents are an alternative, e.g.
BitTorrent peers may use a DHT based on Kademlia, which
holds the location of peers to download from. The key is the

info-hash (the hash of the metadata), which uniquely
identifies a torrent and the value is a peer list of the contact
information for peers in the swarm.

BitTorrent extended the messages in Kademlia, i.e.
PING, FIND_NODE, GET_PEERS and
ANNOUNCE_PEER. It retained the essentials of the node
lookup and buckets. BitTorrent keeps only “good” nodes in
the routing tables, using a 15 minute period to determine the
last seen recency and refreshing buckets unchanged in 15
minutes. A peer becomes part of the distributed tracker by
looking up the 8 nodes closest to the info-hash of the torrent
and sending them an announce message. Those 8 nodes add
the announcing peer to the peer list stored at that info-hash. k
is set to 8 as this was considered sufficient to reduce the
probability of that number of nodes disappearing between
refreshes. This also reduces the overhead of the routing
tables and the number of messages exchanged.

III. HOLISTIC ARCHITECTURE OVERVIEW
Our HPP architecture [8] is a decentralised P2P

architecture where peers act according to their role without
central coordination. This fits the vision of a seamless IoT of
nodes that share data, collaborate and act autonomously. A
node abstracts the low-level device details and a peer
abstracts the connectivity and P2P aspects, e.g. finding peers.
A Peer runs on a node and has a set of capabilities to handle
HPP messages. A Service has a set of roles (sink, source,
forwarder, store, aggregator, matcher, bootstrap) and it runs
on a peer. The HPP Architecture consists of the layers in
Figure 2 and it is flexible enough to run on nodes of different
capability.

Figure 2 Node Architecture

The Data Model Service Layer provides a high-level
abstraction for data to decouple the application from the
network and node hardware. It is independent of the data
model and has a simple API, supported by the Object Space,
which is a data store modeled as a tuple space with leases
associated with objects and a simple API. In this context, an
object is described by a template provided by the caller and
the Object Space is non-prescriptive in what objects it stores,
e.g. they could be a set of key value pairs and methods to
represent a sensor. It holds the node’s data or data it has
cached from remote nodes. It includes the CacheL algorithm

[9], designed for constrained nodes, which uses leases in its
cache replacement policy. Objects can be added to several
nodes/groups and do not require explicit removal as they are
removed on expiry of their lease. The Local Instrumentation
Layer provides methods to map the node’s hardware devices
such as sensors or the node’s OS specific functions, e.g. its
OS version, to templates and objects to be stored in the
Object Space layer.

Remote healthcare monitoring is an example of the
scenario in [11],where health sensors connect to a home
gateway, which stores and forwards data to cloud-based
services. This contrasts with the approach of separate
components and abstractions for the constrained device and
the more capable systems, e.g. the Eclipse IoT Stack [21] in
Figure 4, and which require mapping those different
abstractions.

Figure 3 Interaction of Node Services

Figure 4 Eclipse IoT Stacks

IV. HPP PROTOCOL DESIGN
The Holistic Peer to Peer Protocol (HPP) is sufficiently

simple for low capability devices to use and provides a
consistent means to exchange information independently of
the underlying network. Two key abstractions are the hpp
channel (the link between peers hiding the network specifics)
and the hpp endpoint (represents a communication endpoint
consisting of hpp channels). Using hpp channel and hpp

endpoint means applications do not need to be re-coded for
different networks. The key principles in our use of P2P are:

• no fixed placement of data.
• consistent handling of local and remote data with a

small set of messages, aligned with the object space
and easy to map to RESTFul APIs.

• all peers use the same P2P overlay network
according to their capabilities.

• leases per class and instance, set by the source, to
allow nodes to cache data and aid data consistency

A DHT with Kademlia k-buckets was chosen to be the
basis for the P2P overlay in HPP for the following reasons:

• Kademlia has proven scalability and robustness in
its use in BitTorrent.

• Kademlia reduces the number of configuration
messages as this information is also carried in
messages used to lookup keys.

• Its single XOR based routing algorithm is relatively
easy to implement, i.e. no secondary routing tables.

• Kademlia’s symmetric routing algorithm facilitates
the use of caching.

• Kademlia nodes can use metrics to route queries
through low-latency paths.

• Kademlia’s use of parallel queries to k nodes to
avoid timeout delays from failed nodes.

The key principles and novelty in our DHT are:
• use of Kademlia DHT buckets for node-identifier

and xor based routing, initialized with 1 bucket as
in BitTorrent (not 160 as in Kademlia) to reduce the
memory required.

• use of Kademlia buckets to dynamically group
peers, e.g. to group nodes with a sensor type. This
uses the DHT to not just hold identifiers to peers,
but to hold identifiers to groups that can be joined
and retrieved using the same HPP messages that a
peer uses to join or be found in an overlay.

• peer longevity in the cache uses a lease set by the
source and HPP messages are used to reduce the
overhead of co-ordination and information
exchange in updating leases and buckets.

B. HPP Messages
Every HPP message consists of a command, message

header and an object. Command is one of the allowed
commands Hello, Bye, Get, Add, Take, Notify. The message
header consists of defined key value pairs and the object is
an encoding of attributes and values, e.g. as key-value pairs.
Responses are similar, with the addition of status, to allow
shared message handling code and reduce memory use, e.g.
caching the data in a get reply uses the same code as an Add.
There is no action, as this is done with an Add message with
the method arguments specific to an object, e.g. a LED will
have a method to set its state.

The message header must contain a msgId (unique to
sender), a senderId and may optionally contain originatorId,
hppVersion, capabilities, name, objectHandle or lease. The
originatorId and msgId do not change as a message is
forwarded or replied to, so the original sender can be sent the

reply from any node and the reply does not have to use the
same path as the request. HPP messages consist of distinct
blocks, e.g. for the header. The string encoding uses
delimiters, but a binary encoding has lengths in each block.

HPP shares peer capability using a Hello message,
which can be considered a richer form of Kademlia Ping.
Bye removes a peer’s information ahead of lease expiry. Get
uses an object handle or can match using specified keys or
attributes. A Get can also specify an info-hash or group Id if
the object was added to that group id. HPP Get is like
Kademlia’s find for a node and like its query for data. On
getting a reply to a Get Peer message, a peer must check the
peer ids as in a Kademlia “find round”.

Add adds new classes or instances to a node using its
DHT identifier or to an info-hash and an object handle (id)
will be returned in the reply. It can also update values. It
contains the object to create or update, which may be a
template (class) object or an instance. Templates can be
referenced by later adds, e.g. to avoid including all attributes.
Lease renewal uses an Add message with the objectHandle
and a new lease value. Take removes an object from a node
or info-hash using the object handle or a full description of
the object. It is not simply a Delete as it returns the object, so
it can be added back, simplifying concurrency issues.

Notify has been added for the actuator and alert
functionality of devices, similar to observe in CoAP. It tells a
peer we are interested in updates to an object for a lease
period. That peer will send on any add/take message for that
object, maybe piggybacked in the next reply to the interested
peer. HPP operates as follows:

• Every Peer must support Hello and respond with its
identifier (if known) and its capabilities. Hello is
deliberately simple to run on very limited nodes.

• Every peer should handle at least a Get for its Peer
Instance, containing up to 8 closest node-ids

• Nodes may support any of the other HPP messages,
which are the capabilities in its Hello reply.

• A new node joins a HPP overlay network by
sending a Hello message to a known peer.

• HPP Get requests for keys are passed from node to
node. If a node has the requested data, then it sends
that back to the requester, otherwise it forwards the
request to the node with the “closest” identifier in
its routing table.

• A peer may not accept connections for security
reasons, e.g. a source may only connect out.

• A peer will get its closest peers and send a Get to
peers of interest to discover the classes and
instances on that peer, avoiding the need for a
centralised Resource Directory as in CoAP.

A. HPP Message Flows
1) Initialisation - Hello Exchange

A peer sends a Hello message to at least one known peer
on starting. It contains its encoded capabilities and may
contain a senderId. If it does not have a senderId, a receiver
with the bootsrap role will check any message credentials
and reply with a DHT identifier for that node’s identifier.

2) Closest Peer Information
Once the Hello reply has been received, a Node can send

a Get for the peer’s object (identifier shown as zzz) and its k
neighbors will be in the reply, as below:
Command Message Header Object

Get msgId=2 senderId=XXX
name=peers/peer Lease=60

peerId=zzz

Command Message Header Object

reply=Get
status=Ok

msgId=2
senderId=XXX

name =peers/peer
objectHandle=1001

closePeers =yyy, xxx
closeAddresses=a.b.c.d:7014,
e.f.g.h:7014

3) Data Transfer
This node exchanges HPP messages with known peers,

e.g. to Get or Add classes/instances with sensor readings.
4) Lease Renewal

 Lease renewal is required for peer objects and for
objects added to a node. The peer object’s lease replaces the
republishing period in Kademlia. A peer requests a lease and
the bootstrap grants it per its policy. If the lease is not
renewed and no message is seen within the lease, then the
bootstrap tries to refresh the lease by sending a Get to the
peer and removes the peer object if it does not reply.

V. IMPLEMENTATION AND EVALUATION
The implementation was coded in C on Linux and ported

to the Contiki 3.0 OS. The Linux implementation allowed
the use of advanced debugging and testing tools. Integration
with the Contiki erbium-REST implementation [6] allowed
accessing objects using CoAP via the Data Model Service
layer. The code was run in Contiki's Cooja simulation
environment as a WiSMote [22], using an MSP-430
processor with 128KB of Flash Memory and 6KB of SRAM.

The same codebase was able to run on the constrained
nodes and more capable Linux nodes, as per the design goal
for the architecture. The value of the hpp_endpoint and
hpp_channel abstractions can be seen in the simplicity of the
code below, with the endpoint handling the channel
initialization, socket listen and message fragmentation. Other
functions use hpp_endpoint and hpp_channel for message
exchange and update peer bucket statistics for each message:

Rv = hpp_endpoint_check(endpoint_ptr);
if (rv == 0) {
 channel_ptr = hpp_endpoint_accept(endpoint_ptr);
} else if (rv > 0) {
 hpp_endpoint_get_messages(endpoint_ptr);
} // timed out with no data, so loop again

Contiki and Linux required different implementations for

communication handling due to different underlying TCP/IP
stacks, socket APIs and event handling. Dynamic memory
allocation was easy to use on Linux, but the limited RAM on
the WisMote required static memory allocation to avoid
runtime heap and stack issues. In spite of these issues, the
abstractions for channels, endpoints and the Data Model

layer allowed the higher layer HPP message handling and
services code to be unchanged in both environments.

Table 1 shows the memory (bytes) used by a node using
only HPP and a node that also included the OMA
Lightweight Machine to Machine (LWM2M) and CoAP
engines. Statically defined structures were used for
connections, channels (8), messages (1 per channel), objects
(20), peers and buckets. It shows that our architecture meets
the requirement to run on resource constrained nodes, with
memory use equivalent to CoAP and LWM2M. The node in
the table included local LED and Temperature Sensor IPSO
instances.

 HPP Only
(Text/Data)

HPP
+IPSO/LWM2M

(Text/Data)

HPP Libraries 16961/5363 16961/5363

Service layer 2828/204 2828/204

DM layer 2143/214 2143/214

Object layer 3055/1261 3055/1261

Li layer 2570/828 2570/828

DHT 3387/16 3387/16

uIP Stack 26361/4765 26361/4765

RPL 10865/250 10865/250

CoAP - 9289/761

LWM2M - 9641/543

IPSO - 2671/275

TOTAL 107240/23917 130727/26291

Table 1 Memory Use of Nodes of Different Capability
The DHT implementation used Kademlia approaches to

create and compare dht ids, for the selection of closest nodes
and to create and manage buckets functions, e.g to place
closest peer ids in the correct k-bucket. The information for
peers in a bucket was held in a Peer object in the Object
Space store, with a lease, like any other object.

Several test scenarios were run up to 10 times each, with
example networks shown in Figure 5. These scenarios used
an edge router running RPL, allowing a CoAP or LWM2M
server or external HPP Peer to access WSN nodes. The HPP
nodes are located in a simple overlay network and given the
address of a bootstrap peer. The source and sink node ran a
series of tests to send hello to get an identifier and join the
overlay, add new objects remotely and to get objects such as
node readings and peer information. Stack use was
monitored to ensure it did not exceed the allocated 1KB (its
largest size was 750bytes).

Table 2 shows the time to process the different types of
messages on the server and for the reply to be received on
those nodes a single hop away (to focus on hpp processing
time rather than routing). The server processing times did not
depend on the number of objects being searched or added,
albeit there were at most 20 objects. These results suggest
that hpp is feasible on constrained nodes even using a string
format. The robustness of hpp was demonstrated by stopping

nodes during tests and their peer information (and any added
objects) was deleted when their leases expired.

Figure 5 Simulated Networks

Server
Hello
(ms)

Server
Get (ms)

Server
Add (ms)

Hello
Reply
(ms)

Get
Reply
(ms)

Add
Reply
(ms)

31 7.8 20.8 166 208 173.8
Table 2 Message Times

VI. CONCLUSION
This paper has outlined the use of a DHT based on

Kademlia and its successful implementation in our HPP
protocol and architecture. The architecture’s abstractions
allowed code re-use on constrained nodes and Linux servers,
with code changes only in the lower layer implementation,
making testing and development easier and providing
consistent concepts for programmers.

Our use of DHT in HPP also demonstrated the benefits
we believe that P2P approaches can bring to WSNs, such as
robustness, scalability and easier deployment, as a node only
needed the address of one node to join the network and
discover other peers, and decentralization, e.g. the decision
to allow a node to join is made by the node it contacts, which
may also provide a DHT identifier. HPP also supported
distribution, with peers physically and logically distributed
reflecting the distributed IoT environment and providing data
to be stored or processed in more than one node.

Future work will consider storing metrics when
refreshing and processing replies, which can be used to select
low-latency paths for subsequent requests. Also, associating
a prefix of the 160 bit identifier with a Bootstrap peer (and
an edge router) would allow a shorter identifier to be used
within a local physical network and use the 160 bit identifier
externally. Furthermore, a binary encoding of HPP would be
straightforward to implement and reduce message size.

REFERENCES

[1] S. Haller, “The Things in the Internet of Things,” in Internet of Things

Conference (iot2010), 2010.

[2] S. Nawaz, X. Xu, D. Rodenas-Herr'aiz, P. Fidler, K. Soga and C.
Mascolo, “Monitoring a Large Construction Site Using Wireless
Sensor Networks,” in RealWSN, 2015.

[3] F. Bonomi, R. Milito, J. Zhu and S. Addepalli , “Fog Computing and
Its Role in the Internet of Things,” in MCC Workshop on Mobile
Cloud Computing, 2013.

[4] M. Koster, “Information Models for an Interoperable Web of Things,”
in Position paper for W3C Workshop on the Web of Things – Enablers
and Services for an Open Web of Devices, 2014.

[5] IPSO, “IP for Smart Objects (IPSO) Alliance,” 2014. [Online].
Available: http://www.ipso-alliance.org. [Accessed 2018].

[6] M. Kovatsch, “Scalable Web Technology for the Internet of Things
(PhD Thesis),” ETH Zurich, 2015.

[7] B. Cohen, “The BitTorrent Protocol Specification,” 2008. [Online].
Available: http://www.bittorrent.org/beps/bep_0003.html. [Accessed
May 2017].

[8] D. Tracey and C. Sreenan, “A Holistic Architecture for the Internet of
Things, Sensing Services and Big Data,” in 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing,
2013.

[9] D. Tracey and C. Sreenan, “CacheL - A Cache Algorithm using
Leases for Node Data in the Internet of Things,” in IEEE 4th
International Conference on Future Internet of Things and Cloud
(FiCloud), 2016.

[10] P. Maymounkov and D. MaziШeres, “Kademlia: A Peer-to-peer
Information System Based on the XOR Metric,” in First International
Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[11] X. Le et Al, “Secured WSN-integrated Cloud Computing for u-Life
Care,” in IEEE Consumer Communications and Networking (CCNC),
2010.

[12] “Contiki: The Open Source OS for the Internet of Things,” [Online].
Available: http://www.contiki-os.org/. [Accessed May 2018].

[13] I. Clarke, O. Sandberg, B. Wiley and T. W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval System,”
Lecture Notes in Computer Science, vol. 2009, 2001.

[14] C. Shirky, “What is P2P....And What Isn't?,” 2000. [Online].
Available: http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html. [Accessed May 2018].

[15] “Openfog Consortium,” [Online]. Available:
https://www.openfogconsortium.org . [Accessed May 2018].

[16] S. Krco, D. Cleary and D. Parker, “P2P Mobile Sensor Networks,” in
IEEE Conference on System Sciences, 2005.

[17] M. Ali and K. Langendoen, “A Case for Peer-to-Peer Network
Overlays in Sensor Networks,” in Proceedings of WWSNA with 6th
IPSN, 2007.

[18] H. Balakrishnan, F. Kaashoek, D. Karger, R. Morris and I. Stoica,
“Looking Up Data in P2P Systems,” Communications of the ACM,
vol. 46, no. 2, pp. 43-48, 2003.

[19] I. Stoica, “Chord: A scalable peer-to-peer lookup service for Internet
applications,” IEEE/ACM Transactions on Networking, no. February,
2003.

[20] A. Rowstron and P. Druschel, “Pastry : Scalable, decentralized object
location and routing for large-scale peer-to-peer systems,” in 18th
IFIP/ACM International Conference on Distributed Systems
Platforms, 2001.

[21] “Eclipse IoT,” [Online]. Available: https://iot.eclipse.org/. [Accessed
October 2018].

[22] Arago Systems, “WIsmote,” [Online]. Available:
http://www.aragosystems.com/produits/wisnet/wismote/. [Accessed
2018].

