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Abstract: The authors present the design of a tunable 433 MHz antenna that is tailored for wearable 
wireless sensor applications. The paper first presents a detailed analysis of the impedance characteristics of 
a chosen antenna under test (AUT) in varying proximity to a human test subject. A novel equivalent circuit 
is then developed that enables both the free-space and total on-body AUT impedance variation to be 
rapidly determined using a circuit simulator. The design and characterization of a tunable matching 
network is then presented that enables AUT impedance matching for 11 different positions on the human 
body. Finally, a fully-autonomous 433 MHz tunable antenna is demonstrated. The antenna occupies a 
small PCB area of 51 × 28 mm and is printed on standard FR-4 material. Prototype measurements show an 
improvement of 3.9 dB in power delivery to the antenna for a load VSWR of 17:1, with a maximum 
matching loss of 0.84 dB and -10 dB return loss bandwidth ≥ 18 MHz for all load conditions.  

1. Introduction 
The use of wireless sensor networks (WSN) using wearable devices is seeing a rapid emergence in recent 

times, specifically in areas such as healthcare and fitness monitoring [1, 2]. In addition, the emerging 

paradigm of the Internet of Things (IoT) is enabling a wide variety of increasingly inexpensive wireless 

sensors for personal Smart-Health systems [3]. These types of WSN applications, often referred to as 

Body Sensor Networks (BSN), require highly integrated wireless sensor devices that can be used in a 

wearable configuration, to wirelessly monitor various physiological parameters of the user. The 2.45 GHz 

frequency band is currently a popular choice for these devices. However, other frequency bands such as 

the 433 MHz Industrial Scientific and Medical (ISM) band can offer certain advantages as less repeaters 

are required and band congestion in the 2.45 GHz bands is a growing issue [4, 5]. Widespread adoption of 

wearable wireless technology is being driven by continued integration that allows small sized devices to be 

conveniently placed on different parts of the body. Small sized antennas are therefore a key requirement 

but it is well known that electrically small antennas are prone to impedance and resonant frequency 

variation due to human body effects [6]. 
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At the present time, WSN research platforms [7-10] use fixed antenna impedance matching networks 

that cannot adapt to changing antenna environments such as in wearable BSN applications. Adaptive 

antenna tuning networks are extremely desirable and have been investigated by many researchers in recent 

times for cellular applications [11, 12]. These antenna tuning solutions offer potential benefits for cellular 

applications where human hand and head effects are of key concern. However, little is reported in the 

literature in relation to the development of antenna tuning solutions for the emerging field of wearable 

WSN applications where the antenna can be placed at a wide variety of positions across the entire human 

body. In this paper, we present measurement, design and modeling techniques for the design of a fully 

autonomous, 433 MHz tunable antenna. The initial architecture for a larger, custom antenna return loss 

measurement and tuning system was developed and described in detail in [13, 14]. The described system is 

substantially miniaturized compared to the previous system and is now integrated onto the antenna 

substrate itself, leading to a lower-loss, lower-power implementation. A brief outline of the paper is 

summarized as follows. Section 2 presents a measurement technique to determine the total impedance 

variation of a chosen AUT when placed at several locations on the human body. Section 3 presents an 

equivalent circuit model of the AUT that also includes human body effects. Sections 4 and 5 discuss the 

design and characterization of the tunable antenna and Section 6 concludes the paper. 

2. Antenna Impedance Variation on the Human Body  
The first goal of this work was to determine the total antenna impedance variation of a chosen AUT 

when placed in varying proximity to different parts of a human test subject. A photograph of the AUT is 

shown in Fig. 1a. This is a compact, low-cost 433 MHz antenna structure that was designed for WSN 

applications and is described in detail in [15]. The input impedance of the AUT is denoted ZA and is 

measured at f0 = 433 MHz. The antenna measurement setup is shown in Fig. 1b with the AUT connected 

to a Rohde & Schwarz ZVRE vector network analyzer [16] via a 50 Ω cable and BALUN [17] to suppress 

unwanted feed cable radiation during measurements. The AUT was then placed at one of 11 different body 

locations shown with the human test subject clothed and in a standing position. In this case, the antenna-

body distance d was then scanned repeatedly from a maximum distance dMAX of 6 cm approximately 

(representing the distance beyond which the AUT impedance does not change) to a minimum distance 

dMIN = 1 mm. Minimum distance dMIN was set using a 1 mm foam spacer to prevent human skin contact 

whose high conductivity would effectively create a short circuit at the antenna terminals. The x-y plane of 

the antenna was kept approximately parallel to the surface of the skin during these measurements.  
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                 a                                                                                            b 

 
Fig. 1. Details of AUT and on-body antenna measurement setup using a human test subject 
a. Photograph of 433 MHz AUT 
b. Overview of measurement setup for on-body AUT characterization 

 

In addition to repeatedly moving the AUT uni-laterally along the z-axis, the antenna was also rotated 

about the z-axis by an angle denoted θZ that was rotated in the range 0° ≤ θZ ≤ 360° in order to capture any 

impedance variation due to orientation in this configuration. A computer running a Matlab [18] script was 

used to continuously measure and record all values of S11 at Port P1. Each of the measurements was 

performed for a 90 second period, resulting in a total of approximately 750 discrete measurements per 

body position for all variations of distance d and angle θZ. The AUT measurements for 11 different body 

positions are shown in Fig. 2. The upper and lower body responses of Fig. 2a and Fig. 2b show that 

different body locations produce different impedance responses and it is therefore necessary to consider 

the effects of the entire human body to determine the total AUT impedance variation. The measured 

effects of pocket objects such as a wallet, coin, car keys and IPhone 5 are shown in Fig. 2c. Conductive 

metal objects such as the coin, lead to highest measured VSWR values, with the measured AUT 

impedance moving to the extreme right-hand side of the Smith chart. Fig. 2d shows the superposition of 

all measured data on the same graph, denoted ZA_TOT. This impedance data represents the total AUT 

impedance variation that was measured for all distances d and θZ across 11 body positions. The measured 

data shows that the AUT impedance behaves in a predictable manner with both the inductive and resistive 

components of ZA increasing with decreasing values of d. In order to better understand the observed AUT 

behaviour in varying proximity to the human body, a transmission line antenna model is next investigated. 
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Fig. 2. Summary of on-body AUT impedance measurements 
a. Upper body 
b. Lower body 
c. Pocket Items 
d. Superposition of all measurements (ZA_TOT) 

3. Antenna Transmission Line Model with Human Body-Loading Effects Included 
Equivalent transmission line models for IFA antennas in free-space have been reported previously in 

the literature [17, 19]. In this work, the motivation was to present a transmission line antenna model of the 

433 MHz AUT that also accounts for human body effects on the input impedance of the antenna. A 

simplified schematic representation of the antenna is shown in Fig. 3a and shows the SMA input at Port P1 

and microstrip line with all the other antenna elements labeled from Point A to Point D.  
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An equivalent circuit for the antenna was then developed using AWR Microwave Office [20] as 

shown in Fig. 3b. The antenna feed at Port P1 is connected to a 50 Ω coaxial transmission line TSMA 

representing the on-board SMA connector with characteristic impedance Z0 SMA = 50 Ω and electrical 

length ΘSMA = 3° at 433 MHz. TSMA is connected to a 50 Ω microstrip line T1 of width W1 = 2.91 mm and 

physical length Len1 = 25 mm. 

 
Fig. 3. Transmission line model of 433 MHz AUT 
a. Simplified schematic representation 
b. Equivalent circuit model 
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The shunt inductive loop comprising segments Seg1 and Seg2 were modeled as a series combination 

of inductors L1 and L2. Spiral arms Seg3 and Seg4 were modeled as two transmission lines T1 and T2 with 

characteristic impedance Z01 and Z02 and electrical length Θ1 and Θ2 respectively. Series resistances R1 and 

R2 were used to model the distributed radiation and loss resistances associated with Seg3 and Seg4. 

Lumped capacitance C1 was used to account for the capacitive stub at Point C. Finally, the end-

capacitance of the patch at Point D was modeled as a lumped capacitance C2 to Ground. The equivalent 

circuit model parameters, except those for the SMA connector and microstrip line, were then optimized 

against measured 1-port AUT S-parameter data over the range 400 to 500 MHz using AWR Microwave 

Office [20] and the final optimized parameters are listed in Table 1. 

 

Table 1 Final optimized equivalent circuit model parameters 
 

Parameter            Value Parameter            Value 

 

R1 9.57 Ω Z0SMA 50 Ω 

R2 11.1 Ω θSMA 3 ° 

C1 0.14 pF Z01 166.2 Ω 

C2 0.31 pF Θ1 55.08° 

L1 10.48 nH Z02 443.4 Ω 

L2 29.23 nH Θ2 30.13° 

 

The optimized parameters show that the total electrical length of the spiral sections (Θ2 + Θ3) is 85° 

approximately. This value is slightly less than a resonant λ0/4 length of 90° at f0 but is expected since the 

capacitive end-loading due to C2 accounts for a small decrease in resonant length and is consistent with the 

findings of [19]. Fig. 4a and Fig. 4b compare the S11 responses of the measured AUT and equivalent 

circuit and very good correlation is observed for the magnitude and phase of S11 across a 100 MHz 

frequency range. Incorporation of human-body loading effects in the equivalent circuit model was also 

investigated to help explain the previously measured antenna impedance variation in proximity to the 

human body. Since the patch element and ground-plane have the largest cross-sectional-area, when 

compared to the other antenna features, it was first assumed that the majority of the capacitive coupling 

between the antenna and human body occurs via patch capacitance CP and ground capacitance CG as 

illustrated in Fig. 4c with both CP and CG assumed to decrease with increasing antenna-body distance d. In 

addition to the above, it was also assumed that the human body has a variable conductance GB, depending 

on the characteristics of the body tissue above which the antenna is positioned.  
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Fig. 4. AUT equivalent circuit model 
a. Comparing measured and simulated S11 magnitude (400 to 500 MHz) 
b. Comparing measured and simulated S11 phase (400 to 500 MHz) 
c. Addition of human-body loading sub-circuit (blue) to previous antenna equivalent circuit of Fig. 3b 
d. Comparing measured and simulated total on-body S11 responses at 433 MHz 



8 
 

The series equivalent of CP, CG and GB was then modeled as a simple parallel equivalent of C3 and 

R3 that was added to the earlier equivalent circuit of Fig. 3b at point D. The range of parameters C3 and R5 

were then determined experimentally in simulation, with C3 varied from 0 to 0.2 pF in steps of 2 fF and R5 

varied from 29.5 kΩ to 309.5 kΩ in steps of 20 kΩ. Fig. 4d compares the simulated values of S11 using the 

equivalent circuit model versus measurements on the AUT. Quantity ZA_TOT denotes the total measured 

impedance variation of the AUT for 11 body positions or approximately 11 × 750 = 8,250 individual 

measurements. Fig. 4d shows that the simulation model is capable of providing a good estimate of the 

measured ZA_TOT values. Accounting for human body antenna loading effects using an equivalent circuit 

model, rather than using EM methods has particular benefits in terms of computation time. For example, 

in related work that is not discussed here, a finite-element-method (FEM) model was developed with the 

AUT placed at the wrist position (similar to the configuration of Fig. 1b) at varying distance d above a 

phantom human arm. This model required approximately 1.5 hours to compute ZANT for 8 discrete values 

of d, using a PC with 24 GB of RAM and an Intel® Xeon® 8-core CPU running at 1.6 GHz. In contrast, 

the equivalent circuit model allows a total of 1,515 discrete S11 antenna values to be computed in a time of 

0.54 seconds. The proposed equivalent circuit is not intended to replace EM modelling methods but has 

the advantage of enabling a fast analysis to be performed while also providing insight into the detuning 

behaviour of the AUT in proximity to the human body. 

4. Antenna Tuner Design 
In the previous section, the total impedance variation of the AUT for 11 body positions was measured. In 

this section, this data is used in the design of a tunable antenna that adaptively corrects for antenna 

impedance mismatch. In order to determine the potential benefits of impedance matching, the losses due to 

impedance mismatch are first evaluated when no matching network is present. This is achieved by 

determining the antenna Mismatch loss (ML) or amount of power that is lost from the generator due to 

impedance mismatch at the input terminals of the antenna [21] and is defined as  

 

𝑀𝐿(dB) = −10𝑙𝑜𝑔ଵ଴(1 − |𝑆ଵଵ|ଶ),                                                        (1) 
 
 

where S11 is the antenna reflection coefficient [22]. Fig. 5 shows the previously measured values of ZA_TOT 

superimposed on the calculated contours of ML using (1) for varying S11 at 433 MHz with a source 

impedance ZS = Z0 = 50 Ω. A significant, worst-case ML of approximately 6 dB is observed without 

matching for this AUT.  
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Fig. 5. Simulated AUT mismatch loss (ML) with no matching network present 
 
 In order to reduce the above losses due to impedance mismatch, the following presents the design 

of a reconfigurable impedance matching network. The main requirements for the matching network are 

that it provides the required impedance coverage to match all possible antenna load impedances ZA_TOT, 

with minimal loss over a specified bandwidth of approximately 2 MHz for the 433 MHz ISM-band. 

Several different types of low-pass topologies were investigated including L, Double-L, T and Π-type 

networks. The main disadvantages of the L-network are limited loaded quality factor and bandwidth. In 

addition, conjugate matching is possible only for a limited area of the Smith chart [23], even when ideal, 

lossless components are used. The Double-L, low-pass network can offer increased coverage and 

bandwidth but has the disadvantage of requiring an extra series inductor which leads to increased losses. 

The low-pass T-network has only one tunable component and therefore has limited impedance coverage. 

The Π-structure was eventually chosen for this application as this topology minimizes the effect of finite-

Q-factor tunable and fixed components that are used to implement the network and also provides the 

necessary Smith chart coverage.  

 A simplified representation of the Π-type matching network is shown in Fig. 6a. Reconfigurability 

is achieved using variable capacitances C1 and C2 using a commercial PE64102 device [24]. This is a 5-bit 

device that allows the capacitance between the RF+ and RF-terminals to be digitally tuned from CMIN = 

1.88 pF to CMAX = 14.0 pF in 32, discrete steps of 391 fF. In terms of accurately predicting the 

performance of the matching network, the component parasitics of C1 and C2 are essential to model and an 

equivalent circuit model of the component was employed [24]. Similarly, the quality-factor QL1 of the 

fixed inductor was used to model the inductor losses, specified at f0. The use of a high Q-factor inductor is 

essential to minimize losses and an air-core type was chosen with QL1 = 110 [25]. 
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Fig. 6. Π-type matching network 
a. Simplified representation of the Π-type matching network 
b. Simulated optimized GT contours 
 

Fixed capacitor C3 was used to provide additional capacitance at the source side of the matching 

network to enable high VSWR load impedances to be matched. A bi-directional coupler COUP1 [26] was 

employed at the output of the matching network to monitor the levels of forward and reflected power at 

the antenna terminals and the chosen coupler [26] was selected to have minimal insertion loss (0.25 dB at 

433 MHz). When a 2-port matching network is connected between a source and variable load impedance, 

it is necessary to consider the losses of the matching network and the effect of reflections at the source and 

load as defined by the 2-Port Transducer Power Gain GT [22]. A load-pull analysis and optimization of the 

simulation model was then performed using Agilent's Advance Design System (ADS) [27] in order to 

optimize L1 and C3 for maximum GT over the range of antenna impedances defined by ZA_TOT and the 

resulting GT contours are shown in Fig. 6b. It can be seen that the Π-Type matching network provides 

good impedance coverage with significant improvement in power delivery to the antenna for high antenna 

VSWR when compared with the unmatched case.  
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For example, as outlined previously, the worst-case AUT ML loss was 6 dB without matching. With 

matching, the simulated loss is approximately 3 dB maximum, or a 3 dB improvement in power delivery 

to the antenna. For values of ZANT near the centre of the Smith chart, the simulation model predicts 

maximum losses of approximately 0.8 dB, mainly attributed to losses in components C1, C2, L1 and COUP1. 

5. Antenna Tuner Implementation and Measured Results 
In this section, the hardware implementation details of a small-footprint, 433 MHz antenna with 

integrated tuner are presented. The initial architecture was described in detail in [13, 14]. Here, a similar 

but more optimized, integrated and low power, discrete component solution is presented. A dedicated 

antenna tuner module was first developed for characterization purposes and a block diagram is shown in 

Fig. 7a with a photograph of the fabricated module shown in Fig. 7b. Port P1 of the matching network is 

the interface to the radio transceiver and Port P2 is the antenna interface. Coupler COUP1 allows the 

magnitude of the reflection coefficient │ΓL│, at the antenna port to be measured and the chosen device 

has a coupling factor of  20 dB with a directivity of 30 dB to enable accurate measurement of │ΓL│ as 

described in [13]. Instead of using two separate RF power detectors as in [13], in this case, a simpler and 

lower power alternative is employed using a single power detector with an RF switch SW1 [28] used to 

select either of the PFWD or PREF signals. A LT5538 RF power detector [29] was chosen as this is a high 

sensitivity device with a dynamic range from –75 dBm to +10 dBm and provides the required RF 

sensitivity for accurate measurement of antenna return loss. The power detector output is filtered and 

digitized by a low-power, ATmega128L micro-controller [30] and a pre-calibrated Lookup Table (LUT) is 

used in firmware to compute the final values for PFWD and PREF. An RS-232 interface is also available for 

real-time monitoring of antenna measurement data via a graphical user interface (GUI). The tuner uses 

standard, 1.6 mm FR-4 material (εR = 4.5, tanδ = 0.02), with a 6-layer stackup and is integrated in a small 

area of 25 × 28 mm. The tuning circuitry was placed on the top layer of the PCB with the tuning controller 

placed on the bottom layer. The DC supply is applied via the JTAG connector. 

During characterization, a 1-Port S-Parameter measurement was conducted using a Rohde & 

Schwarz ZVRE vector network analyzer [16] that was connected to P2. Fig. 7c compares the measured and 

simulated values of S22* or the range of antenna impedances that can be conjugately matched to a 50 Ω 

impedance at the antenna port P2 with the input port of the network P1 terminated in 50 Ω (via the internal 

termination of the VNA). It can be observed that the tuner provides a good level of impedance coverage at 

port P2 with strong agreement shown between simulation and measurement.  

In order to compare the performance with and without the matching network present, the relative 

transducer gain ΔGT was then measured [31], using a manual, 2-port load-pull setup with a ZVRE VNA 
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and Maury Model 1878G, triple stub tuner [31] to adjust the load VSWR at P2. The measured and 

simulated results are shown in Fig. 7d. It can be seen that the tuner provides increased power delivery to 

P2 for a large span of VSWR values ranging from 2.4:1 to 17:1, with an improvement of 3.9 dB measured 

for worst-case VSWR at P2. For load VSWR ≤ 2.4:1, the maximum tuner loss was measured at 0.84 dB. 

 
Fig. 7. Details of antenna tuner module and measured performance 
a. Block diagram of tuner module 
b. Photograph of tuner module  
c. Measured and simulated values of S22* at 433 MHz  
d. Comparing measured and simulated values of ΔGT at 433 MHz 



13 
 

The final tunable antenna is shown in Fig. 8a and incorpotates both the tuner and antenna in a single 

design. The antenna uses identical PCB stackup and materials as the tuner module of Fig. 7b. The antenna 

measures 51 × 28 × 8 mm with the matching circuit placed on the top side and the tuning controller placed 

on the opposite side as shown.  

 
Fig. 8. Final tunable antenna 
a. Photograph showing top and bottom sides of tunable antenna 
b. Measured S11 return loss of AUT with no tuning 
c. Measured S11 of tunable antenna 
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 Fig. 8b shows the measured values of S11 for the AUT from 300 to 500 MHz with no tuning when 

the antenna is placed in free-space (ideal case), and on the human head and wrist. For the head and wrist 

test cases, the antenna was placed at a distance of approximately 1 mm above the skin surface using a 

LDPE spacer [32] to prevent skin contact. It can be seen that the AUT is correctly tuned for the free-space 

case but significant detuning is observed when the AUT is placed close to the human body. In contrast, 

Fig. 8c shows that the tunable antenna can match the antenna for all three cases with a measured -10 dB 

bandwidth of greater than 18 MHz. The tuning algorithm was implemented using a sequential search of 

the 1,024 possible tuner states, taking approximately 370 ms to execute. Once the search is complete, the 

algorithm sets the final tuner state for maximum PFWD. Current consumption measurements of the 

prototype tunable antenna show that it requires a peak supply current of 32 mA DC during a tuning 

operation. Once tuning is completed, the tuning controller is placed in standby mode and the RF power 

detector is placed in shut-down mode. In this mode, all current capacitor states for C1 and C2 are 

maintained, thereby maintaining the current impedance match settings. This mode also means that the DC 

supply current to the antenna can be significantly reduced to a value of approximately 250 μA. The micro-

controller clock frequency used for the above measurements was 8 MHz.  

6. Conclusions 
This paper has presented the design of a tunable 433 MHz antenna that is tailored for wearable 

wireless sensor applications. It was shown that for a wearable wireless device to operate effectively across 

several body locations, it is essential to characterize the antenna across the entire human body rather that at 

a single location and a single distance from the body. An equivalent circuit antenna model was presented 

that includes human body effects, enabling rapid simulation of total antenna impedance variation when 

compared with FEM simulation methods. The design of an adaptive impedance matching network was 

then presented that allows AUT tuning across all 11 different body positions considered. Finally, a 

compact, 433 MHz tunable antenna was demonstrated. Prototype measurements show up to 3.9 dB 

improvement in power delivery to the antenna for a VSWR of 17:1 with a maximum loss of 0.84 dB and -

10 dB bandwidth of ≥ 18 MHz. The proposed solution offers particular performance advantages for 

wearable wireless sensor systems in terms of improving power delivery to the antenna, reducing current 

consumption and providing longer battery life. Improved RF link quality and the need for less numbers of 

data re-transmissions is also a critical advantage for health-related applications. The prototype tunable 

antenna was developed as a stand-alone device but could also be integrated into existing wearable systems. 

Although the work focuses on the 433 MHz ISM band, the same methods can be applied to other 

frequency bands. 
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