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Significance Statement 

Substantial progress has been made in our understanding of learned fear, with important 

implications for the treatment of fear- and anxiety-related psychological disorders, including 

post-traumatic stress disorder, specific phobias, and social anxiety. However, the 

characterisation of fear learning during development has lagged behind studies of adults, 

despite a growing awareness that the majority of psychological disorders emerge during 

childhood or adolescence. In this primer, we outline important considerations and common 

mistakes in developmental studies of rats and mice. Using examples from the study of 

learned fear, we offer a number of practical suggestions to guide best practice in rodent 

studies of development. 

 

Abstract 

Development is a time of rapid change that sets the pathway to adult functioning across all 

aspects of physical and mental health. Developmental studies can therefore offer insight into 

the unique needs of individuals at different stages of normal development as well as the 

aetiology of various disease states. The aim of this overview is to provide an introduction to 

the practical implementation of developmental studies in rats and mice, with an emphasis on 

the study of learned fear. We first discuss how developmental factors may influence 

experimental outcomes for any study. This is followed by a discussion of methodological 

issues to consider when conducting studies of developing rodents, highlighting examples 

from the literature on learned fear. Throughout, we offer some recommendations to guide 

researchers on best practice in developmental studies. 

 

Keywords: Development – Pavlovian fear conditioning – fear extinction – rodent studies – 

age-related changes – infancy – adolescence  
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Over recent decades substantial progress has been made in our understanding of 

learned fear, at both the behavioural and neural levels of analysis (McCullough, Morrison, & 

Ressler, 2016). One striking feature of this work has been the convergence between findings 

in humans and in rodents, highlighting the translational value of this line of research (Maren, 

Phan, & Liberzon, 2013; Milad & Quirk, 2012). However, there remain gaps in our 

knowledge, in part due to an ongoing focus on adult male subjects and participants. As the 

field continues to mature, there is growing recognition of the need to examine sex differences 

in learned fear (Li & Graham, 2017; Thibault, 2016). It is also the case that there is a relative 

dearth of research on learned fear across development, which we argue is fundamental to the 

progression of knowledge and treatment outcomes in this area.  

Why study development? 

It is a truism that children are not simply small adults. As will be discussed in the 

context of conditioned fear, our knowledge and understanding of adult functioning does not 

necessarily apply to young individuals. Development is characterised by rapid, often non-

linear, changes in physiology and behaviour, including learned fear and the neural structures 

associated with such behaviour (Hunt & Campbell, 1997; McCutcheon & Marinelli, 2009; 

Semple, Blomgren, Gimlin, Ferriero, & Noble-Haeusslein, 2013). From a basic science 

perspective, these developmental differences – questions of what is different, when it is 

different, and why it is different – are of interest in and of themselves. From a societal and 

public health perspective, developmental studies are needed to effectively address medical 

and psychological questions of health and disease for children and adolescents. Periods of 

rapid change and growth render the developing individual vulnerable, but also offer windows 

of opportunity during which behavioural and neural profiles are more malleable and therefore 

more amenable to treatment (Lee et al., 2014). Essentially, developmental studies are useful 

as they help us to first define age-appropriate norms of behavioural and neurological 



4 
 

functioning and then to identify optimal environments and treatments that promote positive 

health outcomes within this most valued sector of society (see Figure 1 for a summary). 

In saying this, the importance of developmental studies should not be viewed solely 

through the narrow lens of their application to those who are currently in the midst of 

development. All adults have a developmental history that informs their current functioning. 

Indeed, many psychological theories emphasise the formative nature of early-life experiences 

in the aetiology of psychopathology (e.g., Gross & Hen, 2004; Mineka & Zinbarg, 2006). In 

keeping with such theoretical accounts, epidemiological evidence suggests that childhood 

adversity (e.g., neglect, abuse, parental mental illness) increases the risk for adult 

psychopathology (Kessler et al., 2010), and that approximately half of all adult disorders 

emerge during childhood or adolescence (Jones, 2013). Aside from predicting pathological 

outcomes, the study of development can also provide insight into healthy neuropsychological 

processes as they occur across the lifespan. That is, characteristics normally observed only 

during development (e.g., rapid, non-pathological forgetting, or infantile amnesia) can offer 

unique opportunities to approach problems (e.g., the locus of memory) from new perspectives 

(Callaghan, Li, & Richardson, 2014).  

In the current unit, we focus on the practicalities of conducting developmental studies 

with rats and mice. First, we discuss developmental factors that should, where possible, be 

taken into account for all studies with these species, regardless of the age of the test subjects. 

Following this, we discuss important considerations and common mistakes in developmental 

rodent studies. Throughout, we contextualise this information with concrete examples of how 

these considerations apply in the case of developmental studies of learned fear. 
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Developmental factors to consider in all studies. 

As noted above, all adults have a history that encompasses their development. Given 

this, it is important to consider how developmental factors may influence current functioning. 

It is now recognised that early life experiences, including exposure to stress, infection, 

environmental microbes, or differing levels of parental care, can have long-lasting effects 

(Borre et al., 2014; Heindel et al., 2016; Kaffman & Meaney, 2007). For example, low levels 

of maternal care, repeated bouts of separation from the mother during early postnatal 

development (maternal separation stress), and germ-free rearing environments are all 

associated with heightened corticosterone responses to stress and altered anxiety-like 

behaviour in adulthood (Clarke et al., 2013; Francis, Diorio, Liu, & Meaney, 1999; 

Kalinichev, Easterling, Plotsky, & Holtzman, 2002). In fact, at least some of the effects of 

early-life manipulations are so strong that they can be observed across generations 

(Callaghan, Cowan, & Richardson, 2016; Francis et al., 1999; Franklin et al., 2010; for 

reviews, see Braun et al., in press; Cowan, Callaghan, Kan, & Richardson, 2016).  

These findings strengthen the rationale for proper randomisation of experimental and 

control groups to ensure that extraneous developmental factors do not result in false positives 

or obscure group differences. For example, experimental and control groups should be 

obtained from the same breeding colonies (or, if multiple breeding colonies are used then 

animals from each colony must be randomly allocated to experimental groups), multiple 

cohorts should be tested, and groups should not be composed of animals from a limited 

number of litters. These developmental factors should be considered as part of a best practice 

random allocation process, which will incorporate procedures to ensure that the order of 

group allocation is also random (i.e., the first animal selected from a box/litter should not 

always be allocated to the same experimental group). Random sequence generators are one 

approach that has been suggested to assist in this and thereby minimise potential selection 
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bias (Hirst et al., 2014; see also the Animal Research: Reporting of In Vivo Experiments 

[ARRIVE] guidelines; Kilkenny, Browne, Cuthill, Emerson, & Altman, 2010). 

Litter effects. Individuals from the same litter are likely to have very similar early life 

experiences, on top of genetic similarities, that will shape their development and adult 

functioning, just as human siblings (especially twins) would be expected to exhibit 

overlapping characteristics. Therefore, data obtained from littermates should not be treated as 

independent observations as this will skew the representativeness of the sample and 

undermine the replicability of the study. This is particularly true when observations are made 

during development, and we emphasise here that the number of animals from a given litter 

allocated to each experimental group should be reported in all developmental studies.  

We recommend that, wherever possible, only one animal (or one male and one 

female) from each litter be allocated to any given experimental group. To achieve this in 

practice, the researcher will likely need to have multiple experiments planned to ensure 

efficient use of the litter. This will not only allow allocation of littermates to separate 

experimental groups so as to eliminate litter effects, but is also in line with researchers’ 

ethical responsibilities to reduce the number of animals culled from each litter. If more than 

one animal from a litter is included in any particular group, litter effects must be accounted 

for statistically (usually by averaging across individuals from the same litter and treating the 

average as a single data point, or by including litter as a nested factor in the analysis). The 

need to adjust for litter effects in statistical analyses has been identified as best practice by 

many before us (e.g., Abbey & Howard, 1973; Lazic & Essioux, 2013; Terranova & Laviola, 

2005), and has even been incorporated into official OECD guidelines (OECD, 2007), yet 

many continue to ignore this advice, to the detriment of the field (Lazic & Essioux, 2013).  

Litter size. One factor that contributes to litter effects and warrants further 

consideration is the size of the litter. The number of animals in a given litter has the potential 
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to influence the resources available to each individual and thereby influence the animals’ 

growth and progression through developmental stages. Large litters will exhibit delayed 

growth as the individuals must compete for nursing time. In contrast, small litters will have 

access to an excess supply of breast milk, leading to overfeeding and weight gain. Both 

scenarios have long-term effects on metabolism, neuroinflammation, sexual maturation, 

anxiety-like behaviour, and cognitive performance (De Luca et al., 2016; Seitz, 1954). 

Essentially, large variation in litter sizes will increase variability in behavioural and neural 

outcomes. To reduce this source of variability, common practice is to cull litters to a 

consistent number of pups (e.g., 8 pups per litter) and cross-foster age-matched pups to 

increase numbers in smaller litters (Lohmiller & Swing, 2006). Although this is standard 

practice, and achieves the aim of equating growth curves across litters, it should be noted that 

it is unclear at present whether such cross-fostering has any systematic impacts on the cross-

fostered pups or not. In any case, standardisation of litter sizes in this manner should be done 

as early in development as possible (i.e., at least within the first week of life) to minimise the 

likelihood of long-term effects on pup development. 

Housing and husbandry. Finally, as noted above, the early rearing environment and 

levels of maternal care can have a substantial impact on later life outcomes. It should be 

noted that housing and husbandry practices can contribute to both of these factors. For 

example, the complete absence of handling or cage cleaning during early development can 

increase corticosterone responses to stress, similar to effects observed in animals exposed to 

early-life maternal separation stress procedure (Plotsky & Meaney, 1993). Care should 

therefore be taken to ensure that housing and husbandry conditions are kept constant across 

litters and during later development. This includes routine cleaning practices (typically once 

to twice per week) and environmental stimulation/enrichment (e.g., cage space, toys and 

chewing materials). The number of animals per cage might also be considered an enrichment 
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factor and should therefore be kept as constant as possible. In particular, housing animals in 

isolation should be avoided as it is a known stressor for rodents due to their inherent 

sociability (unless of course the objective is to induce stress; Beery & Kaufer, 2015; Sandi & 

Haller, 2015). 

 

Considerations for studies of development. 

As with all scientific studies, developmental studies require careful planning to ensure 

a robust study design. Here, we will briefly discuss some of the most important factors to 

consider when undertaking a study of infant, juvenile, or adolescent rodents (summarised in 

Table 1). Of course, this list is not exhaustive and there may be considerations that are 

specific to the experimental design or parameters, but we hope that this will provide a starting 

point for the experimenter who is new to studies of development. 

A concrete example is used to illustrate each concept described here, focusing on the 

study of learned fear. For the purposes of this article, we will focus on Pavlovian fear 

conditioning (see Figure 2), which involves the paired presentation of a neutral sensory 

stimulus (e.g., a tone, light, or scent, which will become the conditioned stimulus; CS), with 

an inherently aversive stimulus (e.g., a small electrical shock – the unconditioned stimulus; 

US). After several pairings, an individual will begin to express fear to the previously neutral 

CS. This can be assessed by presenting the CS alone and measuring behavioural fear 

expression (the conditioned response; CR). We will also provide examples relating to the 

extinction of conditioned fear, which involves repeated or prolonged presentation of the CS 

alone such that conditioned responding is diminished (a process that forms the basis for 

clinical exposure therapy; Milad & Quirk, 2012). 
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Table 1. Summary of important considerations in developmental studies. 
 
Factor to 
consider 

Common mistakes Recommendations 

Number of 
litters 

Use of multiple pups from 
the same litter in the same 
experimental group as 
independent observations, 
restricting generalisability 
and reproducibility of 
results. 

Maximum of one male and one female per 
litter allocated to each experimental group. 
Ideally, researchers should run multiple 
experiments concurrently to allow efficient 
use of pups. If this is not possible, multiple 
observations from the same litter should be 
averaged and treated as a single data point. 

Litter size Large variation in litter 
size, leading to individuals 
of ostensibly the same age 
being at different 
developmental stages (i.e., 
individuals from small 
litters will develop faster 
due to increased 
availability of resources). 

Maintain even litter sizes (e.g., 8 pups per 
litter) using a combination of culling and 
cross-fostering as close to birth as possible. 

Housing and 
husbandry 

Inconsistency in housing 
conditions or husbandry 
routines, which can alter 
stress responses and other 
behaviours. 

Maintain consistency in environmental 
conditions, including availability of social 
and non-social stimuli, and regular cage 
cleaning. Rodents are social animals, so 
should be housed with a minimum 2 animals 
per cage. 

Timing of 
observations 

Failure to account for 
rapid developmental 
transitions.  

Be as precise as possible in timing of 
experimental observations. We recommend 
testing all individuals within ± 1 day of the 
chosen age, especially in infancy. 
 

Inappropriate labelling of 
‘infant’, ‘juvenile’, and 
‘adolescent’ rats. 

See Table 2 for a rough guide to age ranges 
for different developmental stages in rats. 

Outcome 
measures 

Use of inappropriate 
measures or inappropriate 
interpretation of measures. 

Choose a measure of fear that is expressed in 
the chosen age range (see Figure 3). Note that 
neural pathways supporting fear expression 
also change across development. 

Experiment 
duration 

Long experiments that 
encompass multiple 
developmental stages. 
Long training or testing 
sessions causing distress in 
the dam and pups, with 
disruption to feeding 
patterns and 
thermoregulation when 
pups are very young. 

Where possible, minimise length of 
experimental protocols to a few days and 
avoid lengthy periods of separation from the 
dam prior to weaning (ideally <15 min). 
If pups are <P10, maintain body temperature 
using a heat-pad during long separations. 
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Species & 
strain 
selection 

Failure to adjust timing of 
observations based on 
species- and strain-specific 
variation in developmental 
trajectories. 

Developmental transitions will generally 
occur earlier in mice than in rats. Refer to the 
literature for the specific outcome measure in 
the chosen strain and if this information is not 
available conduct pilot studies based on 
timing of other developmental transitions. 

Sex 
differences 

Assumption that males and 
females will respond in 
equivalent ways prior to 
puberty, even though 
developmental 
manipulations (e.g., early 
life stress) are known to 
have different long-term 
effects on male and female 
rodents. 

When possible sex differences are of interest, 
both male and female animals should be 
tested, in line with recent policy updates from 
the National Institutes of Health (2015) to 
consider sex as a biological variable. 

Apparatus & 
equipment 

Failure to adjust 
equipment for developing 
individuals, preventing 
accurate assessment of 
performance. 

Scale equipment to suit developmental stage. 
When equipment is introduced to the home 
cage (e.g., headpieces attached to pups), 
monitor the reaction of the dam to avoid 
damage to the equipment and harm to the 
dam or litter. 

Drug dosage Assumption that adult 
dosages will be 
appropriate for use in 
infants, leading to 
inaccurate assessment of 
drug effects or potential 
harm to the individual. 

Refer to the literature for the chosen drug; 
dose may need to be increased or decreased 
depending on the specific pharmacokinetics 
for the chosen developmental stage. Where 
this information is unavailable, carefully 
monitored dose-response pilots should be 
conducted to ensure safety and efficacy. 

Experimental 
design 

Assumption that the same 
parameters will assess 
outcomes validly across 
development.  

Depending on the experimental hypothesis, it 
may be necessary to choose either parameters 
or performance to be held constant.  
E.g., to conduct a valid assessment of long-
term fear retention across development, it will 
be necessary to increase the number of CS-
US pairings for younger animals in order to 
equate initial learning. 

 

Timing of observations. The rapid changes that occur during development also 

necessitate precise timing of experimental observations. This is important to ensure that the 

age of the experimental subjects fits within the developmental stage of interest. 

Unfortunately, many studies mislabel the stage of development of experimental animals 

(McCutcheon & Marinelli, 2009). In Table 2 we provide a rough guide to developmental 

stages in rats.  Similar age ranges are used to describe developmental stages in mice (Brust, 
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Schindler, & Lewejohann; 2015), although mice tend to mature slightly faster than rats and 

the distinction between infant and juvenile stages is not made as often for mice. A useful rule 

of thumb in distinguishing between the “infant” and “juvenile” stages of development is the 

normal age of weaning for that species. That is, if an animal is younger than the normal age 

of weaning (P21/22 in rats) then it would usually be referred to as an “infant” while those 

older than that would be referred to as a “juvenile”. Note that there remains some controversy 

over the definition of adolescence. In Table 2, we have given a relatively broad definition of 

adolescence, which in some studies will be further broken down into early (or peri-), mid, and 

late adolescence.  

 
Table 2. Estimated age ranges for different developmental stages in rats. 
 
Developmental stage Approximate age range 
Perinatal Up to P7 
Infant P7 – P21 
Juvenile P22 – P28 
Adolescent P30 – P55 
Adult P60+ 
Stages based on Semple et al. (2013) and Sengupta (2013). P = postnatal day. 
 

 
In comparison to studies of adults, the age of individuals also needs to be equated 

more strictly. Whereas adult animals may be considered equivalent within a fairly large 

timeframe ranging up to weeks, such intervals will have a dramatic influence on an 

individual’s response during development. It is recommended that all individuals are tested 

within 1 day of the chosen age (e.g., P17 ± 1 day) because, particularly during infancy, stark 

qualitative transitions from one type of responding to another can occur in a single day. For 

example, very early in development, on postnatal day (P) 9 or earlier, infant rats will exhibit a 

paradoxical approach response to an odour CS paired with shock (Sullivan, Landers, 

Yeaman, & Wilson, 2000). From P10 onwards, however, rats will exhibit avoidance of the 

odour CS in this same task (Sullivan et al., 2000; for review see Debiec & Sullivan, 2017). 
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Other species-typical conditioned fear responses, such as freezing, bradycardia (i.e., 

slowing of the heart-rate), and potentiated startle, emerge in a sensory- and response-specific 

sequence (see Figure 3; for a review, see Hunt & Campbell, 1997). Specifically, CS-elicited 

freezing is typically exhibited at a younger age than bradycardia, which is exhibited at a 

younger age than fear potentiated startle. The availability of these responses is also dependent 

on the characteristics of the CS, with behavioural expression of learned fear typically 

emerging first to olfactory, then auditory, and finally to visual cues (Hunt & Campbell, 

1997). Importantly, the expression of these responses is determined by the animal’s age at 

acquisition, rather than its age at test. That is, an animal that has the capacity to express fear 

in a particular manner will only do so if that response was also available to the individual at 

the time of training. Thus, a 25-day-old rat that is capable of expressing fear to a visual CS 

through both freezing and fear potentiated startle will only exhibit the freezing response, and 

not fear potentiated startle, if it was trained on P18 (Barnet & Hunt, 2006; also see 

Richardson & Fan, 2002). 

Once a behavioural fear response to a CS is learned, there are also developmental 

differences in the retention and extinction of the conditioned response. Specifically, infant 

animals tend to exhibit rapid forgetting of learned fear associations (and other experiences) in 

comparison to adults, a phenomenon known as infantile amnesia that is observed across 

species (Campbell & Spear, 1972; Josselyn & Frankland, 2012). With regards to extinction of 

conditioned fear, infant rats are less prone to fear relapse after extinction. That is, whereas 

adult animals will exhibit recovery of an extinguished fear response under certain conditions 

(e.g., in novel contexts, after a reminder treatment or exposure to a stressor; Bouton, 2002), 

infants are less likely to display these relapse behaviours (i.e., they exhibit relapse-resistant 

extinction; Kim & Richardson, 2010). In contrast, the juvenile rat will exhibit a more adult-

like pattern of relapse-prone extinction (see Figure 4 for a summary of developmental 
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differences in extinction retention and relapse). The curvilinear nature of development 

becomes most apparent in adolescence, where the evidence suggests that adolescents are 

primed to learn negative associations, in comparison to individuals at other stages of 

development (Den & Richardson, 2013: Hunt, Burk, & Barnet, 2016), as well as being 

impaired in extinguishing such associations (Figure 4; McCallum, Kim, & Richardson, 2010; 

Pattwell et al., 2012; for review see Baker, Den, Graham & Richardson, 2014). 

Outcome measures. Given that certain behaviours change over the course of 

development and others are not expressed at all prior to a certain age, the timing of 

experimental observations will ultimately affect the range of outcome measures that are 

available to the experimenter. For instance, it would be inappropriate to use potentiation of 

startle to assess fear learning prior to P23. Also, even when behaviour appears similar across 

age groups, the same behavioural output may represent different underlying patterns of neural 

activation (Chan et al., 2011; Kim, Hamlin, & Richardson, 2009; Kritman, Lahoud, & 

Maroun, 2017; Li, Kim, & Richardson, 2012a). For example, the prefrontal cortex, a region 

known to regulate expression of conditioned fear and extinction in adults (Quirk & Mueller, 

2008), matures relatively late in postnatal development (Semple et al., 2013). Although rats 

can exhibit both conditioned fear and extinction of conditioned fear from infancy, these 

behaviours do not become dependent on the prefrontal cortex (PFC) until the juvenile period, 

between P23-25 (Kim et al., 2009; Li et al., 2012a). Furthermore, as was the case for 

behavioural expression of learned fear, the animal’s age at acquisition determines the later 

recruitment of neural networks (Li, Kim, & Richardson, 2012b). Specifically, infant rats 

conditioned on P17 do not exhibit activation of the PFC during fear expression, even when 

the test takes place at P23, after this behaviour is typically observed to be PFC-dependent (Li 

et al., 2012b). Thus, effective fear conditioning and extinction should not necessarily be 

interpreted as measures of prefrontal cortex output during development. 
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Experiment duration. Another factor that should be considered in designing both 

outcome measures and experimental procedures for studies of development is the duration of 

the protocol. Long treatment periods or training protocols that occur over many days will 

likely encompass multiple developmental stages, and may therefore be inappropriate for 

answering questions about differential expression of outcomes across development. For 

example, the advent of optogenetic technologies has enabled the investigation of the role of 

specific neuronal populations in behavioural outcomes with a high degree of temporal 

specificity (Zhang et al, 2010). However, the most common approaches to optogenetics (i.e., 

injection of the viral vectors lentivirus or adeno-associated virus into the target brain region) 

require 2-3 weeks after injection to achieve the required level of gene expression (Zhang et 

al., 2010), reducing their utility in studies of development. As the technology improves, faster 

infection rates may be achievable and even commonplace (e.g., the herpes simplex virus 

requires only 1-2 weeks to achieve sufficient expression; Zhang et al., 2010), which will 

make optogenetic studies during development more feasible. 

The length of the individual training or testing sessions is also important during 

development. Extended periods of separation from the dam prior to weaning, and particularly 

in the first two weeks of life, will cause stress for both the infant and the dam. Indeed, 3 hours 

of daily maternal separation is a procedure that is commonly used in rats to model negative 

psychological (e.g., depression and anxiety-like behaviour) and physiological outcomes (e.g., 

hormonal response to stress, gastrointestinal symptoms like irritable bowel syndrome; 

O’Mahony, Hyland, Dinan, & Cryan, 2011). In addition to the psychological stress of 

separation, very young rodents will also suffer disruption to feeding patterns and 

thermoregulation during long periods of separation. Particularly prior to gaining fur, the 

rodent’s capacity to self-regulate body temperature is reduced and infants are therefore 

susceptible to both hypo- and hyperthermia (Gordon, 1993). Typically, the nest temperature 
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is maintained between 35 – 37 oC by the shared body heat of the dam and littermates 

(Gordon, 1993). If a pup, especially one younger than P10, is to be separated from the litter 

and kept in a room-temperature environment for extended testing sessions, a heat pad or other 

insulation (e.g., container kept in a temperature-controlled water bath) should be used to 

prevent hypothermia, but it is also imperative to prevent overheating as young rats are 

particularly vulnerable to hyperthermia-induced seizures (Gordon, 1993).  

Species and strain selection. It is important to be aware of the developmental 

transitions and norms that occur for your chosen experimental species or strain. Perhaps the 

most stark contrasts in this respect are between altricial species, such as mice, rats, and 

primates (including humans), which are born relatively immature and have an extended 

period of postnatal development, in comparison to precocial species, such as guinea pigs, 

which are born relatively mature and exhibit less postnatal development (e.g., low rates of 

postnatal neurogenesis; Josselyn & Frankland, 2012). One striking illustration of these 

differences can be found in the expression of infantile amnesia, which is observed across 

altricial species (as described earlier; Campbell & Spear, 1972; Josselyn & Frankland, 2012), 

but is notably absent in the precocious guinea pig, which exhibits similar rates of memory 

and forgetting across the lifespan (Akers et al, 2014; Campbell, Misanin, White, & Lytle, 

1974). Different developmental trajectories are also observed between altricial rodents (i.e., 

mice typically mature faster than rats), and even between strains of rats or mice (e.g., 

Molenhuis, de Visser, Bruining, & Kas, 2014). For this reason, the appropriate timing of 

experimental observations may differ between strains and species and should be adjusted 

accordingly. 

Sex differences. As has been the case for rodent studies of adulthood (Thibaut, 2016), 

the majority of developmental studies have focused exclusively on males. Although this may 

be somewhat more defensible prior to the onset of puberty and the associated increase in sex 
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hormones, a convincing argument can be mounted to study both sexes even during early 

development. For example, there is evidence of sex-specific effects of early-life 

manipulations in rodents, with male rats exhibiting more profound physiological and 

behavioural abnormalities following either early-life maternal separation stress or germ-free 

rearing (e.g., Clarke et al., 2013; Diehl et al., 2007). With respect to the translational and 

clinical implications of developmental studies, sex differences in psychological and 

neurodevelopmental disorders often emerge during development. For anxiety and depression, 

sex differences emerge around puberty (disproportionately affecting girls and women), but 

sex differences in autism, disruptive behaviour disorders, and attention-deficit hyperactivity 

disorder all emerge during childhood (affecting more boys and men; Thibault, 2016). We are 

not suggesting that all studies include both sexes and multiple stages of development as to do 

so would be unfeasible and unwieldly. Nonetheless, it is important to acknowledge the 

potential impact of sex and developmental stage on the behavioural/physiological outcomes 

of interest and to encourage the investigation of these variables, either within or across 

experiments. 

Apparatus and equipment. Due to the obvious size differences between infant and 

adult rodents, equipment that has been built for use with adults will often not be appropriate 

for use with developing individuals. For example, in the classic test of spatial memory, the 

Morris Water Maze, the performance of rat pups is dramatically altered by both the size of 

the pool (Carman & Mactutus, 2001) and the visibility of spatial cues (Carman, Booze, Snow, 

& Mactutus, 2003). In other words, adjustments to the equipment are needed to accurately 

assess the spatial abilities of young animals in this task (and the task will not be at all 

appropriate for use in very young rodents that have not yet opened their eyes and have 

difficulty locomoting even on dry surfaces; see Albani, McHail, & Dumas, 2014 for a review 

of appropriate measurement of hippocampal-dependent behaviours during development). In 
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the case of fear conditioning, training is generally conducted in chambers with a grid floor 

used to administer a mildly aversive foot-shock. However, grids built for adult rats will be 

too large to accommodate an infant rat, whose paws will slip through large gaps between 

grids, meaning their bodies rather than paws will be exposed to the shock. Therefore, more 

tightly spaced grids (e.g., 5-7 mm apart) should be used when conditioning infant rats as 

opposed to adult rats (grids spaced 10-13 mm apart). 

Aside from scaling equipment to suit the physical proportions of the animal, there are 

also some, perhaps less obvious, considerations that should be taken into account when 

selecting experimental apparatus for use with developing rodents. For example, if equipment 

is to be attached to the animal (e.g., cannulae, electrophysiology tetrodes), the effects of this 

on the individual, the dam, and littermates need to be carefully monitored. Large headpieces, 

although they have been successfully used in the young rat (e.g., Ng & Freeman, 2012), may 

prevent a pup from nursing, affecting its health or causing the dam to reject the pup. Dams 

may also attempt to remove large attachments, especially if they interfere with normal licking 

and grooming, which may result in damage to the equipment or harm to the offspring. In 

addition, if there is a delay between implantation and testing, this may cause problems due to 

the physical growth that will occur in the intervening interval. 

Drug dosage. In studies of adults, drug doses are typically titrated according to the 

weight of the animal. This is also necessary in studies of developing animals. However, it is 

important to note that pharmacokinetics and pharmacodynamics tend to differ in complex, 

drug-specific ways across development, giving rise to the field of developmental 

pharmacology (Spear & Brake, 1983; van den Anker, Schwab, & Kearns, 2011). This means 

that the effective and safe doses for specific drugs will differ according to the animal’s 

developmental stage. For example, two drugs used to induce a potentiated startle response in 

adult rats, strychnine and corticotrophin-releasing hormone (CRH), have been shown to have 
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similar effects on potentiated startle in infants, but only when the doses were adjusted in 

opposite directions (Weber & Richardson, 2001). That is, whereas a dose of 1-2 mg/kg of 

strychnine is required to induce potentiation of startle in adults, a dose of only 0.25 mg/kg 

was required in infants (i.e., one quarter of the adult dosage). In fact, strychnine doses above 

0.25 mg/kg have been reported to have convulsive or lethal effects during infancy (Kubova & 

Mares, 1995). In contrast, the intracerebroventricular dose of CRH required to induce 

potentiated startle was four times higher in infants than in adults (1.0 µg for adults, 4.0 µg for 

infants). Overall, calculation of developmental drug doses based on standard adult dosages 

will not necessarily produce the desired effects, and in fact may be detrimental or even toxic 

to the infant or adolescent. Therefore, a literature review to determine age-specific drug 

dosages is always recommended and, where this information is unavailable, pilot studies to 

establish dose-response curves in the chosen developmental stage should be conducted with 

careful monitoring of animal welfare. 

Experimental design. If the objective of the experiment is to compare performance 

across developmental stages then it will be important to consider whether it is of higher 

priority to equate the experimental parameters or to equate some measure of performance. 

For example, in assessing infantile amnesia, it may be necessary to use different training 

parameters in infants and adults to equate the initial levels of behavioural expression of 

learned fear. Learning is typically slower in developing animals, meaning that more 

conditioning trials are required to elicit equivalent levels of behavioural fear expression in 

infants (e.g., Li et al., 2012a, 2012b). Without equating this initial fear expression, it would 

be difficult to distinguish whether the more rapid rate of forgetting in the infant was due to 

“weaker” initial learning rather than a true developmental difference in fear retention. In the 

end, it may be worthwhile to use parameter-equating and performance-equating approaches 

in parallel to provide the most definitive answers to questions of developmental differences in 
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behavioural or neural function. Regardless of the approach chosen, it is essential for scientific 

rigour and transparency to describe the experimental design and other relevant factors in as 

much detail as possible to promote efforts to reproduce findings (see also ARRIVE 

guidelines; Kilkenny et al., 2010). 

 

Conclusion. 

This primer is intended to serve as a guide to help researchers navigate the particular 

challenges of developmental research. We have offered a number of suggestions to avoid 

methodological problems and improve reliability through sound experimental design. 

Although many of these recommendations have been made in the past and largely ignored, 

we hope that this paper will act as a timely reminder to combat the current issues of 

reproducibility in scientific research. Furthermore, we hope to encourage new researchers to 

delve into the exciting field of developmental research. This is an important pursuit because, 

when conducted appropriately, developmental studies can add valuable insights to our 

understanding of physiological and psychological problems as they occur across the lifespan.  
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Figure Legends 

 

Figure 1. The investigation of developing individuals is an often neglected but highly 

important area of study, with the potential to expand basic scientific knowledge and enhance 

clinical practice. 

 

 

Figure 2. Pavlovian fear conditioning and extinction. During fear conditioning, the 

conditioned stimulus (CS; e.g., a white noise) is paired with an aversive, unconditioned 

stimulus (US; e.g., a foot-shock) so that the animal exhibits fear to the CS alone. During 

extinction, the CS is presented alone so that the animal’s fear response diminishes. Elements 

of this figure adapted from Cowan et al., (in press). 

 

Figure 3. Approximate age of emergence for a range of fear-related behaviours in rats. Note: 

CS = Conditioned stimulus; FPS = fear potentiation of startle. 

 

 

Figure 4. Developmental differences in fear responding after extinction training. When test 

occurs in the same context as extinction training, adolescent individuals exhibit a deficit in 

extinction retention (i.e., heightened fear expression) compared to other developmental 

stages. In regards to renewal of extinguished fear, a developmental transition from relapse-

resistant to relapse-prone extinction occurs between the infant and juvenile stages such that 

only infants exhibit low levels of fear expression in a context that differs from the extinction 

context. Data redrawn from Baker, McNally, & Richardson (2013), Kim & Richardson 

(2007), McCallum et al. (2010). 


