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Abstract: 

Diastereoselective sulfur oxidation in 2-thio-3-chloroacrylamides is described. A range of 

chiral amine auxiliaries were incorporated in the -chloroacrylamide, and the efficiency with 

which the stereochemistry was relayed to the sulfur centre during sulfoxidation was 

investigated. Diastereomeric ratios of up to 3.3:1 were achieved. 

 

Introduction 

 

The asymmetric synthesis of sulfoxides has received particular attention in recent years as the 

sulfoxide moiety has been shown to provide excellent stereochemical control as a chiral 

auxiliary.
1-5

 Furthermore, many enantiopure sulfoxides are known to have significant 

biological activity.
6-8

 Several methods are currently available for the preparation of optically 

active sulfoxides.
9-16

 We have recently described the enantioselective sulfur oxidation of the 

-chloroacrylamides, with enantioselectivities of up to 52% ee achieved using the Kagan 

oxidation and up to 71% ee when the Bolm oxidation is employed (Scheme 1).
17

 



 

Scheme 1 

 

The diastereoselective oxidation of chiral sulfides using achiral oxidants has also been 

described by several research groups.
18-25

 The basic principle of diastereoselective oxidation 

is to exploit the proximity of a defined chiral centre to relay stereochemistry to the newly 

formed sulfoxide. Steric interactions or neighbouring group participation accounts for the 

diastereoselectivity achieved.
26

  

As the Kagan and Bolm methods led to limited success in the asymmetric sulfur oxidation of 

the -chloroacrylamides,
17

 the diastereoselective sulfur oxidation of the -chloroacrylamides 

was investigated in detail during the current study. A range of chiral amine auxiliaries were 

incorporated in the -chloroacrylamide, and the efficiency with which the stereochemistry 

was relayed to the sulfur centre during sulfoxidation was investigated. While the 

diastereomeric ratios achieved are modest, the resulting sulfoxides have significant synthetic 

potential, for example as Michael acceptors, dienophiles or dipolarophiles.
27,28

 

 

Results and Discussion 

 

Preparation of the sulfides 

 

Treatment of a series of -thioamides with N-chlorosuccinimide resulting in the efficient 

stereoselective transformation to the analogous -thio--chloroacrylamides has been 

described.
29-31

 A variety of -thioamides bearing chiral amide auxiliaries were similarly 

transformed to the analogous -chloroacrylamides by reaction with NCS (typically 1.95 

equivalents at 90 °C), with yields following chromatographic purification ranging from 29-

76%; Table 1 summarises the results. 
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Table 1 Synthesis of -chloroacrylamides bearing chiral amide auxiliaries 

 

Sulfide R Aux Z/E -Cl % efficiency
a
 % yield

b
 [] D

20

c
 

1
d
 Bn 

 
Z (R)-11 70 61 66.5 

2
d
 Bn 

 
Z (R)-12 40 32 –54.2 

3
d
 Bn 

 
Z (S)-13 35 51 –30.0 

4
d
 Bn 

 
Z (S)-14 36 29 106.0 

5
e
 Ph 

 
Z (R)-15 56 47 6.4 

6
d
 Ph 

 
Z (R)-16 41 41 64.5 

7
d
 Ph 

 

Z 17 26 47 60.1 

8
d
 Ph 

 
Z (S)-18 20 34 84.3 

9
f
 Ph 

 
Z (S)-19 28 44 –67.7 



10
d
 Ph 

 
Z (R)-20 96 76 92.9 

 

a) Estimated by integration of the -H signal in the 
1
H NMR of the crude product. The 

remaining material is a complex mixture of unidentified material. 

b) Yield after chromatography on silica gel. 

c) For details, see experimental.  An interesting effect was observed for the optical 

rotation values; for the auxiliaries bearing a hydroxyl group on the amide, the sign of 

the optical rotation measurement was opposite for the benzylthio- and phenylthio 

derivatives. 

d) Equimolar mixture of diastereomers. 

e) 1 : 1.40 mixture of diastereomers. 

f) 1 : 1.22 mixture of diastereomers. 

 

The -chloroacrylamides 11−20 were synthesised in toluene by reacting the corresponding -

thioamide with 1.95 equivalents of NCS at 90 °C. The presence of a hydroxyl group on the 

amide appears to have a significant impact on the efficiency of the transformation, with poor 

efficiency observed on transformation of the -thioamides 2, 4, and 7−9 relative to analogous 

derivatives without hydroxyl groups. On removal of the hydroxyl group a substantial increase 

in the efficiency was observed; for example, sulfides 9 and 10 differ only in the presence of a 

primary hydroxyl group, and on reaction with NCS under identical conditions there is a 

dramatic difference in the efficiency of the transformation to the -chloroacrylamides (28% 

with 9 and 96% with 10).  The reaction mixtures from the amides bearing the hydroxyl 

groups were complex; no other significant identifiable product was isolated, but all of the 

starting material had been consumed.  

Information on the conformation of the hydroxylated -chloroacrylamides, and in particular, 

the hydrogen bonding patterns, was of interest as this may aid in explaining the preferred 

approach of the oxidant in subsequent diastereoselective oxidations. The conformation of 16 

in the solid state was determined by single crystal X-ray diffraction after recrystallisation 

from dichloromethane/pentane (Figure 1). 

 

 



 

Figure 1 X-Ray Structure of 16 

 

Examination of the resulting structure revealed some very interesting features. Firstly, the 

structure confirms the Z-stereochemistry of the hydroxylated -chloroacrylamide 16. 

Notably, an unexpected intramolecular attractive edge-to-face CH- aromatic interaction was 

also evident, leading to a crowded conformation with the benzene rings in a T-shaped 

orientation. The angle between the benzene ring planes is 87.4°. The edge hydrogen atom on 

the benzene ring of the phenylglycinol moiety (labelled H7) is projected into the face of the 

phenylthio ring at a close-contact perpendicular distance of 2.69 Å, with a H7-to-centroid 

distance of 2.70 Å and offset by 0.18 Å from the benzene ring centre. These values are within 

the range of those normally observed for edge-to-face interactions.
32

 

Edge-to-face interactions between aromatic rings were first reported in 1958 by Cox et al. in 

single crystals of benzene.
33

 Influential work by Burley and Petsko established the 

importance of edge-to-face interactions between aromatic rings in determining the tertiary 

and quaternary crystalline structure of peptides and proteins.
34,35

 Edge-to-face interactions 

have since been cited as a structure-determining factor in many examples of molecular 

recognition.
36-39

 Jennings et al. were the first to identify an intramolecular edge-to-face 



interaction in a simple synthetic acyclic organic molecule in both solution and the solid 

state.
32

 

The hydrogen bonding network present in the solid state of 16 is depicted in Figure 1; 

intramolecular hydrogen bonds exist between the amide proton and the oxygen of the 

hydroxyl group (with a bond length of 2.56 Å) and between the amide proton and the sulfur 

atom (with a bond length of 2.74 Å). An intermolecular hydrogen bond between the hydroxyl 

proton and the carbonyl group is also evident, with a bond length of 1.91 Å. 

Based on this structural analysis, a similar intramolecular hydrogen bond between the amide 

proton and the oxygen of the hydroxyl group can be envisaged in the related hydroxylated -

chloroacrylamides (Figure 2), thereby locating the 2- t-butyl, phenyl or benzyl substituent 

over one face of the vinyl sulfide and thus impacting on the diastereofacial approach of the 

subsequent oxidation. 

 

Figure 2 Oxidant Approach to -Chloroacrylamides 

 

Diastereoselective Oxidation 

 

The diastereoselective sulfur oxidation of a range of -chloroacrylamides containing some 

simple chiral amide auxiliaries was next investigated, with the results summarised in Table 2. 

All oxidations were conducted using 2 equivalents of Oxone
®
 in acetone and water at room 

temperature. 

 

Table 2 Diastereoselective Oxidation of the -Chloroacrylamides 



 

entry -Cl R Aux sulfoxide d.r.
a
 %de

a
 % yield

b
 [] D

20

c
 

1 11 Bn 
 

21 1.3 : 1 13 78
d
 

–179.0
f
 & 

323.3
g
 

2 12 Bn 
 

22 1.8 : 1 29 74
d
 –67.5

f
 & 122.6

g
 

3 16 Ph 
 

23 2.2 : 1 38 50
d
 

–139.5
h
 &  

–65.0
i
 

4 13 Bn 
 

24 1.1 : 1 5 85
e
 –1.4

j
 

5 18 Ph 
 

25 1.1 : 1 5 95
e
 –30.7

j
 

6 17 Ph 

 

26 1.6 : 1 23 89
d
 –66.4

j
 & 99.3

i
 

7 14 Bn 
 

27 3.3 : 1 53 85
d
 

193.7
f
 & 

–123.5
g
 

8 19 Ph 
 

28 2.8 : 1 47 30
d
 

127.2
h
 &  

–109.3
i
 

9 20 Ph 
 

29 1.1 : 1 5 85
e
 –52.1

j
 

a) Determined by integration of the 
1
H NMR spectrum of the crude product. 

b) Combined yield after chromatography unless otherwise stated. 

c) For details, see experimental. 

d) The sulfoxide diastereomers were separable by chromatography on silica gel. 

e) As the 
1
H NMR spectrum of the crude product was very clean, no further purification 

was necessary. 

f) Less polar, major diastereomer. 

g) More polar, minor diastereomer. 

h) Less polar, minor diastereomer. 



i) More polar, major diastereomer. 

j) Mixture of diastereomers. 

 

Oxidation of the -methylbenzylamide derived -chloroacrylamide 11 led to a sulfoxide 21 

with diastereomeric ratio of 1.3:1, indicating that simple steric effects do not lead to high 

diastereoselection. The introduction of a hydroxyl group in the phenylglycinol derived -

chloroacrylamides 12 and 16 allows the potential for conformational control through 

hydrogen bonding to the nitrogen or carbonyl group, and moderate diastereoselection was 

achieved; one of the faces of the -chloroacrylamide is sterically protected due to the position 

of the phenyl group on the auxiliary. When the phenyl group is moved further away from the 

stereogenic centre in the phenylalaninol derivatives 13 and 18, the diastereoselection 

dramatically decreases as the introduction of the extra CH2 group introduces more 

conformational flexibility into the structure and the phenyl group has less impact on the 

reaction site. Employment of the aminoindanol substituted -chloroacrylamide 17, a 

conformationally constrained analogue of phenylglycinol, resulted in a slight decrease in the 

selectivity to afford a diastereomeric ratio of 26 of 1.6:1, but incorporation of the more 

sterically demanding t-leucinol as a chiral auxiliary in 14 and 19 led to a significant increase, 

with a diastereomeric ratio of 3.3:1 achieved for the S-benzyl derived sulfoxide 27. To 

confirm that the hydroxy group is critical, the diastereoselection in the oxidation of 20, in 

which the t-butyl group was maintained and the hydroxy group was removed, was studied 

and the stereoselectivity decreased dramatically to just 5% de (Figure 3). Interestingly, the 

diastereoselection in the S-benzyl and S-phenyl series is very similar; comparing entries 2 & 

3 and entries 7 & 8 in Table 2, slightly higher diastereocontrol is observed in the 

phenylalaninol series with the S-phenyl substituent, while in the t-leucinol series the S-benzyl 

derivative results in slightly higher diastereocontrol. 



 

Figure 3 Effect of Amide Auxiliary on Diastereoselective Sulfur Oxidation 

 

While there is no structural data confirming the relative stereochemistry in the hydroxylated 

derivatives, an X-ray crystal structure has been determined of one of the compounds bearing 

the -methylbenzylamide auxiliary. Thus, the diastereomers 21a & 21b were readily 

separated by chromatography and the minor diastereomer 21b (diastereomerically pure by 
1
H 

NMR spectroscopy) led to a crystal suitable for diffraction studies after recrystallisation from 

ethanol. The resulting crystal structure confirms the Z–stereochemistry of the -

chloroacrylamide and established the configuration at the sulfur centre as (R) (Figure 4). 

Also, an intramolecular hydrogen-bond exists from the amide proton to the oxygen atom of 

the sulfoxide to form a six-membered ring, with a bond length of 2.06 Å. 

 



 

Figure 4 X-Ray Structure of Minor Diastereomer 21b 

 

For the -chloroacrylamides 12−14 and 16−19 with hydroxyl groups incorporated, as 

illustrated by the X-ray structure of 16 (Figure 1), the hydroxyl group participates in 

hydrogen bonding to the amide nitrogen thus holding the -chloroacrylamide in a particular 

conformation, thereby enhancing the diastereocontrol as sterically there is preferential attack 

of the oxidising agent on one of the two diastereotopic lone pairs of the sulfur atom (Figure 

2). Changing the steric requirements of the auxiliary has a large impact on the 

diastereoselection, with the diastereoselectivity increasing on going from R
1
 = benzyl to 

phenyl to t-butyl group on the auxiliary. As the direction of diastereocontrol in the presence 

of the hydroxylated chiral auxiliaries has not been confirmed, it is not possible to state 

conclusively that the direction of approach is controlled by the steric effect of the R
1
 

substituent, although the evidence suggests this. 

An alternative explanation is due to neighbouring group participation by the hydroxyl group. 

As mentioned earlier, it has been reported that suitably positioned hydroxyl substitutents have 

been used as to direct the diastereoselective oxidation of sulfides;
40-42

 when a percarboxylic 

acid such as mCPBA is employed as the oxidant, incipient hydrogen bonding between the 



substrate hydroxyl group and the percarboxylic acid results in the preferential attack of the 

oxidant on the same side of the substrate as the hydroxyl group. Investigation of the 

diastereoselective oxidation with mCPBA is underway to explore in greater detail the impact 

of the hydroxylated chiral auxiliary. Investigation of the synthetic potential of the 

enantioenriched vinyl sulfoxides will be reported in due course, including efficient cleavage 

of the amide chiral auxiliary. 

 

Conclusion 

 

Sulfur oxidation of enantiomerically pure -thio--chloroacrylamides affords sulfoxides with 

reasonable levels of diastereocontrol; diastereomeric ratios of up to 3.3:1 were achieved, with 

the highest levels of diastereoselection observed in systems constrained by intramolecular 

hydrogen-bonding The conformational freedom of the sulfide precursors is constrained by 

hydrogen bonding and attractive edge to face interactions, as seen in the solid state. The 

corresponding enantioselective sulfur oxidation of the -chloroacrylamides using the Kagan 

and Bolm methods of oxidation had previously led to enantioselectivities of up to 52% ee and 

up to 71% ee respectively.
17

 

 

Experimental 

 

All solvents were distilled prior to use as follows: dichloromethane was distilled from 

phosphorous pentoxide and ethyl acetate was distilled from potassium carbonate, ethanol and 

methanol were distilled from magnesium in the presence of iodine. Organic phases were 

dried using anhydrous magnesium sulphate. All commercial reagents, including N-

chlorosuccinimide, were used without further purification.   

1
H (300 MHz) and 

13
C (75.5 MHz) NMR spectra were recorded on a Bruker (300 MHz) 

NMR spectrometer. 
1
H (400 MHz) NMR spectra were recorded on a Bruker Avance 400 

MHz NMR spectrometer. All spectra were recorded at room temperature (~20 °C) in 

deuterated chloroform (CDCl3) unless otherwise stated using tetramethylsilane (TMS) as an 



internal standard. Chemical shifts were expressed in parts per million (ppm) and coupling 

constants in Hertz (Hz). 

Elemental analyses were performed by the Microanalysis Laboratory, National University of 

Ireland, Cork, using a Perkin-Elmer 240 elemental analyzer. Melting points were carried out 

on a uni-melt Thomas Hoover Capillary melting point apparatus. Low resolution mass 

spectra were recorded on a Waters Quattro Micro triple quadrupole spectrometer in 

electrospray ionization (ESI) mode using 50% water/acetonitrile containing 0.1% formic acid 

as eluent; samples were made up in acetonitrile. High resolution mass spectra (HRMS) were 

recorded on a Waters LCT Premier Time of Flight spectrometer in electrospray ionization 

(ESI) mode using 50% water/acetonitrile containing 0.1% formic acid as eluent; samples 

were made up in acetonitrile. Infrared spectra were recorded as potassium bromide (KBr) 

discs for solids or thin films on sodium chloride plates for oils on a Perkin-Elmer Paragon 

1000 FT-IR spectrometer.   

Thin layer chromatography (TLC) was carried out on precoated silica gel plates (Merck 60 

PF254). Column chromatography was performed using Merck silica gel 60. Visualisation was 

achieved by UV (254nm) light detection, iodine staining, vanillin staining and ceric sulfate 

staining. Optical rotations were measured on a Perkin-Elmer 141 polarimeter at 589 nm in a 

10 cm cell; concentrations (c) are expressed in g/100 mL. [] T

D  is the specific rotation of a 

compound and is expressed in units of 10
1

 deg cm
2
 g

1
. 

Single crystal X-ray analysis was conducted using a Nonius Mach 3 diffractometer and a 

Bruker Apex II Duo Diffractometer with graphite monochromatised Mo-K radiation ( = 

0.71069 Å). Calculations for 16 were made using the APEX2 software,
43,44

 and for 21b using 

PLATON,
45

 SHELXS and SHELXL.
44

 Diagrams were prepared using PLATON.
42 

Full 

structural data has been deposited at the Cambridge Crystallographic Data Centre. CCDC 

reference numbers 768983 and 768984. 

 

2-(Benzylthio)-N-[(R)-1-phenylethyl]propanamide 1 

Sodium hydride (2.84 g of a 60% dispersion in mineral oil, 71.1 mmol) was placed in a three-

necked round bottom flask under a flow of nitrogen. Following washing with hexane (3  40 

mL), dry N,N-dimethylformamide (130 mL) was added and the resulting suspension was 



stirred for 10 min. The reaction mixture was cooled to 0 °C and benzyl mercaptan (8.43 mL, 

71.1 mmol) was added slowly via syringe. After stirring for 20 min, a solution of 2-chloro-N-

[(R)-1-phenylethyl)propanamide (10.02 g, 47.4 mmol) in dry N,N-dimethylformamide (20 

mL) was added. On completion of the addition, the ice bath was removed and the reaction 

mixture stirred at room temperature for 4 h. The reaction was quenched by the addition of 

water (150 mL) and dichloromethane (150 mL) and the layers were separated. The aqueous 

layer was extracted with dichloromethane (2  150 mL), and the combined organic layers 

were washed with sodium hydroxide (1 M, 150 mL), water (2  150 mL), hydrochloric acid 

(2 M, 2  150 mL) and brine (150 mL), dried, filtered and concentrated at reduced pressure to 

give the crude sulfide 1 as a brown oil. Following purification by column chromatography on 

silica gel using hexane-ethyl acetate as eluent (gradient elution 10-40% ethyl acetate), the 

pure sulfide 1 (10.45 g, 74%)* was isolated as a white solid and an equimolar mixture of 

diastereomers, mp 75-77 °C; [] 20

D  43.15 (c 0.1, CHCl3); (Found C, 72.43; H, 7.02; N, 4.79; 

S, 11.16. C18H21NOS requires C, 72.20; H, 7.07; N, 4.68; S, 10.71%); max/cm
1

 (KBr) 3360 

(NH), 3314 (NH), 3029 (CH), 2973 (CH), 1646 (CO), 1526 (NH bend), 1494, 1371 (CN 

stretch); H (300 MHz, CDCl3) 1.41-1.50 [6H, 3  overlapping d, J 7.5, 7.5, 6.9, C(3)H3 & 

CH(CH3) of 2 diastereomers], 3.25-3.35 [1H, 2  overlapping q, J 7.5, 7.5, C(2)H of 2 

diastereomers], 3.61 (1H, s, SCH2 of 1 diastereomer), 3.66 (0.5H, A of AB system, JAB 13.2, 

one of SCH2 of 1 diastereomer), 3.72 (0.5H, B of AB system, JAB 13.2, one of SCH2 of 1 

diastereomer), 5.00-5.17 (1H, m, NHCH of 2 diastereomers), 6.81 (0.5H, br d, J 7.8, NH of 1 

diastereomer), 6.88 (0.5H, br d, J 7.8, NH of 1 diastereomer), 7.11-7.41 (10H, m, ArH of 2 

diastereomers); C (75.5 MHz, CDCl3) 18.4 [CH3, C(3)H3 of 2 diastereomers, 1 signal for 2 

carbons], 21.6, 21.9 [2  CH3, CH(CH3) of 2 diastereomers], 36.1, 36.2 (2  CH2, SCH2 of 2 

diastereomers), 44.1, 44.3, 48.8, 48.9 [4  CH, C(2)H of 2 diastereomers & CHNH of 2 

diastereomers], 126.0, 126.2, 127.32, 127.35, 127.4, 127.5, 128.65, 128.71, 128.72, 128.77, 

128.87, 128.88 (12  CH, aromatic CH of 2 diastereomers), 137.1, 137.3, 143.1, 143.2 (4  

C, aromatic C of 2 diastereomers), 171.2, 171.3 (2  C, CO of 2 diastereomers); HRMS 

(ES+): Exact mass calculated for C18H22NOS [M+H]
+
, 300.1422. Found 300.1416; m/z (ES+) 

300.1 {[(C18H21NOS)+H]
+
, 100%}, 104.9 (4%). 

*A yield of 91% was obtained for a batch that was synthesised later. 

 



2-(Benzylthio)-N-[(1R)-2-hydroxy-1-phenylethyl]propanamide 2 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(R)-2-hydroxy-1-phenylethyl)propanamide (0.76 g, 3.4 mmol), benzyl mercaptan 

(0.60 mL, 5.0 mmol), and sodium hydride (0.20 g of 60% dispersion in mineral oil, 5.0 

mmol) in dry N,N-dimethylformamide (15 mL) to give the crude sulfide 2 as a clear oil. 

Following purification by column chromatography on silica gel using hexane-ethyl acetate as 

eluent (gradient elution 40-80% ethyl acetate), the pure sulfide 2 (0.80 g, 76%) was isolated 

as a white solid and an equimolar mixture of diastereomers, mp 95-96 °C; [] 20

D  49.49 (c 

0.3 in EtOH); (Found C, 68.40; H, 6.79; N, 4.65; S, 9.93. C18H21NO2S requires C, 68.54; H, 

6.71; N, 4.44; S, 10.17%); max/cm
1

 (KBr) 3396 (OH), 3307 (NH), 3060 (CH), 2929 (CH), 

1645 (CO), 1542 (NH bend), 1495; H (400 MHz, CDCl3) 1.46 [1.5H, d, J 7.6, C(3)H3 of 1 

diastereomer], 1.50 [1.5H, d, J 7.2, C(3)H3 of 1 diastereomer], 2.39 (0.5H, t, J 6.0, OH of 1 

diastereomer), 2.50 (0.5H, t, J 6.0, OH of 1 diastereomer), 3.31-3.41 [2H, 2  overlapping q, 

J 7.6, 7.2, C(2)H of 2 diastereomers], 3.69 (1H, SCH2 of 1 diastereomer), 3.77 (1H, s, SCH2 

of 1 diastereomer), 3.84 (1H, overlapping dd, A of ABM, JAB 5.6, JAM 5.2, one of CH2OH of 

2 diastereomers), 3.86 (1H, overlapping dd, B of ABM, JAB 5.6, JBM 5.2, one of CH2OH of 2 

diastereomers), 4.96-5.07 (1H, m, NHCH of 2 diastereomers), 7.16-7.43 (11H, m, NH & ArH 

of 2 diastereomers); C (75.5 MHz, CDCl3) 18.4, 18.5 [2  CH3, C(3)H3 of 2 diastereomers], 

36.2, 36.3 (2  CH2, SCH2 of 2 diastereomers), 44.2, 44.3 [2  CH, C(2)H of 2 

diastereomers], 56.0, 56.1 (2  CH, NHCH of 2 diastereomers), 66.6, 66.7 (2  CH2, CH2OH 

of 2 diastereomers), 126.6, 126.7, 127.4, 127.97, 128.03, 128.68, 128.71, 128.9, 129.0 (9  

CH, aromatic CH of 2 diastereomers, 9 signals for 12 carbons), 137.2, 137.3, 138.7, 138.9 (4 

 C, aromatic C of 2 diastereomers), 172.8, 173.0 (2  C, CO of 2 diastereomers); HRMS 

(ES+): Exact mass calculated for C18H22NO2S [M+H]
+
, 316.1371. Found 316.1378; m/z 

(ES+) 316.1 {[(C18H21NO2S)+H]
+
, 100%}. 

 

2-(Benzylthio)-N-[(S-1-hydroxy-3-phenylpropan-2-yl]propanamide 3 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]-propanamide (0.73 g, 3.0 mmol), benzyl 

mercaptan (0.53 mL, 4.5 mmol), and sodium hydride (0.18 g of 60% dispersion in mineral 

oil, 4.5 mmol) in dry N,N-dimethylformamide (15 mL) to give the crude sulfide 3 as a clear 



oil. Following purification by column chromatography on silica gel using hexane-ethyl 

acetate as eluent (gradient elution 20-80% ethyl acetate), the pure sulfide 3 (0.59 g, 61%) was 

isolated as a white solid and an equimolar mixture of diasteromers, mp 80-81 °C; 

[] 20

D 17.89 (c 0.4 in EtOH); (Found C, 68.84; H, 6.83; N, 4.27; S, 9.95. C19H23NO2S 

requires C, 69.27; H, 7.04; N, 4.25; S, 9.73%); max/cm
1

 (KBr) 3341 (OH), 3274 (NH), 3062 

(CH), 2925 (CH), 1650 (CO), 1634, 1529 (NH bend), 1495; H (400 MHz, CDCl3) 1.29 

[1.5H, d, J 7.6, C(3)H3 of 1 diastereomer], 1.38 [1.5H, d, J 7.2, C(3)H3 of 1 diastereomer], 

2.37 (0.5H, br t, J 5.2, OH of 1 diastereomer), 2.67 (0.5H, br t, J 5.2, OH of 1 diastereomer), 

2.74-3.01 (2H, m, CH2Ph of 2 diastereomers), 3.17 [0.5H, q, J 7.2, C(2)H of 1 diastereomer], 

3.21-3.28 [1H, m, contains A of AB system at 3.25, JAB 13.2, one of SCH2 of 1 diastereomer 

& C(2)H of 1 diastereomer], 3.45 (0.5H, B of AB system, JAB 13.2, one of SCH2 of 1 

diastereomer), 3.51-3.76 (3H, m, SCH2 of 1 diastereomer & CH2OH of 2 diastereomers; 

SCH2 could be distinguished as a singlet at 3.64 ppm), 4.11-4.24 (1H, m, NHCH of 2 

diastereomers), 6.80-6.94 (1H, m, NH of 2 diastereomers), 7.08-7.40 (10H, m, ArH of 2 

diastereomers); C (75.5 MHz, CDCl3) 18.4, 18.6 [2  CH3, C(3)H3 of 2 diastereomers], 35.9, 

36.3, 36.9, 37.0 (4  CH2, SCH2 & CH2Ph of 2 diastereomers), 44.1, 44.4 [2  CH, C(2)H of 

2 diastereomers], 52.8, 53.2 (2  CH, NHCH of 2 diastereomers), 64.5, 64.8 (2  CH2, 

CH2OH of 2 diastereomers), 126.75, 126.84, 127.29, 127.32, 128.63, 128.65, 128.76, 128.85, 

128.90, 129.17, 129.23 (11  CH, aromatic CH of 2 diastereomers, 11 signals for 12 

carbons), 137.2, 137.4, 137.5 (3  C, aromatic C of 2 diastereomers), 173.0, 173.2 (2  C, CO 

of 2 diastereomers); HRMS (ES+): Exact mass calculated for C19H24NO2S [M+H]
+
 330.1528. 

Found 330.1516; 330.1 {[(C19H23NO2S)+H]
+
, 100%}, 147.0 (88%). 

 

2-(Benzylthio)-N-[(S-1-hydroxy-3,3-dimethylbutan-2-yl]propanamide 4  

Benzyl mercaptan (1.08 mL, 9.1 mmol) was added to a solution of freshly prepared sodium 

ethoxide [prepared from sodium (0.21 g, 9.1 mmol) in dry ethanol (30 mL) at 0 °C] while 

stirring under nitrogen. After stirring for 20 min under nitrogen, a solution of 2-chloro-N-

[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]-propanamide (1.58 g, 7.6 mmol) in ethanol (20 mL) 

was added gradually over 15 min to the reaction mixture. Following stirring for 16 h at room 

temperature, the reaction was quenched by addition of water (40 mL) and dichloromethane 

(30 mL). The phases were separated and the aqueous layer was extracted with 



dichloromethane (2  30 mL). The combined organic layers were washed with aqueous 

sodium hydroxide (1 M, 2  30 mL), water (30 mL) and brine (30 mL), dried and 

concentrated under reduced pressure to give the crude sulfide 4 as a clear oil. Following 

purification by column chromatography on silica gel using hexane-ethyl acetate (40:60) as 

eluent, the pure sulfide 4 (1.77 g, 79%) was isolated as a white solid and an equimolar 

mixture of diastereomers, mp 54-55 °C; [] 20

D  6.00 (c 0.5 in CHCl3); (Found C, 64.36; H, 

8.36; N, 4.79. C16H25NO2S requires C, 65.05; H, 8.53; N, 4.74%); max/cm
1

 (KBr) 3249 

(NH), 3085 (CH), 2963 (CH), 1646 (CO), 1567 (NH bend), 1495, 1370 (CN stretch); H (400 

MHz, CDCl3) 0.97 [4.5H, s, C(CH3)3 of 1 diastereomer], 0.98 [4.5H, s, C(CH3)3 of 1 

diastereomer], 1.46 [1.5H, d, J 7.6, C(3)H3 of 1 diastereomer], 1.48 [1.5H, d, J 7.2, C(3)H3 of 

1 diastereomer], 2.32 (0.5H, br t, J 5.6, OH of 1 diastereomer), 2.49 (0.5H, br t, J 5.6, OH of 

1 diastereomer), 3.35 [0.5H, q, J 7.2, C(2)H of 1 diastereomer], 3.37 [0.5H, q, J 7.6, C(2)H of 

1 diastereomer], 3.49 (0.5H, ddd, J 11.0, 8.4, 5.6, NHCH of 1 diastereomer), 3.54 (0.5H, ddd, 

J 11.0, 8.0, 5.2, NHCH of 1 diastereomer), 3.71-3.94 (4H, m, SCH2 & CH2OH of 2 

diastereomers), 6.86 (0.5H, br d, J 8.4, NH of 1 diastereomer), 6.99 (0.5H, br d, J 8.8, NH of 

1 diastereomer), 7.21-7.37 (5H, m, ArH); C (75.5 MHz, CDCl3) 18.7, 18.8 [2  CH3, C(3)H3 

of 2 diastereomers], 26.9, 27.0 [2  CH3, C(CH3)3 of 2 diastereomers], 33.45, 33.54 [2  C, 

C(CH3)3 of 2 diastereomers], 36.1, 36.4 (2  CH2, SCH2 of 2 diastereomers), 44.3, 44.8 [2  

CH, C(2)H of 2 diastereomers], 59.8, 60.1 (2  CH, NHCH of 2 diastereomers), 63.2, 63.4 (2 

 CH2, CH2OH of 2 diastereomers), 127.39, 127.44, 128.7, 128.8, 128.92, 128.93 (6  CH, 

aromatic CH of 2 diastereomers), 137.1, 137.3 (2  C, aromatic C of 2 diastereomers), 173.7, 

173.8 (2  C, CO of 2 diastereomers); HRMS (ES+): Exact mass calculated for C16H26NO2S 

[M+H]
+
 296.1684. Found 296.1685; m/z (ES+) 296.1 {[(C16H25NO2S)+H]

+
, 100%}, 79.8 

(6%). 

 

N-[(R)-1-Phenylethyl]-2-(phenylthio)propanamide 5 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(R)-1-phenylethyl)propanamide (2.45 g, 11.6 mmol), benzenethiol (1.83 mL, 17.4 

mmol), and sodium hydride (0.69 g of 60% dispersion in mineral oil, 17.4 mmol) in dry N,N-

dimethylformamide (70 mL) to give the crude sulfide 5 as pale yellow oil. Following 

purification by column chromatography on silica gel using hexane-ethyl acetate as eluent 



(gradient elution 10-20% ethyl acetate), the pure sulfide 5 (2.35 g, 71%) was isolated as a 

white solid (as a 1:1.37 mixture of diastereomers), mp 98-99 °C; [] 20

D  58.05 (c 0.2, CHCl3); 

max/cm
1

 (KBr) 3267 (NH), 3059 (CH), 2973 (CH), 1660 (CO), 1553 (NH bend), 1494, 1374 

(CN stretch); H (400 MHz, CDCl3) 1.32 [1.2H, d, J 7.2, CH(CH3) of 1 diastereomer], 1.43 

[1.8H, d, J 6.8, CH(CH3) of 1 diastereomer], 1.54 [1.2H, d, J 7.6, C(3)H3 of 1 diastereomer], 

1.58 [1.8H, d, J 7.2, C(3)H3 of 1 diastereomer], 3.84 [0.6H, q, J 7.6, C(2)H of 1 

diastereomer], 3.85 [0.4H, q, J 7.2, C(2)H of 1 diastereomer], 4.98-5.08 (1H, m, NHCH of 2 

diastereomers), 6.77-6.89 (1H, br d, NH of 2 diastereomers), 7.00-7.07 (1H, m, ArH of 2 

diastereomers), 7.17-7.37 (8H, m, ArH of 2 diastereomers). 

 

N-[(1R)-2-Hydroxy-1-phenylethyl]-2-(phenylthio)propanamide 6 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(R)-2-hydroxy-1-phenylethyl)propanamide (0.76 g, 3.4 mmol), benzenethiol (0.53 

mL, 5.0 mmol), and sodium hydride (0.20 g of 60% dispersion in mineral oil, 5.0 mmol) in 

dry N,N-dimethylformamide (15 mL) to give the crude sulfide 6 as a clear oil. Following 

purification by column chromatography on silica gel using hexane-ethyl acetate as eluent 

(gradient elution 40-80% ethyl acetate), the pure sulfide 6 (0.80 g, 76%) was isolated as a 

white solid and an equimolar mixture of diastereomers, mp 69-70 °C; [] 20

D  49.91 (c 0.1 in 

EtOH); (Found C, 68.25; H, 6.65; N, 4.36; S, 10.51. C17H19NO2S requires C, 67.74; H, 6.35; 

N, 4.65; S, 10.51%); max/cm
1

 (KBr) 3385 (OH), 3284 (NH), 3060 (CH), 2927 (CH), 1647 

(CO), 1541 (NH bend); H (400 MHz, CDCl3) 1.57 [1.5H, d, J 7.6, C(3)H3 of 1 

diastereomer], 1.61 [1.5H, d, J 7.2, C(3)H3 of 1 diastereomer], 2.07-2.19 (1H, m, OH of 2 

diastereomers), 3.66-3.86 (2H, m, CH2OH of 2 diastereomers), 3.87-3.96 [1H, 2  

overlapping q, J 7.6, 7.2, C(2)H of 2 diastereomers], 4.94-5.02 (1H, m, NHCH of 2 

diastereomers ), 6.96-7.03 (1H, m, NH of 2 diastereomers), 7.15-7.40 (10H, m, ArH of 2 

diastereomers); C (75.5 MHz, CDCl3) 18.1, 18.2 [2  CH3, C(3)H3 of 2 diastereomers], 47.0, 

47.1 [2  CH, C(2)H of 2 diastereomers], 55.8, 55.9 (2  CH, NHCH of 2 diastereomers), 

66.34, 66.36 (2  CH2, CH2OH of 2 diastereomers), 126.55, 126.61, 127.4, 127.5, 127.8, 

127.9, 128.8, 128.9, 129.3, 130.5, 130.6 (11  CH, aromatic CH of 2 diastereomers, 11 

signals for 12 carbons), 133.80, 133.83, 138.5, 138.6 (4  C, aromatic C of 2 diastereomers), 

172.1, 172.3 (2  C, CO of 2 diastereomers); HRMS (ES+): Exact mass calculated for 



C17H20NO2S [M+H]
+
, 302.1215. Found 302.1221; m/z (ES+) 302.1 {[(C17H19NO2S)+H]

+
, 

100%}. 

 

N-[(1R,2S)-2,3-Dihydro-2-hydroxy-1H-inden-1-yl]-2-(phenylthio)propanamide 7 

The title compound was synthesised according to the procedure described for 4 using 2-

chloro-N-[(1R,2S)-2,3-dihydro-2-hydroxy-1H-inden-1-yl]propanamide (0.69 g, 2.9 mmol), 

benzenethiol (0.36 mL, 3.5 mmol), and sodium (0.08 g, 3.5 mmol) in dry ethanol (20 mL) to 

give the crude sulfide 7 as a white solid. Following purification by column chromatography 

on silica gel using hexane-ethyl acetate as eluent (gradient elution 40-60% ethyl acetate), the 

pure sulfide 7 (0.65 g, 73%) was isolated as a white solid and an equimolar mixture of 

diasteromers, mp 138-140 °C; [] 20

D  19.13 (c 0.2, CHCl3); max/cm
1

 (KBr) 3429 (OH), 3320 

(NH), 3071 (CH), 2954 (CH), 1642 (CO), 1541 (NH bend), 1477, 1368 (CN stretch); H (400 

MHz, CDCl3) 1.65 [1.5H, d, J 7.2, C(3)H3 of 1 diastereomer], 1.68 [1.5H, d, J 7.2, C(3)H3 of 

1 diastereomer], 2.83-2.95, 3.08-3.18 (2  1H, 2  m, ArCH2 of 2 diastereomers), 3.97-4.05 

[1H, 2 overlapping q, J 7.2, 7.2, C(2)H of 2 diastereomers], 4.44-4.48 (0.5H, ddd, J 5.0, 4.8, 

1.6, CHOH of 1 diastereomer), 4.54-4.59 (0.5H, ddd, J 5.0, 4.8, 2.0, CHOH of 1 

diastereomer), 5.28-5.34 (1H, m, NHCH of 2 diastereomers), 7.00-7.42 (10H, m, NH & ArH 

of 2 diastereomers); C (75.5 MHz, CDCl3) 18.3, 18.4 [2  CH3, C(3)H3 of 2 diastereomers], 

39.6, 39.7 (2  CH2, ArCH2 of 2 diastereomers), 47.0, 47.1 [2  CH, C(2)H of 2 

diastereomers], 57.66, 57.70 (2  CH, NHCH of 2 diastereomers), 73.6, 73.7 (2  CH, CHOH 

of 2 diastereomers), 124.3, 124.4, 125.3, 125.4, 127.1, 127.2, 127.35, 127.39, 128.2, 128.3, 

129.28, 129.32, 130.2, 130.7 (14  CH, aromatic CH of 2 diastereomers), 134.1, 134.2, 

139.8, 140.0, 140.1, 140.2 (6  C, aromatic C of 2 diastereomers), 172.50, 172.53 (2  C, CO 

of 2 diastereomers); HRMS (ES+): Exact mass calculated for C18H20NO2S [M+H]
+
 314.1215. 

Found 314.1223; m/z (ES+) 314.0 {[(C18H19NO2S)+H]
+
, 100%}. 

 

N-[(S-1-Hydroxy-3-phenylpropan-2-yl]-2-(phenylthio)propanamide 8 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]-propanamide (0.73 g, 3.0 mmol), 

benzenethiol (0.47 mL, 4.5 mmol), and sodium hydride (0.18 g of a 60% dispersion in 



mineral oil, 4.5 mmol) in dry N,N-dimethylformamide (15 mL) to give the crude sulfide 8 as 

a pale yellow oil. Following purification by column chromatography on silica gel using 

hexane-ethyl acetate 60:40 as eluent, the pure sulfide 8 (0.43 g, 45%) was isolated as a white 

solid and as an equimolar mixture of diasteromers, mp 90-92 °C; [] 20

D  26.95 (c 0.1 in 

EtOH); (Found C, 68.51; H, 6.65; N, 4.67; S, 10.50. C18H21NO2S requires C, 68.54; H, 6.71; 

N, 4.44; S, 10.17%); max/cm
1

 (KBr) 3379 (OH), 3282 (NH), 3060 (CH), 2927 (CH), 1655 

(CO), 1638 (CO), 1536 (NH bend); H (400 MHz, CDCl3) 1.42 [1.5H, d, J 7.2, C(3)H3 of 1 

diastereomer], 1.53 [1.5H, d, J 7.6, C(3)H3 of 1 diastereomer], 1.90 (0.5H, br s, OH of 1 

diastereomer), 2.38 (0.5H, br s, OH of 1 diastereomer), 2.67-2.91 (2H, m, CH2Ph of 2 

diastereomers), 3.37-3.65 (2H, m, CH2OH of 2 diastereomers), 3.73-3.85 [1H, 2  q, J 7.6, 

7.2, C(2)H of 2 diastereomers], 4.02-4.18 (1H, m, NHCH of 2 diastereomers), 6.72-6.87 (1H, 

br d, NH of 2 diastereomers), 7.05-7.13 (1H, m, ArH), 7.14-7.36 (9H, m, ArH); C (75.5 

MHz, CDCl3) 18.0, 18.4 [2  CH3, C(3)H3 of 2 diastereomers], 36.8, 36.9 (2  CH2, CH2Ph 

of 2 diastereomers), 47.1, 47.2 [2  CH, C(2)H of 2 diastereomers], 52.7, 53.2 (2  CH, 

NHCH of 2 diastereomers), 64.0, 64.1 (2  CH2, CH2OH of 2 diastereomers), 126.68, 126.71, 

127.28, 127.34, 128.6, 129.15, 129.22, 130.2, 130.3 (9  CH, aromatic CH of 2 

diastereomers, 9 signals for 12 carbons), 134.0, 137.3, 137.4 (3  C, aromatic C of 2 

diastereomers, 3 signals for 4 carbons), 172.1, 172.6 (2  C, CO of 2 diastereomers); HRMS 

(ES+): Exact mass calculated for C18H22NO2S [M+H]
+
 316.1371. Found 316.1374; m/z 

(ES+) 316.1 {[(C18H21NO2S)+H]
+
, 100%}. 

 

N-[(S-1-Hydroxy-3,3-dimethylbutan-2-yl]-2-(phenylthio)propanamide 9 

The title compound was synthesised according to the procedure described for 4 using 2-

chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]-propanamide (1.94 g, 9.4 mmol), 

benzenethiol (1.18 mL, 11.2 mmol), and sodium (0.26 g, 11.2 mmol) in dry ethanol (60 mL) 

to give the crude sulfide 9 as a clear oil. Following purification by column chromatography 

on silica gel using hexane-ethyl acetate as eluent (gradient elution 40-80%), the pure sulfide 9 

(1.98 g, 75%) was isolated as a white solid and a 1:1.22 mixture of diasteromers (material 

contained ~14% starting material), mp 64-66 °C; [] 20

D  1.80 (c 0.5 in CHCl3); max/cm
1

 

(KBr) 3369 (OH), 3280 (NH), 3082 (CH), 2961 (CH), 1654 (CO), 1642 (CO), 1547 (NH 

bend), 1470, 1370 (CN stretch); H (400 MHz, CDCl3) 0.76 [4.95H, s, C(CH3)3 of 1 



diastereomer], 0.91 [4.05H, s, C(CH3)3 of 1 diastereomer], 1.60 [1.35H, d, J 7.2, C(3)H3 of 1 

diastereomer], 1.61 [1.65H, J 7.6, C(3)H3 of 1 diastereomer], 1.77 (0.45H, t, J 5.6, OH of 1 

diastereomer), 2.20 (0.55H, bt, J 5.6, OH of 1 diastereomer), 3.31-3.40 (0.45H, m, NHCH of 

1 diastereomer), 3.50 (0.55H, ddd, J 13.2, 8.0, 5.2, NHCH of 1 diastereomer), 3.64-3.85 (2H, 

m, CH2OH of 2 diastereomers), 3.97 [0.55H, q, J 7.6, C(2)H of 1 diastereomer], 3.99 [0.45H, 

q, J 7.2, C(2)H of 1 diastereomer], 6.85 (0.55H, br d, NH of 1 diastereomer), 6.88 (0.45H, br 

d, NH of 1 diastereomer), 7.18-7.39 (5H, m, ArH of 2 diastereomers); C (75.5 MHz, CDCl3) 

18.4*, 18.5 [2  CH3, C(3)H3 of 2 diastereomers], 26.7*, 26.8 [2  CH3, C(CH3)3 of 2 

diastereomers], 33.3*, 33.6 [2  C, C(CH3)3 of 2 diastereomers], 46.6, 47.2* [2  CH, C(2)H 

of 2 diastereomers], 59.9, 60.0* (2  CH, NHCH of 2 diastereomers), 63.0, 63.4 (2  CH2, 

CH2OH of 2 diastereomers), 127.0*, 127.2, 129.1*, 129.3*, 129.36, 129.40 (6  CH, 

aromatic CH), 134.1*, 134.3 (2  C, aromatic C), 172.7, 173.2* (2  C, CO); HRMS (ES+): 

Exact mass calculated for C15H24NO2S [M+H]
+
 282.1528. Found 282.1527; m/z (ES+) 282.1 

{[(C15H23NO2S)+H]
+
, 100%}, 208.1 (4%), 172.1 (2%), 118.0 (2%). 

*Major diastereomer 

 

N-[(R)-3,3-Dimethylbutan-2-yl]-2-(phenylthio)propanamide 10 

The title compound was synthesised according to the procedure described for 1 using 2-

chloro-N-[(S)-3,3-dimethylbutan-2-yl]propanamide (2.02 g, 10.5 mmol), benzenethiol (1.17 

mL, 11.1 mmol), and sodium hydride (0.44 g of 60% dispersion in mineral oil, 11.1 mmol) in 

dry N,N-dimethylformamide (50 mL) to give the crude sulfide 10 as a yellow oil. Following 

purification by column chromatography on silica gel using hexane-ethyl acetate as eluent 

(gradient elution 10-40%), the pure sulfide 10 (2.19 g, 79%) was isolated as a white solid and 

an equimolar mixture of diastereomers, mp 109-110 °C; [] 20

D  20.35 (c 0.14 in CHCl3); 

(Found C, 68.03; H, 8.70; N, 5.35; S, 12.22. C15H23NOS requires C, 67.88; H, 8.73; N, 5.28; 

S, 12.08%); max/cm
1

 (KBr) 3286 (NH), 3059 (CH), 2970 (CH), 1638 (CO), 1553 (NH 

bend), 1446, 1374 (CN stretch); H (400 MHz, CDCl3) 0.67 [4.5H, s, C(CH3)3 of 1 

diastereomer], 0.83 (1.5H, d, J 6.8, NHCHCH3 of 1 diastereomer), 0.86 [4.5H, s, C(CH3)3 of 

1 diastereomer], 1.00 (1.5H, d, J 6.8, NHCHCH3 of 1 diastereomer), 1.56 [1.5H, d, J 7.2, 

C(3)H3], 1.58 [1.5H, d, J 7.6, C(3)H3], 3.70-3.79 (1H, m, NHCH of 2 diastereomers), 3.89 

[0.5H, q, J 7.6, C(2)H of 1 diastereomer], 3.93 [0.5H, q, J 7.2, C(2)H of 1 diastereomer], 



6.52-6.67 (1H, 2 overlapping br d, NH of 2 diastereomers), 7.16-7.36 (5H, m, ArH); C (75.5 

MHz, CDCl3) 15.6, 16.0 (2  CH3, NHCHCH3 of 2 diastereomers), 18.3, 18.6 [2  CH3, 

C(3)H3 of 2 diastereomers], 33.9, 34.1 [2  C, C(CH3)3 of 2 diastereomers], 46.5, 47.4, 52.9, 

53.1 [4  CH, C(2)H & NHCH of 2 diastereomers], 126.8, 127.0, 129.1, 129.2, 129.5 (5  

CH, aromatic CH of 2 diastereomers, 5 signals for 6 carbons), 134.3 (C, aromatic C of 2 

diastereomers, 1 signal for 2 carbons), 170.77, 170.83 (2  C, CO of 2 diastereomers); HRMS 

(ES+): Exact mass calculated for C15H24NOS [M+H]
+
 266.1579. Found 266.1580; m/z (ES+) 

266.1 {[(C15H23NOS)+H]
+
, 100%}, 104.9 (6%). 

 

(Z)-2-(Benzylthio)-3-chloro-N-[(R)-1-phenylethyl)acrylamide 11 

Unrecrystallised NCS (2.80 g, 20.6 mmol) was added in one portion to a solution of the 

sulfide 2-(benzylthio) in toluene (60 mL). The flask was immediately immersed in an oil bath 

and heated at 90 °C for 2 h. Following filtration and evaporation of the solvent at reduced 

pressure, the crude product was obtained as a yellow oil, containing 70% -chloroacrylamide 

by 
1
H NMR spectroscopy. This was purified by column chromatography on silica gel using 

hexane-ethyl acetate 95:5 as eluent to give the pure product 11 (2.14 g, 61%) as a white solid, 

mp 77-78 °C; [] 20

D  66.50 (c 0.5 in CHCl3); (Found C, 65.50; H, 5.30; Cl, 10.30; N, 4.16; S, 

9.90. C18H18ClNOS requires C, 65.15; H, 5.47; Cl, 10.68; N, 4.22; S, 9.66%); max/cm
1

 

(KBr) 3309 (NH), 2977 (CH), 1630 (CO), 1529 (NH bend), 1451 (CN stretch); H (400 MHz, 

CDCl3) 1.34 [3H, d, J 6.8, CH(CH3)], 3.90 (2H, s, SCH2), 4.95 (1H, overlapping dq, J 7.2, 

6.8, NHCH), 7.07-7.39 (11H, m, NH & ArH), 7.83 [1H, s, ClHC(3)=]; C (75.5 MHz, 

CDCl3) 21.7 [CH3, CH(CH3)], 38.2 (CH2, SCH2), 49.6 (CH, NHCH), 126.0, 127.5, 127.69, 

128.74, 128.77, 128.80 (6  CH, 6  aromatic CH), 130.9, 137.2 [2  C, aromatic C or 

C(2)S], 139.4 [C, ClHC(3)=], 142.6 [C, aromatic C or C(2)S], 161.9 (C, CO); HRMS (ES+): 

Exact mass calculated for C18H19NOS
35

Cl [M+H]
+
 332.0876. Found 332.0891; m/z (ES+) 

334.0 {[(C18H18NOS
37

Cl)+H
+
], 44%}, 332.0 {[(C18H18NOS

35
Cl)+H

+
], 100%}. 

(Z)-2-(Benzylthio)-3-chloro-N-[(R)-2-hydroxy-1-phenylethyl]acrylamide 12 

This was prepared following the procedure described above for 11 using 2-(benzylthio)-N-

[(1R)-2-hydroxy-1-phenylethyl]propanamide 2 (2.46 g, 7.8 mmol), N-chlorosuccinimide 

(2.08 g, 15.2 mmol) and toluene (50 mL). The reaction mixture was heated at 90 °C for 2 h. 



Following filtration and evaporation of the solvent at reduced pressure, the crude product was 

obtained as a brown oil, containing 40% -chloroacrylamide by 
1
H NMR spectroscopy. This 

was purified by column chromatography on silica gel using hexane-ethyl acetate (gradient 

elution 10-40% ethyl acetate) as eluent to give the pure product 12 (0.86 g, 32%) as a pale 

brown solid, mp 95-96 °C; [] 20

D  –54.16 (c 0.1 in CHCl3); max/cm
1

 (KBr) 3379 (OH), 3304 

(NH), 3029 (CH), 2928 (CH), 1625 (CO), 1524 (NH bend), 1453 (CN stretch); H (400 MHz, 

CDCl3) 2.14 (1H, dd, J 6.8, 5.6, OH), 3.70-3.75 (2H, m, CH2OH), 3.95 (2H, s, SCH2), 4.87-

4.94 (2H, overlapping ddd, J 7.2, 5.2, 5.0, NHCH), 7.10-7.15 (2H, m, ArH), 7.18-7.39 (8H, 

m, ArH), 7.54 (1H, br d, J 6.8, NH), 7.89 [1H, s, ClHC(3)=]; C (75.5 MHz, CDCl3) 38.2 

(CH2, SCH2), 56.5 (CH, NHCH), 66.5 (CH2, CH2OH), 126.6, 127.7, 128.0, 128.78, 128.86, 

128.93 (6  CH, 6  aromatic CH), 130.7, 137.2, 138.3 [3  C, 2  aromatic C & C(2)S], 

140.0 [CH, ClHC(3)=], 163.3 (C, CO); HRMS (ES+): Exact mass calculated for 

C18H19NO2S
35

Cl [M+H]
+
 348.0825. Found 348.0834; m/z (ES+) 349.9 

{[(C18H18NO2S
37

Cl)+H
+
], 44%}, 348.0 {[(C18H18NO2S

35
Cl)+H

+
], 100%}. 

 

(Z)-2-(Benzylthio)-3-chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]acrylamide 13 

This was prepared following the procedure described above for 11 using 2-(benzylthio)-N-

[(S-1-hydroxy-3-phenylpropan-2-yl]propanamide 3 (1.76 g, 5.4 mmol), N-chlorosuccinimide 

(1.42 g, 10.5 mmol) and toluene (50 mL). The reaction mixture was heated at 90 °C for 1 h. 

Following filtration and evaporation of the solvent at reduced pressure, the crude product was 

obtained as a brown oil, containing 35% -chloroacrylamide by 
1
H NMR spectroscopy. This 

was purified by column chromatography on silica gel using hexane-ethyl acetate (gradient 

elution 20-40% ethyl acetate) as eluent to give the pure product 13 (1.00 g, 51%) as a pale 

brown solid, mp 77-78 °C; [] 20

D  –30.00 (c 0.1 in CHCl3); (Found C, 62.72; H, 5.73; Cl, 

10.00; N, 4.01; S, 9.09. C19H20ClNO2S requires C, 63.06; H, 5.57; Cl, 9.80; N, 3.87; S, 

8.86%); max/cm
1

 (KBr) 3363 (NH), 3062 (CH), 2929 (CH), 1644 (CO), 1515 (NH bend), 

1454 (CN stretch); H (400 MHz, CDCl3) 2.20 (1H, dd, J 5.6, 5.6, OH), 2.72 (1H, dd, A of 

ABX, JAX 13.8, JAB 7.2, one of CH2Ph), 2.83 (1H, dd, B of ABX, JBX 14.0, JAB 7.2, one of 

CH2Ph), 3.41-3.48 (1H, m, one of CH2OH), 3.51-3.57 (1H, m, one of CH2OH), 3.74 (2H, s, 

SCH2), 4.03-4.14 (1H, m, NHCH), 7.04-7.39 (11H, m, NH & ArH), 7.80 [1H, s, ClHC(3)=]; 

C (75.5 MHz, CDCl3) 36.7, 38.1 (2  CH2, SCH2 & CH2Ph), 53.4 (CH, NHCH), 64.1 (CH2, 



CH2OH), 126.9, 127.6, 128.7, 128.8, 128.9, 129.2 (6  CH, 6  aromatic CH), 130.8, 137.1, 

137.2 [3  C, 2  aromatic C & C(2)S], 139.9 [CH, ClHC(3)=], 163.3 (C, CO); HRMS 

(ES+): Exact mass calculated for C19H21NO2S
35

Cl [M+H]
+
 362.0982. Found 362.0968; m/z 

(ES+) 364.0 {[(C19H20NO2S
37

Cl)+H
+
], 42%}, 362.0 {[(C19H20NO2S

35
Cl)+H

+
], 100%}. 

 

(Z)-2-(Benzylthio)-3-chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]acrylamide 14 

This was prepared following the procedure described above for 11 using 2-(benzylthio)-N-

[(S-1-hydroxy-3,3-dimethylbutan-2-yl]propanamide 4 (1.66 g, 5.6 mmol), N-

chlorosuccinimide (1.50 g, 11.0 mmol) and toluene (50 mL). The reaction mixture was 

heated at 90 °C for 1 h. Following filtration and evaporation of the solvent at reduced 

pressure, the crude product was obtained as a brown oil, containing 36% -chloroacrylamide 

by 
1
H NMR spectroscopy. This was purified by column chromatography on silica gel using 

hexane-ethyl acetate (gradient elution 20-40% ethyl acetate) as eluent to give the pure 

product 14 (0.54 g, 29%) as an orange oil; [] 20

D  106.00 (c 0.1 in CHCl3); max/cm
1

 (film) 

3440 (OH), 3367 (NH), 3062 (CH), 2963 (CH), 1645 (CO), 1515 (NH bend), 1455 (CN 

stretch); H (400 MHz, CDCl3) 0.88 [9H, s, C(CH3)3], 1.97 (1H, br s, OH), 3.33 (1H, br dd, J 

7.9, 7.0, NHCH), 3.64-3.76 (2H, m, CH2OH), 3.95 (1H, A of AB system, JAB 12.9, one of 

SCH2), 4.00 (1H, B of AB system, JAB 12.9, one of SCH2), 7.12 (1H, br d, J 7.0, NH), 7.18-

7.40 (5H, m, ArH), 7.90 [1H, s, ClHC(3)=]; c (75.5 MHz, CDCl3) 26.8 [CH3, C(CH3)3], 33.5 

[C, C(CH3)3], 38.1 (CH2, SCH2), 60.6 (CH, NHCH), 63.1 (CH2, CH2OH), 127.8, 129.1 

(signal for 2  CH) (2  CH, 2  aromatic CH), 130.8, 137.4 [2  C, aromatic C & C(2)S], 

140.0 [CH, ClHC(3)=], 164.0 (C, CO); HRMS (ES+): Exact mass calculated for 

C16H23NO2S
35

Cl [M+H]
+
 328.1138. Found 328.1148; m/z (ES+) 330.0 

{[(C16H22NO2S
37

Cl)+H
+
], 44%}, 328.0 {[(C16H22NO2S

35
Cl)+H

+
], 100%}. 

 

(Z)-2-(Phenylthio)-3-chloro-N-[(R)-1-phenylethyl)acrylamide 15 

This was prepared following the procedure described above for 11 using N-[(R)-1-

phenylethyl]-2-(phenylthio)propanamide 5 (2.51 g, 8.8 mmol), N-chlorosuccinimide (2.33 g, 

17.1 mmol) and toluene (60 mL). The reaction mixture was heated at 90 °C for 2 h. 

Following filtration and evaporation of the solvent at reduced pressure, the crude product was 



obtained as a yellow oil, containing 56% -chloroacrylamide by 
1
H NMR spectroscopy. This 

was purified by column chromatography on silica gel using hexane-ethyl acetate 95:5 as 

eluent to give the pure product 11 (1.30 g, 47%) as a white solid, mp 51-53 °C; [] 20

D  6.40 (c 

0.5 in EtOH); max/cm
1

 (KBr) 3302 (NH), 2918 (CH), 1643 (CO), 1514 (NH bend); H (400 

MHz, CDCl3) 1.30 [3H, d, J 6.8, CH(CH3)], 4.99 (1H, overlapping dq, J 7.6, 6.8, NHCH), 

6.89-7.05 (3H, m, ArH & NH), 7.17-7.38 (8H, m, ArH), 7.87 [1H, s, ClHC(3)=]. 

 

(Z)-3-Chloro-N-[(R)-2-hydroxy-1-phenylethyl]-2-(phenylthio)acrylamide 16 

This was prepared following the procedure described above for 11 using N-[(1R)-2-hydroxy-

1-phenylethyl]-2-(phenylthio)propanamide 6 (2.04 g, 6.8 mmol), N-chlorosuccinimide (1.80 

g, 13.2 mmol) and toluene (40 mL). The reaction mixture was heated at 90 °C for 2 h. 

Following filtration and evaporation of the solvent at reduced pressure, the crude product was 

obtained as a yellow oil, containing 41% -chloroacrylamide by 
1
H NMR spectroscopy. This 

was purified by column chromatography on silica gel using hexane-ethyl acetate (gradient 

elution 20-40% ethyl acetate) as eluent to give the pure product 16 (0.92 g, 41%) as a white 

solid, mp 102-103 °C; [] 20

D  64.50 (c 0.5 in CHCl3); (Found C, 61.16; H, 4.83; Cl, 10.62; N, 

4.20; S, 9.61. C17H16ClNO2S requires C, 61.07; H, 4.92; Cl, 10.95; N, 4.22; S, 9.60%); 

max/cm
1

 (KBr) 3400 (OH), 3361 (NH), 3047 (CH), 2929 (CH), 1643 (CO), 1518 (NH 

bend), 1452 (CN stretch); H (400 MHz, CDCl3) 1.82 (1H, dd, J 7.2, 5.2, OH), 3.66-3.78 (2H, 

m, CH2OH), 4.94-4.98 (2H, overlapping ddd, J 7.2, 4.8, 4.4, NHCH), 6.88-6.96 (2H, m, 

ArH), 7.18-7.37 (8H, m, ArH), 7.46 (1H, br d, J 6.8, NH), 7.89 [1H, s, ClHC(3)=]; C (75.5 

MHz, CDCl3) 56.0 (CH, NHCH), 66.1 (CH2, CH2OH), 126.4, 127.4, 127.8, 128.7, 128.8, 

129.7 (6  CH, 6  aromatic CH), 130.7, 133.0, 138.2 [3  C, 2  aromatic C & C(2)S], 139.2 

[CH, ClHC(3)=], 162.4 (C, CO); HRMS (ES+): Exact mass calculated for C17H17NO2S
35

Cl 

[M+H]
+
 334.0669. Found 334.0672; m/z (ES+) 336.0 {[(C17H16NO2S

37
Cl)+H

+
], 40%}, 334.0 

{[(C17H16NO2S
35

Cl)+H
+
], 100%}. 

The structure of 16 was determined by single crystal X-ray diffraction on a crystalline sample 

of 16 recrystallised from dichloromethane/pentane. Crystals of 16 are monoclinic, space 

group C 121, formula C17H16ClNO2S, M = 333.82, a = 21.1484(15) Å, b = 6.0525(4) Å, c = 

15.0786(11) Å,  = 90.00 °,  = 121.914(3) °,  = 90.00 °, U = 1638.3(2) Å
3
, F(000) = 696, 

(Mo-K) = 0.366 mm
–1

, R(Fo) = 0.0282, for 2862 observed reflections with I>2(I), 



wR2(F
2
) = 0.0596 for all 3105 unique reflections. Data in the θ range 1.59-26.02 ° were 

collected at 100 K on a Bruker Apex II Duo diffractometer using Mo-K radiation, λ = 

0.71073 Å, and corrected for Lorentz and polarisation effects. The structure was solved by 

direct methods and refined by full-matrix least-squares using all F
2
 data. The hydrogen atoms 

were placed in calculated positions and allowed to ride on the parent atom. 

 

(Z)-3-Chloro-N-[(1R,2S)-2,3-dihydro-2-hydroxy-1H-inden-1-yl]-2-

(phenylthio)acrylamide 17 

This was prepared following the procedure described above for 11 using N-[(1R,2S)-2,3-

dihydro-2-hydroxy-1H-inden-1-yl]-2-(phenylthio)propanamide 7 (0.63 g, 2.0 mmol), N-

chlorosuccinimide (0.53 g, 3.9 mmol) and toluene (20 mL). The reaction mixture was heated 

at 90 °C for 30 min. Following filtration and evaporation of the solvent at reduced pressure, 

the crude product was obtained as a brown oil, containing 26% -chloroacrylamide by 
1
H 

NMR spectroscopy. This was purified by column chromatography on silica gel using hexane-

ethyl acetate (gradient elution 10-20% ethyl acetate) as eluent to give the pure product 17 as a 

white solid (0.33 g, 47%), mp 124-125 °C; [] 20

D  60.10 (c 0.5 in CHCl3); (Found C, 62.15; H, 

4.46; Cl, 10.69; N, 4.09; S, 8.96. C18H16ClNO2S requires C, 62.51; H, 4.66; Cl, 10.25; N, 

4.05; S, 9.27%); max/cm
1

 (KBr) 3388 (OH), 3290 (NH), 3036 (CH), 2916 (CH), 1630 (CO), 

1514 (NH bend), 1457 (CN stretch); H (400 MHz, CDCl3) 2.86 (1H, dd, A of ABX, JAB 

16.6, JAX 1.6, one of ArCH2), 3.10 (1H, B of ABX, JAB 16.6, JAX 4.8, one of ArCH2), 4.43-

4.50 (1H, m, CHOH), 5.29-5.35 (1H, m, NHCH), 6.69 (1H, d, J 7.2, ArH), 7.05-7.13 (1H, m, 

ArH), 7.25-7.36 (8H, m, NH & ArH), 7.96 [1H, s, ClHC(3)=]; C (75.5 MHz, CDCl3) 39.6 

(CH2, ArCH2), 58.2 (CH, NHCH), 73.6 (CH, CHOH), 124.2, 125.3, 127.2, 127.3, 128.3, 

128.6, 129.6 (7  CH, 7  aromatic CH), 131.0, 133.2 [2  C, C(2)S or aromatic C], 139.0 

[CH, ClHC(3)=], 139.78, 139.82 [2  C, C(2)S or aromatic C], 162.9 (C, CO); HRMS (ES+): 

Exact mass calculated for C18H17NO2S
35

Cl [M+H]
+
 346.0669. Found 346.0681; m/z (ES+) 

348.0 {[(C18H17NO2S
37

Cl)+H
+
], 38%}, 345.9 {[(C18H17NO2S

35
Cl)+H

+
], 100%}. 

 

(Z)-3-Chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]-2-(phenylthio)acrylamide 18 



This was prepared following the procedure described above for 11 using N-[(S-1-hydroxy-3-

phenylpropan-2-yl]-2-(phenylthio)propanamide 8 (1.78 g, 5.6 mmol), N-chlorosuccinimide 

(1.50 g, 11.0 mmol) and toluene (50 mL). The reaction mixture was heated at 90 °C for 1 h. 

Following filtration and evaporation of the solvent at reduced pressure, the crude product was 

obtained as a yellow oil, containing 20% -chloroacrylamide by 
1
H NMR spectroscopy. This 

was purified by column chromatography on silica gel using hexane-ethyl acetate (gradient 

elution 20-40% ethyl acetate) as eluent to give the pure product 18 (0.67 g, 34%) as a white 

solid, mp 80-81 °C; [] 20

D  84.33 (c 0.1 in EtOH); (Found C, 61.83; H, 5.21; Cl, 10.40; N, 

4.08; S, 8.90. C18H18ClNO2S requires C, 62.15; H, 5.22; Cl, 10.19; N, 4.03; S, 9.22%); 

max/cm
1

 (KBr) 3423 (OH), 3368 (NH), 3061 (CH), 2928 (CH), 1640 (CO), 1518 (NH 

bend), 1439 (CN stretch); H (400 MHz, CDCl3) 1.81 (1H, br t, J 5.0, OH), 2.68 (1H, dd, A 

of ABX, JAB 13.9, JAX 7.4, one of CH2Ph), 2.74 (1H, dd, B of ABX, JAB 13.9, JBX 7.4, one of 

CH2Ph), 3.38-3.48 (2H, m, CH2OH), 4.07-4.13 (1H, sym m, NHCH), 6.97-7.11 [3H, m, NH 

(br d)  & ArH], 7.14-7.34 (8H, m, ArH), 7.86 [1H, s, ClHC(3)=]; c (75.5 MHz, CDCl3) 36.7 

(CH2, CH2Ph), 53.2 (CH, NHCH), 63.6 (CH2, CH2OH), 126.8, 127.3, 128.4, 128.7, 129.2, 

129.5 (6  CH, 6  aromatic CH), 130.8, 133.0, 137.1 [3  C, 2  aromatic C & C(2)S], 139.2 

[CH, ClHC(3)=], 162.6 (C, CO); HRMS (ES+): Exact mass calculated for C18H19NO2S
35

Cl 

[M+H]
+
 348.0825. Found 348.0831; m/z (ES+) 350.0 {[(C18H18NO2S

37
Cl)+H

+
], 40%}, 348.0 

{[(C18H18NO2S
35

Cl)+H
+
], 100%}. 

 

(Z)-3-Chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]-2-(phenylthio)acrylamide 19 

This was prepared following the procedure described above for 11 using 2-(phenylthio)-N-

[(S-1-hydroxy-3,3-dimethylbutan-2-yl]propanamide 9 (1.93 g, 6.9 mmol), N-

chlorosuccinimide (1.83 g, 13.4 mmol) and toluene (50 mL). The reaction mixture was 

heated at 90 °C for 1 h. Following filtration and evaporation of the solvent at reduced 

pressure, the crude product was obtained as a pale yellow oil, containing 28% -

chloroacrylamide by 
1
H NMR spectroscopy. This was purified by column chromatography on 

silica gel using hexane-ethyl acetate (gradient elution 20-40% ethyl acetate) as eluent to give 

the pure product 19 (0.95 g, 44%) as pale yellow solid, mp 37-39 °C; [] 20

D  67.70 (c 0.5 in 

CHCl3); max/cm
1

 (KBr) 3401 (OH), 3264 (NH), 3062 (CH), 2964 (CH), 1657 (CO), 1635, 

1526 (NH bend), 1476 (CN stretch); H (400 MHz, CDCl3) 0.74 [9H, s, C(CH3)3], 1.82 (1H, 



br s, OH), 3.39 (1H, dd, J 7.9, 7.4, NHCH), 3.64-3.76 (2H, m, CH2OH), 7.00 (1H, br d, J 8.0, 

NH), 7.20-7.36 (5H, m, ArH), 7.97 [1H, s, ClHC(3)=]; C (75.5 MHz, CDCl3) 26.6 [CH3, 

C(CH3)3], 33.4 [C, C(CH3)3], 60.4 (CH, NHCH), 63.0 (CH2, CH2OH), 127.3, 128.0, 129.6 (3 

 CH, 3  aromatic CH), 130.5, 133.1 [2  C, aromatic C & C(2)S], 140.0 [CH, ClHC(3)=], 

163.2 (C, CO); HRMS (ES+): Exact mass calculated for C15H21NO2S
35

Cl [M+H]
+
 314.0982. 

Found 314.0979; m/z (ES+) 316.0 {[(C15H20NO2S
37

Cl)+H
+
], 46%}, 314.0 

{[(C15H20NO2S
35

Cl)+H
+
], 100%}. 

 

(Z)-3-Chloro-N-[(R)-3,3-dimethylbutan-2-yl]-2-(phenylthio)acrylamide 20 

This was prepared following the procedure described above for 11 using N-[(R)-3,3-

dimethylbutan-2-yl]-2-(phenylthio)propanamide 10 (1.10 g, 4.1 mmol), N-chlorosuccinimide 

(1.10 g, 8.1 mmol) and toluene (40 mL). The reaction mixture was heated at 90 °C for 1 h. 

Following filtration and evaporation of the solvent at reduced pressure, the crude product was 

obtained as an off-white solid, containing 96% -chloroacrylamide by 
1
H NMR 

spectroscopy. This was purified by column chromatography on silica gel using hexane-ethyl 

acetate 95:5 as eluent to give the pure product 20 (0.94 g, 76%) as a white solid, mp 85-86 

°C; [] 20

D  92.94 (c 0.1 in CHCl3); (Found C, 60.41; H, 6.70; N, 4.66; S, 11.17; Cl, 11.99. 

C15H20ClNOS requires C, 60.49; H, 6.77; N, 4.70; S, 10.77; Cl, 11.90%); max/cm
1

 (KBr) 

3276 (NH), 3064 (CH), 2965 (CH), 1636 (CO), 1533 (NH bend), 1475 (CN stretch); H (400 

MHz, CDCl3) 0.68 [9H, s, C(CH3)3], 0.86 (3H, d, J 6.8, CHCH3), 3.71-3.78 (1H, dq, J 9.6, 

6.8, NHCH), 6.69 (1H, br d, J 9.6, NH), 7.19-7.33 (5H, m, ArH), 7.93 [1H, s, ClHC(3)=]; C 

(75.5 MHz, CDCl3) 15.6 (CH3, CHCH3), 25.9 [CH3, C(CH3)3], 33.9 [C, C(CH3)3], 53.7 (CH, 

NHCH), 127.1, 128.1, 129.6 (3  CH, 3  aromatic CH), 130.8, 133.1 [2  C, aromatic C & 

C(2)S], 139.2 [CH, ClHC(3)=], 161.4 (C, CO); HRMS (ES+): Exact mass calculated for 

C15H21NOS
35

Cl [M+H]
+
 298.1032. Found 298.1038; m/z (ES+) 300.0 

{[(C15H20NOS
37

Cl)+H
+
], 44%}, 298.0 {[(C15H20NOS

35
Cl)+H

+
], 100%}. 

 

(Z)-2-(Ss)-(Benzylsulfinyl)-3-chloro-N-[(R)-1-phenylethyl)acrylamide 21a and (Z)-2-

(Rs)-(benzylsulfinyl)-3-chloro-N-[(R)-1-phenylethyl)acrylamide 21b 



A solution of Oxone
®

 (3.93 g, 6.4 mmol) in water (20 mL) was added to a stirring solution of 

(Z)-2-(benzylthio)-3-chloro-N-[(R)-1-phenylethyl)acrylamide 11 (1.06 g, 3.2 mmol) in 

acetone (60 mL) at room temperature. A colourless precipitate formed immediately. The 

reaction mixture was stirred for 2 h. Water (80 mL) was added and the aqueous solution was 

extracted with dichloromethane (3  50 mL). The combined extracts were washed with water 

(2  50 mL) and brine (50 mL), dried, filtered and concentrated at reduced pressure to give 

the crude sulfoxides 21a and 21b as a white solid and a 1.3:1 mixture of diastereomers. The 

1
H NMR spectrum of the crude product was very clean, with no evidence of sulfone 

formation. Following purification by column chromatography using hexane-ethyl acetate 

(gradient elution 5-20% ethyl acetate) as eluent, the less polar and major diastereomer 21a 

was isolated as a clear oil (0.31 g, 28%); [] 20

D  –179.0 (c 0.4 in CHCl3); max/cm
1

 (KBr) 

3237 (NH), 3071 (CH), 2925 (CH), 1667 (CO), 1571, 1455 (CN stretch), 1030 (SO); H (400 

MHz, CDCl3) 1.48 [3H, d, J 6.8, CH(CH3)], 4.05 (1H, d, A of AB system, JAB 12.4, one of 

SCH2), 4.23 (1H, d, B of AB system, JAB 12.8, one of SCH2), 5.09 (1H, overlapping dq, J 

7.2, 6.8, NHCH), 7.05-7.15 (2H, m, ArH), 7.17-7.46 (8H, m, ArH), 7.67 [1H, s, ClHC(3)=], 

8.86 (1H, br d, J 6.8, NH); C (75.5 MHz, CDCl3) 22.4 [CH3, CH(CH3)], 49.5 (CH, NHCH), 

58.6 (CH2, SCH2), 126.3, 127.4 (2  CH, 2  aromatic CH), 128.2 (C, aromatic C), 128.75, 

128.83, 128.9, 130.4 (4  CH, 4  aromatic CH), 135.5 [C, aromatic C or C(2)S], 136.6 [C, 

ClHC(3)=], 143.0 [C, aromatic C or C(2)S], 159.8 (C, CO); HRMS (ES+): Exact mass 

calculated for C18H19NO2S
35

Cl [M+H]
+
 348.0825. Found 348.0822; m/z (ES+) 350.0 

{[(C18H18NO2S
37

Cl)+H
+
], 42%}, 348.0 {[(C18H18NO2S

35
Cl)+H

+
], 100%}. 

The more polar minor diastereomer 21b was isolated as a white solid (0.22 g, 19%), mp 137-

138 °C; [] 20

D  323.3 (c 0.5 in CHCl3); (Found C, 61.90; H, 4.96; N, 3.98; S, 8.79; Cl, 10.27. 

C18H18ClNO2S requires C, 62.15; H, 5.22; N, 4.03; S, 9.22; Cl, 10.19%); max/cm
1

 (KBr) 

3247 (NH), 3030 (CH), 2973 (CH), 1655 (CO), 1572, 1454 (CN stretch), 1035 (SO); H (400 

MHz, CDCl3) 1.27 [3H, d, J 6.8, CH(CH3)], 4.24 (1H, d, A of AB system, JAB 12.8, one of 

SCH2), 4.29 (1H, d, B of AB system, JAB 13.2, one of SCH2), 4.91 (1H, overlapping dq, J 

7.2, 7.2, NHCH), 7.16-7.35 (7H, m, ArH), 7.37-7.46 (3H, m, ArH), 7.67 [1H, s, ClHC(3)=], 

8.64 (1H, br d, J 7.2, NH); C (75.5 MHz, CDCl3) 22.6 [CH3, CH(CH3)], 49.3 (CH, NHCH), 

58.2 (CH2, SCH2), 125.9, 127.3 (2  CH, 2  aromatic CH), 128.2 (C, aromatic C), 128.7, 

128.9, 129.0, 130.8 (4  CH, 4  aromatic CH), 135.4 [C, aromatic C or C(2)S], 136.0 [C, 

ClHC(3)=], 142.9 [C, aromatic C or C(2)S], 159.6 (C, CO); HRMS (ES+): Exact mass 



calculated for C18H19NO2S
35

Cl [M+H]
+
 348.0825. Found 348.0814; m/z (ES+) 350.0 

{[(C18H18NO2S
37

Cl)+H
+
], 42%}, 348.0 {[(C18H18NO2S

35
Cl)+H

+
], 100%}. 

The stereochemistry was determined by single crystal X-ray diffraction on a crystalline 

sample of 21b recrystallised from ethanol. 

Crystals of 21b are monoclinic, space group P 21, formula C18H18ClNO2S, M = 347.84, a = 

5.8018(6) Å, b = 18.291(3) Å, c = 8.1019(13) Å,  = 90.00 °,  = 93.218(11) °,  = 90.00 °, U 

= 858.4(2) Å
3
, F(000) = 364, (Mo-K) = 0.352 mm

–1
, R(Fo) = 0.0611, for 1827 observed 

reflections with I>2(I), wR2(F
2
) = 0.1539 for all 3195 unique reflections. Data in the θ range 

2.23-25.51 ° were collected at 293 K on a Nonius MACH3 diffractometer using Mo-K 

graphite monochromated radiation,  = 0.7107 Å, and corrected for Lorentz and polarization 

effects. The structure was solved by direct methods and refined by full-matrix least-squares 

using all F
2
 data. The hydrogen atoms were placed in calculated positions and allowed to ride 

on the parent atom. 

A fraction containing a mixture of the 2 diastereomers 21a and 21b in a ratio of 1:2.8 was 

also isolated from the column as a white solid (0.34 g, 31%). 

(Z)-2-(Ss/Rs)-(Benzylsulfinyl)-3-chloro-N-[(R)-2-hydroxy-1-phenylethyl]acrylamide 22 

This was prepared following the procedure described above for 21 by addition of (Z)-2-

(benzylthio)-3-chloro-N-[(R)-2-hydroxy-1-phenylethyl]acrylamide 12 (0.16 g, 0.5 mmol) in 

acetone (15 mL) to Oxone
®
 (0.57 g, 0.9 mmol) in water (5 mL). Following stirring at room 

temperature for 16 h, the crude sulfoxides 22a and 22b and a 1.8:1 mixture of diastereomers. 

Following purification using hexane-ethyl acetate (gradient elution 10-40% ethyl acetate) as 

eluent, the less polar major diastereomer 22a was isolated as a clear oil (0.09 g, 50%); [] 20

D  

–67.47 (c 0.1 in CHCl3); max/cm
1

 (film) 3396 (OH), 3247 (NH), 2926 (CH), 1656 (CO), 

1534 (NH bend), 1454 (CN stretch), 1028 (SO); H (400 MHz, CDCl3) 2.08 (1H, t, J 6.0, 

OH), 3.56-3.71 (2H, m, CH2OH), 4.31 (1H, d, A of AB system, JAB 13.2, one of SCH2), 4.38 

(1H, d, B of AB system, JAB 13.2, one of SCH2), 4.87-4.94 (1H, overlapping dt, J 6.8, 7.2, 

NHCH), 7.18-7.47 (10H, m, ArH), 7.68 [1H, s, ClHC(3)=], 8.98 (1H, br d, J 7.2, NH); C 

(75.5 MHz, CDCl3) 56.1 (CH, NHCH), 58.1 (CH2, SCH2), 66.7 (CH2, CH2OH), 126.7, 127.9 

(2  CH, 2  aromatic CH), 128.3 (C, aromatic C), 128.89, 128.92, 129.1, 130.9 (4  CH, 4  

aromatic CH), 135.6 [C, C(2)S or aromatic C], 136.6 [CH, ClHC(3)=], 138.1 [C, C(2)S or 



aromatic C], 161.0 (C, CO); HRMS (ES+): Exact mass calculated for C18H19NO3S
35

Cl 

[M+H]
+
 364.0774. Found 364.0770; m/z (ES+) 366.0 {[(C18H18NO3S

37
Cl)+H

+
], 42%}, 364.0 

{[(C18H18NO3S
35

Cl)+H
+
], 100%}. 

The more polar minor diastereomer 22b was isolated as a clear oil, containing ~18% of the 

major diastereomer 22a (0.04 g, 24%); [] 20

D  122.60 (c 0.08 in CHCl3); max/cm
1

 (film) 3401 

(OH), 3203 (NH), 2923 (CH), 1651 (CO), 1529 (NH bend), 1455 (CN stretch), 1029 (SO); H 

(400 MHz, CDCl3) 2.49 (1H, t, J 6.0, OH), 3.78 (2H, overlapping dd, J 6.0, 5.6, CH2OH), 

4.12 (1H, d, A of AB system, JAB 13.2, one of SCH2), 4.23 (1H, d, B of AB system, JAB 13.2, 

one of SCH2), 4.97 (1H, overlapping dt, J 7.2, 5.6, NHCH), 7.08-7.50 (10H, m, ArH), 7.73 

[1H, s, ClHC(3)=], 9.04 (1H, br d, J 7.2, NH); C (75.5 MHz, CDCl3) 56.6 (CH, NHCH), 

58.2 (CH2, SCH2), 67.1 (CH2, CH2OH), 127.0 (CH, aromatic CH), 127.9 (C, aromatic C), 

128.0, 128.79, 128.89, 128.93, 130.5 (5  CH, 5  aromatic CH), 135.1 [C, C(2)S or aromatic 

C], 137.0 [CH, ClHC(3)=], 138.1 [C, C(2)S or aromatic C], 161.2 (C, CO); HRMS (ES+): 

Exact mass calculated for C18H19NO3S
35

Cl [M+H]
+
 364.0774. Found 364.0774; m/z (ES+) 

366.0 {[(C18H18NO3S
37

Cl)+H
+
], 44%}, 364.0 {[(C18H18NO3S

35
Cl)+H

+
], 100%}. 

 

(Z)-3-Chloro-N-[(R)-2-hydroxy-1-phenylethyl]-2-(Ss/Rs)-(benzenesulfinyl)acrylamide 23 

This was prepared following the procedure described above for 21 by addition of (Z)-3-

chloro-N-[(R)-2-hydroxy-1-phenylethyl]-2-(phenylthio)acrylamide 16 (0.10 g, 0.3 mmol) in 

acetone (10 mL) to Oxone
®
 (0.35 g, 0.6 mmol) in water (5 mL). Following stirring at room 

temperature for 16 h, the crude sulfoxides 23a and 23b were obtained as a clear oil and 2.2:1 

mixture of diastereomers. The 
1
H NMR spectrum of the crude product was very broad. The 

crude product was purified by column chromatography on silica gel using hexane-ethyl 

acetate 60:40 as eluent to give the less polar minor diastereomer 23b as a clear oil (0.01 g, 

14%), containing ~4% of 23a; [] 20

D  –139.5 (c 0.1 in CHCl3); max/cm
1

 (film) 3391 (OH), 

3253 (NH), 3055 (CH), 2923 (CH), 1656 (CO), 1536 (NH bend), 1446 (CN stretch), 1026 

(SO); H (400 MHz, CDCl3) 1.87 (1H, overlapping dd, J 7.2, 6.0, OH), 3.65-3.77 (2H, m, 

CH2OH), 4.96 (1H, overlapping dt, J 7.6, 5.2, NHCH), 7.23-7.43 (5H, m, ArH), 7.53-7.63 

(3H, m, ArH), 7.72 [1H, s, ClHC(3)=], 7.74-7.81 (2H, m, ArH), 9.17 (1H, br d, J 7.6, NH); 

C (75.5 MHz, CDCl3) 55.7 (CH, NHCH), 66.3 (CH2, CH2OH), 124.2, 126.7, 128.0, 128.9, 

129.7, 131.9 (6  CH, 6  aromatic CH), 137.7 [CH, ClHC(3)=], 138.1, 138.6, 141.0 [3  C, 



C(2)S & 2  aromatic C], 160.4 (C, CO); HRMS (ES+): Exact mass calculated for 

C17H17NO3S
35

Cl [M+H]
+
 350.0618. Found 350.0611; m/z (ES+) 352.0 

{[(C17H16NO3S
37

Cl)+H
+
], 40%}, 350.0 {[(C17H16NO3S

35
Cl)+H

+
], 100%}. 

The more polar major diastereomer 23a was isolated as a white solid (0.04 g, 36%) and 

contained ~4% of 23b, mp 105-107 °C; [] 20

D  –65.00 (c 0.1 in CHCl3); max/cm
1

 (KBr) 3401 

(OH), 3293 (NH), 3042 (CH), 2919 (CH), 1629 (CO), 1538 (NH bend), 1444 (CN stretch), 

1056 (SO); H (400 MHz, CDCl3) 2.35 (1H, t, J 6.0, OH), 3.81-3.98 (2H, m, CH2OH), 5.02 

(1H, overlapping dt, J 6.4, 6.0, NHCH), 6.99-7.13 (2H, m, ArH), 7.24-7.60 (8H, m, ArH), 

7.79 [1H, s, ClHC(3)=], 9.03 (1H, br d, J 6.8, NH); C (75.5 MHz, CDCl3) 56.1 (CH, 

NHCH), 66.2 (CH2, CH2OH), 124.1, 126.8, 127.8, 128.7, 128.9, 129.6 (6  CH, 6  aromatic 

CH), 138.1 [C, aromatic C or C(2)S], 138.2 [CH, ClHC(3)=], 138.4, 140.7 [2  C, C(2)S or 

aromatic C], 160.6 (C, CO); HRMS (ES+): Exact mass calculated for C17H17NO3S
35

Cl 

[M+H]
+
 350.0618. Found 350.0617; m/z (ES+) 352.0 {[(C17H16NO3S

37
Cl)+H

+
], 52%}, 350.0 

{[(C17H16NO3S
35

Cl)+H
+
], 100%}. 

 

(Z)-3-Chloro-N-[(1R,2S)-2,3-dihydro-2-hydroxy-1H-inden-1-yl]-2-(Ss/Rs)-

(benzenesulfinyl)acrylamide 26 

This was prepared following the procedure described above for 21 by addition of (Z)-3-

chloro-N-[(1R,2S)-2,3-dihydro-2-hydroxy-1H-inden-1-yl]-2-(phenylthio)acrylamide 17 (0.07 

g, 0.2 mmol) in acetone (8 mL) to Oxone
®
 (0.26 g, 0.4 mmol) in water (4 mL). Following 

stirring at room temperature for 16 h, the crude sulfoxides 26a and 26b were obtained as a 

clear oil and a 1.6:1 mixture of diastereomers. This was purified by column chromatography 

on silica gel using hexane-ethyl acetate 60:40 as eluent to give a 1.1:1 mixture of the 2 

diastereomers 26a and 26b as a clear oil (0.04 g, 46%); [] 20

D  –66.39 (c 0.2 in CHCl3); 

max/cm
1

 (KBr) 3436 (OH), 3231 (NH), 3055 (CH), 2924 (CH), 1650 (CO), 1534 (NH 

bend), 1474 (CN stretch), 1033 (SO); H (300 MHz, CDCl3) 1.83 (1H, br s, OH of 26a and 

26b), 2.93 (0.52H, dd, A of ABX, JAB 16.5, JAX 1.8, one of ArCH2 of 26b), 2.96 (0.48H, dd, 

A of ABX, JAB 16.5, JAX 2.1, one of ArCH2 of 26a), 3.06-3.23 (1H, m, one of ArCH2 of 26a 

and 26b), 4.49 (0.52H, dt, J 8.1, 1.8, CHOH of 26b), 4.63 (0.48H, dt, J 7.8, 2.1, CHOH of 

26a), 5.26-5.47 (1H, m, NHCH of 26a and 26b), 6.59 (0.48H, d, J 7.5, ArH of 26a), 7.02-

7.77 (10H, m, ArH of 26a and 26b), 7.81 [0.52H, s, ClHC(3)= of 26b], 7.82 [0.48H, s, 



ClHC(3)= of 26a], 8.78-9.06 (1H, br m, NH of 26a and 26b); C (75.5 MHz, CDCl3) 39.7, 

39.8* (2  CH2, ArCH2 of 2 diastereomers), 57.6*, 58.3 (2  CH, NHCH of 2 diastereomers), 

73.6*, 73.7 (2  CH, CHOH of 2 diastereomers), 124.2*, 124.3, 124.5*, 124.6, 125.3*, 125.4, 

126.9*, 127.4, 128.2*, 128.4, 129.67*, 129.70, 131.6*, 131.8 (14  CH, aromatic CH of 2 

diastereomers), 137.5, 138.0* [2  CH, ClHC(3)= of 2 diastereomers], 139.0*, 139.7, 139.8, 

139.9*, 140.9*, 141.1 [6  C, C(2)S & aromatic C of 2 diastereomers], 160.9*, 161.0 (2  C, 

CO of 2 diastereomers); HRMS (ES+): Exact mass calculated for C18H17NO3S
35

Cl [M+H]
+
 

362.0618. Found 362.0609; m/z (ES+) 364.0 {[(C18H17NO3S
37

Cl)+H
+
], 40%}, 362.0 

{[(C18H17NO3S
35

Cl)+H
+
], 100%}. 

*Signals for 26a 

A second fraction containing the more polar major diastereomer 26a was also isolated (0.03 

g, 43%) and contained ~4% of 26b; [] 20

D  99.28 (c 0.1 in CHCl3); max/cm
1

 (KBr) 3414 

(OH), 3247 (NH), 3051 (CH), 2922 (CH), 1654 (CO), 1527 (NH bend), 1475 (CN stretch), 

1034 (SO); H (300 MHz, CDCl3) 2.24 (1H, d, J 5.4, OH), 2.97 (1H, dd, A of ABX, JAB 16.5, 

JAX 2.1, one of ArCH2), 3.06-3.23 (1H, dd, B of ABX, JAB 16.5, JAX 5.1, one of ArCH2), 4.65 

(1H, ddd, J 10.2, 5.1, 2.1, CHOH), 5.36 (1H, dd, J 8.1, 5,1, NHCH), 6.59 (1H, d, J 7.5, ArH), 

7.03-7.34 (4H, m, ArH), 7.43-7.63 (5H, m, ArH), 7.83 [1H, s, ClHC(3)=], 8.90 (1H, br d, J 

8.1, NH); C (75.5 MHz, CDCl3) 39.8 (CH2, ArCH2), 57.6 (CH, NHCH), 73.6 (CH, CHOH), 

124.2, 124.5, 125.3, 126.9, 128.2, 129.7, 131.6 (7  CH, 7  aromatic CH), 138.1 [CH, 

ClHC(3)=], 138.9, 139.9, 140.9 [3  C, C(2)S & aromatic C], 160.9 (C, CO); HRMS (ES+): 

Exact mass calculated for C18H17NO3S
35

Cl [M+H]
+
 362.0618. Found 362.0605; m/z (ES+) 

364.0 {[(C18H17NO3S
37

Cl)+H
+
], 40%}, 362.0 {[(C18H17NO3S

35
Cl)+H

+
], 100%}. 

 

(Z)-2-(Ss/Rs)-(Benzylsulfinyl)-3-chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-

yl]acrylamide 24 

This was prepared following the procedure described above for 21 by addition of (Z)-2-

(benzylthio)-3-chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]acrylamide 13 (0.13 g, 0.4 

mmol) in acetone (8 mL) to Oxone
®

 (0.44 g, 0.7 mmol) in water (5 mL). Following stirring at 

room temperature for 16 h, the crude sulfoxides 24a and 24b were obtained as a clear oil 

(0.11 g, 85%) and a 1.1 : 1 mixture of diastereomers. As the 
1
H NMR spectrum of the crude 



product was very clean, no purification was necessary; [] 20

D  –1.40 (c 0.3 in CHCl3); 

max/cm
1

 (film) 3412 (OH), 3253 (NH), 3061 (CH), 2926 (CH), 1655 (CO), 1571, 1455 (CN 

stretch), 1031; H (300 MHz, CDCl3) 2.44 (1H, br s, OH of 24a and 24b), 2.73 (0.48H, dd, A 

of ABX, JAX 14.1, JAB 9.3, one of CH2Ph of 24b), 2.82 (1.04H, d, J 7.2, CH2Ph of 24a) 2.96 

(0.48H, dd, B of ABX, JAX 14.1, JAB 9.3, one of CH2Ph of 24b), 3.43 (0.48H, dd, A of ABX, 

JBX 11.4, JAB 5.7, one of CH2OH of 24b), 3.52 (0.48H, dd, B of ABX, JBX 11.4, JAB 3.9, one 

of CH2OH of 24b), 3.62 (0.52H, dd, A of ABX, JBX 11.1, JAB 5.4, one of CH2OH of 24a), 

3.66 (0.48H, d, A of AB system, JAB 12.9, one of SCH2 of 24b), 3.72 (0.52H, dd, B of ABX, 

JBX 11.1, JAB 3.9, one of CH2OH of 24a), 3.99 (0.48H, d, B of AB system, JAB 12.9, one of 

SCH2 of 24b), 4.07-4.16 (0.48H, m, NHCH of 24b), 4.18 (0.52H, d, A of AB system, JAB 

12.9, one of SCH2 of 24a), 4.26 (0.52H, d, B of AB system, JAB 12.9, one of SCH2 of 24a), 

4.32-4.46 (0.52H, m, NHCH of 24a), 6.99-7.46 (10H, m, ArH of 24a and 24b), 7.58 [0.52H, 

s, ClHC(3)= of 24a], 7.60 [0.48H, s, ClHC(3)= of 24b], 8.47 (0.48H, br d, J 7.5, NH of 24b), 

8.61 (0.52H, br d, J 7.5, NH of 24a); C (75.5 MHz, CDCl3) 36.8, 37.0* (2  CH2, CH2Ph of 

2 diastereomers), 53.1*, 53.7 (2  CH, NHCH of 2 diastereomers), 58.1, 58.5* (2  CH2, 

SCH2 of 2 diastereomers), 63.9, 64.6 (2  CH2, CH2OH of 2 diastereomers), 126.7*, 126.8 (2 

 CH, aromatic CH), 128.1, 128.3 (2  C, aromatic C), 128.6, 128.7, 128.8, 128.9, 129.0, 

129.3, 130.5, 130.8 (8  CH, aromatic CH), 134.8, 135.3 [2  C, aromatic C or C(2)S], 136.5 

(CH, aromatic CH), 137.5 (C, aromatic C), 137.79*, 137.81 [2  CH, ClHC(3)= of 2 

diastereomers], 161.1, 161.3* (2  C, CO of 2 diastereomers) - all of the aromatic signals 

were not resolved; HRMS (ES+): Exact mass calculated for C19H21NO3S
35

Cl [M+H]
+
 

378.0931. Found 378.0917; m/z (ES+) 380.0 {[(C19H20NO3S
37

Cl)+H
+
], 42%}, 378.0 

{[(C19H20NO3S
35

Cl)+H
+
], 100%}. 

*Signals for 24a (major). 

 

(Z)-3-Chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]-2-(Ss/Rs)-

(benzenesulfinyl)acrylamide 25 

This was prepared following the procedure described above for 21 by addition of (Z)-3-

chloro-N-[(S)-1-hydroxy-3-phenylpropan-2-yl]-2-(phenylthio)acrylamide 18 (0.22 g, 0.6 

mmol) in acetone (15 mL) to Oxone
®

 (0.78 g, 1.3 mmol) in water (5 mL). Following stirring 

at room temperature for 16 h, the crude sulfoxides 25a and 25b were obtained as a white 



solid (0.22 g, 95%) and a 1.1 : 1 mixture of diastereomers. As the 
1
H NMR spectrum of the 

crude product was very clean, purification was not required; [] 20

D  –30.74 (c 0.1 in CHCl3); 

max/cm
1

 (KBr) 3401 (OH), 3231 (NH), 3045 (CH), 2922 (CH), 1643 (CO), 1541 (NH 

bend), 1444 (CN stretch), 1032 (SO); H (300 MHz, CDCl3) 1.74 (0.52H, br s, OH of 25a), 

2.45 (0.48H, br s, OH of 25b), 2.69 (0.48H, dd, A of ABX, JAB 14.1, JAX 8.1, one of CH2Ph 

of 25b), 2.82-2.94 (1.52H, m, CH2Ph of 25a and one of CH2Ph of 25b), 3.42 (0.48H, dd, A of 

ABX, JAB 11.1, JAX 4.8, one of CH2OH of 25b), 3.47 (0.48H, dd, B of ABX, JAB 11.1, JBX 

4.8, one of CH2OH of 25b), 3.62 (0.52H, dd, A of ABX, JAB 11.1, JAX 4.8, one of CH2OH of 

25a), 3.70 (0.52H, dd, A of ABX, JAB 11.1, JAX 3.6, one of CH2OH of 25a), 4.09-4.31 (1H, 

m, NHCH of 25a and 25b), 7.11-7.56 (9H, m, ArH of 25a and 25b), 7.59-7.66 (1H, m, ArH 

of 25a and 25b), 7.68 [0.48H, s, ClHC(3)= of 25b], 7.71 [0.52H, s, ClHC(3)= of 25a], 8.58 

(0.48H, br d, J 7.2, NH of 25b), 8.73 (0.52H, br d, J 7.8, NH of 25a); C (75.5 MHz, CDCl3) 

36.9, 37.0* (2  CH2, CH2Ph of 2 diastereomers), 53.2*, 53.5 (2  CH, NHCH of 2 

diastereomers), 63.5, 64.3* (2  CH2, CH2OH of 2 diastereomers), 124.2, 124.3*, 126.65*, 

126.71, 128.60, 128.62, 129.1, 129.3, 129.7, 131.76, 131.80 [11  CH (11 signals for 12 

carbons), aromatic CH of 2 diastereomers], 137.32 [C, aromatic C or C(2)S of 1 

diastereomer], 137.3*, 137.4 [2  CH, ClHC(3)= of 2 diastereomers], 137.5, 138.3*, 138.7, 

140.9*, 141.1 [5  C, C(2)S & aromatic C of 2 diastereomers], 160.6, 161.0* (2  C, CO of 2 

diastereomers); HRMS (ES+): Exact mass calculated for C18H19NO3S
35

Cl [M+H]
+
 364.0774. 

Found 364.0757; m/z (ES+) 366.0 {[(C18H18NO3S
37

Cl)+H
+
], 38%}, 364.0 

{[(C18H18NO3S
35

Cl)+H
+
], 100%}. 

*Signals for 25a (major). 

 

(Z)-2-(Ss/Rs)-(Benzylsulfinyl)-3-chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-

yl]acrylamide 27 

This was prepared following the procedure described above for 21 by addition of (Z)-2-

(benzylthio)-3-chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]acrylamide 14 (0.12 g, 0.4 

mmol) in acetone (10 mL) to Oxone
®

 (0.44 g, 0.7 mmol) in water (5 mL). Following stirring 

at room temperature for 16 h, the crude sulfoxides 27a and 27b were obtained as a clear oil 

and a 3.3 : 1 mixture of diastereomers. Following purification by column chromatography on 

silica gel using hexane-ethyl acetate 60:40 as eluent, the less polar major diastereomer 27a 



was isolated as a clear oil (0.08 g, 64%), containing ~6% of 27b; [] 20

D  193.70 (c 0.2 in 

CHCl3); max/cm
1

 (film) 3429 (OH), 3247 (NH), 3064 (CH), 2924 (CH), 1668 (CO), 1650, 

1580, 1456 (CN stretch), 1021 (SO); H (400 MHz, CDCl3) 0.92 [9H, s, C(CH3)3], 2.24 (1H, 

t, J 6.0, OH), 3.23-3.35 (1H, m, NHCH), 3.73-3.92 (2H, m, CH2OH), 4.32 (1H, d, A of AB 

system, JAB 12.8, one of SCH2), 4.39 (1H, d, B of AB system, JAB 12.8, one of SCH2), 7.21-

7.50 (5H, m, ArH), 7.68 [1H, s, ClHC(3)=], 8.49 (1H, br d, J 8.0, NH); C (75.5 MHz, 

CDCl3) 26.9 [CH3, C(CH3)3], 33.3 [C, C(CH3)3], 58.0 (CH2, SCH2), 61.0 (CH, NHCH), 63.4 

(CH2, CH2OH), 128.4 [C, C(2)S or aromatic C], 128.9, 129.0, 130.8 (3  CH, 3  aromatic 

CH), 135.3 [C, C(2)S or aromatic C], 136.4 [CH, ClHC(3)=], 162.2 (C, CO); HRMS (ES+): 

Exact mass calculated for C16H23NO3S
35

Cl [M+H]
+
 344.1087. Found 344.1088; m/z (ES+) 

346.0 {[(C16H22NO3S
37

Cl)+H
+
], 48%}, 344.0 {[(C16H22NO3S

35
Cl)+H

+
], 100%}. 

The more polar minor diastereomer 27b was isolated as a white solid (0.03 g, 21%), 

containing ~21% of 27a; [] 20

D  –123.50 (c 0.12 in CHCl3); max/cm
1

 (KBr) 3434 (OH), 3271 

(NH), 3060 (CH), 2966 (CH), 1665 (CO), 1574, 1445 (CN stretch), 1032 (SO); H (400 MHz, 

CDCl3) 0.99 [9H, s, C(CH3)3], 2.75 (1H, br t, OH), 3.51-3.65 (1H, m, NHCH), 3.84-3.98 (2H, 

m, CH2OH), 4.21 (1H, d, A of AB system, JAB 12.4, one of SCH2), 4.39 (1H, d, B of AB 

system, JAB 12.8, one of SCH2), 7.22-7.47 (5H, m, ArH), 7.72 [1H, s, ClHC(3)=], 8.78 (1H, 

br d, J 7.6, NH); C (75.5 MHz, CDCl3) 27.1 [CH3, C(CH3)3], 33.5 [C, C(CH3)3], 59.1 (CH2, 

SCH2), 61.4 (CH, NHCH), 63.7 (CH2, CH2OH), 129.1, 130.5 [2  CH (2 signals for 3  CH), 

2  aromatic CH], 135.3, 136.4 [2  C, C(2)S & aromatic C], 137.2 [CH, ClHC(3)=], 162.4 

(C, CO); HRMS (ES+): Exact mass calculated for C16H23NO3S
35

Cl [M+H]
+
 344.1087. Found 

344.1071; m/z (ES+) 346.0 {[(C16H22NO3S
37

Cl)+H
+
], 44%}, 344.0 {[(C16H22NO3S

35
Cl)+H

+
], 

100%}. 

 

(Z)-3-Chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]-2-(Ss/Rs)-

(benzenesulfinyl)acrylamide 28  

This was prepared following the procedure described above for 21 by addition of (Z)-3-

chloro-N-[(S)-1-hydroxy-3,3-dimethylbutan-2-yl]-2-(phenylthio)acrylamide 19 (0.25 g, 0.8 

mmol) in acetone (20 mL) to Oxone
®

 (0.96 g, 1.6 mmol) in water (5 mL). Following stirring 

at room temperature for 16 h, the crude sulfoxides 28a and 28b were obtained as a clear oil 

and a 2.8:1 mixture of diastereomers. This was purified by column chromatography on silica 



gel using hexane-ethyl acetate 60:40 as eluent to give the less polar minor diastereomer 28b 

as a clear oil (0.02 g, 10%); [] 20

D  127.20 (c 0.1 in CHCl3); max/cm
1

 (KBr) 3428 (OH), 3264 

(NH), 3060 (CH), 2963 (CH), 1667 (CO), 1573, 1547 (NH bend), 1476 (CN stretch), 1032 

(SO); H (400 MHz, CDCl3) 0.98 [9H, s, C(CH3)3], 1.66 (1H, dd, J 7.2, 4.8, OH), 3.36 (1H, 

ddd, J 11.4, 8.4, 4.8, NHCH), 3.68-3.84 (2H, m, CH2OH), 7.48-7.60 (3H, m, ArH), 7.67-7.74 

(2H, m, ArH), 7.78 [1H, s, ClHC(3)=], 8.58 (1H, br d, J 8.4, NH); C (75.5 MHz, CDCl3) 

26.9 [C(CH3)3], 33.5 [C(CH3)3], 60.8 (NHCH), 63.3 (CH2OH), 124.5, 129.8, 131.9 (3  

aromatic CH), 137.5 [ClHC(3)=], 138.6, 141.3 [C(2)S & aromatic C], 161.6 (CO); HRMS 

(ES+): Exact mass calculated for C15H21NO3S
35

Cl [M+H]
+
 330.0931. Found 330.0935; m/z 

(ES+) 332.0 {[(C15H20NO3S
37

Cl)+H
+
], 46%}, 330.0 {[(C15H20NO3S

35
Cl)+H

+
], 100%}. 

The more polar major diastereomer 28a was isolated as a clear oil (0.05 g, 20%); [] 20

D  –

109.30 (c 0.2 in CHCl3); max/cm
1

 (KBr) 3412 (OH), 3277 (NH), 3060 (CH), 2962 (CH), 

1663 (CO), 1545 (NH bend), 1476 (CN stretch), 1052 (SO); H (400 MHz, CDCl3) 0.75 [9H, 

s, C(CH3)3], 2.49 (1H, t, J 4.8, OH), 3.51-3.62 (1H, m, NHCH), 3.78-3.89 (2H, m, CH2OH), 

7.47-7.60 (3H, m, ArH), 7.62-7.75 (2H, m, ArH), 7.90 [1H, s, ClHC(3)=], 8.39 (1H, br d, J 

8.4, NH); C (75.5 MHz, CDCl3) 26.7 [CH3, C(CH3)3], 33.4 [C, C(CH3)3], 60.4 (CH, NHCH), 

62.9 (CH2, CH2OH), 124.4, 129.7, 131.6 (3  CH, 3  aromatic CH), 138.3 [C, C(2)S or 

aromatic C], 138.7 [CH, ClHC(3)=], 141.0 [C, C(2)S or aromatic C], 161.8 (C, CO); HRMS 

(ES+): Exact mass calculated for C15H21NO3S
35

Cl [M+H]
+
 330.0931. Found 330.0935; m/z 

(ES+) 332.0 {[(C15H20NO3S
37

Cl)+H
+
], 62%}, 330.0 {[(C15H20NO3S

35
Cl)+H

+
], 100%}. 

 

(Z)-3-Chloro-N-[(R)-3,3-dimethylbutan-2-yl]-2-(Ss/Rs)-(benzenesulfinyl)acrylamide 29 

This was prepared following the procedure described above for 21 by addition of (Z)-3-

chloro-N-[(R)-3,3-dimethylbutan-2-yl]-2-(phenylthio)acrylamide 20 (0.18 g, 0.6 mmol) in 

acetone (10 mL) to Oxone
®
 (0.75 g, 1.2 mmol) in water (5 mL). Following stirring at room 

temperature for 16 h, the crude sulfoxides 29a and 29b were obtained as a clear oil (0.16 g, 

85%) and a 1.1 : 1 mixture of diastereomers. As the 
1
H NMR spectrum of the crude product 

was very clean, no purification was necessary; [] 20

D  –52.10 (c 0.1 in CHCl3); max/cm
1

 

(KBr) 3269 (NH), 3060 (CH), 2966 (CH), 1669 (CO), 1549 (NH bend), 1476 (CN stretch), 

1032 (SO); H (400 MHz, CDCl3) 0.68 [4.68H, s, C(CH3)3 of 29a], 0.86 (1.56H, d, J 6.8, 



CHCH3 of 29b), 0.93 [5.32H, s, C(CH3)3 of 29b], 1.07 (1.44H, d, J 6.8, CHCH3 of 29a), 

3.73-3.88 (1H, m, NHCH of 29a and 29b), 7.46-7.58 (3H, m, ArH of 29a and 29b), 7.60-7.68 

(2H, m, ArH of 29a and 29b), 7.73 [0.48H, s, ClHC(3)= of 29b], 7.86 [0.52H, s, ClHC(3)= of 

29a], 8.15 (0.52H, br d, J 9.6, NH of 29a), 8.37 (0.48H, br d, J 9.2, NH of 29b); C (75.5 

MHz, CDCl3) 15.67, 15.71 (2  CH3, CHCH3 of 2 diastereomers), 26.0*, 26.2 [2  CH3, 

C(CH3)3 of 2 diastereomers], 34.0*, 34.1 [2  C, C(CH3)3 of 2 diastereomers], 53.4*, 53.6 (2 

 CH, NHCH of 2 diastereomers), 124.1*, 124.3, 129.5, 129.6*, 131.4*, 131.6 (6  CH, 

aromatic CH of 2 diastereomers), 137.0, 138.0* [2  CH, ClHC(3)= of 2 diastereomers], 

138.6*, 138.9, 141.1, 141.2* [4  C, C(2)S & aromatic C of 2 diastereomers], 159.8, 160.0* 

(2  C, CO of 2 diastereomers); HRMS (ES+): Exact mass calculated for C15H21NO2S
35

Cl 

[M+H]
+
 314.0982. Found 314.0974; m/z (ES+) 316.0 {[(C15H20NO2S

37
Cl)+H

+
], 66%}, 314.0 

{[(C15H20NO2S
35

Cl)+H
+
], 100%}. 

*Signals for 29a (major). 
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