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Abstract  

The functional properties of nutritional dairy powders are key in determining the ease 

at which they can be stored, handled and further applied in formulations or on direct 

consumer application. Powder agglomeration is a unit operation employed during the 

spray drying process, in order to obtain a greater control of the resulting powder’s 

physical, bulk handling and functional properties. The studies presented in this thesis 

explore the importance of maintaining agglomerate integrity on powder handling (i.e., 

powder conveying) post-spray drying, while presenting novel research findings in the 

application of agglomeration for the modification of commercially important, high-

protein content dairy powders (e.g., milk protein isolate; MPI). Initially, a custom 

fabricated pressure dispersion rig was utilised to achieve breakdown of agglomerated 

powder particles, similar to that occurring in industrial powder conveying systems 

(i.e., lean phase conveying). Analysis of the resulting powders showed that the 

significant alterations in both powder physical and bulk properties (i.e., decreased 

particle size, increased bulk density and increased surface free fat concentrations), 

occurring on agglomerate breakdown, significantly impaired the functionality (i.e., 

flowability and rehydration) of a range of commercially agglomerated nutritional 

dairy powders (i.e., whey protein concentrate, fat-filled milk powder and an infant 

formula powder). In addition, the agglomeration of MPI was researched, focusing on 

the utilisation of novel protein-based binders to achieve agglomeration. The results 

demonstrated that the use of novel protein-based binder solutions achieved a greater 

extent of agglomeration in comparison to more traditional binder solutions (i.e., water 

or lactose), ultimately improving the flowability and wetting properties of MPI 

powders. The conclusions of this thesis demonstrate the importance of maintaining 

the mechanical integrity of agglomerated dairy powders and the potential for the 

further application of agglomeration using novel protein-based binder solutions to 

tailor the functionality of high-protein dairy powders, such as MPI. 
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1.1 Background 

The complex composition of milk, which makes it a key source of nutrition, also 

imparts numerous technological functionalities which result in the inclusion of milk 

and milk-derived ingredients in various formulated food products, such as nutritional 

beverages, cheese, bakery and dessert products (Haug et al., 2007; Hazlett et al., 2018). 

To economically store, transport and apply the volumes of milk solids required for 

these various applications, liquid milk is routinely dehydrated into powder form using 

spray drying, to increase shelf life and reduce the space required for, and costs 

associated with, storage and transport (Pisecky, 2012). The global dairy powder 

market reached a volume of 9.8 million tons in 2017 and has been forecasted to grow 

strongly to reach 13 million tons by 2023 (IMARC, 2017). 

The continual growth of the dairy powder market has led to the development and 

application of numerous fractionation, enrichment and processing technologies which 

allow for the production of tailored dairy ingredient powders with modified 

composition and functional properties, thereby increasing the market opportunities 

and commercial values (Schuck, 2014). These added-value powders often have quite 

different compositional profiles, including for example, the high protein content of 

dairy protein concentrates and isolates and the high fat content in ingredient powders 

such as fat-filled and infant formula powders.  

Dairy powders with high contents of protein or fat often exhibit characteristic powder 

physical and bulk handling properties (e.g., cohesiveness), which present challenges 

for the handling, storage and application of such powders. Poor powder flowability 

can significantly limit the ease at which dairy ingredient powders are stored in silos, 

conveyed through pipes, and applied during further formulation (Barone et al., 2019; 
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Crowley et al., 2014; Fitzpatrick et al., 2004). One approach to improve the flowability 

of powders is to use agglomeration to achieve powder particle size enlargement. 

Agglomeration is a unit operation often applied  during the production of dairy 

powders, whereby numerous individual powder particles are combined into larger 

cluster-like structures, achieving an increase in mean particle size (Cuq et al., 2013). 

Commodity dairy powders, such as skim and whole milk powders are traditionally 

agglomerated to modify and control the resulting functional properties of these 

powders. Newer generation, high-value nutritional dairy ingredient powders, such as 

milk protein concentrates and isolates, are increasingly being agglomerated to increase 

the ease of storage, handling and application across various applications. However, 

limited scientific knowledge is currently available surrounding the design, control and 

optimisation of agglomeration processes for high-value dairy ingredient powders, and 

an increasing scientific knowledge gap exists around the mechanical integrity of such 

agglomerated variants of higher-value dairy ingredient powders.  

 

1.2 Research aims and objectives  

1.2.1 Aims 

This thesis aims to develop a greater scientific understanding of the agglomeration of 

a range of high-value nutritional dairy powders and to determine the effects of 

agglomeration on powder physical, bulk handling and mechanical integrity properties. 

 

1.2.2 Objectives  

The objectives of this thesis were to: 
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1. Systematically assess the causes of poor flowability in high-protein dairy powders, 

in advance of critically evaluating selected options for improving flowability of 

high-protein dairy powders (Chapter 2). 

2. Determine the mechanical integrity of selected commercially important, 

agglomerated nutritional dairy powders while systematically studying the causes 

and effects of agglomerate breakage on the resulting powder physical, bulk 

handling and rehydration properties (Chapter 3). 

 

3. To develop and apply a process for agglomeration of milk protein isolate powders 

using novel protein-based binder solutions and determine the effects of binder type 

on key quality attributes of resultant powders (Chapter 4). 
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2.1 Abstract  

Challenges are commonly encountered in the bulk handling and application of high-

protein dairy powders, and are strongly influenced by their poor flowability. Powder 

flowability can be defined as the ability of a powder to flow under set environmental 

or processing conditions and is ultimately determined by the type and extent of 

interparticle interactions occurring in the bulk powder (e.g., van der Waals and 

electrostatic interactions). High-protein powders are particularly susceptible to the 

occurrence of interparticle interactions, resulting in increased cohesive forces being 

experienced in the bulk powder, thereby reducing powder flowability. This review 

summarises the major factors responsible for poor flowability in high-protein dairy 

powders and critiques traditional (e.g., agglomeration) and some of the more relevant 

novel approaches (e.g., dry- and wet-coating and roller compaction) available for 

improving the flowability of powders post spray drying. This review material will be 

of considerable interest to dairy scientists, technologists and engineers challenged with 

understanding, predicting and controlling the bulk handling and flowability of high-

value dairy protein powders.
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2.2 Introduction  

Dairy powders are typically produced by dehydrating a liquid milk stream via a 

combination of evaporation and spray drying technologies in order to increase shelf 

life and to allow for easier and more economical handling, transport, storage and 

further application of large volumes of milk solids (Schuck, 2014). As of 2017, the 

global milk powder market had reached a volume of 9.8 million tons and global market 

forecasts have predicted this volume will continually increase to approximately 13 

million tons by 2023. The continued commercial growth of dairy powders is attributed 

to their numerous applications, mostly, but not limited to, the food and beverage 

industries (IMARC, 2017). 

Technological advancements have allowed for selective fractionation and 

enrichment of dairy proteins (caseins and whey proteins), mainly through centrifugal 

separation and membrane processing (microfiltration, ultrafiltration, nanofiltration 

and reverse osmosis) of milk streams prior to spray drying. The concentration of dairy 

proteins, and subsequent depletion of milk serum phase (water, lactose and minerals) 

and fat constituents can yield a wide range of dairy protein ingredients (Figure 2.1). 

These ingredients can be categorised as either protein concentrates (35–89% protein), 

e.g., milk protein concentrates (MPC), whey protein concentrates (WPC), micellar 

casein concentrates (MCC), or as the respective protein isolates (≥90% protein), i.e., 

milk protein isolates (MPI), whey protein isolates (WPI) and micellar casein isolates 

(MCI) (Mulvihill and Ennis, 2003; Schuck, 2009; Schuck et al., 2016). For the purpose 

of this review, protein isolates (≥90% protein, low fat and lactose levels) will be the 

main dairy protein ingredient powder type in focus for further discussion.  

High-protein dairy powders have notable nutritional and functional properties, 

leading to their use in high value commercial applications such as infant and sports 
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nutrition products (Hambræus and Lönnerdal, 2003; Hazlett et al., 2018; Kinsella and 

Morr, 1984; O’Regan et al., 2009). The value of the global dairy protein ingredient 

market is expected to reach 58 billion US dollars by 2022. The strong growth of the 

protein-enriched dairy ingredient market has been driven strongly by the recent 

consumer demand for high-protein label declarations on a wide range of food and 

beverage products (e.g., breakfast bars, yoghurts and coffee drinks). In the UK market 

alone, the appearance of “high-protein” claims has increased by ~500% between 2010 

and 2015 (Bord Bia, 2018; Markets and Markets, 2018).  

 

 

Figure 2.1 Fractionation and concentration processes yielding a range of dried dairy powder 

ingredients (grey boxes) from a liquid whole milk stream.VE: vacuum evaporation, IE: ion 

exchange, ED: electrodialysis, MF: microfiltration, NF: nanofiltration, UF: ultrafiltration, DF: 

diafiltration, MFat: microfiltrate. WPC/I: whey protein concentrate/isolate, MPC/I: milk 

protein concentrate/isolate, MCC/I: micellar casein concentrate/isolate (Schuck, 2013b). 
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The application of high-protein dairy powders requires these powders to be 

stored, in and discharged from, large silos, transported through pipes (pneumatic 

conveying) and further processed (e.g., rehydrated, dry blended) in an efficient manner 

in order to fully harness the beneficial nutritional and functional properties of the 

powders. The characteristics of these powders i.e., at particle (e.g., particle size, shape 

and density, surface energy and roughness) and bulk (e.g., cohesive strength, bulk 

density and interstitial air) levels will determine at what level of ease a powder can be 

handled and processed for application in varied formulations; this notably includes 

powder flowability (Kim et al., 2005). 

Previously, powder flowability has simply been defined as “the ability of a 

powder to flow” (Li et al., 2004; Santomaso et al., 2003; Schuck, 2013). This 

definition suggests that flowability is an inherent powder property (i.e., a powder will 

either flow or not); however, literature has shown that the ability of a powder to flow 

is ultimately determined by the extent at which interparticle interactions (e.g., van der 

Waals, electrostatic, liquid/solid bridging) occur, which are heavily influenced by a 

combination of: 

• Powder bulk composition (e.g., fat, protein and moisture contents) 

• Powder physical properties (e.g., particle size, shape and distribution, bulk 

density) 

• Environmental and processing conditions (e.g., temperature, pressure and 

relative humidity). 

Studies have shown that even minor changes to the above factors have the ability 

to cause a marked change in powder flowability (Crowley et al., 2014; Iqbal and 

Fitzpatrick, 2006; Teunou and Fitzpatrick, 1999). Therefore, a more suitable definition 

of powder flowability is proposed here as “the ability of a powder to flow under set 
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environmental or processing conditions”. High-protein dairy powders, such as 

isolates, are associated with poor flowability due to their highly cohesive nature, 

making the handling and further application of these powders, challenging for 

manufactures and end-users alike.  

On silo storage, cohesive powders, such as dairy protein isolates, have the ability 

to form structures such as ratholes or arches, within the storage hopper, that may act 

to alter, limit or fully inhibit the flow patterns and discharge of these powders from 

silos (Figure 2.2). Ratholes occur when powder, interacting with surrounding silo 

walls and other powder particles, becomes stationary and thus creates areas of no-flow 

within the silo. On the formation of a rathole, powder will continue to flow through a 

central channel and discharge, although limited, is still possible. The discharge of 

powder from a silo is completely inhibited when stable arches are formed. Stable 

arches (also referred to as bridges) may form at the outlet of a hopper when the 

cohesive strength of a powder is sufficiently high to fully inhibit powder flow. This 

creates a non-flow regime whereby a discharge aid is needed to re-initiate powder flow 

from the silo. Routinely, high mechanical force is applied to the outlet of a hopper to 

encourage discharge of cohesive powders, normally leading to visible damage to the 

outside of the hopper outlet region (Iqbal and Fitzpatrick, 2006; Miccio et al., 2013; 

Schulze, 2008).  

For efficient handling, powders must be easily conveyed between two points, 

even over long distances within a plant. Highly cohesive powders, such as dairy 

protein isolates, have the ability to build up at compact zones of conveying lines such 

as elbow bends (Figure 2.2). At these points, excessive powder build-up may cause 

blockages of powder conveying lines leading to process down times (Deng and 

Bradley, 2016; Klinzing, 2010; Wang et al., 2000).  



Chapter 2: Literature review  

    15 

Application of dairy protein isolate powders at industrial scale commonly 

involves rehydration of these powder ingredients in order to utilise their well-

described and often tailored functional (e.g., gelation and surface activity) and 

nutritional (e.g., delivery of essential amino acids and bioactivity) properties. Efficient 

rehydration of dairy powders includes the wetting of powder particles, followed by 

their dispersion and solubilisation. Cohesive powders, such as dairy protein isolates, 

are prone to form clumps on initial wetting during their rehydration. The formation of 

these clumps may be attributed to their poor powder flowability as large clusters of 

cohesive powder particles make initial contact with the surface of the liquid. The 

subsequent wetting of these clusters occurs only at the surface, forming a gel layer 

which retards water from penetrating into the clumps of powder particles (Barbosa-

Cánovas, 2005; Fitzpatrick et al., 2016, 2017). Laboratory-scale studies have 

confirmed that clump formation impedes further stages of rehydration (dispersibility 

and solubility) from occurring and therefore prevents the efficient rehydration of dairy 

protein isolates (Figure 2.2). 

All the challenges outlined above are faced by industries that work with high-

protein dairy powders and are, in part, caused by poor powder flowability (Figure 2.2) 

(Bouvier et al., 2013; Crowley et al., 2014; Schuck, 2011). The purpose of this review 

is to comprehensively describe why high-protein dairy powders exhibit poor 

flowability, as well as to outline the traditional, and to present novel, techniques that 

are, or may possibly be, utilised by the food industries to improve the flowability of 

these powders post-spray drying.  
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2.3 Causes of poor flowability of high-protein dairy powders 

Ultimately, a powder will exhibit poor flowability when the combined cohesive 

forces between particles (interparticle interactions), and hence the cohesive force of 

the bulk powder, are greater than the force which is encouraging movement (e.g., 

gravity for silo discharge and compressed air pressure for pneumatic transport). The 

types and extent of interparticle interactions occurring are dependent on (i) powder 

bulk composition, (ii) powder physical properties and (iii) environmental and 

processing conditions experienced by that powder. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b c 

a b c 

Figure 2.2 Schematic representations of challenges arising on the storage (ratholing during silo 

storage - a), handling (build up on powder conveying line - b) and applications of high-protein 

dairy powders requiring rehydration (powder clumping on wetting - c). 
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2.3.1 Powder bulk composition 

The extent of interparticle interactions occurring in dairy powders is strongly 

influenced by these powders bulk composition (i.e., the constituents making up a 

powder particle), most notably the concentrations of fat (Fitzpatrick et al., 2004; Silva 

and O’Mahony, 2017) and protein (Barone et al., 2019). Bulk powder composition is 

ultimately determined by the combination of fractionation and enrichment processes 

utilised in the manufacture of these ingredients, pre-spray drying (Section 2.2). For 

high-protein dairy powders, unit operations such as membrane filtration are utilised to 

increase the proportion of protein in the bulk composition of the resulting powder 

(Figure 2.1, Table 2.1). A study by Crowley et al. (2014) showed that a significant 

decrease in powder flowability occurred as the bulk protein content increased for MPC 

powders with protein content ranging from 35 – 90%. The reduced flowability was 

attributed to an increased compressibility index on increasing protein content, as the 

powders with higher protein content could pack together into closer arrangements, 

thereby increasing the extent of interparticle interactions and cohesion. 

 

2.3.2 Powder particle and bulk physical properties 

The physical properties of a powder have a large effect on the number and 

intensity of interparticle interactions occurring between powder particles. These 

include particle (e.g., size and shape), surface (e.g., area, roughness and energy) and 

bulk (e.g., density, size distribution) properties (Ghoroi et al., 2013; Hou and Sun, 

2008; Kaerger et al., 2004). These properties are mostly determined by the unit 

operations and processing parameters utilised during the production of a powder; of 

example, during powder spray drying, parameters such as atomisation pressure, 

atomiser type or feed viscosity can be controlled and used to form powders with very 
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different physical properties, leading to greatly different flowability performance 

(Maas et al., 2011; Nikolova et al., 2015; Pisecky, 2012). 

High-protein dairy powders usually have smooth surfaced and spherical primary 

particles, of mean particle diameters less than 100 µm (Figure 2.3, Table 2.1). This 

results in a bulk powder in which particles can pack together tightly due to their 

uniform and spherical size and shape distributions, respectively. Also attributable to 

the small particle sizes is the large surface area per unit mass of powder (Table 2.1) 

(Crowley et al., 2014; O’Sullivan et al., 2017; Wu et al., 2019). Ultimately, these 

physical properties allow for many contact points between neighbouring powder 

particles, increasing the propensity for interparticle interactions and resulting in strong 

cohesive forces in the bulk powder, thereby reducing the overall powder flowability. 

 

 

 

 

Figure 2.3 Scanning electron micrographs (magnifications- X 250 and X 2500, scale bars of 

100 m and 10 m included) of a representative milk protein isolate powder. 
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a Dv10 - Particle size below which 10% of material volume exists 
b Dv50 - Particle size below which 50% of material volume exists– median 
c Dv90 - Particle size below which 90% of material volume exists 
d Sphericity - Unitless value representing sphericity of a particle (1- perfect sphere)  

 

2.3.3 Environmental and processing conditions  

The moisture content (and relative humidity) of the environment surrounding a 

high-protein dairy powder will impact the nature and extent of interparticle 

interactions occurring in the bulk powder. Studies have shown that at high relative 

humidity, the moisture surrounding powder particles condenses at the contact points 

and thus, through capillary action, creates a liquid bridge (Table 2.2). The reduction 

of flowability through liquid bridge formation is prominent in powders containing 

large amounts of hygroscopic materials (e.g., carbohydrates). Dairy protein isolates 

tend to contain low proportions of lactose (and other carbohydrates) and thus, a very 

high relative humidity (~ 80% RH) is needed in order to significantly reduce their 

Table 2.1 Measured values for composition, particle and bulk properties of a representative 

milk protein isolate powder. 

Composition 

 

 

 

 

 

Physical properties  

 

 

 

 

 

 

 

Bulk properties  

Protein (%) 

Carbohydrate (%) 

Fat (%) 

Moisture (%) 

Ash (%) 

 

Particle size (µm) 

 Dv10a 

 Dv50b 

 Dv90c 

Sphericityd 

Specific surface area (m2 kg-1) 

Particle density (g cm-3) 

  

Bulk density (g cm-3) 

Tapped density (g cm-3) 

 

85.1 ± 0.8 

5.67 ± 0.9  

1.49 ± 0.0 

2.34 ± 0.0 

5.47 ± 0.1 

 

 

11.9 ± 0.3 

31.7 ± 0.7 

64.7 ± 0.2 

0.74 ± 0.0 

212 ± 4.4 

1.38 ± 0.0 

 

0.27 ± 0.0 

0.43 ± 0.0 
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flowability through caking (Amidon and Houghton, 1995; Karde and Ghoroi, 2015; 

Podczeck et al., 1997, 1996; Price et al., 2002; Teunou and Fitzpatrick, 1999). 

Environmental moisture also impacts the surface energy of powder particles, 

impacting bulk powder flowability. Dairy protein isolates, like other high-protein 

dairy powders are strongly hydrophobic due to the presence of protein and fat at the 

surface of the powder particles (Burgain et al., 2016; Felix da Silva et al., 2018; Fyfe 

et al., 2011). Previously, Karde et al. (2017) showed that while on increasing relative 

humidity, the surface energy of hydrophilic powders also increased, no change in 

surface energy was experienced on the same increase in relative humidity for 

ibuprofen which, like protein isolates, is highly hydrophobic. 

The level of consolidating stress acting on powders is another well studied, 

environmental factor influencing powder flowability (Chen et al., 2010; Crowley et 

al., 2014). As discussed, large silos or hoppers are used for the storage of powders and 

in these vessels, varying (head) pressures will act on the powder depending on the 

powder’s location in the silo, resulting in a bulk powder exhibiting differing levels of 

flowability. Above a specific pressure, a bulk powder will experience either 

deformation, which encourages flowability (e.g., low bulk density powders, such as 

MPI) or consolidation, which decreases flowability (e.g., high bulk density powders 

such as skim milk powder) (Valverde et al., 1998). The reduction in flowability 

through consolidation is caused by plastic deformation at contact zones between 

powder particles, resulting in increased number and strength of interparticle 

interactions thereby, increasing the cohesive bulk strength (Garg et al., 2018). 
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2.3.4 Interparticle interactions  

The main attractive forces occurring between powder particles are van der 

Waals, electrostatic, liquid- (via capillary forces) and solid-bridging interactions, and 

are summarised in Table 2.2 (Shah et al., 2017). For dairy powders with large mean 

particle size (>150 m), such as agglomerated powders, the forces acting upon these 

powders, such as gravity, usually outweigh these attractive forces and thus, such 

powders tend to flow well. For powders with smaller mean particle size (<100 m), 

such as dairy protein isolate powders, the number and extent of the above attractive 

interactions may outweigh the effect of the acting forces, hence causing powder 

particles to adhere to each other, reducing powder flow (Li et al., 2004; Shah et al., 

2017). 

 

2.3.4.1 Van der Waals interactions 

Van der Waals interactions are known to have one of the lowest adhesion 

strengths of those presented in Section 2.3.4. However, they are the predominant force 

causing adhesion in dry powder systems of small particle size, such as protein isolates, 

due to the large number of van der Waals interactions occurring at the particle level in 

these powders (Kendall and Stainton, 2001; Li et al., 2004; Simons, 1996). Van der 

Waals interactions occur as electrons are in constant movement in powder particles, 

leading to the continual formation of temporary dipoles at the surface of (and 

throughout) powder particles. A dipole is a set of charges, of equal magnitude, but 

opposite sign (Table 2.2), and thus, the adhesion of two (or more) powder particles 

occurs due to the attractive forces that exist between the dipoles of opposite powder 

particles (via ionic bonding) (Fowler and Stone, 1987; Shah et al., 2017). It is well 

established that the most influential powder particle and bulk properties for 
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determining the amount of van der Waals interactions occurring are particle size and 

interparticle spacing, respectively (Seville et al., 2000; Visser, 1989; Yu et al., 2003). 

Commercial dairy protein isolate powders are composed of primary particles of small 

particle size (<100 m) which can pack together closely due to their spherical shape, 

and these features align closely to the conditions needed for van der Waals interactions 

to occur to a great extent in the powder bulk, thereby limiting flowability of high-

protein dairy powders.  

 

2.3.4.2 Electrostatic interactions  

The forces associated with electrostatic charging (also termed “tribocharging”) 

are, again, of low strength when compared to other interparticle forces (Simons, 1996). 

Like van der Waals interactions, electrostatic charging can also have a large effect on 

the flowability of high-protein dairy powders due to the extent to which they can occur 

(especially when combined with van der Waals interactions). During the production 

of dairy powders, particles frequently collide with solid surfaces (termed particle 

collisions) or with other powder particles (termed particle attrition), during processes 

such as pneumatic conveying, fluid bed processing and dry blending. On such 

collisions, the surface of dairy powder particles builds a charge, and due to the organic 

nature of dairy powders, insulation of this charge will occur, leading to a very slow 

dissipation of charge over time. Oppositely charged particles, if in a close arrangement 

(such as the case for dairy protein isolate powders), will create attractive forces that 

lead to the cohesion of the particles, limiting powder flowability (Matsusaka et al., 

2010; Naik et al., 2016; Shah et al., 2017). 
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2.3.4.3 Liquid bridging  

It is possible for physical bridges to form between two or more particles and the 

resulting interparticle interactive forces are strong. Initially, this occurs in the 

formation of liquid bridges between particles, which, in turn, could form physical 

bridges if certain environmental criteria prevail. These interactions can strongly 

reduce the ability of a dairy powder to flow (Shah et al., 2017; Simons, 1996). Similar 

to van der Waals and electrostatic interactions, the physicochemical properties of a 

dairy powder, such as particle size and shape, also play a role in the formation of these 

bridges. Another important influence on the formation and stabilisation of these 

physical bridges is the environmental conditions surrounding the powder such as the 

relative humidity and temperature (Podczeck et al., 1997). 

Liquid from within powder particles (moisture or liquid fat) or from the 

environment (environmental moisture) may condense at contact points of closely 

located particles. This condensate will create many cohesive liquid bridges (termed 

pendular bridges) between the two particles due to the presence of a strong attractive 

capillary force which is reported to be over 50-times stronger than van der Waals 

forces (Modugno et al., 2015; Rhodes, 1990; Simons, 1996). Liquid bridging is mostly 

associated with the presence of excess moisture surrounding, or within, powder 

particles due to the production or storage conditions; however, the reduction in dairy 

powder flowability caused by excess surface fat is also attributed to the formation of 

liquid bridges. At room temperature (~20C), the majority of milk fat present in dairy 

powders is fluid-like (Kelly et al., 2014; Zychowski et al., 2016), and when present at 

the surface of powder particles, a liquid bridge will form through the attraction of 

capillary forces (Foster et al., 2005). 
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The occurrence of liquid bridging during the storage of dairy protein isolate 

powders is low compared to other commercial dairy powders (e.g., whole milk powder 

or skim milk powder), which may be attributed to the much lower level of hygroscopic 

carbohydrates present in dairy isolate powders due to the fractionation and protein 

enrichment (i.e., lactose reduction steps) in their production (Figure 2.1, Table 2.1). 

 

2.3.4.4 Solid bridging  

Under the necessary conditions (e.g., temperature and relative humidity), a 

liquid bridge may be further stabilised through transition into a solid bridge via 

evaporation, crystallisation, or solidification of the bridging material. This in turn 

increases the strength of the attractive forces between particles (Foster et al., 2005; 

Padmadisastra et al., 1994). If occurring in an un-controlled manner (caking), the 

formation of liquid or solid bridges will significantly reduce a dairy powders ability 

to flow and make the handling and storage of these powders much more difficult. In 

contrast, the controlled formation of a liquid and subsequent, solid bridge, is routinely 

utilised as a means of particle size enlargement in order to control powder flowability 

which will be the focus of later sections of this review (Section 2.4.1).  
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2.4 Approaches for improving the flowability of high-protein dairy 

powders 

Due to the growing market for high-protein dairy powders, there is a continual 

need to tailor and control the flow properties of such powders, in order to ensure easy 

storage, handling and further application. To increase a powder’s flowability, actions 

must be taken in order to reduce the number and extent of the above interparticle 

Table 2.2 Summary of interparticle interactions occurring at particle level in high-protein 

dairy powders. Scanning electron microscopy micrographs of milk protein isolate powder 

particles used to represent powder particles. 
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interactions from occurring at the bulk level. Traditional and more novel approaches 

to control a powder’s flowability exist and are utilised by various industries handling 

powders such as the food, pharmaceutical and biochemical industries, and these 

approaches may be categorised as (i) particle size enlargement and (ii) surface 

modification of powder particles. 

 

2.4.1 Particle size enlargement 

The most traditional approach to increase a powder’s flowability is to increase 

the size of the particles that make up a powders bulk, allowing the forces encouraging 

movement (such as gravity or pressurised air) to outweigh the forces of cohesion, 

thereby, allowing the powder particles to flow. Inversely, the extent of interparticle 

interactions will be reduced, serving to further improve powder flowability (Schulze, 

2008). The terms agglomeration (mainly used within the food industry) and 

granulation (mainly used within the pharmaceutical industry) are both used to describe 

the processes of increasing the particle size of a powder by combining numerous 

individual primary powder particles together into large cluster-like structures where 

the individual particle may still be distinguishable. These clusters of particles are of a 

much greater size than that of the original particle, thus increasing flowability. 

Agglomerated particle structures contain increased volumes of interstitial air in the 

form in capillaries and pores, reducing the powder’s bulk density and allowing for 

easier penetration and movement of water into and through the cluster structures 

through capillary action on rehydration (Cuq et al., 2013; Iveson et al., 2001; Pisecky, 

2012). For the purpose of this review, the term agglomeration will be used to 

collectively describe the various methods for particle size enlargement that follow.  
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2.4.1.1 Spray dryer and fluid bed agglomeration 

The process of agglomeration in the production of dairy powders generally 

occurs in the spray dryer chamber, and/or, in the external fluid bed located after the 

spray drying chamber (Figure 2.4) (Drake et al., 2009; Neff and Morris, 1968). In the 

spray drying chamber, agglomeration occurs through the collisions of either wet 

particles (primary agglomeration) or wet and dry particles (secondary agglomeration). 

To some extent, both primary and secondary agglomeration occur naturally in the 

spray chamber through random collisions of moving particles in the chamber 

(spontaneous agglomeration). However, by controlling the geometries and parameters 

of the spray drying process, both primary and secondary forms of agglomeration can 

be forced to occur to varying extents (forced agglomeration) (Drapala et al., 2017; 

Kumar et al., 2017; Pisecky, 2012). The most utilised form of agglomeration in the 

spray drying chamber occurs through the process of fines return. During production 

of powders by spray drying, powder material of a much smaller particle size than that 

of the target primary particle will be produced, this material being termed “fines” 

(usually <10 m). Due to their small particle size, these fines are carried out of the 

spray chamber in the exhaust air and then collected in a filter system such as a cyclone, 

or bag filter. The fines may be then recirculated back into the top of the spray dryer 

main chamber and directed at the atomisation zone, where new primary particles are 

being formed, allowing the dry fines to collide and coalesce with newly formed, wet 

particles leading to the formation of large porous clusters of particles with channel 

spaces between the individual primary particles (Figure 2.4). The degree of 

agglomeration via fines return may be controlled by altering the amount of the fine 

powder particle material that is recirculated back into the dryer main chamber 

(Gianfrancesco et al., 2008; Schuck, 2013a, 2014).  
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a) Spray drying process 

 
 

 
 

  b) Agglomeration via fines return  

 

1. Fines produced 2. Fines recirculated 3. Agglomerate formed 

   

 

 

  c) Agglomeration via rewetting   

 

1. Binder addition 2. Wetting 3. Nucleation 4. Solidification 

    

 

Fines Primary particles  

Figure 2.4 Schematic representations of (a) the spray drying process used for dairy powders 

with external fluid bed drying and (b) agglomeration via fines return and (c) agglomeration via 

rewet processing. 
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On leaving the spray drying chamber, powder particles generally enter into an 

external fluidised bed unit where heated and cool air pass upwards though the powder 

separately, at velocity, to complete drying and cooling of the powder, respectively. 

This high velocity air pushes powder particles upwards and disperses them into the 

chamber of the fluid bed, i.e., fluidising them in order to finalise their drying and 

facilitate subsequent cooling (Figure 2.4) (Seville et al., 2000). Particle size 

enlargement of the powder through fluid bed agglomeration can be achieved here by 

rewetting, i.e., applying a binding solution onto the particles as they enter into the fluid 

bed unit. The process in which the binder acts to agglomerate the powder particles has 

been well studied and is separated into four main stages: binder addition, wetting and 

spreading of the binder, nucleation and solidification (Figure 2.4) (Cuq et al., 2013). 

 

a) Binder addition 

The method of addition of the binding solution may vary from pouring to 

pumping, but studies have shown that the most uniform agglomeration process (large 

agglomerates of a narrow particle size distribution) is achieved by atomising the 

solution onto the powder particles as they enter the fluid bed unit (Reynolds et al., 

2005a). A twin-fluid nozzle is routinely used to atomise the viscous binder solution 

using high air pressures to form a uniform spray of the solution in droplet form which 

can come into contact with the powder particles. 

 

b) Wetting and spreading 

When the binder first comes into contact with the powder particles, the binder 

will begin to wet the surface of the particles. Due to the fluidisation movement of the 
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particles, the binder will spread and coat the entire surface of the powder particles, 

which is important for the formation of agglomerates of a uniform particle size. 

 

c) Nucleation 

Initially, collisions of the now-wetted particles, cause the formation of liquid 

bridges (Section 2.3.4.3), which link two or more particles together through capillary 

forces. This initial particle growth acts as a nucleus for further consolidation and 

growth of the agglomerate structure.  

 

d) Solidification  

Due to the elevated temperatures (approx. 70C) of the initial stages of the 

external fluid bed, the liquid bridges stabilising the agglomerate structures will be, 

partially or fully, evaporated, crystallised or solidified depending on the compositional 

make-up of the liquid bridge. Solidification of the liquid bridge leads to the formation 

of a strong, solid bridge between primary particles in an agglomerated structure. 

The binding solution used for fluid bed agglomeration of powders can vary 

depending on the application, with binder characteristics such as composition, 

viscosity, rate of addition and surface tension all playing a vital role in determining 

the type, size and strength of the agglomerates formed. Water and sugar solutions are 

some of the binder solutions used by various powder handling industries during fluid 

bed agglomeration; however, for the dairy industry, lecithin, a natural, phospholipid-

rich surfactant which has been traditionally used for coating agglomerates formed via 

fines return, has been identified as a potential binder for powder agglomeration due to 

its well established beneficial impact on the rehydration properties of the resulting 

agglomerated structures (sometimes termed lecithination/instantisation) (List, 2015; 
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Sharma et al., 2012). Lecithin, usually dispersed in a blend of vegetable oils, is highly 

viscous and can effectively bind numerous particles together in large cluster 

structures. Due to its high fat content, at the elevated temperatures of the external fluid 

bed, the lecithin blend can efficiently spread over the surface of the agglomerate 

structure, which is then solidified on further heating and cooling. The increase in 

particle size on agglomeration via lecithination improves the flowability and bulk 

handling of the powder but also, has a very beneficial impact on the wettability of the 

resulting agglomerates (Kinsella and Morr, 1984; Wu et al., 2020). As lecithin is rich 

in phospholipids, by coating the surface of an agglomerated powder particle it in turn 

increases the hydrophilic nature of the powder surface due to the presence of the 

amphipatic, phospholipid molecules (both hydrophobic and hydrophilic). 

Traditionally, powders such as whole milk powder (WMP) and fat filled milk powder 

(FFMP) are lecithinated (instantised) as the application of these powders requires 

these powders to fully wet on first contact with water (Schmidmeier et al., 2019). 

The agglomeration of high-protein dairy powders via spray dryer and fluid bed 

agglomeration is not widely practiced by dairy industries. Although particle size 

enlargement has been clearly shown to improve the flowability of many dairy powders 

it must be noted that it does this by altering the physical and bulk properties of the 

original powder. For example, agglomerating a high-protein dairy powder with the aid 

of lecithin (or other binding solutions), will reduce concentrations of other constituents 

of that powder (Ji et al., 2016). This must be avoided in the production of high-protein 

dairy powders such as protein isolates (MPI, WPI) where strict requirements for 

protein content of the final powder (≥ 90% protein) must be satisfied. Also, when high-

protein dairy powder is agglomerated, the bulk density of that powder decreases, 

meaning that the same mass of the agglomerated powder will occupy a larger volume 
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than that of the non-agglomerated form. Ji et al. (2017) showed that for MPI, the initial 

low bulk density (0.30 g cm-3) of the powder was further reduced (0.18 g cm-3) on 

agglomeration by fluid bed processing. These effects of spray dryer and fluid bed 

agglomeration can be seen as a disadvantage for the dairy powder industry as it can 

lead to a reduction in product value and an increase in storage/transport costs, 

respectively.  

Studies by Gaiani et al. (2007b) and Mimouni et al. (2010) have shown that 

casein- and whey-dominant powders (e.g., MPI and WPI, respectively) have different 

rate limiting steps in their rehydration processes and therefore, agglomeration of these 

powders may yield different effects on their rehydration behaviour. For whey-

dominant powders, the initial wetting stage is the rate limiting step whereas, for 

casein-dominant powders, particle dispersibility limits the rehydration. As particle 

size enlargement via spray dryer and fluid bed agglomeration effects the wetting stage 

of rehydration, it can positively impact whey-dominant protein powders, such as WPI, 

whereas it can negatively impact the rehydration of MPI or MCI which are casein-

dominant high-protein powders, due to its negative impact on powder dispersibility 

(Gaiani et al., 2007a). Ultimately, a more comprehensive approach to improve the 

flowability of high-protein dairy powders is required which minimises any negative 

effects on the compositional and rehydration properties of these powders. 

 

2.4.1.2 Shear agglomeration  

Shear agglomeration is a method of particle size enlargement, commonly used 

in the pharmaceutical industry. The process shares many similarities to that of fluid 

bed agglomeration (Section 2.4.1.1) as again, a binding solution is used to facilitate 

the agglomeration of primary particles into larger structures. The binder is added to a 
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mass of powder that is in constant movement and shear mixing in an agglomerating 

drum/vessel. On continual mixing in the presence of the binder solution, the powder 

particles form relatively large agglomerates (>1 mm in size) through surface wetting, 

nucleation and consolidation. Agitators in the agglomeration device mix at specific 

speeds to introduce shear forces which act to reduce the particle size of the formed 

agglomerates towards a smaller target agglomerate size through the forces of attrition 

and breakage (Arndt et al., 2018; Chirkot and Propst, 2005; Gokhale et al., 2005; 

Oulahna et al., 2003). 

The level of shear used can vary (low or high shear) but most routinely high 

shear forces are used to treat the agglomerating powder particles. Litster and Ennis 

(2004) report that for high shear agglomeration, the mixing agitators will be rotating 

at 60-800 rpm, while the agitator provides high levels of shear by rotating at 500-3500 

rpm typically. The shear forces experienced during agglomerate formation causes 

densification, whereby the particles that make up an agglomerate are further 

compressed, minimising interparticle channels and causing the entrapped binder to be 

squeezed out to the surface of the agglomerated structure, allowing for further 

nucleation and agglomeration to occur. The resulting agglomerates of shear 

agglomeration therefore, are quite often large, dense structures that are spherical in 

shape (Faure et al., 2001). The effect of agglomerate densification on the resulting 

powder bulk density during shear agglomeration processing was illustrated in a study 

by Chevalier et al. (2009). Here agglomerates of calcium phosphate were formed via 

low and high shear agglomeration. It was found that the agglomerates formed using 

high shear forces had a much higher bulk density (0.73 g.cm-3) than that of the 

agglomerates formed using low shear forces (0.53 g.cm-3).  
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For the agglomeration of high-protein dairy powders, shear agglomeration provides 

no clear advantages to that of the current dairy industry standard, fluid bed 

agglomeration. The formation of more dense agglomerates may alleviate the reduction 

in bulk density experienced on fluid bed agglomeration; however, this densification 

process acts to eliminate the interparticle channels and pore spaces between particles, 

with these components of agglomerated dairy powders being key in their efficient 

rehydration; interparticle channels allow the surrounding liquid to easily penetrate into 

inner primary particles of the agglomerated powder, facilitating solubilisation. Large, 

dense agglomerates of high-protein dairy powder particles could lead to further 

clumping issues on powder wetting (Figure 2.2) and overall reduced powder 

solubility, previously displayed by (Ji et al., 2016a). 

 

2.4.1.3 Extrusion agglomeration  

Extrusion technology is regularly used for the continuous agglomeration 

processing of pharmaceutical powders at commercial scale. Another form of wet 

agglomeration, extrusion agglomeration utilises water or a more complex binder 

solution to cause the agglomeration affect. For the agglomeration of hydrophobic or 

poor wetting powders, such as high-protein dairy powders, the adequate and efficient 

distribution of the binder, to allow for uniform nucleation and growth, is a limiting 

process step. Extrusion agglomeration exposes powders to high forces through intense 

mixing and kneading in the extrusion line which forces the spreading of the binders 

across the powder particles allowing the size of agglomerates to increase (Iveson et 

al., 2001; Seem et al., 2015). 

In the extrusion agglomeration process, the powder drops, or is fed, into a barrel 

where screws counter-rotate at a set speed; the number of screws varies, with the most 
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common configuration being a twin-screw extrusion line. The counter-rotating motion 

of the screws transports the powder along the extrusion barrel and creates a mixing 

motion in the bulk powder. A liquid feed line is used to introduce the selected binder, 

at a pre-determined addition rate, into the extrusion line, and into contact with the 

powder forming liquid bridges. As the wetted powder particles pass through the barrel, 

they enter kneading zones where discs of specific geometries act to create zones of 

high shear forces. These forces, as in high-shear agglomeration, cause densification of 

the agglomerated particles and allow for further agglomerate growth. Each section of 

the extrusion agglomeration process allows for heating, drying and cooling of the 

agglomerated structures as the extrusion barrel is jacketed allowing for temperature 

control. Many process geometries (e.g., number of screws, screw length and diameter, 

kneading elements) and parameters (e.g., screw speed, liquid:solid ratio) may be 

utilised in order to control the extrusion agglomeration process and thus, tailor the 

physical properties of the resulting agglomerated powder, as discussed at length by 

Seem et al. (2015). The final step in the process is the shaping or milling of the formed 

agglomerate (extrudate) to the desired particle size/shape. In the pharmaceutical 

industry, the extrudate is commonly compressed directly into tablet form which is a 

widely used form of powder delivery. However, if implemented in the production of 

high-protein dairy powders, a milling step may be utilised to control the particle size 

of the agglomerates formed in the extrusion process (Figure 2.5) (Dhanalakshmi et al., 

2011; Djuric and Kleinebudde, 2008; Thompson and Sun, 2010).  

In a series of studies, Keleb et al. (2002, 2004) used pharmaceutical powders 

that exhibit poor flow and dissolution properties (i.e., -lactose monohydrate and 

paracetamol), to evaluate the efficiency of an extrusion agglomeration process with 

(polyvinylpyrrolidone as binder), and without (water as binder), the use of complex 
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binding solutions, in direct comparison to a shear agglomeration process. The results 

showed that agglomeration was achieved for all powders without the use of complex 

binding solution (polyvinylpyrrolidone) for extrusion agglomeration (high 

agglomerate yield and over 60% of the agglomerates formed had particle size greater 

than 250 m) while the agglomeration of these powders was not possible using shear 

agglomeration without the use polyvinylpyrrolidone as a binder. The possibility of 

agglomerating a difficult to handle powder, such as paracetamol, with only water 

suggests that this approach to particle size enlargement may be attractive in the 

processing of high-protein dairy powders. 

 

  

Figure 2.5 Schematic representation of a typical extrusion granulation process. 
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2.4.1.4 Roller compaction agglomeration  

All approaches for particle size enlargement discussed thus far in this review 

have been forms of wet agglomeration, where binding solutions are used to facilitate 

the agglomeration of powder particles. On the other hand, roller compaction, is a form 

of dry agglomeration where particle size enlargement is achieved by applying very 

high levels of pressure which forces particles closer together and induces changes in 

the particle structures, yielding agglomerates. Dry granulation is routinely used in the 

agglomeration of powders that are sensitive to moisture and therefore cannot be 

processed via traditional wet agglomeration approaches. Roller compaction is the most 

studied, and applied, form of dry agglomeration, commonly used in the 

pharmaceutical industry to improve the flowability of various pharmaceutical 

powders. The clear advantages to dry agglomeration (e.g., no binder needed, no 

heating or drying steps required) highlights it as a method of particle size enlargement 

with potential in the production and control of difficult to handle high-protein dairy 

powders (Abu Fara et al., 2018; Dhanalakshmi et al., 2011). 

A typical roller compaction process involves feeding a powder, either via gravity 

(for powder with good flowability) or a screw feeder (for powder with poor 

flowability, such as high-protein dairy powders) into the contact zone of two large co-

rotating rollers. At this point, termed the “nip region”, large frictional shear forces will 

draw the powder down and between the two rotating rollers. Very large pressures 

begin to build up within the powder bulk which causes two main conformational 

changes in the powder particles. Firstly, particles are forced to rearrange into close 

arrangement, and then, as the pressure continues to build, a critical point for the 

particles is met, which either causes particle breakage (for fragile particles) or particle 

deformation (for stronger particles). As a result, the powder exits the rollers in the 
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form of heavily compacted ribbon-like structures that can be gently milled and 

screened to form agglomerated powder structures with desired particle sizes (Figure 

1.6) (Omar et al., 2016; Reynolds et al., 2010; Wu et al., 2010). 

 

2.4.2 Surface modification  

The surface characteristics (e.g., surface energy and charge) and composition 

(e.g., surface fat) of dairy powders plays a key role in determining the number and 

extent of interparticle interactions occurring in the powder bulk, and thus, impacts the 

powder’s flowability (Section 2.3.4). For high-protein dairy powders, due to their 

small and spherical size and shape, the surface properties of these powders allow for 

extensive van der Waals and electrostatic interactions to occur, leading to such 

Figure 2.6 Schematic representation of the roller compaction agglomeration process for dry 

powder followed by milling to achieve the desired powder particle size. 
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powders having high cohesive strength. The presence of fat at the surface of powder 

particles is also attributed to reduced powder flowability. During production of dairy 

powders by spray drying, fat contained in the atomised droplet will be preferentially 

located at the powder particle surface on atomisation and subsequent drying, leading 

to an over representation of fat at the surface when compared to bulk of the powder 

(Fäldt and Bergenståhl, 1996; Foerster et al., 2017, 2016a, 2016b). Even in high-

protein dairy powders, where fat usually contributes to a very small percentage of the 

total bulk composition (approx. 1-5% fat), the surface composition of these powders 

may be dominated by fat. Studies by Kim et al. (2002, 2005) focussing on the effect 

of surface composition on the flowability of spray dried dairy powders showed that 

for a WPC 80 powder (86% protein, 6% fat), over 50% of the exposed powder surface 

was comprised of fat, despite the fact that fat constituted only 6% of the bulk powder 

composition. This over-representation of fat at the surface of dairy powders, compared 

to the bulk, also occurs in casein dominant systems such as MPC, MPI and MCC 

(Crowley et al., 2018; Kelly et al., 2015). The presence of fat at the surface of powders 

is a strong factor influencing (generally adversely) their flowability and rehydration 

properties. In the case of high-protein powders, where small, spherical particles are in 

close arrangement, the presence of fat at powder surfaces may play a critical role in 

large cohesive strength experienced in the bulk powder, and ultimately act to limit 

their flowability.  

Surface modification is a method of processing which acts to alter the surfaces 

of powder particles by creating a new powder surface or shell in order to improve the 

bulk handling characteristics of powders. By altering only the surface of a powder 

particle, changes in particle size and shape are minimised and thus, as are large 

changes to the bulk density of a powder. Minimising the decrease in bulk density (a 
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feature of particle size enlargement - Section 2.4.1), is desirable in the production of 

high-protein dairy powders for storage and transport costs. Two main methods of 

surface modification have been previously utilised by both food and pharmaceutical 

powder processing industries, and these are fluid bed coating and dry coating of 

powder particles. 

 

2.4.2.1 Wet coating  

Wet coating (also termed fluid bed coating) of powder particles via fluid bed 

processing utilises powder fluidisation and liquid atomisation to achieve a very thin 

layer of coating material on the surface of a powder. This newly formed layer is then 

dried rapidly and cooled in a manner that avoids particle agglomeration, creating a 

new powder boundary that alters the surface properties and composition to improve 

powder flowability. Surface coating has been utilised in food applications previously 

using biopolymers such as lactose, glucose, starch hydrolysates and alginate solutions 

as coating solution for food powders. Close control over the composition and viscosity 

of these coating solutions, as well as the addition level and rate is necessary to achieve 

uniformly coated particles while preventing unwanted agglomeration during fluid bed 

coating of powders. (Dewettinck and Huyghebaert, 1999; Szulc and Lenart, 2013; 

Werner et al., 2007). 

Fluid bed coating utilises the same principles as fluid bed agglomeration 

(Section 2.4.1.1), where a liquid is atomised onto particles in fluidised motion. 

However, a different geometry of fluid bed, termed a “Wurster coater”, is used for 

particle coating applications to avoid the unwanted agglomeration of particles in this 

process. Here, a central channel is inserted at the bottom of the fluid bed chamber 

which acts to accelerate and disperse the powder particles upwards and through an 
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atomisation zone where a thin layer of the coating solution is applied to the particle 

surface. The nozzle used for atomisation of the coating solution is loaded from the 

bottom of the fluid bed chamber (bottom-fed atomisation) and it sits in the central 

channel of the Wurster coater, spraying very fine, uniform droplets of the coating 

solution into the atomisation zone of the Wurster coater. As the particles become 

coated, the high velocity air continues to push them upwards into the fluid bed 

chamber in a fine dispersion. As the coated particles exit the Wurster coater’s inner 

channel, they enter into the top of the fluid bed chamber where the elevated internal 

temperature rapidly acts to dry and solidify the newly formed particle coatings, before 

the particles are cooled and collected (Figure 2.7) (Hede et al., 2009; Jono et al., 2000; 

Rajniak et al., 2007).  

For efficient particle coating while minimising unwanted agglomeration, each 

step of the above process must be carefully controlled, most notably, the fluidisation 

of particles into a fine dispersion where particle-particle interactions and collisions are 

avoided. Geldart (1973) developed a classification system to characterise the ease, or 

difficulty with which a powder can be fluidised, describing “Group C” powders (C – 

cohesive) as the most difficult to fluidise due to their characteristic low particle size 

and low particle density, both being important properties of high-protein dairy 

powders (Figure 2.8). This indicates that the efficient coating of high-protein powders 

may prove difficult due to improper fluidisation of high-protein dairy powders (e.g., 

channelling/ratholing in powder bed) (Wang et al., 1998). Chen et al. (2008) reported 

that unwanted agglomeration is unavoidable when coating powder particles with sizes 

≤50 m (typical of high-protein dairy powders) without prior modifications such as 

pre-treatment of powder via dry coating (Section 2.4.2.2) or though modified 

fluidisation (e.g., vibro-fluidisation) (Chen et al., 2008). 
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Figure 2.7 Schematic representation of a fluid bed coating process achieved using a Wurster 

coater insert. 
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2.4.2.2 Dry coating  

Traditionally, wet coating of powder particles was the standard procedure for 

surface alteration to tailor the flowability and fluidisation properties of powders. In 

more recent years, dry coating has emerged as a more efficient, sustainable and cost-

effective method to modify powder surfaces. Wet coating, as well as other, previously 

discussed particle size enlargement processes, requires large energy and material input 

in various process steps such as binder atomisation, powder fluidisation and powder 

drying and cooling, whereas the dry coating process produces no organic waste 

streams and also has the potential to minimise energy input as no binder addition or 

drying steps are needed in this process. A reduction in energy and material input, in 

addition to minimising waste streams during processing is of increasing importance to 
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Figure 1.8 Geldart classification chart for particle fluidisation: C- Cohesive, A- Aeratable, B- 
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production industries as continuous improvements in environmental sustainability are 

desired (Bourhis et al., 2013; Pfeffer et al., 2001).  

Dry coating is achieved by introducing very fine, submicron-sized material, 

termed “guest particles” into contact with larger micron-sized powder particles, 

termed “host particles”. Through mixing and introduction of mechanical force, these 

guest particles (also termed “flow aids”, “glidants” or “lubricants”) will be dispersed, 

to some extent, on the surfaces of the much larger host powder particles. Due to the 

large differential in size, as well as the close arrangement between the host and guest 

particles, interparticle interactions will occur which lock the guest particles to the 

surfaces of the host powder particles. These particles stay locked onto the surface of 

the host as the force of attraction between the two particles is much greater than the 

force of gravity acting downwards on the submicron-sized guest particles (Ghoroi et 

al., 2013; Jallo et al., 2012; Karde and Ghoroi, 2014; Tomas and Kleinschmidt, 2009). 

A review of previously published work shows that three main materials are used 

routinely as the guest particles for dry coating processing, these being, silica, silicate 

and stearate particles (Huie Liu et al., 2006; Yang et al., 2005; Zhou et al., 2010). The 

importance of the size of the guest particle was illustrated in a study by Yang et al. 

(2005), where silica particles of six different sizes (ranging from 20 nm to 2 m) where 

introduced as guest particles in the dry coating of cohesive cornstarch particles (15 

m particle size). The results of this study showed that the improvement in flowability 

of the cornstarch was inversely proportional to the guest particle (silica) size, i.e., the 

smaller the particle size of the guest particle, the more effective it was for dry coating 

applications. The addition rate of the guest to the host particles is also noted as a key 

process parameter in dry coating. An increase in the flowability of the bulk host 

powder is experienced on increasing levels of guest particle addition. However, a 
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critical point is reached where further increasing guest particle addition level will lead 

to a reduction in powder flowability. This critical level varies dependent on the size 

of the guest and host particles but, for most studied powders and host particles, an 

optimal addition level of guest particles is typically 0.5–1.5% of the weight of the host 

powder bulk. At this optimal addition rate, full coverage of the host particles is 

typically achieved which improves the powders flowability. On exceeding this 

addition level, excess host particle build-up may occur at the powder particle surface 

which could lead to further interparticle interaction between neighbouring particles 

that may act to increase the cohesiveness of the powder (Chen et al., 2008; Morin and 

Briens, 2013; Schulze, 2008). 

Due to the very small particle size of the guest particles (nm range), they have a 

very strong tendency to self-aggregate via van der Waals interactions. Therefore, when 

the guest particles are added to the host, the mixing step that acts to disperse the 

particles to the host’s surfaces is a critically important step, which can limit the quality 

of particle coating that is achieved. Traditionally, depending on the scale, manual 

mixing or dry blending (v-shaped blender) have been used to disperse guest particles 

onto the surfaces of the host, although results for these methods have shown 

incomplete partial particle coating (porous coating) due to self-interactions of guest 

particles. Recently, high energy dispersion techniques have been used to achieve 

complete coatings (continuous coating) on the host particles and these include 

magnetic-assisted impaction coating (MAIC). In MAIC a coil structure creates an 

oscillating magnetic field that mixes and causes the fluidisation of host and guest 

particles which encourages particle-particle and particle-wall collisions leading to a 

uniform dispersion of guest particles at the surface of the host powder. Although 

mechanical force is used to disperse particles in MAIC, it is classified as a “soft” 
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coating process when compared to other high mechanical force dispersion techniques 

such as hybridizer coating which exposes particles to very large mechanical forces in 

order to achieve uniform coating. Although high mechanical force dispersion methods 

achieve very uninform and complete particle coatings, their application is limited for 

particles that are susceptible to breakage, such as high-protein dairy powders (Ghoroi 

et al., 2013; Pfeffer et al., 2001; Ramlakhan et al., 2000; Yang et al., 2005). 

The flowability of very cohesive powders such as cornstarch (angle of repose 

(AOR) before dry coating: 50, AOR after dry coating: 27), ibuprofen (AOR before 

dry coating: 57, AOR after dry coating: 48), and lactose monohydrate (AOR before 

dry coating: 65, AOR after dry coating: 38) have been improved via dry coating in 

numerous studies (Han et al., 2013; Huie Liu et al., 2006; Jallo et al., 2012; Yang et 

al., 2005; Zhou et al., 2010). Combining this with a reduction in waste streams and 

energy consumption, dry coating represents a potentially suitable method for the 

improvement of high-protein dairy powders post-spray drying. 

 

2.5 Emerging technologies for improving the flowability of high-

protein powders  

All approaches to improve powder flowability presented herein have been 

utilised, to some extent at industrial scale. Continually, novel technological 

approaches emerge for various applications that may be utilised and applied to achieve 

an improvement in powder flowability. The following section will highlight some 

emerging technologies studied mainly outside of the field of dairy technology that may 

offer potential to improve the flowability of high-protein dairy powders. 
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2.5.1 Steam jet agglomeration  

Steam-jet agglomeration is a form of particle size enlargement involving rewet 

processing. In fluid bed and shear agglomeration-based processes, viscous binding 

solutions are atomised onto the surface of powder particles, whereas in steam-jet 

agglomeration, an aerosol jet of high temperature (greater than 100C) steam is 

directed at free falling powder particles. As the steam-jet hits the powder particles, 

rapid condensation of the steam occurs, due to the large temperature difference 

between the particle and the steam jet. This condensation process forms water vapour 

at the surface of the primary powder particles which partially solubilises the 

components on the surface of the powder particles resulting in an increase in the 

surface viscosity and stickiness. The free-falling particles, now with increased surface 

viscosity, will adhere to each other on collisions via liquid bridging, forming an 

agglomerated structure which is then stabilised by drying the liquid bridges (Martins 

and Kieckbusch, 2008). Person et al. (2018a, 2018b) have shown that for skim milk 

powder (SMP), steam-jet agglomeration forms agglomerates of increased size (>400 

m) that also have higher mechanical integrity, and reduced breakage on handling and 

transport while still possessing an instant nature (wetted in <30 s) comparable to 

industrially produced agglomerated SMP (i.e., using fines return). It must be noted, 

however, that a low agglomerate yield (19-33% agglomerates) was reported in these 

lab-scale studies with all other material produced being too small (<400 m) or too 

large (>4 mm). 

The clear advantage of steam-jet agglomeration, over the previously discussed 

particle size enlargement methods, is the use of steam instead of a viscous binding 

solution to achieve an increase in particle size. This minimises changes to the 

composition of the powder being processed, which is desirable in the production of 
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high-protein dairy powders. However, this process is reliant on the efficient 

condensation of water vapor at the surface followed by the subsequent imbibing of the 

water droplets into the powder particle surface leading to an increase in surface 

viscosity. Contact angle measurements efficiently characterise the initial contact and 

imbibing of a water droplet at a powder surface, with a low contact angle indicating 

good powder wetting properties. O’Sullivan et al. (2017) measured the contact angles 

of both SMP and MPI, with SMP (highly agglomerated using steam-jet 

agglomeration) having a low initial contact angle measurement (approx. 40). The 

high-protein MPI powder showed a much higher contact angle (approx. 120) 

indicating its poor surface wetting properties which may act to restrict the 

effectiveness of steam-jet agglomeration for high-protein dairy powders.  

 

2.5.2 Static elimination  

The build-up of charge on the surface of powder particles during conveying and 

further treatments (such as milling) acts to reduce the flowability of high-protein dairy 

powders through the occurrence of electrostatic interactions between oppositely 

charged powder particles (Section 2.3.4.2). Due to the danger of excessive charging 

of powders, and their contribution to dust explosions, research has been conducted to 

develop methods to dissipate charge from the surface of powder particles. 

Static eliminators have been developed in nozzle form to reduce the surface 

charge of powders. These nozzles are constructed using ionizing needle electrodes, a 

power supply and a compressed air source, and generate ions, causing the surrounding 

environmental air to become ionised before the compressed air forces the ionised air 

away from the nozzle and into contact with a powder surface. When in contact with 

the charges present on a powder surface, the ions (formed by the static eliminator) will 



Chapter 2: Literature review  

    49 

neutralise the surface of the powder particles. Multiple nozzle static eliminator 

configurators have been implemented and studied in powder conveying lines and 

storage silos in order to avoid excess charge build up due to safety concerns (Kodama 

et al., 2002, 2000; Revel et al., 2003). A study by Pingali et al. (2009) has identified, 

and focused on the use of a static eliminator (and a slowly rotating drum) for the 

improvement of powder flowability. A series of pharmaceutical blends where initially 

tumbled in a rotating drum before the introduction of a static eliminator which acted 

to dissipate the charge on the powder particle surfaces within the drum. The effect on 

the flowability of the powder was analysed by measuring the expansion of the powder 

bed within the drum (via digital image analysis), which is linearly related (R2 = 0.979) 

to the powder’s flow index, i.e., powder flowability. Results from this study showed 

an increase in the flowability of all pharmaceutical powder blends tested due to the 

reduction in particle charge (e.g., the flow index of a milled pharmaceutical grade 

lactose powder increased by 41% on use of the static elimination process). 

 

2.6 Conclusion and outlook  

To ensure the forecasted growth of high-protein dairy ingredient powders is 

realised, actions must be taken to allow for improved tailoring of their physical and 

bulk properties. Currently, challenges associated with storage, handling and 

application of these powders, caused largely by their poor flowability, are acting to 

limit the commercial growth of these ingredients. The flowability of high-protein dairy 

powders is limited mainly by the occurrence of van der Waals and electrostatic 

interparticle interactions and therefore, an intervention which acts to reduce the 

occurrence and strength of these interactions is needed to improve their flowability. 

The current industry standard for improving the flowability of dairy powders is via 
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agglomeration during spray and fluid bed drying steps of their production. Although 

many studies have clearly illustrated the improvement in flowability of high-protein 

dairy powders using this approach, undesirable consequences are also experienced, 

such as decreased powder bulk density and decreased particle dispersibility on 

rehydration (in particular for casein-dominant powders). Several of the alternative 

approaches discussed in this review are actively used in other industries (e.g., 

pharmaceutical and biochemical) to improve powder flowability and offer potential to 

the food industry to allow for greater ability to tailor and modify the particle, bulk and 

functional properties of future generations of high-protein dairy powders. 
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3.1 Abstract  

Dairy powders are routinely agglomerated during their manufacture to tailor their bulk 

handling and rehydration properties. However, agglomerated powder particles are susceptible 

to breakdown on further handling, most notably, during powder conveying. In this study, three 

agglomerated dairy powders (a whey protein concentrate, WPC, fat-filled milk powder, FFMP 

and an infant formula powder, IF) were conveyed through a custom-fabricated, pilot-scale 

pressurised powder dispersion rig to understand the causes and effects of agglomerate 

breakdown on dairy powder handling and application. All samples displayed significant 

breakdown on pressure dispersion, evident by a reduction in particle size and a subsequent 

increase in powder specific surface area and bulk density. These changes led to reductions in 

powder flowability for all samples (flow index: WPC: 9.3 to 5.1, FFMP: 5.7 to 4.9 and IF: 16 

to 10) via increased particle-particle interactions. The initial stages of rehydration were 

impeded by agglomerate breakage (42.9–47.0% reduction in wettability and 7.22–16.4% 

reduction in dispersibility), while final powder solubility remained relatively unchanged. For 

FFMP and IF samples, these reductions align with increased concentrations of free fat on 

powder surfaces which become exposed on agglomerate breakage, increasing powder 

hydrophobicity. For the WPC sample, a reduction in the volume of interstitial air on breakage 

acts to reduce capillary movement of water into particles, preventing efficient wetting and 

dispersion on rehydration. The results of this study provide new insights into the alterations 

occurring to the physical and bulk-handling properties of agglomerated dairy powders on 

agglomerate breakdown, while also identifying the negative effects these alterations can have 

on the functional properties of these powders. 
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3.2 Introduction  

The production of dairy powders, via spray drying, concentrates the numerous nutritional 

and functional properties present in a dairy system in a solid form that allows for more 

economical storage and transport (Schuck, 2013). In order to fully utilise the functional and 

nutritional properties of these ingredients on further application these powders need to be both 

easy to handle (i.e., possess good flowability) and to rehydrate. Certain dairy powder types 

display challenges with handling and rehydration, attributable mainly to their bulk composition 

and/or physical properties (Fitzpatrick et al., 2016, 2007) and for such powders, agglomeration 

may be utilised to overcome these challenges. 

Powder agglomeration is a process of particle size enlargement that is routinely utilised 

in the production of spray dried dairy powders, whereby numerous individual primary particles 

are combined together into cluster-like structures where individual primary particles may still 

be distinguished (Cuq et al., 2013; Iveson et al., 2001). The increase in particle size achieved 

on agglomeration has been shown to alter the powder physical and bulk-handling properties, 

ultimately increasing their flowability, by reducing the extent of interparticle interactions (e.g., 

van der Waals forces) occurring between individual powder particles (Barkouti et al., 2013; Ji 

et al., 2017; Szulc and Lenart, 2013). The improvement of powder rehydration in the initial 

stages (i.e., wettability) on agglomeration is another, well established, beneficial effect of 

agglomerating dairy powders. By forming agglomerated structures, an increased volume of 

interstitial air is incorporated into the powder bulk through the presence of numerous capillaries 

and pores within and surrounding the agglomerated structures which allow the rapid 

penetration and movement of liquid into and throughout the agglomerated structures, thereby 

improving the wetting properties (Dacanal and Menegalli, 2010; Forny et al., 2011; Gaiani et 

al., 2007; Ji et al., 2016). 
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The industry standard agglomeration process utilised commercially during the 

production of dairy powders occurs in the spray dryer main chamber (Pisecky, 2012); however, 

on exiting the spray dryer, transport of the now agglomerated powder, to other locations in the 

processing plant via conveying lines is required for further handling, storage, packaging or 

application. During conveying, powder particles have the propensity to collide with other 

powder particles (i.e., attrition) and solid surfaces (i.e., collision) to an extent that is dependent 

on the type of conveying system used (i.e., dilute or dense phase). The attrition and collision 

forces experienced by the agglomerated particles can cause a breakdown in particle structure, 

which has the ability to negatively affect the bulk and functional properties of the powder.  

Numerous studies have been completed in the area of pharmaceutical sciences to study 

the breakage of granulated powder material, including understanding the causes, mechanisms 

and means of measurement (Iveson et al., 2001; Reynolds et al., 2005; Simons, 1996; Subero 

and Ghadiri, 2001). Granulation, although another form of powder particle size enlargement, 

forms particles that are very different to agglomerated dairy powder particles. The particles 

formed via granulation are usually relatively large (~ 1 mm), spherical and dense, with high 

mechanical integrity (Faure et al., 2001). These properties contrast with those of agglomerated 

dairy particles which are generally associated with low mechanical integrity. Therefore, it 

proves challenging to extend any correlations between the breakdown of granulated 

pharmaceutical powders and agglomerated dairy powders. 

This study was designed with the aim of identifying both the overarching mechanisms 

responsible for dairy powder agglomerate breakdown, as well as to assess the subsequent 

effects that this breakdown has on selected key quality attributes (i.e., bulk handling and 

rehydration properties) of the resultant powders. Three representative agglomerated dairy 

powders were chosen (i.e., whey protein concentrate, fat filled milk powder and infant formula 



Chapter 3 

    78 

powder) which had diverse bulk composition, physical properties and intended applications in 

order to generate inter-relationships between these properties applicable to many different 

forms of agglomerated dairy powders (e.g., high protein content and high fat content powders). 

The powders were dispersed through a custom-fabricated dispersion rig with analysis before 

and after dispersion used to develop a deep understanding of the causes and effects of 

agglomerate breakdown, ultimately providing new insights to allow for greater control of the 

functional and physical properties of agglomerated dairy powders during conveying.  

 

3.3 Material and methods  

3.3.1 Materials and composition  

Three commercially significant agglomerated dairy powders were used in this study. 

Agglomerated whey protein concentrate (WPC) and agglomerated fat-filled milk powder 

(FFMP) ingredients were kindly donated by Carbery Ingredients (Ballineen, Cork, Ireland) and 

Lakelands Dairies (Bailieborough, Cavan, Ireland) respectively, while a first-stage, whey-

dominant, infant formula (IF) powder was sourced from a local commercial outlet. Data for 

composition was provided by the suppliers of the WPC (protein: 80.0% and fat: 8.50%) and 

FFMP (protein: 26.4% and fat: 28.7%) ingredients and was calculated from the product 

packaging for the IF powder (protein: 8.52% and fat: 25.6%). In addition, moisture content of 

the powders was analysed according to International Dairy Federation (IDF) standard 26:2004 

(IDF, 2004). All chemicals and reagents, unless otherwise stated, were sourced from Sigma-

Aldrich (Wicklow, Ireland) and were of analytical grade.  
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3.3.2 Powder dispersion process for agglomerate breakdown  

A pressure dispersion rig was custom fabricated by Liam A. Barry Ltd. (Little Island, 

Cork, Ireland) to achieve controlled breakage of agglomerated dairy powders in a simulated 

lean phase pneumatic conveying configuration. The rig was composed of a compressed air 

source, an eductor (Figure 3.1), a powder hopper and stainless steel and flexible tubing. 

Compressed air, at 1 and 3 bar, was passed through the rig, creating a venturi effect as the 

compressed air accelerated through the narrowing orifice of the eductor. The agglomerated 

powder was slowly poured into the powder hopper to avoid bridging or arching at the exit of 

the hopper and the venturi in the eductor component created a vacuum that drew the powder in 

the hopper downwards, into the compressed air stream. The powders, on exiting the eductor, 

entered stainless steel tubing (20 mm in length) where particle-particle and particle-wall 

collisions occurred causing the agglomerated powder structures to break down further, before 

sample collection. On collection, the powders were transferred to, and stored in, two (double 

bagged) zip-lock, low density polyethylene bags (VWR, Belgium) at room temperature (20°C) 

and protected from light until analysis. One kilogram of each powder was dispersed at 1 and 3 

bar dispersion pressure yielding three samples for each agglomerated powder: a control, which 

had not been dispersed through the rig (C), and a 1 bar (1b) and 3 bar (3b) sample. Cleaning of 

the rig was completed by dissembling, washing (warm water) and drying (50C) the rig’s 

components in between each dispersion run to avoid cross-contamination between samples.  
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3.3.3 Powder physical properties  

3.3.3.1 Agglomerate size and morphological analysis  

The particle size distribution (PSD) and specific surface area (SSA) analysis of the 

powders was measured using a Mastersizer 3000 equipped with an automated Aero S dry 

powder disperser cell (Malvern Instruments, Worcestershire, UK). Approximately 4 g of each 

sample was placed in the feed hopper of the Aero S cell, set at a height of 4 mm. A feed rate 

of 45% was used to ensure a standard obscuration level was achieved for each powder. The 

lowest possible dispersion pressure of 0.2 bar was used to minimise additional breakage on 

5 mm

19.05 mm

19.05 mm

19.05 mm 10 mm 10 mm

Powder outletCompressed air inlet

Powder inlet

Figure 3.1 Schematic representation of the eductor component of the custom-fabricated 

pressure dispersion unit. 
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dispersion during all PSD analysis. Background and measurement durations of 20 s were used, 

and the particle refractive and absorption indices were set at 1.45 and 0.01, respectively. The 

particle size of the agglomerated dairy powders was reported as the volume-weighted median 

particle diameter (i.e. Dv50 value) and this data was used in later calculations such as 

agglomerate breakage (see Section 3.3.3.2). 

The morphology of the powder samples was analysed via scanning electron microscopy 

(SEM). Each sample was applied to double-sided, adhesive carbon tape and fixed to aluminium 

SEM stubs. A coating (10 nm) of 20:80 palladium:gold was applied to the stubs using a sputter 

coater (Emitech K550X, Ashford, UK) to avoid charging on analysis. The stubs where then 

transferred to the SEM (JSM – 5510, Joel Ltd, Tokyo, Japan) where micrographs were taken 

(5 kV) for each sample to assess the impact of breakage on the morphology of the agglomerated 

powder particle structures. Magnifications varied from 150 – 400 X due to the different particle 

sizes of the three different agglomerated powders. 

 

3.3.3.2 Powder agglomerate breakage  

The extent of agglomerate breakage following dispersion at 1 and 3 bar, as described in 

Section 3.3.2, was calculated for each sample following the method described by Schuck et al. 

(2012a), utilising the following calculation: 

 

Agglomerate breakage (%) =
Ctrl d50 (µm) − d50 @ X bar (µm)

Ctrl d50 (µm)
 . 100 

 

The breakdown of agglomerated powder particles was associated with an increase in the 

quantity of fine powder material in the bulk powder. To quantify the fine material generated 
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on agglomerate breakdown, the Dv10 value (i.e., the particle size value below which 10% of 

the material volume exists) was used as a threshold and all material smaller than this was 

termed ‘fine material’; this was quantified by calculating the area (utilising the Trapezoidal 

rule) under the volume distribution curve (from PSD analysis) for each sample, at each 

dispersion pressure.  

 

3.3.3.3 Distribution of fat in powder particles  

The surface free fat content of each powder sample was quantified post breakage using 

the GEA Niro analytical methods No. 10a (GEA Niro, 2006a) with minor modifications 

previously described by Schmidmeier et al. (2019). Confocal laser scanning microscopy 

(CLSM) was used to visualise the distribution of fat throughout the powder particles and to 

observe any changes occurring as a result of breakdown of agglomerated powders containing 

high bulk fat levels following a method previously described by Drapala et al. (2017). 

 

3.3.4 Powder bulk-handling properties  

3.3.4.1 Particle density, bulk density, occluded and interstitial air 

The particle density of the samples was measured using the Micromeritics Accupyc II 

1340 gas pycnometer, using helium gas as described by per GEA analytical methods No. 11a 

(GEA Niro, 2006b). The bulk and tapped density of the agglomerated powders were measured 

as per GEA methods No. A2a and b, respectively, using a STAV 2003 Stampf-volumeter (J. 

Engelsmaan Apparatebau, Ludwigshafen, Germany) to assess tapped density. The volumes of 

interstitial (Via) and occluded (Voa) air of the samples were then calculated using the method 

described by Schuck et al. (2012b). 
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𝑉𝑖𝑎  (𝑚𝑙 100𝑔−1) = (
1 

𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) 
) - (

1 

𝑡𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) 
).10000 

 

𝑉𝑜𝑎  (𝑚𝑙 100𝑔−1) = (
1 

𝑡𝑎𝑝𝑝𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) 
) - (

1 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (𝑔 𝑐𝑚−3) 
).10000 

 

3.3.4.2 Powder flowability  

The flow index (i) of each sample was determined using a Brookfield Powder Flow 

Tester (PFT) (Brookfield Engineering Laboratories Inc., Middleboro, MA, USA) using a 

method previously described by Crowley et al. (2014). 

 

3.3.5 Rehydration properties 

3.3.5.1 Wettability  

Initially, the IDF wettability standard method 87:2014 (IDF, 2014) was used to assess 

the impact of agglomerate breakdown on the wetting properties of the powder samples. For 

powders that took longer than 60 min to wet (i.e., WPC and FFMP), a modification to the IDF 

standard procedure, previously described by Fitzpatrick et al. (2016), was employed. In brief, 

this modification includes carefully removing any powder particles that have not migrated 

below the water surface (i.e., have not been wetted) 60 min after addition of powder to the 

water surface. The removed, un-wetted particles were then transferred to a pre-weighed 

moisture dish before drying at 103C overnight after which the samples were removed from 

the moisture oven and allowed to cool to room temperature in a desiccator before being 

weighed using an analytical balance. The weight of the un-wetted particles is used to determine 

the amount of wetted particles by difference from the starting weight. The mass of wetted 

particles is then used to determine wettability of each sample using the following calculation: 
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𝑊𝑒𝑡𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑔)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑖𝑡𝑎𝑙 𝑝𝑜𝑤𝑑𝑒𝑟 (𝑔) 
. 100 

 

2.3.5.2 Dispersibility  

A modified version of the IDF dispersibility method 87:2014 (IDF, 2014) was utilised 

whereby powder (10 g) was added to the surface of 250 ml of ultrapure water in an 80 mm 

diameter beaker. Once added, the solution was stirred for 30 s using a metal spatula, allowing 

one motion across the diameter of the beaker per s. A full 360 rotation of the beaker was 

achieved in the 30 s period by slowly rotating the beaker while stirring. After stirring, the 

beaker was left to stand undisturbed for a further 30 s. Following this, the contents of the beaker 

were passed through a 150 m analytical sieve into a receiver beaker. The sieved solution (10 

ml) was pipetted, in duplicate, into pre-weighed moisture dishes and dried at 103C for 2 h. 

Following drying, the dishes were cooled in a desiccator and weighed to calculate total solids 

(TS) of the sieved material. This value was incorporated in a calculation as described in the 

IDF method to calculate the percent dispersibility of samples.  

 

3.3.5.3 Solubility  

To asses powder solubility a 10% (w/w) powder suspension was formed by adding 30 g 

of sample to 270 g of ultrapure water (~22C) in a beaker of 80 mm internal diameter. The 

suspension was stirred at 400 RPM, using an overhead stirrer (Eurostar 100 Control; IKA-

Werke GmbH & Co. KG, Staufen, Germany) equipped with a three-blade impeller (diameter- 

50 mm) for 60 min. Following this a method previously described by McCarthy et al. (2014) 

was used to quantify the solubility of the suspensions using the following calculation: 

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑖𝑑𝑠 𝑜𝑓 𝑠𝑢𝑝𝑒𝑟𝑛𝑎𝑡𝑎𝑛𝑡 (%) 

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑖𝑑𝑠 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 (%) 
. 100 
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3.3.6 Statistical data analysis  

All experimental analyses were conducted in triplicate with the data generated being 

subjected to one-way analysis of variance (ANOVA) using SPSS version 25 (SPSS Inc., 

Chicago, IL, USA). A Tukey's paired-comparison post-hoc test was used to determine 

statistically significant differences (P < 0.05) between mean values for different samples, with 

mean values deemed to be significantly different from each another at a 95% confidence level. 

Unless otherwise stated, results are expressed as mean ± standard deviation from triplicate 

analysis, with statistically significant differences identified using superscript letters. 

 

3.4 Results and discussion  

3.4.1 Quantification of agglomerate breakage   

Initially, all three powders had significantly (P < 0.05) different particle sizes before 

pressure dispersion, with the IF formula sample having the largest Dv50 value of 252 m, 

followed by the WPC and the FFMP samples with Dv50 values of 209 and 120 m, 

respectively (Table 3.1). Powder particle size analysis, before and after pressure dispersion at 

1 and 3 bar, was utilised to quantify the extent of agglomerate breakage occurring in each 

sample. The results, presented in Table 3.1, indicate that significant (P < 0.05) agglomerate 

breakage occurred for all samples; with the Dv50 value for each sample being reduced 

significantly as the samples were conveyed through the dispersion rig at both 1 and 3 bar 

dispersion pressures. The WPC and IF samples, which had highest initial Dv50 values, 

displayed the greatest reductions in particle size on dispersion at 1 and 3 bar. The reduction in 

Dv50 value for the FFMP sample, although significant (P < 0.05), resulted in less of a reduction 
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in particle size, attributable to the smaller initial Dv50 value of the sample in comparison to 

the WPC and IF samples (Table 3.1). These results indicate that agglomerated dairy powders, 

of larger initial particle size, are more susceptible to reduction in particle size during powder 

conveying due to a greater extent of attrition and collisions occurring between other particles 

and solid surfaces, respectively. This finding is in agreement with results presented by 

Boiarkina et al. (2016) in a study comparing the extent of agglomerate breakage from different 

infant formula powder conveying systems (pneumatic and bucket elevator conveying). 

Although larger agglomerates are more susceptible to a reduction in particle size during 

powder conveying; the initial size of the powder must be considered when reporting 

agglomerate breakage. The percentage of agglomerate breakage was calculated for each sample 

after 1 and 3 bar dispersion and the results (Table 3.2) show that relatively similar levels of 

agglomerate breakage were displayed by all samples at each dispersion pressure. At 1 bar 

dispersion, the WPC and FFMP samples were broken down by 8.12 and 8.56%, respectively, 

whereas, the IF samples showed a lesser extent of agglomerate breakage at this dispersion 

pressure, as only 5.29% agglomerate breakage occurred. At 3 bar dispersion, the FFMP sample 

showed the lowest level of agglomerate breakage (21.7%) followed by the IF (23.1%) and 

WPC (26.3%) samples. These results indicate that although larger agglomerates are more 

susceptible to a reduction in particle size during conveying, the resulting levels of agglomerate 

breakage for small (FFMP) and large (WPC and IF) agglomerated powders are relatively 

similar
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    Dv10 Dv50 Dv90 D[4,3] D[3,2] SSA ρp 

  ----------------------------------------------------µm-------------------------------------------------- kg m-2 g cm-1 

WPC 

C 95.6 ± 0.52a 209 ± 1.15a 365 ± 4.73a 221 ± 1.53a 165 ± 0.58a 27.3 ± 0.12a 1.25 ± 0.01a 
        

1b  87.6 ± 0.06b 192 ± 0.58b 336 ± 2.52b 203 ± 1.00b 152 ± 0.58b 29.7 ± 0.08b 1.24 ± 0.01b 
        

3b 67.1 ± 0.15c 154 ± 1.53c 269 ± 4.73c 162 ± 1.53c 118 ± 0.58c 38.3 ± 0.15c 1.25 ± 0.01a 

FFMP 

C 43.7 ± 0.35a 120 ± 1.15a 231 ± 3.51a 130 ± 1.53a 83.7 ± 0.71a 53.9 ± 0.46a 1.23 ± 0.01a 
        

1b  40.0 ± 0.23b 110 ± 1.15b 213 ± 6.35b 120 ± 2.31b 76.3 ± 0.59b 59.2 ± 0.44b 1.22 ± 0.01b 
        

3b 34.5 ± 0.10c 94.5 ± 0.45c 183 ± 3.00c 103 ± 0.88c 65.2 ± 0.26c 69.2 ± 0.26c 1.23 ± 0.01a 

IF 

C 109 ± 0.58a 252 ± 2.65a 492 ± 6.66a 280 ± 3.06a 193 ± 1.53a 23.5 ± 0.17a 1.26 ± 0.01a 
        

1b  99.2 ± 0.71b 239 ± 3.79b 455 ± 9.17b 259 ± 0.10b 178 ± 2.65b 25.4 ± 0.35b 1.26 ± 0.01a 
        

3b 76.1 ± 0.15c 194 ± 1.53c 352 ± 4.16c 205 ± 2.08c 139 ± 0.58c 32.5 ± 0.16c 1.26 ± 0.01b 

Values followed by different superscript letters in the same column, for each sample, are significantly different (P < 0.05). 
a Dv10 Particle size below which 10% of material volume exists 
b Dv50 Particle size below which 50% of material volume exists 
c Dv90 Particle size below which 90% of material volume exists 
d D[4,3] volume-weighted mean particle diameter  
e D[3,2] surface-weighted mean particle diameter  

 

Table 3.1 Powder physical properties, including particle size distribution parameters, specific surface area (SSA) and particle density (ρp) of whey 

protein concentrate (WPC), fat filled milk (FFMP) and infant formula (IF) powders before (C) and after pressure dispersion at 1 (1b) and (3b) 3 bar. 
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Agglomerate 

breakage 
ρbulk ρtapped Via Voa i 

  % ---------------g cm-3-------------- -----------ml 100g-1---------- - 

WPC 

C n.a. 0.25 ± 0.01a 0.36 ± 0.01a 198 ± 2.17s 11.0 ± 0.19a 9.32 ± 0.64a 
       

1b  8.12 ± 0.79 0.26 ± 0.01b 0.38 ± 0.01b 184 ± 4.17b 11.6 ± 0.23b 7.50 ± 0.29b 
       

3b 26.3 ± 0.76 0.27 ± 0.01c 0.42 ± 0.01c 156 ± 3.00c 11.2 ± 0.23ab 5.07 ± 0.67c 

FFMP 

C n.a. 0.39 ± 0.03a 0.54 ± 0.01a 103 ± 1.98a 5.13 ± 0.04a 5.58 ± 0.18a 
       

1b  8.56 ± 0.92 0.40 ± 0.03b 0.58 ± 0.01b 91.0 ± 4.21b 5.34 ± 0.06b 5.42 ± 0.60a 
       

3b 21.7 ± 0.44 0.44 ± 0.09c 0.60 ± 0.01c 84.0 ± 1.09c 5.03 ± 0.09a 4.93 ± 0.28a 

IF 

C n.a. 0.43 ± 0.03a 0.56 ± 0.01a 99.3 ± 1.13a 4.77 ± 0.05a 16.1 ± 0.68a 
       

1b  5.29 ± 1.00 0.45 ± 0.03b 0.58 ± 0.01b 92.6 ± 1.98b 4.73 ± 0.04b 12.9 ± 1.39b 
       

3b 23.1 ± 0.23 0.49 ± 0.09c 0.63 ± 0.01c 78.9 ± 2.00c 4.52 ± 0.01ab 10.2 ± 0.30c 

    Values followed by different superscript letters in the same column, for each sample, are significantly different (P < 0.05). 

     n.a =  not applicable 

Table 3.2 Agglomerate breakage, bulk density (ρbulk), tapped density (ρtapped), volume of interstitial air (Via), volume of occluded air (Voa) and flow 

index (i) of whey protein concentrate (WPC), fat filled milk (FFMP) and infant formula (IF) powder before (C) and after pressure dispersion at 1 

(1b) and 3 (3b) bar. 
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Figure 3.2 Cumulative distribution profiles showing particle size of whey protein concentrate 

(WPC; a), fat filled milk (FFMP; b) and infant formula (IF; c) powder before (—) and after 

pressure dispersion at 1 (- - -) and 3 (- ᐧ -) bar. 
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3.4.2 Influence of agglomerate breakage on powder properties  

3.4.2.1 Powder physical and bulk properties  

Clear changes to the powder particle properties for all samples were measured on 

increasing dispersion pressure. A reduction in particle size resulted in a subsequent and 

significant (P < 0.05) increase in the SSA of each sample (WPC; 27.3 to 38.3 kg m-2, FFMP; 

53.9 to 69.2 kg m-2 and IF; 23.5 to 32.5 kg m-2) (Table 2.1). As powder particles break down, 

and the particle size is reduced, the exposed surfaces of the now broken down particles will be 

of a much greater area, allowing for increased magnitude and number of interparticle 

interactions occurring at the powder bulk level (Crowley et al., 2014; Han et al., 2019). 

The reduction in particle size and subsequent increase in the appearance of fine materials 

in all samples, led to a further significant increase (P < 0.05) in the bulk density of each sample, 

a key quality parameter for further application of powder e.g., transport costs and dosage 

control (Schulze, 2008). The WPC sample showed an 8% increase in bulk density at 3 bar 

dispersion while the bulk density of the FFMP and IF samples increased by 13 and 14% 

respectively, at the same dispersion pressure (Table 2.2). The increase in bulk density occurring 

on agglomerate breakage is a consequence of the broken down agglomerates packing together 

into closer arrangement due to their decreased size and increased uniformity, therefore taking 

up a smaller volume in a given space. These results are in agreement with work completed by 

Hanley et al. (2011a) who also showed an increase in bulk density occurred in a range of IF 

sample after lab-scale powder conveying. 

Although the WPC sample showed the lowest increase in bulk density, it conversely 

experienced the greatest increase in tapped density on agglomerate breakage, which is another 

key physical property used to predict the bulk handling properties of a powder, post production 
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in processes such as transport and storage (Abdullah and Geldart, 1999). The tapped density of 

the WPC sample increased by 17% after 3 bar dispersion, whereas the increase in the tapped 

density of the FFMP and IF was 11 and 13%, respectively (Table 3.2). These results suggest 

that although the agglomerates of the WPC sample were considerably broken down, the 

agglomerate structures still present in the bulk required further energy to encourage them into 

a closer arrangement, whereas for the FFMP and IF samples the agglomerate structures were 

broken down in a manner that allowed for this close arrangement of particles to occur in the 

bulk powder before further energy input (i.e., tapping).  

Gas pycnometery analysis employed here showed that the WPC sample had over twice 

the amount of occluded air (11.0 ml 100 g-1) than that of the FFMP and IF samples (5.13 and 

4.77 ml 100 g-1, respectively). This is attributable to its higher bulk protein content which 

causes hollow primary powder particles, with large amounts of entrapped air, to be formed 

during spray drying (Bouman et al., 2016) (Table 3.2). A similar finding was reported by 

Crowley et al. (2014) in a study where the content of occluded air increased on increasing 

protein content over a range of milk protein concentrate powders. The presence of occluded air 

is clearly evident in the scanning electron micrographs where the WPC powder particles seem 

to be agglomerates of hollow primary particle shells with large amounts of entrapped occluded 

air, also present, but to a lesser extent in the FFMP sample (Figure 3.3). However, the IF 

samples had the appearance of more compact, dense agglomerated powder particle structures. 

It is hypothesised here that these hollow particle shells, of which the WPC agglomerates (and 

to some extent the FFMP sample) were composed of, acted as fragile points in the agglomerate 

structures, allowing for extensive breakage to occur at these points during the impacts 

experienced during pressure dispersion. This hypothesis is reinforced by the significant 
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increase (P < 0.05) in the presence of fine material present in the powder bulk of the WPC 

sample, which was the highest of all three samples, which easily breaks off of the friable, 

hollow powder particles present in the WPC powder bulk (Figure 3.4). 

A significant reduction (P < 0.05) in the volume of interstitial air was experienced for all 

samples, with the WPC sample, which had the largest initial volume, again, experiencing the 

largest loss on agglomerate breakdown, reducing from 198 to 156 ml 100 g-1 on pressure 

dispersion at 3 bar. The IF sample had a decrease from 99.3 to 78.9 ml 100 g-1 while the volume 

of interstitial air on in the FFMP was reduced from 103 to 84.0 ml 100 g-1, at the same 

dispersion pressure (Table 3.2). The presence of interstitial air located between agglomerates 

and between neighbouring powder particles within an agglomerate structure, is one of the key 

quality characteristics desired from the agglomeration process. This interstitial air contributes 

to the improvement of powder flowability and wettability associated with powder 

agglomeration, acting to reduce the magnitude of interparticle interactions and to encourage 

the movement of water through the powder bulk via capillary action, respectively (Forny et al., 

2011; Shah et al., 2017). 

 

2.4.2.2 Fat distribution 

Initially, all samples had relatively similar concentrations of surface free fat present at 

the agglomerated powder particles (WPC; 0.57 g 100 g-1, FFMP; 0.53 g 100 g-1 and IF; 0.66 g 

100 g-1) (Figure 3.5) even though large variations in the bulk fat concentrations were present 

between the samples. Both the FFMP and IF samples contained high concentrations of bulk fat 

(28.7 and 25.6% fat, respectively) while the WPC sample in comparison, contained a much 

lower concentration (8.50% fat). The similar levels of surface free fat, before pressure 



Chapter 3 

    93 

dispersion, is attributed to the over-representation of fat occurring at the surface of spray dried 

dairy powders, caused by the atomisation step of the spray drying process. Here, the spray 

dryer feed is preferentially dispersed into discrete droplets at the presence of fat globules 

(lowest point of cohesion in the liquid stream), therefore arranging fat globules at the surface 

of the droplet where they are stabilised on subsequent spray drying (Foerster et al., 2016a, 

2016b).



Chapter 3 

    94 

 

IFFFMPWPC

C
1b

3b

Figure 3.3 Scanning electron micrographs of whey protein concentrate (WPC) – 370 X magnification, fat filled milk powder (FFMP) – 400 X 

magnification and an infant formula (IF) powder sample – 150 X magnification; before (C) and after pressure dispersion at 1 (1b) and 3 (3b) 

bar (3b) 
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Figure 3.4 Proportion of fine material in the whey protein concentrate (WPC), fat filled milk 

(FFMP) and infant formula (IF) powder before (C; ) and after pressure dispersion at 1 (1b;

) and 3 (3b; ) bar. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

WPC FFMP IF

S
u

rf
ac

e 
fr

ee
 f

at
 (

g
 1

0
0
g

-1
)

C 1b 3b

a
a

c

b

a

c

b

a
a

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

WPC FFMP IF

S
u

rf
ac

e 
fr

ee
 f

at
 (

g
 1

0
0
g

-1
)

C 1b 3b

a
a

c

b

a

c

b

a
a

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

WPC FFMP IF

S
u

rf
ac

e 
fr

ee
 f

at
 (

g
 1

0
0

g
-1

)

C 1b 3b

a
a

c

b

a

c

b

a
a

Figure 3.5 Concentrations of surface free fat present on the surface of whey protein 

concentrate (WPC), fat filled milk (FFMP) and infant formula (IF) before (C; ) and after 

pressure dispersion at 1 (1b; ) and 3 (3b; ) bar. 
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Although all samples had similar initial surface free fat contents, a significant 

increase (P < 0.05) in the concentration of free fat on the powder surfaces was only 

distinguishable in the FFMP (0.55 to 0.93 g 100 g-1) and IF (0.66 to 0.82 g 100 g-1) 

samples on increasing dispersion pressure (Figure 3.5). As these powders contained 

much higher concentrations of fat, a homogenisation step is utilised during their 

production in order to stabilise the fat by reducing fat globule size before spray drying 

(Drapala et al., 2017; O’Sullivan et al., 2018). On agglomerate breakdown however; 

new surfaces, once hidden within the interior of the powder particles, become exposed, 

leading to increases in the concentrations of free fat on the particle surfaces for the 

FFMP and IF samples. This increase in surface free fat was significant (P < 0.05) at 

both the 1 and 3 bar dispersion pressures for the FFMP sample, whereas, for the IF 

sample, the increase was only significant after dispersion at 3 bar due to increased 

breakage at this pressure (Figure 3.5). These results are in agreement with previous 

finding by Hanley et al. (2011b) who also reported an increase in surface free fat on 

breakdown of an IF sample. 

CSLM analysis was conducted on the FFMP sample which showed the greatest 

increase in the concentration of surface free fat occurring on agglomerate breakdown. 

The resulting micrographs (Figure 3.6) showed a distribution of small fat globules, 

dispersed through the particle’s bulk structure. However, also present in the CSLM 

micrographs were large pools of coalesced fat globules which were primarily located 

along the pockets of occluded air, within the powder particle. During spray drying, fat 

migrates through the atomised droplet, towards air/water interfaces, including any 

pockets of occluded air that form during the spray drying process (Fäldt and 

Bergenståhl, 1996; Kim and Pearce, 2009). As previously stated, the presence of 

occluded air pockets provides weak points in powder particle structures, therefore, 
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agglomerate breakage at these points caused large pools of coalesced fat to become 

exposed at the newly altered powder surface. Now exposed, at surface level, fat acts 

to strongly influence (generally inversely) the resulting bulk handling and rehydration 

properties of a powder. Increasing surface free fat leads to an increase in the surface 

hydrophobicity of the bulk powder and contributes to increased interparticle 

interactions, critical to the wettability and flowability properties, respectively 

(Fitzpatrick et al., 2017; Kim et al., 2005).  

 

A

B

(a)

(b) (c)

Figure 3.6 (a) Scanning electron micrograph of fat filled milk powder sample (2300 X 

magnification) displaying a fragmented particle containing a large air vacuole and (b and c) 

confocal scanning laser micrographs of the same sample illustrating large pools of exposed 

coalesced fat (stained red), exposed due to agglomerate breakdown post pressure dispersion. 
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The WPC sample showed no significant increase (P > 0.05) in the 

concentrations of surface free fat on pressure dispersion suggesting that the surfaces, 

exposed by agglomerate breakdown, contained negligible amounts of fat. This may be 

attributed to the low bulk fat content of this powder, meaning that a homogenisation 

step was not utilised during its manufacture (Schuck, 2013). Therefore, a very high 

proportion of the bulk fat can be expected to be over-represented at the surface of the 

powder particles with very low amounts dispersed within the interior bulk structure, 

which become exposed on agglomerate breakage (Figure 3.5).  Similar results were 

presented in a study by Kelly et al. (2015) for a milk protein concentrate powder with 

a similar protein:fat ratio. 

 

2.4.3 Influence of agglomerate breakdown on powder flowability  

Agglomerate breakage, led to a reduction in the flow index (i) value for all 

samples (Table 3.2). This reduction was significant (P < 0.05) for the WPC and IF 

samples, as these samples experienced the greatest reduction in particle size after 

dispersion, whereas for the FFMP sample, the reduction was not significant (P > 0.05). 

The WPC sample, which showed the greatest extent of agglomerate breakage, also 

displayed the greatest reduction in powder flowability, with the i value reducing from 

9.32 to 5.07 after dispersion at 3 bar (45.6% reduction). This may be attributed to the 

significant (P < 0.05) increase in powder bulk density and SSA, as well as the 

significant (P < 0.05) decrease in the volume of interstitial air (Tables 3.1 and 3.2). In 

combination, this acts to bring the powder particles into closer arrangement, resulting 

in a greater number and strength of interparticle interactions (e.g., van der Waals and 

electrostatic interactions) occurring at bulk powder level, which reduces powder 

flowability through increased cohesive bulk strength (Zafar et al., 2017). A 
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considerable reduction in the flow index also occurred in the IF sample (16.1 to 10.2 

i.e., 36.6% reduction) due to the same resulting effects of a reduction in particle size 

as described above for the WPC sample. Additionally, the increase in surface free fat 

occurring in the FFMP and IF samples on agglomerate breakdown may contribute to 

the reduction in powder flowability (Figures 3.5 and 3.6). Once exposed on a powder 

particle surface, fat has the propensity to form liquid bridges between neighbouring 

particles, causing a further increase in the cohesive forces in the powder bulk; this is 

particularly problematic in dairy products such as FFMP and IF which contain high 

concentrations of fat in their bulk composition (Foster et al., 2005). Although the 

reduction in the flow index of the FFMP sample was not significant (P > 0.05) (5.58 

to 4.93 i.e., 11.6% reduction), it must be noted that the flowability of the control FFMP 

(non-dispersed) form was considerably lower than that of the WPC and IF samples, 

due to the smaller size of the initial agglomerated powder particles and therefore, even 

a minor reduction in flowability could have a considerable effect on further 

application. 

 

3.4.4 Influence of agglomerate breakdown on powder rehydration  

3.4.4.1 Wettability   

For the IF sample, due to its instant nature, the standard IDF method was 

appropriate for measuring the sample’s wettability and the results showed that the 

control sample wetted within 18.7 s. The time required for wetting increased 

significantly (P < 0.05) after dispersion at 1 and 3 bar pressure with wetting times of 

21.3 and 35.0 s, respectively (Table 3.3).  

Analysis of the wettability of both the WPC and FFMP samples required a 

modification of the IDF method (Section 3.3.5.1), due to their non-instant nature 
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(Schuck, 2012c). The results showed that both samples also displayed a significant (P 

< 0.05) impairment in their wettability on agglomerate breakdown. The WPC sample 

had a wettability of 68.7% but this was reduced to 59.4 and 39.2% on pressure 

dispersion at 1 and 3 bar respectively. Similarly, the FFMP initially had a wettability 

level of 65.9% with reductions to 46.6 and 34.9% when dispersed at 1 and 3 bar, 

respectively.  

The impairment to powder wettability, resulting from agglomerate breakdown 

can be attributed to two major causes, firstly; the reduction in the volume of interstitial 

air, and secondly, the increase in concentrations of surface free fat. The presence of 

interstitial air between agglomerates and between neighbouring powder particles 

within an agglomerate structure encourage rapid wetting, as they act as channels 

allowing water to more freely penetrate the powder bulk via capillary movement. A 

reduction in the volume of interstitial air will cause the wetting to occur at a much 

slower pace, such as seen in the WPC sample (Table 3.2). The increase in 

concentration of free fat at the surface of powder particles, caused by agglomerate 

breakdown, also acted to inhibit efficient wettability by causing an increase in the 

hydrophobicity of the surfaces of the powder particles, which contributed to the 

impairment of wettability of the FFMP and IF samples (Figure 3.5 and 3.6). 
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    --------------Wettability------------ Dispersibility Solubility 

  s % % % 

WPC 

C > 1 hr 68.7 ± 4.41b 89.4 ± 0.95b 95.8 ± 0.39a 

1b  > 1 hr 59.4 ± 2.71b 87.9 ± 0.80b 94.4 ± 0.48a 

3b > 1 hr 39.2 ± 3.88a 82.8 ± 1.28a 92.8 ± 0.34a 

FFMP 

C > 1 hr 65.9 ± 3.64b 75.2 ± 1.90c 73.8 ± 0.73a 

1b  > 1 hr 46.6 ± 4.02b 69.8 ± 3.38b 72.1 ± 0.17a 

3b > 1 hr 34.9 ± 3.20a 62.9 ± 3.14a 71.0 ± 0.63a 

IF 

C 18.7 ± 0.61a 100 91.4 ± 0.31c 99.5 ± 0.27a 

1b  21.3 ± 1.24b 100 89.4± 1.27b 99.0 ± 0.38a 

3b 35.0 ± 1.02c 100 84.8 ± 0.39a 98.6 ± 0.34a 

Values followed by different superscript letters in the same column, for each sample are significantly different (P < 0.05).

Table 3.3 Rehydration properties of whey protein concentrate (WPC), fat filled milk (FFMP) and infant formula (IF) powder before (C) and after 

pressure dispersion at 1 (1b) and 3 (3b) bar.  
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3.4.4.2 Dispersibility and solubility  

As the rehydration process continues, and in most cases, increased energy input 

is provided (i.e., through shear or heat) it was expected that the adverse effects of 

agglomerate breakage on rehydration may be diminished. However, a decrease in the 

dispersibility was also displayed by all samples, meaning that the agglomerated 

powder particles broke apart and became dispersed in the rehydration liquid to a lesser 

extent post pneumatic conveying. This reduction in dispersibility was significant (P < 

0.05) for both the FFMP and IF samples at each dispersion pressure (1 and 3 bar), with 

reductions in the levels of dispersibility from 65.9 and 91.4% to 62.9 and 84.8%, 

respectively (Table 2.3). The reduction of WPC dispersibility was not significant (P > 

0.05) between the control and 1 bar sample (89.4 to 87.9%), but at the 3 bar dispersion 

level, where further agglomerate breakdown occurred, this reduction in powder 

dispersibility (82.8%) was significant (P < 0.05) (Table 2.3). The more significant loss 

of dispersibility in the FFMP and IF samples than that of the WPC sample, suggest 

that the increase in surface free fat, caused by agglomerate breakdown (considerable 

increase in FFMP and IF samples), has a greater impact on the latter stages of 

rehydration then losses in the volume of interstitial air (considerable decrease in WPC 

sample) (Table 3.2 and Figure 3.5). 

At the final stage of the rehydration process (i.e., powder solubility), enough 

time and energy had been provided to overcome the negative effects of agglomerate 

breakdown as there was no significant decrease (P > 0.05) in the solubility at each 

dispersion pressures for all samples. 

 

2.5 Conclusion 

In conclusion, the results from this study indicate that the initial size of 

agglomerated dairy powder particles is a determinant of the extent to which particle 
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size reduction occurs on powder conveying, i.e., larger agglomerate structures 

experience a greater reduction in particle size. The resulting effects of this breakage 

were displayed on analysis of the physical and bulk-handling properties of the 

samples, with significant decreases measured in particle size, specific surface area and 

volumes of interstitial air and concomitant increases in bulk and tapped density of each 

sample on pressure dispersion. The significant adverse effects agglomerate breakage 

can have on both the flowability and rehydration properties of the powder samples 

were demonstrated through this study. Powder flowability was decreased for all 

samples, attributed to increased particle-particle interactions, as broken-down 

agglomerates could pack together into closer conformations. The initial stages of 

rehydration (i.e., wettability and dispersibility) were significantly impeded by 

agglomerate breakdown though a combination of increased surface free fat (for the 

FFMP and IF samples) and a reduction in the volumes of interstitial air, both of which 

limit the movement of water through the powder bulk on rehydration. Although partial 

agglomerate breakdown is inevitable on powder conveying, the new insights provided 

here may be utilised to improve exiting industrial powder handling processes and final 

powder functionality. 
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4.1 Abstract  

Milk protein isolate (MPI) is a commercially important dairy ingredient powder which 

is highly enriched in milk proteins. Due to this high protein content, MPI often 

displays both poor handling (e.g., powder flowability) and rehydration properties, 

which serve to limit its applications. In this study, agglomeration was investigated as 

a means of modifying the physical, bulk handling and rehydration properties of MPI. 

The binder solutions used ranged from traditional, such as water (B-H2O) and lactose 

(B-Lac), to more novel, protein-based binders (B-MPI, B-MPIheat and B-MPITSC), 

which have the potential to limit the unwanted compositional changes incurred with 

the use of traditional binders. Particle size analysis demonstrated that not only were 

the novel binders capable of achieving agglomeration, the extent of agglomeration 

achieved was greater than for the traditional binders (B-H2O and B-Lac); most notably 

the B-MPITSC solution, with relatively high viscosity (12.5 mPa.s), facilitated the most 

extensive agglomeration of MPI (D[4,3] increased from 36.9 to 136 m). Furthermore, 

the application of these novel binders resulted in minimal compositional changes, with 

protein content reducing from 85.1 to 82.8-83.8%. The flowability of MPI was 

significantly improved on agglomeration, with B-MPITSC showing the greatest 

improvement, as evident from flow index increasing from 4.73 to 6.17. Wettability of 

MPI was also improved significantly using all binders, due to the densified nature of 

the agglomerates; however, these dense structures restricted the latter stages of 

rehydration. These novel findings will underpin the development of next-generation 

MPI-type powder ingredients with tailored physical, bulk-handling and rehydration 

properties. 
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4.2 Introduction  

Milk protein isolate (MPI) is a high protein dairy ingredient which is produced 

commercially by enriching all of the proteins present in milk (via centrifugal 

separation and membrane filtration) before spray drying into powder form. The 

resulting ingredient contains a high proportion of milk proteins (≥ 90%) which are 

associated with notable functional, nutritional and bioactive properties in a form that 

allows for easier storage and transport than liquid milk for more efficient further 

application (Hazlett et al., 2018; Schuck, 2013; Zayas, 1997). Continual growth has 

been displayed by the high-protein dairy ingredient market, driven strongly by their 

inclusion in numerous high-value commercial applications, such as infant and elderly 

nutritional formulations, as well as products where a “high protein” label declaration 

is desired; including, but not limited to, yogurts, breakfast bars and coffee drinks. The 

latter market, in particular, has displayed a ~500% increase between 2010 and 2015 

in the UK, and the continual forecasted growth of these ingredients has motivated 

additional requirements for improved and diversified functional properties (Bord Bia, 

2018; Markets and Markets, 2018).  

MPIs (and other high-protein ingredients) often have poor bulk-handling (e.g., 

powder flowability) and rehydration properties (e.g., clumping on wetting and poor 

solubility) which restricted applications of this ingredient. These challenges are 

normally manifested during storage and discharge from silos, transportation through 

pipes (i.e., powder conveying) and further powder processing operations (e.g., 

rehydration and dry blending) (Fitzpatrick et al., 2017, 2007). In recent years work 

has been completed to improve the handling and rehydration properties of these 

ingredients in order to ensure that such ingredients can align with their forecasted 

commercial growth (Ji et al., 2017, 2016). 
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Traditionally, dairy powders (such as skim and whole milk powder) are 

agglomerated during their production in order to improve their functional properties- 

notably their flowability and wettability. Agglomeration of powder is a process of 

particle size enlargement whereby numerous individual primary powder particles are 

combined together into cluster-like structures, where the individual primary particles 

may still be distinguished (Cuq et al., 2013; Iveson et al., 2001). Agglomeration of 

powder particles may be achieved through a combination of fines return and 

application of binder solutions, such as lecithin, during spray and fluid-bed drying in 

order to combine numerous primary powder particles into larger clustered structures 

(Pisecky, 2012). This agglomeration process is rarely utilised at commercial-scale 

during the production of MPI (or other high protein ingredients) as it has the 

propensity to yield unwanted changes in the resulting bulk powder such as a decrease 

in the already low bulk density (due to the incorporation of interstitial air) and 

decreases in the overall protein content of the final powder (due to the application of 

binder solutions). Recent research has been conducted on the agglomeration of high 

protein powders; Palmer et al. (2018) previously established a method whereby 

protein solutions are used as a binder solutions, in place of lecithin, to agglomerate a 

whey protein isolate ingredient during fluid bed drying. The resulting powder had 

improved functional properties (i.e., flowability and wettability) without alterations to 

the final protein concentration, allowing the ingredient to still be classified as a protein 

isolate.  

The current study was designed with the aim of improving the flowability and 

rehydration properties of an MPI powder via agglomeration with an emphasis on the 

application and assessment of novel protein-based binder solutions to achieve powder 

agglomeration. Here, two traditional binder solutions (i.e., water and lactose) and three 
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MPI solutions with varying pre-treatments (i.e., native, heated and dissociated) were 

applied to an MPI powder in order to increase particle size and bring about 

improvements in flowability and rehydration properties of the powder, respectively. 

The effectiveness of each binder solution was measured through direct analysis of the 

binder solutions, followed by analysis of the treated powders (post-agglomeration) 

compared to an untreated control in order to assess the extent of agglomeration 

achieved.  

 

4.3 Material and methods  

4.3.1 Materials and compositional analysis  

The MPI ingredient used in this study was kindly provided by Kerry Ingredients 

(Tralee, Co. Kerry, Ireland) and was used both as the bulk powder in which 

agglomeration occurred and for the formation of protein containing binder solutions 

used in the agglomeration process. Trisodium citrate (TSC), used to achieve casein 

micelle dissociation, was provided by Citrique Belge (N.V., Tienen, Belgium); while 

all other chemicals and reagents, unless otherwise stated, were sourced from Sigma-

Aldrich (Wicklow, Ireland) and were of analytical grade. Compositional analysis of 

the MPI powder, before and after the agglomeration process, was conducted to 

investigate the impact of agglomeration on the bulk composition of the powder. The 

total nitrogen was determined using the Kjeldahl method (using a nitrogen to protein 

conversion factor of 6.38) (AOAC, 1994), while the moisture content of the powders 

was determined using the standard IDF method (IDF, 2004). 
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4.3.2 Binder preparation 

Five binder solutions were used for agglomeration of the MPI powder: ultrapure 

water (B-H2O), a 15% (w/v) lactose solution (B-Lac), an 8% (w/v) protein MPI 

solution (B-MPI), an 8% (w/v) protein MPI solution heated to 95C (B-MPIheat) and 

an 8% (w/v) protein MPI solution containing 15 mM TSC (B-MPITSC). The B-lac 

solution was prepared by rehydrating the required amount of lactose powder (150 g) 

in approximately 80% of the total required volume of ultrapure water using overhead 

stirring at 500 RPM, followed by making up to final volume of 1 L. The batches of 

8% protein MPI solutions were formed by dispersing the required amount of MPI 

powder (94 g) in approximately 80% of the total required volume of ultrapure water 

using overhead stirring at 300 RPM. After a total of 6 h overhead stirring, the solutions 

were magnetically stirred, at a low speed, for 14 h at 4C to allow for casein micelle 

rehydration. Following overnight rehydration at 4C, the samples were made up to 

final volume (1 L) using ultrapure water. Static light scattering using a Mastersizer 

3000 unit (Malvern Instruments, UK) was employed as previously described by 

Crowley et al. (2015) in order to confirm that complete solubilisation of MPI occurred 

on rehydration, with the particle size and the native pH of the solutions being reported 

in Table 3.1. For the B-MPITSC binder solution, the required amount of 1 M TSC stock 

solution (15 mL) required to achieve a final concentration of 15 mM TSC, was added 

to the binder solution prior to overnight storage at 4C to allow the TSC adequate time 

to chelate colloidal calcium phosphate (CCP) from the casein micelles, causing 

micelle dissociation. For the B-MPIheat binder solution, 28 g aliquots of the 8% protein 

MPI solution were subjected to a lab-scale heat treatment using a TA Instruments AR-

G2 controlled-stress rheometer (Crawley, West Sussex, UK), equipped with a starch 

pasting cell geometry, as previously described by Crowley et al. (2016), with minor 
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modifications. The solution was heated to 95C and held for 2 min before cooling to 

15C and holding for a subsequent 10 min. Each aliquot was combined in a single 

batch, forming the B-MPIheat binder solution. 

 

4.3.3 Analysis of binder solutions 

4.3.1 Viscosity analysis 

The apparent viscosity of the binder solutions were measured using a rotational 

viscometer (HAAKE RotoVisco 1, Thermo Fisher Scientific, MA, USA) following a 

method previously described by France et al. (2020). 

 

4.3.2 Surface hydrophobicity  

Surface hydrophobicity was determined using the method of Alizadeh-Pasdar 

and Li-Chan (2000) with some minor modifications. The hydrophobic probe, 1-

anilinonaphthalene-8-sulphonic acid ammonium salt (ANS), was used. Samples were 

diluted to 5 different protein concentrations in a sample buffer (0.1 M citric acid/0.2 

M Na2HPO4) as follows: 0.003, 0.006, 0.009, 0.012 and 0.015% (v/v). Aliquots (100 

µL) of each protein solution were added in duplicate to a black, flat-bottomed 96 well 

plate and 50 μL of 8x10-5 M ANS (in 0.1 M phosphate buffer) was added to one half 

of the wells. The plate was gently rocked for 15 min in the dark using a plate shaker 

after which the fluorescence intensity was measured using a Varioskan Flash plate 

reader (Thermo Fisher Scientific Oy, Finland) with excitation and emission 

wavelengths of 390 and 470 nm respectively. The slope value (where in all cases r2 

values were 0.97-0.99) was used to express the surface hydrophobicity in each sample. 
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4.3.3 Turbidity  

The turbidity of the protein containing binders (i.e., B-MPI, B-MPIheat and B-

MPITSC) was measured following a method described by De Kort et al. (2011), with 

minor modifications. The turbidity of the binder solution was measured using a Cary 

300 Bio UV-visible spectrophotometer (Agilent Technologies Inc., Santa Clara, CA, 

USA) set at a wavelength of 600 nm with no prior dilution of the binders. 

 

4.3.4 Powder agglomeration process 

The lab-scale agglomeration process involved adding 200 g of MPI powder to 

the mixing bowl of a Thermomix food processor (Vorwerk, Wuppertal, Germany) 

equipped with a whisk attachment to allow for heterogenous powder mixing. The 

powder was then mixed, using the 4 central blades, at a speed of 500 RPM, at 55C, 

for 2 min to allow for equilibration of the powder bulk to the internal vessel 

temperature. Following this, a flexible, medical atomisation device (LMA MADgic, 

Teleflex, Westmeath, Ireland) was lowered into the mixing vessel in order to atomise 

50 ml of the specified binder directly onto the powder, over 2 min, achieving a 20% 

total binder addition level. After binder addition, the wetted powder was allowed to 

mix for a further 2 min to allow for further agglomerate formation and solidification. 

After a total mixing time of 6 min, the wetted agglomerates were removed from the 

vessel and spread on a drying sheet before drying at 55C using an oven, for 2.5 h. 

The agglomerated powder was removed from the oven every 30 min and mixed 

manually in order to achieve adequate and uniform drying. The dried agglomerates 

were then transferred to zip-lock, low density polyethylene bags (VWR, Belgium) and 

cooled in a desiccator overnight at 22C. The next day, the agglomerated powders 

were passed through a 710 m analytical sieve in order to separate any oversized 
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agglomerated material. This oversized material was then processed with an ultra-

centrifugal mill (ZM 200, Retsch GmbH, Haan, Germany), equipped with a 500 m 

screen, in order to reduce the particle size of the material to ≤500 m. The milled and 

sieved fraction were then recombined (hereafter termed “treated powders”) and were 

passed through an antistatic gate (PRX U SET, Haug GmbH, Leinfelden-

Echterbingen, Germany) in order to eliminate excess charge at the surface of the 

agglomerated powder particles before storage in two (double bagged) zip-lock, low 

density polyethylene bags (VWR, Belgium) located in a desiccator 22°C.  

 

4.3.5 Powder particle size, specific surface area and morphological analyses  

The particle size distribution (PSD) and specific surface area (SSA) of the 

control and treated samples were measured using a Mastersizer 3000 equipped with 

an automated Aero S dry powder disperser cell (Malvern Instruments, Worcestershire, 

UK). Approximately 4 g of each sample was placed in the feed hopper of the Aero S 

cell, set at a height of 4 mm and a feed rate of 45% was used to ensure a standard 

obscuration level was achieved for each powder. The lowest available dispersion 

pressure of 0.2 bar was used to minimise agglomerate breakage on dispersion during 

all PSD analyses. Background and measurement durations of 20 s were used, and the 

particle refractive and absorption indices were set at 1.45 and 0.01 respectively. 

Powder particle morphology was assessed for the control and treated samples using 

scanning electron microscopy (SEM). Each sample was applied to double-sided, 

adhesive carbon tape and fixed to aluminium SEM stubs. A coating (10 nm) of 20:80 

palladium:gold was applied to the stubs using a sputter coater (Emitech K550X, 

Ashford, UK) to avoid charging on analysis. The stubs where then transferred to the 
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SEM (JSM – 5510, Joel Ltd, Tokyo, Japan) where micrographs were taken (5 kV) for 

each sample at 500 X magnification. 

 

4.3.6 Powder bulk handling properties  

The flow index (i) of each sample was determined using a Brookfield Powder 

Flow Tester (PFT) (Brookfield Engineering Laboratories Inc., Middleboro, MA, 

USA) using a method previously described by Crowley et al. (2014). The particle 

density of each sample was measured using the Micromeritics Accupyc II 1340 gas 

pycnometer, using helium gas as described in GEA analytical methods No. 11a (GEA 

Niro, 2006). The bulk and compressed density (i.e., powder density before and after 

the application of consolidating stress) of each powder sample was extracted from the 

PFT analysis. The volumes of interstitial and occluded air present within each sample 

was then calculated using the particle, bulk and compressed density values following 

the method described by Schuck et al. (2012). 

 

4.3.7 Rehydration properties  

4.3.7.1 Powder wettability  

The wettability of the control and treated samples were analysed using the 

standard International Dairy Federation (IDF) method 87, with minor modifications. 

Briefly, 2.5 g of each sample was distributed, in a standard manner, on the surface of 

250 ml of ultrapure water at 22C located in a glass beaker of internal diameter 80 

mm. The time required, in seconds, for all powder to disappear beneath the surface of 

the water was measured using a stopwatch. Contact angle (𝜃) analysis was conducted 

using an optical tensiometer (Biolin Scientific Holding AB, Stockholm, Sweden) 

following a method previously described by Silva and O’Mahony (2017), with minor 
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modifications. Modifications included using a lower compression force (1000 kg) to 

minimise changes to the powder particle morphology and using a larger droplet 

volume of 13 l.  Values of 𝜃 were collected for 30 s, and images were extracted from 

the PGX software at 5 and 30 s intervals. 

 

4.3.7.2 Powder solubility   

To assess powder solubility, 100 ml of a 3.5% powder (w/w) solution was 

prepared via magnetic stirring, at 500 RPM for 3 h, for each sample. The extent of 

powder solubility was then quantified flowing a method previously described by 

McCarthy et al. (2014) 

 

 4.3.8 Statistical data analysis  

All experimental analyses were conducted in triplicate with the data generated 

being subjected to one-way analysis of variance (ANOVA) using SPSS version 25 

(SPSS Inc., Chicago, IL, USA). A Tukey's paired-comparison post-hoc test was used 

to determine statistically significant differences (P < 0.05) between mean values for 

different samples, with mean values deemed to be significantly different from each 

another at a 95% confidence level. Unless otherwise stated, results are expressed as 

mean ± standard deviation from triplicate analysis, with statistically significant 

differences identified using superscript letters. 
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4.4 Results and discussion 

4.4.1 Binder properties  

A series of binders were prepared for this study with varying properties (Table 

4.1), related to their ability to bind powder particles during powder agglomeration, 

most notably their viscosity, which is established as a key binder property for powder 

agglomeration (Mills et al., 2000). The viscosity of the lactose (B-Lac) and protein-

based binders (i.e., B-MPI, B-MPIheat and B-MPITSC) were measured and the results 

showed that the B-lac solution had the lowest viscosity value of 3.77 mPa.s. Although 

the lactose solution had the lowest measured viscosity, it must be noted that lactose 

solutions are generally considered as “sticky” and atomisation of such solutions forms 

droplets with high tensile strength lending to their use as binder solution in 

agglomeration (Adhikari et al., 2007; Szulc and Lenart, 2013). 

The B-MPI solution had a significantly higher (P < 0.05) viscosity (5.73 mPa.s) 

than the B-Lac solution (3.77 mPa.s) due to the presence of casein micelles with strong 

ability to bind water (previously reported voluminosity value of 3.5–4 ml g-1) 

(Huppertz et al., 2017). Heating at 95C caused the viscosity of the MPI binder to be 

reduced, although not significantly (P > 0.05), from 5.73 mPa.s (B-MPI) to 5.36 mPa.s 

(B-MPIheat). This may be attributed to the denaturation of heat labile whey proteins, 

occurring during thermal processing, whereby whey proteins present in the milk 

protein isolate system will begin to unfold, exposing hydrophobic domains (Anema 

and Li, 2003); causing a significant increase (P < 0.05) in the surface hydrophobicity 

(from 591 to 601) and pH (from 6.63 to 6.71) of the B-MPIheat solution.  

The viscosity of the B-MPITSC solution was significantly higher (P < 0.05) than 

the other two MPI-based binder solutions (12.5 mPa.s). This increase in viscosity on 

the addition of TSC is caused by casein micelle destabilisation and further dissociation 
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which has been shown to occur at this level of TSC addition (McCarthy et al., 2017). 

TSC is a calcium chelator, and when present in solution with casein micelles, acts to 

solubilise CCP from the interior structure of the casein micelles. CCP is known to be 

critical to the physical stability of casein micelles, acting to stabilise the casein proteins 

within the micelle structure (de Kruif et al., 2012). Depletion of CCP initially causes 

the micelles to swell, resulting in an increase in casein micelle voluminosity, and a 

considerable increase in the viscosity of the solutions (5.73 to 12.5 mPa.s). More 

extensive CCP depletion causes further dissociation of the micelle occurs whereby the 

micelles break apart into smaller micelle fragments (De Kort et al., 2012, 2011). 

The dissociation of casein micelles within the B-MPITSC binder was confirmed 

through turbidity analysis which showed that the turbidity of the B-MPITSC) (0.85) 

was significantly lower (P < 0.05) than either the B-MPI or B-MPIheat solutions (3.72 

and 3.81, respectively) as the now-dissociated micelles, could no longer scatter light 

at the same intensity as the B-MPI and B-MPIheat solutions, both of which contained 

intact casein micelles. The results for both the viscosity and turbidity of the dissociated 

B-MPITSC solutions were in alignment with previous studies conducted by De Kort et 

al. (2011, 2012). The dissociation of the casein micelles on addition of TSC also 

caused a significant reduction (P < 0.05) in particle size and surface hydrophobicity, 

and increase in the pH, of the solution when compared to the other MPI binder 

solutions (Table 4.1). The alterations achieved through TSC addition, bring the MPI 

solution closer to a desirable binder solution for agglomeration applications due to its 

high viscosity, allowing for increased particle incorporation during powder 

agglomeration (Dhenge et al., 2012; Tardos et al., 1997). 
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4.4.2 Agglomeration of milk protein isolate powder 

 The results (Table 3.2) showed that a significant increase (P < 0.05) in powder 

particle size (for all size parameters measured i.e., Dv10, Dv50, Dv90 etc.,) occurred 

on the application of each binder solution during the agglomeration process. For 

example, the mean particle size (D [4,3] value) increased significantly (P < 0.05) from 

the control sample on agglomeration; the B-H2O showed the least increase in D[4,3] 

value (from 36.9 to 85.8 m), followed by the B-Lac and B-MPIheat, which showed 

similar significant increases (P > 0.05) from 36.9 to 106 and 102 m, respectively. 

The most significant increase (P < 0.05) in particle size was measured on application 

of both the B-MPI and B-MPITSC binder solutions which caused an increase in the 

D[4,3] value to 126 and 136 m, respectively. These results illustrate that, although 

all binders were capable of achieving MPI agglomeration, the extent to which the 

agglomeration occurred varied due to differences in the properties of the binder 

solutions (Section 4.4.1).  

To quantify the effectiveness of each binder solution, in terms of their ability to 

agglomerate MPI, the proportion of fine (<10 m) and agglomerate (>100 m) 

material present within the bulk powder was quantified for each treated powder and 

compared to the untreated control. The results (Table 4.2) show that when the B-H2O 

binder was applied, the resulting powder was the closest to the original untreated 

control, containing 4.79% fines and 20.3% agglomerates. This result indicates that 

although primary particles are being combined into larger agglomerate structures, the 

water was unable to sufficiently incorporate the fine material, present in MPI, into 

these structures. The poor binding performance of the B-H2O may be attributed to a 

combination of its low viscosity as well as the high contact angle exists between water 
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and the powder particles of MPI, both acting to limit the interactions between the B-

H2O binder and the MPI powder (Korson et al., 1969; O’Sullivan et al., 2017). 

Application of the B-MPIheat binder showed an increase in the ability to form 

agglomerates, when compared to the B-H2O binder (B-H2O; 20.3% and B-MPIheat; 

34.9% agglomerates present), attributable to the significantly higher (P < 0.05) 

viscosity of the B-MPIheat sample. However, similar to the B-H2O sample, a proportion 

of fine material was still present in the bulk powder after the application of the B-

MPIheat binder (1.29% fines present). This suggests that the interaction between the B-

MPIheat binder and the fine material in the MPI bulk powder was limited, potentially 

attributable to the high surface hydrophobicity displayed in this sample, ultimately 

resulting in both the B-H2O and B-MPIheat possessing poor binding capacity for 

agglomeration of MPI. This hypothesis is supported by results presented in Table 4.2 

for the PSD span of these samples, with both the B-H2O and B-MPIheat having 

significantly higher (P < 0.05) span values (6.51 and 5.37, respectively) then all other 

treated powders (3.62 – 4.72), suggesting that the resulting bulk powder contains a 

combination of fine material, unaffected primary powder particles and agglomerated 

material. The presence of fine material in a bulk powder has been shown to limit 

powder functionality, most notably flowability, with powders having wide particle 

size distribution (i.e., high span values) typically displaying poor flow properties (Liu 

et al., 2008). 

Greater binding capacity was displayed by the B-Lac solution, measured though 

a reduction of the fine MPI powder material during agglomeration to a level less than 

1%, which can be attributed to the “sticky” nature of this binder (Section 4.4.1). 

However; it must be noted, that the percentage of agglomerate material is lower in the 

B-Lac sample (26.5%) then all of the protein-based binders, confirming that binder 
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viscosity plays a key role in the formation of agglomerated MPI structures, with the 

B-Lac solution having the lowest viscosity of all of the measured binder solutions 

(Section 4.4.1). 

Finally, the B-MPI and B-MPITSC displayed the highest binding efficiency of all 

binders tested during MPI agglomeration, with both of the resulting powders 

displaying a pronounced reduction in presence of fine material (0.10 and 0.02%, 

respectively) paired with a large increase in the presence of agglomerates (34.9 and 

43.8%, respectively). The B-MPITSC solution, in particular, outperformed all other 

binders tested, with the resulting powder containing both the lowest level of fine and 

highest level of agglomerate material, respectively. These results align with the 

hypothesis outlined in Section 4.4.2, where this binder was highlighted as the most 

optimal binder due to its significantly (P < 0.05) higher viscosity and relatively low 

surface hydrophobicity. 
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Property  Unit B-H2O B-lactose B-MPI B-MPIheat B-MPITSC 

Viscosity mPa.s n.a. 3.77 ± 0.12a 5.73 ± 0.24b 5.36 ± 0.09b 12.5 ± 0.31c 

D[4,3] m n.a. n.a. 1.22 ± 0.05a 1.30 ± 0.06a 0.73 ± 0.15b 

Surface hydrophobicity slope n.a. n.a. 591 ± 1.53ab 601 ± 1.72b 558 ± 1.97a 

Turbidity (-) n.a. n.a. 3.72 ± 0.20a 3.81 ± 0.71a 0.85 ± 0.29b 

pH (-) n.a. 3.75 ± 0.04a 6.63 ± 2.31b 6.71 ± 0.08bc 6.77 ± 0.03c 

B-H2O B-Lac B-MPI B-MPIheat B-MPITSC

Table 4.1 Physical properties of binder solutions, including viscosity, particle size (D [4,3]), surface hydrophobicity, turbidity and pH 

 

 

 

 

 

 

 

 

* Not to scale 

Figure 4.1 Schematic representation of the agglomeration binder solutions; lactose molecules ( ), micellar casein particles ( ), -casein ( ), 

colloidal calcium phosphate ( ) and trisodium citrate molecules ( ). 

Values followed by different superscript letters in the same column are significantly different (P < 0.05). 
n.a. = not applicable 
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 d10 d50 d90 D [4,3] Span FinesA AgglomeratesB 

 ----------------------------------µm-------------------------------- - % % 

Ctrl 11.9 ± 0.71a 31.7 ± 0.34a 64.7 ± 0.51a 36.9 ± 0.24a 1.75 ± 0.03a 9.17 1.86 

B-H20 15.0 ± 0.21b 37.8 ± 0.47b 261 ± 19.0b 85.8 ± 5.69b 6.51 ± 0.43d 4.79 20.3 

B-Lactose 23.8 ± 0.01c 55.7 ± 0.58c 287 ± 12.3b 106 ± 3.51c 4.72 ± 0.18c 0.13 30.4 

B-MPI  26.8 ± 0.21d 65.3 ± 1.06d 341 ± 10.7d 126 ± 4.01d 4.81 ± 0.10c 0.10 26.5 

B-MPIheat  21.7 ± 0.10c 51.6 ± 0.20c 293 ± 1.53b 102 ± 0.58c 5.27 ± 0.01c 1.29 34.9 

B-MPITSC 30.3 ± 0.15e 81.3 ± 1.46e 325 ± 15.7d  136 ± 5.51d 3.62 ± 0.13b 0.02 43.8 

Values followed by different superscript letters, in the same column, are significantly different (P < 0.05). 
 Dv10 Particle size below which 10% of material volume exists 

Dv50 Particle size below which 50% of material volume exists 

Dv90 Particle size below which 90% of material volume exists 

D[4,3] volume-weighted mean particle diameter  

D[3,2] surface-weighted mean particle diameter  
A % of volume distribution less than 10 m 
B % of volume distribution greater than 100 m 

Table 4.2 Powder physical properties, including particle size distribution parameters and fine and agglomerate powder particle yield values for a milk 

protein isolate control (Ctrl) and agglomerated samples (B-H2O, B-Lac, B-MPI, B-MPIheat and B-MPITSC). 
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 ρbulk ρcompressed Via Voa i CI 

 ---------------g cm-3-------------- -----------ml 100 g-1---------- - % 

Ctrl 0.26 ± 0.01a 0.43 ± 0.01a 158 ± 0.23a 1.32 ± 0.23a 4.73 ± 0.19a 38.2 ± 0.43a 

B-H20 0.30 ± 0.01b 0.44 ± 0.01ab 148 ± 1.86b 2.67 ± 0.04b 4.91 ± 0.21a 31.5 ± 0.66b 

B-Lac 0.34 ± 0.01d 0.49 ± 0.01d 129 ± 4.66c 2.52 ± 0.11b 5.85 ± 0.23bc 29.4 ± 1.85bc 

B-MPI  0.32 ± 0.01c 0.46 ± 0.01bc 142 ± 1.15b 2.68 ± 0.22b 5.69 ± 0.16b 29.0 ± 0.91c 

B-MPIheat  0.31 ± 0.01b 0.45 ± 0.01b 143 ± 0.79b 2.73 ± 0.03b 5.57 ± 0.13b 31.6 ± 0.53b 

B-MPITSC 0.34 ± 0.01d 0.47 ± 0.01cd 133 ± 0.65c  2.79 ± 0.08b 6.17 ± 0.15c 28.7 ± 0.29c 

Values followed by different superscript letters, in the same column, are significantly different (P < 0.05). 

 

Table 4.3 Bulk handling properties, including bulk density (ρbulk), compressed density (ρcompressed), volume of interstitial air (Via), volume of 

occluded air (Voa), flow index (i) and compressibility index (CI) for a milk protein isolate control (Ctrl) and agglomerated samples (B-H2O, B-

Lac, B-MPI, B-MPIheat and B-MPITSC). 
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4.4.3 Powder composition  

Application of the various binder solutions required to achieve agglomeration, 

did cause alterations to the bulk composition of the MPI powder, resulting in a 

decrease in the overall protein content and an increase in the moisture content of all 

samples, as expected. The MPI control powder had a protein content of 85.1%, and 

this was reduced in a manner that was dependent on choice of binder solution. The B-

H2O and B-Lac binders caused the greatest reduction in overall protein content with 

the values reducing to 80.4 and 80.1%. respectively; aligning with results previously 

reported by Ji et al. (2016a) where MPI was similarly agglomerated using a 15% 

lactose solution.  

The application of protein-based binders, in this study, did cause a reduction in 

the protein content of the resulting agglomerated MPI powder, but it must be noted 

that the reduction was of a much lower magnitude than experienced when using the 

more traditional binder solutions (i.e., B-H2O and B-Lac). The protein contents of the 

B-MPI, B-MPIheat and B-MPITSC samples were 83.2, 82.8 and 83.8%, respectively, 

and this higher protein content, relative to the other agglomerated forms of MPI, is 

attributed to the protein present in the binder solutions. The moisture content of the 

MPI increased on agglomeration from 2.34% (w/v) to 6.36-6.98% (w/v). This increase 

is attributed to the method of drying utilised in the agglomeration process (i.e., oven 

drying); traditionally, agglomeration is associated with a fluid-bed drying step which 

encourages rapid drying to a desired moisture content, usually within 2-5% (w/v) 

moisture. It is hypothesised that a more efficient drying process (e.g., fluid bed drying) 

would achieve a lower moisture content in the agglomerated MPI samples, resulting 

in a concomitant increase in protein content. 
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4.3.4 Bulk handling properties and powder flowability  

All treated powders displayed a significant increase (P < 0.05) in bulk density 

on agglomeration, when compared to the untreated MPI control powder (Table 3.3). 

Initially, the MPI control had a bulk density of 0.26 g.cm-3 which increased 

significantly (P < 0.05) on addition of each binder solution during agglomeration, with 

values ranging from 0.30 to 0.34 g.cm-3 post-agglomeration The greatest, and most 

significant (P < 0.05) increase in bulk density was measured on application of the B-

Lac (0.34 g.cm-3), B-MPI (0.32 g.cm-3), and B-MPITSC (0.34 g.cm-3) binders, which 

were the most effective binders for MPI agglomeration (Section 4.4.2). Similarly, the 

B-H2O and B-MPIheat binders, which achieved limited agglomeration, also resulted in 

a lesser increase in bulk density although, still significant (P < 0.05), with bulk density 

values increasing from 0.26 to 0.30 and 0.31 g.cm-3, respectively.  

Traditionally, agglomeration of dairy powders is associated with a decrease in 

powder bulk density, which can be seen as a negative effect of the agglomeration 

process, acting to increase required storage space and associated transportation costs. 

In this study, conversely, an increase in bulk density was measured post-

agglomeration, attributed here to the occurrence of process termed “densification”, 

which occurred during the agglomeration process. Densification (routinely utilised in 

other powder handling industries, e.g., the pharmaceutical industry) is a process that 

occurs when agglomerates are exposed to high shear forces during their formation, 

initially causing the individual powder particles, of which the agglomerate is 

composed, to be forced into a much closer arrangement; these particles can undergo 

further conformational changes, ultimately forming large dense agglomerate 

structures (Johansen and Schafer, 2001; Uniyal et al., 2020) The agglomeration 

process utilised in this study, exposed the forming MPI agglomerates to four blades, 
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each rotating at 500 RPM for a total of 6 min, which, as reported by Litster and Ennis 

(2004), is sufficient shear force to achieve powder densification.  

Densified MPI agglomerate structures were present in all treated samples (i.e., 

on application of all binders) as visible through SEM analysis (Figure 4.2), indicating 

that the densification process was caused by the agglomeration and was independent 

of the binder selection. Additional microscopy analysis using SEM allowed clear 

visualisation the internal structures of these densified powder agglomerates (Figure 

4.3). These micrographs were used to confirm that MPI primary powder particles 

experienced deformational changes on densification; which caused the levels of 

interstitial air, introduced initially on agglomeration, to be forced out of the 

agglomerate structure, yielding dense agglomerates for all treated powders, which has 

been previously reported to occur on agglomerate densification (Schæfer, 2001). This 

finding was supported by the results, presented in Table 4.3, where a measured, 

significant decrease (P < 0.05) in the volume of interstitial air was experienced on 

agglomeration of MPI; whereby the volume of interstitial air within the control MPI 

powder (158 ml 100 g-1) was reduced to within 129–148 ml 100 g-1 on agglomeration 

of MPI.
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B-H2O B-Lac

B-MPI B-MPIheat B-MPITSC

Ctrl

Figure 4.2 Scanning electron micrographs of a milk protein isolate control (Ctrl) and agglomerated (B-H2O, B-Lac, B-MPI, B-MPIheat and B-

MPITSC) samples. Level of magnification (500 X) and scale bars (50 m) included 
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The increase in bulk density of MPI, achieved via agglomerate densification, 

has the propensity to yield a new form of this high-value ingredient, now requiring 

less storage and transport space, potentially reducing transportation costs. However, 

the associated reduction in interstitial air may impact on further applications, such as 

reducing final powder solubility, which is an already well-established challenge for 

rehydration of casein-dominant powders (Gaiani et al., 2007). 

The alterations to the MPI powder physical (e.g., particle size) and bulk (e.g., 

bulk density) properties on agglomeration yielded subsequent changes to the 

flowability of the powder. Shear cell analysis was utilised to measure these changes 

and the results show that agglomeration of MPI caused a significant improvement (P 

< 0.05) in powder flowability (Figure 4.4). The MPI control had a flow index of 4.73, 

and agglomeration resulted in this index increasing to within 4.91–6.17, depending on 

Figure 4.3 Scanning electron micrograph capturing the interior of a densified milk protein 

isolate agglomerate structure present within the B-MPIheat sample. Magnification (200 X) 

and scale bar (100 m) included. 
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the binder solution applied. The B-MPITSC binder (most effective binder solution) 

displayed the most significant increase (P < 0.05) in powder flowability (flow index 

value increased from 4.73 to 6.17). Additionally, the B-H2O binder (least effective 

binder solution) resulted in no significant (P > 0.05) change in MPI flowability. The 

compressibility index (CI) of a powder is closely related to flowability, such that 

powders which can be easily compressed (i.e., having high CI values) generally 

displays poor flowability (Abdullah and Geldart, 1999). In this present study, the 

control MPI powder had the highest CI value (38.2%) and this was reduced 

significantly (P < 0.05) on agglomeration to 28.7–31.6%. Aligning with the 

flowability results, the B-MPITSC and B-H2O, which had the highest and lowest flow 

indices, also had the highest and lowest CI values, respectively (Table 4.3). 

The greater flowability of agglomerated MPI was attributed to the increase in 

particle size, and associated depletion in fine powder material on agglomeration, 

which acted to reduce the extent of interparticle interactions (e.g., van der Waals and 

Figure 4.4 Flow function profiles as a function of major principal consolidating 

stress (kPa) for a milk protein isolate control (Ctrl), (—○—) and agglomerated 

samples; B-H2O (—□—), B-Lac (—Δ—), B-MPI (—●—), B-MPIheat (—■—) and B-

MPITSC (—▲—). 
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electrotactic interactions) occurring between neighbouring powder particles, with 

similar findings being reported by Crowley et al. (2014) and Ji et al. (2017). To 

confirm this reduction in interparticle interactions on agglomeration of MPI, the angle 

of internal friction was measured for each powder and the results (Figure 4.5) show 

that the MPI control and B-H2O displayed the highest angles of internal friction (53.1 

and 51.8°, respectively) indicating that these samples displayed the greatest extent of 

particle-particle interactions. Furthermore, all treated powders that displayed a 

significant increase (P < 0.05) in flowability (i.e., B-Lac, B-MPI, B-MPIheat and B-

MPITSC), also displayed a significant reduction (P < 0.05) in their angle of internal 

friction, with values for the latter parameter ranging from 47.2-49.8. For MPI powder, 

the increase in flowability, and reduction in compressibility, achieved in this study has 

the potential to significantly improve the ease of handling and application of such 

ingredient powders in numerous industrial unit operations such as storage (e.g., 

improved discharge from silos), conveying (e.g., reduced powder build-up on 

conveying lines) and packaging (e.g., less dust).  
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4.3.5 Powder rehydration properties  

4.3.5.1 Powder wettability  

As expected, the agglomeration of MPI caused a significant improvement (P < 

0.05) in the wettability of the resulting agglomerated powders (Figure 4.6). The MPI 

control powder required 38.2 min to achieve complete wetting whereas the 

agglomerated forms of MPI were fully wetted within 3.50-9.97 min. This significant 

improvement in MPI wettability, displayed by all agglomerated powders, is 

attributable to the significant increase in particle size and increased bulk densities 

achieved on the agglomeration process. The formation of large, dense agglomerated 

structures in each bulk powder ensured that on wetting, gravitational force encouraged 

the particles to submerge below the water surface (i.e., become wetted), whereas in 

the MPI control, the particles were too small and light for gravity to have the same 
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Figure 4.5 Angle of internal friction as a function of major principal consolidating 

stress (kPa) for a milk protein isolate control (MPI Ctrl), (—○—) and agglomerated 

MPI samples; B-H2O (—□—), B-Lac (—Δ—), B-MPI (—●—), B-MPIheat (—■—) and B-

MPITSC (—▲—). 
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effect. The B-Lac and B-MPITSC had the lowest measured wetting times of all 

powders, and for the B-MPITSC sample this is due to the extent to which agglomeration 

occurred in this sample. For the B-Lac sample, the presence of lactose in the powder 

bulk, and more notably at the surfaces of the agglomerated particles may also have 

acted to improve the wetting properties of this sample, due to it highly hydrophilic 

nature. 
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Figure 4.6 (a) Wetting times for a milk protein isolate control (MPI Ctrl), ( ) and 

agglomerated MPI samples; B-H2O ( ), B-Lac ( ), B-MPI ( ), B-MPIheat ( ) and B-

MPITSC ( ). (b) Images of powder wetting taken 3 min after powder incorporation (t=180 s) 

during wettability analysis. 



Chapter 4 

    143 

Contact angle analysis was carried out to further analyse powder wettability, 

more specifically, the initial contact occurring between water and the MPI powder 

samples. The results (Figure 4.7) indicate that the MPI control powder had a high 

initial (t=0) contact angle value of 90.5, which aligns with results presented by 

O’Sullivan et al. (2017). This value remained relatively unchanged over the analysis 

run with a final (t=30) contact angle value of 88.5, indicating that the water droplet 

was unable to penetrate into the bulk powder, attributable to the compact, hydrophobic 

MPI powder particle surfaces. The analysis of the agglomerated powders showed that 

all binders were capable of achieving a reduction in the initial contact angle (t=0), with 

values ranging from 81.2 to 87.2. Although a reduction in the initial contact angle 

was measured for the B-H2O and B-MPIheat samples, these values remained relatively 

unchanged, similar to the MPI control, as the water droplet could not migrate further 

into the powder bulk, explained by the limited agglomeration achieved by these 

binders, as discussed in Section 3.4.2. The B-Lac, B-MPI and B-MPITSC  samples, 

which were previously established as the most effective binders, not only caused a 

reduction in the initial contact angle, but also allowed the water droplet to migrate 

rapidly into the powder bulk, as evident by a sharp decrease in final contact angle 

values which were 65.4, 57.3 and 46.1, respectively; indicating improved wetting 

properties of these powders. The final measured contact angle for each powder was in 

agreement with the trends in CI (Section 4.4.2), such that a sample with high CI value 

inhibited the migration of water into the bulk powder during this analysis. The 

improvement in wettability achieved through agglomeration is a key functional 

improvement that could act to increase processing efficiency, most notably through 

the reduction in wet blending times required for adequate MPI wetting on rehydration. 
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4.3.5.2 Powder solubility  

For casein-dominant powders, such as MPI, the final stage of rehydration (i.e., 

powder solubility) has been established as the rate limiting step (Gaiani et al., 2007). 

The results show that the agglomeration of MPI significantly reduced (P < 0.05) its 

solubility, independent of the binder solution applied. Utilisation of a standard 
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Figure 4.7 (a) Contact angle developed between a droplet of ultrapure water and the compressed 

powder surface of a milk protein isolate control (MPI Ctrl), (—○—) and agglomerated MPI 

samples; B-H2O (—□—), B-Lac (—Δ—), B-MPI (—●—), B-MPIheat (—■—) and B-MPITSC (—

▲—). (b) Representative images of contact angle analysis captured at 5 and 30 s into each 

analysis run. 
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rehydration process indicated that the MPI control had solubility of 56.3%, while the 

solubility of the agglomerated MPI samples ranged from 35.6 to 37.4%, with no 

significant differences (P > 0.05) between the agglomerated powders. This reduction 

in powder solubility is caused by the presence of large dense powder agglomerates 

(formed via particle densification; Section 4.4.2) in the bulk powders. For efficient 

solubility, liquid needs to be able to migrate into the interior of primary powder 

particles where it can act to solubilise the various constituents within the powder 

structures. The dense particle structures present in the agglomerated MPI powders 

inhibited this migration of water to their interior, therefore limiting powder solubility. 

A similar reduction in powder solubility was reported on agglomeration of a native 

phosphocaseinate (another type of casein-dominant dairy protein ingredient) by 

Gaiani et al. (2007) and of MPI by Ji et al. (2016b). 

 

4.5 Conclusion 

In conclusion, MPI was successfully agglomerated through the application of all 

binder solutions, as evidenced by a significant increase in particle size, while the 

extent to which agglomeration occurred was dependent on the properties of the 

individual binder solutions applied, most notably, viscosity. The results illustrate that 

the novel protein binder solutions were capable of not only achieving a similar extent 

of agglomeration as the more traditional binder solutions (i.e., water and lactose), but 

in most cases, outperformed them. Modification of an MPI solution, through TSC 

addition, significantly improved the properties critical to binding performance on 

agglomeration via casein micelle dissociation. A significant improvement in the 

flowability of MPI was achieved through agglomeration, as evident by increased flow 

index and concomitant decrease in powder compressibility, caused by the increasing 
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particle size and reduction of fine material on agglomeration, acting to reduce 

interparticle interactions. Improved wetting properties were also achieved on 

agglomeration of MPI, attributed to densification of agglomerates during the process, 

which yielded large dense agglomerated structures in all samples, with an ability to 

wet rapidly. Conversely, the formation of these dense structures restricted the latter 

stages of rehydration (i.e., solubility) which may limit the industrial application of 

such a process. The B-MPITSC binder displayed the greatest extent of agglomeration 

and improvement in powder flowability and wettability however it must be noted that 

agglomeration of MPI caused a significant reduction in powder solubility, regardless 

of binder solution applied. Ultimately, the results from this study scientifically 

underpin the recent commercial interest in agglomerating high-protein dairy powders 

through the application of protein-based binder solutions, thereby achieving 

agglomeration with minimal reduction in the overall protein content of the resulting 

powder, while improving selected functional properties.   
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5.1 General discussion  

Agglomeration is a long-established approach for modifying and controlling 

dairy powder functionality, with the key beneficial effects on both powder flowability 

and wettability being well established at both industrial and academic level (Gaiani et 

al., 2007; Pisecky, 2012). Key to powder agglomeration is the formation of powder 

structures of increased particle size, formed by combining numerous individual 

primary powder particles into enlarged, cluster-like structures  (Cuq et al., 2013). This 

is mainly achieved by recirculating fine powder material, produced during spray 

drying and collected from exhaust air, back into the main spray chamber where they 

can combine with primary powder particles, ultimately forming agglomerated powder 

structures. Furthermore, complex solutions, such as lecithin, may be applied to these 

agglomerates (i.e., lecithination), achieving surface modification, acting to further 

improve powder wettability (Sharma et al., 2012). Although dairy powder 

agglomeration is well studied, and routinely utilised in the production of commodity 

dairy powders (e.g., whole and skim milk powder), the study of how these 

agglomerates react on further handling (i.e., during powder conveying) as well as the 

applicability of agglomeration for more high-value dairy powders (such as high-

protein powders) is consideribly more limited. Therefore, the objectives of this thesis 

initially focused on understanding how commercial, agglomerated, nutritional dairy 

powders change on further handling, before assessing the applicability of an 

agglomeration process for the modification of  milk protein isolate (MPI) through the 

application of novel, protein-based binder solutions.  

In Chapter 3, a custom-fabricated pressure dispersion rig was employed to 

facilitate the breakdown of agglomerates for a range of commercially available, 

nutritional dairy powders (i.e., a whey protein concentrate powder, a fat-filled milk 
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powder and an infant formula powder). The powders were dispersed through the rig 

at both 1 and 3 bar air pressures, allowing particle-particle (attrition) and particle-wall 

(collision) impacts to occur, with these forces acting to break down the agglomerates 

present within each bulk powder to an extent dependent on their overall mechanical 

integrity. Analysis of the powders, pre- and post-pressure dispersion showed not only, 

the extent of agglomerate breakdown, but also the more influential and detrimental 

effects these alterations can have on final powder functionality. Most notably, all 

powders, independent of the extent of agglomerate breakage, showed significant 

reductions in powder flowability, wettability and dispersibility properties, which are 

key functional considerations for further application. The results from this study 

provide new findings, illustrating the importance of maintaining the mechanical 

integrity of agglomerated dairy powders and further highlights the requirement for a 

greater level of control during the subsequent handling of these powders (i.e., during 

powder conveying) at industrial scale. 

The clear improvement in powder functionality achieved through 

agglomeration, which was further distinguished in Chapter 2, led to development of 

an objective in Chapter 4 to assess the ability of powder agglomeration to modify the 

functionality of MPI, while minimising unwanted changes associated with powder 

agglomeration (i.e., decreasing bulk density and altering the resulting powder 

composition). The approach to achieve this involved the use of novel protein-based 

binders in agglomeration, instead of the more traditional binders such as lactose or 

lecithin (Palmer et al., 2018). In this study, a lab-scale agglomeration process was 

established to assess the effectiveness of a range of MPI binder solutions (modified 

through various pre-treatments i.e., thermal processing and casein micelle 

dissociation) in comparison to more traditional binder solutions which have been 
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previously used for agglomeration i.e., water and lactose (Szulc and Lenart, 2013). 

The results presented in this study showed that the novel MPI binder solutions were 

capable of not only matching the traditional binders in terms of agglomeration ability, 

but in most cases, outperformed them. Furthermore, all agglomerated forms of MPI 

displayed significantly improved flowability and wettability characteristics, attributed 

to the increase in particle size achieved through agglomeration. As it was a key criteria 

when designing the study, it must be noted that the agglomeration of MPI did not cause 

a decrease in the resulting powder bulk density; conversely, a significant increase in 

bulk density was achieved, attributable to agglomerate densification. Additionally, 

although a reduction in the overall protein content was measured on application of the 

various binder solutions, use of the novel protein-based binder solutions resulted in 

the least dilution of the protein component in the resulting agglomerated MPI powders. 

These findings are of significance in the production of high protein powders, acting to 

scientifically underpin ingredient innovation and highlighting the applicability of 

powder agglomeration to enhance the functional properties of high-protein powders 

such as MPI. 

 

5.2 Suggestions for future research 

Considerable research in the field of dairy powder agglomeration is still required 

and a series of follow-up studies, complementary to the work presented in this thesis, 

could begin to address this. These studies may include: 
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Assessment of optimal agglomeration level for the production and handling of 

agglomerated dairy powders 

Further scope exists to understand the optimal level of agglomeration required 

for specific dairy powder types, which could act to alleviate the inevitable breakdown 

that will occur during further handling (i.e., powder conveying). It is proposed here to 

utilise the same experimental approach as used in Chapter 3 (i.e., powder analysis 

pre- and post-agglomerate breakdown); however, in this study, analysis of a singular 

dairy powder, agglomerated to varying extents, should be employed. By clearly setting 

an end target in terms of product functionality (e.g., complete wetting in ≤ 60 s) the 

maximum level of agglomerate breakage may be established that still allows for the 

functionality target to be met, therefore identifying the optimal agglomeration level 

for ta specific type of agglomerated dairy powder. 

 

Impact of lecithin type and treatment on the surface modification of 

agglomerated high-protein dairy powders 

Although the application of lecithin solutions, post-agglomeration, may cause 

unwanted alterations to composition of high-protein powder, as discussed in Chapter 

4, the substantial improvement in powder wettability highlights it’s potential to 

address the poor rehydration performance of various high-protein dairy powders (e.g., 

clumping on powder wetting). The influence of lecithiniation on the rehydration 

properties of MPI and whey protein isolate has been studied but it must be noted that 

these studies involved the application of dilute lecithin solutions (approximately 2% 

lecithin solution) to achieve agglomeration and surface modification, respectively (Ji 

et al., 2017, 2016). These lecithin solutions are not representative of the lecithin blends 

that are atypically used at industrial scale (40-50% lecithin in carrier oil), acting to 
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inhibit the scale-up of these findings to an industrial powder production setting. The 

need to assess the effect of lecitination, and lecithin modification, on the rehydration 

properties of high-protein powders still remains, with an emphasis on applying lecithin 

in a manner similar to that used at industrial scale (e.g., atomisation of highly 

concentrated lecithin solutions in lab-scale fluid bed drying scenarios). 
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