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Highlights 

 

 Self-association of a β-casein ingredient in different solutions was studied 

 β-Casein formed thermo-reversible micelles in almost all systems 

 Behaviour was altered in supersaturated calcium phosphate (CaP) solutions  

 Formation of stable CaP phase contributed to cross-bridging of β-casein 

 β-Casein-CaP systems scattered more light and was less thermo-reversible 

 

 

Abstract 

Monomeric bovine β-casein self-associates into micelles under appropriate conditions of 

protein concentration, serum composition and temperature. The present study investigated 

self-association characteristics of a β-casein concentrate (BCC) prepared from milk at pilot-

scale using membrane filtration. The BCC had a casein:whey protein ratio of 77:23, where 
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~95% of casein consisted of β-casein, with the remainder being κ-CN. BCC was reconstituted 

to 1.2% protein (a typical level in infant formula) in various liquid media at pH 6.8 and 

incubated at different temperatures from 4-63°C for 30 min. Self-association of β-casein on 

heating was thermo-reversible in deionised water, lactose (4, 6 or 8%) or calcium (9 mM) 

solutions. In most serum phases, BCC became highly opaque after incubation at 63°C, but 

clarified rapidly during cooling to 25°C. However, in simulated milk ultrafiltrate (SMUF), 

which has a high ionic strength and is supersaturated in calcium phosphate (CaP), BCC 

remained opaque during cooling to 25°C, and retained residual turbidity after 15 h of holding 

at 4°C; if SMUF was prepared without phosphate then turbidity development in BCC 

solutions was markedly reduced. The complexes responsible for this turbidity development 

were successfully dissociated with 50 mM trisodium citrate. Analysis of pH during heating 

and holding at 60°C indicated that SMUF acidified continuously under the period of study, 

while acidification in BCC/SMUF mixtures terminated after a short period, indicating that the 

type of CaP formed on heating is altered in the presence of BCC. This study demonstrates 

that BCC ingredients exhibit pronounced temperature-dependant changes in colloidal 

properties that are strongly affected by the presence of minerals commonly found in 

nutritional product formulations. 

 

 

1. Introduction 

The caseins (CNs) of bovine milk are a heterogeneous group of four phosphoproteins 

(αs1-, αs2-, β- and κ-CN). In bovine milk, the CNs self-assemble into a polydisperse 

population (size range of ~ 50-500 nm, mean ≈ 150-180 nm) of colloids termed casein 

micelles, which are stable in the conditions of high ionic strength (80 mM) and soluble 
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calcium level (9 mM) which prevail in the system (O’Mahony and Fox, 2013). The CNs 

associate into micelles primarily through a combination of hydrophobic and electrostatic 

interactions, the former occurring directly between hydrophobic regions of the CNs and the 

latter mediated by “nanoclusters” of calcium phosphate (CaP) (Horne, 1998). The 

nanoclusters, often referred to as colloidal calcium phosphate (CCP), are sequestered in an 

amorphous form between phosphorylation sites located at hydrophilic regions of the CNs; 

this process prevents precipitation of CaP, which is supersaturated in milk, and facilitates 

delivery of significant dietary CaP without pathological precipitation in the mammary gland 

during milk secretion (Horne, 2006; Dalgleish, 2011; Holt and Carver, 2012; Holt, 2016).  

Among the CNs, κ-CN has the lowest extent of phosphorylation (one residue), giving 

it a low Ca-sensitivity and reducing its potential as a nucleation site for CCP; hence, κ-CN is 

thought to terminate a polymerisation process that would otherwise continue indefinitely, and 

is generally agreed to occupy a position at the micellar surface where it stabilises micelles 

through electrostatic and steric repulsion (O’Mahony and Fox, 2013). The more Ca-sensitive 

CNs, β-CN and the αs-CNs, contain the prerequisite number of phosphorylated residues (≥3) 

for binding of CCP and are mostly orientated towards the interior of the CN micelle 

(Dalgleish, 2011; Holt, 2016).  

Removal of significant quantities of CCP through, for example, addition of calcium-

binding agents, can result in non-selective dissociation of all CNs from the micellar 

framework (Griffin et al., 1988). The casein micelles of skim milk are responsible for its 

white colour, and removal of CCP with concomitant dissociation of the micellar structure 

causes a considerable decrease in the turbidity of milk, where micelles and CCP function as 

major light-scattering species (Smiddy et al., 2006). On the other hand, if milk is cooled to 

<5°C, the influence of hydrophobic interactions is minimised while partial dissolution of 

CCP occurs, resulting in ‘cold-induced dissociation’ of a limited quantity of monomeric β-
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CN into the serum phase, while the integrity of the micellar framework is maintained (Rose, 

1968; Creamer et al., 1977; Dalgleish, 2011).  

β-CN has a high proportion of hydrophobic amino acids and this strongly affects its 

tendency to self-associate in solution. In the absence of native CN micelles, β-CN forms 

micelles with a mean diameter of 20-30 nm when above its critical micelle concentration 

(CMC) and at temperatures >4°C (Leclerc and Calmettes, 1997; O’Connell et al., 2003; 

Portnaya et al., 2006). These two phenomena, (1) cold-induced dissociation of β-CN from 

casein micelles and (2) self-association of β-CN in systems devoid of casein micelles, can 

both be exploited in the separation of β-CN from the other CNs and the separation of β-CN 

from whey proteins, respectively, using membrane filtration technology (Coppola et al., 

2014; O’Mahony et al., 2014; Crowley, 2016).  

As an ingredient, β-CN has many potential applications, including some, such as 

foaming and emulsification, which exploit its very high surface activity (Le Meste et al., 

1990; Coppola et al., 2014). More recently, a growing body of evidence supports the 

application of β-CN as an encapsulating agent for hydrophobic compounds of nutritional and 

pharmaceutical relevance (Shapira et al., 2010a, 2010b, 2012; Esmaili et al., 2011; Bachar et 

al., 2012; Semenova et al., 2012; Razmi et al., 2013; Turovsky et al., 2012). Furthermore, β-

CN is the dominant CN in human milk, which contains 3.87 g L-1 β-CN compared to only 

0.77 g L-1 α-CN and 0.14 g L-1 κ-CN (Claeys et al., 2014), making β-CN-enriched protein 

ingredients promising candidates for humanising the CN fraction of next-generation infant 

formulae (McCarthy et al., 2013). In several respects, CN micelles in human milk are 

markedly different from those in bovine milk, being smaller, more hydrated and more prone 

to cold-induced dissociation as a few examples (Sood et al., 1997).  
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Certain factors affecting the self-association of β-CN, such as pH and temperature, or 

the presence of urea, sugars, denatured whey protein, or plant proteins (e.g., napin), have 

been studied (Yong and Foegeding, 2008; O’Connell et al., 2003; Schwartz et al., 2015; 

Setter and Livney, 2015). Holt et al. (1996, 1998) demonstrated that hydrophilic fragments of 

β-CN could stabilise supersaturated solutions of CaP, while Van Kemenade and De Bruyn 

(1989) and Thachepan et al. (2010) have reported similar findings for whole β-CN; however, 

other than these studies, little research has been carried out into the self-association of β-CN 

in supersaturated solutions of CaP, despite the significant role of CCP in influencing the 

structure and physicochemical properties of native CN micelles (Holt and Horne, 1996; 

Horne, 1998; Horne, 2006; Holt and Carver, 2012). The results of previous studies, which 

were heavily focused on the physico-chemistry of the mineral phase, have suggested that 

intact β-CN (Van Kemenade and De Bruyn, 1989; Thachepan et al., 2010) and β-CN 

phosphopeptides (Holt et al., 1996, 1998) can stabilise amorphous CaP. No self-association 

studies have yet included β-CN materials generated using membrane filtration, one of the 

most viable process technology options for the manufacture of β-CN commercially. In the 

present paper, such a material is studied in order to develop a better understanding of how the 

serum phase affects the self-association and dissociation characteristics of β-CN-based 

ingredients. 

The purpose of this study was to explore the effects of minerals and lactose on the 

self-association and physical stability of β-CN concentrate (BCC), with a particular focus on 

the behaviour of BCC in simulated milk ultrafiltrate (SMUF), a mineral solution which is 

supersaturated in calcium phosphate, the precipitation of which is promoted by heating 

(Spanos et al., 2007). Although β-CN has been reported to undergo thermo-reversible 

micellisation, it was expected that the reversibility of this phenomenon might be markedly 

affected by interactions of the protein with calcium phosphate. BCC generated at pilot scale 
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according to a process described by Crowley (2016) was used. The process did not involve 

the use of precipitation, instead relying on thermo-reversible changes in β-CN’s association-

state, which ensures that the solubility of β-CN is maintained. Association properties of BCC 

were investigated in a range of serum phase compositions and temperatures (4-63°C). A 

protein content of 1.2% was studied, which is representative of levels found in human milk 

and infant formula. The results of this study could inform the use of BCCs in food and 

pharmaceutical applications, in which the controlled formation of micelles with specific 

properties (e.g., size, structure, thermal stability) may be of importance. 

 

2. Materials and methods 

2.1. Materials 

β-CN concentrate (BCC) was manufactured according to the ‘cold-then-warm 1 

(CTW1)’ process described in detail by Crowley (2016), using pressure-driven separation 

with spiral-wound polymeric membranes in general accordance with the process described 

earlier by O’Mahony et al. (2014). Briefly: pasteurised, skimmed milk was microfiltered and 

diafiltered (with milk ultrafiltration permeate) using a 0.08 µm pore-size membrane at 1.5°C 

to separate β-CN and whey proteins from casein micelles; the β-CN/whey protein mixture 

was concentrated with a 10 kDa ultrafiltration membrane at <10°C, followed by extensive 

demineralisation through diafiltration with reverse osmosis (RO) water at 19°C; the 

demineralised concentrate was warmed to 26°C to form micelles of β-CN which could then 

be separated from whey proteins using microfiltration (0.08 µm); the liquid BCC was further 

concentrated/demineralised by microfiltration/diafiltration prior to drying with a single-stage 

spray-drier with nozzle atomisation (PSD 55; APV, Copenhagen, Denmark). BCC powder 
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was stored in air-tight bags at 4°C immediately after manufacture and analysed within 6 

months.  

Lactose monohydrate and Na3C6H5O7.2H2O were provided by Fisher Scientific (Fair 

Lawn, NJ, USA). The following salts were used to prepare simulated milk ultrafiltrate 

(SMUF) according to the method of Jenness and Koops (1962): CaCl2.2H2O, K2SO4, KCl, 

KH2PO4 (Fisher Scientific, Fair Lawn, NJ, USA) and K3C6H5O7.H2O, K2CO4 and 

Mg3(C6H5O7)2.9H2O (Sigma-Aldrich, St. Louis, MO, USA). SMUF was prepared fresh for 

each experiment by adding salts individually to deionised water. The SMUF was then left to 

stir at 22°C for 60 min. After this period, drop-wise addition of >35% w/w HCl was carried 

out until pH ~ 3.0 was reached. The solution was stirred for a further 60 min to ensure 

complete solubilisation of salts, particularly CaP. The solution was then restored to pH 6.8 by 

drop-wise addition of 2 N (small adjustment) and 10 N (large adjustment) KOH. After 

bringing to volume the SMUF was inverted several times in a stoppered flask and used as a 

dispersant for BCC powder within 1-2 h.  

 

2.2. Compositional analysis 

BCC was analysed for total solids, protein and casein using standard procedures 

(AOAC, 2003). Reversed-phase high-performance liquid chromatography (RP-HPLC) 

analysis was performed to determine the individual CN profile (Bobe et al., 1998; Bonfatti et 

al., 2008). Minerals were measured using inductively-coupled plasma mass spectrometry 

(Herwig et al. 2011). 

2.3. Preparation of β-casein concentrate solutions 

BCC was reconstituted in a number of different liquid media, which were deionised 

water, lactose (4, 6 or 8%), SMUF, SMUF containing 4, 6 and 8% lactose, SMUF with a 3-
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fold increase in calcium (SMUF-HC), and SMUF containing no phosphate (SMUF-NP). 

SMUF is a complex mineral solution which approximates the salts system of milk serum and 

consists of 9 mM L-1 Ca, 12 mM L-1 P, 3.2 mM L-1 Mg, 18 mM L-1 Na, 39 mM L-1 K, 32 mM 

L-1 Cl (Jenness and Koops, 1962). In all cases, BCC was added slowly to the dispersant over 

the course of 5-6 h under gentle mixing to prevent caking of the powder at the liquid surface. 

Once all of the powder had been added, the system was let rehydrate for a further 2 h, at 

which point the beaker of solution was sealed and stored at ~4°C overnight to ensure 

complete rehydration of the protein. The rehydration temperature used was ~22°C in most 

cases; however, BCC was rehydrated in SMUF at ≤15°C, unless stated otherwise, as 

rehydration temperature was observed to influence self-association. A completely clear BCC 

solution could be formed at ≤15°C; however, a temperature of 22°C resulted in irreversible 

turbidity development, which caused greater turbidity development during subsequent 

incubation experiments. The BCC solutions had a native pH of 6.7-6.9, and were adjusted to 

pH 6.8 if necessary with drop-wise addition of 0.1 N HCl or 0.1 N NaOH under constant 

magnetic stirring.  

 

2.4. Self-association of protein in β-casein concentrate solutions  

2.4.1. Effect of serum composition and incubation temperature 

Refrigerated BCC solutions (30 mL at pH 6.8) were transferred to 50 mL plastic 

graduated centrifuge tubes and equilibrated to a solution temperature of 20°C. The centrifuge 

tubes were then submerged in a water bath and incubated at 26, 37 or 63°C (±0.5°C) for 30 

min, unless otherwise indicated. At the specified time, samples were quickly removed from 

the water bath and transferred to glass, screw-capped tubes (30 mL capacity) and analysed for 

turbidity within 30-60 s using a nephelometer (Hach, model 2100N) with a tungsten light-
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source (870 nm) and a 90° detector that measured scattered light. The nephelometer was 

calibrated using Formazin standards of 20, 200, 1000 and 4000 nephelometer turbidity units 

(NTU), with sample readings reported in NTU. No dilution was performed prior to turbidity 

analysis to maintain the protein content, association state and serum environment; the only 

exception to this was dissociation experiments, which are discussed in Section 2.4.2. 

Immediately after incubation, BCC solutions were held in the glass tubes and 

turbidity was monitored during cooling from 63°C to 45, 37 and 26°C. BCC solutions were 

also analysed for turbidity at 4°C before incubation and at 4°C after 15-16 h refrigeration 

post-incubation; comparison of these two values gave an indication of the thermo-

reversibility of the aggregation process. 

 

2.4.2. Dissociation of complexes in β-casein concentrate solutions 

BCC was rehydrated in SMUF at 22°C, which yielded a more turbid BCC/SMUF 

system. These solutions were then analysed for turbidity immediately after being incubated at 

37°C for 30 min or after post-incubation holding at 4°C for 15 h. Dissociation of complexes 

was studied through dilution (1:1) with deionised water, SMUF or tri-sodium citrate (TSC, 

100 mM) added at the same temperature as the sample to be analysed (4 or 37°C).  

 

 

 

2.5. Size of complexes in β-casein concentrate solutions  

The particle size distribution of BCC solutions prepared in deionised water or SMUF 

were determined using dynamic light-scattering (DLS); BCC/SMUF was prepared at 15°C to 

ACCEPTED M
ANUSCRIP

T



11 

 

ensure that no turbidity development occurred prior to incubation. BCC/SMUF was incubated 

at 4, 26, 37 or 63°C as described previously, with an additional incubation at 20°C, and 

samples were then diluted 1:10 in SMUF before being syringe-filtered (0.22 µm pore-size). 

The filtered solution was then analysed at 4, 20, 25, 35 or 60°C by DLS with a back-

scattering angle of 173° using a Malvern Zetasizer nano ZSP (Malvern Instruments, 

Worcestershire, UK); BCC/water solutions incubated at 4 and 25°C were also analysed. 

Three scans were performed for each measurement. Data collection and analyses were 

performed using DTS (Nano) software (Version 5.02; Malvern Instruments), with the 

temperature-dependence of solvent viscosity being factored into size calculations. Data was 

transformed from intensity-weighted distributions to volume-weighted distributions using 

protein and solvent refractive indices of 1.45 and 1.33, respectively. It should be noted that 

only apparent hydrodynamic diameters can be measured with the Zetasizer for solvated 

diffusing particles with diameters larger than 60 nm that are non-spherical and polydisperse. 

 

2.5. Sedimentation behaviour of complexes in β-casein concentrate solutions  

An analytical centrifuge (LUMISizer®, L.U.M. GmbH, Berlin, Germany) was used to 

study the sedimentation of protein complexes in select samples. Two main experiments were 

performed; constant incubation time, in which the sedimentation of BCC/water and 

BCC/SMUF were compared with milk protein concentrate 35 (MPC35, also prepared in 

SMUF) after incubation for 30 min at different temperatures, and constant incubation 

temperature in which BCC/SMUF was analysed after incubation at 37°C for 90, 150 or 210 

min. The principle of the instrument has been described in detail previously (Crowley et al., 

2014). A cycle of two centrifuge speeds was applied at a controlled temperature of 37°C, the 

first at 36 g for 10 min followed by 2300 g for 60 min. The lower centrifugation speed 
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allowed the measurement of light transmission before protein sedimentation (Tstart). Protein 

sedimentation occurred at the higher speed, and the clarification rate could be calculated by 

fitting a straight line as follows:  

𝐶𝑅 =  
𝑇

𝑡+𝑐
           (eq. 1) 

where CR = clarification rate (%T h-1), T = transmission (%), t = time (h) and c = intercept [T 

= CR(t) + c] 

 

The final transmission value after 60 min at 2300 g was denoted as Tend and compared to Tstart 

to determine the extent of sedimentation during the measurement. 

 

2.6. Formation of calcium phosphate during incubation  

SMUF and BCC/SMUF solutions were supersaturated with respect to CaP. At pH 6.8, 

an elevation of temperature should increase the degree of supersaturation and result in the 

formation of calcium phosphate (CaP) particles. The process can be represented as follows 

for the formation of tri-calcium phosphate (Lewis, 2010): 

3Ca2++ 2HPO4
2− ↔ Ca3PO4 ↓ +2H+ 

As seen by this reaction, the formation of CaP on incubation should be accompanied by a 

reduction in pH, meaning that acidification can be used to track the reaction, as demonstrated 

previously by Spanos et al. (2007) for SMUF at 60°C. Acidification in SMUF and 

BCC/SMUF solutions were monitored continuously during incubation at ~60°C. First, a 

probe was submerged in 10 mL of solution, with pH and temperature being measured at room 

temperature for 30 s; this was followed by heating to and holding at 60°C, and then cooling 
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back to room temperature over a period of 10 min. A holding time of 40 min was used for 

BCC/SMUF, but this was extended to 50 min for SMUF to investigate if steady-state pH 

would be reached. Straight lines were fitted to key stages to determine acidification rates. 

Hysteresis of pH (ΔpH) was also measured, to determine the reversibility of the acidification, 

as follows:  

𝛥𝑝𝐻 = 𝑝𝐻𝑠𝑡𝑎𝑟𝑡 − 𝑝𝐻𝑐𝑜𝑜𝑙𝑒𝑑 @ 25°𝐶         (eq. 2) 

with pHstart and pHcooled indicating the pH measured before incubation and after cooling, 

respectively. Temperature and pH data were logged continuously during these experiments 

using Hach Smartlogger II v1.0.14 software (Hach, Loveland, Colorado, USA). A BX51 light 

microscope (Olympus, Tokyo, Japan) was used to assess if crystallisation of CaP occurred 

during heating OF these solutions.  

 

2.7. Turbidity development and protein stability on extended incubation 

Turbidity of BCC/SMUF solutions was determined as described in Section 2.4, except 

that 14 solutions (seven time-points, n = 2) were incubated at 37°C for up to 210 min and 

removed at 30 min intervals for immediate analysis of turbidity. A separate experiment was 

performed where BCC/SMUF incubated at 90, 150 and 210 min were incubated under the 

same conditions before storage at 4°C for 15 h in sealed containers; these solutions were then 

centrifuged at 10,000 g for 30 min at 10°C. The supernatant, after separation from the pellet, 

was diluted 1:20 and absorbance measured at 280 nm using a spectrophotometer. The 

absorbance values were then compared with an unincubated BCC/SMUF solution to estimate 

protein loss caused by incubation. 

 

ACCEPTED M
ANUSCRIP

T



14 

 

2.8. Levels of water, inorganic and organic matter in centrifugal pellets 

The centrifugal pellets obtained as described in Section 2.7 were drained of 

supernatant upside-down for ~30 min and stored in sealed containers at 4°C for ~48 h. The 

pellets were kept intact as a solid mass and frozen at -20°C after removing any remaining 

drops of supernatant with filter paper. After ~48 h, the pellets were thawed at 4°C and 

weighed before being segmented into mm-sized chunks with a spatula. Individual pellet 

segments were then analysed using thermo-gravimetric analysis (TGA) with a TGA 500 (TA 

Instruments Ltd., UK). Segments of ~ 2 mg on platinum pans were transferred to an inert 

nitrogen-flushed atmosphere and heated (10°C min-1) from ambient temperature to 550°C 

with weight loss from the sample being continuously monitored. Weight loss was 

characterised by two major stages: vaporisation of water up to 200°C and decomposition of 

organic matter up to 550°C. In this way, the content of water and ash could be measured for 

the pellets, with organic matter calculated as follows: 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 (%) = 100 − [𝑤𝑎𝑡𝑒𝑟 (%) + 𝑎𝑠ℎ (%)]    (eq. 3) 

As there was negligible organic material in the SMUF and 97% of dry-matter in the BCC 

powder was protein, the organic material was taken to consist primarily of protein derived 

from the BCC (i.e., the contribution of citrate was considered to be negligible). The yield of 

insoluble solids, protein and ash were calculated as follows: 

𝑌𝑖𝑒𝑙𝑑 𝑜𝑓 𝑖𝑛𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (%) =  
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝑝𝑒𝑙𝑙𝑒𝑡 (𝑚𝑔)

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑖𝑦 𝑖𝑛 30 𝑚𝐿 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑚𝑔)
 × 100 (eq. 4) 

 

3. Results 

3.1. Composition of β-casein concentrate 
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The BCC powder studied consisted of 96% total solids, with 97% protein on a solids-basis, 

and a CN:whey protein ratio of 77:23, which approximates that of milk. RP-HPLC analysis 

indicated that >95% of the CN fraction was comprised of β-CN, with the remainder of the 

CN being composed primarily of κ-CN (4.3%). The reconstituted solution contained 1.2% 

protein and 0.88% β-CN. Trace levels of αs-CN were detected (0.5% of CN), which 

represented <0.01% of reconstituted BCC solution on a w/v basis. In addition to protein, 

there was also a contribution from minerals in the composition of BCC. The Ca and P 

contents of the BCC powder studied were 4880 and 4342 mg kg-1, respectively, giving a 

molar Ca:P ratio of 1.11. This would give a molar Ca concentration of 1.61 mM L-1 and a 

molar P concentration of 1.74 mM L-1 when the BCC was reconstituted in water. 

 

3.2. Effect of temperature and serum-phase composition on turbidity development 

At all serum compositions, turbidity of BCC increased with increasing temperature 

after incubation for 30 min (Fig. 1), with no visible precipitation or sedimentation observed. 

The contribution of whey proteins to turbidity development was considered negligible as 

whey protein isolate solution (0.3%, w/w, protein, i.e., total whey protein level in 

reconstituted BCCs) prepared in either water or milk ultrafiltrate had turbidity values of <10 

NTU after incubating at temperatures between 25-63°C for 30 min (data not shown). Indeed, 

temperatures of >70°C are typically required to cause extensive denaturation/aggregation of 

whey proteins (Wijayanti et al., 2014). Turbidity development in the temperature range 

studied can therefore mainly be attributed to self-association of the CNs. 

Compared to BCC/water systems (Fig. 1A), increases in turbidity were far more 

pronounced in BCC/SMUF (Fig. 1B), as the latter has a much higher ionic strength (~80 

mM) and contributes 9 mM calcium, both of which promote β-CN self-association (Dauphas 
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et al., 2005). SMUF is also supersaturated in CaP, which supersaturation increases at elevated 

temperatures (Spanos et al., 2007), and can contribute to increased light-scattering when 

complexed with CN as nanoclusters (Smiddy et al., 2006). In BCC/SMUF samples, an 

increasing level of lactose from 0 to 4% resulted in increased turbidity at 37°C, but this effect 

was not observed for 6 and 8%, which seemed to slightly inhibit turbidity development. 

Although no clear concentration-dependant trend was observed, lactose did seem to influence 

development of turbidity to a minor degree. Setter and Livney (2015) reported that other 

sugars (glucose, galactose, mannose) altered the micellisation of β-CN, due to associated 

changes in water structure and hydrophobic interactions. Adjustments in the mineral profile 

of SMUF were made to distinguish between the influence on turbidity of ionic Ca and CaP 

nanocluster formation. In Figure 1C it can be seen that increasing Ca content in SMUF to ~27 

mM caused turbidity development to increase strongly BCC/SMUF-HC compared to 

BCC/SMUF, while when BCC was prepared in SMUF with no phosphate (BCC/SMUF-NP), 

turbidity development was less marked. These data suggest that CaP nanocluster formation 

and its effect on CN self-association has a greater influence than cross-bridging of CNs by Ca 

ions alone.  

It should be noted that heating solutions of SMUF in the absence of BCC resulted in 

an increase in turbidity; however, the increase was modest compared to that of BCC/SMUF 

solutions and extensive mineral precipitation was also observed (not evident for BCC/SMUF 

samples). If the turbidity of solutions of SMUF without protein are taken as a proportion of 

BCC/SMUF turbidity the following data are obtained: 14% at 5°C, 5% at 37°C and <8% at 

63°C. Thus, the instability of SMUF is not sufficient to explain the turbidity data for 

BCC/SMUF samples in Figure 1; however, the form adopted by CaP complexes in SMUF 

compared to BCC/SMUF is likely to be different (discussed in Section 3.7), so it should be 
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noted that the SMUF data are not a fair representation of the contribution of CaP to turbidity 

in BCC/SMUF systems. 

 

3.4. Influence of temperature on the size of protein complexes 

 The particle size distributions of BCC/SMUF solutions after incubation for 30 min at 

various temperatures are shown in Figure 2. At 4°C, BCC/SMUF samples primarily 

contained particles of <10 nm, with a mean value of ~6 nm, indicative of monomeric β-CN 

(O’Connell et al., 2003). BCC/water at this temperature contained particles in a similar size 

range, albeit slightly smaller on average. At 20°C, a shift to larger sizes of 10-60 nm (mean ≈ 

20 nm) was evident for BCC/SMUF, indicative of the formation of β-CN micelles 

(O’Connell et al., 2003); a slight shoulder in the peak at ≤10 nm suggests that monomeric 

species remained at these temperatures. It should be noted that, although the casein micelles 

in bovine milk have a mean diameter of ~150 nm, the micelle size distribution is between 50 

and 500 nm (O’Mahony and Fox, 2013); furthermore, the micelles formed in pure β-CN 

solutions are much smaller in size, at ~24 nm (O’Connell et al., 2003). Thus, use of the term 

“micelle” in the present paper refers broadly to these two types of micelle, which are both 

formed by the self-association of casein monomers but can result in different size 

distributions.  Unlike BCC/water, in which a monomer/micelle mixture predominated, neither 

monomers nor micelles were detected in BCC/SMUF at 25°C; instead, a broad population of 

much larger particles (~50-400 nm) was observed.  At 25, 37 or 63°C the overall shape of the 

particle size distribution profile in BCC/SMUF was largely unchanged, with average sizes 

(~140-190 nm) that are much larger than those of traditional core-shell β-CN micelles (≈ 24 

nm).  
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3.5. Influence of temperature on the physical stability of protein complexes 

 Clarification profiles for BCC/water and BCC/SMUF solutions obtained from 

analytical centrifugation experiments are shown in Figure 3. MPC35/SMUF was included to 

compare the separation of β-CN micelles with native CN micelles (e.g., micelles present in 

milk). The results indicate negligible light-scattering in BCC/water solutions at both 

temperatures, with no evidence of a sedimenting population of particles for this sample. For 

solutions incubated at 37°C (Fig. 3A), BCC/SMUF had a reduced transmission compared to 

BCC/water at the early stages of centrifugation; this effect was especially pronounced after 

incubation at 63°C, and was in agreement with turbidity data (Fig. 1). The change in 

transmission with centrifugation time for the BCC/SMUF sample incubated at 37°C was 

relatively constant and slightly uneven (Fig. 3A); this unusual profile was due to a 

combination of sedimentation phenomenon (top half of cell) and continued self-association of 

β-CN (bottom half of cell), as can be seen more clearly in the space- and time-resolved 

profile in Figure S1 (supplementary files). This effect was not observed for BCC/SMUF 

incubated at 63°C, for which a very low Tstart (~10%) was detected, and which displayed 

almost complete sedimentation of particles within 2000 s of centrifugation (Fig. 3B). In 

contrast, the sedimentation behaviour of MPC35 was unaffected by incubation temperature, 

as native CN micelles are not subject to such dynamic and dramatic shifts in association-state 

under these conditions. 

 

 

3.6. Thermo-reversibility of turbidity development 

 Samples which had been incubated at 63°C were subjected to cooling to 22°C on the 

bench to investigate the degree to which turbidity development during incubation was 
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thermo-reversible (Fig. 4). For samples incubated at 63°C, it took 5, 15 and 40 min to reach 

45, 37, and 26°C, respectively. During this time, all BCC/SMUF systems remained visually 

opaque (milk-like) and turbidity was greater than the measurement limit of the nephelometer 

(Fig. 4). Conversely, the turbidity of BCC/water systems began to decrease instantaneously 

during cooling and was completely reversed.  

Also shown in Figure 4 is the turbidity of the systems after 15 h of cooling at 4°C; 

notably, all BCC/SMUF systems had retained a measurable residual turbidity level (~400-

1100 NTU), while all BCC/water systems had NTU values <10. Similar, if less pronounced 

and consistent, trends were observed for samples incubated at 37°C (data not shown). Unlike 

previous reports (O’Mahony et al., 2014; Schwartz et al., 2015) these β-CN complexes were 

not fully thermo-reversible, or at least not within the 15 h cooling period that was 

investigated. The authors consider this incomplete/delayed thermo-reversion to be due to 

interactions between β-CN and CaP, which are highlighted in the dissociation studies 

reported in Section 3.7. 

 

3.7. Dilution-induced dissociation of complexes in β-casein concentrate solutions 

 The finding that the thermo-reversal of turbidity development in BCC/SMUF systems 

is remarkably slow and ultimately incomplete (Section 3.6) indicates that the integrity of the 

complexes formed cannot be attributed to hydrophobic interactions alone. To investigate this 

further, a BCC/SMUF system was prepared at 22°C and incubated at 37°C. Samples were 

then analysed for turbidity at 37°C undiluted, or after 1:1 dilution in water, SMUF or tri-

sodium citrate (TSC). The same experiment was performed after first cooling the incubated 

sample at 4°C for 15 h, with samples being analysed either undiluted or in the 

aforementioned diluents. 
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 The results of warm and cold dissociation experiments are shown in Figure 5. In 

BCC/SMUF systems at 37°C, dilution with water resulted in an 82% decrease in turbidity. 

Dilution in SMUF resulted in an increase in turbidity, which placed the sample outside the 

measurement limit for the instrument; the solution was already very close to this limit when 

undiluted, and the increase in turbidity after dilution suggests that continued protein 

aggregation occurred after extended incubation in the presence of SMUF, despite a dilution 

of protein content. Dilution in TSC resulted in a change in turbidity to values close to those 

observed for unincubated BCC/SMUF systems at 4°C (~13 NTU). TSC has a limited impact 

on the refractive index of the solvent (Smiddy et al., 2006), and additional decreases in 

turbidity caused by TSC can therefore be attributed to its dissociating action (i.e., 

sequestering of Ca). After incubation, cooling of undiluted BCC/SMUF to 4°C resulted in a 

93% reduction in turbidity, although turbidity was still quite high (252 NTU). At this 

temperature, dilution with water or SMUF achieved a decrease in turbidity of ~50%. The 

presence of TSC at 4°C caused more extensive dissociation than at 37°C, resulting in a low 

turbidity of 2.6 NTU. The slow thermo-reversal of this micellisation process may be 

attributable to the slow rate of dissolution of CCP cross-links, compared to a more rapid 

weakening of hydrophobic interactions. A decrease in the Ca-binding ability of caseins at low 

temperatures probably also contributed to observed dissociation phenomena (Horne and 

Lucey, 2014). The nature of the attractive and repulsive forces involved in these systems is 

discussed in more detail below (Section 3.10). 

 

3.8. Formation of calcium phosphate phases during incubation 

 It was observed that SMUF incubated at 37 or 63°C for 30 min showed precipitation 

(not shown) but no precipitation occurred under these conditions in BCC/SMUF solutions. 

ACCEPTED M
ANUSCRIP

T



21 

 

These data suggested that the crystallisation of CaP was being prevented by proteins in the 

BCC. CaP formation was tracked dynamically by analysing acidification during heating to, 

and holding at, 60°C (Fig. 6).  

Data for SMUF are shown in Figure 6A. An initial decrease from pH 6.8 to 6.5 

occurred during the first 500 s of heating from 25°C, followed by a lag phase lasting ~1000 s 

and a second acidification stage which continued until the temperature was reduced. When 

subjected to cooling to the original temperature pH was partially restored. For BCC/SMUF 

(Fig. 6B), the initial stage of acidification was similar to that observed for SMUF. After this 

point, however, the two samples diverged considerably. No second acidification stage was 

detected for BCC/water; instead, an extended lag phase at pH 6.4 was measured. A partial 

restoration of pH was, again, measured after cooling for this sample.  

The two-stage acidification that was a feature of SMUF was divided into stage A, 

which was rapid, and stage B, which was slow. Only stage A was detected in BCC/SMUF. 

The rate of acidification (pH unit s-1, × 10-4) in stage A was -4 ± 0 and -8 ± 1 for SMUF and 

BCC/SMUF, respectively. Stage B, detected only for SMUF, had an acidification rate of -1 ± 

0, indicating it was a comparatively slow phenomenon. After cooling for 10 min, a ΔpH of 

0.33 ± 0.01 was measured for SMUF, while the value for BCC/SMUF was only 0.1 ± 0.01. 

Light microscopy images of SMUF during heating and holding indicated the presence of 

crystals of 20-33 m, while no crystals were observed in BCC/SMUF (data not shown). Holt 

and Carver (2012) described how CaP precipitation in supersaturated solutions commences 

with the formation of an amorphous state that serves as a precursor phase to lower energy 

crystalline states (i.e., octocalcium phosphate, hydroxyapatite); in the presence of 

phosphoproteins, CaP formation is arrested at the amorphous stage. Thachepan et al. (2010) 

found that β-CN could stabilise CaP in the amorphous state during incubation >35°C. Results 

for the heat-induced acidification of SMUF and BCC/SMUF are consistent with the reports 
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of these previous authors and demonstrate that protein in BCC can act as a nucleation site for 

amorphous CaP, which prevents crystallisation and thereby limits acidification. 

 

3.9. Turbidity development and colloidal destabilisation of protein during incubation 

When BCC/SMUF was incubated at 37°C, turbidity increased over time (Fig. 7A). 

Irreversible destabilisation occurred for incubation periods of ≥60 min, with precipitates 

observed after subsequent cooling (~15 h at 4°C). When the destabilised BCC/SMUF 

systems were centrifuged, the supernatants were shown to have an almost 10% decrease in 

absorbance of light at 280 nm, indicating the presence of more insoluble protein compared to 

the unincubated control (Fig. 7A).  

The results in Figure 7A indicate that, when BCC was incubated in SMUF for >30 

min, an aggregation process was initiated which ultimately led to the irreversible 

destabilisation of a limited quantity of protein. This phenomenon was very likely to be heat-

induced rather than cooling-induced, as demonstrated by data from analytical centrifugation 

experiments performed immediately after incubation at 37°C for 30, 90, 150 or 210 min (data 

not shown). Data from the analytical centrifuge showed a strong, positive linear relationship 

between incubation time and clarification rate, CR (R2 = 0.99). Evaluation of light 

transmission through the sample at the start (Tstart) and end (Tend) of centrifugation indicated 

that longer incubation times resulted in an initial increase in light scattering due to protein 

complexes (low Tstart) and a greater change in turbidity due to sedimentation of these 

complexes (high Tend). For example, after 30 min incubation the Tstart and Tend were 77.2 ± 0.0 

and 77.2 ± 0.2 %, respectively, with a CR of 0.31 ± 0.1 % h-1, suggesting a low initial 

turbidity and a negligible degree of sedimentation; on the other hand, after 210 min 

incubation the Tstart and Tend were 61.5 ± 0.7 and 82.2 ± 0.5, respectively, with a CR of 26.6 ± 
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1.0 % h-1, demonstrating that the longer incubation time promoted the formation of more 

sedimentable complexes. 

Pellets obtained from centrifugation of BCC/SMUF incubated for 90, 150 and 210 

min were analysed by TGA to determine levels of water, organic and inorganic constituents. 

Representative TGA profiles are shown in Figure 7B. Organic and inorganic material was 

considered to be composed of protein and ash, respectively. Increasing incubation time 

resulted in increases in the content of both the protein and ash in the pellets, with a notable 

decrease in water content between the 150 and 210 min incubation times compared to pellet 

from 90 min incubation (Fig. 7B). Trends in the yield of insoluble protein were generally 

consistent with UV absorbance at 280 nm data, with both sets of data suggesting only a 

limited degree of protein destabilisation (7-13%), reaching a maximum after ~150 min 

incubation (data not shown). 

 

3.10. Mechanism of self-association/dissociation of β-CN in presence of CaP 

Overall, the results of this study demonstrate that the self-association and dissociation 

behaviour of β-CN is likely influenced by multiple attractive and repulsive forces. Self-

association of β-CN is promoted by heating (Fig. 1, 2, 3). Cooling-induced dissociation of β-

CN micelles (Fig. 4) is due to hydrophobic interactions decreasing at lower temperatures but 

also due to a reduction in the calcium binding capacity of the β-CN (Horne and Lucey, 2014). 

This latter effect would, in turn, increase negative charge on the β-CN, which, in combination 

with decreased hydrophobic interactions, could be expected to cause micelle dissociation. In 

a system supersaturated with calcium and phosphate (i.e., SMUF, in this case), an additional 

consideration is the formation of a CaP phase during heating, which participates in the 

formation of highly turbid solutions (Fig. 1) of large micelles (Fig. 2, 3) that are less 
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susceptible to dissociation (Fig. 4, 5). In the absence of β-CN, CaP precipitates and ultimately 

forms hydroxyapatite (Holt and Carver, 2012), with the consequent release of all hydrogens 

resulting in considerable acidification (Fig. 6A). In the presence of β-CN, the type of CaP can 

be predicted to be in a different form, such as dicalcium phosphate (Holt et al., 1996), which 

would cause less H+ to be released and much more limited acidification (Fig. 6B). In such a 

system, hydrophobic association between two or more β-CN molecules may leave exposed 

hydrophilic (charged) segments that can bind CaP, forming CaP “nanoclusters” similar to 

what is found in the casein micelles of milk (Horne, 2006; Dalgleish, 2011; Holt and Carver, 

2012; Holt, 2016). The resultant heat-induced complexes, held together by a combination of 

hydrophobic interactions, ionic calcium binding and CaP cross-bridging, are more difficult 

and slow to dissociate by cooling (Fig. 4, 5), and a limited proportion may undergo 

irreversible destabilisation on extended incubation (Fig. 7). These findings are potentially 

relevant to future work focused on exploiting the functional properties of β-CN (e.g., 

encapsulation, surface activity). For example, knowledge of the influence of CaP on the 

association/dissociation behaviour of β-CN can contribute to strategies aimed at designing 

complexes that are more stable to temperature changes (with CaP) or less stable to 

temperature changes (just Ca). 

 

 

 

4. Conclusion 

In this study, a membrane process-derived BCC was assessed for its association and 

dissociation behaviour. Both the extent and reversibility of self-association were influenced 

by reconstitution temperature, serum-phase composition, incubation temperature and time. A 
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key finding was that β-CN complexes could partially stabilise a supersaturated solution of 

CaP; in turn, CaP promoted the formation of β-CN complexes which were larger than typical 

β-CN micelles and more resistant to dissociation. Irreversible, albeit limited, precipitation 

occurred on extended incubation of BCC in SMUF, likely due to a progression of the 

polymerisation process mediated by hydrophobic and ionic interactions. The nature of the 

association and dissociation characteristics of protein-mineral complexes in BCCs could have 

important implications for their use in certain applications, such as the humanisation of infant 

formulae, fortifying foods with bioavailable forms of minerals, encapsulation of drugs or 

bioactives, and the stabilisation of emulsions and foams.  
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Fig. 1. Turbidity of β-casein concentrate (BCC) solutions prepared in (A) water or (B) 

simulated milk ultrafiltrate (SMUF) with 4% (LL), 6% (ML) or 8% (HL) lactose, and 

incubated at specific temperatures for 30 min. Profiles are also shown for (C) high Ca SMUF 

prepared with 27 mM Ca (SMUF-HC) and SMUF containing no phosphate (SMUF-NP) 

compared to standard SMUF. Data are the means (± standard deviations) of experiments on 

solutions prepared, incubated and analysed on at least two separate occasions. Detection limit 

= 4000 NTU. 
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Fig. 2. Particle size distributions of β-casein concentrate (BCC) solutions prepared in 

simulated milk ultrafiltrate (SMUF), and incubated at 4, 20, 26, 37 or 63°C for 30 min prior 

to analysis; profiles generated for each at 4°C (□), 20°C (), 25°C (◊), 35°C (∆) or 63°C (—) 

are shown. Solutions were diluted (1:10) and filtered (0.22 µm) prior to analysis. Results for 

BCC/water solutions at 4°C (■) and 25°C () are included for comparison. Data are means 

(± standard deviations) for solutions prepared for two separate incubation experiments, 

prepared and analysed for size in duplicate. The data at 63°C was the result of a single 

analysis on pooled filtrate due to low sample volume. 
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Fig. 3. Transmission of near-infrared light during centrifugation of solutions of β-casein 

concentrate (BCC) prepared in water () or simulated milk ultrafiltrate (SMUF, ) as a 

function of centrifugation time. Milk protein concentrate 35 (MPC35) prepared in SMUF () 

is shown for comparison. Solutions were incubated at (A) 37°C or (B) 60°C for 30 min 

before centrifugation. A cycle of two centrifuge speeds was applied at a controlled 

temperature of 37°C, the first at 36 g for 10 min followed by 2300 g for 60 min. Data are the 

means (± standard deviations) of duplicate experiments. 
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Fig. 4. (A) Turbidity of β-casein concentrate (BCC) solutions prepared in water or simulated 

milk ultrafiltrate (SMUF) during cooling from 63°C and (B) photographs of representative 

samples. Cooling to 45, 37 and 27 °C took 5, 15 and 40 min, respectively; the 5 °C samples 

were analysed after overnight refrigerated storage. LL – 4% lactose, ML = 6% lactose, HL = 

8% lactose. Data are the means of experiments on solutions prepared, incubated and analysed 

on at least two separate occasions. Note: data points above the broken line indicate that the 

detection limit of the instrument was being exceeded. 
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Fig. 5. Turbidity of β-casein concentrate (BCC) solutions prepared in simulated milk 

ultrafiltrate (SMUF) at 22°C and incubated at 37°C for 30 min followed by immediate 

dilution in different solvents (black bars) or dilution after holding at 4°C for 15 h (white bar). 

Dilutions were 1:1 in all cases.  Data are the means (± standard deviations) of solutions 

subjected to two separate incubation/dilution/cooling experiments. Upper measurement range 

= 4000 NTU. 
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Fig. 6. Changes in pH during incubation of (A) simulated milk ultrafiltrate (SMUF) and (B) 

β-casein concentrate (BCC) in SMUF at ~60°C. Temperature is shown as a solid curve and 

pH as a broken curve. A grey horizontal line is shown extending from starting pH to guide 

the eye for pH hysteresis (ΔpH) calculation. Linear fits are fitted to pH curves to estimate the 

rate of amorphous calcium phosphate (ACP) formation and crystallisation. Data are from a 

single analysis but are representative of replicate profiles. 
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Fig. 7. (A) Turbidity of β-casein concentrate (BCC)/simulated milk ultrafiltrate (SMUF) 

solutions during incubation at 37°C at different times (closed symbols) and the absorbance at 

280 nm of soluble protein in the supernatant after refrigeration (~15 h) and centrifugal 

removal of precipitated material. (B) Results of thermo-gravimetric analysis on 2.0-2.5 mg 

sub-samples of pellets obtained from BCC/SMUF solutions after incubation at 37°C for 90, 

150 or 210 min, refrigeration for 15 h, centrifugation and removal of supernatant. 

Compositional data was derived from measurement of evaporative loss of water (25 to 

200°C) and decomposition of organic material (200 to 550°C). Data are the means (± 

standard deviations) of solutions subjected to two separate incubation experiments, with 

supernatants/pellets generated in duplicate and prepared for analysis separately.  
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