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Abstract
Porous metallic structures are regularly used in electro-
chemical energy storage (EES) devices as supports, current
collectors, or active electrode materials. Bulk metal poros-
ification, dealloying, welding, or chemical synthesis routes
involving crystal growth or self-assembly, for example, can
sometimes provide limited control of porous length scale,
ordering, periodicity, reproducibility, porosity, and surface
area. Additive manufacturing has shown the potential to
revolutionize the fabrication of architected metals, allowing
complex geometries not usually possible by traditional
methods, by enabling complete design freedom of a porous
metal based on the required physical or chemical property to
be exploited. We discuss properties of porous metal struc-
tures in EES devices and provide some opinions on how
architected metals may alleviate issues with electrochemically
active porous metal current collectors, and provide opportu-
nities for optimum design based on electrochemical charac-
teristics required by batteries, supercapacitors or other
electrochemical devices.
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Introduction
Porous metals, in ordered or random form, have been a
mainstay in electrochemical science and technology[1e
4]. Porous metals and metallic foam have been used as
high surface area electrodes, current collectors, sub-
strates, counter electrodes, or even faraday cages. We
now have a wide range of methods to fabricate porous
metal with different porosity length scales, and with

different degrees of ordering or periodicity[5e8**].
While certain metals, their alloys, and their physical
properties fundamentally limit the range of latticed or
porous structures that can be formed, the choice of
metal for electrochemical energy storage applications
[9e12] is usually based on surface activity, passivity,
electrical conductivity, and weight. The length scale of
porosity [13], and the types of porous ordering are not
always obtainable “a la carte” for the electrochemical
application when open-worked from the bulk metal. We
examine the nature of the porous metal formation,

address some limitation for transition metals and noble
metals in foam, lattice or porous form[14] for electro-
chemical energy storage devices and discuss how the
choice of metal and the method of fabrication influence
the nature of the porosity and their relative benefit in
energy storage devices.

While directed self-assembly from chemical routes,
sacrificial templates [15], dealloying approaches, or
macropore formation methods can create a wide variety
of porous structures, including metals, replication and

minimization (or elimination) of structural defects is a
persistent problem when they are used as electrodes
[16,17]. Additive manufacturing methods, including 3D
printing, have evolved to allow large and small structures
to be engineered to provide long range periodic or
aperiodic metallic porous structures [18e21] that are,
by comparison, almost defect free in their lattice
structure. Accurate replication of any porous structure
will allow for better quantitative comparison between
supercapacitor, battery and other electrodes (e.g., water
splitting and many more electrochemical processes

[22]), provide a defined surface area for determining
intrinsic geometrical surface area [23e25] effects in
electrochemical processes, and allow us to choose metals
and porous structures to take advantage of specific
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202 Energy Storage
physical properties useful to the application, e.g.,
toughness, thermal conductivity, flexibility, surface ac-
tivity, etc.

Here, we provide a summary perspective on porous
metal structures using in electrochemical energy stor-
age, particularly supercapacitors and batteries, and the
primary methods used to date to make these porous

metals. We discuss periodic porous metals and porous
metal foams, the main methods used to make these
structures, and provide our opinion on the advent of
additive manufacturing for metallic lattice or porous
metal formation for EES devices. We also discuss the
merits of some additive manufacturing approaches that
can create metals in more complex and useful structures
that cannot be achieved, for example, from the poros-
ification of bulk metals, dealloying, and chemical as-
sembly routes. These methods for porous metals widen
the choice of active materials for electrochemical ap-

plications, or passive, conductive current collectors that
do not contribute to unwanted parasitic activity.
Porous metal fabrication methods
Metallic porous materials can exist in a variety of forms,

such as foams, sponges, micro/nanolattices, micro/
nanoarrays, etc.[19e21,23*,24] Structurally, porous
Figure 1

(a) Types of metallic porous structures and applicability of traditional and AM te
filling of metallic porous structures with active materials in EES devices, such

Current Opinion in Electrochemistry 2020, 21:201–208
materials can be categorized as stochastic (random) and
ordered (mostly periodic, but aperiodic 3D-tiling is also
possible), depending on the randomness of pore size and
arrangement (Figure 1a) [5,20]. Examples of stochastic
structures include metal foams and sponges, whereas
micro or nanolattices belong to the ordered category. In
order to achieve high accessible specific surface area and
create continuous diffusion pathways, which is impor-

tant for EES applications, the porous structures should
ideally be open cell [5*], i.e., internal pores should be
well-interconnected minimizing the number of isolated
cavities. Complete interconnectivity is more easily
achieved in the engineered lattices and arrays, particu-
larly when the structure is imposed by design. For other
types of structures, such as bottom-up or self-assem-
bled, for example, interconnectivity is a function of the
method and conditions of fabrication. Stochastic mate-
rials are usually isotropic at scales larger than a cell size;
however, periodic structures can be highly anisotropic

when the spatial arrangement or dimensions of unit
blocks have a prevalent direction [20*].

Metallic foams and sponges (open-cell foams) are tradi-
tionally produced using two main approaches: by
creating pores in the bulk material or by fusing many
separate cells into a single structure [26]. The former
chniques to the fabrication of each material type. (b) Main approaches for
as battery electrodes.

www.sciencedirect.com
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approach, in turn, can be implemented using many
different techniques. Gas injection employs the pumping
of pressurized gas into metal melt forming gas bubbles,
which then stay after cooling and form pores. The addition
of foaming agents, such as metal hydrides, carbonates,
oxides, which release gases upon heating, is another
technique for metal foam fabrication. Space holder and
template-directed methods utilize various fillers (e.g.,

polymer beads, salt grains, hollow spheres, woven wire
meshes) or templates (e.g., polymer foams, ceramic
templates, etc.), which are subsequently removed, for
example, by pyrolysis or solvent leaching. Sponge repli-
cation method can be viewed as a variation of the previous
methods in which metallic powder slurry is impregnated
into polymeric foam followed by pyrolysis of polymer
and post-sintering [6]. Dealloying, a corrosion process in
which one or several components of an alloy are
dissolved, is a powerful method of fabrication of metal
foams and sponges capable of producing micro-, nano-

and hierarchical (micro-nano) pores [13,27,28].

Periodic metallic structures, such as lattices or arrays, can
also be fabricated by several different methods. Invest-
ment casting is one of the traditional industrial techniques
used in metallurgy capable of producing complex high-
precision patterns [19,29]. This method is based on
the creation of a sacrificial master pattern (e.g., by rapid
prototyping methods) from wax or polymer, which is
then used to fabricate a mold by coating. Wax or polymer
are subsequently removed by melting, pyrolysis or

evaporation to leave a hollow mold, in which molten
metal is later injected. Deformation forming can involve
metal sheet perforation, deformation by pressing,
shearing, expanding, and layer stacking. The unit cell
size achievable by this technique can be as low as a
millimeter scale, which is quite large for micro- or
nanolattice fabrication. Using metal textiles (woven or non-
woven) is another conventional approach to
manufacturing periodic lattice materials, where metal
wires are intertwined at various orientations, bent,
sheared, or otherwise deformed, and optionally, soldered
[21]. These approaches are relatively fast and inex-

pensive, but in some cases are limited by the specifi-
cations and precision of the equipment and forming
methods.

The traditional techniques for metallic lattice fabrica-
tion have a number of disadvantages, such as a relatively
high cost and complexity, slow fabrication rate, low
number of cells per unit length (hence, large feature
size), waste of sacrificial materials, limited choice of
suitable low-viscosity metals or alloys (in the case of
investment casting). Due to the nature of the fabrica-

tion process, some methods have limited capability for
producing complex geometrical structures.

Additive manufacturing (AM), or 3D printing, which is a
common name for a family of manufacturing methods
www.sciencedirect.com
utilizing layer-by-layer fabrication of three-dimensional
models created with computer-aided design (CAD)
[3], has been gaining popularity in the fabrication of
complex shapes and objects, in particular periodic
metallic structures. Contrary to conventional tech-
niques we have just discussed, AM is highly versatile
and enables fabrication of both stochastic and ordered
open-cell structures with mono- or hierarchical scaling

of pore sizes, and these will prove useful for new form
factor batteries and supercapacitors[30]. Given the
ongoing improvements in 3D printing hardware, AM is
able to produce high-resolution, geometrically accurate
objects having small cell unit size at low cost and rela-
tively fast production rate. This makes AM a superior
and very promising technique compared to the con-
ventional methods (see Figure 1a).

It is particularly important that 3D printing facilitates
the fabrication of arbitrary ordered open-cell lattices

with high resolution, which is difficult to achieve using
traditional techniques. This type of structure has a
number of advantages over other geometries, including
high porosity (or, alternatively, low relative density),
good mechanical strength, extensive pore interconnec-
tion and absence of closed cavities, and uniform or well-
controlled (e.g., graded) pore distribution. The latter
facilitates the controlled distribution of physical prop-
erties and pore sizes across the volume, and hence,
allows to achieve the optimal material and space utili-
zation, as well as uniform or gradient material filling/

coating. 3D printing porous metals gives an opportunity
to assess the intrinsic influence of pore structure, peri-
odicity, volumetric space filling, and other factors, in the
battery, water splitting, supercapacitor, or other elec-
trodes. Porous current collectors or porous active mate-
rials, more so, are usually described as providing shorter
ion diffusion distance in material and electrolyte, offer
distributed electrical wiring throughout the composite,
or improve electrolyte soakage, among other attributes.
If these are universally true to some degree, they can, in
principle, be optimized with CAD designed structures,
and the relationship between specific porosity in active

or substrate materials and electrochemical behaviour
can be properly studied. With the advance of super-
capatteries, Li-ion capacitors, and other EES system
utilizing capacity and capacitance as energy storage
processes, the nature of high surface area materials (all
materials of the electrode) is important to be able to
quantify.

Several 3D printing methods have been used to fabri-
cate porous metallic materials, which differ by the
physical processes involved in the printed layer forma-

tion. Most widely used techniques are variations of
powder bed fusion (PBF), such as selective laser
melting (SLM) and electron beam melting (EBM),
material extrusion (ME), for example, fused deposition
modelling (FDM), vat photopolymerization (VAT-P),
Current Opinion in Electrochemistry 2020, 21:201–208
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e.g., stereolithography (SLA) and digital light processing
(DLP) [8,14,21,22,31e36*]. PBF methods are capable
of direct fabrication of fully metallic objects. ME and
VAT-P techniques usually yield either polymer tem-
plates, which are further metalized, or metalepolymer
composites that can be conductive and used as pre-
pared (in this case, material brittleness issues are quite
common). Alternatively, the polymer binder can be

removed by post-treatment, as in the case of space
holder/template-directed techniques discussed earlier
in this section.

Various techniques based on metalization of templates (e.g.,
polymeric foams and lattices) have been reported.
These metalization methods include chemical vapor
deposition (CVD), physical vapor deposition (PVD), electro-
less plating, electrodeposition, and dip-coating
[12,22,23,33,37e40]. The template can subsequently
be either removed by sintering/dissolution or retained,

in which case it can improve mechanical strength and
maintain the integrity of the structure at the cost of the
added weight and volume of usually inactive material.
Among the metalization methods, electroless plating is
one of the most frequently used due to its simplicity,
low cost, and relatively uniform resulting metal coating.
Also, no specialized, expensive equipment is required to
perform this technique. Electroless plating involves
sensitization and activation of the substrate surface by
pre-treatment solutions followed by immersion of sub-
strate into the plating solution containing the desired

metal ion [22]. There are several published reviews,
which consider the fabrication methods of metallic
porous structures in more detail [5,21,41].
Some properties of porous metallic
structures in EES
Structured lattice or porous metals are a class of mate-
rials that show a wide variety of interesting properties,
and these have been reviewed extensively
[2,3,26,31,34,42e44]. Aside from modification to
ductility, strength, flexibility, and effective optical and
thermal conductivities caused by interconnected
networking of a porous metal, some properties are
inherently more interesting to electrochemical energy
storage processes. Notably, surface activity, surface
chemistry, oxidation (or oxidation resistance), corrosion
(resistance), microstructure, and geometry play impor-

tant active or passive roles in EES devices[14,34].

As current collectors with high nominal surface area,
metal foams, such as steel, copper, and nickel foams, and
other nanostructured metal oxide structures [45], as
common examples, are readily used to support active
materials in supercapacitor and battery electrodes.
Templated metallic periodic porous surface also pro-
vides substrate for thin films for batteries, mimicking a
porous metal current collector[46]. In practical
Current Opinion in Electrochemistry 2020, 21:201–208
electrode preparation, metal current collector surfaces
are often subject to solvent, water or acid/base exposure,
and often involve a thermal treatment in cases where
the material is being grown or crystallized on a surface.
Often, electrode mass loading is defined by mass,
without convincingly uniform coverage of a porous metal
surface. This often leaves areas of porous metal that are
subject to oxidation, and these oxides can, in some

cases, contribute significantly to the overall electro-
chemical response[47]. A case in point is work by
Geaney et al. who showed [48*] howNiO formation on a
nickel foam can eventually dominate the response of a
Li-ion electrode when the areal mass coverage is low
enough to expose oxidized Ni at the porous metal cur-
rent collector surface.

Figure 2 summarises some of the salient properties of
architected or 3D printed metal lattices useful for EES,
and by comparison to metal foams (Figure 2b) and solid-

state synthesis routes, rational design of the structure,
order, and reproducibility is improved. New synthetic
approaches have merged with SLA-type 3D printing to
produce metal lattices on the nanoscale (Figure 2c). As
metal foams tend to be used quite often in super-
capacitor and pseudocapacitor research, we recommend
that the activity of high surface area (non-noble)
oxidizable metal foams be carefully assessed in terms of
electrochemical activity in the EES device[50]. The
chemistry of Ni, Cu, and other transition metals in acids
and bases is now long established[51e54], but when the

surface is not entirely covered, it will be active in many
electrolytes under certain voltage ranges. While this
effect is very sensitive in water splitting experiments for
a range of metals, it is non-negligible in EES devices
where very small mass loadings are used. Adding
complexity and surface area to 3D porous metals could
exacerbate this issue unless more chemically stable
metals are used, or coating methods[55] are improved
for lattice metal current collectors or electrodes. Porous
metals by their nature, provide spatially inhomogeneous
electric fields and locally high current densities if the
lattice features dimension within the porous network

are dissimilar. This may pose a problem for EES device
electrode coatings that are susceptible to localized
corrosion, dissolution, or for electrolyte decomposition
in cases of incomplete metal coverage. Additionally,
fluctuations in current collector mass can occur when
oxidized, or by unexpected (electro)deposition events
at exposed regions of a porous or latticed current col-
lector. The often lauded geometrically enhanced activ-
ity of porous nanostructured materials[17,45] for various
applications also occurs in other EES devices [17,56e
62], and not always wanted in the case of current col-

lector substrates. On the other hand, modification of
engineered porous lattice structures may be beneficial
for capacitor-based EES systems, where the actual sur-
face area can be more precisely defined, to provide op-
portunities to more carefully assess the influence of
www.sciencedirect.com
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Figure 2

(a) Short summary of useful features of additively manufactured, architected porous metals important for EES devices. Other parameters not mentioned
are assumed to be controllable by metal type, such as oxidation resistance, oxidation capability, surface reactivity, wettability, and flexibility, etc. The
representative structure was designed and printed by FormLabs 2 stereolithographic 3D printer using the high temperature photoresist. (b) SEM of a
typical nickel metal foam structure. (c) Summary of a solid-state precursor synthetic route to porous noble metals, such as gold, silver, and palladium,
formed as a porous surface film without dealloying. Reproduced from Ref. [49] with permission from the authors. The insets are radially average FFTs of
the porous metals confirming constant feature– feature separation in all directions. Nanoscale additive manufacturing using chemical precursors and
photo-initiators is capable of producing printed architected metals with nanoscale features. Reproduced from Ref. [8] with permission from the authors.
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other parameters (material, voltage range, scan rate,
electrolyte, etc.) on the capacitance and to decouple
intrinsic from geometrical enhancement in such devices
[63*]. AM grown or 3D printed reproducible porous
metal lattices may prove very useful and can be
constructed with flat top surfaces to ensure consistent
interfacial pressure with the separator and anode,
compared to spongy, nonplanar metal foams.

Finally, 3D printing not only allows CAD designed
latticed porous metals optimized for a particular elec-
trochemical cell but can also help reduce the overall
mass of current collectors or electrodes. Thin-film
metalization of 3D printed resin or plastic components
requires much less metal than an electrode made
www.sciencedirect.com
entirely from the metal of choice, benefitting costs, and
overall cell weight. For example, ultralight lattices can
be fashioned from 3D printed structures by metal
deposition (physical, chemical, or vapor deposition)
with subsequent removal of the underlying polymer or
resin template.

Designing lattice structure and interconnectivity also
ensure well defined electrical conductivity out of plane

and in-plane for the electrode, and this becomes
important for active battery electrode materials that are
somewhat less conductive, or for electrodes that are
thicker, as a case in point, in the infilling of lattice metal
current collectors to minimize intrinsic resistivity of
some materials for thicker electrodes[64]. Overall,
Current Opinion in Electrochemistry 2020, 21:201–208
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adding functional porosity has some usefulness in EES
devices, and 3D printing methods can help evolve
porous metallic electrode design beyond the limited
range and length scales, periodicity, and order of their
porosity.
Conclusions and outlook
This opinion review looked at some primary methods for
forming metallic porous structures, foams, and lattices
in the context of their use in electrochemical energy
storage devices. It is becoming clear that 3D printing
and AM approaches in general will become very useful in
the future to offset some limitations both in properties

and scaled reproducibility, for porous metals in systems
that are inherently very (electro)chemically active.
While the extension to nonmetallic, nonpolymeric ma-
terials is already possible, rational design of periodicity
and porosity in metals with structures and geometries
not possible by bulk porosification or physicochemical
assembly in the broadest sense might enable metallic
electrode fabrication specifically designed for an EES
application that was not possible before. For example,
porosity, tortuosity, pore size, directionality, and surface
area can be programmed, unlike the dealloying process

for bimetallic systems. Electrical and mechanical char-
acteristics can be dialed-in at the design stage for an
electrode prior to fabrication based on the application
need, which may be superior compared to randomly
structured metal foams where pore sizes, periodicity,
etc., are definitively difficult to exactly replicate and
require other analytical methods to determine these
properties. This applies to the electrode used in
everything from batteries to water splitting, and from
bioelectrochemical scaffolds to electrochemical labs-on-
chip, printed based on device requirement or sensitivity
to a physical structure or property. Second, some of

these properties cannot be varied for certain metal
foams, even when they are characterized, making 3D
printing a powerful laboratory tool for electrode fabri-
cation. We also hope that the ability to essentially create
any lattice or porous metallic structure will allow the
community to distinguish intrinsic (surface activity,
chemical potential, oxidation state) and geometric
(surface area, material fill factor, metallic truss density,
etc.) parameters as contributors to charge storage in
structurally and compositionally very complex electrode
formulations.
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