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Kinetics and Coverage Dependent Reaction 

Mechanisms of the Copper Atomic Layer 

Deposition from Copper Dimethylamino-2-

propoxide and Diethylzinc 

Yasheng Maimaiti and Simon D. Elliott* 

Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland 

ABSTRACT: Atomic layer deposition (ALD) has been recognized as a promising method to 

deposit conformal and uniform thin film of copper for future electronic devices. However, many 

aspects of the reaction mechanism and the surface chemistry of copper ALD remain unclear. In 

this paper, we employ plane wave density functional theory (DFT) to study the transmetalation 

ALD reaction of copper dimethylamino-2-propoxide [Cu(dmap)2] and diethylzinc [Et2Zn] that 

was realized experimentally by Lee et al. [Angew. Chemie Int. Ed. 2009, 48, 4536–4539]. We 

find that the Cu(dmap)2 molecule adsorbs and dissociates through the scission of one or two Cu – 

O bonds into surface-bound dmap and Cu(dmap) fragments during the copper pulse. As Et2Zn 

adsorbs on the surface covered with Cu(dmap) and dmap fragments, butane formation and 

desorption was found to be facilitated by the surrounding ligands, which leads to one reaction 

mechanism, while the migration of ethyl groups to the surface leads to another reaction 
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 2

mechanism. During both reaction mechanisms, ligand diffusion and reordering are generally 

endothermic processes, which may result in residual ligands blocking the surface sites at the end 

of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. We also 

find that the nearby ligands play a cooperative role in lowering the activation energy for 

formation and desorption of by-products, which explains the advantage of using organometallic 

precursors and reducing agents in Cu ALD. The ALD growth rate estimated for the mechanism 

is consistent with the experimental value of 0.2 Å/cycle.  The proposed reaction mechanisms 

provide insight into ALD processes for copper and other transition metals.       

1. Introduction 

The interest in depositing uniform and island-free ultrathin films of copper originates from its 

application as the interconnect material in electronic devices. Copper has superior properties to 

aluminium as an interconnect material, such as lower resistivity and higher current density for 

electromigration, which are critical for improved device performance and reliability.1 Deposition 

techniques such as physical vapor deposition (PVD),2 electrodeposition,3 chemical vapor 

deposition (CVD)4 and atomic layer deposition (ALD)5–8 have been applied with the aim of 

obtaining a thin film of Cu. It is extremely difficult to deposit continuous thin films of Cu at 2 

nm thickness and instead formation of Cu islands with size of 10-90 nm tends to be more 

favourable.9 Of these deposition approaches, ALD shows the most promise in surmounting the 

island growth problem as well as meeting future demands of device scaling.10–12  

Many copper organometallic compounds are used with H2 or H2 plasma in copper ALD 

experiments13–18. However, these processes lead to impurities and discontinuous films either 

because of the higher temperature requirement or because of the strong reducing or oxidizing 

nature of the co-reagents.8,19,20 Significant progress was made by Lee et al. in developing low 
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 3

temperature ALD of copper metal using the reaction of copper dimethylamino-2-propoxide 

[Cu(dmap)2] and diethylzinc [Et2Zn] at 100–120 °C.21 Although subsequent work reported that 

the parasitic CVD reaction of Et2Zn may lead to Zn incorporation into the copper thin film,20 the 

work by Lee et al. has important implications on the co-reagent strategy which was traditionally 

limited to the use of molecular or plasma H2. The reaction of Cu(dmap)2 and Et2Zn was 

previously used to synthesize Cu/Zn alloy nanocolloids using thermolysis.22 Vidjayacoumar et 

al. investigated ALD reactions of eight different copper (II) complexes separately with AlMe3, 

BEt3 and Et2Zn in order to identify the most promising combination of the copper precursor and 

co-reagent.20,23 The reductive properties of various metallocenes along with different copper 

precursors were investigated with density functional theory (DFT) and solution phase chemistry 

to evaluate the use of metallocene compounds as reducing agents for Cu ALD.24  

Cu(dmap)2 has been a popular choice for other Cu ALD processes. For example, Knisley et al. 

reported a low temperature three-step ALD process using Cu(dmap)2, formic acid (HCO2H) and 

hydrazine (N2H4) at 120 °C and indicated that their method can avoid undesired elements in the 

precursors and affords high purity low resistivity copper metal.6 Kalutarage et al. compared two-

step and three-step processes using the ALD reaction of Cu(dmap)2 with BH3(NHMe2) and 

separately with BH3(NHMe2) and HCO2H.9 They showed that the two-step process requires a Cu 

seed layer, and affords a growth rate of about 0.13 Å/cycle within the 130−160 °C ALD window. 

The three-step process does not need a Cu seed layer for growth, and affords a growth rate of 

0.20 Å/cycle within the 135−165 °C ALD window. Guo et al. explored an ALD process for 

depositing copper thin film on silicon wafers and glass slides at 50 °C using  copper(I)-N,N′-

diisopropylacetamidinate precursor and H2 plasma.25 The focus in many of those experimental 

works is on the deposition and characterization of copper thin films, with less elaboration of the 
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 4

self-terminating surface reactions that are important requirement for an ALD process. 

Computational studies such as electronic structure calculations can be an efficient way to 

investigate the surface reactions during ALD and provide useful information to develop better 

processes.26  For instance, developing a model for island formation will require knowledge of the 

kinetics of the underlying deposition reactions. 

Although the ALD mechanisms of metal oxides are well understood,27–29 very few 

theoretical30–32 and in situ experimental33,34 works have been dedicated to understand the reaction 

mechanisms of copper and related metals.  Dey et al. used a gas phase model to study the 

reactions of several common Cu precursors with Et2Zn.30 Copper(I) carbene hydride complexes 

which act both as reducing agent and precursor for Cu ALD were proposed by Dey et al. in a gas 

phase density functional theory (DFT) study.35  However, since ALD is based on self-

terminating surface reactions, it is necessary to understand the role of the surface. Dey et al. also 

investigated the surface reactions of several copper precursors and diethylzinc to identify an 

effective ALD process.36 They found that dmap-type ligands are best for ALD of copper while 

the reducing agent Et2Zn is not a good choice because it dissociates into ZnEt and Et fragments 

on a bare copper surface, which may result in the Zn impurity observed in experimental work. 

Hu et al. compared the adsorption of (nBu3P)2Cu(acac) and Cu(acac)2 precursors on Ta(110) 

surface using DFT calculations and found that the (nBu3P)2Cu(acac) precursor prefers to 

dissociate in the gas phase while Cu(acac)2 favours decomposition on the Ta surface.37  Recently, 

Hu et al. studied the surface chemistry of copper metal and copper oxide ALD from copper(II) 

acetylacetonate [Cu(acac)2] and different co-reagents (e.g. H2, atomic H and H2O) using periodic 

DFT and reactive molecular dynamics.38 Ma et al. found that the ligands of Cu(acac)2 

decompose when they adsorb onto bare Cu.39   
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 5

In a previous publication, we explained how ALD deposited copper oxide thin films can be 

reduced to metallic copper through oxygen vacancy formation and H2 adsorption.40 Previously, 

we also studied the adsorption of Cu(dmap)2 on flat and rough copper surfaces using DFT with 

different treatments of van der Waals (vdW) interaction.41,42 We found that the adsorption 

energies and geometries of the Cu(dmap)2 adsorbed on the Cu surfaces depend substantially on 

the adsorption sites and treatment of vdW interactions. Based on this in-depth investigation of 

the precursor, we now proceed to study the full ALD reaction cycle using Cu(dmap)2 and the 

Et2Zn co-reagent.  

  In their original work, Lee et al proposed a transmetalation reaction of Cu(dmap)2 and Et2Zn, 

which yields metallic copper and by-products Zn(dmap)2 and butane as shown in Equation (1): 

 

 

(1) 

 

Because the ALD mechanism of the reaction in Equation (1) is not clear, we compare the 

reaction mechanisms of Al2O3 ALD and its analogy for Cu ALD, which are shown in Figure 1. 

Al2O3 ALD is a well-known model system for explaining ALD in general.27,43,44 The Al2O3 ALD 

growth consists of alternating exposure of trimethylaluminum (TMA) and H2O (Figure 1a). Note 

that the partition of each pulse into two steps (a, b) is conceptual. Each step may be self-limiting 

– i.e. there are two ways to achieve self-limiting ALD. During the first pulse, TMA reacts with 

the hydroxyl groups on the substrate to deposit Al2O3 and form CH4 by-product (step 1a). Even 

when all hydroxyl groups have reacted, TMA continues to adsorb on the newly formed Al2O3 

surface until the surface is fully saturated with CH3 groups (step 1b). Notice that s-Al(CH3) 
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 6

represents any TMA fragments, e.g. Al(CH3)2. During the water pulse, H2O reacts with the 

Al(CH3) covered surface to form Al2O3 (step 2a). Further adsorption of H2O on the Al2O3 

surface results in the surface saturated with OH groups (step 2b), which completes a full reaction 

cycle.  

 

Figure 1. Schematic illustrations of (a) the known Al2O3 ALD mechanism and (b)  Cu ALD from 

Equation 1. Surface species are labelled with ‘s-’ and ‘L’ represents the dmap ligand in (b).  

In Figure 1a, the Al2O3 ALD mechanism is represented with separate ligand elimination and 

ligand saturation steps in each cycle. Applying the same representation to the ALD of Cu, it is 

possible to propose a cyclic process for the reaction between CuL2 (L=dmap) and Et2Zn, as 

shown in Figure 1b. During the copper pulse, it is proposed in Eq. 1 that the CuL2 reacts with the 

ZnEt covered surface to form metallic copper and gives by-products of ZnL2 and butane (step 

1a). The CuL2 decomposes on the surface to form CuL covered surfaces (step 1b). As Et2Zn is 

admitted in step 2a, direct analogy with the oxide ALD would in fact give Zn impurity as the 

deposited product and dmap-Et as by-product. However, Eq. 1 instead proposes that Cu is 

deposited by transmetalation and the Zn is etched away as ZnL2, as shown in Figure 1b. The 

success of transmetalation is based on the Cu compound decomposing into butane + Cu. 
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 7

Therefore, in the Zn pulse, adsorption of Et2Zn (step 2a) leads to the same reaction as step 1a. In 

step 2b, the further adsorbed Et2Zn decomposes on the bare Cu surface to form a ZnEt covered 

surface, ready for the next cycle.   

Having postulated this reaction cycle, it is interesting to ask whether each step is 

thermodynamically favourable and kinetically viable, but also whether each step self-limits as 

required for ALD, or whether competing reactions play an important role. We would also like to 

estimate the ALD growth rate for this reaction cycle and compare it with experiment. The 

amount of Cu deposited in each cycle will be limited by the saturating coverage of Et ligands 

(prior to step 1a) and the saturating coverage of dmap ligands (at the end of step 1b).  However, 

if surface diffusion of Et or dmap ligands is slow, then a saturating coverage may not be 

achieved and the process will instead be limited by the availability of adsorption sites for 

Cu(dmap)2 during these steps. 

In this work, we use the periodic DFT method to investigate the kinetics and reaction 

mechanism of the Cu ALD proposed in Figure 1b. To this end, we calculate the activation 

barriers (Ea) and reaction energies (∆E) of a series of surface reactions to study the reaction 

pathways and energetics for a full cycle of the surface reaction of Cu(dmap)2 and Et2Zn in 

Equation (1). We will start the process with step 1b, namely the adsorption and decomposition of 

Cu(dmap)2 precursor on bare Cu surfaces. We show that the Cu(dmap)2 dissociates, through the 

scission of Cu – O bonds and produces dmap and Cu(dmap) fragments that saturate the surface 

in the first pulse. Butane formation with the assistance of ligands and the diffusion of ethyl 

groups on the surface can lead to different reaction mechanisms during the steps when ligands 

mix on the surface (step 2a of the Et2Zn pulse and step 1a of the CuL2 pulse), because of the 

different surface coverage of dmap ligands. We demonstrate that the activation energies for the 
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 8

formation and desorption of Et2Zn and Zn(dmap)2 by-products are lowered by nearby ligands, 

which explains the advantage of using organometallic precursors and reducing agents in Cu 

ALD. The proposed ALD mechanisms provide insight into how to achieve the ALD of copper 

and other transition metals. 

  

2. Computational Method 

All calculations were performed using the Vienna Ab Initio Simulation Package (VASP 

5.3).45,46 Projector augmented wave (PAW)47 potentials were used to represent the effective core 

electrons and nuclei. Electronic optimization was performed self-consistently using the plane 

wave basis set with a cutoff energy of 450 eV for the valence electrons. The 

Perdew−Burke−Ernzerhof (PBE)48 functional was used to describe exchange and correlation 

effects. The impact of vdW forces on activation barriers and reaction energies is also assessed for 

some cases using vdW-optB8849,50 and the choice of vdW-optB88 is justified in Ref 41. The 

effect of spin polarization was found to be negligible for tests on the activation and reaction 

energies and thus non-spin-polarized calculations were performed. It was also found to be 

adequate to use only the Γ point to sample the Brillouin zone for all the calculations because of 

the large cell sizes. The adsorption of Cu(dmap)2 on  the Cu(111) surface with the four layered 

(6.289 Å thick) slabs separated by 18 Å of vacuum was tested on three different supercells: p(4 × 

4), p(5 × 5)  and p(6 × 6). It is found that the Cu(dmap)2 does not adsorb on p(4 × 4) - Cu(111) 

surface. Although Cu(dmap)2 chemisorbs on the bridge site on the Cu(111) surface with (5 × 5) 

expansion, the p(6 × 6) supercell was chosen for this study so as to have space for Et2Zn to 

adsorb as well. The simulation of one Cu(dmap)2 and/or Et2Zn within this supercell corresponds 

to a coverage of one molecule per surface area of 2.0 nm2 (cell volume = 4.99 nm3), following 
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 9

our previous study in Ref 41. A free area of about 2.0 nm2 of bare Cu is thus required for 

molecular chemisorption of Cu(dmap)2. The electronic energy convergence criterion is 10-4 eV, 

and all atoms in the slab were allowed to relax. The systems were considered to be fully 

optimized when the forces on each ion were smaller than 0.02 eV/Å. 

 The minimum energy pathways (MEP) were investigated using the climbing image nudged 

elastic band method (CI-NEB) to determine the transition state (TS) structure.51,52 For both 

reactant and product of a certain reaction, we performed geometry optimization to identify the 

minimum energy configurations, which were then used to generate eight initial images along the 

MEP using linear interpolation. These atomic structures were relaxed subject to the CI-NEB 

constraints using the quasi-Newton scheme as the CI-NEB method requires a force-based 

optimizer.51,52  

3. Results 

This Cu ALD process consists of alternate pulses of precursor Cu(dmap)2 and co-reagent 

Et2Zn, separated by purges so that the two reagents are never simultaneously present in the gas-

phase. Their mutual reaction thus takes places via adsorbates. Since Cu(dmap)2 and Et2Zn are 

introduced to the chamber in a sequential manner during the experiment, the full reaction cycle is 

divided into two sections.  In section 3.1 we look at adsorption and decomposition (steps 1a and 

1b) of Cu(dmap)2 on bare Cu segments of the surface.  In section 3.2 we investigate adsorption 

and decomposition of Et2Zn (steps 2a and 2b), along with the series of surface reactions taking 

place between mixed fragments of Cu(dmap)2 and Et2Zn,  followed by by-product formation and 

desorption (steps 1a and 2a). Step 1a thus regenerates a bare Cu(111) surface, ready for the 

repetition of step 1b. We therefore calculate the activation (Ea) and reaction energies (∆E) of a 

series of surface reactions of the Cu(dmap)2 and Et2Zn on bare Cu(111) and identify reaction 
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 10

pathways that have low enough activation energies to be viable at the experimental ALD 

temperature (393 K) in Ref 21. Based on these calculations, we combine the reaction routes and 

propose the full ALD reaction cycle.  

The steps in this cyclic process are labelled with capital letters from ‘A’ to ‘G’. In the 

following sections, we separately present our results on each of these steps and discuss these 

reactions in order to understand the overall reaction mechanism of Cu ALD. Table 1 lists the 

calculated activation barrier (Ea) and the reaction energy (∆E) for the selected reactions of 

Cu(dmap)2 and Et2Zn on the Cu(111) surface. Table 1S in Supporting Information displays the 

calculated activation barriers Ea > 1 eV (and associated reaction energies) that are too high for 

the surface reactions to occur in the ALD experiment.  

 

Table 1. The calculated activation barriers (Ea) and reaction energies (∆E) for possible reactions 

for depositing Cu from Cu(dmap)2 and Et2Zn through ALD. The data are plotted in Figure 2 and 

Figure 4. Capital letters ‘A’ to ‘G’ represent the following steps leading to atomic structures 

numbered A1, A2 etc: A is adsorption of Cu(dmap)2 (Figure 3), B is decomposition of 

Cu(dmap)2 (Figure 3), C is adsorption of Et2Zn on the dmap−covered surface (Figure 5), D is the 

ethyl group migration (Figure 7), E is ligand diffusion (Figure 8), F is ligand re-ordering (Figure 

9), G and H are Zn(dmap)2 or butane formation (Figure 10 and Figure 10).  The reactions with Ea 

less than 1.0 eV are shown here and in the figures; those with Ea > 1 eV are in Table 1S 

(supporting information).          

reactions Ea (eV) ∆∆∆∆E (eV) explanation 

Section 3.1 

1. A1  -0.39 Physisorption of Cu(dmap)2 from gas phase 

Page 10 of 46

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 11

2. A1→A2 0.17 -1.01 Physisorption to chemisorption transition 

3. A2→B1 0.44 -0.11 One Cu−O bond scission Cu(dmap) + dmap 

4. A2→B2 0.58 -0.01 Double Cu−O bond scission dmap +Cu +dmap 

Section 3.2 

5. B1→C1  -0.03 Et2Zn adsorption between Cu(dmap) + dmap  

6. B2→C2   0.01 Et2Zn adsorption between dmap+ Cu + dmap  

7. C1→D1 0.78 -2.03 Butane formation and desorption 

8. C1→D2 0.55 -0.65 ZnEt, CuEt, Cu(dmap), dmap formation 

9. C2→D2 0.57 -0.69 ZnEt, CuEt, Cu(dmap), dmap formation 

10. C1→D3 0.61 0.31 Two ethyl groups attached to the surface 

11. D1→E1 0.34 -0.33 dmap ligand diffusion 

12. D1→E2 0.68 0.28 dmap ligand diffusion 

13. D2→E3 0.85 -0.68 Butane formation 

14. D3→E4 0.33 0.20 dmap ligands diffusion 

15. E1→F1 0.44 0.37 dmap ligands diffusion 

16. E2→F2 0.62 0.28 dmap ligands diffusion 

17. E3→F3 0.71 0.35 dmap ligands diffusion 

18. E4→F4 0.56 0.30 Zn(dmap)2 formation 

19. F1→G1 0.78 0.43 dmap ligands re-ordering 

20. F2→G1 0.15 0.05 dmap ligands re-ordering 

21. F3→G1 0.32 -0.83 dmap ligands re-ordering 

22. F4→G2 0.49 -0.38 Ethyl groups re-ordering 

23. G1→H1 0.79 0.72 Zn(dmap)2 desorption 

24. G2→H2 0.73 -1.49 Butane desorption 

Adsorption energies of Et2Zn (reactions 5 and 6) on decomposed Cu(dmap)2 is calculated 
relative to the configuration B1 with surface fragments of Cu(dmap) + dmap.  
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 12

 

3.1. Adsorption and decomposition of Cu(dmap)2 on Cu(111) surface 

In the previous work, we studied the adsorption of Cu(dmap)2 on a number of adsorption sites on 

flat and rough Cu surfaces using different levels of treatment of vdW interactions.41 We found 

that pure PBE predicts that physisorbed and chemisorbed structures exist on the flat Cu(111) 

surface depending on the adsorption sites. We also found from the Bader charge analysis that the 

Cu atom in the molecule gains 0.2−0.4 electrons from the surface on chemisorption, which 

indicates that the adsorbate Cu atom is partially reduced when molecularly adsorbed. Now we 

discuss the possible reaction pathways of the adsorption of Cu(dmap)2 onto segments of bare 

Cu(111) (configuration A) and its decomposition (configuration B) before reaction with Et2Zn 

adsorbates. The energetics are illustrated in Figure 2. 

 

Figure 2. First half of the reaction cycle of Cu ALD for the Cu(dmap)2 pulse. Reactant/product 

states are in black and activation energies are in red. Atomic structures for adsorption (A1, A2) 
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 13

and decomposition (B1 and B2) are in Figure 3. The structures of B3, B4 and B5 are provided in 

Figure 1S.  

A: Adsorption of Cu(dmap)2. The physisorbed (A1) and chemisorbed (A2) structures are 

shown in Figure 3. The physisorbed Cu(dmap)2 molecule is stable and not spontaneously 

reactive to Et2Zn in our calculations. Therefore the physisorbed Cu(dmap)2 molecules (A1) 

should transform into chemisorbed states (A2) if ALD is to take place.  This involves the loosing 

of Cu – N coordination and the formation of metallic bonds from adsorbate Cu to surface Cu as 

described in detail in Ref 41.  Figure 2 shows that the transformation needs a small activation 

energy of 0.17 eV, which can be overcome at a typical ALD temperature, e.g. 100 °C.  
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 14

 

Figure 3. Adsorption (step A) and decomposition (step B) of Cu(dmap)2 on one (6 × 6) cell of 

the Cu(111) surface. A1 represents physisorption and A2 represents chemisorption. The 

fragments of decomposed Cu(dmap)2 are Cu(dmap) + dmap (B1) and dmap + Cu + dmap (B2).  

The colour code used throughout the paper and Supporting Information is as follows: salmon 

pink = copper, red = oxygen, blue = nitrogen, grey = carbon and white = hydrogen. 

B: Decomposition of Cu(dmap)2.  The surface should be saturated with the chemisorbed 

Cu(dmap)2 molecules or fragments after the Cu(dmap)2 pulse in the ALD experiment. We found 

that Et2Zn will not react with the chemisorbed Cu(dmap)2 molecules on Cu(111). This is because 
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 15

the Cu centre of the molecule is still not accessible, although the Cu(dmap)2 molecule is partially 

decomposed upon chemisorption. Thus, it is legitimate to assume that the chemisorbed 

Cu(dmap)2 undergoes further decomposition. We considered several possibilities for bond 

scissions in the Cu(dmap)2 molecule: one Cu−O bond (B1), both Cu−O bonds (B2), O−C bond 

(B3), C−C bond (B4) and C−N bond (B5). We calculated the activation barriers for breaking one 

(A2→B1) and two (A2→B2) Cu−O bonds to be 0.44 eV and 0.58 eV, respectively, indicating 

that the reactions are both slow but viable at ALD temperatures. It was previously found that the 

dissociation of one acac ligand from Cu(acac)2 on the Cu(110) surface requires an activation 

energy of 0.59 eV from PBE,38 which is comparable to our finding for the dissociation of dmap 

ligand from Cu(dmap)2 on Cu(111).  

The optimized structures for the resulting configurations B1 and B2 are shown in Figure 3. In 

configuration B1, the surface is covered with the dmap and Cu(dmap) fragments of the molecule. 

The distance between the O atom in dmap and the Cu atom in Cu(dmap) is 4.45 Å, indicating 

that the Cu-O bond has broken. The O atom in the dmap is located in the hollow site of the 

Cu(111) surface and bonds with three surface Cu atoms. The Cu−N bond is re-formed (2.10 Å) 

again in the Cu(dmap) fragment because of a reduction of strain in the molecule upon the 

dissociation of the other dmap ligand.  

In configuration B2, the distances of the O atoms in the dmap fragments from the adsorbate Cu 

atom are 3.95 Å and 3.99 Å, again indicating complete dissociation. Both the O atoms in the 

dmap fragments are bonding to Cu atoms of a hollow site. A bond between N and Cu surface 

atom is formed (2.31 Å) in one of the dmap ligands as is evident from Figure 3 where the Cu 

surface atom under the N atom is pulled up significantly. By comparing configurations B1 and 

B2 in Figure 3, we can see that the B1 configuration has a more dense coverage of dmap ligands 
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in the immediate locality of the Cu atom than the B2 configuration. Later we will show that this 

difference in the density of the ligands leads to two different reaction pathways. The reverse 

reaction to form the Cu(dmap)2 molecule from these decomposed fragments is extremely 

unlikely because the forward reaction energies (∆E) of A1→B1 and A1→B2 reactions are 

around -1.5 eV.            

We now consider decomposition of a dmap ligand from chemisorbed Cu(dmap)2 (A2). The 

calculated activation energies are 1.56 eV for the scission of the O−C bond (A2→B3), 1.92 eV 

for the scission of C−C bond (A2→B4) and 2.59 eV for the scission of C−N bond (A2→B5) (see 

Table S1 in Supporting information). The optimized structures of B3, B4 and B5 are displayed in 

Figure S1 in Supporting Information. Based on these Ea, the breaking of the O−C, C−C and C−N 

bonds are not accessible at a typical ALD reaction temperature of 100 °C, as in the work of Lee 

et al.21 This indicates that the Cu(dmap)2 molecules fragment instead through the breaking of one 

or two Cu−O bonds (B1 and B2) in ALD experiments. This shows that dmap ligands are 

‘innocent’ and participate in the reaction as a single unit. Therefore in this work, decomposition 

of Cu(dmap)2 refers to the dissociation of one or two Cu−O bonds in the Cu(dmap)2 and not to 

break-up of dmap itself. At the end of the Cu(dmap)2 pulse, we expect that the Cu(111) surface is 

saturated with the dmap and Cu(dmap) fragments of the precursor and that the further adsorption 

of Cu(dmap)2 onto this surface is not possible due to Pauli repulsion. Therefore, as the Et2Zn 

pulse starts, the Et2Zn molecules may react simultaneously with the surface covered with 

partially and fully dissociated Cu(dmap)2, namely  Cu(dmap) + dmap (B1) and dmap + Cu + 

dmap (B2). B1 and B2 represent surfaces with different surface coverage of Cu(dmap)2 

precursors in the locality of Cu.      

3.2. Et2Zn adsorption, butane formation and Zn(dmap)2 formation 
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Step 2a of the Cu ALD transmetalation process is proposed to be the reaction of Et2Zn on the 

surface covered with fragments of Cu(dmap)2 so as to deposit atomic Cu and formation of by-

products butane and Zn(dmap)2 (Equation 1). Step 1a consists of similar reactions of mixed 

ligands on a surface to reduce Cu and form by-products. We also investigate the formation of 

undesired by-products, which may result from parasitic reactions. Figure 4 shows the reaction 

energy pathways and values of activation and reaction energies are listed in Table 1, which we 

discuss in detail. 

 

Figure 4. Reaction energy diagram for the second half reaction cycle of the Cu ALD process 

when Et2Zn is admitted. Reactant/product states are in black and activation energies are in red. 

Forward activation energies greater than 1 eV are not included in the graph. The configurations 

labelled with a capital letter and number are shown in the following figures.   
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C: Adsorption of Et2Zn on the dmap−−−−covered surface (step 2a). Figure 5 shows the 

optimized structures of Et2Zn adsorption on the configurations B1 and B2, which are labelled C1 

and C2, respectively. The adsorption energies are calculated to be -0.03 eV and +0.01 eV, 

respectively. These small adsorption energies are apparently the result of distortions of both 

dmap ligands and of the Et2Zn molecule on the surface. In the C1 configuration, the Et2Zn 

molecule is adsorbed between the Cu(dmap) and dmap fragments. The Zn atom in the Et2Zn 

molecule is situated on a bridge site of Cu(111). The ethyl groups are bent upward and the ∠C-

Zn-C angle is 134.5°. The distance between Zn and the adsorbate Cu atom is 3.11 Å. The Zn – O 

distances are 4.01 Å and 4.35 Å. Notice that the ethyl groups in configuration C1 have no 

chemical bond with the surface. In configuration C2, the Et2Zn molecule is attached on top of the 

adsorbate Cu atom. The adsorbate Cu atom forms bonds with the Zn atom (Zn–Cu bond length is 

2.43 Å) and with the C atom (C −Cu bond length is 2.12 Å) in one of the ethyl groups to form a 

3-membered ring. This results in substantial stabilization relative to B2. The difference in the 

adsorption geometry between C1 and C2 results from the lower local coverage of the dmap 

ligands on the C2 surface. As will be shown in the next section, this has a substantial effect on 

subsequent reaction kinetics. However, overall, the C1 and C2 structures are very close in 

energy.  

In the C1 and C2 structures, Et2Zn is found to adsorb on Cu atoms close to Cu(dmap)2 

fragments. This is because we assume that before step 2a the surface is saturated with the 

Cu(dmap)2 precursor after the first pulse. (See reaction E→F below for the kinetics of dmap 

diffusion). However, during an ALD experiment dmap should desorb as Zn(dmap)2 and the 

coverage of dmap will drop, and therefore the Et2Zn molecules of step 2b may adsorb on a bare 

segment of the surface. Thus, we also investigate the adsorption of Et2Zn on the fully bare 

Page 18 of 46

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 19

Cu(111) surface. The Et2Zn molecules decompose into Et and ZnEt fragments spontaneously 

upon adsorption onto Cu(111) without the presence of Cu(dmap)2 fragments (see the adsorption 

structure in Figure S2, Supporting information) and the adsorption energy is -0.83 eV. This mode 

of decomposition of Et2Zn into Et and ZnEt fragments structure was also found in previous ab 

initio molecular dynamics study on a model of bare Cu(111).36  

This indicates that the presence of Cu(dmap)2 fragments (B1 and B2) prevents the full 

decomposition of Et2Zn and permits that the Et groups to stay attached to the Zn atom, as shown 

in the C1 and C2 structures. The Cu(dmap)2 fragments are affected by the adsorption of the 

Et2Zn molecule as the CH3 parts of the dmap ligands shift slightly upward.  

    

 

Figure 5. Step C: Adsorption of Et2Zn on the surface with fragments of Cu(dmap)2 from B1 and 

B2, respectively. 
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Figure 6. Reaction energy diagram from step ‘C’ to step ‘D’. This is the magnification of the 

process from ‘C’ to ‘D’ in Figure 4.    

D: The ethyl group migration (step 1a & 2a). As the Zn atom is attached to ethyl groups in 

configurations C1 and C2, the ethyl groups must migrate away from the Zn atom in order to give 

the dmap ligand access to Zn and allow the ethyl groups to form butane, one of the by-products 

of Equation (1). We consider several possibilities for ethyl group migration: (1) direct butane 

formation from Zn and desorption (C1→D1); (2) one ethyl migration to adsorbate Cu to form 

CuEt and ZnEt fragments (C1→D2 and C2→D2) and (3) migration of both ethyl groups to 

surface Cu (C1→D3). The reaction energy diagram for this part is magnified from Figure 4 and 

shown in Figure 6 and the final configurations D1, D2 and D3 of ethyl group migrations are 

shown in Figure 7.  

The direct formation of butane (C1→D1) is highly exothermic (∆E = -2.03 eV, Table 1), and 

needs activation energy of 0.78 eV. (The reaction energy profile of this step is plotted in Figure 

S2 in Supporting Information). Electrons are transferred from desorbing ethyl groups to the 
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surface Zn atom. The distance between butane molecule and the surface in the D1 structure is 5.6 

Å, indicating that the butane molecule has no interaction with the surface and can be purged 

away during ALD experiment. The deposited Zn atom forms a bond with the Cu adatom with the 

bond length of 2.6 Å. This direct formation of butane is a less likely scenario from configuration 

C2, as evidenced by the calculated activation barrier of 1.25 eV (C2→D1, Table S1, Supporting 

Information). This is because an extra C – Cu bond was formed when the Et2Zn adsorbed on the 

Cu adatom in configuration C2. This is an important result because it shows the effect of surface 

coverage (C2 vs C1) on the kinetics of formation of butane. As noted in the previous results, at 

very low coverage, i.e. on segments of bare Cu, Et2Zn dissociates spontaneously into ZnEt + 

CuEt, resulting in an even higher barrier to Et formation.   

In the second case, formation of CuEt and ZnEt fragments attached to the surface 

(configuration D2) was achieved from both C1 and C2, with activation energies of 0.55 eV and 

0.57 eV, and reaction energies of ∆E = -0.7 eV. In the C1→D2 reaction, one Et group from the 

adsorbed Et2Zn migrates to the Cu adatom in Cu(dmap), which in turn causes the Cu-N bond to 

break, displacing the dmap ligand to bind with surface Cu. The D2 surface is thus covered with 

four fragments: two dmap ligands, ZnEt and CuEt groups. The ZnEt part of Et2Zn molecule 

migrates to the surface by scission of C-Zn and Cu-Zn bonds.  

The configuration D3, where the two ethyl groups have migrated to the Cu(111) surface, was 

reached from configuration C1 with an activation energy of 0.61 eV and reaction energy of 

+0.31 eV. Thermodynamics thus favours the reverse reaction from D3 to C1, or indeed to D2. 

We found that achieving D3 from C2 is kinetically impossible, requiring an activation energy of 

1.78 eV (Table S1 of Supporting Information), probably because this would re-expose the 

adsorbate Cu atom. 
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Now we consider butane formation when no Cu(dmap)2 fragments are around the adsorbed 

Et2Zn so as to quantify the role of Cu(dmap)2 fragments on the energetics of butane formation. 

Figure S2(b) displays the reaction energy profile of butane formation on the bare Cu(111) 

surface. Without the dmap ligands, butane formation needs higher activation energy and is less 

exothermic (Ea = 0.99 eV and ∆E =-1.14 eV) compared to the butane formation (C1→D1) from 

the Et2Zn adsorbed in the neighbourhood of Cu(dmap)2 fragments (see also Table S1, Supporting 

Information). We can explain this by noting that the adsorbed Et2Zn decomposes into Et and 

ZnEt fragments when adsorbed on the bare surface, so that the formation of butane apparently 

becomes more difficult because breaking the C – Cu surface bond needs extra energy. The 

distance between the butane molecule and the surface with the presence of Cu(dmap)2 fragments 

is longer by 1.4 Å compared to that on the bare Cu(111) surface. Thus, butane formation requires 

lower Ea when the Cu(dmap)2 fragments are nearby. This indicates that the dmap ligands play a 

cooperative role53 for the formation of butane.  
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Figure 7. Step D: reaction of Et2Zn obtained from configuration C1 and C2. Three possibilities 

are considered: D1 is butane formation; D2 is ZnEt + CuEt fragment formation and D3 has 

fragments of two ethyl groups on the Cu(111) surface. 

A visual inspection of configurations D2 and D3 (Figure 7) shows that there is space in the (6 

× 6) simulation cell for two adsorbed ethyl groups and two dmap ligands.  It should therefore be 

possible to accommodate at least four ethyl groups in such a cell when dmap has been 

eliminated, even if diffusion of Et groups is slow.  We use this result later to estimate the ALD 

growth rate. 

E: ligand diffusion. Once the Zn atom becomes accessible for dmap ligands, dmap ligands 

may diffuse on the surface to form a Zn(dmap)2 molecule, which is the other by-product in 

equation (1). Figure 8 shows the configurations of relevant reaction products obtained from D1, 

D2 and D3 configurations. The configurations E1 and E2 are obtained from D1 by moving dmap 

ligands after removing the butane molecule. In configuration E1, a dmap ligand moves toward 

the Zn atom (D1→E1), which involves an activation energy of 0.34 eV and reaction energy of 

∆E = -0.33 eV. This low barrier shows that dmap ligands can diffuse on the bare Cu(111) surface 
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to render the Zn(dmap)2 by-product under mild ALD conditions. The activation energy for 

D1→E2 is twice greater than that of D1→E1. This is because the dmap ligand in the D1→E2 

process has to move above the Cu-Zn dimer instead of along the smooth Cu(111) surface, which 

makes the diffusion of dmap more difficult. In the E2 structure, the O atom in Cu(dmap) attaches 

to the Zn atom and a trimer of Zn-Cu-O is formed.     

We investigated whether the two ethyl groups attached to the Cu and Zn in the D2 structure 

can combine to yield a butane molecule (E3). The reaction is exothermic (∆E = -0.68 eV), but 

not as much as other steps that yield butane (∆E = -2.03 eV for C1→ D1 and ∆E = -1.49 eV for 

G2 → H2) and the computed activation energy is high (Ea = 0.85 eV). This suggests that ZnEt 

resists loss of the Et ligands. The Cu to Zn distance is 4.47 Å and the distances between O atoms 

in the dmap ligand and the Zn atom are 4.22 Å and 4.69 Å in configuration E3.  

Because the D2 configuration has a complex surface structure consisting of two dmap, CuEt 

and ZnEt fragments, we check the viability of parasitic reactions to form (dmap)CuEt and 

(dmap)Et intermediates. Although the formation of the (dmap)CuEt intermediate adsorbate is 

found to be possible with the Ea = 0.44 eV and ∆E = +0.16 eV, the desorption of that molecule is 

unlikely as it needs an activation energy Ea of 2.25 eV (Table S1, Supporting information). Since 

formation of this (dmap)CuEt adsorbate is endothermic (∆E = +0.16 eV), it is likely that the 

reverse reaction from this intermediate product to CuEt, Cu(dmap) and ZnEt in configuration D2 

may take place with the reverse activation barrier Ea = 0.28 eV. This means that (dmap)CuEt is 

transient and decomposes, returning to the D2 configuration. We also found that the formation 

and desorption of (dmap)Et is not accessible because it also faces a high barrier (Ea = 1.82 eV, 

Table S1 Supporting Information). This supports the assumption in Figure 1b about the by-
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products of ALD. Therefore, butane formation (D2→E3) is the most likely step from the D2 

configuration, albeit kinetically hindered.  

For configuration E4, two dmap ligands from D3 diffuse toward the Zn atom to form the 

Zn(dmap)2 molecule, with an activation energy of 0.33 eV and ∆E = +0.20 eV. Through the 

endothermic reaction pathway B1→C1→D3→E4, the Zn(dmap)2 may be formed as the ethyl 

groups are donated to the copper surface.     

 

Figure 8. step E: ligand diffusion. E1 and E2 are reaction products of D1. E3 and E4 are the 

reaction products of D2 and D3, respectively.  
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F: Ligand re-ordering (step 1a & 2a). Although dmap ligands have diffused toward the Zn 

atom in the previous step, the Zn(dmap)2 molecule is not yet formed because the Zn atom is not 

coordinated with both the O and N atoms in the dmap ligands.  Therefore after the dmap ligands 

have diffused towards the Zn atom, they may re-order their atomic positions to form a Zn(dmap)2 

molecule. Figure 9 shows the re-ordered dmap ligands around the Zn atom.  

The E1 → F1 reaction consists of the migration of dmap from adatom Cu to the Zn atom and 

needs activation of 0.44 eV. The reaction is endothermic with ∆E = 0.37 eV. As we can see from 

the F1 configuration, the Zn(dmap)2 structure is still deformed and the N−Zn distances are 1.9 Å 

and 3.8 Å, respectively.  

The reaction E2 → F2 involves the scission of the Zn-Cu bond and re-ordering of dmap 

ligands so that the O atom in dmap forms a bond with the Zn atom, which needs Ea of 0.62 eV. 

In this case, the long O−Zn distance is 4.2 Å. Thus, to form the F2 configuration, the ligands 

have to move further than E1 → F1 to form the Zn(dmap)2 molecule.  

The F3 configuration is obtained after removing the butane molecule in the E3 structure and 

optimizing the geometry. The O atoms in the dmap ligands are attached to the Zn atom in the F3 

configuration. The process E3 → F3 is slightly endothermic with a reaction energy of +0.35 eV, 

and an activation barrier of 0.71 eV.  

In the F4 configuration, the Zn(dmap)2 by-product molecule is formed in the presence of two 

ethyl groups on the surface. Obtaining F4 from E4 needs an Ea of 0.56 eV and ∆E of +0.30 eV. 

Comparing F4 with the F1, F2 and F3 structures, we can see that the F4 adsorbate is the closest 

in structure to Zn(dmap)2, as is evident from the formation of all Zn – O (1.97 Å) and Zn – N 

(2.29 Å) bonds.  We note that the surface in F4 is more crowded with the presence of Et groups 

and this may facilitate the formation of Zn(dmap)2.   
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Overall, during the E → F process, the dmap ligands re-order around Zn to form the 

Zn(dmap)2 molecule prior to desorption (step G). However, this process is endothermic with 

reaction energies of +0.3 to +0.4 eV and needs high activation energies ranging between 0.4 and 

0.8 eV. This suggests that diffusion of dmap across the surface is slow and that perfect packing 

of dmap ligands may not be achieved over the timescale of the Cu(dmap)2 pulse. Small sections 

of bare Cu may therefore still exist on the surface at the end of step 1b.   

The energetics of E → F also indicate that the overall formation of Zn(dmap)2 is a relatively 

slow process. The reverse reactions F → E will therefore happen with the higher reaction rate 

than E → F. This may result in residual dmap ligands blocking surface sites at the end of the 

Et2Zn pulse, which in turn will block further adsorption and reduce the overall ALD growth rate. 

At low temperature therefore, some of the dmap ligands may not be desorbed and may remain 

inside the deposited Cu thin film in some form. This may also explain C and O incorporation into 

Cu thin films which is observed in experiment below temperatures of 100 °C.20 However, our 

calculations do not explain why C and O impurities are also detected experimentally at 

temperatures above 130 °C. In addition, residual Zn cations may be reduced to Zn metal and 

incorporated as an impurity. This too was observed in growth experiments (8 – 15 % Zn impurity 

at 120 – 150 °C).20    
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Figure 9. Step F: ligand re-ordering. Configuration F1 and F2 are reaction products of E1 and 

E2, respectively. F3 configuration is obtained after removing the butane molecule in E3. F4 is 

obtained from E3.   

G: Zn(dmap)2 or Cu(Et)2 formation at the surface (step 1a & 2a). After ligand diffusion 

and ligand re-ordering steps, a Zn(dmap)2 molecule can be formed from these re-ordered ligands. 

In the F1, F2 and F3 configurations, the O atoms of dmap ligands attach to the Zn atom and only 

the spatial arrangements of dmap and Zn(dmap) fragments differ slightly. Thus these three 

structures can re-order so as to yield a single configuration G1, as shown in Figure 10. The 

activation energy for achieving G1 from F1 (0.78 eV) is approximately twice greater than that of 

achieving G1 from F3 (0.32 eV). The process F2 → G1 only needs an activation energy of 0.15 
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eV because the Zn atom is already coordinated to the ligand in the F2 configuration. The two 

processes of Zn(dmap)2 formation from F1 and F2 are endothermic with reaction energies of 

+0.43 eV and +0.05 eV, respectively. In configuration G1, Zn(dmap)2 is not fully shaped, as one 

of the Cu−N distances is greater than its gas phase bond length by 1.6 Å. By comparing the 

Cu(dmap)2 chemisorbed on Cu(111) with configuration G1, we can find that it has some 

common features: O−Zn−O atoms form bonds with the surface Cu atoms, and N−containing 

parts of the ligand are distorted. This indicates that G1 is indeed the chemisorbed Zn(dmap)2 on 

the Cu(111) surface. Next in the proposed mechanism, this chemisorbed Zn(dmap)2 molecule 

should desorb from the surface (step H).  

The ethyl groups or the deposited Cu adatom migrate to form a an adsorbed Cu(Et)2 unit in 

configuration G2, which follows the desorption of the Zn(dmap)2 molecule in configuration F4. 

We found that formation of butane from ethyl groups on the smooth surface is not kinetically 

favourable, because it needs an activation energy of 0.99 eV (Table S1 in Supporting 

Information). However in G2, the deposited Cu adatom can diffuse on the surface with a 

relatively small energy cost (Ea = 0.02 eV from one hollow site to the neighbouring hollow site), 

and so we moved the deposited Cu adatom between the two ethyl groups to form the Cu(Et)2 

intermediate. The activation barrier to form the Cu(Et)2 adsorbate in configuration G2 from F4 

(after removing the Zn(dmap)2 molecule and moving the deposited Cu adatom between two ethyl 

groups) is 0.49 eV. The reaction is moderately exothermic with reaction energy of -0.38 eV.  

Comparison with the barrier for smooth surfaces (Ea = 0.99 eV) indicates that butane formation 

is only possible on rough surfaces during the ALD process. 
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Figure 10. By-product formation (step G) and desorption (step H). G1 which is obtained from 

F1, F2 and F3 configurations shows the formation of Zn(dmap)2. G2 is obtained after the 

formation and desorption of the Zn(dmap)2 molecule in F4 configuration. As the diffusion of Et 

groups on bare Cu(111) is not preferred, the Cu(Et)2 intermediate product is formed by diffusion 

of the Cu adatom or Et group. H1 and H2 structures are obtained from G1 and G2, respectively.   

H: Zn(dmap)2 or butane desorption (step 1a & 2a). In the G1 configuration above, dmap 

ligands re-ordered to form chemisorbed Zn(dmap)2 and in H1 this molecule desorbs (Figure 10). 

It is found that the desorption of Zn(dmap)2 from the smooth surface needs an activation energy 
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of 1.34 eV, which makes it not possible under the experimental condition. As the diffusion of 

deposited Cu adatom on the Cu(111) surface is nearly barrierless, we moved the Cu near the Zn 

atom in G1.  The reaction energy ∆E of Zn(dmap)2 desorption with the help of the Cu adatom is 

+0.72 eV and the computed barrier Ea (0.79 eV) is almost the same, (i.e. the adsorption of 

Zn(dmap)2 would be barrierless). The Zn−O and Zn−N bond distances are 1.89 Å and 2.30 Å, 

respectively. The desorbed Zn(dmap)2 by-product molecule can be purged away to vacate the 

surface for new precursor molecules (Et2Zn in step 2b, Cu(dmap)2 in step 1b).   

In the H2 configuration, which is obtained from configuration G2, the butane molecule desorbs 

through the decomposition of the Cu(Et)2 molecule into butane, which needs quite a high 

activation energy of 0.73 eV. The G2 → H2 process is strongly exothermic with ∆E = -1.49 eV, 

consistent with the other process of butane desorption C1 → D1. Reduction of the surface as a 

whole takes place when two ethyl anions combine and desorb as neutral butane. Once again, 

reduction of the surface cations to metallic Cu is achieved in this step by donation of electrons 

from ethyl groups as they combine into butane and desorb.  

4. Discussion 

The reaction mechanism of Cu ALD 

The results for step 1b (Section 3.1) show that the Cu(dmap)2 pulse seems to involve 

dissociative chemisorption of the complex into Cu(dmap) and dmap (B1 and B2), leaving the 

ligands intact. Dissociation within the dmap ligand is thermodynamically not preferred (Figure 

2), implying that the transmetalation reaction may take place as proposed in Eq. 1. In the original 

experimental work,21 the film thickness increment per cycle for Cu(dmap)2 is saturated when the 

pulse time exceeds 2 s which allows the full saturation of the surface with the fragments of 
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Cu(dmap)2. These thermodynamically stable fragments prevent the further adsorption of 

precursor. 

During step 2a of the second pulse, the Et2Zn reducing agent reacts with the Cu(dmap) and 

dmap fragments and a range of reactions may take place, as shown in Figure 4 and presented in 

section 3.2.  In the experimental work,21 the pulse time for Et2Zn is 0.5 s and Et2Zn undergoes 

self-terminating replacement reaction with the Cu(dmap)2 adsorbed on the surface. An early 

formation of the butane molecule (D1) is predicted to be possible just after adsorption of Et2Zn; 

this reaction is extremely exothermic but faces a high kinetic barrier and deposits a Zn atom near 

dmap and Cu(dmap) fragments. Alternatively, the butane molecule may be formed during the D2 

→ E3 step after the Et2Zn dissociates into ZnEt and Et fragments at the surface.  

We also found that parasitic reactions including the formation of (dmap)Cu(Et) and (dmap)(Et) 

face such high activation barriers that they are not feasible under ALD conditions.  

After butane formation and desorption, the dmap ligands diffuse toward the Zn atom and form 

Zn – O and Zn – N bonds to yield the Zn(dmap)2 molecule, which finally desorbs from the Cu 

surface. These reactions (D1 → E1 → F1→ G1, D1 → E2 → F2 → G1 and D2 → E3 → F3 → 

G1) have activation barriers ranging from 0.3 eV to 0.8 eV, and they are mostly endothermic.  

This reaction pathway is schematically illustrated in Figure 11a.   

For the reaction route involving the D3 structure which has two ethyl groups, dmap and 

Cu(dmap) fragments attached to the surface relatively spaciously, we introduce a different 

reaction mechanism based on reaction routes between D3 and H2, which is displayed in Figure 

11b. During the C1→ D3 step, the ethyl groups migrate away from Zn to the surface. This 

provides dmap ligands with access to diffuse toward the under-coordinated Zn atom and re-order 

Page 32 of 46

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 33

to form the Zn(dmap)2 molecule during the next steps (D3→ E4 and E4→ F4). Desorption of 

Zn(dmap)2 produces a rather bare Cu surface with a low coverage of Et groups. 

It is found that the formation of butane on the smooth Cu surface is not kinetically accessible, 

in contrast to the cooperative role of dmap ligands in step C1→ D1. The formation of the 

intermediate product Cu(Et)2 with the help of a migrating Cu atom reduces the activation energy 

needed for the formation of butane because this causes the interaction between the Et groups and 

the surface to weaken. The butane desorption in the F4→ G2 reaction is again extremely 

exothermic, consistent with the step C1→ D1. 

The reaction mechanisms shown in Figure 11a and Figure 11b are two possible routes for the 

copper ALD reaction proposed in Equation (1). These two different reaction mechanisms stem 

from the different coverage of dmap ligands, as we can see from the B1 and B2 configurations in 

Figure 3. The reaction mechanism in Figure 11a originates from the surface with relatively dense 

ligands and the reaction mechanism in Figure 11b results from the surface less densely saturated 

ligands.  As we will discuss later, these two types of reaction mechanisms are direct results of 

cooperative effects determined by the different coverage of ligands on the surface.  

As we can see from Figure 4, the reaction energies of most of the ligand diffusion and ligand 

re-ordering steps leading to Zn(dmap)2 (D→ G) are positive and the reaction pathways are uphill 

in these stages. This means that the activation barriers for the reverse reactions are smaller than 

those of the forward reactions and so the reaction rates of the reverse reactions can be higher 

than those of the forward reactions during the ligand diffusion and re-ordering steps. 

Nevertheless, desorption of Zn(dmap)2 is expected to be irreversible, and this will drive the 

equilibrium towards formation of the product (H1). Even so, residual adsorbed dmap (D1) may 

block sites against adsorption of Cu(dmap)2 in the next ALD cycle. There is recent theoretical53 
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and experimental54 evidence that ligands persist for multiple cycles in some ALD processes.  

Slow re-ordering and desorption of the Zn by-product may result in incorporation of Zn into the 

growing metallic film as an impurity. Indeed 8 - 15 % Zn is detected in the experiment.20 

 

 

Figure 11. The reaction mechanisms of copper ALD from Cu(dmap)2 and Et2Zn. The capital 

letters and numbers inside the boxes represent the structures shown in Figure 3 to Figure 10. The 

mechanism in (a) corresponds to reactions with densely adsorbed precursors in the immediate 

Page 34 of 46

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35

locality of the Cu atom and the mechanism in (b) corresponds to the reactions of the less densely 

adsorbed precursors.   

Estimate of ALD growth rate 

Having obtained evidence for the ALD cycle of Figure 1b and likely coverages of ligands at 

the end of each step of the cycle, we are now able to estimate the growth rate of Cu in each 

cycle. Each Cu0 atom deposited in step 1a is the result of the reductive elimination of two Et 

groups as butane. The reaction is therefore limited by the coverage of Et groups at the end of step 

2b, which we conservatively estimate at four Et groups per (6 × 6) simulation cell (section 3.2), 

meaning 2 Cu atoms deposited per cell. Further adsorption of Cu(dmap)2 is possible in step 1b 

(for reduction to Cu0 in step 2a), although we suggest that this is limited by the availability of 

sufficiently large segments of bare Cu. Adsorption of one Cu(dmap)2 molecule per (6 × 6) cell 

blocks further adsorption, which gives a reasonable estimate for the amount of Cu deposited in 

step 1b.  The total amount deposited per cycle is therefore three Cu atoms per (6 × 6) cell, or 

3/36 of a monolayer.  Since the height of one monolayer of crystalline Cu in the (111) direction 

is 2.10 Å in experiment, the predicted growth rate is 3/36 of this, i.e. 0.18 Å/cycle.  This agrees 

remarkably well with the experimental growth rate of 0.2 Å/cycle,21 which may be fortuitous, 

given the many assumptions feeding into the predicted value. Nevertheless, this result illustrates 

that the proposed ALD cycle can account for the experimental growth rate. 

The impact of vdW interaction  

In this work, we used pure PBE to calculate the activation barriers and reaction energies for 

Cu(dmap)2 and Et2Zn interacting with a Cu surface. In our previous work, we found that the 

vdW interaction is an important factor in describing the adsorption of Cu(dmap)2 on copper 

surfaces.41 Therefore, we now test the impact of vdW interaction on the energetics of the 
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dissociation of one dmap ligand from the Cu(dmap)2 molecule adsorbed on Cu(111) (A2→B1) 

by using the optB88-vdW method. For this reaction, the optB88-vdW method yields an 

activation energy Ea = 0.55 eV, which is slightly larger than the PBE value of 0.44 eV, and a 

reaction energy of ∆E = -0.10 eV, which is approximately the same as the PBE calculated ∆E of 

-0.11 eV. Hu et al. used PBE and vdW-DF to calculate the activation barriers for the dissociation 

of Cu(acac)2 on the Cu(110) surface and found that vdW-DF gives a slightly lower activation 

barrier than PBE.38 However, they found that PBE and vdW-DF produce energy profiles with 

similar trends for the dissociation of the Cu(acac)2 molecule. Slightly different activation 

energies but the same trend in energy profiles were also found with vdW-inclusive DFT methods 

in other computational works.55,56 Thus, we argue that inclusion of vdW interaction in DFT may 

have a small effect on the values of the activation energies, but that the nature of the reaction 

mechanisms described in Figure 11 will probably not be affected. 

Cooperative role of ligands  

It was previously reported that the cooperation between adsorbates plays an important role in the 

kinetics of ALD reactions for oxides.53 Inert adsorbed fragments become reactive once sufficient 

numbers of precursors adsorb in their neighborhood. It was not previously known whether 

ligand-covered metal surfaces show the same magnitude of cooperative effect as ligand-covered 

oxide surfaces. Although we studied the reaction of just one Cu(dmap)2 and one Et2Zn molecule 

on a 2 nm2 section of Cu(111), we found similar cooperative effects of the inert fragments on 

several occasions, as schematically shown in Figure 12.  

(a) During the butane formation step C1→D1, the activation barrier of 0.78 eV is lowered by 

0.21 eV when the dmap and Cu(dmap) fragments exist around the adsorbed Et2Zn. The presence 

of these dmap ligands prevents the migration of Et to the Cu surface and enables the formation of 
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butane with a lower activation barrier, explaining the advantage of using a copper metalorganic 

compound like Cu(dmap)2 in ALD.  

(b) The formation of the Zn(dmap)2 by-product during ligand diffusion and re-ordering steps was 

eased by the presence of nearby Et groups (see F4 configuration). The E3→F4 reaction needs 0.1 

– 0.2 eV less activation energy than E1→F2 and E3→F3. Although E1→F1 requires less 

activation energy than E3→F4, it faces a higher barrier in the next step. Moreover, E3→F4 

completes formation of Zn(dmap)2 in a single step, unlike the other reactions. This implies that 

the presence of nearby fragments not only reduces the activation barrier, but it may also speed up 

the formation of by-product.  

(c) We found that butane formation on the bare Cu(111) surface needs an activation barrier of 

0.99 eV, but that this process can be facilitated with the formation of the Cu(Et)2 intermediate 

product from a Cu adatom (F4 → G2 → H2). Butane formation from Cu(Et)2 needs 0.5 eV less 

activation compared to that without Cu(Et)2 on a bare surface. This shows that local roughness 

due to newly deposited Cu adatoms also plays a cooperative role in the formation of by-products.  
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Figure 12. Schematic illustration of several cases of cooperative effects during the ALD of Cu 

from Cu(dmap)2 and Et2Zn. Pentagonal shapes represent the dmap ligand.    

Overall, without the cooperative role of ligands and Cu adatoms, the reaction in Equation 1 

would face higher activation barriers and need a higher ALD temperature. This strong 

dependence of activation energy on proximity of co-adsorbates must also be borne in mind when 

assessing the quality of our model and accuracy of computed activation energies. If we had 

modelled the reactions using a smaller cell, e.g. Cu(111) -  (5 × 5) or if we had added extra 

ligands to the surface cell, making the surface more crowded, the activation barriers could have 

been slightly lower than what is reported in Table 1. However, the qualitative reaction 

mechanisms proposed in Figure 11 may not be affected.      

   

5. Conclusion 
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Atomic layer deposition (ALD) is a promising method for depositing conformal and uniform 

thin films of copper for future electronic devices. However, the reaction mechanism and the 

surface chemistry of copper ALD have been unclear. In this work, we employ density functional 

theory to study the ALD reaction of copper dimethylamino-2-propoxide [Cu(dmap)2] and 

diethylzinc [Et2Zn] based on the seminal paper of Lee et al.
21, computing activation energies and 

reaction energies for a range of surface reactions.  

We found that the chemisorbed Cu(dmap)2 decomposes through breaking one or both Cu–O on 

Cu(111) during the Cu(dmap)2 pulse. The surface saturates with rather immobile dmap and 

Cu(dmap) fragments, which prevents multilayer adsorption of Cu(dmap)2 precursors, thus 

meeting the condition for ALD.  The reaction of Et2Zn with the dmap and Cu(dmap) fragments 

at the surface proceeds via two different reaction routes.  The first route starts with butane 

formation from the adsorbed Et2Zn molecule, aided through the cooperative role of dmap ligands 

on the surface. This is followed by the diffusion and reordering of dmap ligands around the Zn 

atom to form the Zn(dmap)2 molecule, which finally desorbs. In the second case, the dmap 

ligands diffuse and re-order around the Zn atom. Zn(dmap)2 is formed and desorbs in the 

presence of ethyl groups, which again lower the barriers for these reactions. Subsequently, 

butane formation is found not to occur on the bare Cu(111) surface. Instead, the intermediate 

reaction product Cu(Et)2 is formed from the diffusion of adatom Cu on the surface and this 

facilitates butane formation and desorption. 

In general, the butane formation and desorption steps are exothermic while the ligand diffusion 

and re-ordering steps are endothermic, which may result in residual dmap ligands blocking 

surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as 
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an impurity. It is found that the formation and desorption of Et2Zn and Zn(dmap)2 by-products 

are facilitated by the presence of nearby ligands (the ‘cooperative effect’). 

In this transmetalation mechanism, the ALD growth rate is determined both by the saturating 

coverage of Et groups at the end of the Et2Zn pulse (since each contributes one electron towards 

reduction of Cu) and by the saturating adsorption of Cu(dmap)2 during the Cu pulse.  Based on 

the rather slow rates of ligand diffusion that we computed, we suggest that saturation is reached 

before Et or dmap groups pack perfectly on the surface.  We therefore estimate that Cu is 

deposited at approximately 0.18 Å/cycle, which agrees well with experiment. 

We find that there is competition between alternative surface reactions, both leading to Cu 

deposition, and that which reaction mechanism is followed depends on the coverage of the 

ligands on the surface. We found that the cooperative role of ligands and Cu adatoms is an 

important factor that lowers activation barriers. The method that we used in this study and the 

ALD mechanisms that we obtained provide insight into the ALD of copper and other transition 

metals.   
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