Chemistry
Permanent URI for this community
Browse
Browsing Chemistry by Title
Now showing 1 - 20 of 973
Results Per Page
Sort Options
- Item1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with diazoalkanes(RSC Publishing, 2010-06-21) Kissane, Marie; Lawrence, Simon E.; Maguire, Anita R.; Irish Research Council for Science Engineering and Technology2-Thio-3-chloroacrylamides undergo 1,3-dipolar cycloadditions with diazoalkanes leading to a series of novel pyrazolines and pyrazoles. The mechanistic and synthetic features of the cycloadditions to the 2-thio-3-chloroacrylamides at both the sulfide and sulfoxide levels of oxidation are rationalised on the basis of the nature of the substituents.
- Item1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with nitrile oxides and nitrones(Elsevier, 2010-06-19) Kissane, Marie; Lawrence, Simon E.; Maguire, Anita R.; Irish Research Council for Science Engineering and Technology1,3-Dipolar cycloadditions of 2-thio-3-chloroacrylamides with nitrile oxides and nitrones is described. A series of novel isoxazolines are isolated from the nitrile oxide cycloadditions, whilst the isoxazolines generated from the nitrone cycloadditions undergo further ring opening to yield piperidines.
- Item2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion(National Institute for Materials Science; Taylor & Francis, 2016-09) Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm; National University of Ireland; Science Foundation IrelandThis perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.
- Item2D and 3D vanadium oxide inverse opals and hollow sphere arrays(Royal Society of Chemistry (RSC), 2014-10-24) Armstrong, Eileen; Osiak, Michal J.; Geany, Hugh; Glynn, Colm; O'Dwyer, Colm; Irish Research Council; Science Foundation Ireland; Seventh Framework ProgrammeHigh quality 2D and 3D inverse opals and hollow sphere arrays of vanadium oxide are grown on conductive substrates from colloidal polymer sphere templates formed by electrophoretic deposition or surfactant-assisted dip-coating. Inverse opals (IOs) are formed using variants of solution drop-casting, N2-gun assisted infiltration and high-rate (200 mm min−1) iterative dip-coating methods. Through Raman scattering, transmission electron microscopy and optical diffraction, we show how the oxide phase, crystallinity and structure are inter-related and controlled. Opal template removal steps are demonstrated to determine the morphology, crystallinity and phase of the resulting 2D and 3D IO structures. The ability to form high quality 2D IOs is also demonstrated using UV Ozone removal of PMMA spheres. Rapid hydrolysis of the alkoxide precursor allows the formation of 2D arrays of crystalline hollow spheres of V2O5 by utilizing over-filling during iterative dip-coating. The methods and crystallinity control allow 2D and 3D hierarchically structured templates and inverse opal vanadium oxides directly on conductive surfaces. This can be extended to a wide range of other functional porous materials for energy storage and batteries, electrocatalysis, sensing, solar cell materials and diffractive optical coatings.
- Item2D nanosheet paint from solvent-exfoliated Bi2Te3 ink(American Chemical Society, 2017-08-09) Carroll, Elaine; Buckley, Darragh; Mogili, N. V. V.; McNulty, David; Moreno, M. Sergio; Glynn, Colm; Collins, Gillian; Holmes, Justin D.; Razeeb, Kafil M.; O'Dwyer, Colm; Irish Research Council; Science Foundation Ireland; Consejo Nacional de Investigaciones Científicas y Técnicas; Agencia Nacional de Promoción Científica y Tecnológica; Horizon 2020; Analog Devices; Ministry of Science, Technology, Innovation and Communication, BrazilEmbedding 2D layered materials into polymers and other materials as composites has resulted in the development of ultrasensitive pressure sensors, tunable conductive stretchable polymers, and thermoelectric coatings. As a wettable paint or ink, many 2D materials may be penciled, printed, or coated onto a range of surfaces for a variety of applications. However, the intrinsic conductive properties of painted coatings using 2D and layered materials are not completely understood, and conductive polymer additives may mask underlying properties such as directional conductivity. We report a process for making a paint from solvent-exfoliated Bi2Te3 into solution-dispersible 2D and few-layer (multiple quintuple) nanosheet inks, that form smooth, uniform paint blends at several concentrations of Bi2Te3. The individual solvent-exfoliated nanosheets are edge-coated by (poly)ethylene glycol to produce a paint, stable over extended period in solution. Electrical transport is found to be sensitive to aspect ratio, and conduction along the painting direction is suppressed for longer strips so long as the aspect ratio is high (4–10× or more), but for short and wide paint strips (aspect ratio ≤1), conductance is improved by a factor of 3×. Square 2D paint regions show no clear directional preference for conductance at room temperature but are markedly affected by higher temperatures. Conductivity along a preferential conduction pathway through the nanosheet ensemble is modulated by 2D nanosheet stacking along the direction of paint application for a given aspect ratio. This paint and insights into geometrical 2D composite conduction may have implications for conductive composites, thermoelectrics, and writable circuits using 2D material paints or inks.
- Item3D open-worked inverse opal TiO2 and GeO2 materials for long life, high capacity Li-ion battery anodes(Elsevier, 2017-10-18) McNulty, David; Lonergan, Alex; O'Hanlon, Sally; O'Dwyer, Colm; Science Foundation Ireland; Irish Research CouncilIn this short review, we overview some advancements made in Li-ion battery anode development, where the structural arrangement of the material plays an important role. Specifically, we summarise the benefits of 3D macroporous structure imposed the anode material, in order to improve ionic and electronic conductivity in the absence of conductive additives and binders. Two anode materials are overviewed: TiO2 and GeO2. These are either high capacity anode materials or accessible, abundant materials that are capable of very stable and long-term cycling. We have focused this review on 3D inverse opal structures of these anodes and summarise their enhanced behaviour by comparing their performance metrics to a range of nanoscale and porous analogues of these materials.
- Item3D vanadium oxide inverse opal growth by electrodeposition(Electrochemical Society, 2015) Armstrong, Eileen; O'Sullivan, Maria; O'Connell, John; Holmes, Justin D.; O'Dwyer, Colm; Science Foundation IrelandThree-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides.
- ItemAb initio calculations of group 4 metallocene reaction mechanisms: atomic layer deposition and bond activation catalysis(University College Cork, 2013) Zydor, Aleksandra; Elliott, Simon D.; European Commission; Enterprise IrelandThin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
- ItemAbsence of evidence ≠ evidence of absence: statistical analysis of inclusions in multiferroic thin films(Nature Publishing Group, Macmillan Publishers Limited, 2014-07-16) Schmidt, Michael; Amann, Andreas; Keeney, Lynette; Pemble, Martyn E.; Holmes, Justin D.; Petkov, Nikolay; Whatmore, Roger W.; Science Foundation IrelandAssertions that a new material may offer particularly advantageous properties should always be subjected to careful critical evaluation, especially when those properties can be affected by the presence of inclusions at trace level. This is particularly important for claims relating to new multiferroic compounds, which can easily be confounded by unobserved second phase magnetic inclusions. We demonstrate an original methodology for the detection, localization and quantification of second phase inclusions in thin Aurivillius type films. Additionally, we develop a dedicated statistical model and demonstrate its application to the analysis of Bi6Ti2.8Fe1.52Mn0.68O18 (B6TFMO) thin films, that makes it possible to put a high, defined confidence level (e.g. 99.5%) to the statement of ‘new single phase multiferroic materials’. While our methodology has been specifically developed for magnetic inclusions, it can easily be adapted to any other material system that can be affected by low level inclusions.
- ItemAC-assisted single-nanowire electromechanical switch(Royal Society of Chemistry (RSC), 2013-09-10) Andzane, Jana; Meija, Raimonds; Livshits, Alexander I.; Prikulis, Juris; Biswas, Subhajit; Holmes, Justin D.; Erts, Donats; Latvijas Zinātnes Padome; Science Foundation IrelandA unique two-source controlled nanoelectromechanical switch has been assembled from individual, single-clamped Ge nanowires. The switching behaviour was achieved by superimposing the control signals of specific frequencies to the electrostatic potential of the output terminals, eliminating the need for an additional gate electrode. Using an in situ manipulation technique inside a scanning electron microscope, we demonstrate that the pull-out force required to overcome adhesion at the contact can be significantly reduced by exciting mechanical resonant modes within the nanowire.
- ItemAccess resistance reduction in Ge nanowires and substrates based on non-destructive gas-source dopant in-diffusion(The Royal Society of Chemistry, 2014-10-03) Duffy, Ray; Shayesteh, Maryam; Thomas, Kevin K.; Pelucchi, Emanuele; Yu, Ran; Gangnaik, Anushka S.; Georgiev, Yordan M.; Carolan, Patrick B.; Petkov, Nikolay; Long, Brenda; Holmes, Justin D.; Higher Education Authority; Science Foundation IrelandTo maintain semiconductor device scaling, in recent years industry has been forced to move from planar to non-planar device architectures. This alone has created the need to develop a radically new, non-destructive method for doping. Doping alters the electrical properties of a semiconductor, related to the access resistance. Low access resistance is necessary for high performance technology and reduced power consumption. In this work the authors reduced access resistance in top–down patterned Ge nanowires and Ge substrates by a non-destructive dopant in-diffusion process. Furthermore, an innovative electrical characterisation methodology is developed for nanowire and fin-based test structures to extract important parameters that are related to access resistance such as nanowire resistivity, sheet resistance, and active doping levels. Phosphine or arsine was flowed in a Metalorganic Vapour Phase Epitaxy reactor over heated Ge samples in the range of 650–700 °C. Dopants were incorporated and activated in this single step. No Ge growth accompanied this process. Active doping levels were determined by electrochemical capacitance–voltage free carrier profiling to be in the range of 1019 cm−3. The nanowires were patterned in an array of widths from 20–1000 nm. Cross-sectional Transmission Electron Microscopy of the doped nanowires showed minimal crystal damage. Electrical characterisation of the Ge nanowires was performed to contrast doping activation in thin-body structures with that in bulk substrates. Despite the high As dose incorporation on unpatterned samples, the nanowire analysis determined that the P-based process was the better choice for scaled features.
- ItemAccess to modified geiparvarins using Pd(0)-mediated C-C bond forming reactions(University College Cork, 2014) Lynch, Denis; McCarthy, Daniel G.; Cork County Council; Irish Research Council for Science Engineering and TechnologyGeiparvarin is a natural product which contains both a 3(2H)-furanone and a coumarin moiety in its structure. The aim of this project was to investigate the use of Pd(0)-mediated C–C bondforming reactions to produce structurally modified geiparvarins. Chapter 1 consists of a review of the relevant literature, including that pertaining to the syntheses of selected naturally occurring 3(2H)-furanones. The known syntheses of geiparvarin and closely related analogues are examined, along with the documented biological activity of these compounds. The synthetic routes which allow access to 4-substituted-3(2H)-furanones are also described. Chapter 2 describes in detail the synthesis of a variety of novel structurally modified geiparvarins by two complementary routes, both approaches utilising Pd(0)-mediated crosscoupling reactions, and discusses the characterisation of these compounds. The preparation of 5-ethyl-3(2H)-furanones is described, as is their incorporation into geiparvarin and the corresponding 5″-alkylgeiparvarin analogues via formation and dehydration of intermediate alcohols. Halogenation of 5-ethyl-3(2H)-furanones and the corresponding geiparvarin derivatives is discussed, along with further reactions of the resulting halides. Preparation of 3″-arylgeiparvarins involving both Suzuki–Miyura and Stille reactions, using the appropriate intermediate iodides and bromides, is described. The application of Stille and Heck conditions to give 3″-ethenylgeiparvarin analogues and Sonogashira conditions to produce 3″-ethynylgeiparvarin analogues, using the relevant intermediate iodides, is also extensively outlined. Chapter 3 contains all of the experimental data and details of the synthetic methods employed for the compounds prepared during the course of this research. All novel compounds prepared were fully characterised using NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis; the details of which are included.
- ItemAccess to some C5-cyclised 2 pyrones and 2-pyridones via direct arylation; retention of chloride as a synthetic handle(John Wiley & Sons, Ltd, 2017-08-04) McGlacken, Gerard P.; Fairlamb, Ian; Prendergast, Aisling; Pardo, Leticia; Science Foundation IrelandThe synthetic effort towards the functionalisation of C-H bonds on 2 pyrones and 2-pyridones has been funnelled by the preferential reactivity of the C-3 position. Herein, we report a direct arylation protocol for the intramolecular coupling of 2 pyrones and 2 pyridones, allowing access to a previously unavailable class of C-5 cyclised products with an unstudied biological profile. A C-Cl bond was retained at C-3 during the direct arylation process allowing further derivatisation at C-3, which we have demonstrated with a proof-of-principle Suzuki-Miyaura cross-coupling reaction.
- ItemAccommodating curvature in a highly ordered functionalized metal oxide nanofiber: synthesis, characterization and multi-scale modeling of layered nanosheets(American Chemical Society Publications, 2012-10) O'Dwyer, Colm; Gannon, G.; McNulty, David; Buckley, D. Noel; Thompson, Damien; Science Foundation Ireland; Higher Education Authority; Irish GovernmentA key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.
- ItemAddition-substitution reactions of 2-thio-3-chloroacrylamides with carbon, nitrogen, oxygen, sulfur and selenium nucleophiles(RSC Publishing, 2011-04-07) Kissane, Marie; Murphy, Maureen; O'Brien, Elisabeth; Chopra, Jay; Murphy, Linda.; Collins, Stuart G.; Lawrence, Simon E.; Maguire, Anita R.; Irish Research Council for Science Engineering and Technology; Forbairt; Merck, United States; University College CorkSynthetically versatile conjugate addition of a range of carbon, nitrogen, oxygen, sulfur and selenium nucleophiles to the highly functionalised 2-thio-3-chloroacrylamides is described. The stereochemical and synthetic features of this transformation are discussed in detail. In most instances, the nucleophile replaces the chloro substituent with retention of stereochemistry. With the oxygen nucleophiles, a second addition can occur leading to acetals, while with the nitrogen nucleophiles, E-Z isomerism occurs in the resulting enamine derivatives. The ratio of the E/Z isomers can be rationalised on the basis of the substituent and the level of oxidation.
- ItemAdditive manufacturing for energy storage: Methods, designs and material selection for customizable 3D printed batteries and supercapacitors(Elsevier, 2020-02-24) Gulzar, Umair; Glynn, Colm; O'Dwyer, Colm; Horizon 2020; Science Foundation Ireland; Irish Research CouncilAdditive manufacturing and 3D printing in particular have the potential to revolutionize existing fabrication processes, where objects with complex structures and shapes can be built with multifunctional material systems. For electrochemical energy storage devices such as batteries and supercapacitors, 3D printing methods allows alternative form factors to be conceived based on the end use application need in mind at the design stage. Additively manufactured energy storage devices require active materials and composites that are printable, and this is influenced by performance requirements and the basic electrochemistry. The interplay between electrochemical response, stability, material type, object complexity and end use application are key to realising 3D printing for electrochemical energy storage. Here, we summarise recent advances and highlight the important role of methods, designs and material selection for energy storage devices made by 3D printing, which is general to the majority of methods in use currently.
- ItemAdsorbate-induced lattice deformation in IRMOF-74 series(Nature Publishing Group, 2017-01-09) Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend; U.S. Department of Energy; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung; H2020 European Research Council; National Science FoundationIRMOF-74 analogues are among the most widely studied metal-organic frameworks ( MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.
- ItemAdsorption of alkanethiol self-assembled monolayers on sputtered gold substrates for atomic nanolithography applications(The Electrochemical Society, 2004-01) O'Dwyer, ColmA detailed study of the self-assembly and coverage by 1-nonanethiol of sputtered Au surfaces using molecular resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) is presented. The monolayer self-assembles on a smooth Au surface composed predominantly of {111} oriented grains. The domains of the alkanethiol monolayer are observed with sizes typically of 5-25 nm, and multiple molecular domains can exist within one Au grain. STM imaging shows that the (4 × 2) superlattice structure is observed as a (3 × 2√3) structure when imaged under noncontact AFM conditions. The 1-nonanethiol molecules reside in the threefold hollow sites of the Au{111} lattice and aligned along its [112] lattice vectors. The self-assembled monolayer (SAM) contains many nonuniformities such as pinholes, domain boundaries, and monatomic depressions which are present in the Au surface prior to SAM adsorption. The detailed observations demonstrate limitations to the application of 1-nonanethiol as a resist in atomic nanolithography experiments to feature sizes of ~20 nm.
- ItemAdvanced polymer membrane development in pervaporation dehydration and lateral flow diagnostics(University College Cork, 2013) Flynn, Eoin J.; Morris, Michael A.The work in this thesis concerns the advanced development of polymeric membranes of two types; pervaporation and lateral-flow. The former produced from a solution casting method and the latter from a phase separation. All membranes were produced from casting lacquers. Early research centred on the development of viable membranes. This led to a supported polymer blend pervaporation membrane. Selective layer: plasticized 4:1 mass ratio sodium-alginate: poly(vinyl-alcohol) polymer blend. Using this membrane, pervaporation separation of ethanol/water mixtures was carefully monitored as a function of film thickness and time. Contrary to literature expectations, these films showed increased selectivity and decreased flux as film thickness was reduced. It is argued that morphology and structure of the polymer blend changes with thickness and that these changes define membrane efficiency. Mixed matrix membrane development was done using spherical, discreet, size-monodisperse mesoporous silica particles of 1.8 - 2μm diameter, with pore diameters of ~1.8 nm were incorporated into a poly(vinyl alcohol) [PVA] matrix. Inclusion of silica benefitted pervaporation performance for the dehydration of ethanol, improving flux and selectivity throughout in all but the highest silica content samples. Early lateral-flow membrane research produced a membrane from a basic lacquer composition required for phase inversion; polymer, solvent and non-solvent. Results showed that bringing lacquers to cloud point benefits both the pore structure and skin layers of the membranes. Advancement of this work showed that incorporation of ethanol as a mesosolvent into the lacquer effectively enhances membrane pore structure resulting in an improvement in lateral flow rates of the final membranes. This project details the formation mechanics of pervaporation and lateral-flow membranes and how these can be controlled. The principle methods of control can be applied to the formation of any other flat sheet polymer membranes, opening many avenues of future membrane research and industrial application.
- ItemAdvances in the synthesis of acyclic peroxides(Royal Society of Chemistry, 2017-03-31) O'Sullivan, Timothy P.; Gandhi, Hirenkumar; O'Reilly, Kate; Gupta, Manoj K.; Horgan, Conor C.; O'Leary, Eileen M.; Irish Research Council; European Commission; Seventh Framework ProgrammePeroxide-containing compounds are an attractive synthetic target, given their widespread abundance in nature, with many displaying potent antimalarial and antimicrobial properties. This review summarises the many developments in the synthesis of acyclic peroxides, with a particular focus on the past 20 years, and seeks to update organic chemists about these new approaches. The synthetic methodologies have been subdivided into metal-catalysed reactions, organocatalytic reactions, direct oxidation reactions, miscellaneous reactions and enzymatic routes to acyclic peroxides.