Environmental Research Institute - Journal Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 91
  • Item
    Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: a case study using dill (Anethum graveolens)
    (Elsevier, 2021) Castro-Alves, Victor; Kalbina, Irina; Nilsen, Asgeir; Aronsson, Mats; Rosenqvist, Eva; Jansen, Marcel A. K.; Qian, Minjie; Öström, Åsa; Hyötyläinen, Tuulia; Strid, Åke; Knowledge Foundation; Svenska Forskningsrådet Formas
    Using dill (Anethum graveolens L.) as a model herb, we reveal novel associations between metabolite profile and sensory quality, by integrating non-target metabolomics with sensory data. Low night temperatures and exposure to UV-enriched light was used to modulate plant metabolism, thereby improving sensory quality. Plant age is a crucial factor associated with accumulation of dill ether and α-phellandrene, volatile compounds associated with dill flavour. However, sensory analysis showed that neither of these compounds has any strong association with dill taste. Rather, amino acids alanine, phenylalanine, glutamic acid, valine, and leucine increased in samples exposed to eustress and were positively associated with dill and sour taste. Increases in amino acids and organic acids changed the taste from lemon/grass to a more bitter/pungent dill-related taste. Our procedure reveals a novel approach to establish links between effects of eustressors on sensory quality and may be applicable to a broad range of crops.
  • Item
    Integrating short term variations of the power system into integrated energy system models: A methodological review
    (Elsevier Ltd., 2017-03-27) Collins, Seán; Deane, John Paul; Poncelet, Kris; Panos, Evangelos; Pietzcker, Robert C.; Delarue, Erik; Ó Gallachóir, Brian Pádraig; SFI Research Centre for Energy, Climate and Marine; Vlaamse Instelling voor Technologisch Onderzoek
    It is anticipated that the decarbonisation of the entire energy system will require the introduction of large shares of variable renewable electricity generation into the power system. Long term integrated energy systems models are useful in improving our understanding of decarbonisation but they struggle to take account of short term variations in the power system associated with increased variable renewable energy penetration. This can oversimplify the ability of power systems to accommodate variable renewables and result in mistaken signals regarding the levels of flexibility required in power systems. Capturing power system impacts of variability within integrated energy system models is challenging due to temporal and technical simplifying assumptions needed to make such models computationally manageable. This paper addresses a gap in the literature by reviewing prominent methodologies that have been applied to address this challenge and the advantages & limitations of each. The methods include soft linking between integrated energy systems models and power systems models and improving the temporal and technical representation of power systems within integrated energy systems models. Each methodology covered approaches the integration of short term variations and assesses the flexibility of the system differently. The strengths, limitations, and applicability of these different methodologies are analysed. This review allows users of integrated energy systems models to select a methodology (or combination of methodologies) to suit their needs. In addition, the analysis identifies remaining gaps and shortcomings.
  • Item
    Guanidine functionalized porous SiO2 as heterogeneous catalysts for microwave depolymerization of PET and PLA
    (Royal Society of Chemistry, 2024-03-06) Casey, Éadaoin; Breen, Rachel; Pareras, Gerard; Rimola, Albert; Holmes, Justin D.; Collins, Gillian; Science Foundation Ireland
    Chemical recycling is an important strategy to tackle the growing global problem of plastic waste pollution. The development of metal-free catalysts for depolymerization of plastics is attractive as it avoids the use of metal salts, which are potentially damaging to the environment. Here we report a metal-free heterogeneous catalyst for the glycolysis of polyethylene terephthalate (PET) and methanolysis of polylactic acid (PLA). The catalysts are synthesized by covalent surface modification of mesoporous silica (SiO2) with guanidine ligands and evaluated under conventional thermal and microwave-assisted heating. A surface bound cyanoguanidine ligand was found to be the best catalyst leading to 100% PET conversion with 80% BHET yield. The nature of the catalyst support material influenced the catalytic performance of the guanidine ligands with porous SiO2 supports outperforming activated carbon in conventional thermal glycolysis, while the opposite trend was observed with microwave assisted glycolysis. Dedicated density functional theory (DFT) computations were performed to simulate the depolymerization processes, obtain the free energy profiles of the reaction mechanisms, and identify the important role of hydrogen bonding in the reaction mechanism.
  • Item
    A systematic review of the lived experiences of the energy vulnerable: Where are the research gaps?
    (Elsevier Ltd., 2024-05-10) Hihetah, Claudia; Ó Gallachóir , Brian; Dunphy , Niall P.; Harris, Clodagh; Science Foundation Ireland
    The transition to a low-carbon world, coupled with energy supply uncertainties, has heightened the urgency to better understand the experiences of vulnerable groups who lack affordable and adequate energy. Access to energy is crucial for their health, well-being, and social stability. However, there are significant knowledge gaps relating to the lived experiences of energy vulnerable groups that this paper directly addresses. There is a wide body of literature focusing on the quantification of, and policy response to, energy poverty alongside a fast- growing area of research on the lived experience of the energy vulnerable. This paper's systematic review of research on the lived experiences of the energy vulnerable reveals 46 peer-reviewed articles published between 2011 and 2021. Its review highlights diverse approaches to exploring energy vulnerability, the range of vulnerable groups investigated and different motivations for focusing on lived experiences. The results point to a number of key gaps in the literature in terms of definitions and terminologies, geographic coverage, gender, life stage (specifically children), ethnicity (ethnic minorities absent) and ability (people with disabilities are a further gap). It concludes that there is a need for more context-specific, mixed-methods and longitudinal studies in this area. Having identified gaps in the literature, it recommends how some of these can be addressed and reflects on how studies focused on the lived experience of energy poverty should advance.
  • Item
    3D printed rechargeable aqueous and non-aqueous lithium-ion batteries: Evolution of design and performance
    (Electrochemical Society, 2023-12-12) Egorov, Vladimir; Gulzar, Umair; O'Dwyer, Colm; Horizon 2020; European Regional Development Fund; Irish Research Council; Enterprise Ireland; Higher Education Authority
    Here we describe the modeling and design evolution of vat polimerized (Vat-P) stereolithographic apparatus (SLA) 3D printed coin cell-type aqueous and non-aqueous rechargeable lithium-ion batteries, cases and current collectors. We detail the rationale for design evolution that improved performance, handling and assembly of the printed batteries. Some guidance into the modeling, 3D printing process, material choice, chemical and electrochemical stability, assembly, sealing, and performance of 3D printed Li-ion batteries is outlined. 3D printed Li-ion batteries demonstrated promising results in terms of gravimetric capacity, rate capability, and capacity per unit footprint area compared to conventional coin cells in both aqueous and non-aqueous systems. For aqueous cells, the cell level capacity is a factor of 2–3x higher than similar metal coin cells due to the lighter weight and better rate response. We also outline design requirements for a Vat-P printed battery that are compatible with organic carbonate-based electrolytes, where the cell provides 115 mAh g−1 specific capacity using an LiCoO2–graphite chemistry, which is only ∼20% less than the maximum reversible capacity of LCO. Despite the challenges faced in optimizing the design and materials for 3D printed Li-ion batteries, this study provides valuable information for future research and development.