Biological, Earth and Environmental Sciences - Journal Articles

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 379
  • Item
    Alkali-carbonate melts in the cratonic mantle evidenced by a wehrlite xenolith from the Majuagaa kimberlite, West Greenland
    (Geological Society of America, 2024-10-09) Kiseeva, Ekaterina S.; Kamenetsky, Vadim S.; Chayka, Ivan F.; Maas, Roland; Nielsen, Troels F. D.; Natural Environment Research Council; Irish Research Council
    Carbonate melts are critically important for the deep carbon cycle, mantle melting, redox reactions, and transport of highly incompatible elements. The presence of carbonate melts in the cratonic mantle has been inferred from experimental studies, metasomatic transformations, and melt/fluid inclusions in xenoliths, kimberlites, and diamonds. However, the exact composition of such melts is difficult to determine due to their ephemeral nature and highly reactive properties. Once formed, they migrate away from the source and react with silicate mantle minerals, especially orthopyroxene, causing mantle metasomatism. Wehrlite is one of the products of interaction between the carbonate melt and peridotitic mantle and hence is an excellent candidate for locating in situ carbonate melts. Here, we report petrological, geochemical, and melt inclusion data for a garnet wehrlite xenolith in the Majuagaa kimberlite dike, West Greenland. The xenolith, which last equilibrated with the mantle at 4.5 GPa and 1000 °C, contains abundant melt pools composed of dolomite, calcite, serpentine, spinel, apatite, and phlogopite. Although the original magmatic mineralogy was largely destroyed by low-temperature alteration, remnants of the crystallized carbonatitic melt are preserved as primary melt inclusions in the liquidus Ti-Mg-Fe spinel. These melt inclusions, composed of carbonates, alkali carbonates, periclase/brucite, and minor halides, K-sulfide, apatite, and phlogopite, are the first direct evidence for in situ alkali-carbonate melt in the deep cratonic mantle. Compositionally, they are very similar to primary Na-dolomite melt found in experiments and in fluid inclusions within diamonds.
  • Item
    Ecosystem engineers enhance the multifunctionality of an urban novel ecosystem: Population persistence and ecosystem resilience since the 1980s
    (Elsevier B.V., 2024-09-06) Firth, Louise B.; Forbes, Anastasia; Knights, Antony M.; O'Shaughnessy, Kathryn A.; Mahmood-Brown, Wahaj; Struthers, Lewis; Hawcutt, Ellie; Bohn, Katrin; Sayer, Martin D. J.; Quinn, James; Allen, Jan; Dürr, Simone; Guerra, Maria Teresa; Leeper, Alexandra; Mieszkowska, Nova; Reid, Geraldine; Wilkinson, Stephen; Williams, Adrian E.; Hawkins, Stephen J.; Mersey Dock and Harbour Company; Merseyside Development Corporation; Nature Conservancy Council; Natural Environment Research Council; National Facility for Scientific Diving; Esmée Fairbairn Foundation; Marine Biological Association
    In degraded urban habitats, nature-based solutions aim to enhance ecosystem functioning and service provision. Bivalves are increasingly reintroduced to urban environments to enhance water quality through biofiltration, yet their long-term sustainability remains uncertain. Following the restoration of the disused South Docks in Liverpool in the 1980s, natural colonization of mussels rapidly improved dock-basin water quality and supported diverse taxa, including other filter feeders. While the initial colonization phase has been well documented, there has been limited published research since the mid-1990s, despite ongoing routine water quality monitoring. Here, we assessed the long-term persistence of mussel populations, their associated biodiversity, and physico-chemical parameters of the water in Queens and Albert Docks by comparing historical (1980s to 1990s) and contemporary data from follow-up surveys (2012,2022). Following an initial period of poor water quality (high contamination and turbidity, low oxygen), the natural colonization of mussels from Albert Dock in 1988 extended throughout the South Docks. By the mid-1990s, the environment of the South Docks and its mussel populations had stabilized. The dock walls were dominated by mussels which provided important complex secondary substrate for invertebrates and macroalgae. Surveys conducted in 2012 and 2022 confirmed the continued dominance of mussels and estimates of mussel biofiltration rates confirm that mussels are continuing to contribute to maintaining water quality. A decline in salinity was observed in both docks in 2022, with evidence of recovery. While these ecosystems appear relatively stable, careful management of the hydrological regime is crucial to ensuring the persistence of mussels and resilient ecosystem service provision through biofiltration.
  • Item
    Multi-generational dispersal and dynamic patch occupancy reveals spatial and temporal stability of seascapes
    (Elsevier B.V., 2024-09-03) Clubley, Charlotte H.; Silva, Tiago A. M.; Wood, Louisa E.; Firth, Louise B.; Bilton, David T.; O'Dea, Enda; Knights, Antony M.; Centre for Environment, Fisheries and Aquaculture Science; School of Biological and Marine Sciences, University of Plymouth
    The success of non-native species (NNS) invasions depends on patterns of dispersal and connectivity, which underpin genetic diversity, population establishment and growth. In the marine environment, both global environmental change and increasing anthropogenic activity can alter hydrodynamic patterns, leading to significant inter-annual variability in dispersal pathways. Despite this, multi-generational dispersal is rarely explicitly considered in attempts to understand NNS spread or in the design of management interventions. Here, we present a novel approach to quantifying species spread that considers range expansion and network formation across time using the non-native Pacific oyster, Magallana gigas (Thunberg 1793), as a model. We combined biophysical modelling, dynamic patch occupancy models, consideration of environmental factors, and graph network theory to model multi-generational dispersal in northwest Europe over 13 generations. Results revealed that M. gigas has a capacity for rapid range expansion through the creation of an ecological network of dispersal pathways that remains stable through time. Maximum network size was achieved in four generations, after which connectivity patterns remained temporally stable. Multi-generational connectivity could therefore be divided into two periods: network growth (2000−2003) and network stability (2004–2012). Our study is the first to examine how dispersal trajectories affect the temporal stability of ecological networks across biogeographic scales, and provides an approach for the assignment of site-based prioritisation of non-native species management at different stages of the invasion timeline. More broadly, the framework we present can be applied to other fields (e.g. Marine Protected Area design, management of threatened species and species range expansion due to climate change) as a means of characterising and defining ecological network structure, functioning and stability.
  • Item
    Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: a case study using dill (Anethum graveolens)
    (Elsevier, 2021) Castro-Alves, Victor; Kalbina, Irina; Nilsen, Asgeir; Aronsson, Mats; Rosenqvist, Eva; Jansen, Marcel A. K.; Qian, Minjie; Öström, Åsa; Hyötyläinen, Tuulia; Strid, Åke; Knowledge Foundation; Svenska Forskningsrådet Formas
    Using dill (Anethum graveolens L.) as a model herb, we reveal novel associations between metabolite profile and sensory quality, by integrating non-target metabolomics with sensory data. Low night temperatures and exposure to UV-enriched light was used to modulate plant metabolism, thereby improving sensory quality. Plant age is a crucial factor associated with accumulation of dill ether and α-phellandrene, volatile compounds associated with dill flavour. However, sensory analysis showed that neither of these compounds has any strong association with dill taste. Rather, amino acids alanine, phenylalanine, glutamic acid, valine, and leucine increased in samples exposed to eustress and were positively associated with dill and sour taste. Increases in amino acids and organic acids changed the taste from lemon/grass to a more bitter/pungent dill-related taste. Our procedure reveals a novel approach to establish links between effects of eustressors on sensory quality and may be applicable to a broad range of crops.
  • Item
    Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation
    (Elsevier B.V., 2022) Andrady, Anthony L.; Barnes, Paul W.; Bornman, Janet F.; Gouin, T.; Madronich, Sasha; White, C. C.; Zepp, Richard G.; Jansen, Marcel A. K.; Science Foundation Ireland; North Carolina State University; Loyola University
    Understanding the fate of plastics in the environment is of critical importance for the quantitative assessment of the biological impacts of plastic waste. Specially, there is a need to analyze in more detail the reputed longevity of plastics in the context of plastic degradation through oxidation and fragmentation reactions. Photo-oxidation of plastic debris by solar UV radiation (UVR) makes material prone to subsequent fragmentation. The fragments generated following oxidation and subsequent exposure to mechanical stresses include secondary micro- or nanoparticles, an emerging class of pollutants. The paper discusses the UV-driven photo-oxidation process, identifying relevant knowledge gaps and uncertainties. Serious gaps in knowledge exist concerning the wavelength sensitivity and the dose-response of the photo-fragmentation process. Given the heterogeneity of natural UV irradiance varying from no exposure in sediments to full UV exposure of floating, beach litter or air-borne plastics, it is argued that the rates of UV-driven degradation/fragmentation will also vary dramatically between different locations and environmental niches. Biological phenomena such as biofouling will further modulate the exposure of plastics to UV radiation, while potentially also contributing to degradation and/or fragmentation of plastics independent of solar UVR. Reductions in solar UVR in many regions, consequent to the implementation of the Montreal Protocol and its Amendments for protecting stratospheric ozone, will have consequences for global UV-driven plastic degradation in a heterogeneous manner across different geographic and environmental zones. The interacting effects of global warming, stratospheric ozone and UV radiation are projected to increase UV irradiance at the surface in localized areas, mainly because of decreased cloud cover. Given the complexity and uncertainty of future environmental conditions, this currently precludes reliable quantitative predictions of plastic persistence on a global scale.