Pharmacology and Therapeutics - Journal Articles
Permanent URI for this collection
Browse
Recent Submissions
Item Beneficial effects of magnesium treatment on heart rate variability and cardiac ventricular function in diabetic rats(Sage, 2016-06-08) Amoni, Matthew; Kelly-Laubscher, Roisin; Blackhurst, Dee; Gwanyanya, Asfree; National Research Foundation; University of Capetown; ADInstruments, AustraliaBackground: Diabetes mellitus induces life-threatening cardiovascular complications such as cardiac autonomic neuropathy and ventricular dysfunction and is associated with hypomagnesemia. In this study, we investigated the short-term effects of magnesium (Mg2+) treatment on streptozotocin (STZ)-induced diabetic cardiac complications. Methods: Adult Wistar rats were treated once with STZ (50 mg/kg, intraperitoneally [ip]) or vehicle (citrate) and then daily for 7 days with MgSO4 (270 mg/kg, ip) or saline. On the eighth day, in vivo tail-pulse plethysmography was recorded for heart rate variability (HRV) analysis, and ex vivo Langendorff-based left ventricular (LV) pressure–volume parameters were measured using an intraventricular balloon. Measurements of plasma lipid and Mg2+ levels as well as blood glucose and cardiac tissue Mg2+ levels were also performed. Results: Treatment with Mg2+ prevented diabetes-induced alterations in the standard deviation of the averages of normal-to-normal (NN) intervals (SDANN), root mean square differences of successive NN intervals (RMSSD), heart rate, and low-frequency (LF) power–high-frequency (HF) power ratio. In addition, Mg2+ restored orthostatic stress-induced changes in SDANN, RMSSD, and LF–HF ratio in diabetic rats. In isolated hearts, Mg2+ reversed the diabetes-induced decrease in LV end-diastolic elastance and the right shift of end-diastolic equilibrium volume intercept, without altering LV-developed pressure or end-systolic elastance. However, Mg2+ did not prevent the elevation in blood glucose, total cholesterol, and triglycerides or the decrease in high-density lipoprotein cholesterol in diabetes. Plasma- or cardiac tissue Mg2+ was not different among the treatment groups. Conclusion: These results suggest that Mg2+ treatment may attenuate diabetes-induced reduction in HRV and improve LV diastolic distensibility, without preventing hyperglycemia and dyslipidemia. Thus, Mg2+ may have a modulatory role in the early stages of diabetic cardiovascular complications.Item Exploring the impact of surfactant type and digestion: Highly digestible surfactants improve oral bioavailability of nilotinib(ACS Publications, 2020-07-10) Koehl, Niklas J.; Holm, René; Kuentz, Martin; Jannin, Vincent; Griffin, Brendan T.; Horizon 2020The scientific rationale for selection of the surfactant type during oral formulation development requires an in-depth understanding of the interplay between surfactant characteristics and biopharmaceutical factors. Currently, however, there is a lack of comprehensive knowledge of how surfactant properties, such as hydrophilic-lipophilic balance (HLB), digestibility, and fatty acid (FA) chain length, translate into in vivo performance. In the present study, the relationship between surfactant properties, in vitro characteristics, and in vivo bioavailability was systematically evaluated. An in vitro lipolysis model was used to study the digestibility of a variety of nonionic surfactants. Eight surfactants and one surfactant mixture were selected for further analysis using the model poorly water-soluble drug nilotinib. In vitro lipolysis of all nilotinib formulations was performed, followed by an in vivo pharmacokinetic evaluation in rats. The in vitro lipolysis studies showed that medium-chain FA-based surfactants were more readily digested compared to long-chain surfactants. The in vivo study demonstrated that a Tween 20 formulation significantly enhanced the absolute bioavailability of nilotinib up to 5.2-fold relative to an aqueous suspension. In general, surfactants that were highly digestible in vitro tended to display higher bioavailability of nilotinib in vivo. The bioavailability may additionally be related to the FA chain length of digestible surfactants with an improved exposure in the case of medium-chain FA-based surfactants. There was no apparent relationship between the HLB value of surfactants and the in vivo bioavailability of nilotinib. The impact of this study's findings suggests that when designing surfactant-based formulations to enhance oral bioavailability of the poorly water-soluble drug nilotinib, highly digestible, medium chain-based surfactants are preferred. Additionally, for low-permeability drugs such as nilotinib, which is subject to efflux by intestinal P-glycoprotein, the biopharmaceutical effects of surfactants merit further consideration.Item Gut reactions: breaking down xenobiotic–microbiome interactions(NLM (Medline), 2019-04) Clarke, Gerard; Sandhu, Kiran V.; Griffin, Brendan T.; Dinan, Timothy G.; Cryan, John F.; Hyland, Niall P.The microbiome plays a key role in health and disease, and there has been considerable interest in therapeutic targeting of the microbiome as well as mining this rich resource in drug discovery efforts. However, a growing body of evidence suggests that the gut microbiota can itself influence the actions of a range of xenobiotics, in both beneficial and potentially harmful ways. Traditionally, clinical studies evaluating the pharmacokinetics of new drugs have mostly ignored the important direct and indirect effects of the gut microbiome on drug metabolism and efficacy. Despite some important observations from xenobiotic metabolism in general, there is only an incomplete understanding of the scope of influence of the microbiome specifically on drug metabolism and absorption, and how this might influence systemic concentrations of parent compounds and toxic metabolites. The significance of both microbial metabolism of xenobiotics and the impact of the gut microbiome on host hepatic enzyme systems is nonetheless gaining traction and presents a further challenge in drug discovery efforts, with implications for improving treatment outcomes or counteracting adverse drug reactions. Microbial factors must now be considered when determining drug pharmacokinetics and the impact that an evolving and dynamic microbiome could have in this regard. In this review, we aim to integrate the contribution of the gut microbiome in health and disease to xenobiotic metabolism focusing on therapeutic interventions, pharmacological drug action, and chemical biotransformations that collectively will have implications for the future practice of precision medicine.Item Non-response to (statin) therapy: The importance of distinguishing non-responders from non-adherers in pharmacogenetic studies(Springer Berlin Heidelberg, 2015-12-19) Trompet, S.; Postmus, I.; Slagboom, P. E.; Heijmans, B. T.; Smit, R. A. J.; Maier, A. B.; Buckley, Brendan M.; Sattar, N.; Stott, D. J.; Ford, I.; Westendorp, R. G. J.; de Craen, A. J. M.; Jukema, J. W.; Sixth Framework ProgrammePurpose: In pharmacogenetic research, genetic variation in non-responders and high responders is compared with the aim to identify the genetic loci responsible for this variation in response. However, an important question is whether the non-responders are truly biologically non-responsive or actually non-adherent? Therefore, the aim of this study was to describe, within the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), characteristics of both non-responders and high responders of statin treatment in order to possibly discriminate non-responders from non-adherers. Methods: Baseline characteristics of non-responders to statin therapy (≤10 % LDL-C reduction) were compared with those of high responders (>40 % LDL-C reduction) through a linear regression analysis. In addition, pharmacogenetic candidate gene analysis was performed to show the effect of excluding non-responders from the analysis. Results: Non-responders to statin therapy were younger (p = 0.001), more often smoked (p < 0.001), had a higher alcohol consumption (p < 0.001), had lower LDL cholesterol levels (p < 0.001), had a lower prevalence of hypertension (p < 0.001), and had lower cognitive function (p = 0.035) compared to subjects who highly responded to pravastatin treatment. Moreover, excluding non-responders from pharmacogenetic studies yielded more robust results, as standard errors decreased. Conclusion: Our results suggest that non-responders to statin therapy are more likely to actually be non-adherers, since they have more characteristics that are viewed as indicators of high self-perceived health and low disease awareness, possibly making the subjects less adherent to study medication. We suggest that in pharmacogenetic research, extreme non-responders should be excluded to overcome the problem that non-adherence is investigated instead of non-responsiveness.Item TGR(mREN2)27 rats develop non-alcoholic fatty liver disease-associated portal hypertension responsive to modulations of Janus-kinase 2 and Mas receptor(Nature Publishing Group, 2019-08-29) Klein, Sabine; Kleine, Carola-Ellen; Pieper, Andrea; Granzow, Michaela; Gautsch, Sebastian; Himmit, Mimoun; Kahrmann, Katharina; Schierwagen, Robert; Uschner, Frank Erhard; Magdaleno, Fernando; Naoum, Maria Eleni; Kristiansen, Glen; Walther, Thomas; Bader, Michael; Sauerbruch, Tilman; Trebicka, Jonel; Deutsche Forschungsgemeinschaft; Fundación Cellex; Horizon 2020; H2020 SocietyPrevalence of non-alcoholic fatty liver disease (NAFLD) is increasing. Resulting fibrosis and portal hypertension, as a possible secondary event, may necessitate treatment. Overexpression of mouse renin in the transgenic rat model, TGR(mREN2)27, leads to spontaneous development of NAFLD. Therefore, we used TGR(mREN2)27 rats as a model of NAFLD where we hypothesized increased susceptibility and investigated fibrosis and portal hypertension and associated pathways. 12-week old TGR(mREN2)27 rats received either cholestatic (BDL) or toxic injury (CCl4 inhalation). Portal and systemic hemodynamic assessments were performed using microsphere technique with and without injection of the Janus-Kinase 2 (JAK2) inhibitor AG490 or the non-peptidic Ang(1-7) agonist, AVE0991. The extent of liver fibrosis was assessed in TGR(mREN2)27 and wild-type rats using standard techniques. Protein and mRNA levels of profibrotic, renin-angiotensin system components were assessed in liver and primary hepatic stellate cells (HSC) and hepatocytes. TGR(mREN2)27 rats developed spontaneous, but mild fibrosis and portal hypertension due to the activation of the JAK2/Arhgef1/ROCK pathway. AG490 decreased migration of HSC and portal pressure in isolated liver perfusions and in vivo. Fibrosis or portal hypertension after cholestatic (BDL) or toxic injury (CCl4) was not aggravated in TGR(mREN2)27 rats, probably due to decreased mouse renin expression in hepatocytes. Interestingly, portal hypertension was even blunted in TGR(mREN2)27 rats (with or without additional injury) by AVE0991. TGR(mREN2)27 rats are a suitable model of spontaneous liver fibrosis and portal hypertension but not with increased susceptibility to liver damage. After additional injury, the animals can be used to evaluate novel therapeutic strategies targeting Mas.