Computer Science - Journal Articles
Permanent URI for this collection
Browse
Recent Submissions
Item Towards fast algorithms for the preference consistency problem based on hierarchical models(arXiv, 2024) George, Anne-Marie; Wilson, Nic; O'Sullivan, Barry; Science Foundation IrelandIn this paper, we construct and compare algorithmic approaches to solve the Preference Consistency Problem for preference statements based on hierarchical models. Instances of this problem contain a set of preference statements that are direct comparisons (strict and non-strict) between some alternatives, and a set of evaluation functions by which all alternatives can be rated. An instance is consistent based on hierarchical preference models, if there exists an hierarchical model on the evaluation functions that induces an order relation on the alternatives by which all relations given by the preference statements are satisfied. Deciding if an instance is consistent is known to be NP-complete for hierarchical models. We develop three approaches to solve this decision problem. The first involves a Mixed Integer Linear Programming (MILP) formulation, the other two are recursive algorithms that are based on properties of the problem by which the search space can be pruned. Our experiments on synthetic data show that the recursive algorithms are faster than solving the MILP formulation and that the ratio between the running times increases extremely quickly.Item ARTAI: an evaluation platform to assess societal risk of recommender algorithms(arXiv, 2024) Ruan, Qin; Xu, Jin; Dong, Ruihai; Younus, Arjumand; Mai, Tai Tan; O’Sullivan, Barry; Leavy, Susan; European Commission; Science Foundation IrelandSocietal risk emanating from how recommender algorithms disseminate content online is now well documented. Emergent regulation aims to mitigate this risk through ethical audits and enabling new research on the social impact of algorithms. However, there is currently a need for tools and methods that enable such evaluation. This paper presents ARTAI, an evaluation environment that enables large-scale assessments of recommender algorithms to identify harmful patterns in how content is distributed online and enables the implementation of new regulatory requirements for increased transparency in recommender systems.Item UCCIX: Irish-eXcellence Large Language Model(arXiv, 2024) Tran, Khanh-Tung; O’Sullivan, Barry; Nguyen, Hoang D.; Science Foundation IrelandThe development of Large Language Models (LLMs) has predominantly focused on high-resource languages, leaving extremely low-resource languages like Irish with limited representation. This work presents UCCIX, a pioneering effort on the development of an open-source Irish-based LLM. We propose a novel framework for continued pre-training of LLMs specifically adapted for extremely low-resource languages, requiring only a fraction of the textual data typically needed for training LLMs according to scaling laws. Our model, based on Llama 2-13B, outperforms much larger models on Irish language tasks with up to 12% performance improvement, showcasing the effectiveness and efficiency of our approach. We also contribute comprehensive Irish benchmarking datasets, including IrishQA, a question-answering dataset, and Irish version of MT-bench. These datasets enable rigorous evaluation and facilitate future research in Irish LLM systems. Our work aims to preserve and promote the Irish language, knowledge, and culture of Ireland in the digital era while providing a framework for adapting LLMs to other indigenous languages.Item Computation and complexity of preference inference based on hierarchical models(arXiv, 2024) Wilson, Nic; George, Anne-Marie; O'Sullivan, Barry; Science Foundation IrelandPreference Inference involves inferring additional user preferences from elicited or observed preferences, based on assumptions regarding the form of the user's preference relation. In this paper we consider a situation in which alternatives have an associated vector of costs, each component corresponding to a different criterion, and are compared using a kind of lexicographic order, similar to the way alternatives are compared in a Hierarchical Constraint Logic Programming model. It is assumed that the user has some (unknown) importance ordering on criteria, and that to compare two alternatives, firstly, the combined cost of each alternative with respect to the most important criteria are compared; only if these combined costs are equal, are the next most important criteria considered. The preference inference problem then consists of determining whether a preference statement can be inferred from a set of input preferences. We show that this problem is coNP-complete, even if one restricts the cardinality of the equal-importance sets to have at most two elements, and one only considers non-strict preferences. However, it is polynomial if it is assumed that the user's ordering of criteria is a total ordering; it is also polynomial if the sets of equally important criteria are all equivalence classes of a given fixed equivalence relation. We give an efficient polynomial algorithm for these cases, which also throws light on the structure of the inference.Item Multi-agent collaboration mechanisms: a survey of LLMs(arXiv, 2025) Tran, Khanh-Tung; Dao, Dung; Nguyen, Minh-Duong; Pham, Quoc-Viet; O’Sullivan, Barry; Nguyen, Hoang D.; Science Foundation IrelandWith recent advances in Large Language Models (LLMs), Agentic AI has become phenomenal in real-world applications, moving toward multiple LLM-based agents to perceive, learn, reason, and act collaboratively. These LLM-based Multi-Agent Systems (MASs) enable groups of intelligent agents to coordinate and solve complex tasks collectively at scale, transitioning from isolated models to collaboration-centric approaches. This work provides an extensive survey of the collaborative aspect of MASs and introduces an extensible framework to guide future research. Our framework characterizes collaboration mechanisms based on key dimensions: actors (agents involved), types (e.g., cooperation, competition, or coopetition), structures (e.g., peer-to-peer, centralized, or distributed), strategies (e.g., role-based or model-based), and coordination protocols. Through a review of existing methodologies, our findings serve as a foundation for demystifying and advancing LLM-based MASs toward more intelligent and collaborative solutions for complex, real-world use cases. In addition, various applications of MASs across diverse domains, including 5G/6G networks, Industry 5.0, question answering, and social and cultural settings, are also investigated, demonstrating their wider adoption and broader impacts. Finally, we identify key lessons learned, open challenges, and potential research directions of MASs towards artificial collective intelligence.