Physiology - Journal Articles
Permanent URI for this collection
Browse
Recent Submissions
Now showing 1 - 5 of 94
- ItemCannabinoids on the brain(Hindawi, 2002-03-09) Irving, Andrew J.; Rae, Mark G.; Coutts, Angela A.Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids) affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS) regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid) system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.
- ItemThe effect of superoxide dismutase enzyme inhibition on renal microcirculation of spontaneously hypertensive-stroke prone and Wistar rats(Czech Academy of Sciences, 2018-01) Ahmeda, A. F.; Rae, Mark G.; Anweigi, L. M.; Al Otaibi, M. F.; Al-Masri, A. A.; Johns, E. J.; King Saud UniversityA significant factor in the development of hypertension may be excessive vasoconstriction within the renal medulla. This study therefore investigated the role of superoxide dismutase (SOD) in the regulation of renal medullary and cortical blood perfusion (MBP and CBP, respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar rats. CBP and MBP were measured before and after intra-renal infusion of the SOD inhibitor, diethyldithio-carbamic acid (DETC). Under basal conditions, mean arterial pressure was significantly greater in SHRSP than Wistar rats, but both MBP and heart rate (HR) were significantly lower in SHRSP relative to Wistar rats (P<0.05, n=7 in both groups). Infusion of DETC (2 mg/kg/min) into the cortico-medullary border area of the kidney significantly decreased MBP in the SHRSPs (by 28+/-3 %, n=7, P<0.05), indicating a greater vasoconstriction within this vascular bed. However, DETC also significantly decreased MBP in Wistar rats to a similar extent (24+/-4 %, n=7, P<0.05). These results suggest that superoxide anions play a significant role in reducing renal vascular compliance within the renal medulla in both normotensive and hypertensive animals, although the responses are not greater in the hypertensive relative to the control animals.
- ItemMaking sense of quorum sensing at the intestinal mucosal interface(MDPI, 2022-05-24T00:00:00Z) Uhlig, Friederike; Hyland, Niall P.; Science Foundation Ireland; Horizon 2020The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria-host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro-immune interface need to be further investigated.
- ItemInvestigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints(Springer Nature, 2022-11-23) Keane, Jonathan M.; Walsh, Calum J.; Cronin, P.; Baker, Kevin J.; Melgar, Silvia; Cotter, Paul D.; Joyce, Susan A.; Gahan, Cormac G. M.; Houston, Aileen M.; Hyland, Niall P.; Science Foundation IrelandBackground: Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. Methods: Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. Results: The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. Conclusion: The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
- ItemDevelopment of novel therapeutics for all individuals with CF (the future goes on)(Elsevier B.V., 2022-10-30) Amaral, Margarida D.; Harrison, Patrick T.; Science Foundation Ireland; Horizon 2020; Fundação para a Ciência e a Tecnologia; Ministério da Ciência, Tecnologia e Ensino Superior; Cystic Fibrosis Trust; Cystic Fibrosis FoundationDespite the major advances and successes in finding and establishing new treatments that tackle the basic defect in Cystic Fibrosis (CF), there is still an unmet need to bring these potentially curative therapies to all individuals with CF. Here, we review aspects of what is still missing to treat all individuals with CF by such approaches. On the one hand, we discuss novel holistic (high-throughput) approaches to elucidate mechanistic defects caused by distinct classes of mutations to identify novel drug targets. On the other hand, we examine therapeutic approaches to correct the gene in its own environment, i.e., in the genome.