Cork University Dental School and Hospital - Masters by Research Theses

Permanent URI for this collection


Recent Submissions

Now showing 1 - 2 of 2
  • Item
    Proficiency-based progression (PBP) training- the future model for dental operative skills training? A systematic review and meta-analysis of existing literature
    (University College Cork, 2023-01) Kehily, Elaine; Roberts, Anthony; Allen, Finbarr; Gallagher, Anthony G.; Health Research Board
    Objective: To evaluate the effectiveness of proficiency-based progression (PBP) operative training using validated performance metrics, by comparing this to standard, conventional training methods. Data: This systematic review was conducted in accordance with the PRISMA guidelines for the Transparent Reporting of Systematic Reviews and Meta-Analyses. Study quality was assessed using the MERSQI tool and the Cochrane Risk of Bias tool. Results were pooled using biased corrected standardized mean difference and ratio-of-means (ROM). Summary effects were evaluated using a series of fixed and random effects models. The primary outcome was the number of procedural errors performed comparing PBP and non-PBP-based training pathways. In quantitative synthesis testing for procedural errors, a pooled meta-analysis on 87 trainees was conducted using random-effects models. In a ROM analysis, PBP was estimated to reduce the mean rate of errors by 62%, when compared to standard training (ROM 0.38, 95% CI: 0.25; 0.58; p < 0.001) Sources: The electronic databases of PubMed, Embase, Web of Science, MEDLINE and Cochrane library’s CENTRAL were searched from inception to 8/11/2021. Filters activated were Randomized Controlled trials, clinical trial. Study selection: 13 studies were included for review with 11 included in the quantitative synthesis from 174 potentially relevant publications identified by the search strategy. Main inclusion criteria were studies comparing standard surgical/operative training with proficiency-based simulation training using validated metrics based on expert performance. Conclusions: Our meta-analysis found that PBP training improved trainees' performances, by decreasing procedural errors. There is sufficient evidence to explore PBP training for use in dental skills training.
  • Item
    Assessment of the potential environmental impacts arising from mercury-free dental restorative materials
    (University College Cork, 2019-12) Binner, Hannah; Sullivan, Timothy; Harding, Mairead; Environmental Protection Agency
    The field of dentistry and with it, the application of dental filling materials, is currently undergoing changes to adopt sustainability and environmental considerations into the clinical environment. This was largely triggered by the reduction of all products in use that contain Hg (mercury), including dental amalgam, through the Minamata Convention of 2013, which has in turn caused a rise in Hg-free dental filling materials that are now becoming increasingly nano-filled. The focus of this study is on the particles released from Hg-free dental fillings. Knowledge gaps regarding the particle load and potential ecotoxicity of the particulate matter resulting from Hg-free materials exist. Moreover, the widely known environmental and human health impacts of Hg contained in dental amalgam have led to the widespread introduction of an amalgam capture device, the amalgam separator. Amalgam separators capture Hg and dental amalgam particles before wastewater discharge occurs. These amalgam separators are required to be installed in Ireland since the 1st of January 2019 in accordance with EU Directive 2017/852. The overarching objective of this thesis has been to assess whether existing amalgam separators are also effective in capturing particulate matter resulting from the use of Hg-free dental filling materials. In order to meet this objective, this study has assessed the wastewater and amalgam separator capture efficiency in three dental practices in Cork, Ireland. Three dental practices were selected based on the type of amalgam separator in use and focus of service based on private or public practice and high, medium or low utilisation. Physical and chemical parameters of dental wastewater (DWW), including pH, temperature, conductivity, Total suspended solids (TSS) and Total Dissolved Solids (TDS) have been measured. Detailed analysis of particles found in these wastewater streams has been conducted using optical and scanning electron microscopy. The potential ecotoxicity of these waste streams has also undergone preliminary assessment by conducting standardised Daphnia magna immobilisation tests. The results indicate that variation in the discharged DWWs exists, which is likely linked to the use of disinfection products, and has led to extreme observations of pH, conductivity, Total suspended solids and Total dissolved solids. Ecotoxicity results confirmed this and showed that the raw DWW caused an EC50 response at concentrations between 0.1 to 6.69 % DWW/L medium. The particulate load in the three DPs was substantial. A high abundance of microparticles was identified and trends were consistent across the three DPs. It was therefore concluded that amalgam separators may not be sufficient in capturing the particulate matter released from Hg-free dental filling materials. Further research is needed to identify the environmental fate of the particles that are released, particularly nanomaterials, as they have the potential to remain in the water after wastewater treatment has occurred.