Centre for Marine and Renewable Energy (MaREI) - Conference Items

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 11
  • Item
    Production of advanced gaseous biomethane transport fuel in an integrated circular bioenergy system
    (Environmental Protection Agency, 2023-04) Kang, Xihui; Lin, Richen; Wu, Benteng; Dobson, Alan; Murphy, Jerry D.; Environmental Protection Agency
    This report proposes an anaerobic digestion (AD)-centred integrated circular bioeconomy system for the production of advanced fuels (biomethane or biomethanol), medium-chain fatty acids (such as caproic acid), biofertiliser and biochar (with potential application for negative emission technology).
  • Item
    Using model selection and reduction to develop an empirical model to predict energy consumption of a CNC machine
    (Springer Nature Switzerland AG, 2022-10-17) Morris, Liam; Clancy, Rose; Hryshchenko, Andriy; O’Sullivan, Dominic; Bruton, Ken; Margaria, Tiziana; Steffen, Bernhard; Horizon 2020
    With an ever growing need to reduce energy consumption in the manufacturing industry, process users need to become more aware on how production impacts energy consumption. Computer numerically controlled (CNC) machining tools are a common manufacturing apparatus, and they are known to be energy inefficient. This paper describes the development of an empirical energy consumption model of a CNC with the aim of predicting energy consumption based on the number of parts processed by the machine. The model can then be deployed as part of a decision support (DS) platform, aiding process users to reduce consumption and minimise waste. In using the Calibrated Model Method, the data undergoes initial preparation followed by exploratory data analysis and subsequent model development via iteration. During this analysis, relationships between parameters are explored to find which have the most significant on energy consumption. A training set of 191 datapoints yielded a linear correlation coefficient of 0.95, between the power consumption and total units produced. RMSE, MAPE and MBE validation test yielded results of 0.198, 6.4% and 2.66% respectively.
  • Item
    Structure design and assessment of a floating foundation for offshore wind turbines
    (American Society of Mechanical Engineers (ASME), 2019-11-03) Ye, Q.; Cheng, S.; Kim, B.; Collins, K.; Iglesias, Gregorio
    This paper summarizes the assessment of the structural analysis and design of a floating foundation for offshore floating wind turbine (FWT) based on DNVGL standard and Eurocode in terms of economy and reliability. The wind loads are calculated using empirical equations. The wave loads are obtained and verified using various methods including hand calculation, AQWA and Flow-3D. It is found that the shell thickness could be reduced significantly by introducing the stiffeners (stringer or ring), which can decrease the weight of the hull and lower the cost. While DNVGL and Eurocode yield similar design solutions if using plane shell structures, Eurocode significantly underestimates the buckling resistance of stiffened cylindrical shells.
  • Item
    Comparative realistic objectives oriented optimization framework for EV charging scheduling in a distribution system
    (Institute of Electrical and Electronics Engineers (IEEE), 2022-05-18) Güldorum, Hilmi Cihan; Erenoğlu, Ayşe Kübra; Erdinç, Ozan; Şengör, İbrahim; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu; Türkiye Bilimler Akademisi
    The integration of large-scale electric vehicles (EVs) into the distribution system has emerged as a critical topic of research with the proliferation of EVs over the years. To mitigate the negative effects of EVs on the distribution system (DS), in this study, the optimal operation of an EVPL is investigated with a model in the form of mixed-integer quadratic constrained programming (MIQCP) that aims to minimize a variety of realistic objectives including active power losses, charging cost or voltage deviations while taking DS constraints into account. Also, uncertain behavior of the EVPL has been considered via machine-learning based forecasting by using historic data. The effectiveness of the proposed model has been evaluated using a 33-bus test system with 15-minute time granularity and compared to models that had various objective functions.
  • Item
    The assessment of water surface elevation uncertainty in a hydraulics laboratory
    (Seoul National University, 2019-05) Desmond, Cian; Buret, Benoit; Shanley, Matthew; Murphy, Jimmy; Pakrashi, Vikram
    Physical model testing forms a critical part of the development process for offshore renewable energy (ORE) technologies. Devices and structures generally follow a Technology Readiness Level (TRL) development pathway which has nine steps ranging from the initial idea (TRL1) to commercialisation (TRL9). In ORE, technologies are tested extensively in laboratory environments up to TRL4 after which a decision is made as to whether a particular technology has sufficient potential to justify moving to open sea environments where the costs can be much higher. Therefore, physical model testing plays a critical role in the development process and in recent years increased emphasis has been placed on improving quality procedures and implementing best practice methodologies. The International Towing Tank Conference (ITTC) and the International Electrotechnical Commission (IEC) have been developing testing standards whilst European Union funded projects such as Equimar, MaRINET and MaRINET2 have been working with testing infrastructures in developing a more uniform approach to testing. However, a standardised approach to the assessment of uncertainty in physical testing has yet to emerge. This paper focuses on and estimates the variation associated with wave elevation measurements using conductive wave probes in a hydraulics laboratory, a key input in all physical testing analysis.