Physics
http://hdl.handle.net/10468/224
2016-07-24T22:20:28ZNanofiber control of ultracold quantum gases
http://hdl.handle.net/10468/2447
Nanofiber control of ultracold quantum gases
Hennessy, Tara
While a great amount of attention is being given to the development of nanodevices, both through academic research and private industry, the field is still on the verge. Progress hinges upon the development of tools and components that can precisely control the interaction between light and matter, and that can be efficiently integrated into nano-devices. Nanofibers are one of the most promising candidates for such purposes. However, in order to fully exploit their potential, a more intimate knowledge of how nanofibers interact with single neutral atoms must be gained. As we learn more about the properties of nanofiber modes, and the way they interface with atoms, and as the technology develops that allows them to be prepared with more precisely known properties, they become more and more adaptable and effective. The work presented in this thesis touches on many topics, which is testament to the broad range of applications and high degree of promise that nanofibers hold. For immediate use, we need to fully grasp how they can be best implemented as sensors, filters, detectors, and switches in existing nano-technologies. Areas of interest also include how they might be best exploited for probing atom-surface interactions, single-atom detection and single photon generation. Nanofiber research is also motivated by their potential integration into fundamental cold atom quantum experiments, and the role they can play there. Combining nanofibers with existing optical and quantum technologies is a powerful strategy for advancing areas like quantum computation, quantum information processing, and quantum communication. In this thesis I present a variety of theoretical work, which explores a range of the applications listed above. The first work presented concerns the use of the evanescent fields around a nanofiber to manipulate an existing trapping geometry and therefore influence the centre-of-mass dynamics of the atom. The second work presented explores interesting trapping geometries that can be achieved in the vicinity of a fiber in which just four modes are allowed to propagate. In a third study I explore the use of a nanofiber as a detector of small numbers of photons by calculating the rate of emission into the fiber modes when the fiber is moved along next to a regularly separated array of atoms. Also included are some results from a work in progress, where I consider the scattered field that appears along the nanofiber axis when a small number of atoms trapped along that axis are illuminated orthogonally; some interesting preliminary results are outlined. Finally, in contrast with the rest of the thesis, I consider some interesting physics that can be done in one of the trapping geometries that can be created around the fiber, here I explore the ground states of a phase separated two-component superfluid Bose-Einstein condensate trapped in a toroidal potential.
2016-01-01T00:00:00ZA tight-binding analysis of the electronic properties of III-nitride semiconductors
http://hdl.handle.net/10468/2761
A tight-binding analysis of the electronic properties of III-nitride semiconductors
Coughlan, Conor Terence
This thesis divides into two distinct parts, both of which are underpinned by the tight-binding model. The first part covers our implementation of the tight-binding model in conjunction with the Berry phase theory of electronic polarisation to probe the atomistic origins of spontaneous polarisation and piezoelectricity as well as attempting to accurately calculate the values and coefficients associated with these phenomena. We first develop an analytic model for the polarisation of a one-dimensional linear chain of atoms. We compare the zincblende and ideal wurtzite structures in terms of effective charges, spontaneous polarisation and piezoelectric coefficients, within a first nearest neighbour tight-binding model. We further compare these to real wurtzite structures and conclude that accurate quantitative results are beyond the scope of this model but qualitative trends can still be described. The second part of this thesis deals with implementing the tight-binding model to investigate the effect of local alloy fluctuations in bulk AlGaN alloys and InGaN quantum wells. We calculate the band gap evolution of Al1_xGaxN across the full composition range and compare it to experiment as well as fitting bowing parameters to the band gap as well as to the conduction band and valence band edges. We also investigate the wavefunction character of the valence band edge to determine the composition at which the optical polarisation switches in Al1_xGaxN alloys. Finally, we examine electron and hole localisation in InGaN quantum wells. We show how the built-in field localises the carriers along the c-axis and how local alloy fluctuations strongly localise the highest hole states in the c-plane, while the electrons remain delocalised in the c-plane. We show how this localisation affects the charge density overlap and also investigate the effect of well width fluctuations on the localisation of the electrons.
2016-01-01T00:00:00ZManipulation of magnetic anisotropy in nanostructures
http://hdl.handle.net/10468/2058
Manipulation of magnetic anisotropy in nanostructures
Maity, Tuhin
Of late, the magnetic properties of micro/nano-structures have attracted intense research interest both fundamentally and technologically particularly to address the question that how the manipulation in the different layers of nanostructures, geometry of a patterned structure can affect the overall magnetic properties, while generating novel applications such as in magnetic sensors, storage devices, integrated inductive components and spintronic devices. Depending on the applications, materials with high, medium or low magnetic anisotropy and their possible manipulation are required. The most dramatic manifestation in this respect is the chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of the magnetization, which can open up more functionality particularly for device applications. Types of magnetic anisotropies of different nanostructured materials and their manipulation techniques are investigated in this work. Detail experimental methods for the quantitative determination of magnetic anisotropy in nanomodulated Ni45Fe55 thin film are studied. Magnetic field induced in-plane rotations within the nanomodulated Ni45Fe55 continuous films revealed various rotational symmetries of magnetic anisotropy due to dipolar interactions showing a crossover from lower to higher fold of symmetry as a function of modulation geometry. In a second approach, the control of exchange anisotropy at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic nanocomposite materials, where two different phase/types of materials were simultaneously synthesized, was investigated. The third part of this work was to study the electroplated thin films of metal alloy nanocomposite for enhanced exchange anisotropy. In this work a unique observation of an anti-clock wise as well as a clock wise hysteresis loop formation in the Ni,Fe solid solution with very low coercivity and large positive exchange anisotropy/exchange bias have been investigated. Hence, controllable positive and negative exchange anisotropy has been observed for the first time which has high potential applications such as in MRAM devices.
2015-01-01T00:00:00ZTheory of the electronic and optical properties of dilute bismide alloys
http://hdl.handle.net/10468/2092
Theory of the electronic and optical properties of dilute bismide alloys
Broderick, Christopher Anthony
Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.
2015-01-01T00:00:00Z