Crystallographically controlled synthesis of SnSe nanowires: potential in resistive memory devices

Show simple item record

dc.contributor.author Davitt, Fionán
dc.contributor.author Manning, Hugh G.
dc.contributor.author Robinson, Fred
dc.contributor.author Hawken, Samantha L.
dc.contributor.author Biswas, Subhajit
dc.contributor.author Petkov, Nikolay
dc.contributor.author van Druenen, Maart
dc.contributor.author Boland, John J.
dc.contributor.author Reid Gillian
dc.contributor.author Holmes, Justin D.
dc.date.accessioned 2020-07-17T09:53:20Z
dc.date.available 2020-07-17T09:53:20Z
dc.date.issued 2020-06-09
dc.identifier.citation Davitt, F., Manning, H. G., Robinson, F., Hawken, S. L., Biswas, S., Petkov, N., van Druenen, M., Boland, J. J., Reid G. and Holmes, J. D. (2020) 'Crystallographically controlled synthesis of SnSe nanowires: potential in resistive memory devices', Advanced Materials Interfaces, 2000474 (10 pp). doi: 10.1002/admi.202000474 en
dc.identifier.startpage 1 en
dc.identifier.endpage 10 en
dc.identifier.uri http://hdl.handle.net/10468/10264
dc.identifier.doi 10.1002/admi.202000474 en
dc.description.abstract Here the controlled growth of SnSe nanowires by a liquid injection chemical vapor deposition (CVD) method employing a distorted octahedral [SnCl4{n BuSe(CH2)3Sen Bu}] single‐source diselenoether precursor is reported. CVD with this single‐source precursor allows morphological and compositional control of the SnSex nanostructures formed, including the transformation of SnSe2 nanoflakes into SnSe nanowires and again to SnSe nanoflakes with increasing growth temperature. Significantly, highly crystalline SnSe nanowires with an orthorhombic Pnma 62 crystal structure can be controllably synthesized in two growth directions, either <011> or <100>. The ability to tune the growth direction of SnSe will have important implications for devices constructed using these nanocrystals. The SnSe nanowires with a <011> growth direction display a reversible polarity‐dependent memory switching ability, not previously reported for nanoscale SnSe. A resistive switching on/off ratio of 103 without the use of a current compliance limit is seen, illustrating the potential use of SnSe nanowires for low‐power nonvolatile memory applications. en
dc.description.sponsorship Science Foundation Ireland (Grant Numbers: 18/IF/6324) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Wiley en
dc.relation.uri https://onlinelibrary.wiley.com/doi/full/10.1002/admi.202000474
dc.rights © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the peer reviewed version of the following article: ‘Crystallographically Controlled Synthesis of SnSe Nanowires: Potential in Resistive Memory Devices’, Adv. Mater. Interfaces 2020, 2000474, which has been published in final form at 10.1002/admi.202000474. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. en
dc.subject Chemical vapor deposition (CVD) en
dc.subject Layered materials en
dc.subject Nanowires en
dc.subject Resistive random‐access memory (RRAM) en
dc.subject SnSe en
dc.title Crystallographically controlled synthesis of SnSe nanowires: potential in resistive memory devices en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher en
dc.check.date 2021-06-09
dc.date.updated 2020-07-03T14:02:15Z
dc.description.version Accepted Version en
dc.internal.rssid 522594908
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Engineering and Physical Sciences Research Council en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Advanced Materials Interfaces en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en
dc.identifier.articleid 2000474 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2278/IE/Advanced Materials and BioEngineering Research Centre (AMBER)/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/M50662X/1/GB/DTA - University of Southampton/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/N509747/1/GB/DTP 2016-2017 University of Southampton/ en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP2::ERC/321160/EU/Cognitive Networks for Intelligent Materials and Devices/COGNET en
dc.identifier.eissn 2196-7350


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement