Surface modification of rutile TiO2 with alkaline-earth oxide nanoclusters for enhanced oxygen evolution

Show simple item record Rhatigan, Stephen Sokalu, E. Nolan, Michael Colón, G. 2020-07-28T11:15:19Z 2020-07-28T11:15:19Z 2020-05-15
dc.identifier.citation Rhatigan, S., Sokalu, E., Nolan, M. and Colón, G. (2020) 'Surface modification of rutile TiO2 with alkaline-earth oxide nanoclusters for enhanced oxygen evolution', ACS Applied Nano Materials, 3(6), pp. 6017-6033. doi: 10.1021/acsanm.0c01237 en
dc.identifier.volume 3 en
dc.identifier.issued 6 en
dc.identifier.startpage 6017 en
dc.identifier.endpage 6033 en
dc.identifier.doi 10.1021/acsanm.0c01237 en
dc.description.abstract The oxygen (O2) evolution reaction (OER) is accepted as the bottleneck in the overall water splitting and has seen intense interest. In this work, we prepared rutile TiO2 modified with nanoclusters of alkaline-earth metal oxides for the OER. Photocatalytic OER was performed over rutile TiO2 surface-modified with alkaline-earth oxide nanoclusters, namely, CaO and MgO. The O2 evolution activity is notably enhanced for MgO-modified systems at low loadings and a combination of characterization and first-principles simulations allows interpretation of the role of the nanocluster modification in improving the photocatalytic performance of alkaline-earth-modified rutile TiO2. At such low loadings, the nanocluster modifiers would be small, and this facilitates a close correlation with theoretical models. Structural and surface characterizations of the modified systems indicate that the integrity of the rutile phase is maintained after modification. However, charge-carrier separation is strongly affected by the presence of surface nanoclusters. This improved performance is related to surface features such as higher ion dispersion and surface hydroxylation, which are also discussed with first-principles simulations. The modified systems are reducible so that Ti3+ ions will be present. Water dissociation is favorable at cluster and interfacial sites of the stoichiometric and reduced modified surfaces. Pathways to water oxidation at interfacial sites of reduced MgO-modified rutile TiO2 are identified, requiring an overpotential of 0.68 V. In contrast, CaO-modified systems required overpotentials in excess of 0.85 V for the reaction to proceed. en
dc.description.sponsorship Vicepresidencia de Investigación Científica y Técnica, Spain (Project PCIN-2017-056 from the M-ERA.Net programme); Science Foundation Ireland (Grant SFI/16/M-ERA/ 3418 (RATOCAT)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher ACS Publications en
dc.rights © 2020, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Nano Materials after technical editing by the publisher. To access the final edited and published work see en
dc.subject TiO2 en
dc.subject Surface modification en
dc.subject O2 evolution en
dc.subject Alkaline-earth oxide nanocluster en
dc.subject Photocatalysis en
dc.title Surface modification of rutile TiO2 with alkaline-earth oxide nanoclusters for enhanced oxygen evolution en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en Access to this article is restricted until 12 months after publication by request of the publisher. en 2021-05-15 2020-07-28T10:50:58Z
dc.description.version Accepted Version en
dc.internal.rssid 528100114
dc.contributor.funder Vicepresidencia de Investigación Científica y Técnica, Spain en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Horizon 2020 en
dc.description.status Peer reviewed en
dc.identifier.journaltitle ACS Applied Nano Materials en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::ERA-NET-Cofund/685451/EU/ERA-NET for materials research and innovation/M-ERA.NET 2 en
dc.identifier.eissn 2574-0970

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement