A high resolution 40Ar/39Ar lava chronology and edifice construction history for Tongariro volcano, New Zealand

Show simple item record

dc.contributor.author Pure, Leo R.
dc.contributor.author Leonard, Graham S.
dc.contributor.author Townsend, Dougal B.
dc.contributor.author Wilson, Colin J. N.
dc.contributor.author Calvert, Andrew T.
dc.contributor.author Cole, Rosie P.
dc.contributor.author Conway, Chris E.
dc.contributor.author Gamble, John A.
dc.contributor.author Smith, T. 'Bubs'
dc.date.accessioned 2020-07-31T09:57:50Z
dc.date.available 2020-07-31T09:57:50Z
dc.date.issued 2020-07-16
dc.identifier.citation Pure, L. R., Leonard, G. S., Townsend, D. B., Wilson, C. J. N., Calvert, A. T., Cole, R. P., Conway, C. E., Gamble, J. A. and Smith, T. B. (2020) 'A high resolution 40Ar/39Ar lava chronology and edifice construction history for Tongariro volcano, New Zealand', Journal of Volcanology and Geothermal Research, 403, pp. 106993. doi: 10.1016/j.jvolgeores.2020.106993 en
dc.identifier.issn 0377-0273
dc.identifier.uri http://hdl.handle.net/10468/10345
dc.identifier.doi 10.1016/j.jvolgeores.2020.106993 en
dc.description.abstract Detailed mapping and geochronological investigations of edifice-forming materials reconstruct the growth history of Tongariro volcano, New Zealand, and subdivide the edifice into thirty six distinct units which are organised into twelve formations and constituent members. Twenty nine new 40Ar/39Ar age determinations, along with published K/Ar ages combined with volume estimates, petrographic observations and rock chemistry provide an integrated history of the volcano's growth through edifice-forming lavas and pyroclastic deposits. The oldest lava (512 ± 59 ka, 2 s.d.) is a small inlier of basaltic-andesite on Tongariro's NW sector that may reflect a nearly buried independent volcano. The next oldest material that can be confidently attributed to a Tongariro source is 304 ± 11 ka andesite, incorporated as boulders in late Pleistocene ejecta from the Tama Lakes area. In-situ lavas at Tongariro date from 230 ka to present, including numerous flows erupted during glacial periods and building the edifice unevenly due to emplacement against valley-filling ice bodies. Tongariro has a total edifice volume of ~90 km3, 19 km3 of which is represented by exposed map units, with glacial deposits amounting to <1 km3. The ring plain volume immediately adjacent to the volcano contains ~60 km3 of material. Sequential eruptive records, from 230 ka to present, reveal an irregular cyclicity in MgO concentrations over ~10–70 kyr intervals. During these cycles, rapid (≤10 kyr) increases in MgO concentrations to ≥5–9 wt% are inferred to reflect episodes of enhanced mafic magma replenishment, with maxima at ~230, ~160, ~117, ~88, ~56, ~35, ~17.5 ka and during the Holocene, which are each followed by gradual declines to ~2–5 wt%. Field evidence, including extensive moraines and U-shaped valleys, and lava textures, implies repeated occupation of valleys on Tongariro by major glaciers and possibly ice caps. During periods of major ice coverage, which generally correlate with global cold climate/glacial Marine Isotope Stages, edifice-building rates on Tongariro were only 17–26% of those during warmer climatic periods. Because the changes in edifice-building rates do not coincide with changes in the magmatic system, these contrasts are inferred to reflect a preservation bias whereby materials erupted onto ice were contemporaneously (or subsequently, as ice masses melted) conveyed to the ring plain as debris rather than building the edifice. Although the Tongariro edifice is smaller than that of neighbouring Ruapehu (~150 km3), the exposed edifice materials on Tongariro record a longer and more complex growth history. The wider geographic distribution of <50 ka vent locations at Tongariro reflects greater rifting rates than at Ruapehu. en
dc.description.sponsorship Victoria University of Wellington (PhD Scholarship); Ministry of Business, Innovation and Employment (ECLIPSE Programme); Earthquake Commission (Grant 16/U735) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier B.V. en
dc.relation.uri https://www.sciencedirect.com/science/article/abs/pii/S0377027320301086 en
dc.rights © 2020, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. en
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject Tongariro en
dc.subject Ar/Ar dating en
dc.subject Eruptive history en
dc.subject Composite volcano en
dc.subject Glaciovolcanism en
dc.subject Andesite volcanism en
dc.title A high resolution 40Ar/39Ar lava chronology and edifice construction history for Tongariro volcano, New Zealand en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother John Gamble, Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. +353-21-490-3000 Email: john.gamble@vuw.ac.nz en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 24 months after publication by request of the publisher. en
dc.check.date 2022-07-16
dc.date.updated 2020-07-31T09:38:45Z
dc.description.version Accepted Version en
dc.internal.rssid 528589420
dc.contributor.funder Victoria University of Wellington en
dc.contributor.funder GNS Science, New Zealand en
dc.contributor.funder Ministry of Business, Innovation and Employment en
dc.contributor.funder Earthquake Commission en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Volcanology and Geothermal Research en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress john.gamble@vuw.ac.nz en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

© 2020, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license. Except where otherwise noted, this item's license is described as © 2020, Elsevier B.V. All rights reserved. This manuscript version is made available under the CC BY-NC-ND 4.0 license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement