State forecasting and operational planning for distribution network energy management systems

Show simple item record

dc.contributor.author Hayes, Barry P.
dc.contributor.author Prodanovic, Milan
dc.date.accessioned 2020-08-13T16:10:29Z
dc.date.available 2020-08-13T16:10:29Z
dc.date.issued 2015-10-30
dc.identifier.citation Hayes, B. P. and Prodanovic, M. (2016) 'State Forecasting and Operational Planning for Distribution Network Energy Management Systems', IEEE Transactions on Smart Grid, 7 (2), pp. 1002-1011. doi: 10.1109/TSG.2015.2489700 en
dc.identifier.volume 7 en
dc.identifier.issued 2 en
dc.identifier.startpage 1002 en
dc.identifier.endpage 1011 en
dc.identifier.issn 1949-3053
dc.identifier.uri http://hdl.handle.net/10468/10394
dc.identifier.doi 10.1109/TSG.2015.2489700 en
dc.description.abstract This paper describes the application of advanced metering infrastructure data for developing energy forecasting and operational planning services in distribution networks with significant distributed energy resources. This paper describes development of three services designed for use in distribution network energy management systems. These are comprised of a demand forecasting service, an approach for constraint management in distribution networks, and a service for forecasting voltage profiles in the low voltage network. These services could be applied as part of an advanced distribution network management system in order to improve situational awareness and provide early warning of potential network issues. The methodology and its applicability is demonstrated using recorded supervisory control and data acquisition and smart meter data from an existing medium voltage distribution network. en
dc.description.sponsorship European Commission (Marie Sklodowska-Curie researcher mobility action (FP7-PEOPLE-2013-COFUND), the SmartHG research project (FP7-ICT- 2011-8, ICT-2011.6.1)); Ministerio de Economía, Industria y Competitividad, Gobierno de España (Ministry of Economy and Competitiveness project RESmart (ENE2013-48690-C2-2-R)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.relation.uri https://ieeexplore.ieee.org/document/7313029
dc.rights © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. en
dc.subject Distributed energy management systems en
dc.subject Demand forecasting en
dc.subject Advanced metering infrastructure en
dc.subject Power system monitoring en
dc.subject Distributed energy resources en
dc.subject Load modeling en
dc.subject Load management en
dc.subject Demand forecasting en
dc.subject Predictive models en
dc.subject Power system planning en
dc.subject Power system management en
dc.title State forecasting and operational planning for distribution network energy management systems en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Barry Hayes, Electrical & Electronic Engineering, University College Cork, Cork, Ireland. +353-21-490-3000 Email: barry.hayes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2020-08-13T14:19:58Z
dc.description.version Accepted Version en
dc.internal.rssid 489841117
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Ministerio de Economía, Industria y Competitividad, Gobierno de España en
dc.description.status Peer reviewed en
dc.identifier.journaltitle IEEE Transactions on Smart Grid en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress barry.hayes@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement