Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:2021-04-02
Citation:Lal, S., Razeeb, K. M. and Gautam, D. (2020) 'Enhanced thermoelectric properties of electrodeposited Cu-doped Te films', ACS Applied Energy Materials, 3(4), pp. 3262-3268. doi: 10.1021/acsaem.9b02153
Bismuth telluride-based alloys are the best-known thermoelectric materials in the room-temperature regime. Here, we report on the enhanced thermoelectric properties of electrodeposited copper-doped tellurium films as an n-type thermoelectric material for near-room-temperature applications. With the increase of the copper content in the films, we observe an enhancement of the thermoelectric properties. Thereby, we investigate the role of copper in modifying the crystal structure, which leads to the amorphous nature of the films and the corresponding enhancement in the thermoelectric properties. The electrodeposited copper-doped tellurium films exhibit a high Seebeck coefficient of -227 mu V/K, resulting to a power factor of 5.6 mW/mK(2) , which is a promising power factor observed for the electrodeposited thermoelectric materials and can be a favorable n-type thermoelectric material for device applications.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement